
Page 2 of 81

Intel
®
 PROSet

for Windows* Device Manager
WMI Provider User's Guide

Revision 1.4

Page 3 of 81

Legal Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control
or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Intel®, Intel® PRO Network Connections, and Intel® PROSet are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation

Page 4 of 81

Table of Contents

Legal Notices and Disclaimers ... 3

Table of Contents.. 4

1 Introduction .. 8

1.1 Scope... 8

1.2 Related Documents ... 8

2 WMI ... 9

2.1 Common Information Model (CIM Schema) ... 10

3 Main Features... 12

3.1 Adapter.. 12

3.2 Team ... 12

3.3 VLAN ... 12

3.4 Diagnostics.. 12

4 Installed Files ... 13

4.1 Executables ... 13

4.2 MOF Files ... 13

4.3 MOF Files for IntelNCS2 Namespace.. 13

5 Security... 14

6 Namespace and Context ... 15

6.1 Namespace .. 15

6.2 WBEM Context .. 15

7 Locales and Localization.. 16

7.1 Localized MOF files ... 16

7.2 Class Storage... 16

7.3 Runtime Support ... 16

8 Error Reporting .. 17

8.1 IANet_ExtendedStatus.. 17

8.2 Getting the Error Object.. 17

8.3 Error Object Qualifiers ... 17

8.4 Error Codes ... 17

9 The Core Schema ... 19

9.1 Core Schema Diagram .. 19

9.2 IANet_NetService... 19

10 Ethernet Adapter Schema ... 21

10.1 Adapter Schema Diagram... 21

10.2 IANet_PhysicalEthernetAdapter... 22

10.3 IANet_BootAgent ... 30

11 Adapter Setting Schema.. 32

11.1 Adapter Setting Schema Diagram... 32

Page 5 of 81

11.2 IANet_AdapterToSettingAssoc .. 32

11.3 IANet_AdapterSetting .. 33

11.4 IANet_AdapterSettingInt .. 33

11.5 IANet_AdapterSettingEnum... 34

11.6 IANet_AdapterSettingSlider... 35

11.7 IANet_AdapterSettingMultiSelection... 36

11.8 IANet_AdapterSettingString... 37

12 Boot Agent Setting Schema.. 39

12.1 Boot Agent Setting Schema Diagram... 39

12.2 IANet_BootAgentToBootAgentSettingAssoc.. 39

12.3 IANet_BootAgentSetting.. 40

12.4 IANet_BootAgentSettingEnum .. 40

13 Team Schema.. 42

13.1 Team Schema Diagram... 42

13.2 IANet_TeamOfAdapters... 42

13.3 IANet_TeamedMemberAdapter ... 45

13.4 IANet_NetworkVirtualAdapter .. 45

14 Team Setting Schema ... 47

14.1 Team Setting Schema Diagram .. 47

14.2 IANet_TeamToTeamSettingAssoc... 47

14.3 IANet_TeamSetting .. 48

14.4 IANet_TeamSettingInt.. 48

14.5 IANet_TeamSettingEnum... 49

14.6 IANet_TeamSettingSlider... 50

14.7 IANet_TeamSettingMultiSelection .. 51

14.8 IANet_TeamSettingString .. 52

15 VLAN Schema.. 54

15.1 VLAN Schema Diagram... 54

15.2 IANet_802dot1QVLANService ... 54

15.3 IANet_VLAN ... 55

16 VLAN Setting Schema ... 56

16.1 VLAN Setting Schema Diagram .. 56

16.2 IANet_VLANToVLANSettingAssoc... 56

16.3 IANet_VLANSetting .. 57

16.4 IANet_VLANSettingInt.. 57

16.5 IANet_VLANSettingEnum... 58

16.6 IANet_VLANSettingSlider... 59

16.7 IANet_VLANSettingMultiSelection .. 60

16.8 IANet_VLANSettingString .. 61

17 Diagnostic Classes .. 63

Page 6 of 81

17.1 Diagnostic Test Schema.. 63

17.2 IANet_DiagTest .. 63

17.3 IANet_DiagSetting ... 65

17.4 IANet_DiagResult... 65

18 Getting the Current Configuration .. 67

18.1 Getting the Physical Adapters... 67

18.2 Getting the Team Configuration ... 67

18.3 Getting the VLAN configuration .. 68

18.4 Getting the Boot Agent Information ... 68

19 Updating the configuration ... 69

19.1 Changing the adapter, team or VLAN settings... 69

19.2 Creating a new team.. 69

19.3 Adding an adapter to a team ... 69

19.4 Removing an adapter from a team.. 70

19.5 Deleting a team ... 70

19.6 Changing the mode of a team ... 70

19.7 Changing an adapter’s priority within a team... 70

19.8 Uninstalling an adapter ... 70

19.9 Creating a VLAN.. 70

19.10 Changing the Properties of a VLAN... 71

19.11 Deleting a VLAN.. 71

19.12 Updating the Boot Agent .. 71

19.13 Executing methods in IANet_DiagTest .. 71

20 Summary of CIM classes .. 73

Page 8 of 81

1 Introduction

1.1 Scope

Network Configuration Services version 2 (NCS2) is an easy to use solution for deploying and

managing all Intel end-station networking technologies using industry standard methods. This document

describes the external view of the Intel® PRO Network Connections WMI1 Provider (referred to

throughout this document as "NCS2 WMI Provider"). The NCS2 WMI Provider is a network

configuration block of NCS2.

The NCS2 WMI Provider is a set of software components that implements the WMI network classes.

These classes are based on the Distributed Management Task Force (DMTF) CIM Schema version 2.6.

This document does not repeat information contained in the Managed Object Format (MOF) files

provided with this product (e.g., details of the meanings of individual attributes can be found in the

MOF attribute descriptions).

This document describes how a WMI application such as Intel® PROSet for Windows* Device

Manager uses classes to configure a system’s network. Readers should be familiar with WMI APIs and

the WMI SDK (available from http://www.microsoft.com/).

1.2 Related Documents

• CIM schema version 2.0, 2.2 published by Distributed Management Task Force (DMTF),

http://www.dmtf.org.

• Microsoft* Windows Management Instrumentation (and other manageability information)

http://www.microsoft.com/hwdev/WMI/.

• Web-based Enterprise Management (WBEM) initiative by DMTF

http://www.dmtf.org/wbem/index.html.

• WMI (Microsoft CIM implementation) SDK

http://msdn.microsoft.com/code/sample.asp?url=/msdn-files/027/001/566/msdncompositedoc.xml

1
 WMI stands for Windows Management Instrumentation

Page 9 of 81

2 WMI

Web-based Enterprise Management (WBEM) is a Distributed Management Task Force (DMTF)

initiative intended to provide enterprise system managers with a standardized, cost-effective method for

end station management. The WBEM initiative encompasses a multitude of tasks, ranging from simple

workstation configuration to full-Scale enterprise management across multiple platforms. Central to the

initiative is the Common Information Model (CIM), an extensible data model for representing objects

that exist in typical management environments, and the Managed Object Format (MOF) language for

defining and storing modeled data.

Windows Management Instrumentation (WMI) is an implementation of the WBEM initiative for

Microsoft* Windows* platforms

WMI consists of two main components: the Core and the SDK.

Core - These components are part of the Operating System. They are required for a WMI-enabled

application to work, and must be installed in order to use the SDK.

SDK - The SDK contains tools to browse the WMI schema, extend the schema, create providers,

register and use WMI events. It also provides documentation useful in developing applications that will

use WMI. The SDK is installed as part of the Microsoft Platform SDK installation process.

The SDK is supported on Microsoft Windows NT4* SP4 or SP5, Windows 2000, Windows Me,

Windows XP and Microsoft Windows Server* 2003.

The WMI architecture consists of the following components:

• Management applications

• Managed objects

• Providers

• Management infrastructure (consisting of the Windows Management and Windows Management

repository)

• Windows Management API (which uses COM/DCOM to enable providers and management

applications to communicate with the Windows Management infrastructure.

Management applications process or display data from managed objects, which are logical or physical

enterprise components. These components are modeled using CIM and accessed by applications through

Windows Management. Providers use the Windows Management API to supply Windows Management

with data from managed objects, to handle requests from applications and to generate notification of

events.

The management infrastructure consists of Windows Management (for handling the communication

between management applications and providers) and the Windows Management repository (for storing

data). The Windows Management repository holds static management data. Dynamic data is generated

only on request from the providers. Data is placed in the repository using either the MOF language

compiler or the Windows Management API.

Applications and providers communicate through Windows Management using the Windows

Management API, which supplies such services as event notification and query processing.

The following diagram shows the interrelationship of these components:

Page 10 of 81

2.1 Common Information Model (CIM Schema)

The Common Information Model (CIM) presents a consistent and unified view of all types of logical

and physical objects in a managed environment. Managed objects are represented using object-oriented

constructs such as classes. The classes include properties that describe data and methods that describe

behavior. The CIM is designed by the DMTF to be operating system and platform independent, however

the Microsoft implementation predominates the specification. The WBEM technology includes an

extension of the CIM for the Microsoft Windows operating system platforms. Please refer to the DMTF

CIM schema on DMTF web site for more information.

The CIM defines three levels of classes:

• Classes representing managed objects that apply to all areas of management. These classes provide a

basic vocabulary for analyzing and describing managed systems and are part of what is referred to as

the core model.

• Classes representing managed objects that apply to a specific management area but are independent

of a particular implementation or technology. These classes are part of what is referred to as the

common model - an extension of the core model.

• Classes representing managed objects that are technology-specific additions to the common model.

These classes typically apply to specific platforms such as UNIX or the Microsoft Win32

environment.

All classes can be related by inheritance, where a child class includes data and methods from its parent

class. Inheritance relationships are not typically visible to the management application using them, nor

are the applications required to know the inheritance hierarchy. Class hierarchies can be obtained using

applications that are included in the WMI Tools (see the WMI Tools at http://www.microsoft.com for

more information).

Windows Management also supports association classes. Association classes link two different classes

to model a user-defined relationship, and are visible to management applications. Windows

Page 11 of 81

Management defines association classes to support system classes. Third-party developers can also

define association classes for their management environment.

WBEM supports the concept of schemas to group the classes and instances that are used within a

particular management environment. The Platform SDK includes two schemas: the CIM schema and the

Microsoft Win32 schema. The CIM schema contains the class definitions for the first two levels of the

CIM. These classes represent managed objects that are part of every management environment

regardless of platform. The Win32 schema contains class definitions for managed objects that are part of

a typical Win32 environment.

For additional information on CIM, visit http://www.dmtf.org.

Page 12 of 81

3 Main Features

The main features exposed by the NCS2 WMI Provider are divided into the following categories:

3.1 Adapter

• Enumerate all physical adapters supported by Intel PROSet.

• Enumerate an installed adapter’s settings.

• Add/Remove/Update settings for an installed adapter.

• Obtain an adapter’s Physical Device information.

• Obtain an adapter’s System Slot Device information.

• Uninstall an adapter.

• Update and change an adapters Boot Agent and associated settings.

3.2 Team

• Enumerate the teams supported by Intel PROSet.

• Create/Remove a Team of adapters.

• Add/Remove/Update Settings of the Team.

• Add/Remove member adapters for a team.

• Obtain the IPv4 protocol settings for a team.

3.3 VLAN

• Enumerate Virtual LANs on an adapter or team.

• Create/Remove Virtual LANs on a physical adapter or a team of adapters.

• Add/Remove/Update Settings of the VLAN.

• Obtain the IPv4 protocol settings for a VLAN.

3.4 Diagnostics

• Enumerate all supported diagnostic tests/settings/result for all physical Intel adapters.

• Run/Stop diagnostic test on a physical Intel adapter.

Page 13 of 81

4 Installed Files

4.1 Executables

There are six separate dynamic linking libraries and one executable for the Provider:

Filename Description

Ncs2Prov.exe The instance and method provider. Implements the Ethernet Adapter
Schema, the Teaming Schema, the Setting Schema, the VLAN Schema
and the Diagnostic Schema.

Ncs2Core.dll Implements the Ethernet Adapter Schema.

Ncs2Diag.dll Implements the Diagnostics Schema.

Ncs2Boot.dll Implements the Boot Agent Schema.

Ncs2Team.dll Implements the Team Schema.

Ncs2VLAN.dll Implements the VLAN Schema.

Ncs2InstUtility.dll Implements the common utility functions.

4.2 MOF Files

There are separate MOF files for language neutral and language specific data. For more information on

localization, refer to section 7.

4.3 MOF Files for IntelNCS2 Namespace

Filename Description

ICmLn.mof CIM base classes on which the NCS2 classes depend.

ICmEnu.mfl US English version of the CIM base classes.

ICoreLn.mof Classes for the IEEE 802.3 adapters.

ICoreEnu.mfl US English textual amendments to the adapter classes.

IBootLn.mof Classes for the IEEE 802.3 boot service.

IBootEnu.mfl US English textual amendments to the 802.3 boot service classes.

IDiagLn.mof Classes for the CDM (Common Diagnostic Model).

IDiagEnu.mfl US English textual amendments to the CDM classes.

ITeamLn.mof Classes for the IEEE 802.3 teams.

ITeamEnu.mfl US English textual amendments to the team classes.

IVLANLn.mof Classes for the IEEE 802.3 VLANs.

IVLANEnu.mfl US English textual amendments to the VLAN classes.

Page 14 of 81

5 Security

The NCS2 WMI Provider uses client impersonation to manage the security. Every call into the Provider

will be made in the client’s own security context. This context is passed down to the lower layers. An

operation may fail if the user does not have suitable administrative rights on the target machine.

Page 15 of 81

6 Namespace and Context

6.1 Namespace

The CIM classes reside in a namespace. The standard Microsoft namespace is called “root/cimv2” and is

based on CIM v2.2.

The NCS2 WMI Provider is based on CIM v2.6. Because of this, and because of differences used in the

keys of the objects, the NCS2 WMI Provider classes reside in a separate namespace called

“root/IntelNCS2”. Intel PROSet for Windows Device Manager uses the “root/IntelNCS2” namespace.

6.2 WBEM Context

Context objects are used to provide additional information to the NCS2 WMI Provider that cannot be

passed as a parameter to a WMI API method. Use the IWbemContext to register context qualifiers. The

interface pointer for the context object is passed as the last parameter of an IWbemServices method.

The following table contains the context qualifiers (named values) used by the NCS2 WMI Provider.

ClientSetId is only used in conjunction with specific functional areas of the Provider, whereas

MachineName can be set for all IWbemServices calls.

Any Read done with a context will read the current configuration until a write operation is performed.

Subsequent reads will show the system as it would be after the write has succeeded.

A NULL context can be used for reads.

Context
Qualifier

Variant
Type

Description

ClientSetId VT_BSTR Identifies the application's copy of IANet network classes. The application cannot
make any changes to the classes or their properties without first establishing a
client handle. See the section on the IANet_NetService class to see how to
establish and use a client handle.

This qualifier is not required if the application is only going to read data from the
classes.

The client handle allows the NCS2 software to manage single access to the
configuration.

MachineName VT_BSTR The name of the machine that is connecting to the Provider. This is required for
logging.

Page 16 of 81

7 Locales and Localization

7.1 Localized MOF files

All the MOF files used by the NCS2 WMI Provider are localized according to the Microsoft Windows

Management Instrumentation (WMI) globalization model. To accomplish this, each class definition is

separated into the following:

• a language-neutral version that contains only the basic class definition in the .mof file.

• a language-specific version that contains localized information, such as property descriptions that are

specific to a locale in the corresponding .mfl file.

7.2 Class Storage

The language-specific class definitions are stored in a child sub-namespace beneath the namespace that

contains a language-neutral basic class definition. For example, for the NCS2 WMI Provider, a child

namespace ms_409 will exist beneath the root/intelncs2 namespace for the English locale. Similarly,

there exists a child sub-namespace for each supported language beneath the root/intelncs2 namespace.

7.3 Runtime Support

To retrieve localized data, a WMI application can specify the locale using strLocale parameter in

SWbemLocator.ConnectServer and IWbemLocator::ConnectServer calls. If the locale is not specified,

the default locale for that system will be used. (e.g. MS_409 for US English). This locale is used to

select the correct namespace when adding in the English strings.

In addition, IWbemServices::GetObject, SWbemServices.GetObject, IWbemServices:: ExecQuery, and

SWbemServices.ExecQuery must specify the WBEM_FLAG_USE_AMENDED_QUALIFIERS flag to

request localized data stored in the localized namespace, along with the basic definition. This is required

in all functions that produce displayable values using value maps or display descriptions or other

amended qualifiers from the MOF files.

Page 17 of 81

8 Error Reporting

8.1 IANet_ExtendedStatus

This section details how to handle errors generated by NCS2 WMI Provider.

How and when an error object is returned depends on whether a call is synchronous, semi-synchronous

or asynchronous. In most cases, the HRESULT is set to WBEM_E_FAILED when an error occurs. At

this point, however, it is unknown whether WMI or the NCS2 WMI Provider generated the error.

8.2 Getting the Error Object

8.2.1 Synchronous Calls

Use GetErrorInfo() to get the IErrorInfo object. Use QueryInterface() to get the IWbemClassObject that

contains the error information.

8.2.2 Asynchronous Calls

The IWbemClassObject is passed back as the last item in the last SetStatus() call.

After you get the error object instance, you can check the __Class property to determine the origin of the

error. WMI creates an instance of __ExtendedStatus, and the NCS2 WMI Provider creates an instance of

IANet_ExtendedStatus for errors relating to IANet_ classes and NCS2 WMI Provider.

IANet_ExtendedStatus is derived from __ExtendedStatus and contains the following attributes:

8.3 Error Object Qualifiers

Context Qualifier Description

Description Description of the error tailored to the current locale.

File Code file where the error was generated.

Line Line number in the code file with the error.

ParameterInfo Class or attribute that was being utilized when the error occurred.

Operation Operation being attempted when the error occurred.

ProviderName Name of the Provider that caused the error.

StatusCode Code returned from the internal call that failed.

ClientSetHandle Client Set handle used for the operation.

RuleFailureReasons Reason for operation failure. An operation can fail because a technical
rule has failed. (e.g., you must have a management adapter in certain
teams).

8.4 Error Codes

For all error codes, the NCS2 WMI Providers gives a description customized to the locale. Below is a

list of possible error codes that the Provider may return. Error codes are in the form of HRESULT with

severity set to one (1) and facility set to ITF. An application may use these codes as a basis for a

recovery action.

0x80040901 "WMI: Put property failed"

0x80040902 "WMI: No class object"

0x80040903 "WMI: Failed to create class"

0x80040904 "WMI: Failed to spawn instance of class"

Page 18 of 81

0x80040905 "WMI: Failed to create safe array"

0x80040906 "WMI: Failed to put safe array"

0x80040907 "WMI: Failed to return object to WMI"

0x80040908 "WMI: Get property failed"

0x80040909 "WMI: Unexpected type while getting property"

0x8004090A "WMI: Class not implemented by this provider"

0x8004090B "WMI: Unable to parse WQL statement"

0x8004090C "WMI: Provider only supports WQL"

0x8004090D "WMI: Parameter in context has the wrong type"

0x8004090E "WMI: Error formatting debug log"

0x8004090F "WMI: bad object path"

0x80040910 "WMI: Failed to update setting"

0x80040911 "WMI:[Null parameter passed to method"

0x80040912 "Setting value too small"

0x80040913 "Setting value too big"

0x80040914 "Setting not in step"

0x80040915 "String setting is too long"

0x80040916 "Setting is not one of the allowed values"

0x80040917 "WMI: Qualifier not found"

0x80040918 "WMI: Qualifier set not found"

0x80040919 "WMI: Safe array access failed"

0x8004091A "WMI: Unhandled exception"

0x8004091B "WMI: Operation is not supported for this class"

0x8004091C "WMI: Unexpected event class"

0x8004091D "WMI: Bad event data"

0x8004091E "WMI: Operation succeeded with warnings"

0x8004081F "WMI: The NCS2 Service has been stopped"

Page 19 of 81

9 The Core Schema

The Core Schema consists of the IANet_NetService class.

9.1 Core Schema Diagram

CORE SCHEMA

CIM_ManagedSystemElement

CIM_LogicalElement

CIM_Service

void BeginApply([OUT])

void Apply([IN], [OUT])

string Version

IANet_NetService

9.2 IANet_NetService

9.2.1 Purpose

The IANet_NetService class is the root object from the IANet_ schema. This class enables the client to

access the session that is required to perform sets.

9.2.2 Instances

There is one instance of this object. The client should not rely on the key used for this class. Instead, the

client should get the instance of the class by enumerating all instances of IANet_NetService.

9.2.3 Creating Instances

The user is not able to create instances of IANet_NetService.

9.2.4 Removing Instances

The user is not able to delete the instance of IANet_NetService.

9.2.5 Local Properties

This class implements the following local attribute:

Property Description

Version Contains the current version of the Core Provider.

Page 20 of 81

9.2.6 Modifiable Properties

There are no user modifiable properties of this class.

9.2.7 Unsupported Properties

The following properties are not required for Intel PROSet and are, therefore, not supported:

Caption, Description, Install Date, Started, Start Mode, Status

Methods

The following methods are implemented in IANet_NetService:

void BeginApply(([OUT] uint32 ClientSetHandle)

Used to set a Client session handle , which should be
placed in the context object in the ClientSetId qualifier.

void Apply([IN] uint32 ClientSetHandle,
 [OUT] uint32 FollowupAction
);

Applies changes made with a particular session handle and
releases a session handle after it has been used. The uint32
argument returned is used by the Provider to tell the
application the server must be rebooted before the changes
will take effect. (This can be accomplished by calling the
Reboot method on the class Win32_OperatingSystem).

Values:

1 – system reboot required

0 – no reboot required

9.2.8 Use Cases

A session handle is required to change the configuration. The session handle allows the NCS2 software

to manage single access to the configuration, thereby preventing multiple changes to the configuration.

9.2.8.1 Getting a Client Handle

The client must get the object path of the single instance of IANet_NetService before accessing the

client handle. Call IWbemServices::CreateInstanceEnum and pass the name of the class:

IANet_NetService. (this is equivalent to calling IWbemServices::ExecQuery with the query “SELECT *

FROM IANet_NetService).

Before making any changes to the configuration, the client must get a client handle. Use the BeginApply

method to start a fresh client change configuration. The client can use IWbemServices::ExecMethod to

execute a method on a CIM object and will need the object path, from __PATH attribute of the instance

of IANet_NetService.

9.2.8.2 Using a Client Handle in the IWbemContext Object

After the client obtains a client handle, it must create an IWbemContext object. Store the client handle in

the ClientSetId qualifier of this object. A pointer to this COM object should be passed to every call into

IWbemServices. The client handle is not required when making calls to access the IANet_NetService

object as this takes the handle as an explicit argument.

9.2.8.3 Finishing with a Client Handle

After changing the configuration, call the Apply method to commit the changes. This may return a

follow-up action code (e.g., reboot the system before the changes can take effect).

Page 21 of 81

10 Ethernet Adapter Schema

The adapter schema is used to model the various configurable Intel adapters. This schema is based on

the CIM v2.6 schema.

10.1 Adapter Schema Diagram

ADAPTER SCHEMA

IANet_TeamedMemberAdapter

CIM_EthernetAdapter

IANet_EthernetAdapter

IANet_AdatperSettingIANet_DiagResultIANet_DiagTest

uint32 AdvancedCableTest([OUT], [OUT], [OUT])

uint32 ExpressTeam([IN])

uint32 GetExpressTeamInfo([OUT], [OUT], OUT])

uint32 GetPowerUsageOptions([OUT], [OUT], [OUT], [OUT])

uint32 IdentifyAdapter([IN])

uint32 SetPowerUsageOptions([IN], [IN], [IN], [IN])

uint32 TestCable([OUT], [OUT], [OUT])

uint32 TestLinkSpeed([OUT], [OUT])

uint32 AdapterStatus

uint32 ControllerID

string EEPROMVersion

uint32 ExpressTeaming

uint32 HardwarStatus

uint16 MediaType

string OriginalDisplayName

string[] OtherCapabilityDescriptions

string[] OtherEnabledCapabilities

uint16[] OtherEnabledCapabilityIDs

string OtherMediaType

string OtherPhyDevice

string PartNumber

uint16 PHYDevice

string SlotID

uint32 SupportsCableTest

IANet_PhysicalEthernetAdapter

uint32 ProgramFlash([IN], [IN], [OUT])

uint32 ReadFlash([OUT])

uint32 FlashImageType

boolean InvalidImageSignature

boolean UpdateAvailable

string Version

uint32 VersionNumber

IANet_BootAgent

Page 22 of 81

10.2 IANet_PhysicalEthernetAdapter

10.2.1 Purpose

IANet_PhysicalEthernetAdapter defines the capabilities and status of all the installed Intel adapters. The

class is derived from the an abstract class IANet_EthernetAdapter. IANet_EthernetAdapter is derived

from CIM_EthernetAdapter superclass defined in CIMv2.5. CIM_EthernetAdapter is derived from

CIM_NetworkAdapter, an Abstract class defining general networking hardware concepts such as

PermanentAddress, CurrentAddress, Speed of operation, etc.

10.2.2 Instances

Instances of this class will exist for all installed network adapters.

10.2.3 Creating Instances

The user cannot create instances of IANet_PhysicalEthernetAdapter.

10.2.4 Removing Instances

Deleting an instance of IANet_PhysicalEthernetAdapter will uninstall physical adapters. A client handle

is required for this operation.

10.2.5 Modifying Properties

There are no user-modifiable properties for this class.

10.2.6 Supported Properties

These properties are supported:

NameNameNameName TypeTypeTypeType KeyKeyKeyKey DescriptionDescriptionDescriptionDescription / Notes / Notes / Notes / Notes ValuesValuesValuesValues

Keys : DDDD = Defined by this class, I I I I = Inherited property, OOOO = Overriden property

AdapterStatus uint32 D
Adapter status specifies the
current status of the adapter.

0 Installed

1 DriverLoaded

4 HardwareMissing

16 HasDiag

32 HasLink

1024 HasTCOEnabled

2048 DeviceError

AdditionalAvailability uint16[] I This is an inherited property; refer to parent class.

Availability uint16 I This is an inherited property; refer to parent class.

BusType uint16 D
Bus Type indicates the bus
type.

0 Unknown

1 ISA

2 EISA

3 PCMCIA

4 Cardbus

5 PCI

6 PCI-X

7 PCI-Express

Capabilities uint16[] IO

Capabilities of the
PhysicalEthernetAdapter. For
example, the Device may

0 Unknown

1 Other

2 AlertOnLan

Page 23 of 81

WakeOnLan, Load Balancing
and/or FailOver. If failover or
load balancing capabilities are
listed, a SpareGroup (failover)
or ExtraCapacityGroup (load
balancing) should also be
defined to completely describe
the capability.

3 WakeOnLan

4
Adapter Fault
Tolerance

5
Adaptive Load
Balancing

6 IPSec Offload

7 ASF

8
GEC/802.3ad Static
Link Aggregation

9
Static Link
Aggregation

10
IEEE 802.3ad
Dynamic Link
Aggregation

11 Checksum Offload

12
Switch Fault
Tolerance

13 Basic AlertOnLan

14 AlertOnLan 2

15 Security Offload AH

16
Security Offload
ESP

17
Security Payload
Tunnel

18
Security Payload
Transport

19
Security IPV4
Packets

20
Authentication
Algorithm MD5

21
Authentication
Algorithm SHA1

22
Encryption Algorithm
EAS

23
Encryption Algorithm
DES

24
Encryption Algorithm
3DES

25
ESP Xmit Checksum
Encryption

26
ESP Xmit Checksum
Authentication

27
ESP Receive
Checksum
Encryption

28
ESP Receive
Checksum
Authentication

29 TCO Capability

Page 24 of 81

30
Wake Up
Capabilities

31
IP Checksum
Offload

32 10 Mbps

33 100 Mbps

34 1000 Mbps

35 10000 Mbps

36 Teaming

37 VLAN

38 IEEE VLAN

39 ISL VLAN

40 Uninstallable

41
Identify Adapter
Support

42 Cable Test Support

43 Diagnostic Support

44 Flash support

45 ICH Support

46 Usage Server

47 Vendor Intel

48 Phoneline PHY

49 Mobile

50
PowerManagement
Support

51 ExpressTeam

52 MFO

53 Pass Through

54 Quad-Port Support

55
Dedicated MAC
Address

56
Jumbo Frame
Support

57
VLAN over Express
Team

58 Signal Quality Test

59 Cable Offline Test

60 Adapter is LOM

61
Scalable Networking
Pack Capability

62
CB Platform
Capability

63 iSCSI Capability

CapabilityDescriptions string[] IO This property is deprecated and is not in use.

Page 25 of 81

Caption string I This is an inherited property; refer to parent class.

ControllerID uint32 D

The Controller ID identifies the
Ethernet controller that the
adapter uses. Adapters with
different DeviceIDs can have
the same Controller ID.

0 Unknown

100 8255X Controller

101
Intel 82557
Controller

102
Intel 82558
Controller

103
Intel 82559
Controller

104
Intel 82550
Controller

105
Intel 82551
Controller

200
Intel(R) 82801BA I/O
Controller Hub 2

201 ICH2

202
Intel(R) 82801BA I/O
Controller Hub 2

1000 8254X Controller

1001
Intel 82542
Controller

1002
Intel 82543
Controller

1003
Intel 82543 PC
Controller

1004
Intel 82544 EI
Controller

1005
Intel 82544 PD
Controller

1006
Intel 82544 GC
Controller

1007
Intel 82540 EM
Controller

1008
Intel 82545 EM
Controller

1009
Intel 82546 EB
Controller

1010
Intel 82541 IE
Controller

1011
Intel 82540 EP
Controller

1012
Intel 82545 GM
Controller

1013
Intel 82541 ER
Controller

1014
Intel 82547 EI
Controller

1015
Intel 82547 GI
Controller

Page 26 of 81

1016
Intel 82541 GI
Controller

1017
Intel 82546 GB
Controller

1018
Intel 82570 EI
Controller

1019
Intel 82571 EB
Controller

1020
Intel 82572 E1
Controller

1021
Intel 82573 E
Controller

10000
Intel 82597 EX
Controller

Description string I This is an inherited property; refer to parent class.

DeviceID string I This is an inherited property; refer to parent class.

EEPROMVersion string D EEPROMVersion contains the EEPROM version of the device.

EnabledCapabilities uint16[] IO

Specifies which capabilities are
enabled from the list of all
supported ones, defined in the
Capabilities array

Please refer to the
.Capabilities property
definition (above) to resolve
uint16 values to strings.

ExpressTeaming uint32 D
Determines if Express teaming
is enabled on this adapter.

0
Express teaming is
not enabled on this
adapter

1

Express teaming is
enabled and this
adapter is the
primary port
(initiator) of Express
Team

2

Express teaming is
enabled and this
adapter is member
of an Express Team

HardwareStatus uint32 D
Hardware status specifies the
current status of the hardware.

0 Unknown

1 Ready

2 Initializing

3 Reset

4 Closing

5 Not Ready

MaxSpeed uint16 I This is an inherited property; refer to parent class.

MediaType uint16 D
MediaType indicates the media
which interfaces to this phy.

0 Unknown

1 Copper

2 Fiber

Page 27 of 81

3 Phone Line

4 CX4 Copper

5 Other

MiniPortInstance string I This is an inherited property; refer to parent class.

MiniPortName string I This is an inherited property; refer to parent class.

Name string I This is an inherited property; refer to parent class.

NegotiatedLinkWidth uint16 D
Negotiated Link Width specifies
the negotiated link width of the
bus.

0 Unknown

1 x1

2 x2

4 x4

NetworkAddresses string[] I This is an inherited property; refer to parent class.

OriginalDisplayName string D

If Express teaming is enabled
on this adapter
OriginalDisplayName will
contain the original display
name of the adapter.

This is an inherited
property; refer to parent
class for information.

OtherCapabilityDescriptions string[] D This property is deprecated and is not in use.

OtherEnabledCapabilities string[] D This property is deprecated and is not in use.

OtherEnabledCapabilityIDs uint16[] D This property is deprecated and is not in use.

OtherMediaType string D This property is deprecated and is not in use.

OtherPhyDevice string D This property is deprecated and is not in use.

PartNumber string D PartNumber is the NIC's PBA manufacturing part number

PCIDeviceID string D PCI device Id of the device.

PermanentAddress string I This is an inherited property; refer to parent class.

PHYDevice uint16 D
PHYDevice indicates the
particular PHY used on this
NIC

0 No PHY detected

1
Intel 82553 (PHY
100) A or B step

2
Intel 82553 (PHY
100) C step

3 Intel 82503 10Mps

4
National DP83840A
(10BaseT and
100Base-TX)

5
Seeq 80C240 -
100BASE-T4

6
Seeq 80C24 -
10Mps

7
Intel 82555
100Base-TX PHY

8 Microlinear 10Mps

9 Level One 10Mbps

Page 28 of 81

10
National DP83840
100Base-TX, C step

11
ICS 100Base-TX
PHY

12 Gilad

13 Kinnereth

14 Kinnereth Plus

15 Other

16 Unknown

50
Intel 82562 EH
Phoneline PLC

60
Intel 82562 ET 100
Base-TX PHY

70
Intel 82562 EM 100
Base-TX PHY

PortNumber uint16 D
PortNumber indicates the port
number on PCIe Quad port
adapters

0 A

1 B

2 C

3 D

SlotID string D
SlotID field of the System Slot structure provides a mechanism
to correlate the physical attributes of the slot to its logical
access method.

Speed uint64 I This is an inherited property; refer to parent class.

StaticIPAddress string D
StaticIPAddress shows the static IP address if Static IP
Address is configured, else this is set to 0.0.0.0.

Status string I This is an inherited property; refer to parent class.

StatusInfo uint16 I This is an inherited property; refer to parent class.

SubnetMask string D
SubnetMask shows the current conffigured SubnetMask. This
field is populated only if the adapter has a static IP Address
configured or else this is set to 0.0.0.0.

10.2.7 Unsupported Properties

The following properties are not required for Intel PROSet and are, therefore, not supported:

AlignmentErrors, AutoSense, CarrierSenseErrors, DeferredTransmissions, ErrorCleared,

ErrorDescription, ExcessiveCollisions, FCSErrors, FlowControlPacketsReceived,

FlowControlPacketsTransmitted, FrameTooLongs, FullDuplex, GeneralReceiveErrors,

GeneralTransmitErrors, IdentifyingDescriptions, InstallDate, InternalMACReceiveErrors,

InternalMACTransmitErrors, LastErrorCode, LateCollisions, MaxDataSize, MaxQuiesceTime,

MultipleCollisionFrames, OctetsReceived, OctetsTransmitted, OtherIdentifyingInfo,

PowerManagementCapabilities (this is exposed as a method), PowerManagementSupported (this is

exposed as a method), PowerOnHours, SingleCollisionFrames, SymbolErrors, TotalPacketsReceived,

TotalPacketsTransmitted, TotalPowerOnHours.

10.2.8 Methods

This class implements the following methods:

Page 29 of 81

uint32 AdvancedCableTest([OUT] boolean,
 [OUT] array[string],
 [OUT] array[string]);

Performs a set of advanced cable tests on supported
adapters.

uint32 ExpressTeam([IN] Boolean); Creates/Removes the express team.

uint32 GetExpressTeamInfo([OUT] boolean,
 [OUT] uint16,
 [OUT] uint32);

Gets the express team information.

uint32 GetNDISVersion([OUT] uint32,

[OUT] uint32);

This method can be used to get the NDIS version

uint32 GetPowerUsageOptions([OUT] uint32,
 [OUT] uint32,
 [OUT] uint32,
 [OUT] uint32);

Detects any optional power usage settings (e.g., power usage
for standby, battery operation, etc.).

uint32 GetWakeOnLanPowerOptions(

 [IN], uint32,

 [IN], uint32,

 [IN], uint32,

 [IN], uint32);

GetWakeOnLanPowerOptions returns WakeOnLan power
settings. For example, information about wakeonlink,
wakeonmagicpacket etc..

uint32 IdentifyAdapter([IN uint16]); Identifies adapter by flashing the light on the adapter for a few
seconds. This method will only work for physical adapters.

uint32 IsiSCSISupported([OUT] boolean,

 [OUT] boolean,

 [OUT] boolean);

This method can be used to check if iSCSI is supported by the
OS and iSCSI patch and hotfix are installed.

uint32 IsSetPowerMgmtCapabilitiesReq(

 [OUT] boolean);

This method can be used to check if
SetPowerMgmtCapabilities() needs to be called.

uint32 SetPowerMgmtCapabilities(); This method is used to makes changes to the Power
management capabilities during DMIX install so that any
upgrade scenarios from earlier releases will have the right
options for all the WakeOnLAN options and DMIX will not
have reinterpret them dynamically

uint32 SetPowerUsageOptions ([IN] uint32,
 [IN] uint32,
 [IN] uint32,
 [IN] uint32);

Changes power usage options (e.g., method can be used to
reduce power usage for standby, battery operation, etc.) Note:
Power usage settings are stored and used for subsequent
reboots.

uint32 SetWakeOnLanPowerOptions(

 [IN], uint32,

 [IN], uint32,

 [IN], uint32,

 [IN], uint32);

This method can be used to makes changes to the
WakeOnLan options. For example, this method could be used
to set options like wakefromPoweroff, wakeOnlink,
WakeOnMagicPacket, WakeOnDirectedPacket etc. Note
WakeOnLan settings are stored and used for every boot.

uint32 TestCable ([OUT] array[string],
 [OUT] array[string],
 [OUT] array[string]);

Analyzes the network cable connected to the adapter and
reports aspects of the cable such as length, quality and signal
quality.

unit32 TestLinkSpeed ([OUT] uint32,
 [OUT] string);

Determines whether the adapter is running at full speed.

Page 30 of 81

10.2.9 Unsupported Methods

The following methods are not required for Intel PROSet and are, therefore, not supported:

EnableDevice, OnlineDevice, QuiesceDevice, Reset, RestoreProperties, SaveProperties, SetPowerState.

10.2.10 Associations

• IANet_DiagTestForMSE is used to associate an IANet_DiagTest with an

IANet_PhysicalEthernetAdapter.

• IANet_DiagResultForMSE is used to associate an IANet_DiagResult with an

IANet_PhysicalEthernetAdapter.

• IANet_DeviceBootServiceImplementation is used to associate an IANet_BootAgent with an

IANet_PhysicalEthernetAdapter.

• IANet_AdapterToSettingAssoc is used to associate an IANet_AdapterSetting with an

IANet_PhysicalEthernetAdapter.

• IANet_TeamedMemberAdapter is used to associate a IANet_TeamOfAdapters with an

IANet_PhysicalEthernetAdapter.

10.3 IANet_BootAgent

10.3.1 Purpose

This class is used to capture information about the network boot capabilities of an adapter (e.g., settings

for the PXE Boot Agent supported by some Intel adapters). This class is derived from

CIM_BootService.

10.3.2 Instances

An IANet_BootAgent instance exists for each adapter that supports boot agent capabilities, even if the

boot agent is not currently installed.

10.3.3 Creating Instances

The user cannot create instances of IANet_BootAgent. An instance exists only if the adapter supports

boot agent functionality.

10.3.4 Removing Instances

The user cannot remove instances of IANet_BootAgent.

10.3.5 Modifying Properties

There are no user-modifiable properties of this class.

10.3.6 Associations

• IANet_DeviceBootServiceImplementation is used to associate an IANet_PhysicalEthernetAdapter

with an IANet_BootAgent, if the adapter supports it.

• IANet_BootAgentToBootAgentSettingAssoc is used to associate an IANet_BootAgentSetting with

an IANet_BootAgent.

Page 31 of 81

10.3.7 Local Properties

The following read only properties are required by Intel PROSet:

Property Description

FlashImageType The boot agent flash image type.

InvalidImageSignature Boolean value denoting corrupted flash image.

UpdateAvailable Indicates if install or upgrade to boot agent software is available.

Version String value of boot agent version.

VersionNumber Unsigned integer value of boot agent version.

10.3.8 Unsupported Properties

The following properties are not required by Intel PROSet and are, therefore, not supported:

Caption, Description, InstallDate, Started, StartMode, Status.

10.3.9 Methods

There are two methods on this class that can be used to update the Flash ROM on the NIC:

uint32 ProgramFlash([IN] uint32,
 [IN] array[uint8],
 [OUT] uint32,
);

This method is used to update the Flash ROM on the NIC. This
will cause the NIC to stop communicating with the network while
the flash is updated.

uint32 ReadFlash([OUT] array[uint8]); This method reads the Flash ROM on the NIC.

10.3.10 Unsupported Methods

StartService, StopService

Page 32 of 81

11 Adapter Setting Schema

11.1 Adapter Setting Schema Diagram
ADAPTER SETTING SCHEMA

IANet_Setting

IANet_AdapterSetting

IANet_AdapterToSettingAssoc

CIM_Setting

IANet_PhysicalEthernetAdapter

uint64 base

sint64 CurrentValue

sint64 DefaultValue

sint64 max

sint64 min

sint64 Scale

sint64 step

IANet_AdapterSettingInt
sint64 CurrentValue

sint64 DefaultValue

string[] DescriptionMap

sint64[] PossibleValues

IANet_AdapterSettingEnum
sint64 CurrentValue

sint64 DefaultValue

string FirstLabel

string LastLabel

sint64[] PossibleValues

IANet_AdapterSettingSlider
sint64 CurrentValue

sint64 DefaultValue

string[] DescriptionMap

sint64[] PossibleValues

IANet_AdapterSettingMultiSelection
string CurrentValue

string DefaultValue

uint32 MaxLength

IANet_AdapterSettingString

11.2 IANet_AdapterToSettingAssoc

11.2.1 Purpose

This class is used to group a collection of IANet_AdapterSetting instances.

11.2.2 Instances

Each adapter can have several associated IANet_AdapterToSettingAssoc instances.

11.2.3 Creating instances

The user cannot create instances of IANet_ AdapterToSettingAssoc.

11.2.4 Removing instances

The user cannot remove instances of IANet_ AdapterToSettingAssoc.

11.2.5 Modifying properties

There are no user-modifiable properties for this class.

11.2.6 Associations

An IANet_AdapterToSettingAssoc instance will exist to associate each IANet_PhysicalEthernetAdapter

with its IANet_AdapterSetting.

11.2.7 Methods

There are no supported methods for this class.

11.2.8 Unsupported Properties

None

Page 33 of 81

11.3 IANet_AdapterSetting

11.3.1 Purpose

This abstract class is used to describe a settable property in a configuration. The class is derived from

IANet_Setting.

11.3.2 Instances

Instances of this class will exist for each setting on each adapter.

There are several sub-classes for IANet_AdapterSetting. The sub-classes correspond to the different

types and ranges of values that settings can take. Each sub-class corresponds to a different style of GUI

that may be used to display or change the settings.

11.3.3 Creating instances

The user cannot create instances of IANet_AdapterSetting.

11.3.4 Removing instances

The user cannot remove instances of IANet_AdapterSetting.

11.3.5 Modifying properties

This abstract class has no modifiable properties, however, the child classes have modifiable properties

(see sub-classes listed in this section).

11.3.6 Associations

Each IANet_AdapterSetting instance is associated with an IANet_PhysicalEthernetAdapter instance

using an instance of IANet_ AdapterToSettingAssoc.

11.3.7 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property and call PutInstance.

11.3.8 Unsupported Properties

SettingID and RequiresSession are not used.

11.4 IANet_AdapterSettingInt

11.4.1 Purpose

The class models a setting that takes an integer value. There are several IANet setting classes used to

model integers. The differences between these classes concerns how the integer is displayed and

modified by the GUI, and how validation is done by the Provider. For IANet_AdapterSettingInt, it is

expected that the GUI will display an edit box with a spin control.

11.4.2 Instances

An instance of this class exists for each setting that should be displayed as an integer edit box.

11.4.3 Creating Instances

The user cannot create instances of this class.

11.4.4 Removing Instances

The user cannot remove instances of this class.

Page 34 of 81

11.4.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. The user can modify this

property by using IWbemClassObject::Put() to change the value, then call

“IWbemServices::PutInstance()” to update the setting. The Provider will check that:

 CurrentValue <= max

 CurrentValue >= min

 (CurrentValue – min) is a multiple of step

Where max, min, CurrentValue and step are all properties of IANet_SettingInt.

11.4.6 Local Properties

This class implements the following local properties:

Property Description

base Root from which the integer value may take values (example; decimal = base 10).

CurrentValue The actual value of the integer setting.

DefaultValue The initial value of the integer setting.

max The maximum value that the setting can have.

min The minimum value that the setting can have.

Scale Unit to measure value of setting.

step The granularity of the integer value.

11.4.7 Associations

Each IANet_AdapterSettingInt instance is associated with an IANet_PhysicalEthernetAdapter instance

using an instance of IANet_AdapterToSettingAssoc.

11.4.8 Unsupported Properties

SettingID and RequiresSession are not used.

11.4.9 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property and call PutInstance.

11.5 IANet_AdapterSettingEnum

11.5.1 Purpose

The class models a enumeration setting value. For IANet_AdapterSettingEnum, it is expected that the

GUI will display a list of strings which map onto a small number of enumerated values. (e.g., a drop list

combo box).

11.5.2 Instances

An instance of this class exists for each setting that will be displayed as an enumeration.

11.5.3 Creating Instances

The user cannot create instances of this class.

11.5.4 Removing Instances

The user cannot remove instances of this class.

Page 35 of 81

11.5.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

11.5.6 Associations

Each IANet_AdapterSettingEnum instance is associated with an IANet_PhysicalEthernetAdapter

instance using an instance of IANet_AdapterToSettingAssoc.

11.5.7 Local Properties

This class implements the following local properties:

Property Description

CurrentValue The actual value of the setting.

DefaultValue The initial value of the setting.

DescriptionMap An array of descriptions mapped to the PossibleValues property.

PossibleValues The values that correspond to the DescriptionMap.

11.5.8 Unsupported Properties

SettingID and RequiresSession are not used.

11.5.9 Methods

There are no supported methods on this class. To make changes to a setting modify the required property

and call PutInstance.

11.6 IANet_AdapterSettingSlider

11.6.1 Purpose

The class models a setting that specifically handles Slider settings. For IANet_AdapterSettingSlider, it is

expected that the GUI will display a slider which will allow the user to choose the value in a graphical

manner – the actual value chosen need not be displayed.

11.6.2 Instances

An instance of this class exists for each setting that will be displayed as a slider.

11.6.3 Creating Instances

The user cannot create instances of this class.

11.6.4 Removing Instances

The user cannot remove instances of this class.

11.6.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 36 of 81

11.6.6 Local Properties

This class implements the following local properties:

Property Description

CurrentValue The actual value of the setting.

DefaultValue The initial value of the setting.

FirstLabel The label that should be displayed to the left of the slider.

LastLabel The label that should be displayed to the right of the slider.

PossibleValues The range of values which should be displayed with the first value on the left and last value on
the right side of the slider.

11.6.7 Associations

Each IANet_AdapterSettingSlider instance is associated with an IANet_PhysicalEthernetAdapter

instance using an instance of IANet_AdapterToSettingAssoc.

11.6.8 Unsupported Properties

SettingID and RequiresSession are not used.

11.6.9 Methods

There are no supported methods on this class. To make changes to a setting, modify the required

property and call PutInstance.

11.7 IANet_AdapterSettingMultiSelection

11.7.1 Purpose

This class models a setting whereby the user can select several options from a list of options. For

IANet_AdapterSettingMultiSelection, it is expected that the GUI will display multi-selection list box

which will allow the user to choose any (or no) option(s).

11.7.2 Instances

An instance of this class exists for each setting that will be displayed as a multi-selection.

11.7.3 Creating Instances

The user cannot create instances of this class.

11.7.4 Removing Instances

The user cannot remove instances of this class.

11.7.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then use “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 37 of 81

11.7.6 Local Properties

This class implements the following properties:

Property Description

CurrentValue The actual value of the setting.

DefaultValue The initial value of the setting.

DescriptionMap An array of descriptions mapped to the
PossibleValues property.

PossibleValues The values that correspond to the DescriptionMap.

11.7.7 Associations

Each IANet_AdapterSettingMultiSelection instance is associated with an

IANet_PhysicalEthernetAdapter instance using an instance of IANet_AdapterToSettingAssoc.

11.7.8 Unsupported Properties

SettingID and RequiresSession are not used.

11.7.9 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property and call PutInstance.

11.8 IANet_AdapterSettingString

11.8.1 Purpose

This class models a setting whereby the user can enter a free-form string value. For

IANet_AdapterSettingString, it is expected that the GUI will display an edit box.

11.8.2 Instances

An instance of this class exists for each setting that will be displayed as an edit box.

11.8.3 Creating Instances

The user cannot create instances of this class.

11.8.4 Removing Instances

The user cannot remove instances of this class.

11.8.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then call “PutInstance()” to update the setting.

11.8.6 Local Properties

This class implements the following local properties:

Property Description

CurrentValue The actual value of the setting.

DefaultValue The initial value of the setting.

MaxLength The maximum string length allowed.

11.8.7 Associations

Each IANet_AdapterSettingString instance is associated with an IANet_PhysicalEthernetAdapter

instance using an instance of IANet_AdapterToSettingAssoc.

Page 38 of 81

11.8.8 Unsupported Properties

SettingID and RequiresSession are not used.

11.8.9 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property, then call PutInstance.

Page 39 of 81

12 Boot Agent Setting Schema

12.1 Boot Agent Setting Schema Diagram

BOOT AGENT SETTING
SCHEMA

CIM_Setting

IANet_Setting

IANet_BootAgentSetting IANet_BootAgent

IANet_BootAgentToBootAgentSettingAssoc
sint64 CurrentValue

sint64 DefaultValue

string[] DescriptionMap

sint64[] PossibleValues

IANet_BootAgentSettingEnum

12.2 IANet_BootAgentToBootAgentSettingAssoc

12.2.1 Purpose

This class is used to group a collection of IANet_BootAgentSetting instances.

12.2.2 Instances

Each BootAgent can have several associated IANet_BootAgentToBootAgentSettingAssoc instances.

12.2.3 Creating Instances

The user cannot create instances of IANet_BootAgentToBootAgentSettingAssoc.

12.2.4 Removing Instances

The user cannot remove instances of IANet_ BootAgentToBootAgentSettingAssoc.

12.2.5 Modifying Properties

There are no user-modifiable properties for this class.

12.2.6 Associations

An IANet_BootAgentToBootAgentSettingAssoc instance will exist to associate each Boot Agent

(IANet_BootAgent) with its setting.

Page 40 of 81

12.2.7 Methods

There are no supported methods for this class.

12.2.8 Unsupported Properties

None

12.3 IANet_BootAgentSetting

12.3.1 Purpose

This abstract class is used to describe a settable property in a configuration. The class is derived from

IANet_Setting.

12.3.2 Instances

Instances of this class will exist for each setting on each Boot Agent.

There are several sub-classes for IANet_BootAgentSetting. The sub-classes correspond to the different

types and ranges of values that settings can take. Each sub-class corresponds to a different style of GUI

that may be used to display or change the settings.

12.3.3 Creating Instances

The user cannot create instances of IANet_BootAgentSetting.

12.3.4 Removing Instances

The user cannot remove instances of IANet_BootAgentSetting.

12.3.5 Modifying Properties

This abstract class has no modifiable properties, however, the child classes have modifiable properties

(see below).

12.3.6 Associations

Each IANet_BootAgentSetting instance is associated with an IANet_BootAgent instance using an

instance of IANet_BootAgentToBootAgentSettingAssoc.

12.3.7 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property and call PutInstance.

12.3.8 Unsupported Properties

SettingID and RequiresSession are not used.

12.4 IANet_BootAgentSettingEnum

12.4.1 Purpose

The class models a enumeration setting value. For IANet_BootAgentSettingEnum, it is expected that the

GUI will display a list of strings which map onto a small number of enumerated values. (e.g., a drop list

combo box).

12.4.2 Instances

An instance of this class exists for each setting that will be displayed as an enumeration.

12.4.3 Creating Instances

The user cannot create instances of this class.

12.4.4 Removing Instances

The user cannot remove instances of this class.

Page 41 of 81

12.4.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

12.4.6 Local Properties

This class implements the following local properties:

Property Description

CurrentValue The actual value of the setting.

DefaultValue The initial value of the setting.

DescriptionMap An array of descriptions mapped to the PossibleValues property.

PossibleValues The values that correspond to the DescriptionMap.

12.4.7 Associations

Each IANet_BootAgentSettingEnum instance is associated with an IANet_BootAgent instance using an

instance of IANet_BootAgentToBootAgentSettingAssoc.

12.4.8 Unsupported Properties

SettingID and RequiresSession are not used.

12.4.9 Methods

There are no supported methods on this class. To make changes to a setting modify the required property

and call PutInstance.

Page 42 of 81

13 Team Schema

The Team Schema describes how the Ethernet adapters are grouped together into teams.

13.1 Team Schema Diagram

TEAM SCHEMA

CIM_NetworkAdapterRedundanyComponent

uint16 AdapterFunction

uint16 AdapterStatus

IANet_TeamedMemberAdapter

IANet_NetworkVirtualAdapter

CIM_EthernetAdapter

IANet_EthernetAdapter

IANet_LogicalEthernetAdapter IANet_TeamOfAdapters

uint32 CreateTeam([IN], [IN], [IN], [IN],[OUT])

uint32 GetBestTeamMode([OUT], [OUT], [OUT], [OUT])

uint32 RenameTeam([IN])

uint TestSwitchConfiguration([IN], [OUT], [OUT], [OUT], [OUT], [OUT])

uint32 ValidateAddAdapters([IN], [OUT])

uint32 ValidateSetting([IN], [IN], [IN], [OUT])

uint32 AdapterCount

uint32 MaxAdapterCount

boolean MFOEnabled

uint32 TeamingMode

IANet_PhysicalEthernetAdapter

13.2 IANet_TeamOfAdapters

13.2.1 Purpose

This class implements the CIM_ExtraCapacityGroup class. This class has members that describe the

type of the team, the number of adapters in the team, and the maximum number of adapters that can be

in the team.

13.2.2 Instances

There is an instance of this class for each Intel adapter team.

13.2.3 Creating Instances

To create an empty team, the user will create an instance of IANet_TeamOfAdapters. The user must set

the correct “TeamingMode” before calling IWbemServices::PutInstance() to create the object in the

Provider. The Provider will return a string containing the object path of the new object.

13.2.4 Removing Instances

Correspondingly, to remove a team the user should delete the instance of IANet_TeamOfAdapters. The

Provider will delete the associations to the team members, and will also delete the virtual adapter and

settings for the team.

13.2.5 Modifying Properties

Use Put() to change the value of the “TeamingMode” property, then call PutInstance() to update the

team.

Page 43 of 81

13.2.6 Local Properties

This class implements the following local properties:

Property Description

AdapterCount The number of adapters currently in the team.

MaxAdapterCount The maximum number of adapters allowed in created team.

MFOEnabled Represents the MFO enabled/disabled in the current team.

TeamingMode The type of the current team.

13.2.7 Associations

Each adapter in a team is associated with the team’s instance of IANet_TeamOfAdapters using an

instance of IANet_TeamedMemberAdapter.

The virtual adapter (IANet_LogicalEthernetAdapter) for the team is associated with this class using an

instance of IANet_NetworkVirtualAdapter.

13.2.8 Methods

This class instance supports following methods:

Method Description

uint32 TestSwitchConfiguration(

 [IN, ValueMap {"0","1","2"}:Amended,

 Values {"Start", "Cancel",

 "Results"}: Amended

] uint32 Cmd,

 [OUT, ValueMap

 {"0","1","2"}:Amended,

 Values {"OK", "Error",

 "Progress"}: Amended

] uint32 Status,

 [OUT] uint16 CauseMessageId[],

 [OUT] string strCause[],

 [OUT] uint16 SolutionMessageId[]

 [OUT]string strSolution[]

);

Tests the switch configuration to ensure that the team is
functioning correctly with the switch. This test can be used to
check that link partners i.e., a device that an adapter links to,
such as another adapter, hub, switch, etc., support the chosen
adapter teaming mode. For example, if the adapter is a
member of a Link Aggregration team, then this test can verify
that link partners connected to the adapter support Link
Aggregation.

Page 44 of 81

uint32 GetBestTeamMode(
 [OUT,
 ValueMap {"Passed", "Failed",
 "In Progress",
 "Unknown"}:Amended ,
 Values {"0", "1", "2", "3"}:
 Amended]
 uint32 Status,
 [OUT,
 Units ("Percent"):Amended,
 MinValue (0), MaxValue (100)]
 uint8 PercentOfCoverage,
 [OUT, ValueMap {"0", "1", "2", "4",
 "5"}:Amended ,
 Values {"AFT", "ALB", "SLA",
 "IEEE 802.3ad",
 "SFT"}:Amended]
 uint32 TeamingMode,
 [OUT] uint16 ErrorMessageId
);

GetBestTeamMode selects the most appropriate teaming
mode to use for teaming.

uint32 RenameTeam([IN] string TeamName); RenameTeam changes the name of an existing Intel adapter
Team in the system.

uint32 CreateTeam(
 [IN] IANet_EthernetAdapter REF Adapters[],
 [IN, ValueMap {"0", "1", "2", "4", "5"}:
 Amended,
 Values {"AFT", "ALB", "SLA",
 "IEEE 802.3ad",
 "SFT"}:Amended]
 uint32 TeamingMode,
 [IN] string TeamName,
 [IN] boolean MFOEnable,
 [OUT] IANet_TeamOfAdapters REF
 TeamPath
);

CreateTeam adds a new Intel adapter Team to the system.

uint32 ValidateAddAdapters(
 [IN] IANet_PhysicalEthernetAdapter REF
 Adapters[],
 [OUT] uint16 ValResult
);

Validates the adapters which will be added to a team.

uint32 ValidateSetting(
 [IN] IANet_PhysicalEthernetAdapter REF
 Adapter,
 [IN] string SettingName,
 [IN] sint64 Value,
 [OUT] uint16 ValResult
);

Validates the member adapter setting.

13.2.9 Unsupported Properties

InstallDate and Status are not used.

Page 45 of 81

13.3 IANet_TeamedMemberAdapter

13.3.1 Purpose

This class is used to associate the adapter with the team, determine the function of the adapter in the

team, and establish that the adapter is currently active in the team. This class implements the CIM class

CIM_NetworkAdapterRedundancyComponent.

13.3.2 Instances

An instance of this class exists for each adapter that is a member of a team.

13.3.3 Creating Instances

To add an adapter to a team, create an instance of IANet_TeamedMemberAdapter to associate the

adapter with the team.

13.3.4 Removing Instances

To remove an adapter from the team, remove the instance of IANet_ TeamedMemberAdapter. The

adapter will no longer be part of the team and may be bound to an IP protocol endpoint after the Apply()

function is called.

13.3.5 Modifying Properties

The AdapterFunction property of this class may be modified to describe how the adapter is used within a

team.

13.3.6 Local Properties

This class implements the following local properties:

Property Description

AdapterFunction Describes how the adapter is used in a team.

AdapterStatus Describes the adapters status within the team.

13.3.7 Associations

This is an association class.

13.3.8 Methods

There are no supported methods on this class.

13.4 IANet_NetworkVirtualAdapter

13.4.1 Purpose

This class is used to associate the team’s IANet_TeamOfAdapters with the

IANet_LogicalEthernetAdapter that represents the virtual adapter for the team. The class implements the

CIM class CIM_NetworkVirtualAdapter.

13.4.2 Instances

An instance of this class exists for each Intel adapter team that has been bound to a virtual adapter.

13.4.3 Creating Instances

The user cannot create instances of this class. To create a team the user creates an instance of

IANet_TeamOfAdapters. This class will not exist until after the user has called

IANet_NetService.Apply() within the context of a valid client handle and the IANet_EthernetAdapter

instance has been created.

Page 46 of 81

13.4.4 Removing Instances

The user cannot delete instances of this class.

13.4.5 Associations

This is an association class.

13.4.6 Methods

There are no supported methods on this class.

Page 47 of 81

14 Team Setting Schema

14.1 Team Setting Schema Diagram

14.2 IANet_TeamToTeamSettingAssoc

14.2.1 Purpose

This class is used to group a collection of IANet_TeamSetting instances.

14.2.2 Instances

Each Team can have several associated IANet_TeamToTeamSettingAssoc instances.

14.2.3 Creating Instances

The user cannot create instances of IANet_TeamToTeamSettingAssoc.

14.2.4 Removing Instances

The user cannot remove instances of IANet_TeamToTeamSettingAssoc.

Page 48 of 81

14.2.5 Modifying Properties

There are no user-modifiable properties for this class.

14.2.6 Associations

An IANet_TeamToTeamSettingAssoc instance will exist to associate each Team

(IANet_LogicalEthernetAdapter) with its setting (IANet_TeamSetting).

14.2.7 Methods

There are no supported methods for this class.

14.2.8 Unsupported Properties

None.

14.3 IANet_TeamSetting

14.3.1 Purpose

This abstract class is used to describe a settable property in a configuration. The class is derived from

IANet_Setting.

14.3.2 Instances

Instances of this class will exist for each setting on each Team.

There are several sub-classes for IANet_TeamSetting. The sub-classes correspond to the different types

and ranges of values that settings can take. Each sub-class corresponds to a different style of GUI that

may be used to display or change the settings.

14.3.3 Creating Instances

The user cannot create instances of IANet_TeamSetting.

14.3.4 Removing Instances

The user cannot remove instances of IANet_TeamSetting.

14.3.5 Modifying Properties

This abstract class has no modifiable properties, however, the child classes have modifiable properties

(see sub-classes listed in this section).

14.3.6 Associations

Each IANet_TeamSetting instance is associated with an IANet_LogicalEthernetAdapter instance using

an instance of IANet_TeamToTeamSettingAssoc.

14.3.7 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property and call PutInstance.

14.3.8 Unsupported Properties

SettingID and RequiresSession are not used.

14.4 IANet_TeamSettingInt

14.4.1 Purpose

The class models a setting that takes an integer value. There are several IANet setting classes used to

model integers. The differences between these classes concerns how the integer is displayed and

modified by the GUI, and how validation is done by the Provider. For IANet_TeamSettingInt, it is

expected that the GUI will display an edit box with a spin control.

Page 49 of 81

14.4.2 Instances

An instance of this class exists for each setting that should be displayed as an integer edit box.

14.4.3 Creating Instances

The user cannot create instances of this class.

14.4.4 Removing Instances

The user cannot remove instances of this class.

14.4.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. The user can modify this

property by using IWbemClassObject::Put() to change the value, then call

“IWbemServices::PutInstance()” to update the setting. The Provider will check that:

 CurrentValue <= max

 CurrentValue >= min

 (CurrentValue – min) is a multiple of step

Where max, min, CurrentValue and step are all properties of IANet_TeamSettingInt.

14.4.6 Local Properties

This class implements the following local properties:

Property Description

base Root from which the integer value may take values. (example; decimal = base 10)

CurrentValue The actual value of the integer setting

DefaultValue The initial value of the integer setting

max The maximum value that the setting can have

min The minimum value that the setting can have

Scale Unit to measure value of setting

step The granularity of the integer value

14.4.7 Associations

Each IANet_TeamSettingInt instance is associated with an IANet_LogicalEthernetAdapter instance

using an instance of IANet_TeamToTeamSettingAssoc.

14.4.8 Unsupported Properties

SettingID and RequiresSession are not used.

14.4.9 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property and call PutInstance.

14.5 IANet_TeamSettingEnum

14.5.1 Purpose

The class models an enumeration setting value. For IANet_TeamSettingEnum, it is expected that the

GUI will display a list of strings which map onto a small number of enumerated values. (e.g., a drop list

combo box).

14.5.2 Instances

An instance of this class exists for each setting that will be displayed as an enumeration.

Page 50 of 81

14.5.3 Creating Instances

The user cannot create instances of this class.

14.5.4 Removing Instances

The user cannot remove instances of this class.

14.5.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

14.5.6 Local Properties

This class implements the following local properties:

Property Description

CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

DescriptionMap An array of descriptions mapped to the PossibleValues property

PossibleValues The values that correspond to the DescriptionMap

14.5.7 Associations

Each IANet_TeamSettingEnum instance is associated with an IANet_LogicalEthernetAdapter instance

using an instance of IANet_TeamToTeamSettingAssoc.

14.5.8 Unsupported Properties

SettingID and RequiresSession are not used.

14.5.9 Methods

There are no supported methods on this class. To make changes to a setting modify the required property

and call PutInstance.

14.6 IANet_TeamSettingSlider

14.6.1 Purpose

The class models a setting that specifically handles Slider settings. For IANet_TeamSettingSlider, it is

expected that the GUI will display a slider which will allow the user to choose the value in a graphical

manner – the actual value chosen need not be displayed.

14.6.2 Instances

An instance of this class exists for each setting that will be displayed as a slider.

14.6.3 Creating Instances

The user cannot create instances of this class.

14.6.4 Removing Instances

The cannot remove instances of this class.

14.6.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 51 of 81

14.6.6 Local Properties

This class implements the following local properties:

Property Description

CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

FirstLabel The label that should be displayed to the left of the slider

LastLabel The label that should be displayed to the right of the slider

PossibleValues Range of values which should be displayed with the first value on the left and last value on
the right side of the slider

14.6.7 Associations

Each IANet_TeamSettingSlider instance is associated with an IANet_LogicalEthernetAdapter instance

using an instance of IANet_TeamToTeamSettingAssoc.

14.6.8 Unsupported Properties

SettingID and RequiresSession are not used.

14.6.9 Methods

There are no supported methods on this class. To make changes to a setting, modify the required

property and call PutInstance.

14.7 IANet_TeamSettingMultiSelection

14.7.1 Purpose

This class models a setting whereby the user can select several options from a list of options. For

IANet_TeamSettingMultiSelection, it is expected that the GUI will display multi-selection list box

which will allow the user to choose any (or no) option(s).

14.7.2 Instances

An instance of this class exists for each setting that will be displayed as a multi-selection.

14.7.3 Creating Instances

The user cannot create instances of this class.

14.7.4 Removing Instances

The user cannot remove instances of this class.

14.7.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then use “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 52 of 81

14.7.6 Local Properties

This class implements the following local properties:

Property Description

CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

DescriptionMap An array of descriptions mapped to the PossibleValues property

PossibleValues The values that correspond to the DescriptionMap

14.7.7 Associations

Each IANet_TeamSettingMultiSelection instance is associated with an IANet_LogicalEthernetAdapter

instance using an instance of IANet_TeamToTeamSettingAssoc.

14.7.8 Unsupported Properties

SettingID and RequiresSession are not used.

14.7.9 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property and call PutInstance.

14.8 IANet_TeamSettingString

14.8.1 Purpose

This class models a setting whereby the user can enter a free-form string value. For

IANet_TeamSettingString, it is expected that the GUI will display an edit box.

14.8.2 Instances

An instance of this class exists for each setting that will be displayed as an edit box.

14.8.3 Creating Instances

The user cannot create instances of this class.

14.8.4 Removing Instances

The user cannot remove instances of this class.

14.8.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then call “PutInstance()” to update the setting.

14.8.6 Local Properties

This class implements the following local properties:

Property Description

CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

MaxLength The maximum string length allowed

14.8.7 Associations

Each IANet_TeamSettingString instance is associated with an IANet_LogicalEthernetAdapter instance

using an instance of IANet_TeamToTeamSettingAssoc.

Page 53 of 81

14.8.8 Unsupported Properties

SettingID and RequiresSession are not used.

14.8.9 Methods

There are no supported methods for this class. To make changes to a setting modify the required

property, then call PutInstance.

Page 54 of 81

15 VLAN Schema

15.1 VLAN Schema Diagram

VLAN SCHEMA

CIM_802dot1QVLANService

uint16 CreateVLAN ([IN], [IN], [OUT])

boolean GVRPEnabled

uint32 GVRPJoinTime

IANet_802dot1QVLANService

IANet_Device802dot1QVLANServiceImplementationIANet_VLANFor

IANet_EthernetAdapterstring ParentID

uint16 ParentType

uint16 StatusInfo

string VLANName

IANet_VLAN

15.2 IANet_802dot1QVLANService

15.2.1 Purpose

This class is used to hold the IEEE 802.1Q properties of a network adapter. This class implements the

CIM class CIM_802dot1QVLANService.

15.2.2 Instances

An instance of this class exists for each adapter or team that supports IEEE 802.1Q. Each adapter can

have just one IANet_802dot1QVLANService. Some teams, such as multi-vendor fault tolerant teams do

not support this service.

15.2.3 Creating Instances

The user cannot create instances of this class If the adapter does not have an instance associated with it,

then the adapter does not support this service.

15.2.4 Removing Instances

The user cannot delete instances of this class.

15.2.5 Modifying Properties

There are no modifiable properties of this class.

15.2.6 Associations

Each instance of this class will be associated with one IANet_EthernetAdapter using an instance of

IANet_Device802dot1QVLANServiceImplementation.

Each instance of IANet_802dot1QVLANService can support several VLANs; each VLAN will be

associated with the instance using IANet_VLANFor association.

Page 55 of 81

15.2.7 Methods

uint16 CreateVLAN([in] uint32 VLANNumber,
 [in] string Name,
 [out] IANet_VLAN REF VLANpath
);

Used to create a VLAN on the adapter
or team. The client must supply the
VLAN number and the VLAN name,
and will get the object path of the newly
created VLAN.

15.3 IANet_VLAN

15.3.1 Purpose

This class holds the information for each Intel VLAN. This class implements CIM_VLAN.

15.3.2 Instances

An instance of this class will exist of each Intel VLAN.

15.3.3 Creating instances

To create a VLAN, call CreateVLAN on the appropriate instance of IANet_802dot1QVLANService.

15.3.4 Removing Instances

The user can remove an instance of this class to remove the corresponding VLAN.

15.3.5 Modifying properties

The user is able to modify the VLANNumber and Caption attribute.

15.3.6 Local properties

This class implements the following local properties:

Property Description

ParentID The VLAN parent device ID

ParentType The VLAN parent device type

StatusInfo Status information of logical device (enabled, disabled, other, unknown)

VLANName Name of the VLAN set by the user

15.3.7 Associations

Each instance is associated with an instance of IANet_VLANSetting using an instance of the class

IANet_VLANToVLANSettingAssoc.

15.3.8 Unsupported Properties

Description, Install Date, StartMode, and Status are not used.

15.3.9 Methods

None

Page 56 of 81

16 VLAN Setting Schema

16.1 VLAN Setting Schema Diagram

IANet_VLANIANet_VLANSetting

CIM_Setting

VLAN SETTING SCHEMA

IANet_VLANToVLANSettingAssoc

IANet_Setting

uint64 base

sint64 CurrentValue

sint64 DefaultValue

sint64 max

sint64 min

sint64 Scale

sint64 step

IANet_VLANSettingInt
sint64 CurrentValue

sint64 DefaultValue

string[] DescriptionMap

sint64[] PossibleValues

IANet_VLANSettingEnum
sint64 CurrentValue

sint64 DefaultValue

string FirstLabel

string LastLabel

sint64[] PossibleValues

IANet_VLANSettingSlider

sint64 CurrentValue

sint64 DefaultValue

string[] DescriptionMap

sint64[] PossibleValues

IANet_VLANSettingMultiSelection
string CurrentValue

string DefaultValue

uint32 MaxLength

IANet_VLANSettingString

16.2 IANet_VLANToVLANSettingAssoc

16.2.1 Purpose

This class is used to group a collection of IANet_VLANSetting instances.

16.2.2 Instances

Each VLAN can have several associated IANet_VLANToVLANSettingAssoc instances.

16.2.3 Creating Instances

The user cannot create instances of IANet_VLANToVLANSettingAssoc.

16.2.4 Removing Instances

The user cannot remove instances of IANet_VLANToVLANSettingAssoc.

16.2.5 Modifying Properties

There are no user-modifiable properties for this class.

16.2.6 Associations

An IANet_VLANToVLANSettingAssoc instance will exist to associate each IANet_VLAN

(IANet_LogicalEthernetAdapter) with its setting.

16.2.7 Methods

There are no supported methods for this class.

Page 57 of 81

16.2.8 Unsupported Properties

None.

16.3 IANet_VLANSetting

16.3.1 Purpose

This abstract class is used to describe a settable property in a configuration. The class is derived from

IANet_Setting.

16.3.2 Instances

Instances of this class will exist for each setting on each VLAN.

There are several sub-classes for IANet_VLANSetting. The sub-classes correspond to the different types

and range of values that settings can take. Each sub-class corresponds to a different style of GUI that

may be used to display or change the settings.

16.3.3 Creating Instances

The user cannot create instances of IANet_VLANSetting.

16.3.4 Removing Instances

The user cannot remove instances of IANet_VLANSetting.

16.3.5 Modifying Properties

This abstract class has no modifiable properties, however, the child classes do have modifiable

properties (see sub-classes listed in this section).

16.3.6 Associations

Each IANet_VLANSetting instance is associated with an IANet_VLAN instance using an instance of

IANet_VLANToVLANSettingAssoc.

16.3.7 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property and call PutInstance.

16.3.8 Unsupported Properties

SettingID and RequiresSession are not used.

16.4 IANet_VLANSettingInt

16.4.1 Purpose

The class models a setting that takes an integer value. There are several IANet setting classes used to

model integers. The differences between these classes concerns how the integer is displayed and

modified by the GUI, and how validation is done by the Provider. For IANet_VLANSettingInt, it is

expected that the GUI will display an edit box with a spin control.

16.4.2 Instances

An instance of this class exists for each setting that should be displayed as an integer edit box.

16.4.3 Creating Instances

The user cannot create instances of this class.

16.4.4 Removing Instances

The user cannot remove instances of this class.

Page 58 of 81

16.4.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. The user can modify this

property by using IWbemClassObject::Put() to change the value, then call

“IWbemServices::PutInstance()” to update the setting. The Provider will check that:

 CurrentValue <= max

 CurrentValue >= min

 (CurrentValue – min) is a multiple of step

Where max, min, CurrentValue and step are all properties of IANet_SettingInt.

16.4.6 Local Properties

This class implements the following local properties:

Property Description

base Root from which the integer value may take values. (example; decimal = base 10)

CurrentValue The actual value of the integer setting

DefaultValue The initial value of the integer setting

max The maximum value that the setting can have

min The minimum value that the setting can have

Scale Unit to measure value of setting

step The granularity of the integer value

16.4.7 Associations

Each IANet_VLANSettingInt instance is associated with an IANet_VLAN instance using an instance of

IANet_VLANToVLANSettingAssoc.

16.4.8 Unsupported Properties

SettingID and RequiresSession are not used.

16.4.9 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property and call PutInstance.

16.5 IANet_VLANSettingEnum

16.5.1 Purpose

The class models an enumeration setting value. For IANet_VLANSettingEnum, it is expected that the

GUI will display a list of strings which map onto a small number of enumerated values. (e.g., a drop list

combo box).

16.5.2 Instances

An instance of this class exists for each setting that will be displayed as an enum.

16.5.3 Creating Instances

The user cannot create instances of this class.

16.5.4 Removing Instances

The user cannot remove instances of this class.

Page 59 of 81

16.5.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

16.5.6 Local Properties

This class implements the following local properties:

Property Description

CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

DescriptionMap An array of descriptions mapped to the PossibleValues property

PossibleValues The values that correspond to the DescriptionMap

16.5.7 Associations

Each IANet_VLANSettingEnum instance is associated with an IANet_VLAN instance using an instance

of IANet_VLANToVLANSettingAssoc.

16.5.8 Unsupported Properties

SettingID and RequiresSession are not used.

16.5.9 Methods

There are no supported methods on this class. To make changes to a setting modify the required property

and call PutInstance.

16.6 IANet_VLANSettingSlider

16.6.1 Purpose

The class models a setting that specifically handles Slider settings. For IANet_VLANSettingSlider, it is

expected that the GUI will display a slider which will allow the user to choose the value in a graphical

manner – the actual value chosen need not be displayed.

16.6.2 Instances

An instance of this class exists for each setting that will be displayed as a slider.

16.6.3 Creating Instances

The user cannot create instances of this class.

16.6.4 Removing Instances

The user cannot remove instances of this class.

16.6.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then call “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 60 of 81

16.6.6 Local Properties

This class implements the following local properties:

Property Description

CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

FirstLabel The label that should be displayed to the left of the slider

LastLabel The label that should be displayed to the right of the slider

PossibleValues Range of values which should be displayed with the first value on the left and last value on
the right side of the slider

16.6.7 Associations

Each IANet_VLANSettingSlider instance is associated with an IANet_VLAN instance using an instance

of IANet_VLANToVLANSettingAssoc.

16.6.8 Unsupported Properties

SettingID and RequiresSession are not used.

16.6.9 Methods

There are no supported methods on this class. To make changes to a setting, modify the required

property and call PutInstance.

16.7 IANet_VLANSettingMultiSelection

16.7.1 Purpose

This class models a setting whereby the user can select several options from a list of options. For

IANet_VLANSettingMultiSelection, it is expected that the GUI will display multi-selection list box

which will allow the user to choose any (or no) option(s).

16.7.2 Instances

An instance of this class exists for each setting that will be displayed as a multi-selection.

16.7.3 Creating Instances

The user cannot create instances of this class.

16.7.4 Removing Instances

The user cannot remove instances of this class.

16.7.5 Modifying Properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then use “PutInstance()” to update the setting. The Provider will check that:

 CurrentValue ∈ PossibleValues[]

Page 61 of 81

16.7.6 Local Properties

This class implements the following properties:

Property Description

CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

DescriptionMap An array of descriptions mapped to the PossibleValues property

PossibleValues The values that correspond to the DescriptionMap

16.7.7 Associations

Each IANet_VLANSettingMultiSelection instance is associated with an IANet_VLAN instance using an

instance of IANet_VLANToVLANSettingAssoc.

16.7.8 Unsupported Properties

SettingID and RequiresSession are not used.

16.7.9 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property and call PutInstance.

16.8 IANet_VLANSettingString

16.8.1 Purpose

This class models a setting whereby the user can enter a free-form string value. For

IANet_VLANSettingString, it is expected that the GUI will display an edit box.

16.8.2 Instances

An instance of this class exists for each setting that will be displayed as an edit box.

16.8.3 Creating Instances

The user cannot create instances of this class.

16.8.4 Removing Instances

The user cannot remove instances of this class.

16.8.5 Modifying properties

The “CurrentValue” attribute is the only modifiable property of this class. Modify this property by using

Put() to change the value, then call “PutInstance()” to update the setting.

16.8.6 Local Properties

This class implements the following local properties:

Property Description

CurrentValue The actual value of the setting

DefaultValue The initial value of the setting

MaxLength The maximum string length allowed

16.8.7 Associations

Each IANet_VLANSettingString instance is associated with an IANet_VLAN instance using an

instance of IANet_VLANToVLANSettingAssoc.

Page 62 of 81

16.8.8 Unsupported Properties

SettingID and RequiresSession are not used.

16.8.9 Methods

There are no supported methods for this class. To make changes to a setting, modify the required

property, then call PutInstance.

Page 63 of 81

17 Diagnostic Classes

17.1 Diagnostic Test Schema

Diagnostic Test Schema

CIM_DiagnosticTest

IANet_DiagSettingForTestIANet_DiagResultForTestIANetDiagTestForMSE

IANet_DiagSettingIANet_PhysicalEthernetAdapter

uint32 ClearResults ([IN], [OUT])

uint32 DiscontinueTest ([IN], [IN], [OUT])

uint32 RunTest ([IN], [IN], [OUT])

boolean Grouped

uint16 GroupId

uint16 TestId

IANet_DiagTest

uint32[] TestResultIds

uint16[] TestResultsAttr

IANet_DiagResult

17.2 IANet_DiagTest

17.2.1 Purpose

IANet_DiagTest is subclassed from CIM_DiagnosticTest. The class provides a generic vehicle to run

and control Diagnostic tests for an Intel PROSet for Microsoft Device Manager supported Ethernet

adapter. The superclass, CIM_DiagnosticTest, is designed to generically support the testing of any

computer hardware on a CIM enabled system. Properties of the class are descriptive in nature and the

mechanics of the testing are provided by the exposed methods.

17.2.2 Instances

Key is Name and in this provider it is the concatenation of a numeric index of the test @ the GUID of

the referenced adapter (e.g. 1@{12345678-9ABC-DEF0-1234-123456789012}). This key value is, in

one sense, redundant information, as all information to reference an adapter and test is passed as object

parameters to the RunTest and other methods. Still, the instance must be consistent with parameters to

the method or the provider will reject the command. Other properties provide other description and run

time information.

17.2.3 Creating Instances

The user cannot create instances of IANet_DiagTest.

Page 64 of 81

17.2.4 Deleting Instances

The user cannot delete instances of IANet_DiagTest.

17.2.5 Modifying Properties

There are no user-modifiable properties for this class.

17.2.6 Local Properties

This class implements the following local properties:

Property Description

Grouped Indicates whether the test are grouped under a specific category

GroupID The identification number of the group of which this test belongs

TestID The specific test identification number

17.2.7 Associations

• An instance of IANet_DiagTestForMSE associates an IANet_DiagTest with an

IANet_PhysicalEthernetAdapter.

• An instance of IANet_DiagResultForTest associates an IANet_DiagTest with an IANet_DiagResult

instance.

• An instance of IANetDiagSettingForTest associates an IANet_DiagTest with an IANet_DiagSetting.

17.2.8 Unsupported Properties

Caption, Description, InstallDate, OtherCharacteristicDescription,

17.2.9 Methods

This class supports the following methods:

uint32 RunTest(

 [IN] CIM_ManagedSystemElement ref
 SystemElement,
 [IN] CIM_DiagnosticSetting ref Setting,
 [OUT] CIM_DiagnosticResult ref Result
);

Runs a test as defined by three parameters
referencing:

SystemElement - defines the adapter, which
we are to run the test on by referring to an
instance of SystemElement, which will always
be the subclass IANet_EthernetAdapter.

Setting - defines the test to be run, and the
manner in which it is run by referring to an
instance of CIM_DiagnosticSetting, which will
always be the subclass IANet_DiagSetting.

Result - defines an instance of the class
CIM_DiagnosticResult, which will always be
the class IANet_DiagResult.

uint32 DiscontinueTest(
 [IN] CIM_ManagedSystemElement ref
 SystemElement,
 [IN] CIM_DiagnosticResult ref Result,
 [OUT] Boolean TestingStopped
);

Attempts to stop a diagnostic test in progress
as defined by two parameters referencing
SystemElement and Result. These parameters
function the same as RunTest. A third
parameter TestingStopped returns a
BOOLEAN value, which indicates if the
command was successful in stopping the test.

Page 65 of 81

uint32 ClearResults(
 [IN] CIM_ManagedSystemElement ref
 SystemElement,
 [OUT] String ResultsNotCleared[]
);

Clears test results using parameters:

SystemElement

ResultsNotCleared

The referenced parameter
ManagedSystemElement, combined with this
object’s object path combine to reference
instances of DiagnosticResultForMSE, which
will be deleted. Also, all references of
DiagnosticResult objects referenced by
DiagnosticResultForMSE will be deleted. Also,
all instances of DiagnosticResultForTest, which
refer to the deleted DiagnosticResult objects,
will be deleted. Finally, the string array Output
parameter ResultsNotCleared will list the keys
of the DiagnosticResults, which could not be
cleared.

17.3 IANet_DiagSetting

17.3.1 Purpose

Instances of IANet_DiagSetting provide specific run time diagnostic test directives. Directives used are

in common to all tests and are bound to the superclass CIM_DiagnosticSetting. These include properties

such as ReportSoftErrors and HaltOnError. There are no additional properties added to the subclass

IANet_DiagSetting.

17.3.2 Creating Instances

The user cannot create instances of this class.

17.3.3 Deleting Instances

The user cannot delete instances of this class.

17.3.4 Modifying properties

UpdateInstanceAsync is implemented and can be used to set test parameters to HaltOnError,

ReportSoftErrors, ReportStatusMessages, QuickMode, TestWarningLevel, and PercentOfTestCoverage.

17.3.5 Associations

An instance of IANetDiagSettingForTest associates an IANet_DiagTest with an IANet_DiagSetting.

17.3.6 Unsupported properties

The following properties are not supported by NCS2:

Caption, Description

17.3.7 Methods

None

17.4 IANet_DiagResult

17.4.1 Purpose

Instances of IANet_DiagResult display result data for a particular test run on a particular Adapter.

Instances of this class correspond identically to instances of IANet_DiagTest and IANet_DiagSetting.

Page 66 of 81

17.4.2 Instances

Instances of IANet_DiagResult correspond to results of a particular test run on a specific adapter. The

format for the key is the same as IANet_DiagTest and IANet_DiagSetting. The instance is able to store

any arbitrary test results as any data, which does not fit the defined properties, can be placed into the

TestResults Array property. Any time a new test is run on an adapter, the new instance overwrites the

existing instance of test results corresponding to that adapter and test combination.

17.4.3 Creating Instances

The user cannot create instances of this class

17.4.4 Deleting Instances

The user cannot delete instances of this class

17.4.5 Modifying Properties

The user cannot modify instances of this class

17.4.6 Local Properties

This class implements the following local properties:

Property Description

TestResultIds Indicates the result string ID’s

TestResultsAttr The type of the result string

17.4.7 Associations

• An instance of IANet_DiagResultForTest associates an IANet_DiagTest with an IANet_DiagResult

instance.

• An instance of IANet_DiagResultForMSE associates an IANet_PhysicalEthernetAdapter with an

IANet_DiagResult instance.

17.4.8 Unsupported Properties

The following properties are not supported by NCS2:

EstimatedTimeOfPerforming OtherStateDescription, HaltOnError, ReportSoftErrors, and

TestWarningLevel

17.4.9 Methods

None

Page 67 of 81

18 Getting the Current Configuration

The client does not need to get a client handle to read the current configuration. Clients can use a NULL

context, however, any error messages will be returned in the default language for the managed machine.

In the following table, items enclosed in { } are object paths. These paths are assumed to have been

obtained from previous WQL queries. The client should never need to construct an object path without

doing a query. The __PATH attribute of every object contains the object path for that object.

In all the following use cases, the methods IWbemServices::ExecQuery or

IWbemServices::ExecQueryAsync are used to execute WQL queries.

18.1 Getting the Physical Adapters

The main class for the adapters is IANet_PhysicalEthernetAdapter. This class is used for both physical

and virtual adapters, and the client needs to know how to distinguish between them.

Task WQL Query Result Class Comment

Enumerate
all adapters

SELECT * FROM
IANet_EthernetAdapter

IANet_EthernetAdapter Returns all
IANet_EthernetAdapters. This is
equivalent to
IWbemServices::CreateInstanceEn
umAsync.

Determine if
adapter is
virtual

ASSOCIATORS OF {adapter
path}

 WHERE AssocClass =
IANet_NetworkVirtualAdapter

IANet_TeamOfAdapters If the query results in no classes
then the adapter is a real adapter.

18.2 Getting the Team Configuration

The main classes in the teaming schema are IANet_LogicalEthernetAdapter, IANet_TeamOfAdapters,

IANet_NetworkVirtualAdapter and IANet_TeamedMemberAdapter.

The association class IANet_NetworkVirtualAdapter contains no useful data – clients are really only

interested in the endpoints of this association. IANet_TeamedMemberAdapter does contain useful data

about how the member adapter is used within the team.

Task WQL Queries Result Class Comments

Enumerate
all teams

SELECT * FROM
IANet_TeamOfAdap
ters

IANet_TeamOfAdapters There is one instance of
IANet_TeamOfAdapters for each team.
This is equivalent to
IWbemServices::CreateInstanceEnumAsy
nc.

Get the
virtual
adapter for a
team

ASSOCIATORS OF
{IANet_TeamOfAda
pters path} WHERE
AssocClass =
IANet_NetworkVirtu
alAdapter

IANet_LogicalEthernetAdapt
er

Returns only the adapter object for the
virtual adapter in the team. This adapter
will not exist if the team has been created
but Apply has not been called. (see below
on updating the configuration).

Enumerate
the team’s
member
adapters

ASSOCIATORS OF
{IANet_TeamOfAda
pters path} WHERE
AssocClass =
IANet_TeamedMem
berAdapter

IANet_PhysicalEthernetAdap
ter

Returns the adapters which are in the
team, but does not describe what role the
adapter plays.

Page 68 of 81

Task WQL Queries Result Class Comments

Determine
an adapter’s
role in a
team

REFERENCES OF
{IANet_PhysicalEth
ernetAdapter path}
WHERE
ResultClass =
IANet_TeamedMem
berAdapter

IANet_TeamedMemberAdapt
er

The class contains information about how
the member adapter relates to the team
and its current status within the team.

18.3 Getting the VLAN configuration

Each adapter that supports VLANs has an IANet_802dot1QVLANService associated with it, using the

association class IANet_Device802do1QVVLANServiceImplementation. If an adapter does not have an

instance of this class associated with it, then it does not support VLANs.

Each VLAN is represented by an instance of IANet_VLAN. The VLAN is not directly associated with

the adapter – it is associated with the IANet_802dot1QVLANService for the adapter.

The association class IANet_VLANFor is used to associate each VLAN instance with the correct

IANet_802dot1QVLANService. This class contains no useful data for the user.

Task WQL Queries Result Class Comments

Get the
802.1q
VLAN
service
object
associated
with an
adapter

ASSOCIATORS OF
{IANet_EthernetAdapter path}
WHERE ResultClass =
IANet_802dot1QVLANService

IANet_802dot1QVLANS
ervice

Returns one or no
object(s).

Get the
VLANs on
an adapter

ASSOCIATORS OF
{IANet_802dot1QVLANService
path} WHERE ResultClass =
IANet_VLAN

IANet_VLAN This can return no
objects if there are
no VLANs installed.

18.4 Getting the Boot Agent Information

Each adapter that can support a boot agent in flash ROM will have an IANet_BootAgent instance

associated with it using the IANet_DeviceBootServiceImplementation association class.

Task WQL Queries Result Class Comments

Get the
Boot Agent
associated
with an
adapter

ASSOCIATORS OF {path of
IANet_EthernetAdapter} WHERE
ResultClass = IANet_BootAgent

IANet_BootAgent The following read
only properties
provide information
on the boot ROM
image for this
adapter:

InvalidImageSignat
ure, Version,
UpdateAvailable,
FlashImageType

Page 69 of 81

19 Updating the configuration

In most cases, to update the configuration, the client application will need to get a client handle from the

IANet_NetService class and store this handle in an IWbemContext context object. Changes to the

configuration will only occur when the “Apply” method on the IANet_NetService is called.

19.1 Changing the adapter, team or VLAN settings

To change an adapter, VLAN or Team setting, the client must first get the object path of the setting that

it will change. This is best done by enumerating the settings on the object and storing the __PATH

attribute of the setting (see above).

The easiest way for the client to update a setting, is to: (1) get an instance of the setting object from

WMI, (2) modify the CurrentValue attribute (using IWbemClassObject::Put()), and (3) call

IWbemServices::PutInstance() to pass the modified instance back to the Provider. PutInstance must be

called with the flag WBEM_FLAG_UPDATE_ONLY.

 The Provider will validate the CurrentValue and return WBEM_E_FAIL if the validation failed. The

exact reason for the failure will be returned in the Description attribute of the IANet_ExtendedStatus

object.

Setting specific descriptions include:

• The integer setting value was less than the minimum allowed

• The integer setting value was greater than the maximum allowed

• The integer setting value is not one of the allowable steps

• The length of the string setting is bigger than the maximum allowed

• The setting value is not one of the allowable values

The last description is returned whenever the current value for IANet_SettingEnum,

IANet_SettingSlider or IANet_SettingMultiSelection is not one of the allowable values.

The only attribute for a setting that the client can change is CurrentValue. The Provider will ignore

changes made to any of the other values.

There are no supported methods on the setting class. To make changes to a setting modify the

CurrentValue property, then call PutInstance.

19.2 Creating a new team

To create a new team, create an instance of IANet_TeamOfAdapters (i.e., use

IWbemServices::GetObject() to get a class object for IANet_TeamOfAdapters, and then use

IWbemServices::SpawnInstance() to create an instance of this object).

Then, use IWbemClassObject::Put to set the TeamMode attribute in the instance to be the desired team

type (e.g., AFT). Finally, call IWbemServices::PutInstance() to create the team, passing the flag

WBEM_FLAG_CREATE_ONLY.

The object path for the new team is stored in the IWbemCallResultObject that is passed back to the user

when the call has completed. The method IWbemCallResult::GetResultString will get the new object

path.

If this action fails, the client should check the IANet_ExtendedStatus to get the failure reasons.

19.3 Adding an adapter to a team

To add an adapter to a team create an instance of IANet_TeamedMemberAdapter (i.e., use

IWbemServices::GetObject() to get a class object for IANet_TeamedMemberAdapter, and then use

IWbemServices::SpawnInstance() to create an instance of this object).

Page 70 of 81

The following properties in the object must be set using IWbemClassObject::Put() :

• GroupComponent must be set to be the full object path of the IANet_TeamOfAdapters to which the

adapter is to be added;

• PartComponent must be set to be the full object path of the IANet_EthernetAdapter that is to be

added to the team.

The following properties may optionally be set:

• can be used to set the priority for the adapter in the team.

Finally, call IWbemServices::PutInstance() to add the adapter to the team, passing the flag

WBEM_FLAG_CREATE_ONLY.

If this action fails, check IANet_ExtendedStatus for the error code.

19.4 Removing an adapter from a team

To remove an adapter from a team, delete the IANet_TeamedMemberAdapter instance that associates

the adapter to the team using IWbemServices::DeleteInstance()

If this action fails, check IANet_ExtendedStatus for the error code.

19.5 Deleting a team

To delete a team, delete the IANet_TeamOfAdapters instance using IWbemServices::DeleteInstance()

If this action fails, check IANet_ExtendedStatus to get the error code.

19.6 Changing the mode of a team

To change the mode of a team, get the instance of IANet_TeamOfAdapters for the team (e.g., use

IWbemServices::GetObject using the object path of the team).

Then, use IWbemClassObject::Put to change the TeamMode attribute for the team. Finally, call

IWbemClassObject:: PutInstance to tell the Provider to update the team mode, passing the flag

WBEM_FLAG_UPDATE_ONLY.

If this action fails, check IANet_ExtendedStatus to get the error code.

19.7 Changing an adapter’s priority within a team

To change the priority of an adapter the client should first get the instance of

IANet_TeamedMemberAdapter for the adapter. (e.g. use IWbemServices::GetObject using the object

path).

The client can then use IWbemClassObject::Put to change the AdapterFunction attribute for the adapter.

Finally the client needs to call IWbemClassObject:: PutInstance to tell the Provider to update adapter’s

priority.

If this action fails the client should check the IANet_ExtendedStatus for the error code.

19.8 Uninstalling an adapter

To uninstall an adapter, call IWbemServices::DeleteInstance passing the object path of the adapter to

uninstall.

19.9 Creating a VLAN

To create a VLAN, call the CreateVLAN method on the IANet_802dot1QVLANService for the adapter

to which the VLAN is to be added. The following arguments must be passed to the method:

• VLANNumber the number of the VLAN. (Range 1- 4094)

• Name a user definable name to identify the VLAN.

The function will return the object path of the newly created VLAN in the out parameter VLANpath.

Page 71 of 81

If this action fails, check IANet_ExtendedStatus for the error code.

19.10 Changing the Properties of a VLAN

The client can change the VLANNumber and VLANName properties for a VLAN. To change the

priority of an adapter, first get the instance of IANet_VLAN for the adapter (e.g. use

IWbemServices::GetObject using the object path).

Then, change VLANNumber or VLANName to the desired values. . Finally, call IWbemClassObject::

PutInstance to tell the Provider to update the properties, passing the flag

WBEM_FLAG_UPDATE_ONLY.

If this action fails, check the IANet_ExtendedStatus for the error code.

19.11 Deleting a VLAN

To delete a VLAN, call IWbemServices::DeleteInstance passing the object path of the VLAN to delete.

19.12 Updating the Boot Agent

The client can update the Boot Agent Image by using methods calls. To read/write flash image, first get

the instance of IANet_BootAgent for the adapter (e.g., use IWbemServices::GetObject using the object

path).

Then, execute ReadFlash() to read the existing flash boot ROM image or ProgramFlash() to update the

flash boot ROM image.

If this action fails, check the IANet_ExtendedStatus for the error code.

Task WMI methods Result Comments

Update or
Insert a
boot ROM
image for
the adapter

uint32 ProgramFlash(

 [IN,

 ValueMap {"0","1"} ,

 Values {"Check Version",
"Write Flash"}: Amended

]

 uint32 Action,

 [IN]

 uint8
NewFlashData[],

 [OUT]

 uint32
FlashRetCode

);

If “Check Version” action
is specified, this method
will return with a warning
message, if boot ROM
image being updated as
in NewFlashData[] is
older than one already
present on NIC.

If “Write” action is
specified, this updates
the FLASH ROM on the
NIC with
NewFlashData[].

This method is
used to update the
Flash ROM on the
NIC. This will cause
the NIC to stop
communicating with
the network while
the flash is
updated.

Read boot
ROM
image

uint32 ReadFlash([OUT] uint8
FlashData[]);

FlashData[] contains the
Flash ROM image on
the NIC

This method reads
the Flash ROM on
the NIC which can
be saved into a file.

19.13 Executing methods in IANet_DiagTest

Here is the RunTest method, from the MOF file:

 uint32 RunTest([IN] CIM_ManagedSystemElement ref SystemElement,

 [IN] CIM_DiagnosticSetting ref Setting,

 [OUT] CIM_DiagnosticResult ref Result);

Page 72 of 81

The first two parameters are IN parameters. You must get the object path of both objects referenced.

You must also get the object path of the IANet_DiagTest object, which is exporting the RunTest object.

From the main WBEM test dialog box, click “Connect”.

Enter the appropriate Server\Namespace. Namespaces IntelNCS2 and CimV2 are supported.

Click the “Enum Instances” button of WBEM test and enter “IANet_DiagTest”

Double click the desired instance of IANet_DiagTest. The name will be in the form

X@[AdapterGUID}, where X is the test name and AdapterGUID will be the Adapter Name, same as the

Name key of the IANet_EthernetAdapter.

The following is an example of the object path retrieved:

\\MYCOMPUTER\root\Cimv2:IANet_DiagTest.Name="1@{4A0CDABE-F6C3-45D0-B60D-

F6E7BAFA2C2C}"

Save the object path.

Click the “Enum Instances” button of WBEM test and enter “IANet_EthernetAdapter”

Double click on the desired adapter, to be tested.

Following is an example of the object path retrieved.

\\MYCOMPUTER\root\cimv2:IANet_EthernetAdapter.DeviceID="{4A0CDABE-F6C3-45D0-B60D-

F6E7BAFA2C2C}"

Save the object path.

Click the “Enum Instances” button of WBEM test and enter “IANet_DiagSetting”

Double click on the setting which represents the desired adapter/test combination.

Following is an example of the object path retrieved:

\\MYCOMPUTER\root\cimv2:IANet_DiagSetting.SettingID="1@{4A0CDABE-F6C3-45D0-B60D-

F6E7BAFA2C2C}"

Save the object path.

From the main WBEM test dialog box, click “Execute Method”

Paste the IANet_DiagTest object path into the dialog box. Click OK

Select the desired test in the drop down box under method.

Click the “Edit In Parameters” button.

For RunTest, Setting and SystemElement are the in parameters, paste the previously saved Setting and

Adapter object paths. Close.

Click the execute button.

Enumerate the IANet_DiagResult class, in the same manner as the In parameters were.

Examine the selected result object as needed.

Page 73 of 81

20 Summary of CIM classes

20.1.1 IANet_802dot1QVLANService

Can the user create? No

Can the user delete? No

Implemented Methods: CreateVLAN

Settable Properties: None

Unsupported Properties: Description, Install Date, Started, StartMode, Status

Instance Count: One instance for each team or adapter that supports VLANs

Related Association Classes: IANet_Device802dot1QVLANServiceImplementation, IANet_VLANFor

20.1.2 IANet_BootAgent

Can the user create? No

Can the user delete? No

Implemented Methods: ProgramFlash, ReadFlash

Settable Properties: None

Unsupported Properties: Caption, Description, InstallDate, Started, StartMode, Status

Instance Count: One instance for each adapter that supports the boot agent capability.

Related Association Classes: IANet_DeviceBootServiceImplementation,

IANet_BootAgentToBootAgentSettingAssoc

20.1.3 IANet_Device802dot1QVLANServiceImplementation

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: None

Instance Count: One instance for each adapter or team which supports VLANs

Related Association Classes: This class associates IANet_EthernetAdapter with

IANet_802dot1QVLANService.

20.1.4 IANet_PhysicalEthernetAdapter

Can the user create? No

Can the user delete? Yes

Implemented Methods: AdvancedCableTest, ExpressTeam, GetExpressTeamInfo,

GetPowerUsageOptions, IdentifyAdapter, SetPowerUsageOptions, TestCable, TestLinkSpeed

Settable Properties: None

Unsupported Properties: AlignmentErrors, AutoSense, CarrierSenseErrors, DeferredTransmissions,

DriverComments, DriverDescription, DriverFileSize, DriverFileVersion, DriverLegalCopyright,

DriverPath, DriverProductVersion, EnabledCapabilities ErrorCleared, ErrorDescription,

ExcessiveCollisions, FCSErrors, FlowControlPacketsReceived, FlowControlPacketsTransmitted,

FrameTooLongs, FullDuplex, GeneralReceiveErrors, GeneralTransmitErrors,

IdentifyingDescriptions, InstallDate, InternalMACReceiveErrors, InternalMACTransmitErrors,

LastErrorCode, LateCollisions, MaxDataSize, MaxQuiesceTime, MultipleCollisionFrames,

Page 74 of 81

NoBufferReceiveErrors, NoBufferXmitErrors, OctetsReceived, OctetsTransmitted,

OtherIdentifyingInfo, PacketTaggingStatus, PowerManagementCapabilities (this is exposed as a

method), PowerManagementSupported (this is exposed as a method), PowerOnHours,

ShortFramesReceived, SingleCollisionFrames, SymbolErrors, SQETestErrors,

TCOFramesReceived, TCOFramesTransmitted, TotalHostErrors, TotalPacketsReceived,

TotalPacketsTransmitted, TotalPowerOnHours, TotalWireErrors, TroubleShootingCauses,

TroubleShootingProblems, TroubleShootingSeverityLevels, TroubleShootingSolutions

Instance Count: One for each Intel PROSet supported installed adapter.

Related Association Classes: IANet_Device802dot1QVLANServiceImplementation,

IANet_DeviceBootServiceImplementation, IANet_DiagTestForMSE, IANet_DiagResultForMSE,

IANet_AdapterToSettingAssoc, IANet_TeamedMemberAdapter

20.1.5 IANet_NetService

Can the user create? No

Can the user delete? No

Implemented Methods: BeginApply,Apply

Settable Properties: None

Unsupported Properties: Caption, Description, Install Date, Started, Start Mode, Status

Instance Count: Exactly one.

Related Association Classes: None

20.1.6 IANet_EthernetAdapter

Can the user create? No

Can the user delete? Yes

Implemented Methods: None

Settable Properties: None

Unsupported Properties: AlignmentErrors, AutoSense, CarrierSenseErrors, DeferredTransmissions,

DriverComments, DriverDescription, DriverFileSize, DriverFileVersion, DriverLegalCopyright,

DriverPath, DriverProductVersion, EnabledCapabilities ErrorCleared, ErrorDescription,

ExcessiveCollisions, FCSErrors, FlowControlPacketsReceived, FlowControlPacketsTransmitted,

FrameTooLongs, FullDuplex, GeneralReceiveErrors, GeneralTransmitErrors, OtherIdentifyingInfo,

IdentifyingDescriptions, InstallDate, InternalMACReceiveErrors, InternalMACTransmitErrors,

LastErrorCode, LateCollisions, MaxDataSize, MaxQuiesceTime, MultipleCollisionFrames,

NoBufferReceiveErrors, NoBufferXmitErrors, OctetsReceived, OctetsTransmitted,

OtherIdentifyingInfo, PacketTaggingStatus, PowerManagementCapabilities (this is exposed as a

method), PowerManagementSupported (this is exposed as a method), PowerOnHours,

ShortFramesReceived, SingleCollisionFrames, SymbolErrors, SQETestErrors, SymbolErrors,

TCOFramesReceived, TCOFramesTransmitted, TotalHostErrors, TotalPacketsReceived,

TotalPacketsTransmitted, TotalPowerOnHours, TotalWireErrors, TroubleShootingCauses,

TroubleShootingProblems, TroubleShootingSeverityLevels, TroubleShootingSolutions

Instance Count: This is an abstract class.

Related Association Classes: IANet_Device802dot1QVLANServiceImplementation.

20.1.7 IANet_LogicalEthernetAdapter

Can the user create? No

Can the user delete? Yes

Implemented Methods: None

Page 75 of 81

Settable Properties: None

Unsupported Properties: AlignmentErrors, AutoSense, CarrierSenseErrors, DeferredTransmissions,

DriverComments, DriverDescription, DriverFileSize, DriverFileVersion, DriverLegalCopyright,

DriverPath, DriverProductVersion, EnabledCapabilities ErrorCleared, ErrorDescription,

ExcessiveCollisions, FCSErrors, FlowControlPacketsReceived, FlowControlPacketsTransmitted,

FrameTooLongs, FullDuplex, GeneralReceiveErrors, GeneralTransmitErrors, OtherIdentifyingInfo,

IdentifyingDescriptions, InstallDate, InternalMACReceiveErrors, InternalMACTransmitErrors,

LastErrorCode, LateCollisions, MaxDataSize, MaxQuiesceTime, MultipleCollisionFrames,

NoBufferReceiveErrors, NoBufferXmitErrors, OctetsReceived, OctetsTransmitted,

OtherIdentifyingInfo, PacketTaggingStatus, PowerManagementCapabilities (this is exposed as a

method), PowerManagementSupported (this is exposed as a method), PowerOnHours,

ShortFramesReceived, SingleCollisionFrames, SymbolErrors, SQETestErrors, SymbolErrors,

TCOFramesReceived, TCOFramesTransmitted, TotalHostErrors, TotalPacketsReceived,

TotalPacketsTransmitted, TotalPowerOnHours, TotalWireErrors, TroubleShootingCauses,

TroubleShootingProblems, TroubleShootingSeverityLevels, TroubleShootingSolutions

Instance Count: One for each team.

Related Association Classes: IANet_NetworkVirtualAdapter., IANet_TeamToTeamSettingAssoc.

20.1.8 IANet_NetworkVirtualAdapter

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: None

Instance Count: One instance for each team.

Related Association Classes: This class associates IANet_TeamOfAdapters with an

IANet_LogicalEthernetAdapter.

20.1.9 IANet_Setting

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: SettingID, RequiresSession

Instance Count: This is an abstract class.

Related Association Classes: None

20.1.10 IANet_AdapterSetting

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: SettingID, RequiresSession

Instance Count: This is an abstract class.

Related Association Classes: IANet_AdapterToSettingAssoc

Page 76 of 81

20.1.11 IANet_AdapterSettingInt

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each integer setting

Related Association Classes: IANet_AdapterToSettingAssoc

20.1.12 IANet_AdapterSettingMultiSelection

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettngID

Instance Count: One instance for each multi-selection setting

Related Association Classes: IANet_AdapterToSettingAssoc

20.1.13 IANet_AdapterSettingEnum

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each enum setting

Related Association Classes: IANet_AdapterToSettingAssoc

20.1.14 IANet_AdapterSettingSlider

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each slider setting

Related Association Classes: IANet_AdapterToSettingAssoc

20.1.15 IANet_AdapterSettingString

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each string setting

Related Association Classes: IANet_AdapterToSettingAssoc

Page 77 of 81

20.1.16 IANet_AdapterToSettingAssoc

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: None

Instance Count: One instance for each Aadapter setting

Related Association Classes: This class associates IANet_AdapterSetting with

IANet_PhysicalEthernetAdapter.

20.1.17 IANet_TeamSetting

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: SettingID, RequiresSession

Instance Count: This is an abstract class.

Related Association Classes: None

20.1.18 IANet_TeamSettingInt

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each integer setting

Related Association Classes: IANet_TeamToTeamSettingAssoc

20.1.19 IANet_TeamSettingEnum

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each enum setting

Related Association Classes: IANet_TeamToTeamSettingAssoc

20.1.20 IANet_TeamSettingMultiSelection

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettngID

Instance Count: One instance for each multi-selection setting

Page 78 of 81

Related Association Classes: IANet_ TeamToTeamSettingAssoc

20.1.21 IANet_TeamSettingSlider

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each slider setting

Related Association Classes: IANet_ TeamToTeamSettingAssoc

20.1.22 IANet_TeamSettingString

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each string setting

Related Association Classes: IANet_TeamToTeamSettingAssoc

20.1.23 IANet_ TeamToTeamSettingAssoc

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: None

Instance Count: One instance for each Team setting

Related Association Classes: This class associates IANet_TeamSetting with

IANet_LogicalEthernetAdapter.

20.1.24 IANet_VLANSetting

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: SettingID, RequiresSession

Instance Count: This is an abstract class.

Related Association Classes: None

20.1.25 IANet_VLANSettingInt

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Page 79 of 81

Instance Count: One instance for each integer setting

Related Association Classes: IANet_VLANToVLANSettingAssoc

20.1.26 IANet_VLANSettingEnum

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each enum setting

Related Association Classes: IANet_VLANToVLANSettingAssoc

20.1.27 IANet_VLANSettingMultiSelection

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettngID

Instance Count: One instance for each multi-selection setting

Related Association Classes: IANet_ VLANToVLANSettingAssoc

20.1.28 IANet_VLANSettingSlider

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each slider setting

Related Association Classes: IANet_ VLANToVLANSettingAssoc

20.1.29 IANet_VLANSettingString

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each string setting

Related Association Classes: IANet_VLANToVLANSettingAssoc

20.1.30 IANet_ VLANToVLANSettingAssoc

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Page 80 of 81

Unsupported Properties: None

Instance Count: One instance for each VLAN setting

Related Association Classes: This class associates IANet_VLANSetting with IANet_VLAN.

20.1.31 IANet_BootAgentSetting

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: SettingID, RequiresSession

Instance Count: This is an abstract class.

Related Association Classes: None

20.1.32 IANet_BootAgentSettingEnum

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: CurrentValue

Unsupported Properties: SettingID, RequiresSession

Instance Count: One instance for each enum setting

Related Association Classes: IANet_BootAgentToBootAgentSettingAssoc

20.1.33 IANet_BootAgentToBootAgentSettingAssoc

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: None

Instance Count: One instance for each Boot agent setting

Related Association Classes: This class associates IANet_BootAgentSetting with IANet_BootAgent.

20.1.34 IANet_TeamedMemberAdapter

Can the user create? Yes

Can the user delete? Yes

Implemented Methods: None

Settable Properties: AdapterFunction

Unsupported Properties: PrimaryAdapter, ScopeOfBalancing

Instance Count: One instance for every adapter which is in a team

Related Association Classes: This class associates IANet_TeamOfAdapters with an

IANet_PhysicalEthernetAdapter.

20.1.35 IANet_TeamOfAdapters

Can the user create? Yes

Can the user delete? Yes

Page 81 of 81

Implemented Methods: TestSwitchConfiguration, GetBestTeamMode, RenameTeam, CreateTeam,

ValidateAddAdapters, ValidateSetting

Settable Properties: TeamingMode

Unsupported Properties: Install Date, Status

Instance Count: One instance for each team

Related Association Classes: IANet_NetworkVirtualAdapter, IANet_TeamedMemberAdapter

20.1.36 IANet_VLAN

Can the user create? No

Can the user delete? Yes

Implemented Methods: None

Settable Properties: VLANNumber, Caption

Unsupported Properties: Description, Install Date, StartMode, Status

Instance Count: One instance for each VLAN

Related Association Classes: IANet_VLANFor, IANet_VLANSetting

20.1.37 IANet_VLANFor

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: None

Instance Count: One instance for each VLAN

Related Association Classes: This class associates IANet_VLAN with IANet_802dot1QVLANService.

20.1.38 IANet_DiagTest

Can the user create? No

Can the user delete? No

Implemented Methods: RunTest, DiscontinueTest, ClearResults

Settable Properties: None

Unsupported Properties: Caption, Description, InstallDate, OtherCharacteristicDescription

Instance Count: One for each Adapter/test combination

Related Association Classes: IANet_DiagTestForMSE, IANet_DiagResultForTest,

IANet_DiagSettingForTest

20.1.39 IANet_DiagSetting

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: HaltOnError, ReportSoftErrors, ReportStatusMessages, QuickMode,

PercentOfTestCoverage, TestWarningLevel,

Unsupported Properties: Caption, Description

Instance Count: One for each Adapter/test combination

Related Association Classes: IANet_DiagSettingForTest

Page 82 of 81

20.1.40 IANet_DiagResult

Can the user create? No

Can the user delete? No

Implemented Methods: None

Settable Properties: None

Unsupported Properties: EstimatedTimeOfPerforming, HaltOnError, OtherStateDescription,

ReportSoftErrors, TestWarningLevel

Instance Count: One for each Adapter/test combination

Related Association Classes: IANet_DiagResultForTest, IANet_DiagResultForMSE

