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OPERATOR TRAINING MANUAL

I. VECTORS, TENSORS, and MATRICES
1.1 Vectors®
1.1.1 Need for Coordinate Systems

Vectors have often bee-n defined as entities which have
both magnitude and direction. In e-xploring the concept direction, one
finds that it cannot bé defined except in relation to reference points or
reference directions. Any particular statement or rule which establishes
a given set of reference directions is said to thus establish a coordinate
system. Thus the above definition of vectors is made mathematically
meaningful by relating the magnitude and direction to some particular
coordinate system. In any established space, however, a given set of
reference points may be used to define a large number of different co-
ordinate systems, any one of which may be suitable for expressing the
desired vector. Thus a complete definition of a vector must provide a
scheme for expressing the vector with respect to any desired coordinate

system.

1.1.2 Properties of Vector Addition
Vector analysis includes a rule for vector addition, ,an;j
this rule is purposely designed so that vector addition is both "commuta-
tive" and "associative." This means that if two vectors A and B are added
then the resultant is the same whether the vector addition is performed as
A +B (vector addition)

or as
B +A (vector addition)

*This discussion is not intended as an introduction to vector analysis,
It is written for readers who are already, at least somewhat, familiar
with most of the 1deas1 presented,

-1- -
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Furthermore if three yectors.A, B, and C are added, then the resultant
is the same whether any of the following schemes is employed:
A+B+C,
(A+B) +C,
A+ (B + O,
A +(C + B),

(C +A) +B, etc.

1.1.3 Use of Vector Components

In implementing the ideas presented in the foregoing two
paragraphs one arrives at the notion of resolving vectors into other
vectors such that the latter may be vectorially added to produce the
original vectors as resultants, Thus assume that a coordinate system
X, ¥, z1is to be used for the vector addition of two vectors A and B,
The vector A is first resolved into the three component vectors A )

Ay, and A such that vectorial addition of these component vectors
vields the vector A as resultant, Similarly the vector B is resolved
into component vectors Bx' By, and Bz which vectorially added produce
the vector B as resultant, The above stated préperties of vectorial
addition imply that the vector sum of the vectors A and B must be the
same as the vector sum of resultants obtained by vectorially adding
corresponding components, The rule of vector addition is also such
that the vector sum of two vectors which have the same direction is

a vector with this common direction whose magnitude is the algebraic
sum of the two magnitudes., Thus the vector sum of the vectors A and
B.is the same as the vector sum of the three component vectors

Ax + Bx’ Ay + By’ and AZ+ BZ

Approved For Release 2003/01/28 CIA-RDP78B05171A000600030001-0
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where each component is obtained by algebraic addition of magnitudes.,
Thus one way of implementing vector addition is by resolving the
vectors into components with respect td some established coordinate
system and defining the vector sum as that vector whose components
are the algebraic sums of corresponding c'omponents of the vectors

being added. This turns out to be a practical scheme for computing

vector sums.

1.1.4 Arbitrariness of Coordinate Systems
From all of the foregoing it follows that there is considerable

arbitrariness in selecting a coordinate system but that any vector sum
must be, in some sense, independent of which particular coordinate
system is chosen. Thus if two coordinate systems x, vy, zandu, v, w
are equally suitable, then the vector sum of A and B is the vector whose
components in the two coordinate systems are

Ax + Bx’ Ay + By, Az +B,
and

Au * Bu’ Av + Bv’ Aw * Bw
respectively. Vector addition of these two sets of component vectors
must therefore yield resultants which are equal in magniture and equiva-
lent in direction. The concepts " magnitude" and "direction" must then
be so related to any set of components as to have equal (or at least

equivalent) values regardless of which suitable coordinate system is

being employed.

If the "suitable" coordinate systems were to be limited
to only those which are called Cartesian coordinate systems (i.e.,

systems with 3 mutually perpendicular axes with fixed directions) then

-3-
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magnitude might be defined by the Pythagorean rule:

T 07 . [ ZagZ.y 2
lvl—ﬁx HVST Y, —«/\Z Y

w

where V is any vector (including those obtained by adding other
vectors). It is desirable, however, to include more general co-
ordinate systems as being " suitable" (for example, spherical
coordinates, which may consist of the distance from earth's center,
longitude, and geocentric latitude, respectively). Thus the defini-
tion of "magnitude" must be \a generalized version of the Pythagorean
relation which is suitable for the most gencral coordinate system to

be employed (a correspondihg discussion of "direction" will be

omitted).

1.1.5 Examples of "Directed Strokes" Which Are Not Vectors

Before continuing, some examples will be given of entities
which have magnitude and direction but which do not conform to the
mathematical relations which are customarily employed in vector
analysis. (The point is that, in actual usage, the term "vector” is
properly used to designate only a certain subclass ‘of all possible
entities which have magnitude and direction). Suppose there are three
non-coplanar vectors A, B, and C which are so established as to have
their tails all conjoined in one point. Then one may draw three directed
strokes to represent the."vector angles" between the three pairs of

vectors.

Thus the directed stroke a has a direction perpendicular to
both of the vectors A and B and a magnitude equal to the angle between

these two vectors (this angle being in the plane of the two vectors).

Approved For Release 2003/01/28 : CIAdRDP78B05171A000600030001-0
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Similarly the directed stroke B has a direction perpendicular to the
two vectors B and C and a magnitude cqual to the angle between
these two vectors. Tinally the directed stroke ¥y has a direction
perpendicular to the two vectors A and C and a magnitude equal to
the émgle between these two vectors, With these definitions it may
be demonstrated that the directed stroke vy is, in general, not equal
to the vector sum of the directed strokes a and B, Thus it is not.

strictly proper to call the directed strokes a, B and y by the name

"vectors."

Somewhat similarly, directed strokes which join various
points in space behave like "true" vectors only if the allowable
coordinate systems are restricted to those in the same class as
Cartesian coordinate systems. As was noted previously, this is

not, in general, a desirable restriction.

1.1.6 Basic Importance of 'Components' in Defining Vectors

Evidently then it is not entirely satisfactory to begin a
deductive discussion of vectors by defining them as entities having
magnitude and direction (although the concept of the directed stroke
is, nevertheless, extremely use‘ful in qualitative visualization of
vectors).. .'Present day general discussions of vector analysis are
often built around the calculusg’ of partial derivatives which may, at
first, seem very far afield. This, however, turns out to be a very
satisfying procedure. Most practical computations of vector relations
operate by manipulating the components of the vectors - hence the

latter are of fundamental importance. It turns out then, that, if needed,

the direction and magnitude can be obtained from the components.

L
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1.1.7 Vectors Defined by Components
Thus a vector is, first of all, an entity which has as many

components as there are dimensions in the space being considered
(i.e., 3 components in 3 dimensional space or N components in N
dimensional space, where N is a positive integer), In some computa-
tions nothing more is said about the vectors being used, but usually
the vectors can be assumed to have magnitudes (and directions) even
th.ough it may not be of interest to compute these properties., Usual
computing practice is to use one br more coordinate systems and to
state vector components relative to these coordinate systems. If all |
the computations are carried out in only one coordinate system then

it is not necessary to evaluate the components relative to any other
coordinaté system. Vector theory assumes, however, that any one
coordinate system defines a special case and that (at least poten-
tially) there are a large number of other equally good coordinate
systems. Thus there must be a set of rules whereby, if the com-
ponents of a vector are known in any one coordinate system, they

can be evaluated in any other "suitable" coordinate system. The
various relations which are used for operating‘on and/or combining
vectors must then be équally valid in all "suitable" coordinate
systems. This concept is known as "invariance" (sometimes
"covariance") and is fundamental in much of present day mathematics.
The answer to the question "What constitutes a "suitable" coordinate
system ?" has a long history of evolution, but presently it includes

about any coordinate system which can be imagined,

Suppose then that there is an x, y, z coordinate system

Approved For Release 2003/01/28 :_CEQ-RDP78805171A000600030001-0
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thesc need not be considered here.) Since the second sct of functions
are inverse 1O the first set (i.c., substituting the values of X, ¥, and
z given by the second set of functions into the first set of functions
will result in identities in u, V. énd w), the two sets of partial

derivatives must satisfy the nine relations

|5

bu 0y , du 02
a y8u+82 E)u—1

|
(o]

e

udx . du dy , du 9z _
8x8v+8y8v+ zZ v-O

9u 0x , du 9y du 9z
—— —— [
X 8w+8y ow z 0w 0, etc.

———e

Evidently there is serious need for some short hand notation in

representing these relations. Hence let

X, = (x, ¥» z); _ i=1, 2, 3)

and

(u, v, w)i @=1, 2, 3)

i

u,
1

Then the above relations may be written in the form:

3 ou, 8xj
Z PR —
=1 ij 81.1k

{lifi=k
0if i ¥k

Similarly, a set of inverse relations must also hold:

3 9x, Ou, o
U S S {l}f}—k
=1 auj Bx 0if i ¥k

(In both cases the relations are true for all combinations of i and k

independently taking values 1, 2, or 3.)

1.1.8 Two Vectors Drawn From Practical Applications
In vector analysis two vectors which occur quite frequently

are the differential dispLacement

A
pproved For Release 2003/01/28 : Ct&-RDP78B05171A000600030001-0
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dr = (dx, 4y, dz)

= (dxi); i=1, 2, 3)

and the gradient of a scalar field

0 0 0
as= 2, ﬁ,a—‘g)

_ @by (= |
- (BX.)' (l =1, 2 3)
1
Note that these vectors are stated by defining their components relative

to the Xy coordinate system. The corresponding components relative

to the Uy coordinate system are then (by the rules of differential

calculus):
3 8\.\.1
dU.l=Z‘, 5%, de: @=1, 2, 3)
j=1 i
and
3 9d OX,
0d_ _ — _d. 4=
se—-= 2 Bx, Bu,’ (=12 3.
i j=1 j i

These two transformation laws have similar form (linear) but differ in
that one uses the partial derivatives

ou,

_1

oxX.
]

as coefficients of the vector components relative to the x; system whereas
the other uses the inverse partial derivatives

0X.
1

ou,
i

as coefficients of the vector components relative to the X coordinate

system.

A _g-
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1.1.9 Definition of Contravariant and Covariant Vectors
Using the above two vectors as models we, more generally,

define a vector A as having contravariant components

(AX ! Ay ’

if the appropriate transformation law (which gives the components

Ap) = Ay =12, 3)

relative to the u, coordinate system) is

(B., B..B )=18B

X Yy z Xi'
if the appropriate transformation law is
3 0
2

%
o B H (]-:]-’ 2; 3).
Bu1 xj

Thus our calculus leads to two basic types of vector: the
/
contravariant and the covariant type.* For convenience, a notation is

commonly used which marks any particular components as to which type
they are, This notation uses superscripts (which should not be con-
fused with exponents) for contravariant components and it uses sub-
scfipts for covariant gomponents. Since the differential displacement
dr takes contravariant components the latter are represented by

1]

! (i=1, 2, 3) rather than by dxi. Correspondingly the coordinates

dx
themselves are therefore represented by x" and u' (i=1, 2, 3)rather

than by X, and u; as was done previously.** Thus the two transforma-

tion laws may be written in the forms:

*In some discussions it is assumed that the vector entity exists above
and beyond its components and that it may be represented by components
of either type. Here, components of one type (only) will be used for
some vectors and components of the other type (only) will be used for
other vectors.

**Note that the change in notation does not imply any change whatsoever
in meaning. '

Approved For Release 2003/01/2_% ngA-RDP78805171A000600030001-0
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i 3 E)u'1 j
A =2 du_ A):  (contravariant)
ji=1 ax? :
and
3 j ,
B, = 2. 95—-1- B.: (covariant).
! j=1 du >

1.1.10 Use of Special Index Letters to Denote Coordinate Systems
While it is somewhat traditional to use the letters i, j,

and k for indices (subscripts and supérscripts) there is really no ‘
reason for not using other letters {or even more general symbols)
as well, if some purpose is served by doing so. In succeeding
chapters there will be occasion to use a number of different
coordinate systems and it will avoid ambiguities if a notation is
used which identifies the coordinate system which any particular
set of components is relative to. Hence a unique set of letters
will be used as indices for each differeht coordinate system. For
now, only two different coordinate systems will be distinguished,
but these two are to be thought of as generalizgzd representations

of all pairs of coordinate systems which may be introduced later.

The letters a., b, c, *** will be used as indices for one
representative coordinate system, and the letters m, n, p, °°° will
be used as indices for the other representative coordinate system
(note that any index is assumed to represent any positiile integer
from 1 to N, where N is the number of dimensions in the space being
considered). With this convention the two sets of coordinates are

represented by:

!

Approved For Release 2003/01/28_:1GIA-RDP78B05171A000600030001-0
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w2 =x, v, 2 a=1, 2,3

L]

and

xM=y, v, wi m= 1, 2, 3.
At times x> will be replaced by xb or xc (to avoid ambiguities which
would otherwise occur). This does not imply any change in meaning.
Similarly x™ will sometimes be replaced by x" or %P, but no different

meaning is inte nded.

With this notation the two transformation laws may be

written as:

m 3 me a
A= L -—— A7, (m=l,2,3)
a
a=109x
and
3 a'xa
Bm“—'.?; 0 Q' (m=1, 2, 3).
a=l ox

1.1.11 Short Hand Notation for Partial Derivatives

m a

Because the two gets of partial derivatives 0x and 9%

Bxa 8xm

occur so frequently it will be convenient to represent them by the short

hand symbols Xgl and X?n respectively. Then the transformations become:

3
AT = 5 x™ a
_ a
a=1
and
3 a
Bm= 2. X Ba'
a=1 m

1.1.12 Omission of Special 5ign for Summation
Finally it may be observed that the summation symbol Z 1 is

redundent, since the index "a" occurs in such a way that it alone may

A -12=
pproved For Release 2003/01/28 : CIA-RDP78B05171A000600030001-0
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be considered as signifying the same thing which was heretofore
F

signified by the combined presence of the summation symbol and

an index used in this particular manner. Thus the transformation

formulae will be written in the form:

and

which mean precisely the same things as though the summation
3 -

symbol 2. were written immediately after the = sign in each
a=1
case. Note that there is also an implication that the formulae hold

for m= 1, 2, 3, but explicit statement of this fact is customarily

omitted. *

1.1.13 Summary of Conventions for Notation

To recapitulate; the short hand notation

u.1 N 8111 X,
A 22 g—AJ; (1—1)2,. N)
_ X
p=1 |
Likewise:
_La
B~ X Ba

S -
BUI=E.J— 5o B, @i=1, 2, N),
i j=1 i j

*In N dimensional space the implied range of all indices is 1 to N.

-13-
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where the integer N is the number of dimensions in the space being

considered.

1.1.14 Inverse Transforms

The two transformation laws may be solved to yield the

corresponding inverse transformations

A = ¥@ Al
m
and
_ ,m
Ba —Xa Bm.

Evidently these are entirely analagous to the'first forms.

1.1.15 Scalar Product of Two Vectors
Returning to the two vectors, differential displacement,

and gradient, (which will now be represented by dx? and ?ﬁa
9x

respectively) we note that the dot (scalar) product of these may
be written in the form:
8—% dx?
X
This expression illustrates the general convention that an index which

appears both contravariantly and covariantly in the same term signifies
N

summation (just as though the summation symbol 7. preceded the term).
1

Now substitute the (inverse) transformation laws for both vectors

a m

ox 2 5x

and

ax? = x2 dx™.
m

Approved For Release 2003/01/28 : CTA-ﬁDP78805171A000600030001-0
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Then
B_q)_ dx® = (Xm o ) (Xa dxn)
a ~8Xm n

ox a
where n has the same meaning as m but runs through its range of values
independently of m, This may also be written (without in the least
changing its meaning)

28 gy = X0 x2 96 _ 4,0

ax? T oax™

As was stated earlier (in different notation),

{ 1fm—
0 1fm*n

Hence:
Xy x2 24 gyt o ym ¢ on
0 0x
N N
(=5 s M E’-i"r—n ax™)
m=1n=1 0 px
= -QLm dxm,
ox
where

=.{l ifm=n

n O ifm+%n.

!
Thus the expression Elia dxa, in the x° coordinate system, transforms
Ix

into the expression &Lm dxm, in the x™ coordinate system., This
' Ix

duplication of form before and after transformation is an example of
invariance, and in this case it allows us to identify the result with

the differential dé.

~-15-
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In precisely the same way we represent the dot (scalar)
product of the vectors A% and Ba b

a _ 48 .m n
ATB, = (X AT (D B)
=XaXnAmB
m a n

_.Nn .m _ .M
—émA Bn—A Bm.

Again the result is an invariant form.

1.1.16 Alternate Derivation of Inverse Transforms
By applying a somewhat similar procedure to the

transformation laws we can obtain the inverse transformationg in

straight forward fashion. Thus
a_.,a ,m
A —XmA
m.,a_.,mg, a,n _ .m.,n
XA —XaXnA = 6nA
=M,
Likewise:
_om
Ba __Xa B
a _La un _ .n
Xm Ba—xmxa B, = 6mBn
=B .
m

At this point it would perhaps be logical to introduce the
general definition of the "maggpitude" of a vector. This topic will be

more easily discussed, however, when the reader is familiar with

-16-
Approved For Release 2003/01/28 : CIA-RDP78B05171A000600030001-0



Approved For Release 2003/01/28 : CIA-RDP78B05171A000600030001-0

the subject matter in the next section. Similarly the operation "cross

product” can be discussed more meaningfully at a later point.*

*If any part of the discussion to this point is not clear to the reader,
then the reader should substitute enough of the longer notation in

the various expressions to satisfy himself that all of the results given
really do follow logically from the definitions and from the principles
of differential calculus. The reader should not be deceived by the
brevity of the notation. The underlying meaning of these expressions
is fundamental to all that follows.

-17-
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1,2 Tensors™
1.2.1 Generalization of Vectors

Tensors are a straightforward generalization of vectors.
Whereas vectors have N components (in N-dimensional sbace), tensors
may have N2 or N3 or, in general, NM - where M is any non-negative
integer - components. M is then called the "order" (sometimes "rank")
of the tensor. Thus vectors are first order tensors and scalars are
zero order tensors. Like vectors, tensors may have either contravariant
or covariant components. Tensors, of order two or greater may, however,
also have mixed (i.e., partly contravariant and partly covariant) com-
ponents.

A simple example of a second Qrder tensor is the algebraic
product of two vectors. Since ea‘ch vector has N components then the

product has N2 components. For example, let the vectors A and B both

have contravariant components.’ Then their transformation laws are:

A = M A8
a
and
m_ .m _a
B —_XaB

Multiplying these together (and changing the indices so as to avoid

confusion): '
m_n_ ,,m a n_ b
AB—(XaA)(XbB)
o n ,a b ks
= Xa Xb A BT,

1*This discussion is intended to discuss only such aspects of tensor
analysis as are considered pertinent to the material which follows,
Standard texts are available which cover a number of topics not treated here.

*The reader should now be able to recognize that this expresswn means
the same thing as

. |
AT B g=1§—1Xa Xp A%B% m=1, ---N; n=1, --N.
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This is an example of a tensor of contravariant order 2. 1f the two

vectors are both covariant then the product takes the form

PN b ‘
A B, = (Xm Aa) (Xn Bb)
_La b

and this is an example of a tensor of covariant order 2 . Finally the

mixed tensor
AP g = (™A% x° B,)
a n b
LM, a
= X7 X2 1% By,

has contravariant order 1 and covariant order 1.

1.2.2 General Definition of Tensors

Thus a tensor of contravariant order p and covariant order d

has its components relative to the first representative coordinate system

represented as:

a’a’o-.a
T, be, -+eb
17 2! Ld

Its components relative to the second representative coordinate system

are then:

m., my, *°*m m, b m

T nl n2 cren ° =Xal an Xa2 Xn e T b, «++ b
' 2 q 1 1 2 2 1 q

+

Thus the number of components in both coordinate systems is NP 4,
The notation on the right side of the transformation formula, of course,
means independent summation on eachof the indices a,, @5, oo ap,
by, Dy
covariantly in the same term. The tensor property resides in the fact

H

ce bq, “each of which appears pboth contravariantly and
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that when the components are defined relative to some one coordinate
system then corresponding components relative to any other coordinate
system arc given by a linear transformation law (such as the onec shown)
involving the partial derivatives X;n and the inverse partial derivatives

a o
Xm as coefficients.

1.2.,3 Addition of Tensors
The following discussion is given using third order tensors
but it could equally well be given for tensors of any order, the equations
would then differ only in having the required number of indices and of

b ab

partial derivatives., Let Az and BC

be two tensors of contravariant

order 2 and covariant order 1, Then their transformation laws are

mn _ .,m . n.c .ab !
Ap _anbXpAc
and
mn _ .,m ., n,c _ab
Bp _Xaxbxp BC .

Adding these together then gives

mn mn _ m,n ¢ ,ab m .,n,c,ab
Ap +Bp (Xa Xb XpAc )+(Xa Xb Xp Bc)
_ o m . n ¢ ab ab
—Xa Xb Xp (A +Bc )

Thus the sum of two tensors of equal order is a tensor of the same

order as both of them.

1.2.4 Multiplication of Tensors

Likewise multiplying the above two transformations:

mn .4dr _ ,,m ,n ,C .ab aq ., i .de

Ap BS —(Xa Xbprc)(XdXeXst)
-y ncq.r f ,ab .de
Xa Xb Xp Xd Xe XS AC Bf

~20-
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Thus the product of two tensors is a tensor whose contravariant order
is the sum of the contravariant orders, and whose covariant order is

the sum of the covariant orders, of the two tensors being multiplied,

1.2.5 Contraction of Tensors
Mixed tensors are also subject to an operation known as
"contraction." This operation consists of simultaneously equating
and summing on one of the contravariant and one of the covariant
indices. Thus consider the tra.nsformation formula

AmX

n ab
p Xp )

X A
c

Now equate and sum on the indices n and p, then:

Amn = X1 Xp X° Ab
n b “n
m,c ,ab
_XaébAc
_ ,m ,ab
_'XaAb

Thus the result is a tensor with its order reduced by two. The above
tensor can similarly be contracted by equating and summing on the

indices m and p:

mn _ .,m ,n.C .,ab

Am _XaXmeAc
_vh . .c ,ab
=Xy 04 Ac
_oh rab
—XbAa.

This result is also a tensor with order reduced by two but it is not,

in general, equal to the one above.

1.2.6 Inner Product of Tensors

Two tensors may, of course, be multiplied and then
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immediately contracted on a contravariant index of one tensor and @
covariant index of the other tensor (assuming that the two tensors
have such indices). This combination of operations is sometimes
known as the "inner product’ of the two tensors. 1f the two tensors
arc both vectors {one contravariant and the other coyariant) then the
result is the familiar "dot product” of the two vectors. Most of the
applications of tensors in the following material will involve either
this dot product of two vectors or else the inner product of a second

ordsar tensor by a vector; the latter producing a vector.

1,2.7 Some Special Types of Tensors
Evidently if the components of a tensor relative to some
one coordinate system are all zero then the components relative to
any other coordinate system are likewise all zero. Evidently, also,
if the components of two tensors ére respectively equal in one co-

ordinate system then they are also equal in all other coordinate systems:

i.e., if
Aaszab
c C
then
Amn :Xm Xn Xc Aab
p a‘“b'p C
=Xm Xn XC Bab
a ‘b’p ¢
:an.
P

Tensors of contravariant order 2 or of covariant order 2, cannot, in
general, have their two indices interchanged (without altering the

value of the tensor). Thatis, in general,
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ab ba

and

A ¥ A

ab ba *
There is, however, a special class of tensor - known as symmetric -
in which

. »ab ba

mn _ ,.m
A Xa

Il
=<

=AM )
Likewise the covariant symmetric tensor is such that

A=A

ab ba !

(hence A =A_ ).
mn nm

There is also a special class of tensor - known as skew-

symmetric - such that

2P - -Aba; (hence A™" = -1

or

Aab = —Aba; (hence Amn

Il
|
>

-23-
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1.2.8 The Metric Tensor
An important example of a symmetric tensor is the so-called
"metric" tensor. This may have either contravariant or covariant

components and is usually represented by the base letter g. Thus:

gmn - X;n Xg gab
= X' X) gP?
_ . nm
and
Imn ~ X Xg Yab .
B X?n Xg “ba
~ 9nm®

This metric tensor, besides being symmetric, has the important property
that its components relative to any Cartesian coordinate system are
components of the unit tensor., Thus let a and b be indices for a
Cartesian coordinate system. Then:

ab ab _ ifa=>b
= {O

ifa#hb
and
_ _ ifa=»>b
Yab =%ab = 10 ifa+b
Hence
mn _ .,m ,n .ab
g —XaXbé \
N
o m n
(—:a’=1xa *a)
and I
_ LA b
gmn_xmxnéab
N
= x2x9
a=1 m'n
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Assume (again) that m and n are indices for a general
coordinate system but that a and b are indices for a Cartesian

coordinate system., Then:

np _ (4 n,p.cd
9mn 9 —(melr)léab) (chdé )
— va n p cd
—meﬁxcxdéabé
_ @ P .b cd
medécaabé
_ @ b . d
medéa
— 3 P
=X Xa
m
Likewise: .
mn _ m ., n.ab c d
g gnp—(XaXbé )(XnXpécd)
_ M n ,c d.ab
-~Xa XbXnXpé 6cd
_ c .ab
‘ngg“’bf’ ®cd
_om a
_xa Xgéd
_ oM
_Xaxg
- :6m'
P

Thus the contravariant and covariant components of the metric tensor

b

are reciprocal to one another. The symbols 62 , 6_., and 6° are all

ab b
forms of what is known as the "Kronecker delta." All three forms have

\

' -25-
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the values 1 if a = b and 0 if a.# b. The corresponding matrices are
often called the unit matrix or the identity matrix. In the general co-
ordinate system gMmn and émn do not occur, since they are rcplaced by
gmn and 9 The particular Kronecker delta b;n is, however, valid

even in the most general coordinates (since éa Xm b

m
baxn )

= M A
= Xa Xn bn
1,2.9 Formula for the Magnitude of A Vector

The metric tensor is used to give a general definition of

the magnitude of a vector., Thus if the components of a contravariant

vector are

= D X2 o™ (¢ B) I B
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n.,d ab
bXng BCB

m
a

_ J.c.d ab
_‘Eabbg B By

_- C
= VX, X X d

In both cases the magnitude is thus an invariant form. Hence if
a and b are indices for a Cartesian coordinate system then the two

magnitudes are

and

-
Jo?P B B = /;1 ()2
a

a Db =la

where the 2's are both exponents. Thus the magnitude of a vector is

defined so as to be a generalization of the Pythagorean theorem.

1.2.10 Example of Use of the Magnitude Formula
As an example of the above, consider a vector relative
to a spherical coordinate system. Let the spherical coordinates
be r - the distance from the origin, 6 - the colatitude, and ¢ - the
longitude. Let x, y, and z be Cartesian coordinates related to
r, 6, and ¢ by the relations

x =71 sin 0 cos ¢

I

y =1 sin 0 sin ¢

r cos 0.

N
Il
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From these we calculate the nine partial derivatives:

ax .

— = 85in

5T in 0 cos ¢

0x _

50 r cos 0 cos ¢

ox _ ) .

36 =-r sin 6 sin ¢

0¥ = sin 0 sin ¢

0 .

.(-—% = r cos 0 sin ¢

9Y -y gin 0 cos ¢

0¢

dz _

T cos 0

9z _ X

50 -r sin O

dz _

56 0

For convenience these may be listed in matrix form:

gin 0 cos ¢ r cos 0 cos ¢ -r sin 0 sin ¢

X?n= sin 0 sin ¢ r cos 0 sin ¢ rsin 0 cos ¢
cos 0 -r sin 0 0 A

Using these:

3 )
- b a ,a
IYmn ®ap X X (= _ X 'n)
a=1
1 0 0
= |0 r2 0
0 0 r2 gin2 0] .

Let the vector under consideration be the velocity vector - with

-28-
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components relative to the spherical coordinates:

Hence the Mmagnitude squared of this vector ig

dx™ dx"  4r2 2d62 2 2 de.2
Imn at dat = cTt_) tr (CF tr (i) .

Since the metric tensor gmn is defined to be non-singular
it has a determinant, This determinant is customarily designated by
the letter g for one coordinate System or by g' for another coordinate

System. Since

gmn m  "n Zab
then

v [al?

g = Xm! g,

is the determinant of X?n and,

where g is the determinant of gab’ !X:]
g' is the determinant of Ymn A little consideration shows that this
determinant ig unity for a Cartesian coordinant system, This trans-
formation law ig commonly said to define a scalar density of weight 2,
Corresponding to this there are entifies known asg tensor densitieg -
but the general definition wi]] not be given here, Important examples
of tensor densities, however, are those known as the tensor densittes
of Levi Civita, These may be generally defined for N dimensional
§pace but only 3 dimensional examples will be given here. Ip three
dimensional Space the tensor densities of Levi Civita are represented
by the symbols (for the two representative coordinate Systems):

abc mnp
€ , Eabc’ € » and Emnp'

-0
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They are defined, in each case, fo be skew symmetric in any pair

of indices, to take the value 0 if any two indices are equal, and to
take the value F 1 if all three indices are unequal, i.e., the value + 1
if the indices are an even permutation of the numbers 1, 2, 3 and the
value -1 if the indices are an c_>dd permutation of the numbers 1, 2, 3.

With these definitions it may be demonstrated that

abc ,m n ,p _{,my mnp
X3 Xp X —lXa]e |
and
abc_]oa
“abc Xm anp_lxmlemnp

Where the symbol X?nl means

X;n‘ means the determinant of X;n and

the determinant of Xf;

Multiplying the second expression by \/E gives

s
i

Vg e, X2 X = Vg m{ “mnp

a b c
abcmnxp

— ey 4
= Vg “mnp”

. Hence the product JZ;‘ abc is a tensor with covariant order 3 (in 3
dimensional space). Similarly (1/@) Eabc may be shown to be a

tensor with contravariant order 3 (in 3 dimensional space).

1.2.12 Vector Product of Two Vectors
The tensor densities of Levi Civita are used to define the
vector (cross) product of two vectors. Thus, for the vectors A2 and

Bb:

-30-
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.

— b ¢ b 'm C ,n -
Vg CabcA B V—\Geabc (XmA) (XnB)

b

_.d c ,m _.n
-6a@edbcxmx AT B

_ P
—XX\/_edbCXXAB

_ P Cc ,m_n
=X J(;_edbcx xmx A" B

€
m| pmn

_ P 1
=X \/—_ pmn

Hence the cross product of two contravariant vectors is a covariant

vector. Similarly, for the vectors Aa and Ba:

\/—;_—cabc A_B_ = \/% AbC (xp A) (%2 B_)
=65 —‘/l; cdbc Xy xg Ay By
=x2 x;“ \/L; P X %P A B
=X }——g cdbe Xgq Xp Xo A B,
= X2 \/% P A B

*

The cross product of two covariant vectors is thus seen to be a

contravariant vector.

1.2.13 Two Types of Relations Which Can be Written for Tensors

From all of the foregoing it should be evident that two

types of expressions may be written which involve tensors (i.e.,
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tensor components). One type of expression shows the transformation
of the tensor components relative to one (repr‘esentative) coordinate
system into corresponding components relative to some other (repre-
sentative) coordinate system. This transformation formula shows,
explicitly, the contravariant and covariant orders of the components.
The other type of expression may be said to define new tensors in
terms of existing tensors. Thus the sum and product of two existing
tensors are each of them newly defined tensors. Evidently the trans-
formation formula may alvlvays be used to test whether any particular

combination of existing tensors does, in fact, define a new tensor.

Expressions which define new tensors in terms of existing
tensors are said to be invariant (or covariant), since the same form
may always be identified befoge and after the transformation. While
several methods have been given for forming new tensors, there are
other méthods which have not been discussed. Some of these get
quite involved and are better’left to the standard texts on the subject.
One might expect, for example, that a new tensor may be formed by ‘
differentiating an existing tensor. Hence starting with the trans-

formation formula

TR oy
p

m ,n ,C .ab
aXbXpTc

and differentiating both sides with respect to 'xd, we obtain

mn mn
2T oT
P __p q
d X4
Ix ax4
ab m n c
oT X 8X 90X
_ . m _n .,c c a n .,c .ab m b C .ab m .n b
=X, Xp Xo —— + —= X0 XC TS0 4 xM _b yCpab ymyen Tp ab
abpaxd 8Xd b p ¢ aaxdpc abaxdc

-32-
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The result is seen to be a tensor only if the partial derivatives

X;n and X; are independent of xd, which is not generally the
case. The way in which this gets fixed up is shown in standard

text books on tensor analysis, but will not be discussed here,

1,2.14 Translation of Tensor Cxpressions into FORTRAN
It is of interest to show how tensor relations may be trans-
lated into the computer programming language TORTRAN. Thus con-

sider the tensor equation

Xy =Yy + U, vbe W
This may be translated into the following FORTRAN routine* (assuming
that the space of interest has 7 dimensions):
INTEGER M, A, B: C
DIMENSION XMA (7,7), YMA (7,7), UMAB (7, 7, 7)
DIMENSION VBC (7, 7), WC (7), TB (7)
DO10 B=1, 7
TB (B) = 0.0
DO 10 C=1, 7
10 TB (B) = TB (B) + VBC (B, C) *WC (C)
DO 20 M=1, 7
DO 20 A=1, 7
XMA (M, A) = YMA (M, 4)
DO 20 B=1,7

20 XMA (M, A) = XMA (M, A) + UMAB (M. A, B) *TB (B)

*Other FORTRAN routines are also possible; the one given here is
thought to be more efficient than some others.
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Fig. | shows a flow chart of this routine. Although this is only one
example, and genecral rules have not b?en formulated, this example
is thought to be sufficiem}y typical that readers who are familiar
with FORTRAN programming will be able to thus program tensor

expressions practically by inspection.

B -7

TB (B) ==~—— 0.0

Ki —-'-——B+Bm* (C-1)

TB (B) —~~—— TB (B) + VBC (Kl) * WC (C)

C - C+]J———

-34-
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A —— ]

T4\ —— 7

* -
K, ~— M + M’ (A-1)
XMA (Kz) —=— YMA (K

2)

‘__. - —

+M_*A_* (B-1)
m m

K

-———K

3 2

XMA (KZ) —— XMA (KZ) + UMAB (K3) * TB (B)

Figure 1, Flow Chart for example tensor equation,
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1.3 Matrices

1.3.1 Use of Matrices to [xhibit Components of A Tensor
Although the availability of digital computers has greatly
reduced the requirements for pencil and .paper type computations, it
is still sometimes desirable to be able to set down on paper the
components of tensors relative to some coordinate system. Matrices
provide an organized way of doing this. Corresponding to some of
the tensor operations there are also rules for manipulating matrices.
The latter are, in fact, sufficiently complete as. fo permit matrix
solution of many problems without any use at all of tensor notation,
For those who are proficient with tensor notation, however, the lattef
often brings to light useful relations { simplifications) which would
probably not be discovered if the less explicit matrix notation were

being used exclusively,

Although there are rules for dealing with third (and even
higher) order matrices, practically all matrix computations are limited
to operationé with only first and second order matrices. Hence only
these will be discussed here. First order matrices (representing
components of vectors) are linear arrays (either rows or columns) of
numbers. Second order matrices are rectangular (bften square) arrays

of numbers (which hence have bothrows and columns).

The vector Va may be represented by either a row or a
column of components. Similarly the vector Va may also be repre-
sented by either a row or a colum.n. In other words, there is no fixed
correspondence between contravariant and covariant vectors on the one

hand and row vectors and column vectors on the other hand.
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a
ab b

rectangular arrays of components. Thus, in general, a matrix does

S'imilarly Tab, T_ ., and T, may all be represented by

not show explicitly whether it represents covariant. contravariant, or
mixed components. Likewise a matrix does not normally carry an
explicit indication of what coordinate system its components are
relative to. As a further source of ambiguity, either the first or

second (upper or lower) index of the tensor may correspond to rows

(or columns) of the matrix.

1.3.2 Linear Combination of Matrices
Matrix addition or subtraction means simply addition or
subtraction of the clements (components) of the matrices. Likewise
multiplication of a matrix by a scalar means multiplication of each
element by the scalar. Thus a linear combination of matrices may be

represented as follows:

Ay A " Ay Biy  Big Bin
o Ay Ay "MantTB By By Bon
Aml AZI T Amn Bml Bm2 an
| _ | il
(@ Ay;+BByy) (a Ajg +BBy) vrr (e Ay + BB
=|lahy #BBy)  lalyy +BByy) e laBy BBy
(a Aml +BBml) (a Am2 +BBm2) A Amn+Ban)
— s
where a and B are scalars and A“, AIZ’ s an are the elements of

two m X n matrices; the result is, of course, also a m X n matrix.

-37-
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{

The above matrix combination might, for example, represent any of
the three tensor combinations:

b b

a A%° + g B2
c’LAab-'-BBab

a a
uAbFBBb.

1.3.3 Multiplication of Matrices

The so-called "product"” of two matrices corresponds to the
inner product (i.e,, general product combined with contraction) of two
second order tensors. Matrix multiplication is defined so as to be
non-commutative; that is, (pre) multiplying the first matrix by the
second is not the same as (pre) multiplying the second matrix by the
first. The operation is .defined 50 as to apply to rectangular matrices
generally (i.e., non-square as well as square matrices), It requires,
however, that the number of columns in the matrix which is to be the
prefactor must be equal to the number of rows in the matrix which is

to be the postfactor. The result then has the same number of rows as

the prefactor and the same number of columns as the postfactor.

The rule for multiplying two matrices may be symbolized

as follows:

1, Let Aijrepresent the elements of the first matrix, with i

corresponding to rows and j corresponding to columns.,

2. Let Bjk represent the elements of the second matrix, with j

corresponding to rows and k corresponding to columns.

-38-
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3; The product Cik is then given by the rule

ij Tk’ .

Obviously, N is the number of columns in the first matrix and also
the number of rows in the second matrix. The similarity to the

following tensor inner oroducts is obvious:

1.3.4 Transposition of Matrices
Matrices are also subject to the operation of transposing

(il.e., interchanging) their rows and columns. If a particular matrix
is represented by the symbol-M (imagine bold face type) then the
result of interchanging its rows and columns (called its transpose)
is represented by Mt (again imagine bold face type). If the matrices
A and B are both square and are equal in number of rows (and columns)
then four (generally different) products can be formed by making use
of their transposes:

AB, ATB, ABT, Aq BT
In addition the following products may also be represented:

BA, Br A, BAT, BT AT'
It may be shown, however, that each of these is the transpose of oﬁe

of the first four products. That is, itlis generally true that if

Approved For Release 2003/01/28 : CIA-RDP78B05171A000600030001-0
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then
CT = BT AT
The four matrix products correspond to, for example, the following

four tensor inner products:

Aae B ., 'Aeb Aae B Aeb B
ed

1.3.5 Inverse of A Matrix

1f a particular matrix is square (i.e., it has an equal
number of rows and columns) then one may compute the determinant
of its elements. If this determinant i's not equal to zeré, the matrix
is said to be non-singular, and a matrix may be found such that if
multiplied by the original matrix (either pre or post multiplication)
then the result is the unit matrix. (The unit matrix has all of its
main diagonal elements equal to one and all other elements equal to
zero.) In such a case the second matrix is called the inverse of the
first matrix. Text books on matrix manipulations give rules for com-

puting the inverse of a matrix, but these will not be stated here.
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1.4 Cartesian Coordinate Systems

The preceding discussion has been written in terms of
general coordinate systems in order to bring out the principle of
invariance. According to this principle any proper combination of
tensors has the same form irrespective of the coordinate system.
Consequéntly it is not necessary to actually carry out a transforma-
tion of tensor forms when transforming from one coordinate system to
another. One merely duplicates the form existing in one coordinate
system - but substitutes the components of each tensor relative to

the new coordinates.

In actual calculations, one uses Cartesian coordinates -
almost always. This does not make the various tensor relations take
a significantly simpler form, but it limits the numerical values that
the components of the various tensors may have. For example, the
partial derivatives X? and Xran become constants (with respect to the
coordinates - not necessarily with respect to other parameters, such
as time) for any particular pair of Cartesian coordinate systems. In
addition, as has beén stated, the metric tensors become the
Kronecker deltas with respect to any set of Cartesian coordinates.
Hence the determinant g takes the value one when only Cartesian
coordinate systems are used. Consequently this determinant is often
omitted from the various tensor equations - but doing so makes the
equations no longer invariant with respect to general coordinate trans-

formations. The equations are then said to be invariant with respect

—4]-
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<

to transformations among Cartesian coordinate systems (only). This

will be done in much of what follows,

It can be demonstrated that all of the possible transforma-
tions between any two different sets of Cartesian coordinates are

equivalent to combinations of parallel translations and rotations of

the coordinate axes. For most purposes, the parallel translations

are of trivial importance, and transformations among various Cartesian
coordinate systems are commonly referred to as "coordinate rotations."
The partial derivatives X;n and Xi1 (which then have unity determinants)
are hence often referred to as "direction cosines" (of the various
coordinate éxes in one system with respect to those in the other).
Accordingly the notations C?n and C;n (instead of X; and Xg) will be
used to represent transformations among Cartesian coordinate systems.
As a result, in what follows it will generally be true that

a
m

C

and these determinants, also, will often be omitted. It is also a faét
that when two reciprocal sets of direction cosines C?n and C;n are
represented by their respective matrices (without indices) these two
matrices are transposes of one-another. This fact is used in the

computer program, but is otherwise of little consequence.

When the permissible coordinate systems are limited to
only those of Cartesian type, certain entities may be treated like

tensors which are not tensors under more general transformations.

-42-
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One example is the partial derivatives of the components of a tensor
with respect to the coordinates, These derivatives were qonsidered
near the end of section 1.2 and found to define a tensor only when

the partial derivatives are independent of the coordinates - exactly
the situation when only Carte.sian coordinates are considered. Another
example is the incremental (more than just differential) displacement:

m m
X -x%x =C

a
o )

m , a
(x"- x
a o

These quantities may now be treated like components of a vector

since the magnitude squared is

b n 7= %0 ("= xD)

= 6 [CT 6% 50 [C] 0 5]
=5 Cl gl % 1) (- 1))

= 6ab (xa— xg) (xb- xg),

i.e., invariant with respect to coordinate rotations, "Vectors" of this

type will be used extensively in what follows.

-43-
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II. OPTICAL IMAGING AND AERIAL PHOTOGRAPHS

2.1 Gaussian Optics

Most optical lenses consist of a series of interfaces
between transparent media of different refractive index, which are
all, as nearly as practical, spherical surfaces with their centers
lying on a single straight line. The common line of centers is
called the optical axis and the var-ious spherical surfaces are
incomplete spheres (usually less than hemi-spheres), usually with
circular boundaries also éentered on the optical axis. In some-
what rare instances lenses include one or more interfaces which
are intentionally ground so as to depart from a spherical surface by
a small, but definite, amount. These surfaces are, ncvertheless,
rotationally symmetrical (as nearly as practical) about the optical

axis.

So-called "Gaussian optics" consists of a body of
mathématical analyses of the refracfion occurring at a series of
such centered spherical interfaces between various optical media,
which preserves only the degrec of approximation obtained as the
various "rays" considered, approach parallelism to the optical axis
and also approach only an infinitesimal displacement from_ the optical

axis. Thus Gaussian optics might be considered as a "zero order"
approximation to the true analysis. This approximate analysis
results, however, in what might be called a theory of "ideal"

imaging, hence it is of prime importance. Real lenses are built so
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as to have actual imaging properties substantially like the idecal
imaging of Gaussian optics, Deviations from this ideal imaging

are referred to as "aberations, " and these aberations are made as
small as is consistent with‘the intended price of any particular

lens,.

-45-
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2.2 Projective Optics

Projective optics is a branch of geometrical optics that
states a formal deductive theory of ideal imaging which corresponds
closely to that of Gaussian optics. The basic assumptions of pro-
jective optics will here be used to derivé the "general equation of
optical imaging" which is the basis for the optical analysis used in
subsequent chapters. This so-called "general" equation is, as
stated above, an idealization of the real optical situation which

neglects aberations completely.,

Projective optics considers that any optical system which
has cylindrical symmetry about the optical axis may be treated as
having the fundamental elements: (1) two principal planes, which
are normal to the optical axis, (2) two focal points, which are on the
optical axis, and (3) two nodal points, which are on the optical axis.
These elements are'illustrated in Figure 2, which also shows three
rays diverging from a typical object point O and converging on the
corresponding image point O'. These three rays are particular cases
of three classes of rays. One class enters the first principal plane
in a direction parallel to the optical axis; all such rays continuc
parallel to the optical axis until they intersect the second principal
plane and then become "refracted" by just the right angle sé they
hence pass through the second focal point (F'). Rays of the second
class pass through the first focal point (F) and continue until they
intersect the first principal plane,' at which point they become

"refracted" so as to henceforth be parallel to the optical axis. The

-46-
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third class consist.s of rays which pass through the first nodal point
(N) without having been previously refracted. All such rays emerge
from the second nodal point (N') in a direction which is parallel to
the direction in which they entered the first nodal point. Thus the

ray N'O' is parallel to the ray ON.

2.2.1 The General Equation of Optical Imaging
The above stated principles (of projective optics) and

Figure 2 may be used to derive thé relations between a typical object
point (O) and the corresponding image point (O'). For this purpose
assume an arbitrary Cartesian coordinate system (moving or stationary).
Let Xa and X? be the coordinates, of O and N respectively. Likewise
let x2 and x? be the coordinates of O' and N' respectively. So long as
only Cartesian type coordinate systems are considered, fhe displace-
ments XT - x% and x2 - x? may be treated as components of two vectors -
which from the discussion above are known to be parall.el to each other.,

(These two vectors are shown in Figure 2 as Uand u respectively.)

 Parallel vectors have corresponding components which are respectively

proportional. Hence: x® - x% must be equal to some scalar quantity

1

times X? - Xa.

Figure 2 shows two pairs of similar triangles, One pair of
similar triangles has a common junction at F and has a pair of corre-
sponding legs lying along the optical axis. The other pair of similar
triangles has a common junction at I'' and also has a pair of corre-
sponding legs lying along the optical axis. The lengths of the first

pair of corresponding legs are secen to be p.U- {') and { respectively,
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A}

Fig. 2. Relations between an object point O and the image point o'
formed by a lens with principal planes P and p'. Drawn for a positive
.ens, with f and f' both taken positive. For negative lenses f and £

are both negative,

-48-
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where p is a unit vector parallel to the optical axis., The lengths of

the second pair of corresponding legs are likewise scen to be ' and

+

(p.u - f) respectively. Consequently the value of the scalar multi-

plier, mentioned at the end of the previous paragraph must be:

f - p.u-f
p.U-{ £t

Now let '\a be the components of the unit vector p. Then

and

- |a__a
p.u )‘a (x Xl)'

Using the ratio from the first pair of similar triangles, the desired
relation between the two veétors Uand u is thus
r - XY

b .
Ny, (0 - X0) - f

X —X1=

£ (x° - X?)

= (1)
'+ (Xb-ka).

b

This will be referred to as the optical imagiﬁg equation. Multiplying

both sides of this equation by xa gives:

fxa(Xa—Xa)
'+ (Xb—ka) ]

a

)\a x~ - x1)=

Hence: p.u-f= )\a (x
a

a a a
fa, (X - X)) £+, X0 -x])]

f' +xb(xb-xb) _f'+>b(xb—xkf)

i

-ff 3 ff

£+ Ay (xb - xkf) p.U- ¢
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Thus the ratios derived separately from the two pairs of similar

triangles are indced equal to each other.

2.2.2 Invariance of the Optical Imaging Equation

That the optical imaging equation has been set up so as

to be invariant to coordinate rotations, may be checked as follows:

(1.) Let C;n be the direction cosines of the (three dimen-
sional) coordinate rotation, and let Cran be the reciprocal

direction cosines.

(2.) The three vectors then have their components relative
to the x™M coordinates given by

m m_ ,.m, a_ @
X _X]. Ca (X Xl):

xm—x‘1“=cg‘ o - X}

and .
Ny = co .
(3.) The above relations may be inverted to dive:
@ - x] = Co, =™ - =),
@ - X3 =3 oM - X,
and
N, = co
(4.) The imaging equation is therefore
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@ ;un n
f Qn (X" - Xl)

ce (xn—x?) = — o 5
P+ (C, Ay Cp (X7 - X))
a , n n
_ { Cn (X" - Xl)
' m b P _ by °
£+ Cy Cphy, X - X))
(5.) Multiplying both sides by C;n and using
m _.a_.,.m m_ b_.m
Cq Cn—én (andCb Cp 6p)
then gives
. £ (X" - X7)
x™M - Xrln = 1 , (2)

M)

' n
f .+>\n(x —xl

which has the desired form.

2.2.3 Use of Separate Coordinate Systems for Object Space
and Image Space
The preceding discussion assumed that the same coordinate
system was used for both the object space and the image space
(these two spaces may be considered as separated by the principal
planes). In practice, it is often desired to use one coordinate
system for the object space and a different coordinate system for
the image space. Evidently the imaging equation then takes the form
m ,,a ° .a

m
X - X = .
1 f'+)\b(Xb—Xkl))

This equation is invariant to transformations among Cartesian

(3)

coordinate systems both (separately) for the object space and for
the image space. C;n is, of course, the set of direction cosines of
the image space coordinate system with respect to the object space

coordinate system.
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2.3 Application to Aerial Photography

In an aerial camerd the object point (O) is notmally some
point on the surface of the earth and the corresponding image
point (O') is in the emulsion of a photographic film. Since the
photographic film lies in a two dimensional surface (i.e., a
plane surface for frame and strip cameras, a cylipdrical surface
for panoramic cameras) the object points which strictly satisfy
the imaging equation also l'ie in a two dimensional surface.
Aerial cameras, however, normally have sufficient depth of
focus to satisfactorily image a substantial ‘volume of space.
Thus, in general, the imaging equation is only approximately
satisfied with respect to camera focus. Specifically, the
imaging equation correctly gives phot’ogra‘ph coordinates as a
fuﬁction of ground coordinates but cannot be solved directly
to give ground coordinates as a function of photograph co-
ordinates. The most which can be inferred about ground
coordinates from a single aerial photograph is their projective
directions. Some additidnal information (or assumption) is
necessary to determine the points at which rays projected
from the photograph intersect the ground. Since the flying
height is normally very much greater than the camera focal
length, it is usual to neglect the rear focal length (f') which
appears in the denominator and to write the imaging equation as:

m_ om_* ng x* - X?)

X - x; =
N

This approximate form will be used from here on,

(4)
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2.3.1 Rotation of Image

From Figure 2 it may be seen that the image in a camera
is rotated 180° about the optical axis as compared to the apparent scene
viewed dircctly. 1f, however, the photographic negative is viewed
through its film base there is no mirror type reversal unless the camera
contains one or more (i.e., an odd .number of) mirrors,( in additioﬁ to-its
lens. Correspondingly, then, a dup positive \;s/ould normally be viewed
emulsion side up in order not to show a mirror type reversal. By rotating
the photograph coordinate system 1800 about the optical axis, with
respe'ct to the ground coordinate system, one may make photograph
coordinates take substantially the same algebraic signs.as corresponding

[y

s *
ground coordinates. -

2.3.2 Application to Frame, Strip, and Pan Types of Photogr‘aphy

Equation (4) is to be interpreted for three'different types
of photography: frame, strip, and panoramic. For frame and strip type
the photographic film is exposed while confined in a geometric plane at
a fixed normal distance from the camera lens. Assume that the camera
motion is such that the direction normal to the film does not appreciably -
change direction during the exposure time for the photograph. Then the
lens normal )\b must also be constant in direction during the exposure

time. Let the photograph coordinate system be oriented with its x3 (2)
]

axis normal to the film. Then )‘b = Cg and' equation (4) becomes:

*The common practice of regarding a positive as a negative projected
through the point of perspective and having a negative focal length
introduces a negative unit matrix which is not formally correct but
which gets cancelled out in the usual photogrammetric computations.
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m,a _,a
Xm_xm=fca (X" - X))
ool - xh

This is the basic equation for frame and strip type photographs.

(5)

X? and xin are constant for frame type but time functions for strip
]
type. Cran (including Cg ) are constant for frame type and, for

small regions at least, of strip type photographs.

For panoramic photographs the film is maintained in the
form of half of a circular cylinder during exposure. The lens
(and a slit) are rotated to produce a sweeping exposure. Hence
the lens normal )‘b must be expressed in terms of the camera

sweep angle a, (=wt). et the photograph coordinate system be

oriented so the xl axis is parallel to the cylinder axis and the

X~ axis is normal to the tangent plane at the “top" of the half-

cylinder, Let a be zero at the x3 axis and increasing positively

in the direction toward the x2 axis. Then

b

Ny = Ch A = (0, sin a,, cos al)

Hence (using (4))
] -t t 1

)‘m (xm—xrln)=(x2 -xf)sin Q, +(x3~-x:13)cos a; =f (6)
Evidently (6) will be true if

x2 - x% = f sin a; (7)
and x3 - xf = f cos a; . (8)

~54-
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Thus x" - xlln are rectangular coordinates of the circular cylinder
relative to a coordinate system in which the film is stationary.

Combining (7) and (8) with (4):

m ,.,a a
m m _ Ca (X - Xl)
X - Xl - f COS al 3! b b (9)
Cb x- - Xl)
)
L CE - o
With a = tan Al
: cg o - th)

Equations {9) and (10) are basic for a panoramic type photograph.

a m
Xl,x

1 and a, are time functions depending on the camera motion,

the mechanism, and the lens sweep mechanism, ‘ STAT

Equations (5) and (9), (1 0) are basically correct but are of
little value until the various time functions are evaluated.
Evaluation of these time functions is dependent on the particular
cameras and on the flight pattern. The following examples ,var‘e
cursory and are based on descriptions of particular cameras which
have been published in the literature and assume uniform flight

velocity.

2.3.2.1 Frame type photography
The film is maintained in a plane and exposed
simultaneouslfr over the whole photograph. Image motion is

neglected - since the exposure time is brief.

: -55-
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Xm _ xm - 1 “a
1 3! b b
Cb X" - Xl)
Xrln = xrlnO (constant)
a_ .,a .
X| = X10 (constant)
S S WS L S S
e X 1 - = X10’ 100 1

2.3.2.2 Strip type photography

The film is maintained in a flat plane but is
exposed by moving it past a narrow slit which results in a
sweeping exposure. The exposure time for any small area is
brief but the time interval required to sweep the whole photo-
graph is appreciable. There is a fixed angle Bl associated
with the slit-lens scanning operation. This angle is here taken
positive for backward looking, or negative for forward looking,
slits. Let the photograph coordinate system be oriented with
its x3' axis normal to the film plane and its xl| axis parallel,

but opposite, to the direction of lens-slit motion relative to the

film Assume that the time functions are linear in t. STAT
m ,.,a a
LM £ C4 (X _Xl)
! cg (Xb - x?)
a . La a '
X1 = X10 + V™t
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m m _ 2
X - X —(fl tan Bl’ X" =X fl)

1 1 : ]
mx —xlo—fltanﬁl
.. b=
1l 3 a a
. (Ca - Ca tan Bl) X" - XlO) _
- ll 3! b
(Cb - G, tan Bl) \Y

where Vb is the camera ground speed vector, and v is the velocity

(here taken as a negative number).

2.3.2.3 Panoramic type photography

The film is maintained in half of a circular cylinder

and exposed by a slit which scans around the cylinder. The

exposure time for any small area is brief, but the total scanning

time is appreciable, There is a scanning angle a; which increases

at a rate approximately uniform in time, and is here taken positive

| ]
in the direction from the x3 toward the x2 axes. Let the photo-
]
graph coordinate system be oriented with its x1 axis parallel to
]
the axis of the cylinder and with a; = 0 at the x3 axis., Assume
’ '

that the lens motion for |:|is in the negative x'' direction.

Assume that X? is a linear function of time but that the

velocity is proportional to cos a,.
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m ,.a a
xm-xm'f C‘Osa Ca - _Xl)
- 1

1 1 lcg (Xb—Xklj)
§
L CE o -x)
a, = tan T
! 2 o - %) .
b 1
alﬁwt
a . L4 a
XI—X10+V t
v
me M __M m- .
xl—x10+w 61 sin ay

For measurement, the panoramic photograph is laid out flat.

The linear coordinate in the scan direction is then
y-vig=hHh o

1 1'
but there is no change in the coordinate x -X] - parallel to
the cylinder axis. Quantitative use of a panoramic photograph
is usually for calculation of derived quantities (ground co-
ordinates, or an equivalent image) as a function of measured
photograph coordinates. Hence the following substitutions

will usually be méde:

m _m 1! 1! MY Y- Y9 Y- Y10

XM - xl = -x g - 5o sin Ty SN T iy cos

1 1
These follow q\jite easily from the preceding equations but they

are discussed further in section 3.1.4.3.
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s
STAT 2.4 Serics ‘Expansion of the Projective Equations
- Equations (5), (9), and (10) may be collected and written
in the following generalized format:
- m ,.,a a
CcC. X - Xl)
m_ _m a
X —xl+fcoscx S xb (11)
™ - -
c, & R,
i with g"”O; frame photos
i ' .
i 0; strip photos
- (12)
a = % '
o exy
— tan U ; pan photos.
E™
These equations are not, however, entirely explicit since
| - xin, a, C;n, and X? are, in general, functions of time (t). These
[ functions of time are not usually available in closed form but can
= | - STAT
| often be approximated by the first few terms of their series.
?m expansions. Hence it is of interest to examine the series STAT
expansion of equation (11),
-
To expand (11} as a series it is necessary to find STAT
T .
the various orders of partial derivatives of equations (11) and
;v (12) with respect to x?. In doing so it will be convenient to
: represent the partial derivatives taken two ways. The e‘xpressions
. -
ax™  ax™
- 8x”  ox|
- ax™  ax™
a a
axb BXT
o -

-59-
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will represent partial derivatives taken by treating xlln, a, C_,

and X? like independent variables. On the other hand the

expressions

will represent partial derivatives taken by treating Xrln, a, C?,

and X? as functions of t (time) which is in turn treated as a function

of X2.
Hence:
ax™ ax®  ax™ da  9x" ach  ax™ ax?
ngax o 1. R c . ____l)_@La (13)
ax x| dt 9a dt acg dt axf dt  9X
m m n m n m C
_aX oxT dx) 98X da 08X dC_ 93Xy dX]
X b= b ( n M — no L c .
ab - 5y ax| dt pa dt 9C, dt  OX] dt
ox™ @ % ax™ d ax™  a gt axl 42 x‘f at
* Ay Tt 7)) T E (14)
ax” a? e gE at ac? axS  dt 930
ST T oGt
m
aXx
me = acb + o0 etfc.
anc  sx
The series is then
m__m m a, 1l ,m a b, 1l m a C L ..
x™=x F Xy AX + o Xop AX AX + 31 X 8K Al ax® + ' (15)
-60-
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where xg1 are the photograph coordinates of the "center"” of the

region over which (15) is useful. If the expansion is desired for

3

. ‘ m
a certain ground region then Xy a, Ca

m

, Xa, and X? must all be

determined for a point near the center of this ground region and

substitutéd into (11) and (12), to give x;n, and into (15). Thus for

any particular ground region, overwhich (15) is considered valid,

m m
X a,
1’ Ca

this ground region, X, are constants and AXa are the independent

a a
, X, and X1 are all treated as constants. Hence over

variables which correspond to motion over the region,

2.4,1 Evaluation of the Partial Derivatives

The various partial derivatives are obtained as follows.

X

X

b b 3
"X %
C Cy 42
_Xl)]

From (11)
m
me _ ca
— = f cos a{— —
X Cp X7-X))
=f cos a 3vb
3
coral
Bxl
m ch (Xa - Xa)
g—;{—— = -f sin a 2. o
cd P - X

4]
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. ai‘l‘ (x° - x‘f) cl (x* - x]) 62 (x%-x7)
n=fc05a{ 7 d> - — 12 1
9C, [cy X -] [cg X" - x))]
G e -clad) - % & - x5)
= f cos a 3'.d 17 (19)
m m
BXC - _ aXc (20)
axl X
dx? da d02 dx¢
[he tolal derivatives T ar a and T arc taken from the
camera motion along the flight path and sweep

motions in the camera, and are often treated as constants though,

in general, their values vary from one region to another.

214.2

The partial derivatives Qt—a are different for each
X
different type of photography and are as follows:

2.4.2.1 TFrame Photography
All points in the photograph are exposed
simultaneously.
Hence:
.a_t_.é. =0
X
2.4.2.2 Strip Photography

Since xl - xi = { tan B where B is a con-
stant angle, characteristic of each particular strip camera (zero for

systems currently of interest), equation (11) for m = ! becomes

1'
C, x2 - x.‘f)
tan B = b b (21)
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Multiplying through by the denominator of the right side and

differentiating with respect to x3 gives

b 1
Ckla [6b - d:tl ata] + dStb ata (Xb - xkl))
a 09X 9X

3. b 1 b b
= tan B{C (6 ] + X" -X )} (22)
b '"a dt ax3 dt ax® i
. ot ,
Solving (22) for — then gives
oX
ll 3l
ot _ Cq ~ Cq tan B
a ' ' ‘
oX WS ax;  dc, o b b ‘
€y - Cp tan B gr - (gr— ~gr ten AKX -X)) (2B)

2.4.2.3 Panoramic Photography

The last part of (12) may be written in the

form
2" a a, _ 3' a a
Ca (X -Xl)—Ca (X -Xl)tan a. (24)
Differentiating (24) with respect to X2 gives
b 2
0= T
X oX
3,'
: ax® 8t dc’ et
3 b 1 b b
=[c’ ) + P - x°) ] tan a
b a dt BXa dt 8Xa 1
rcd - xb) Qe ot sec? a (25)
b 17 dt 5%
X
-63-
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Equation (25) may be solved for _E)_t_a. Equation (24) is
90X

then used to substitute for tan a and for sec2 a=1+ tam2 a. The

result is
ot _ (cg. cgl - Cg' cé') (< - X?)
a
ax 2 3 -cd (xd x3) %éc— - -
. fj(t’z cg'-‘ift_% cg')( ) o - xS+
& {[ci' x° - xf)]2 + [cg x° - xf)]2 g% | (26)

Evidently (16) through (20) and (23) or (26) must be
substituted in (13) before applying (14), and similarly for higher
order derivatives., Fortunately, however, only terms of (15)
through the first order will be nceded in what followé. Note that
(15) gives the rectangular coordinates, hence for panoramic
photographs it must be supplemented by the following formula for

the photograph coordinate in the scan direction:

2 2
_ e
y-ylo—ftan —?3'1—_5'." (27)
: X~ - X]gq

2.4.3 Generalized Formula for the Partial Derivatives
Equations (13), (14), (22), and (25) are written for
coordinate systems which are stationary with respect to the

ground (i.e.. the object photographed). For such coordinate

64~ o
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systems
a
ax?
a - (2-8)
and
2.4
d ;‘ - 0. (29)
dt .

Using (28), equation (13) can have the term

ax™ dx® ot

ax® at  ax°

added to its right side without upsetting the equality, If this is done,

then (13) becomes

m
M - axa + dx ot (30)
X dt 9X

Similarly (14) can have

ox™ axS  ax™ a’xC

( a + a ) ot

ox° dt  4dx° a2 | axP
dt

added to its right side, and it then becomes

m m
9X dX_ ot

ab  gyb g axP

Similarly (22) and (25) are respectively equivalent to

9 1 3 c c
2 [(C. - C” tan B) (X~ - X7)]
BXa C o] 1
¢ 4t lch- € ran ) (-] 25 = 0 (32)
X
-65-
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and
9 2" 3 c LC
a—a [(CC - CC tan a) (X~ - XI)J
X
d . 2" _3 c_ .Gy Bt _
+dt [(CC - CC tan a) (X~ - XI)J 5(5 =0, (33)
Hence (23) may be written
1. 3'
ot _ Ca - Ca tan 8 (34)
a L} '
d 1 b '
P Gley - ¢l tan g o - 1))
and (26) may be replaced by
2' 3
Bt _ Ca - Ca tan a (35)
ax?d ' '

d 2 3 b
gilicy - ¢ tana) x -x*f)]

Note that (24) cannot be substituted into (35) until after the

differentiation in the denominator has been performed.,

2.4.4 Invariance of the Generalized Formula

| Examination of (30) through (35) shows that all but (31)
have forms which are invariant with respect to translation and/or
rotation of the ground coordinate system. Equation (31) would also
be invariant if the dérivatives were covariant derivatives; the latter
are not discussed in this paper, however. Thus these equations are
valid for all Cartesian coordinate systems, whether moving or stationary
with respect to the ground. The fact that these equations have invariant
forms allows X;n, X;nb. " ** to be treated as tensors. Hence if Ax2 is

treated as a tensor, then (15) also is valid for moving, as well as for

. : *
stationary, coordinate systems.

*Note that the photograph coordinate system remains unchanged for the
transformations of the ground coordinate system considered here,

-66-
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2.4.5 Importance of Moviné Coordinate Systems

Moving coordinatc systems are of, at least theoretical,
interest since the photographs are takén by moving cameras. The
usual obje_ct in reducing the data contained in aerial photographs
is to é)btain a series of ground coordinates with respect to a
coordinate system fixed on the ground. Nevertheless the data
available are thosc in the photographs, and the equations of motion
for the camera. Thus, at least in principle, the data reduction is
equivalent to transforming ground coordinates from a system fixed

on the camera to a system fixed on the ground.

-

Evidently, then, one may distinguish three types of
coordinate systems which may be used in computing the various
terms in (30), (31), and similar equations for the higher order
derivatives. One type is that which is fixed on thé ground. For

this type, it is usually the case that

A second type is that which is fixed on the camera. For this type,
usually

m ax® ax®
a

dC 1
—at———O, —ar?':o, and —CTt-'=0-

Finally, there is the general coordinate system type, which is
moving with respect to the ground but yet not fixed on the camera.

In this case, gecnerally

dcy ax® dx";‘
—Et—- # 0, "d_t— # 0, and ‘aT # 0.
-67-
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Similarly for the higher order derivatives of C?, Xa, and X?.

Furthermore, in all these ground coordinate system types

m
dx1

rra + 0 except for frame type photographs,

and

g% £ 0 for panoramic type photographs.

As an example of a somewhat similar situation one
may note that the vecctor net effective velocity of the camera

with respect to a particular ground point is given by the formula

a _ a d m ,.b
Ve =-CL a [cb X - x?)]. (36)

That this formula is reasonable may be seen by noting first that

it is invariant to transformations among Cartesian coordinate

systems, and second that for a coordinate system fixed on the

camera (36) gives

Thus (36) may be used to compute the camera to ground relative
effective velocity in any of the three coordinate system types

listed above.

-68-
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-

11I. COMPUTATION OF GROUND -COORDINATES

The optical imaging equation (3) can be solved for Xa, giving:

' m m
i c¥ x - x,)
X3 =@+ —2 l (37)
1 n n
f - (x5 - %)
n 1

1f, however, (37) is applied to an aerial photograph, in an attempt
to compute ground coordinates (Xa), then it is usually found that the
magnitude of the denominator [f - xn (xn - xrll)] is so much less than
the focal length f that the errors in the determination of f cause an
unacceptable degree of errer in 't;le values comppted for Xa. Hence
(37) is not & practical formula for computing ground coordinates from
the coordinates in an aerial phot_ograph. This situation may be
likened to the reverse side of the fact that an aerial photograph has
a practical depth of focus which is somewhat larger than the range
of relief in the terrain photographed. Therefore it is not practically

meaningful to solve for the (ground) surface which is theoretically

in "perfect" focus, as would be done by computing with equation (37).

It is for a somewhat similar reason that t.he projective equations
((4), or (5), or (11) and (12)) cannot be completely solved for x%. Ina
pracliical sense the most which can be strictly inferred about ground
points from a single aerial photograph (and the corresponding camera
parameters) is their projective directions. Somel additional assumption,
or other information, is necessary to determine where the projected
dircctions intersect the carth's surface. A common way out of this is
to assume Some approximate geometrical shape (a plane or a sphere

or a spheroid) for the earth's surface. Such an assumption allows one

-69-
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to write a constraint equation which may be used in conjunction with
the projective equations to solve for approximate ground coordinates.
Another possibility, of particular interest here, is to use two over-
lapping aerial photographs taken with different camera locations,

In this case rays may be projected from corresponding coordinates in
both photos so as to triangulate ground coordinates. Both these schemes
will be discussed in the following sections.

3.1 Approximate Ground Computations Based
on Only One Photograph

3.1.1 Use of A Tangent Plane
Let it be assumed that the ground coordinates
over some local region may be adequately approximated as lying in a
geometrical plane, whose parameters are known (or may be assumed
with sufficient accuracy). The necessary parameters are the dir‘ection
cosines g of a normal to the plane and the normal distange D1 from the

plane to the camera station. It is assumed that the camera parameters

C;n and X? are known (i.e., known functions of time). Hence the
quantities
_ a
Pm = Cn Pa

may be computed. Multiplying these quantities by both sides of

equation (11) gives

m a
' ko Co (- %)
boxM=p xM™+fcosq-m 2 1. (38)
-70-

Approved For Release 2003/01/28 : CIA-RDP78B05171A000600030001-0



Approved For Release 2003/01/28 : CIA-RDP78B05171A000600030001-0

In (38), the quantity

c™

ay _ . A _ A
Pm “~a _Xl)—‘*a (X Xl)

may be identified as the negative of the normal distance from the

plane to the camera station. That is,

p, (¥ - X)) =-Dy. (39)
Substituting this in (38) and rearranging somewhat, then gives
b &M= %))
fcos a - _ 1 ) (40)
3 b D |
- 1
ol (x-x) ,
(40) may be substituted in (11) and the result solved for X2
D
a _ 4 _ i a m _ . m
X% =X —0 C Xy ). (41)
88 (X - Xl)

Thus equation (41) may be used to compute coordinates of points
lying in a plane surface whose normal has the direction cosines

Mg and whose normal distance from the camera location (coordinates

a
1

surface approximate actual ground coordinates depends on the

X7)is =D

1 Obviously the extent to which the points in this plane
accuracy with which and Dy represent real conditions of the local
ground region. If three or more ground control points (i.e., ground
points with known coordinates whose images can be recognizéd in the
aerial photograph being examined) are available, then the "best
average" plane may be passed through these points. Otherwise it's
usually necessary to compute a level surface tangent to some point

of the geometrical model (plane, or sphere, or spheroid) assumed for

-71-
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the earth. The latter procedure will be discussed here - using a

spherical model of the earth. .

3.1.2 Tangent Plane to A Spherical Earth
In equation (41) itis assumed that, relative to
some established ground coordinate system, the camera parameters
G?n and X? are known (as functions of time) and that, relative to the

photograph coordinate system, the lens coordinates xrln are known

(as functions of time - determined by the pan sweep STAT

mechanism). Thus the coordinates x™ of any particular photo point
determine a projective ray from the known camera location (X?). The
problem to be solved in this section is to determine Mg and D, for a
plane surface which is tangent to the earth (assumed spherical)

at the point at which this projective ray intersects the plane. Thus
the tangent plane is made a level datum plane at the point of the
earth's model which is intersected by the particular projective ray,
and the coordinates of the intersection point are actually approximate

ground coordinates.

The solution given here for the problem stated
above is one by successive approximations - suitable for iterative
computation by a digital computer. Figure 3 illustrates the first two
steps of the method. In Fi_gure 3 the camera is represented as having
ground coordinates Xal1 and flying height H over a spherical earth with
its center at coordinates X%. P1 represents a plane tangent to the

earth at the ground nadir, and X2 (1) are the coordinates of the point

-72-
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% P
S R
™~

Farth's Surface

a '7‘ Mg (2)

i R (Radius of Earth)

-

/

iv l
a

X 0 (Center of Farth)

Figure 3

Tirst two steps of iterative solution for level datum plane

tangent at point intersectea by a proteciive ray.
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at which this planc is intersected by the projective ray from the photo
point with coordinates x™. Now an carth's radius vector is passed
through the point Xa (1); Iy (2) are the direction cosines of this radius
vector which has, in fact, the vertical direction throdgh the point X2 ().
P2 is a plane tangent to the earth at the point intersected by the vertical
through x2 (1). Thus T (2) are the direction cosines of the normal to
the level tangent plane P, . D, (2) i‘s then the normal distance from

this plane to the camera station, and Xa (2) are the coordinates of the

point at which this plane is intersected by the projective ray from X,

The third stcp in the solution (not shown in Figure 3)
consists of passing a plane P3 tangent to the earth at the point verti-
cally below x2 (2) and finding the intersection X2 (3) of Pa by the
proje-ctive ray from <™, Evidently the process may then be iterated
until a plane PN is tangent to the earth at a point as close as desired
to the intersection X2 (N) of this plane by the projected ray from <™.
Thus X2 (N) is @ satisfactory approximation of the intersection of the
projective ray from «™ with the surface of the spherical model of the

earth.

The actual computations are as follows:

m

_ . m
1..x—xl—c (x Xl)

2. R+H=\/f;b(x"i‘—x%) (xkf—x%)

3. g (1) = by (x> - X2)/(R + H)

A . =74~
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x2 (i) =x2 - — cor (e.g., (41))

R, () =+o_, [ ©-x30[x° @) -xg)
hg (1) =8 O ) = Xgl/Ry O

R1 (i) - R

R I S the allowable error threshold:

.

increase i by 1 and repeat steps 5 through 9; otherwise

the computation is complete.

The following FORTRAN subroutine was written to test

the computation scheme given above (BETA is the pitch angle; roll

and yaw are each taken as zero):

10
11

12

SUBROUTINE GNDCUR

INTEGER A, B, M ,

REAL XAO (3), XAL(3). MUA(3), MUM(3), XA(3), CAM(3, 3)
REAL DLTAAB(3, 3), XM(3), X1 MXO0(3), MUDOTX

FORMAT (3F15.5) _

FORMAT (/3F15,5)

READ (1,10) H, BETA, R
READ (1,10) XM

DO 12 A=1,3

DO 12 B=1,3

If (A.EQ.B) DLTAAB(A, B)
IF (A.NE.B) DLTAAB (a, B)

1.
O

CONTINUE
C=COS(BETA/57.2958)
S=SIN(BETA/57.2958)
CAM(lL, 1) = -C
CAM(,2) = 0.0
CAM(1, 3)= -§

~-75-
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15 MUA(A
DO20 A=1,3 _ \
pDOl6B=1,3

16 MUA(M) = MUA(A) + DLTAAB(A, B)*X1 MX0(B)

20 RPLSH = RPISH + MUA(A A)*X1MX0(A)

RPLSH = SQRT(RPLSH)

Il
ey

DO21 A=1,3
21 MUA(A) = MUA(A)/RPLSH
30 DIl =-R

DO 31 A=1,3
31 Dl =Dl +MU A(A)*XIMXO(A)

DO 35 M=1,3
MUM(M) = ? g |
A=1,
35 II\)A%IS)/IS(M) -~ MUM (M) + CAM(A, M) * MUA(A)
DO 4l A=1,3
XA(A) = 0.0
MUDOTX = 0.0

DO 40 M= 1,3
XA(A) = XA(A) - CAMI(A, M)*XM (M)
40 MUDOTX = MUDOTXMUM (M)*XM (M)
41  XA(A) = XA(A)*D1 /MUDOTXHX!1 MXO0(A)
RL = 0.0
DO 46 A=1,3
MUA(A) = 0.03
DO 45 B =1,
45 MUA(A) = MUA(A)+DLTAAB(A, B)*XA(B)
46 Rl = RI+MUA(A)*XA(A)
= SQRT(RL)
DO 50A=1,3
MUA(A) = MUA(A)/Rl
50 XA(A) = XA(A)+XA0(A)
WRITE (1,11) MUA
WRITE (1,11) XA
X = R1/R 0-x)
= ABS(1.0-
}{r (Y—l(g.O**(—G)) 55, 30, 30
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55 RETURN
END
SO END OF JOB

It may be seen that this TORTRAN program does not exactly follow
all of the steps of the computational scheme given above, but is

equivalent in all respects. The program was compiled and run on

a| |computer with the allowable error threshold set

_6 .,
at 10 (see the IT statement just before statement 55). Conver-
gence occurred in from one to three passes (only one case required
three passes - all others were less) over the iterative loop. Table I

shows some of the results obtained

Table I

Some Results Obtained with Subroutine GNDCUR

H=15240.0 =15.0 R= 6378388.0
(xm—x]ln)/f = 0.1 0.0 1.0
p(2) = 0.00090 0.00000 1.00000
x3(1) = 5761.92969 0.00000 0.00000

H=15240.0 =15.0 R=6378388.0
x”‘-x’l“/f = 0.2 0.0 1.0
b, (2) = 0.00118 0.00000 1.00000
x3(1) = 7535.35742 0.00000 0.00000
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I1=15240.0
(xm—xT)/f= 0.5
ba2) = 0.00212
x3(1) = 13514.08203
b, (3) = 0.00212
x3@2) = 13527.11133

H=15240.0
(x"-x ") /1 = 1.0
b, (2) = 0.00414
x3(1) = 26396.42578
p 63) = 0.00415
x2@) = 26491.28125

I =15190.0
(xm—xT)/f= 0.1
h (2) = 0.00090
x2) = 5743,02539

H=15190.0
(xm—xT)/f= 0.2
b 2) = 0.00118
x3(1) = 7510.63477

B= 15.0
0.0

0.00000

0.00000
0.00000

0.00000

= 15.0

0.0
0.00000

0.00000
0.00000

0.00000

0.00000

0.00000

15,0

0.0

0.00000

0.00000
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R = 6378388.

0

~-15,

R= 6378388,

. 00000

.00000

.00000

00000

-55.

R = 6378438,

.99939

. 00000

. 99999

00000

.00000

. 00000

R= 6378438,

1,

1
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H=15190.0
(x"-x|)/f = 0.5
b 2) = 0.00211
x3(1) = 13469.74609
ua(B) = 0.00211
x3(2) 13482, 60352
H=15190,0
(x"x )/ = 1.0
p_o(2) = 0.00412
x3(1) = 26309.,82422
by (3) = 0.00414
x%@2)= 26406.91406
H = 15240,0
M-xNE= 0.1
hy(2) = 0.00115
x3(1) = 7337.97852
H=15240.0
m”LxTw@= 1.0
by (2) = 0.00512
x3(1) = 32682.25391
ny(3) = 0.00515
x2@) = 32863.65625

CIA-RDP78B05171A000600030001-0

15.0

0.0
0.00000

0.00000
0.00000

0.00000

15.0
0.0

0.00000

0.00000
0.00000

0.00000

20.0

0.0

1 4

0.00000°

0.00000

20.0

0.0

0.00000

0.00000

0.00000

0.00000

R=6378438,0

1.0

1.00000

0.00000

1.00000

~15.00000

R =6378438.0

loo

0.99999

0.00000

0.99999

-57.00000

R=6378388.0

1.0
1,.00000

0.00000

R = 6378388.0

L.0

0.99999

0.00000

0.99999

-85.00000
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11 =30480.0 B_=15.0 R = 6378388.0
(x"-x|")/f = 0.1 ] 0.0 1.0
1, @) = 0.00181 ~0.00000 1.00000
x3(1) = 11523.48437 | 0.00000 1.00000
b (3) = 0.00181 | 0.00000 1.00000
x3@2) = 11527.97070 0.00000 ~11.00000
= 30480.0 B = 15.0 R = 6378388.0
(x"-x")/f = 1.0 0.0 1.0
b, (2)= 0.00828 0.00000 0.99997
x3 1) = 52791.14062 0.00000 1.00000
b (3) = 0.00834 0.00000 0.99997
X2 (@) = 53174.14844 0.00000 ~221.00000

3.1.3 Plane Tangent at the Nadir
I'rom Figure 3 and from the computational scheme given
above, it may be seen that the first pass over the iterative loop corre-
sponds to the plane Pl which is tangent at the ground nadir.* The
TORTRAN subroutine may be secn to he based on a ground coordinate
system with its origin at the nadir and its 7 axis verticél. Thus in

Table I the X1 = X and XZ = Y results are in the plane P1 and the X3 =7

*Since the camera is moving, the term ground nadir is possibly
amblguous; here it is used to mean a fixed ground point which is
vertically below the camera lens at some defined instant of time.

-80-
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results are perpendicular to Pl . If only the coordinates in Pl arc
considered then Table I shows that the valucs obtained on the first
pass arc within a fraction of a-percont of the final values - for the
cascs computed, Thus it is sométimes sufliciently accurate to com-
pute approximate (horizontal) ground coordinates by lreating the

carth's surface as a level plane through the nadir.

Tor a level plane through the nadir and with the
ground coordinate system having its X3 axis vertical equation (41)
may be put in a more familiar form. In this case Dl = X? - X3 and

iy = (0, 0, 1). Hence

a3 _ 3
R Ba~ Chm
and
a m m
, G| - X))
Xa — Xd + m 1 (X3 _ X3). (42)
L 3 ,.n n 1
Cn (x - Xl)

It is common practice to write (42) with X3 - X? set equal to -(Ii-h)

where H is the flying height and h is the ground clevation at the nadir -
both with respect to some datum (as mean sea level). Table I includes
cases which illustrate the effect of varying the ground elevation by

50 meters.

3.1.4 Treatment of the Photograph Coordinates for the
Different Types of Photography

FEquations (41) and (42) give the ground coordinates

as functions of the rectangular components of the displacement of the

-81-
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photograph point from the instantanecous position of the camera lens
N m . . . : '
(xI - X y. The relations of this displacement vector to actual photo-

Al
graph measurcments are different for the three different types of

photography.

3.1.4.1 Trame Type Photography
In analyzing frame photographs it is usual

practice 1o neglect the finite time required for exposure, and to con-
sider the entire photograph to be exposod in the same instant of time
(thus also neglecting the scanning time for the {ocal plane shutter - if
one is used). Il‘ence both the position of the camera with respect to
the ground and the position of the lens with respect to the film are the
same for all points in the photograph. In other words xrln’ C;, and X?
arc Lreated like constants (i.ec., constant at the particular values they
have at the instant of exposure). Thus the displacement vector
(xm - XT) is related to the actual photograph measurcments simply by
translation and/or rotation of the measurement coordinate system into
the photograph coordinate system, Roth of these coordinate systems

are usually taken with the x3 (z) axis normal to the photograph - hence

"= { (the camera foca: length), and the coordinate transforma-
tion (if any) is effectively a two dimensional transformation. Thus the
displaccment vector may be stated as:

m m _ M ogoa a
X - Xy —C(1 (x —xlo) (43)

where C?, and x"llO are constants with xS - xzfo - f, and x" are the

photograph measurements. The lens coordinates x(llo are usually
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determined from fiducial marks on the photograph.

In discussions from this point on the dis-
tinction between the measurement (i.c., comparator stage) coordinate
system and the photograph coordinate system will be neglected unless
there is particular reason to discuss it, and photograph coordinates
will be treated as though they were measured directly. Hence (43)
will be stated simply as:

1 1 2 2
m m = Xn] -—,XIan = (X - Xlo, X - Xlo, f) (44)

3.1.4.2 Strip Type Photography

Strip type photographs are exposed by having
a narrow slit, with its long dimension extending across the width of
the film and perpendiculér to the edges, scan in a direction parallel
to the edges of the film which are approximatély paralliel to the
direction of flight. The scanning spced is coordinated with the flight
speed so the image on the film is as necarly stationary as is practical.,
Thus the projected ray from a strip camcra lies in a plane which bears
a fixed angular relation to the camera and which includes the scanning
slit. The angular relation is stated as the tilt of the plane with respect
to the normal to the film, which is here called B. This tilt angle (B) is
normally fixed, for any particular strip camera, by the camera design

and is zero for systems currently of interest.

Throughout this and following discussions the

following conventions will be assumed for examining (i.e., measuring)
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processed photographs:
a. Tor cameras which do not produce a mirror type reversal:
negatives viewed cmulsion side down (away {rom observer) and

positives viewed emulsion side up (toward observer).

1

b. For cameras which do produce a mirror type reversal:
negatives viewed emulsion side up and positives viewed cmulsion

side down,

In all cases the photograph coordinate system
(right handed Cartesian) for strip typc photos will be assumed to have
the x axis approximatcly in the direction of flight (i.e., the direction
of the camera motion with respect to the ground), the y axis parailel
to the long dimensic;n of the scanning slit, and the z axis upward
normal to the film plane. Analysis shows that, under these assumptions,
the displacement vector for strip photos has the following components
(to be substituted in (41) or (42):

2 2
x™ - xrln = (ftan B, X~ - X f). (45)

Since (45) docs not include the x photograph
coordinate, it is not sufficient to merely substitute (45) in formulae
for ground coordinates. The effect of the x photo coordinate is to

enable determination of the time at which a particular point of the

photo was exposed. This value of time must then be usced to determine
. . a .
the corresponding instantancous values of Xl and C‘; which are time

functions). Strip photos usually have time tics along the edgce to
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facilitate determination of the actual time at which any particular

1

point was cxposed. Thus (41) and (42) are applied in a slightly

different fashion for strip photos than for frame type photos.

3.1.4.3 Panoramic Type Photography
Panoramic cameras exposc the {ilm by a slit
which scans around half of a circglar cylinder to which the film is
clamped. The axis of the cylinder is approximately parallel to the

flight direction, and the scan is from high oblique on one side to

vertical to high oblique on the other side. The displacement vector,

no_ x[ln) Is from the lens (on the cylinder

with rectangular components (x

axis) to the cylindrical surface of the film emulsion. The photo co-

ordinate system (right hand Cartesian) will here be taken with the x1 '

axis parallel to the axis of the cylinder and approximately in the

flight direction, the x2 axis approximately horizontal and to the left,

and the x3 axis upward normal to an imaginary plane which is tangent

to the "top" of the cylinder. The scanning angle a (= wt) is positive
1

STAT

left handed about the xl axis, and zero at the x3 axis. The

velocity is assumed proportional to cos a,

When laid out flat, for mecasurement, a

panoramic photograph exhibits its xl axis unchanged but has the

original x2 and x3 axes combined into one - which is here called

Y- vYg- Thus (see section 2.3.2):

-1 x2 - x%
Y- Vg=fa=1ftan (-?-—3—.). (46)
X" = %]
_85_
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Putting the ahove stated delinitions together and solving for the

sonts then lcads 1O

rectangular compor
N y-Y vy y-y
m m o 1 1 . 10 . 10 10
x = X7 X -X10" » sin —p f sin —3 , f cos ———T————), (47)
(a negalive aumber in the

is the maximum rate

w here VM

]

conventions u sed here).

s to be substituted in formulac

Lquation (47) i
(41) and (42), when L

graphy it is also nec-

\gse are applied

for ground coordinates, such as

to panoramic photographs . As with strip photo

. . a .
esgsary to evaluate the 1ime functions Cm and Xél1 for the particular
which any given photo point was exposed. Tor pan photos

time at
this time is given (at least appro‘ximately) by
y - Y
a 10
T me—— -
t=— -5 (48)
(48) is thercfore 10 be substituted in the time {functions assumed for
mula for ground coordinates.

is used in a for

C?n and X? whenever (47)

3.2 Stereosco ic Triangulation of Ground Points
In any acrial photograph, at the instant of exposure,
y from some particular ground point

oto point lies on ara
(This ray is here

(" point of perspect

each ph
through the camera lens jive").
ght - since atmospheric refraction 18 being neglected.)

assumed strai
locations but

1f two photographs are taken with different camera
of the same ground region then corresponding

including coverage

they are called here) i

n the two photos, together with their

points (as

-86-
Approved For Rel
ease 2003/01/28 : CIA-R|
o -RDP78B05171A0006
00030001-0

STAT



Appro
pproved For Release 2003/01/28 : CIA-RDP78B05171A000600030001-0

common ground point, define a planc yvhich includes the instantancous
positions of the two points ol perspective. The linc scgment joining
the instantaneous points of perspcctivo will henceforth be referred to
as the "airbase" (i.e.. the particular airbase associated with a partic-
ular pair of corresponding po'mts). jiencc two overlapping photographs,
together with data stating the positions and orientations of their
respectlive cameras, may he uscd to compute ground coordinates by

triangulation.

Equation (42) was written as giving ground coordinates
when certain assumptions are justified. Under somewhat more gencral
conditions, however, (42) defines a projective ray from the instan=
taneous camera position.* Thus, if two photographs are located and
oriented as they were originally oxposed then projective rays {rom
corresponding points must intersect at the common ground point. An

equation equivalent to (42) but stated for the other photograph (with

photo coordinate system axes designated by X, x>, ++°)is

o2 (xr _ xf)
=X+ 2 3 - %), (49)
3 -
S 2
Equating (42) and (49) gives
a m m ° a T
c® (x -%,) c? (x - %)
Xa + m 1 (X3 _X3) - Xa + T 2 (X3 _ X3) . (5 0‘)
1l 3, n n 1 2 3 S 2
cn (X _xl) CS ( - Xz)

N e

*Note that in this sense (42) is valid even if the X3 axis 1s not
restricted to have the vertical direction.
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Multiplying py the product of the Wwo denominators then glves

a 3 .4 m_ m r_ T 3 _ ~9 3 m_ . m r_ I 3
(Cm C’i_cm (’r) (% Xl)(x XZ) X C’m cr (x Xl) (x XZ) Xl

3 a om_ Myt “Ty 3 3.3 ,om o Myt r a_ya
-C, C, (x —xl)(x —xz) X5 FCL C, (x —xl)(x XZ) (X2 Xl)' (51)
Now sct the index a = 1 and solve (51) for X3:
3 3 b 1 3 .1.3 13,3 m m r_r
X3 _ kcm Cr (XZ—Xl) _(Cmcr XZ -Cm(“r Xl)l(x - %) ) % XZ) (52)
‘ T .3 3 1 n n., S S
(C, Cg~ Ch CS) x - %) (x~ - Xz)

1iences

1 1 1 ’
c? (e (%, -%)-C (x3—x3)](x‘“—x‘“) - )
XB—XS _Zm - r 2 1 r 2 1 1 2 (53)
1 1 .3 3 1 n_n s _ 8
(CnbS C, CS)(X Xl) (x xz)

Combining (42) and (53) results in

e T
XTo Ry T T, 0 (5 - % (54)
(cncs—cncs) o - x) (7 - %)

gimilarly, using (52) to find X3 - X% and combining the result with

(49) resulls in

3 1 1 1 3 3 m m r r
Xa:\(;‘jJrCr lCw(XZ"Xl)—Cm (X'Z-Xl)l(x —xl) (= _?(2) (55)
‘ T 3 3 ~b n n r I :
(Cn Cs _Cn Cs) (x _Xl) (= —XZ)

pvidently (54) gives ground coordinates based on X?, the coordinates
of the first camera station, and (55) gives ground coordinates pasecd
on Xézl, the coordinates of the second camera station. poth (54) and
(55) involve the orientations of both camera stations, the flight base,
and the photo c‘:oordinatcs of corresponding points in the two photo-

graphs. 1f there were no errors, in measurement or in computation,
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and if there were no approximations involved, then (54) and (55)
would be eoxpected 1O give the same values for ground coordinates.
Since there gencrally arc crrors (54) and (55) may be cxpected 1o
give slightly different values and presumably the averages of the

two are the "hest" values for ground coordinateé .

Lquations (54) and (55) involve the displacement vectors
m m T T . .

(x - Xl) and (x - XZ)‘ Substitutions for these vectors are to be
made according to the mecthod gtated in scction 3.1 .4, Section 3,1.4
specifically states the method for the first photograph but can easily
e modified to stale it also for the second photograph. All that's
necessary is to replace the various indices for the first photo with
corresponding indices for the sccond photo. The details will not be

A}

given here.
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V. AUTOMATIC STAGL TRACKING IN THL OPLRATION
Or THL STERLOCOMPARATOR

The preceding chapter brings out the fact that for accurate
computation of ground coordinates from acrial photographs it's at
lcast desirable and perhaps actually necessary to use two over-
lapping photographs taken with different camera locations. Reduction
of the data in thesc overlapping photographs involves measuring the
photo coordinates of pairs of points in the two photos which corre-
spond, in ecach casc, to the same ground point. To facilitate this
operation the Stercocomparator is designed to automatically adjust
ité measuring stages and its various optical clements sO a8 to enable
viewing selected regions of the two photos in stcrco. The mecthod by
which the two stages are maintained on approximatoly coﬁesponding
points will be discusscd in this chapter. The method for controlling

the optical system will be given later.

pefore details of the stage tracking are given, (wo other matters
will be sfated. One is that the primary functions of the Stereocomparator
involve measurcment of the coordinates of corresponding poipts and
output of the resulting digital information, but not further reduction of
this information. Computations { for example, ground coordinatcs)
bascd on the digital output of the Stercocomparator are performed by
a computer which is external to the Stereocomparator (not by the con-
trol con.puter which is part of the Stereocomparator). The other matter
has to do with the precision of automatic stage tracking. This is

intended to be sufficient for comfortable stereo vinwing but not
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necessarily sufficient for automatic digitigation of corresponding
points. That is, it is expected Lhat‘the operalor will, in general,
perform the {inal sctting of the stagces Lo precisely corresponding
points - after the automatic tracking has sct Lthem approximately on

the desired points.

A joystick and lwo trackballs are provided for use by the
operator in directing the two stages to desired points. Pushbuttons
arc available which permit selection of various modes wherein the
joystick or either trackball controls either stage or both stages
together, Probably the most frequently selected mode will be onc
in which the joystick controls both stages together, and cach track-
ball controls one stage independently. In this mode the operator
directs both stages to various selected areas with the joystick and
performs final sectting on precisely corresponding po'mts.wiLh the two
trackballs. Under these conditions the Stereocomparator, unless
inhibited by the operator having selected a non-tracking mode,
performs automatic stage tracking when directed by the joystick and
temporarily discontinues automatic stage tracking ‘when directed by
cither trackball., NO alteration of the pushbutton setting 1s required
to produce switching in or out of automatic tracking, sincc such
switching is automatically perff)rmed, as required, by deflection of
the joystick or either trackball. 1f the joystick is standing at its
neutral position and ncither trackball is being rotated then both

stages remain stationary as last directed by the operator.

~91-
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The Stercocomparalor automatic tracking systcm can be dcscribed
as a master- slave type of control system., That is, the operator, in
cffect. direets one stage (Lhe master) to a desired point, and the
Sltercocomparator clectronics direct the other (i.e., slave) stage to
the corresponding point (apprc—)ximatcly). To the operator, however, It
appears Lhat both stages move simullaneously to corresponding points -
since the time delay in servoing the slave stage to the master is so
small as to be unnoticeable. Somewhat similarly, the optics control
is by a master - slave type of system, but this will be discussed later.
Two tracking modes arc available for selection by the operator, whichl
function - one with and one without - an opto-electronic correlation

system. These will be described separately.

4,1 Automatic Without Correlator Tracking Mode

4.1, 1. Operations Perforimed
Automatic tracking in this mode is initiated by
the operator directing the stages successively to t}l}ec different points
and manually establishing a stereo model at cach of these three points.
In each case the opecrator depresses the REORIENT button after having

cstablished a stereo model.

Depressing the REORIENT butlon causes the

internal control computer | |to read the stage coordinates STAT

for both stages, transform these into the respective photo coordinate
systems and substitute in equation (54), thus obtaining X, Y, Z co-

ordinates for.one model point. ‘When three model points have been thus

-92-
Approved For Release 2003/01/28 : CIA-RDP78B05171A000600030001-0



wl

Appro -
pproved For Release 2003/01/28 : CIA-RDP78B05171A000600030001-0

obtained the control computer, in cffect, passes a geomelric planc
through these threc points. That is, it computes the direction cosinecs
for the normal 1o such a plane and then computes the normal distance
from the planc to the first camera statio‘n. A plane thus determined

will hercafter be referred to as a “tracking plane."

Oncce a tracking plane has been established,
then tracking motion (i.e., stage motion such that the floating dot
appears to remain in the tracking plane) may be directed by the joystick.
Motion of the floating dot out of the tracking plane {for example, to the
op of a building if the tracking plane corresponds to the ground level)

may be directed by the Lrackballs

4,1.2 Computation of Slave Stage Coordinates

The computer controls stage tracking

STAT

by poriodically reading the coordinates of the master stage and com-
puting corresponding coordinates for the slave Tqtage. Tor this purpose
equation 41) is used to compute model coordinates in the tracking
plane. Equations (11) and (12) are then used to compute the slave

stage coordinates. Cquation (11) for the second photograph is written

as:
of a a
r r (X —X’Z)
= x, F i COSQ-———————‘—“— (56)
2" 2 3 o ,
Cb (X —Xz)
_93_
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Lquation (41) is used to obtain the following

. C d
cquation for X - XZ:

D
a a _ _ 1 a m _ My _ a _ ya
X" =X = ) Cm(x x)) (X5 X))
Lo 1
a . "m a a m
s i LA
noo(x - Xl) 1
llence (56) becomes
roLa oM m
c. Y | X, )
= x +f, cosa a o L ; (57)
2 2 b ,.n n
Cb Yn (x - Xl)
wherein
v =2 o+ m %@ - x3) : | (58)
m m Dl 2 17"
The angle ag is given by
(0 ; frame type slave photo
a, =ﬁ 0 ; strip type slave photo (59)
lCZ Y§ (Xm_xm) ‘
- m 1 .
tan x : pan type slave photo
L cy Yo 7=y

Equations (57), (58), and (59) give slave
photo coordinates as functions of master photo coordinates,
utilizing the paramecters g and D1 of the tracking plane and the
camera station parameters for both cameras. Since the latter are

functions of t1 and t2, the times at which the correspond'mg master
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and slave points were cxposed, it is necessary to determine thesc
times. The time tl for the master photo is determined from the master
photo coordinates as described in section 3.1.4. This method cannot
be used for the slave photo, however, since the object at this point
is to compute slave photo coordinates - hence the latter must be

treated as unknown until after t2 has been determined.

4,1,3 Computation of Slave Photo Point Time of Exposure
The method of solving for the time of exposure of
the unknown slave photo point is somew hat similar to that given in
section 2.4.2. Each camera type imposes a constraint on its scanning
and/or exposure which is peculiar to its design. This constraint may
be combined with the flight equations to write a function of time which
can be equated to zero, The resulting equation may then be solved for

the particular value of time for which it is satisfied.

An iterative scheme, known as the Newton-
Raphson method, is used to solve the equation. This method assumes
that a first approximation is known for the solution and enables com-
puting a correction to this - thus yielding a second approximation.
The method is then successively repeated to give third, fourth, etc.,
approximations as far as is desired. Thus the equation

f@)=20

may have its left side approximated by the first two terms of its STAT

series expansion:

£ (t.) +f (tg) (t - tg) = 0.

o
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Solving this for t:

lence if £(t) and its first derivative f (t) are stated explicitly and:

tO is an approximate solution of some order then t, as given by

(60), is an approximate solution of order one greater. Thus (60)

may be used iteratively to determine a value of t which makes f(t)

as close as desired to zero. Application of this method to the different

types of photography is described below.

4,1,3,1 Trame Type Photos
The idealized frame camera constrains
all of its points to be exposed simultaneously and instantaneousily.
The time of exposure must be stated as part of the auxiliary input

data, and no additional computation is necessary.

4,1.,3.2 Strip Type Photos
The strip camera scanning slit causes
a constraint which was stated as equation (21). Re-expressing (21)
for the slave photo and arranging the result in a slightly different’
form gives
" ¥ a

[C; - cg tan 32] x? - X) =0 (61)

Equation (61) is a function of time tz since C; and Xg are functions
of time - stated by the equations of flight. Hence (61) may be solved

by the method of equation (60). That is
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1 "

1 a

L (ca - cg tan p) (X2 - xz) ©2)
O T LLEE
%—t [(Cé —cg tan 32) (xb—x?)]

wherecin the second term on the right is evaluated at a particular
approximation tO for the solution of (61}, and t is hence the next
(better) approximation. Thus (62) is used iteratively until successive
values of t cease to show significant change from one to the next.
This can only occur when the numecrator of the second term is suffi-
ciently near zero. llence (61) is adequately satisfied by the final

value of t.

4,1,.3.3 Panoramic Type Photos
The last statement of (59) may be

used as a constraint to solve for the slave photo time of exposure.

. r , 2" 3" a a
Time t, enters (59) by C, (i.e., C, and CJ ) and Y (Xz).

case the formal scheme of (60) can be somewhat simplified, since it

In this

is assumed that

where w, is a constant (stated in the input data) and t, . is the value

2 20

of time at which the scan angle a, is zero, Thus if t is an approxi-

mation of some order for the value of time which satisfies (59) then

the next better approximation t, is given by

2
CZ" Ya ( m _ m)
o ] -1 Ya Ity T Xy
ty = ty, + —— tan . (63)
ds) CB Yb (Xn _ xn)
b -"n 1

wherein C; and Y‘; are evaluated at the time t. The value t2 is then
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used to re-evaluate C; and Y;, and (63) is usecd again - to obtain

the next better approximation. Thus (63) may be used iteratively

until successive values of tz ceasc to show significant change from
one to the next. The final value of_t2 is hence the time of exposure of
a point of the slave photo corresponding to the master photo point
whose coordinates are xM (as substituted in (63)). This value of

time is then substituted in (57) and in (2 7)* to give the predicted slave

photo coordinates.

4.,1.,4 Modified Computations for Real-Time Stage Control
The Stereocomparator design specifications require

‘that, for smooth stage motion, the control computer must output stage
drive commands at the rate of 120 per second. Each such drive com-
mand consists of incremental values of x and y (cither of which may be
zero) for each stage. The two stages attempt to follow each incremental
drive command, but the frequency response of the stage servo systems
is much below 120 hertz. Hence the incremental (step) nature of the

computer outputs is very much smoothed out in the actual stage motion.

In order to satisfy the requirement for 120 cycles
of input/output transfer per second the control computer program is-
separated into two parts - called the real time and the non-real time
programs respectively. The real time program includes the /0 transfers

and performs only the minimum amount of computing which is necessary -

*That is (27) rewritten for the slave photograph.
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according to the scheme which is described below. The non-real
time program does the bulk of the computing and feeds results to the
real time program. Since the non-real time program requires con-
siderably more than (1/120) second for complete execution, it is
intérrupted 120 times a sccond and transfers control to the real time
program., The latter requires much less than (1/120) second for one
complete cycle and, after executing one cycle, returns control to the
non-real time program at the location from which the latter was
interrupted. The non-real time program is. executed repetitively -

requiring about 1 or 2 seconds for each cycle of execution,

As a means.of separating the computations into

those which must be performed in real time and those which may be

done in non-real timc a number of the formulae are expanded as STAT

series. This enables computing the coefficients (parameters) in non-
real time and evaluating the series each time the real time program
cycles. The frequency of cyling the real time program ensures that
the variations between any two successive cycles are small; hence

only the zero and first order terms are retained for each series.

The aerial photographs which are measured by
the Stereocomparator, generally speaking, have appreciable amounts
of distortion due to tilt and motion* of the camera during exposure.

To enable viewing two distorted pictures in stereo the Stereocomparator

optical system introduces automatic compensation for the distortion

*The hechanism minimizes multiple exposure but still permits STAT
geomelric distortion.
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within any particular ficld of vicw . "l“he means for doing this will be
described later, but the point here is that the distortion correcting
features of the optical system e;lso affect the way the images in the
eyepiceces appear to move when the stages are moved. Hence the
control computer is programmed so that wh'en the operator deflects the
joystick or onc of the trackballs in a Icertain direction and by a certain

amount then the stages arc commanded to move in such a direction and

at such a rate that the images in the eyepieces move in the directions

and by the amounts directed by the control which was deflected.

Motion of the images may be represented by
the two dimensional vector ij which will apply to either image or .
to both images simultaneously as is. appropriate in any particular
discussion. Motion of the master and slave stages will be represented
by the two dimensional vectors ax™ and axt respectively. Thus the
operator deflects the joystick or one of the trackballs in a direction
and by an amount corresponding to the vector ij (with x and y but

not z components) . The computer must determine the vectors ax™

and Ax' and output corresponding commands to the two stages.
Evidently for master-slave stage tracking

Ax’) corresponds to deflection of the joystick and the above mentioned

vectors must be related by the expressions

Ax™ = x?“ Ax) (64)
and
axf = X5 ax™ (65)
m
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wheore X}n and ern arc 2 x 2 matrices to be determined by the computer.
The matrix X?n is the reciprocal of the master optics transformation
matrix which will be described later., 'fhc matrix Xin is called the
tracking matrix and is derived, basically, from cquation (5‘7) . Thus
the computer operates to satisfy (64) so as to move thc master stage
as required to produce motion of the master image as directed by the
operator. Simultancously the Computer opecrates to satisfy (65) so as
to move the slave stagc as required to maintain the two photos with
corresponding points at (or at least closc.to) the respective optical
axes. Ilence the floating dot appears to move as directed by the

operator and to remain in the tracking plane.

For non-tracking motion of the stages (64) still
applies to the master stage but control of the slave stage must be

according to the expression

axt = X? Ax? (66)

where Xj is the reciprocal of the slave optics transformation matrix.
In this casc ij for one image corresponds to deflection of one
trackball and ij for the other image corresponds to deflection of the
other trackball. Discussion of (64) and (66) will be deferred until
later. At this point computation of Xl;n, which appears in (65), will

be discussed.

The series expansion of equation (57)

may be derived by a melthod similar to that given in section 2.4. The
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result is
r T r m 1 or m
= t A b o— A A +
x XU Xm x 2 an X (67)
with
r ax dxr It
< n - m * ( m (68)
! ox dt  9x
] '0){n dxfn ot
mn - n e T ete. (69)
0X dt 9x
0 . . , .
and —t—n—\ determined f{rom the appropriate constraint equation. Only
9x

the first two torms on the right sidc of (67) will be retained in the
computations, however. Equation (57) - hence also (67) - is pasically
a three dimensional relation between two photographs both of which are
two dimensional. Lience if both photograph coordinate systems are
oriented with their 7 axes normal to the respective photographs then
the 2 axis components in (67) may pbe ignored. Thus, ncglecting

higher order terms, (67) may be written as

Axr =xr - x‘O:Xf Axm
m

and the 2 X 2 (X, y) portion of er is seen Lo be the same as the

tracking matrix in (65).

from (57), (58), and (59) it may be seen
r
that the explicit formula for the derivatives %Xi—- is quite complex.

Consequently the non-real time program does not use (68) to compute

the tracking matrix (as would be the thooretically correct procedure).
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i
Instead it uses an approximate method based directly on (57).
Cquation (57) may be writien symbolically:
Xr — fl' (Xlﬂ) .
For any increment Ax™  (70) may bc written in the form
X+ Ax = i (xm + Axm),
i.e.. Ax' = £ (xm +Axm) - ff (xm).

Thus (57), in the form of (71), may be used to compute two values

(70)

(71)

of Ax' corresponding to two arbitrarily chosen values of Ax™. These

may then be substituted in (65) and the rosulting equations solved

for er. 1f the values chosen for Axm are smaller than the diameter

of the largest portion of a photograph over which er may be con-

sidered constant and not so small as to cause excessive truncation

errors in computing (71) then the resulting values for er should be

approximately correct. As tracking procceds the values of x™ and %

will change and Xin will have to be recomputed - hence the non-real

time program runs repetilively. For accuracy and convenience the

non-real time program computes with floating point arithmetic.

Thus the computing which is left for the

real time program - with regard to stage tracking - is to gvalualc

(64) and (65) or (66), .using values of ern’ Xin' and X; supplied by

the non-real time program. Only a few multiplications and additions

are needed, and, for maximum speed, these are performed in fixed

point arithmetic. The values of Ax’ are obtained by reading the
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latest position of the joystick and the trackballs. The computed

m r
values of ax and Ax™ arc rransferred to the master and slave stage

scrvo systems, and the stages move accordingly.

[n general, it may be expected that stage

tracking, as described above, will have a limited range over which

it may proceed without introducing apprecidble non-correspondence.

Thus when operating in the automatic wi

thout correlator mode it may

be expected that new tracking planes will have to be established

from time to time. The three point procedure described earlier may,

of course, be repeated whenever desired.

However another procedure

i{s also available if a tracking plane has been previously established.

This consists of manually establishing a sterco model on some one

point and depressing the REORILNT button,

and then immediately

using the joystick to re-establish the tracking mode. Under these

conditions the computer will compute a new tracking plane through

the desired point and parallel to the previously established tracking

plane.

4.2 Automatic With Correlator Trackihg Mode

The opto—electronic correlator consists of two image

disector type TV camera tubes and electronics for controlling the

peam deflections, correlating the video signals, and computing 6

analog output signals. The image disector tubes are mounted so as

to "see" essentially the same Views as the operator's two eyes.

-104-
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The 6 output signals are derived from the video correlation in such

a way as to represent approximate measures of 6 respects in which
the two images differ from one another. These 6 respects arc called:
x displacement, y displacement, x scale factor, y scale factor,

x skew factor, and y skew factor. Thus two of the output signals

(x and y displac’ement) may be used to aid stage tracking. The other

four output signals are used to aid in setting the optical system - as

will be described later.

Supplementary to the prime functions described above,
the opto-electronic correlator (called the "Image Analysis System"
or IAS) also outputs a digital signal showing whether it can or cannot
satisfactorily correlate the video from the images which it is secing
at any particular time, Some minimum degrec of detail. contrast,
and brightness are needed for satisfa'ctory correlation, but also it is
necessary that the two images be within the "pull-in" range in each
of the 6 respects. Whenever the IAS is called for by the operator's
mode selection but is nevertheless unable to satisfactorily corrclate
then it outputs a digital signal which operates an indicator light on
the Stereocomparator control console and tells the control computer

to disregard the IAS output lines,

In initiating operation in the Automatic With Correlator
mode the operator manually establishes a sterco model dat some one
pair of corresponding points. This may be done somewhat approxi-

mately since the IAS will automatically take hold as soon as the two
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jinages are brought within the pull-in range in all b respects. Once

the IAS has taken hold then the operator

may direct iracking or

non-tracking operation by way of the joystick or trackballs as was

described for the Automatic Without' Correlator mode.

Computer control with the aid of the IAS differs in two

respects {rom the scheme which was described in section 4.1, In

i
the first place the tracking plane is established by the computer with

the aid of the correclator, without any ne

ed for manual setting on three

points. lor this purpose @ plane tangent to the "Sphorical" earth is

established by the method of section 3. 1.2 and parallel shifte

automatic one point reorient so as to permit best correlation. In the

second place when the slave stage vector is C

lent of equation (65) then the IAS X, Y displacement outputs a

to compute @ correction term. Equations (64) and (66) are, however,

used just as pefore.

re used

d by an

omputed DY the equiva-

The IAS images are essentially the same 85 those seen by

the operator - hence the IAS‘coordinate
as that used for the images. In other w

signals may be treated as components ©

Ax)c. Consequently {for stage tracking with the aid o

(6S) is replaced by
Al = & ax™ 4 & Ax)
m j C

with er and Xl; the.same as defined in s
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correlator signals are applied as corrections to the slave stage only,
rather than being divided between both stages. This is done because

it results in simpler slability conditions for the servo systems.,

4.3 Digital Integration of the ‘Control Commands

Although equations (64), -(65) or (72), and (66) are used,
as has becn described, to compute the required increments of stage
motion, the actual outputs to the stages sometimes differ from these
increments. This is done since there may be time lags in the actual

stage motion as compared to that which is commanded,

When operation is initiated in either of the automatic
modes, the computer reads and stores the x, y coordinates of both
stages. Henceforth each time t,h.e computer obtains values for A;cm
and Ax' (i.e., 120 times a second) it adds these increments to the
stored values which it is maintaining for commanded stage coordinates.
This is equivalent to digital integration of the computed increments,
and the initially read stag; coordinates are the initial values of the
integrals thus obtained. In each cycle of the real time program the

computer compares these integrated increments with actual stage

coordinates at the time of that particular cycle. The vector differences

are the values actually output to the stage servo system. Thus the
stages are continually being commanded to move by the amounts which
their actual positions differ from where the computer has determined

they ought to be. Consequently time lags occurring during periods

-107-
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when the stage commands call for acceleration tend to be offset by

overshoots during periods of deceleration,

Servo theory tells us that for zero steady state positional
crror @ scrvo open loop transfer {function should have a pole at the
complex frequency origin. This is the effect which is achieved by
the digital integration described above. Zero positional error is
particularly relevant for the correction signals derived from the IAS
since it's desired that the two stages approach prccisely corresponding
points. Zero positional error is also relevant for trackball control
since it's desirable that the operator be able to direct grécise stage
positioning. In both these cases the temporary time lags are incon-
sequential, since they do not result in net position errors, All this

is accomplished by having the computer perform digital integration of

the computed position increments.

-108-
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V. COMPENSATION OF DISTORTIONS TOR STEREO VIEWING

Figure 4 illustrates the importance of the points of perspective
for sterco viewing. Pl and 1’3 represent two frame photographs hoth
having their point of perspective at coordinates X? . Similarly P2 and

P represent two frame photographs ‘with their point of perspective at

X

S R e

A and B are two ground points and a ay aa, a, are the respective
photograph points corresponding to A. Likewise bl’ b2’ b3. b4 are
photograph points corresponding to B. Trom the figure it's evident that
photographs Pl and P3 contain the same information (though possibly

in different geometric form). Likewise photographs PZ and P4 contain
the same information. In gencral, however, the photographs P2 and P4
do not have the same information content as Pl and P3. In what follows,
Py and P3,will be referred to as " equivalent" photographs, and likewise
for Pz and P4. rvidently, then, a pair of photographs which are equiva-
lent to one another cannot be viewed in stereo. In other words, a
necessary (but not sufficient) condition that two photographs be suitable

for stereo viewing is that they be taken with different points of per-

spective.

5.1 Conditions for Sterco Viewing

Figure 4 is drawn to suggest that Pl and Pz are vertical
photographs whercas P3 and P4 are tilted photographs. 1f vertical frame
photographs are regarded as undistorted standards, thén tilted photo-
graphs may be said to contain tilt distortion, and strip and pan photo-

graphs also contain motion distortion. Generally speaking, these
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Tigure 4.

Photographs Pl and P2 illustrate stereo viewing. Photographs

P.3 and 1‘4 are represented as "equivalent"” to Pl and PZ respectively.
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distortions tond Lo interfere with sterco viewing, but some degree of

distortion can be tolerated without unduo discomfort,

Lxperience sccms-to demonstrate that framec type photo-
graph pairs with oblique tilt (not convergence) can be viewed about as
comfortably as vertical phOtographs . Convergence type tilt,on the other
hand, scems 1O make stereo viewing quite uncomfortablc. IIence the
criterion which will be used here for correcting distortions will be to
producc images as nearly as practical like oblique or vertical (not
convergent) frame photographs . Turthermore, the obliquity angles for
the two images of a sterco pair will be made cqual, Discussion of the
details of this scheme will, howevery be deferred until after the func-

tioning of the optical system has been outlined.

5.2 Flements of the Stercocomparator Optical System

Figure 5 shows the main projection elements of one-half
of the Stereocomparator optical system (the other half is analogous 10
a mirror image of Tigure 5)., The system is designed to provide continu-
ously variable magnification over two ranges: 10X to 100X and 20X to
200X (by way of the zoom lens and two intcrchangeable objective
lenses). It also provides continuously adjustable anarmorphic stretch
over the range 1/l to 2/1 - with a continuously variable angle for the
stretch axis. Corntinuou sly variable rotation of the magnified and
anamorphoscd irﬁage is also provided. in other words, ecach half of the
main projection optical system is continuously adjustable through 4

degreces of [recdom: magnification, anamorphic gtretch ratio, anamorphic
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stretch angle, and image angle. In addition lhe eyepieces can be
switched 4 ways: (L) normal stereo, (2) crossed sterco, (3) binocular
viewing of the left photograph, and (4) binocular viewing of the right

photograph.

Iigurc 5 shows a becamsplitter just above the objective
lens - to allow superposing a reticle image on the image of the photo-
graph (i.c., appearing to lic in the plane of the photograph) . The
reticle optics include a zoom lens and an anamorphic lens which are
servoed to the corresponding clem ents in the main projection path so
as to minimize changes in size or shape of the raticle when the photo-
graphic image is zoomed and/or anamorphosed. The reticle optics also
include yet another zoom lens which allows the operator to adjust the
reticle size over a 4 to 1 range. Thus tbc rcticle serves as a fixed
pointer (marking the optical axis), to which various points of the photo-
graph may be brought as directed by the operator - in order to measure

the coordinates of the sclected points.

Considering both halves of the optical system (which
are like mirror images of one another), it's cvident that two aerial
photographs taken of the same ground region, but with different points
of perspective, may be viewed (and measured) simultancously. The
4 degrees of frecdom available in adjusting ecach half of the optical
system arc generally sufficicnt to compensate geometrié distortions
in the photographs so the operator 15 able to form a sterce perception

of the two images. Simultaneously with forming a stereo model of the A
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ground region covered by the two photographs, the operator tends to

perceive the two reticles (one in each eyopicco) fuscd into a single

dot which a

ppears to lic in, or float over, the stereo model. By

adjusting the two trackballs the operator may sct the floating dot so

it appears to lie precisely on the surface of the sterco model. Under

these condi

tions the two photographs have prccisely corresponding

points brought to the respective optical axes. Depressing one of the

record buttons then produces measurement and digital output (either to

a card punc
x-y coordin
correspondi

Automatic a

h or to a link to an external computer) of the two scts of
ates for the corresponding points. Such digitization of
ng points 18 the prime function of the Stereocomparator.

djustment of the optical system sO as to enable sterco

viewing is a secondary {function which greatly aids the operator in

selecting the points he wishes to have digitized.

5.3

ions of the Optical Clements

Matrix Representation of the Funct p

Photographs placed on the Stcreocomparator's two

measuring stages are, of course, constrained tO planes pcrpendicular

to the respective optical axes. The two images of these photographs

formed by the respective optical systems may also be thought of as

lying in pla

nes perpcndicular to the optical axes - at the top or eycpiece

ends. llence it is convenient to orient the photograph and image coO-

ordinate systems with their respective 2 axes parallel to the optical

axes. NAs in chapter 1V the master and slave photograph coordinate
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axes are designated by x" and x" respecLively.* The coordinate axes
{or both images are designated xj, and the x axes are taken in the plane
of, and normal to, the Lwo optical axes - i,e., in the direction of the
Operator' s cye base. That it is recasonable to use parallel axes for the:

two images follows from the criteria for sterco viewing - as will be

shown eventually.

Thus the master image may be represented as a (two

dimensional) function of the master photograph
W= =M. (73)

Similarly the slave image may be represented as a (two dimensional)

function of the slave photograph

x) = 1 x'). B (74)
The series expansions of these eguations may then be written: STAT
Ax) = x ax™ L ax™axh +ee. (75)
m 2 mn

for the master image, and

L

b= % axt + ] I AxS + o0
AX XrAX 5 er AX Ax~ + (76)

for the slave image.

Evidently (75) and (76) must represent the optical trans-

formations (from photograph to image in each case) produced respectively

*nlthough there are, in general, two dimensional coordinate trans-
formations between photograph coordinates and measuring stage
coordinates, these transformations are ignored as 100 trivial to
require discussion.
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by thé master and slave optical systerﬁs. In section 5.2 the optical
systems wcere stated to each have four functional parameters (magnifi-
cation, anamorphic stretch ratio, anamorphic stretch angle, and
image rotation angle). Thesc paramétcrs may be used to compute the 7
components of the 2 x 2 matrices Xin and Xi which appear in (75) and
(76) - as will be shown. From this it follows that the 2 X 2 matrices
X];n and Xi must be substantially independent of the x, y coordinates
about the optical axes, and hence, that the higher order derivatives
X?Tm' «+ and Xis- .. may be taken as z€ro. 'ljhe 2 x 2 matrices Xin and
Xi will be referred to as the master and slave optics transformation

matrices.

Figure 5 shows that each optical system has three
elemems in tandem - the zoom lens, the anamorphic 1ens‘, and the
image rotator. These olements all operate in collimated light. lence
they may be thought of as separated by planes corresponding to inter=
mediate images. The input (plane) to the zoom lens is the photograph
itself. The output (plane) from the zoom lens is also the input (plane)
to the anamorphic lens, whose output, in turn, is input to the image
rotator. TFinally the output from the image rotator becomes the actual
optical image (by way of a decollimating lens and the eyepieces).

Thus it is proper to represent the function of each optiéal element by
a 2 x 2 matrix, and the matrix product of all the constituent matrices
is the optical transformation matrix for the whole system. The matrices
for the individual elements are as follows (for the master optical system,

which is typical of both optical systems):
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503..1 Zoom Lens
Since the output from the zoom lens is a
magmfled replica of the input, the transformation matrix must be
the iden’tity matrix multlph%d by a scalar whose value 1s the magni=-

ficatlon.

Q- . a
X = Mb : (77)

5.3.2 Anamorphic Lens
The anamorphic lens may be regarded as
having a major axis and a perpendicular minor axis - of magnification.
" The magnification in the direction of the minor axis wiil be taken as
L unity - hence the magnification in the direction of the major axis is
equal to_the anamorphic stretch ratio. The anamorphic angle will be
defined as the angle of the major axis with respect to the x axis of

v the optical systemo. The transformation matrix is hence the product

of three matrices:

cos -0 - sin 0 cos 0 sin 0,}
x 2 2
X = (78)
- a sin 6, cos 0, -sin O cos 0,
- wherein a is the anamorphic stretch ratio and 02 is the anamorphic

angle. Evidently the third mé.trix in (78) rotates the image plane
™

axes so the rotated x axis is parallel to the major axis of the
- anamorph. The second matrix in (78) then gives the magnifications

along the rotated x and y axes. Finally the first matrix on the right
E |

side of (78) rotates the axes back to the original orientation. Per-
- forming the matrix multiplications in (7 8) gives
-
|
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(a cos 0y +sin 02) (a-1)sin 0, cos 0y

; 2 2 (79)
o (a-))sin 0, COS 0, (@ sin” 0y +cos 92)

ThL_IS X:L is a symmetric matrix which is the ident'ity matrix if the

anamorphic ratio is unity.

5.3.3 : lmage Rotator
The transformation matrix for the image
rotator is essentially a standard two dimensional rotation matrix.
owever, it represents rotation of vectors (in the image) rather than
rotation of axes. Consequently it ig the transpose of the corresponding
axes rotation matrix.
. cos 0, -sin 0, _ '
=1 | (80)
) N
sin 81 cos ©
wherein 01 is called the image rotation angle. Note, however, that
the image rotator acts on an image which is, in general, modified by

the anamorphic lens. The combined effect is such that this name

for el should not be taken too literally.

Multiplying together the three component matrices then

gives the overall master optics transformation matrix:

iy oy x® ' : '
Xm X)\ Xa Xm° : (81)
gimilarly the slave optics transformation matrix is the product of’

three component matrices:

x = XL Xy xP. . (82)
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The forms of these component matrices are, of course, the same as
thosce given for the corresponding master component matrices - but

with values for the slave optical elements substituted,

The right sides of equations (81) and (82) are éach
functions of four variables (magnification, étc.). If the latter are
regarded a.s unknowns the‘n (81) and (82) may be solved for them as
functions of the conﬁponents of the matrices on the left sides of (81)
and (82), These sol_utions will be indicated later, but first a method
will be shown for determining values for the components of the matrices
Xﬁn and Xf;,' so that these components become the known variables in

(81) and (82),

5.4 Equivalent Frame Images

Thé concept of an equivalent frame irﬁage will be used
to determine a method for computing the optics transformation matrices
Xﬁn and XIJ, Referring back to Figure 4, P3 is considered to bé equiva-
lent to the frame photograph P1 since it has the s.ame point of persp.ective.
Strip and panoramic p,hotographé do not, however, héve the same point of
- perspective for all of their points. Hence for these .type's of photographs

there is no strictly equivalent frame type. Neverthelesls, the concept

of equivalence will be used, possibly loosely, to include frame images
of small extent which are considered approx1mately equlvalent to small
reglons of real photographs - by reason of havmg nearly the same point

of perspectlve
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By reasoning similar to that'leading to equation (57)
the following equation may be written fer a frame type image related

to the master photograph, using the parameters of a tracking plane.

= +f : , 83
¥ =X 3 Yb(x . )

with
a a Pm
Ym=Cm+1T(X10—X) (84)
| | STAT
Equation (83) is expanded as a Series which applies over the

region of the photograph which is, at any particular time, within the

field_ of view of the master optical system. This series may be written:

Jow Ayl aom,on, . | |
Ax’ = X AxT 4+ 5 an AxX Ax + _ | (85)
with
i ax . ax! et |
X = ==+ , (86)
) X dt  ox™ :

ox)  axd st
Xjn“ LI “m_-rﬁ’ etc. - (87)
m ox™ dt X _
Thus (85) has the same form as (75), and X , as computed by (86)-,'

is seen to be the master optics transformation .

’I‘he following considerations apply in takmg the
denvatlves called for in (86): (1) To make the lmage as nearly ltke
a frame type as possible, xlO’ C » and XIO are treated llke constants.
(2) To make the image as nearly equivalent as possible XlO is set

equal to the instantaneous value of Xa Wthh corresponds to the
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photograph point which is at the optical axis. (3) The tracking. plane:
parameters p and D, are treated as constants. (4) C?n’ Xr_ln, and\ X?'
are, as usual, treated as functions of time which is itself a function of
the coordihates of the point under observation . Wherever the dis-

placément vector (xm - xlln)

appears, it is treated as in gection 3.1 .4 -
after differentiation has been performed. Equations (44), (45) and (48)

may be used to obtain ot .
8xm

The formulas {for the image equivalent 1o the slave
photograph have the same forms as those given above put with appro-

priate changes in indices. Thus: |

IR TP S
CaYr (% xz)

baxd 41 88
X =Xpq (33 Yb s 5 (88)
b °s 2
with
‘Ya =%+ "t - x8) (89)
¢~ % T D, 20 Xols |
wherein
_ m
b= G Pa Cr Ca *m
and
D =D, +u, 0 - x3)
2 1 a 2 |
Ax) =x) AxE 4 oo (90)
j axj dxj ot :
X == % = (91)
ox dt 9x
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The symbol xj is used for the coordinates in both the
master equivalent image and the slave equivalent image. This means,
not that these two different sets of coordinates can be equ_ated to each
other, but that they are computed for parallel scts of axes. Parallel
sets of axes are necessary in order that the images produced by Lhe
two optical systems will appear to have their normals paralliel to each
other and perpendicular to the eyebase (which is taken as the x axis
direction). These conditions on the respective normals are implied in

the criteria for stereo viewing, given in section 5.1.

5.5 Solution of Equations

In section 5.3 it was shown that the basic performance
of the Stereocomparator optical system could be expressed by the opt;ics‘

transformation matrices X)m and )g{ In section 5.4 a method was given !

"for computing the compone'nts of these matrices in terms of the photo-

- graph geometry and the criteria for stereo viewing. In this section

equations (81) and (82) will be solved for the unknowns in their rlght :

sides, i.e., magnification, anamorphlc stretch ratio, etc.

It will be convenient to use the following short hand
notation:

slt = gin Ol

cl = CO0S el

s2 = sin 02

CZ_ = COS 92
-122-

Approved For Release 2003/01/28 : CIA-RDP78B05171A000600030001-0



il

Approved For Release 2003/01/28 : CIA-RDP78B05171A000600030001-0

Then (79) may be written

— - —

2 2
. ac, + s, (a-1) S, Cy
| 2 2
ia—l) Sy Cop as, + cz_

atl , 2 2, . a-l 2 2.1 ra-1 , a

55 (e 30+ T (e = s 5 25y 0]

a+l 2 2
28551 [ le" F sy

[a+1 a-1

(—2— + =5~ cos 2 92) az;l sin 2 02
a-1 - a+l a-1
—— sin 2 0O (5= - == cos 2 0,) (92)
. 2 2 2 2 2 B
'He’nce (81) may be written
| arl a-1 _arl oy anl N
j TCL+-—2—COS (01 + 2 92) 5~ Sy + 5~ sin (61+2 6‘2)[_‘ ‘.
X =M : 9
m i_*-_l_ +§.:l i (9 +ze) §+_l -a_—_l. (0 + 2 0‘) (3) :
7 S1 7Tz S 2 7 177 %W 2

¢
9..

Now represent the components of Xin as follows:

. A B ‘
X = (94)
m C D
“Thus (93) and (94) are 4 equations w.ith A, B, C, D known (by section

5.4) and M, a, 91 and 02 treated as the unknowns. From them may be

derived the following 4 equations:

A+D = M (a+l) <y
C-B = M (a+l) Sy
A-D = M (a-1) cos (8 +2 82)

C+B = M (a-1) sin (O1 + 2 62)

‘ -123-
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Equations (95) may be solved, and the results are:

2 1%+ 2+ 82+ Jlap)? + (et [a+D)? + (c-B)]

2 (AD - CB)
M=\/é-]2—;;—@ : (97)
_ -1 -B
Ol*tan 27D
_...-l C+B -
0, +2 0, =tan F (99)

wherein the positive sign (only) has been chosen in front of the
radical; correspdnding to the physicai fact that a S 1, Equations
(96)-(99) apply (s:eparately) both to the master and to the slave
optical systems. Tor ‘convenience they may have the subscript 1
appended to all variables when applied to the master optics, and
the subscript.z appended to all variables when applied to the slave
optics. It may be shbwn that the determinent (AD —.“@‘B), when its
elements are computed by equation (86) for an aerial photograph,

does not vanish for any point in the photograph which corresponds

to a ground point lying below the horizon.

5.6 Automatic Without Correlator Control of Optics

As was stated in section 4.1.4 the control computer
program may be separated into a real time part and a non-real time

part. Evidently, to control the optics, the real time part must perform

-124-~
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operations equivalent to evaluating equations (96) - (99) for both

the master and the slave sides. In order that this may be done )

rapidly (96) - (99) are therefore expanded as series, with

terms of order htgher than first bemg neglected Hence the real

time program must evaluate the followmg ‘expressions:

_@a 8A Ba 3B, ;zpiz aa 0a BA L . .yay
Aa= (5% 5% T 58 bx 8C dx = 9D 5 )A""'(aA gy t)AY (100)
aM 9A , ... AM aA ' - .
AM= (—A— 5}? JAxX + (aA 8y + , ) Ay ; _(lO].)
Ael = e e s ’ " . » (102)
Aez = ..‘. . : (103)

n (100) - (103) the -various parenthized expressions, which may be
labeled

oM oM 291 ...
' 3x By’ ox’ ’

o
Q

-1

? .

are computed in the non real time program, and the values are whence

supplied to the real time program. Thus the real txme program performs

only a few computations i( in fixed polnt arithmetic) to determine the

required increments of adjustment for the optical elements. As in
stage control (see section 4.3), these incremental-adjustments are

dtgltally integrated before being output to the optics. The reasons for

“integrating the optical control signals are substantially the same as

The optical servos differ from the stage servos, how=-

ever, in that the position feed-back signals are analog rather than

. =-125-
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dxgltal (i. e., they are generated by analog potentiometers rather

’ than by digital counters). These analog position 51gnals are con-

‘verted into digital form so that the computer can keep track of the
optical settings. The A/D'converters, however, turn out to have a
resolution which is too ldw for the requirements of the optical servo
systems. Consequently the enalog position signals are used

directly (rather than the digital conversion of them) in thé servo

"~ position feed-back loops. Correspondmgly the computer output
-signals afe the actual integx_‘ated values rather than the differences

petween these and the optical position signals. These digital out-

puts are converted to analog and the differences between them ,iand
the position feed-back signals are faken by analog circultry as part
of the optical servo systems. In other words, by subtractihg the
position feed- -back signals from the computer position commands
with analog circuitry rather than-digitally in the computer, the

position feed-back loops bypass having them, in effect, ‘converted

to digital and then back to analog form .

The non real time program uses (94), (86) and the indicated

partial derivatives of (96) through (99) to evaluate the parenthesized
expressions in (1 OOI) - (103). Although it would be proper to use (87)
for_ the partial derivatives %%, etc., an approximate method is used

instead',. This consists of evaluating (86) for gseveral nearby points

and dividing out the incremental differences in much the same way as

‘was described for (70) and (71).

| ~126-
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A study of the partial derivatives of (96) and

(97) shows that they include, among others, the expressions

A-D ‘ (104)
Jia - D)% + (C + )2 |

and

. c+B ' | (105)
w/(A—D)Z + (C + B)2

which become indeterminent when

A-D=C+B=0.," (106)
Furthermore, (99) itseli, be_comes indeterminent under theée conditions.
It may be seen, howeyer, that under these conditions the right side of

(96) becomes equal to one. Hence the value of 62 becomes inconse-

- quential.  The computer program contains a test for the condition

S/ 2
(A-D)" +(C+B)
AD - CB < | - o7
where ¢ is some sufficiently s-mall positive number (say about 10~ 6).

This test is applied repetitively and whenever it suddently becomes

true a is set to 1 and the value of 02 is frozen at the last value which
‘was assigned to it. _The freeze continues until (1 07) is found to be no
longer true, at which point use of (96) and (99) is resumed for evaluating
-a and 02 . In other words, the indetermency condition corresponds to

" there being no need for anamorphic correction, and a logical switch

causes the anamorph to be set to unity when this is true.

k]

*The corresponding conditions A+ D= C - B = 0 cannot occur
since AD - CB > 0., ‘

B
Y
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The preceding paragraphs describe the method by which
the computer adjusts the two optical systems so as to compensate for
changing disto'rﬂons as the stéges move to various parts of the two
photogravphs. During this automatic process, the operator has no manual
control of the opt‘ics..except that he may direct the scale factor to which
the computer is to bring the two equivalent images. He doés this by
turning either magnification control in the direction for either increasing
or decreasing scale factor as he desires. The two magnification controls
operate interc‘hangeably (when in either AUTOMATIC mode) to drive both '
‘zoom'lenses at rates proportional to their fespective magr\xification '
settings. The computer program then resets the otherwise arbitrary scale

factor (f) in equations (83) and (88) to correspond to the new setting of

the two zoom lenses.

The OPTICS INDEPENDENT button provides the operator
with means fo; directing the computer to discontinue automatic tracking
of the optics, When this button is selected the operator may manually
set the various optical elemenfs as he desires. Having done s0, the
operator may either reset the OPTICS INDEPENDENT button, or he may
select the REORIENT button. In the former case the computer will cancel
the manual adjuétments and will resume automatic tracking from the
settings which existed prior to the OPTICS INDEPENDENT operation.

If the REORIENT button is selected (without having reset OPTICS
INDEPENDENT) then the computer will resume automatic tracking from
’the newly established ‘settings; In o'thér words, in this case the com-
puter takes the new settings as "initial" conditions for the various

digital integrations which it is performing.

. -128-
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5.7 Automatic With Correlator Control of Optics

Lquations (64), (65) and (66) may be combined to give
the slave image as a function of the master image:

J _wior om k
Ax ——X1r Xm Xk Ax" (108)

Equation (108) may be interpreted as follows: Axk represents a (two

dimensional) vector in the master image, X}r{n transforms this vector into
a corresponding vector in the master photograph, an further transforms
it'into a vector in the slave photograph, and Xf_ finally transfdrms it into
a vector in the slave image - all in two dimensions. The matrix X:n has
been labeled thé tracking matrix' and is used as the basis for keeping
the two photographs on corresponding points, In fact, however, it is

a two dimensional scaling matrix of the slave photograph relative to the
master photograph, for corresponding small regions. Hence it may also
be used as is done in equation (108). In previous sections ;)f this -
manual, methods have been described for computing values for the
three matrices in (108) such that, in general, the two images should
match as required for stereo viewing. The IAS (Image Analysis System)
makes an emperical comparison of the two image‘s and provides feed
back signals representing differences (to the first drder) between them.
These differences are used to modify the settings of the slave optical
system so as to improve the first order match between the tWo images,

i.e., toreduce the differences themselves. .

It may be seen that the conditions for optimum stereo

viewing require that the two images be identical with one another except

. -129-~ ,
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for differences higher than first order (in other words, the x-parallax
required for perception of stereo is a difference of higher order than
first). This means that under optimum conditions the matrix product

in equation (108) should equal the identilty matrix. As was stated in
Section 4.2, the IAS outputs 6 analog signals - 2 for stage tracking
and 4 for optics tracking. The latter are equivalent to the components
of the matrix which is reciprocal to the product métrix in (108). Hence
the fnatrix of the 4 IAS analog output signals - x and y scale factors
and x and y skew factors - should approach the identity matrix as the

optics adjustments approach those required for optimum stereo viewing.

Let the matrix of the IAS optical output signals be

'repres ented by

A B

K c c :

X/ = . | (109)
Cc Dc
Then the matrix

) y (AC— 1) BC ‘

XJ. - 6). = (110)
CC (Dc— 1) '

may be interpreted as an error matrix representing the extent to which
the optics adjustments fail to be optimum for stereo viewing. Hence
(110) may be applied to the optics servo systems as a correction matrix
which will drive the.optics as required to make (109) approach the

identity matrix.

As are other control signals, the IAS error signals are
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treated incrementally and digitally integrated, The corrections are
applied to the slave optical system only. Hence the slave optlcs
transformation matrix is multlplied by (110) to produce the modified
slave optlcs matrix:

K - eky o _ ok oi ok
& -8 =x{xl - x | (111)

The four elements in-(111) are next treated like a 4 dimensional vector
AA" = (AA, AB, AC, AD) (t12)

This 4-vector is multiplied by the four 4-vectors

" da oM. 96 90, : ,
v , 12 %%
8A%  9p%  gp oA

to produce the increments .

Aaz, AMZ, AG 12 AGZZ

which are added to the results of (100) - (103) for the slave 51de In
this way the optics adjustments computed by (100) - (103) are corrected
for the signals from the IAS., Otherwise optics control is as was

described under 5.6,
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