Long Timer

$32768 \mathrm{~Hz} /(14400 \times 2)_{18}^{13}=\left(\sum_{15}^{15} \times 60 \times 60\right.$ pulse/hr $\left.) /(14400 \times 2)^{13}\right)=1$ pulse $/ \mathrm{hr}$
$32768 \mathrm{~Hz} /(10800 \times 2)=(2 \times 60 \times 60 \times 24$ pulse/day $) /(10800 \times 2)=1$ pulse/day
A binary ripple counter can be programmed to divide on any number (within the max counter count) by resetting the counter at this count number.
Suppose our situation here where we need to program 4060 to divide on either 14400 or 10800
Upon going of Reset input (pin 12) to low level; the counter 4060 starts counting the CK pulses (crystally controlled as 32768 CK pulse/sec)
When reaching the binary number $11100001000000=14400$ corresponding to Q14, Q13,Q12 \& Q7 high and all other Q,s are zeros (initially they are all zeros) ; the reset input goes high by feeding back Anded Q14.Q13.Q12.Q7

The Reset input goes high iff Q14, Q13, Q12 and Q7 are high.
Resetting the counter, counting starts again from zero and again reaching count 14400 the counter is reset and so on.
The output at MSB (Q14) will give a number of pulses/sec equal to the CK pulses/sec divided by 14400.
Feeding back Q14, Q12, Q10, Q6, \& Q5 will divide on 10800 (the equivalent of 10101000110000).

The Reset input goes high iff Q14, Q12, Q10, Q6 and Q5 are high.

For the programmable counter 4536; the division ratio will be 2 if the inputs 18
A, B, C\&D are respectively $0,0,1,0$ while it becomes 2 if they are 1,0,0,1 respectively (8-Bypass = 0).
We have used then a DPDT switch to let one pole switches between 14400 and 10800
for 4060 and the other to switch between 2 and 2 for 4536 counter.
Getting either 1 pulse/hr or 1 pulse/day; we can use either 4017 and Dip switches to get 1pulse/ N hrs or 1pulse/ N days where N is the number of Dip Switches (max $\mathrm{N}=9$) Other wise we can use 40102 and two Thumb wheels (usually giving BCD outputs) to get up to 1pulse/99 hrs or 1pulse/99 days.
Because both 4017 \& 40102 are + vely CK incremented, an RC with short time constant is put between 4536 (- vely CK triggered) and 4017 (or 40102) to get +ve CK transitions at the -ve output transitions of 4536.
Note that when the DPDT switch is in OFF position then 4536 is Reset (also 4017 if used) and 40102 is preset at its programmed value.
On time the output of 40102 goes low while that of 4017 goes high; so an inverter have been used in case of 40102 .
DPDT in center Counting OFF.
DPDT in upper position ---- Days
DPDT in lower position ---- Hours
To prevent the Tr. To go ON momentarily when rotating the Thumb wheels (giving zeros to all J,s and making pin 14 of 40102 goes low momentarily) we connect one input of the output NOR gate to the Reset input of 4536.

Circuit Board for Long Timer

1. On a strip board write from left to right the letters A to X and from up to down the numbers 1 to 17.
2. Cut the board over the holes of number 17 to get (24 holes x 16 holes) board.
3. Cut the board over the holes: ABCDEFGH3/AEFG I JQSTUVWX7/ CDLTUVW11/DFGH I JMQTU14/BE12/ACKORSV13/AC15/S10
4. Jumpers and components:

Jumpers QU13/SV14/H13-K14/JM13/SX8/EG16/FM16/FI1/H6-P7
Pin (4060) Pin 8 AH
Pin 1 (40102) Pin 8 QX9
Pin 1 (4001) Pin 7 RX15
Pin (4536) Pin 8 FM15
$22 \mathrm{~K} \Omega \quad \mathrm{~A} 6-\mathrm{E} 1 \quad$ comes over 4060
$100 \mathrm{~K} \Omega \quad$ G1-J2/ I J3/FL8/FM9FK10/GH11/E14-F13

A8-B1 comes to the left of 4060

A9-C6/A10-D6/A11-E6/E8-F6/E10-C10/E11-B11/LQ5
E13-D12/E15-D16
J P1/ I P4
33pF
L7-S11/A1-Q4/PX10/FR11/D13-K11/D15-M11/B13-E9 C9-H16/U16-X5/Q15-S5
$220 \mathrm{~K} \Omega$ is soldered to PW 2 then another $3-220 \mathrm{~K} \Omega$ resistors are soldered to the holes TUV2 as shown below. Another set of $4-220 \mathrm{~K} \Omega$ resistors is soldered to PTUVW3 and the strip between each couple of holes is cut (except that between P2 and P3).

The used big size Thumb wheels consist of terminals labeled 1,2,4,8 and C (common), the terminals of the $1^{\text {st }}$ are soldered to $\mathrm{W} 4, \mathrm{~V} 4, \mathrm{U} 4, \mathrm{~T} 4$ and R4, those of the $2^{\text {nd }}$ are soldered to $\mathrm{W} 1, \mathrm{~V} 1, \mathrm{U} 1, \mathrm{~T} 1$ and R 1 respectively and from those of the $2^{\text {nd }}$ the first four are jumpered to T10, $\mathrm{U} 10, \mathrm{~V} 10$ and W 10 respectively.
Sal I6-J5 lay to the Wright

100 nF
I11-L10
$-220 \mu \mathrm{~F}+\quad \mathrm{P} 11-\mathrm{R} 10$
D634 NOP6
DPDT Switch
-LED+

- Circuit Battery+
- Load Battery+

Load
P13-R5
X16-O15
O3-O14

AC12-AC14-AC16 handle goes up and down
N15-T16 just head comes out of the board downward
5. Jumpers from strip side:

A14-E2/C14-F15/GS15
6. Shorts: AB16/CD12/CD16/KL15/LM15/QR15/VW15/QR6/ST12 The terminals of the Load and Load battery are tied together and fixed to the board and also those of Circuit Battery.

