20W-FM Broadcast Range System

Introduction:

The figure shows a Block Diagram of the Frequency Synthesized Transmission section in Yaesu-23R (or similar).

Each time PTT is pressed; binary data is clocked then strobed by the programmable divider via Data-Ck-Stb inputs (these are coming from the set CPU) giving an N (The division ratio which is the decimal equivalent of the strobed binary data) corresponding to the displayed transmit frequency (on the LCD). For a given transmitted frequency (f out) corresponding to a given N ; assume a lock condition where (f out)lock is exactly in phase lock with the 5 KHz reference N
frequency and (f out)lock corresponds to (VCV)lock at the input of VCO.
In open loop condition VCV (the output of the phase Detector and Comparator) increases by increasing $\underline{f \text { out (and the vice versa) while f out (the output freq. of VCO) }}$ N
decreases by increasing VCV (and vice versa).
In closed loop condition assume a differential increase $\Delta \mathrm{f}$ out in (f out)lock. This will be accompanied with an increase $\triangle \mathrm{VCV}$ in (VCV)lock. The later increase will decrease f out to its original value (f out)lock. In other words a tend to increase or decrease f out will be reactly eliminated keeping f out at its lock value (f out)lock Then in lock condition: Transmitted frequency $=\mathrm{Nx} 5 \mathrm{KHz}$.
A modulating signal superimposed on VCV can deviate f out around its center value (f out)lock corresponding to the center value of VCV which is (VCV)lock.

Example1:

What will be the 16- Data bits (coming from the CPU) corresponding to a transmitted frequency of $92.320,107.520,136.000,140.000$ and 160.000 MHz

:Solution

In case of 92.320 MHz
$\mathrm{N}=92320 \mathrm{KHz} / 5 \mathrm{KHZ}=18464=0100100000100000$

20W-FM Broadcast Range Transmitter / Encoder

For programming the transmit frequancy:

4017 - 1 pin Number								Basic Operating Frequency kHz
2	4	7	10	1	5	6	9	
1	X	X	X	1	X	1	X	88320
1	X	X	X	1	X	1	1	88960
1	X	X	X	1	1	X	X	89600
1	X	X	X	1	1	X	1	90240
1	X	X	X	1	1	1	X	90880
1	X	X	X	1	1	1	1	91520
1	X	X	1	X	X	X	X	92160
1	X	X	1	X	X	X	1	92800
1	X	X	1	X	X	1	X	93440
1	X	X	1	X	X	1	1	94080
1	X	X	1	X	1	X	X	94720
1	X	X	1	X	1	X	1	95360
1	X	X	1	X	1	1	X	96000
1	X	X	1	X	1	1	1	96640
1	X	X	1	1	X	X	X	97280
1	X	X	1	1	X	X	1	99920
1	X	X	1	1	X	1	X	98560

1	X	X	1	1	X	1	1	99200
1	X	X	1	1	1	X	X	99840
1	X	X	1	1	1	X	1	100480
1	X	X	1	1	1	1	X	101120
1	X	X	1	1	1	1	1	101760
1	X	1	X	X	X	X	X	102400
1	X	1	X	X	X	X	1	103040
1	X	1	X	X	X	1	X	103680
1	X	1	X	X	X	1	1	104320
1	X	1	X	X	1	X	X	104960
1	X	1	X	X	1	X	1	105600
1	X	1	X	X	1	1	X	106240
1	X	1	X	X	1	1	1	106880
1	X	1	X	1	X	X	X	107520

1 Connected to Data Bus via Diode

X Not Connected

Notes:

1- Each Basic Frequency can be shifted by $160 \mathrm{KHz} \& 320 \mathrm{KHz}$ using a SPDT center OFF switch (optional) refer to circuit Diagram.
2- We add to VCO either 22 or 33pF; 22 pF for higher freq.'s and 33 pF for lower frequencies.
3 - We modify variable inductor in VCO to get a DC voltage in the range from 0.5 V
to 1.5 V at point under letter B in PLL Unit when transmitting.
4- Adjust the $47 \mathrm{~K} \Omega$ potentiometer to get an AC output voltage at pin5 (386) of about 2Volt.
$5-100 \mathrm{nF}$ disc should be connected to the battery terminals (the entrance).

[^0]

Example2:

Refer to the $1^{\text {st }}$ figure; a diode is connected between the data bus and pin2 (4017-1). Assume the connection of another 2 diodes from pin10(4017-1) and pin4 (4017-2) to the data bus what will be the transmitting frequency?

Solution:

Pressing PTT will put 15(4017-1) low and prior to this:
The data line goes high once (for one full cycle) slightly after the first + ve CK transition, 2ndly slightly after the $4^{\text {th }}+$ ve CK transition and $3^{\text {rd }}$ slightly after the $10^{\text {th }}$ + ve CK transition (refer to the fig. Above).
They will not go high any more (keeping PTT pressed) why?
The answer:because slightly after the $9^{\text {th }}+$ ve CK transition; pin13(4017-1) goes high inhibiting the counter and after the $16^{\text {th }}+$ ve CK transition pin13(4017-2) goes high inhibiting the counter .
Note that when 13(4017-1) goes high ;the Reset input of (4017-2) goes low.
A -ve transition at the Reset input while the CK input high will clock the counter making pin2(4017-2) goes high slightly after the $9^{\text {th }}+$ ve CK transition .
Slightly after the $16^{\text {th }}+$ ve CK transition; Stb line goes low; strobing the 16 data bits from a 16-bit shift register (clocked by the same clock pulses).
The $1^{\text {st }}$ data bit is the MSB and the equivalent decimal will be;

$$
\begin{aligned}
& \mathrm{N}=0100100000100000=18464 \\
& \text { Transmit freq. }=18464 \times 5 \mathrm{KHz}=92.320 \mathrm{MHz}
\end{aligned}
$$

Example3:

How can you program the transmitter for the other transmission frequencies in example1?

Example4:

How can you program the transmitter for Digit A or B code?

Control \& Encoder Circuit Board

For 20W- FM Broadcast Range Transmitter / Encoder

1. On a strip board write from left to right the letters A to X and from up to down the numbers 1 to 16.
2. Cut the board over the holes of number 16 to get (24 holes $x 15$ holes) rectangular board.
3. Cut a square over CD1/CD2 also over VX5/VX6.
4. Cut the board over the holes;

CD3/ABCDEFGH5/NOPQRST4/WX7/ABCDEFGH13 ABCDEFGHNOPQRSU9/MNOPQRSTUVWX12

5. Use IC Bases

Pin1 (4017) Pin 16 A7 - A4
Pin1 (4017) Pin $16 \quad$ H11 - H14
Pin1 (4093) Pin 14 N6 - N3
Pin1 (5088) Pin 14 M13-M10
Pin1 (386) Pin $8 \quad$ U13-U10
6. Jumpers from Component side ;

IN1/LQ1/FS2/AI3/CL3/DF3/JT7/HJ8
KW9/AJ10/AE15/FL15/I13-M14/J13-Q14/U6-X14.
7. Jumpers from Strip Side ;

B3-Q9 / E14 - N9 / G14 - R3
8. The components ;

5V Regulator I JK14 Face to Down

10nF TS8
$+100 \mu \mathrm{~F}-$
N2 - O1
5V - Zener

KJ11 lay to Upward
100nF SU7/TW14/NQ15
100 nF Disc
I6-J5/J6-K5
$+10 \mu \mathrm{~F}-$
I4-J3
$100 \mathrm{~K} \Omega \quad \mathrm{PQ} 2 / \mathrm{RU} 8$
Xal
R14-S15
$2.2 \mathrm{~K} \Omega$ is soldered to R 7 , the other terminal should be connected later by wire to one terminal of PTT.
$100 \mathrm{~K} \Omega$ is soldered to J 9 and the other long terminal is left open then three diode anodes are soldered to B8,E10,G10 (the cathodes are cut and left open).
The cathode of the diode connected to B8 is soldered to the long terminal of the $100 \mathrm{~K} \Omega$ (both are stand) and also to the pole of a SPDT-Switch(via a wire).
The other two cathodes are soldered to the terminals of the switch.
$\begin{array}{lcc}\text { 9. } \begin{array}{c}\text { 4-pin Socket } \\ \text { 5-pin Socket }\end{array} & 1 \text { to } 4 & \text { M9-T15-I15-J15 } \\ \text { Lo } 5 & \text { L14-Cathode of diode(soldered toB8)-P8-X9-K15 }\end{array}$

Digit-C DTMF Decoder

:Circuit Analysis

When VB is connected ;Vref goes approxmately to VB/2 then 1(358) is low (why?); .preventing 5\&7(358) from going high and the Load from going ON
After a safety time; the voltage at 3(358) goes higher than Vref and 1(358) goes high. When a DTMF Corresponding to Digit C is present then 11, 12, $13,14 \& 15$ go high then also 5(358) goes high; activating the load.
The $300 \mathrm{~K} \Omega$ should be changed to accept only slightly longer duration for the Digit in case where selective DTMF Calling is interferable.
Using one more transistor,how can you modify the circuit to decode any other Digit?

Circuit Board for Digit-C DTMF Decoder

1- On a strip board write from left the letters A to X and from up the numbers 1 to11.
2- Cut the board over the holes of number 11 to get (24 holes x 10 holes) board.
3- Cut the board over the holes: CDEFGHIJKPQS6/O3/R7
4- Jumpers from Component side: FO1/CF9/FQ10/CO4/KT10/M5-S4
5- The components:
Pin1(8870) Pin 9 CK8

Pin1(358) Pin 4
$100 \mathrm{~K} \Omega$
$300 \mathrm{~K} \Omega$
PS8
$2.2 \mathrm{M} \Omega$
DE4 $\quad(270 \mathrm{~K} \Omega+33 \mathrm{~K} \Omega)$
$10 \mathrm{~K} \Omega$
OR10
220Ω

- LED +

Wright
D634
$-100 \mu \mathrm{~F}+$
$-220 \mu \mathrm{~F}+$
100nF
100 nF
Xal
M8-P9
QW1
MG2/MH3/MI4/MJ1/SO2
V3-W2 head comes out of the board to

TUV8 lay upward with face down
LO8 lay upward
S10-R9
AB5
C1-D3
I J9
lay to Wright
lay upward
lay to Wright
lay over 8870 with body jumpered to L8

- Circuit Battery + T2-P4
- Load Battery + T3-X4
-Speaker $+\quad$ KB9
Load U2-X5
OP5/KL8/ST8/Q7-R6

Finally, Circuit Battery and Speaker terminals should be tied together and fixed to the board ; also should Load and Load Battery terminals.

[^0]: In the figure shown a Full WBFM-Transmitter based on VCO-PLL units and few components laying on the Mother Board of a Yaesu-23R set (the upper parts of the fig. where all other parts and components were taken apart) Here we have used the RF power module BGY33 to give about 20W output power in the FM Broadcast range (using an ordinary FM radio for reception).
 We can use the power module of the same set to get about 4 W - WBFM in frequency range from 132 MHz to 136 MHz (using modified FM radio for reception) or even we can use the power module of an old set (old power module) to get about 2 W in the FM Broadcast range $106-108 \mathrm{MHz}$.
 The lower part of the figure is a circuit board including two sections: -
 The Encoder section where we have used a DTMF-Encoder (5088) to get digit-C
 DTMF code, this signal was amplified by 386 and injected to the VCO as a modulating signal.
 The second section is the control part which generates the Ck,Data and Stb signals required for the PLL unit (simulating those generated by the CPU of the original set) to give the programmed transmitted frequency .
 The original 5 V regulator is put on the same lower part to give the required 5 V line for both parts.
 The function of the control section is best understood by an example.

