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SUMMARY

\
;

The paper discu;.ise's the higher-order approximations in the theory of strong
interé.ctibn between a bo\indary layer and an external inviscid flow. Known results
. concerning the problem of the unsteady motion of & gas past an infinite plete, and
the pro;talem of the steady flow past a semi-infinite plate are refined. The analysis
leads to iasymptotic_ expressions for the transverse displécements of & plate, or its

shape, that correspond to ‘the pressure-distributlion law of the first approximation.

0
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INTRODUCTION

"‘he effect of the viscosity and heat conductivity of a gas upon the flow
field near a body moving at hypersonlc speed is known to lend itself to an
approximate analys:.s on-the basis of the theory of boundary-layer dinterzction w:l.th
" the external viscous region of the flow /1/. If the body is sufficiently slender,

Qmmber
, and the Mach and Reynolds number: of theiproblem are such that the ratio

\M& / V-—a oo >> i » then a -strong interaction takes place, in which
the pressure field in the perturbed region of the flow is primarily influenced
by the displacing effect of the boundary lgyer. and to a much lésser degree by
the shape of the surface of the body that is situated in the fléw.FThe"most'tYpical
~exanples of a plane flow of this type. namely, the unsteady flow past an infinite
Plane that has been abruptly set in motion at constant speed, and the steady flow
past a semi-infinite plate, have been discussed in /2. 3/,
The solutions obtained in these papers are based on combining the exact
(self-similar) solutions of the boundary-layer equations with the solutions of
‘the equations in the'small-perturbation theory of hypersonic flow; the procedure
" of combining these solutions having been developed only in the first approximation.
The result of this, is the peculiar behavior of the solutions in the intermediéte
region (at the external boundary of the boundary layer), which manifests itself in
that the enthalpy of the gas in this region tends to zero, whiie the density
undergoes an infinite increase. |
The papers /2, 3/ include also accuracy estimates of the first-approximation
theory, g
The object of the present work is\{o develop the higher-order approxi;ations

&

to these problems, or more precisely, to. problems associated with the asjrmptotic
behavior of theiflow.fisld of a viscous hea‘b-conducting gas behind shock waves
the propagation of wh:.ch is_ controlled 'by the same law ( y A/ ‘c/l/ and y A~ x/9 ),

in the lmiting case where M w"‘”‘-’ 0{3
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I. NONSTEADY MOTION

1. Let us examine the one~dimensional nonsteady motion of a viscous heat-
conducting gas,caused by an infinite plate that has been set in motion at a
velocity that " has a constant longitudinal component UGB o Ve agssume a linear

dependence of the v:.scos:Lty coeff:.clent of the gas upon ‘che spec1flc enthalpy.

]

e M T (1.,)
In this case, the I\aner-stokes equations may be vntten in the form 4
o (ou e au) 2 (] Bu) o
§’ ("5‘6*"7%'5)"0%(}”6%}
1 'b\} ‘}_8_‘_,: +?_E_é_.:a_. \Q.L.%>
2+ = n
S)(?) 3> ’Oy. 3 bj( ?

(1.2)
03k fa) QP W %P 49 'a'»u) W 4y [avn)?
TGN T VAL I S P TG TR A S
!S) ..t 0y, t Y- ﬁ@?( oy ( }j) 3“’(%}3)
- 9P v -

5‘%*‘“«5"“:0 ) p= X’S)k/

where the velocity-vector components U, Y~ refer to the longitudinal velocity of
the plate, the pressure ’0 refers to the quantity j) @ Yoo the dens:xw JO refers
to the density of the unperturbed flow ﬁw » the spec1f1c enthalpy »g refers to the

2
quantity v 7 ‘the dimensionless irdependent variables t, y/ refer to the
. < .
‘ quan‘b:.t;.es -—C%“ C v‘. » Tespectively; <57)2111;1 ’Zf’ are respectively the

) Pﬁa '
Prandtl number and the ratio of specific heats: of the gas. . '

Introducing,{on the:basis:of  the .continuity eéua.’cio,n;; the: function ‘4;‘! ., defined

by the relatlons

D v ~ Ay | | |
i o ,—b—%—=-—§1}, : '—-13":5’, | | (I.3).
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we'write the system (1.2) in texms of the independent variables £ , Y
As a result we get

e e r—— —— ———

| (I.4)
Lok 3 4,2 dh ), g%l (BUR. 4 2 [23¥)?
- J W'%*FP@(WT)W}“( R A (3v)
. a ‘ , | ) .
BN AL S i

As already stated, our object is to obtain an asymptofic solution of these equations

that corresponds to the one-dimensional motion of a gas propagating according %o the

law T P

’ 3 ct‘* . ,

; B (I.5)

that satisfies the condition of attactment
3 e | o
o we | (1.6)
ar"én& the_conditlon of the af)sence of_":‘a' heat flux S <o

ST o - (I 7)

on the plate suxface "’)f.. O, which is thus postulated as a neat insulated surface.

2. For:the external portion of the flow field, adjoining to the surface of

the shock wave, such a solution is knmowvn %o have the férm

"j t")’ (Vj " S a - .

SETEL (Y
i J:%V(()) e

‘ e g: ﬂ, ('\7

o hetEH(), .
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mhere the 1ndependent variable

V=t (2.2)

Substituting the express:Lon (2 1) into the initial “system of equations (1.4), and

retaining the principal terms in these equations, we obtain a system of ordinary

differential equations for the well-known progressive motion of an inviscid gas:
. &,

O .+ o

o (FVHAH) =5V R+ P
Royo‘;:j :
%Vyo'“-fryoi-\/o:(;

' gz.s)

R): I% "R'O_Ho.o ‘. '

We should note that taking a gas in-the external region of the flow to be

~{
inviscid and nonconducting involves a relative error on the order of t » since

this is the order of smallness of the relation of the terms neglected in equations

(1.4) to the principal ternms,

The solution of the system of equations (2.3) must satisfy the set of
boundary conditions &t the surface of the shock wave, the propagation of which
follows the equation (1.5). In the J,imiting case of a flow at M o= 9 , these

'boundary conditions 'take the form. ‘ v

RA " - * _,,.

: 3C :

‘ " ) R o S (e
P, (c);gf??ﬂ) o < . D
R.(C) = ?S\;Hj

(0) = '%?%%72
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wvhere the constant C has to be determined,

For the following, it will be esgsential to have the expressions for the sought

functions of the external flow at \)-—-»O. To obtain these equations it is necessary

to note that the second of the equations (2.3) is integrable with the aid of the
 last eciuation:), giving: | | |
S N

. RT | e K203)
where the constan‘c of mtegration A is determned fromu'the boundary conditions

B W m—— L

L2
3

(2.4): . o
R LR & UAL |
160 (W)- e

w\°°

Making use of (2,5) and the remaining equations of the system {2.3), it is now

easy to obtain the following expressions. valid for \) — O:

y >/oo + yoc\) ) 3 + O(\)Z- 36)
V, = Vi, + Vo o (¥ .3“) | |
o +o0(V) o o (2.7)

u. .

e z
: ﬁ%‘o:‘?&o;\ﬁxijo (VlH‘Sz)
He= HooV 50 ("Y)

The coeff:.clents in these formulas are related by the following relatlona.

. ,

l N
? v :--3_- ]
; 3*6‘ 2 o ‘oo . 2. yOo =
3 L% S oaL | |
Vorsmen AFR ¥ Roo=AVRY (2.8
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-5+ To investigate the intermal region of the flow field we, as usual,

introduce the independent variable ==

L L S
4- . .
N=wt- o (31)
To determine the form of the asymptot:.c expansion in this reglon. ve e..cpress
the external flow functlon through the 1ndependent variable of the external
: expans:.on ‘

v){tz o o (32)

and consider the limit t“""%at f:.xed values of ,ﬁf

‘ Us:.ng the expressions (2.7) , We get°

ok

Suso(t . | 4
et i el
)J : .' - | ‘ ;3;3)

L
z)l,

lr°‘

+

w
b 4 R
OJI--

2

o=t E[Re+ 0 (L
.. 9 ROO)\rswt 33:*‘0( %-;—X)

- Hoo N B o (1)

These expressions predict the form in which to seek the asymptotic solution for

t% u{ﬁernal region of the flow, namely:
Y : |
ysth [ (¥ )+§2 ”j(”ﬁ J
u:UO(N').tE?fU(M) |

1

| . t.z[\}o(mi_t-?fé—m(,\[) 4.

1 1 (54
o=t 2l (s £ (W) 4 ]
| Eas 21
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Indeed, the combination of the internal and external expansions can be now
“performed if, in conformity with the simplest form of the combination principle,
. the following boundary conditions for the external expansion functions are

satisfied:

SRR
CUSN)=0 ' at m—= 09 (5.5

in the first approximation, and
-0 -, . - P . ’ - -2.-_ e e -
%i()‘r)"‘yml‘(1 30
,_ Ui(¥)=o T at N —soco (3.6

L P (N0
() = Heo 3

in the second approximation.

4. Substituting the expansion (3.4) into the initial equations (1.4), and
retaining the principal terms, we obtain a system of equations for the first

-approximation, which may be written in the form:

[P

34 Pé% ybo;c'o'wst

Ua-rl%’é‘ }\(Uo =0 | | | .
\; ' C .. | 6" % E .
ng% g b fphom = 27 Rl -
a L ke
[} X‘ ‘Do
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The boundary conditions for these équations are the conditions (3.5) as well
as the conditions on the plate surface. wh:.ch we w111 write in the form

.L(o(o)=4 ) 130( ) =0

. — (4.2)
i.e., our reqmrement, in. addltlon fo_the. fulﬁ]ment of the boundary conditions

(1.6), (1.7), is that the platé be capable of d:.splacements in its own plane, in
"the first approximation. The first-approximation problem, thus formulated, completely
coincides with that discussed in /2/, ‘I‘ts solution is relatively simply. First, we

. note that the second of tha 42 equations (4.1) is integr_able in quad;ra‘t:ures. Its

__particular solution that satisfies the ‘boundary conditions is
. I o v

o Ll -
o j \/23“2)1}) e KL dkr ' (4.3);

Hanng thzs. the 'ch:.rd equat:.on can be 1n'begra‘ted However, this is not required

for the determination of the pressure distribution over the surface of the plate.
To solve this problem, ii is enough to find the expression for %o(Mat JY =03 ,

On the basis of the fourth of the equations (4.1), we have:

W..‘&m 13 UF} XPo

" The m’cegral in this expression is easy to calculate with the aid of the third

Jh ob\f | (e

equation of the system (4,1), if the boundary conditions for é’o (-Afj and the
Lw ' ’
exponential way w53k which this fungtion tends to zero at JZ(‘?OO are -taken
into account (see /2/). The result is the following expression: _
| . 0y \ [T B
’&/hﬂ 'Xza (N' ) = b L

" e e e . - .. o .

(4., 5)

haklng use of the boundary conditions (3 5) _the expression is vritten :m the form: -

3

.2y |
| y°°:°31§-»°« T Ro

!
,. | (4.6)
The relation obtained constituteé’ﬂl‘e mss:.ng ’boimdarjr condition for the systen
of equations for the inviscid external flow. The fulfilment of this condition
... Declassified in Part - Sanitized Copy Approved for Release 2014/02/27 : CIA-RDP80-00247A003000050001-1
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uniquely determines the constant C in the shock-vave equation (1.5) and in:the
boundary conditions (2.4), thereby completely closing the first-approximation
problem, | .

5. Let us examine the problem of the second approximation, Substituting the
expansions (3.4) into the system (1.4), and equating the corresponding terms of
the expansion, we get a systeﬁ of linear differential equations fof {the second-
approximation functions.

The second and the last of the equations (1.4). together with the boundary

- -

conditions (3 6) ylem.

=t ( ‘f» +w>

Subsequently, on the basls of the first of the equations (1.4) and the boundary

ngI)

conditions (3.6) for %4, we find that

‘u =0 - . "~- §5.2)

Then. the equation for determining the function y s after simple transformations/

taking (5.1), (5.2) and.the.results of the first approximation into account, takes

the fornt Y} b,
23‘16’1"'1‘4—}““’ yh‘o

(5 3)
' Its solutlon should satlsfy the last of the bounda.ry conda.tlons (3. 6) as well as

the condition (1.7)_on the. hea*b—msulated surface:

‘X’b ( )‘9‘ I'loo N SK‘ ‘a"t . .f(_ﬂ? o9 ‘(504)-
h(0) =0

Plnally. the equat:.on.s £or “the function g}, have the form:

‘3‘%—? 5 | (5.5)

s T T e e e e g T g —

seon s
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Declassifieg in Part - Sanitized Copy Approved .forﬁﬁelease 2014/02/27 : CIA-RDP80-00247A003000050001-1

x)

Here, the function 5, (K) st satisty the first of the conditions (3.6) .

By successive integration of (5.3) and (5.5) we find the value of functionélr I(OJ .

that determines the transverse dlsplacement of the plate.

)

Note, that in the denvatn.on of the equations of the second approxmtlon, in the

initial equations were neglected the terms, the relation of which to the retained terms

was of the ordexr of 't é? » while in obtaining the expansion.f (3.4) on the basis

of (3. 3) the order of the highest 6f:the neglected terms was ’é_‘? Hence, the solution

of the problem under study. in the seécond approximation holds at a relative error of the

order of tﬁ.[&aﬂ or t » While the rela‘clve error of the first approximation is of

the order of t-: 3 3" |

. 6. Summarizing the results obtained, we write the final equations for the pressure
E = fe U d'f P at.the surface of the plate, and the .rate of the transverse displacement of

the plate U’ . For this purpose, we will examine the Reynolds number of the problem,

defined as . j) U—"—I - ' R T
e e (.0

‘where t is dimensional time. As a result we find:that

. —5 N‘ . R . | | 4
_E;: X\_\&& ° VRewo } ' : ( 6.2)

O

P

x) It is readily:shown that the asymptotic nature of the behavior of the functions of
the internal expansion at Af~=>&9, prescribed by the boundary conditions (3.5), (3.6),
: completely corresponds o that deduced from a direct analysis of the differential
equations for these functions, ‘ ‘
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— e e = w -

and that the quantity

ol

2
. 5y

'\—9-' ~ 1 | {1\ mMm o
o V- (Z +§f) it (Oﬂ'—reu (5.3)

Thus, the formula (6,3) defines the rate of the tz‘a.nsverse.-displacement of the |

plate, the>surface' pressure of which varies according to the law (6.2).

&
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1Y, STEADY-STATE MOTION

7. The equations of the plane steady motion of.a viscous heat-conducting gas

can be written in the following dimensionless 'form:

fo 0“;;) N s
L0 e S L R
(TR e A R
iR R )
B N e ik o

Here, 't:he veloc1‘cy—vector components refer to the veloclty of the unperturbed flow U
the pressure refers to the double velocity head _PQ'U', the density refers to the
density of the unperturbed flow F o ? the specific enthalpy refers to the quantity U .

The independent variables refer to the characterlst:l.c length

..

- . . (7.2)
where c is the proportlonah‘cy factor in the relatlon of the nscos:.ty coefflcn.enu to

the enthalpy, vhich as before we‘will"consider as.the linear relation (1.1). Introduecing

the st‘ream functlon."l/ defined by the relatlons .

T @x 30,_“m_ % ?u | (7.3)

. we write equa‘clon (7.1) in terms of the 1ndependen‘c va:nables % $ Vj gettlng a

system of the fom: " Lo

o . .
‘\‘v S T <M

s
k]
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.-9‘“‘63;;%& i 'w (am'90%>[£h(%%“ 55%) -
‘—?Ru }?“bwkku +k(m} 9&%%q '
J

R _ ) (au 1}2’.11.)

9“ yuw 9“?‘?[ Phugg - 3 hizx Vo))t

| (_-go )[gmu +k( -9 :,:-i,)}
puiue RERTES N R
o oy (phu 3 Je 2 (-3 (039

Rt iR e )

3" ﬁ’—d R

~ Our problem consists in obtaining an asymptotic solution of these equations that
corresponds to the steady motion of a gas behind a shock wave having tie:form:

3 : T e
= x4
5 ¢ (7. 5)

and which satisfies the boundary cond:.’clons on a heat-insulated semi-infinite surface

(Y 0}, the form of which ' ' B :
gy

is to be determmed These condltlons have the form | o ‘z
T Ty ok —

2y - - (o,

y RN [é%-a?”@l
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8
8. Let us start by éxamining the asymptotic expansion that holds for the externzl
part of the flow, in the limits of an approximation in which this region of the flow

nay be treated as inviscid, The exparsions for this region are written:

ot ]
1= [ULORWE L]
v WO E 5,0y e
e RO TR O]

¢ A () ng"”:x, (v)+
h= {; LH (V)+*§° H, V)+ ]

where. the mdependent variables ? '\) are defined by the relations

x=g
\k % n=g* [V*'E-iqf(\’) }

Ve make use of the expansionr.of one of the independent vanables to obtain by the

-b\U‘

-N‘*

(8.2)

method in /4/ » a solution for the external inviscid flow. that is valid over the
entire flow field, includingA the proximity of the plate sﬁrface. This is neéessary
because. in distinction from the first part of this paper, tbe first terms of the
expansmon (8. 1‘)12221; Tepresedtien exact solution of the problem for the external
invisecid flow but merely its approximate solution which,. for‘@-? 0, exhibits some
peculiar features that the exact solution lacks.

On the bagis of (8.2). we obtain the following formulas for the transformation
of the derivatives to the independent variables § RN I

__ Declassified in Part - Sanitized Copy Approved for Release 2014/02/27 CIA RDP80-00247A003000050001-1
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0 3 3 a3 i,

!- 5% " 3¢ Z ¢ vav‘”Z"f E(V l~l\Pf)%+

R ITe S e (8.3)
’é\{{_“ AV § -

The boundary condlt:.ons for the solution of the external problem are the conditions on
the shock wave (7.5) which. in the ln.mtn.ng case. M —>*Qhave the form:
-]
n= C_ , g = C E 4

gc®

?,f‘f‘scmf lofeeghol) @0

C e

20&“)2 [ﬂ TeC § +o(§ )J

9c? "‘% -1
'sz(a?w)? 1 ?%C?‘? (5"
Eg):lji |
X"—.

I T ho(x)]

Substituting the extensions (8.1), (8.3) into;the initial system of equations (7.4) and
the boundary conditions (8.4), and retaining the principal terms, we obtain the systems -
of differential equations and the boundary conditions— of the first approximation, that
are fully equivalent to the problem of the one-dimensional nonsteady motion of an
inviscid gas (2.1), (2.4) ;thétmm’s%’beméiscusse& in the first part of this paper.
Hence, changing the designationrof the inciependent veriable T to § , we can make

)

use of the corresponding formulas in § 2, without introducing any changes.

Then, for the longitudinal component of the velocity factor, we get in the

first approximation:

I U— + "\/'o?‘ Xv P

2 +X’-1 Ro

O B (84.5)
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from whlch, for\) -0, 1‘t follows that

— e LT S,
. o ——— e e -

o), | :
S U Uoov T O ( )l ] - (8.6)
where_;q_ o e 1 --i,.., e
¥ To ¥ - )
2= — N , ,
Uo o' \(_ j V&‘Ao P<><:~ ' . *‘” - (8 7)‘

e T -

9. After simple transformations -using the relations of the flI‘S't approximation,

the second-approximation equations may be written in the form:

VirVVirH e o

2y)- FOVE L)y P! vl

3 %W%) (% Wx (ﬂ"——-\f)
£ AEE AR A

3 : 1. !
=Y y \/+V Vo U, = = (\71})}%—\[)}/
R:%—ﬁ-{ROH‘%HOR‘)

§9.I)

In order to eliminate from the second approximation the pecul:x.ar entropy features
(at \) ~&=~'0) of a higher order than in the first approximation, wessesy following

the method in /4/, in the fourth of the equations (9.1) we'may set:

A

?Ll ‘ o | f.
L V Vot =, (9.2)

‘It then takes the form: T _ : !

- y O | _(903)

Now, these two equations, together with the remaining equations (9.1),form a closed

systemn,
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On the basis of (8.4), the boundary conditions for this system of equations

may be written in the form:

RS CR
'l}‘ev’(cl):f. 3§E§L> o B
Rle)- s '
)

1.11' _ | 8'1\6~C
H(c)=- 18(fe)*

By takingV[ C) 0 we have eliminated in the derivation of these boundary conditions

§9.4)

i

the displacement of the lines of flow in the prox:x.mty of the shock wave.
The equation (9 3) together with the boundary conditions (9 4) yields:

N Y, (%) =0

e S (9'5)

The second of the eguations (9.1) can be now integrated. Its solution that satisfies

the boundary conditions (9.4) has the form:
o“ N - - Z

P 2) - 6C \>3 2\) V(ﬂ (9.o)j

Treating the equatlons (9 l) (9 2), (9. 5) (9 6) smultaneously. and taking the
results (2.5). (2.7) of the first approximation into account, it is possidble to
determine the behavior of the functions of the second approximation, at \3 =0,

There approximate expressions for this region have the form:
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(.7)

|  _ H kﬂmV 3‘+-o(v %)

The ﬁoefﬁclents in these formulas are related to the coefficients of the functions of
the first approxa.matlon (2.8) by the relations:

__91cs
o~ 1d%m
| "U;::_ QX'CZ AX Y
1T Telp)arp |
. __zf__ -3 o
10~ 4(\( 3 quOo i §9.8)
3 o~ 9CF ¥ '?
| o 56(2_. ) A
? _aree C" x ‘“b’ -
o 1eg12-)}\ ’ |
. ) s o o .-
_ in which the constant A° is determined from formula (2.6)

i
10, In the internal region of the flow, the dimensionless independent variable
6f the order of unity, is -

Y

N’\r§-%' : ?I

) , ) (10.1)._
In order to detemine the form of the solution in thls region, let us express

the functidns ofthe internal flow field through the 1ndependent var:.able of the
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internal expansion

and examine their behavior at ? —% OV and a fixed value of J\Pf o To this end, ve
first substitute the expansion for the indepent variable YL (8,2) into (10.2),
thereby obtaining the following relation:between the independent variables of the

internal and externmal expansionS°
V= 3\({-2 SR o (5
(I0. 3)

Now, making use of the expressions (2.7) (8.6) and (9. 7) for the functions of the

first and second approximations contained in the expansion (8,1), we get

2

.'U=§+1’)},°N" e +<3KVU;°+U,—°))\(~§-§“§.;:¥§% (Ej‘w?rj
9= ? [\/+(Af%‘+\/>\“‘"§z B ( L)V + (10.4)

5~g lo} 1oNF ; 3{5%% (Eﬂs%j ;

——————————— e~ s

P g [%w(%’?)] o ‘
y;ﬂoa\r%? %1-( \’f R+R)N 3 wg : 3&0( -—) (10.4)
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(

These expressions predict the form of the asymptotic expansion for the sought functions

in the internal region of the flow, namely:

%[ +%*' g w w (e ]
'u=u0<>~f>+€““‘w(> g WM) J
B e

Lo

1 - +§‘g ) ‘ | §IO.S)
NGO

bt s }o<w>+§"'f*f3“fr>:<w>+z‘ ,

wir

P00 T T o
SHGR S S MO

Here, the internal and external expansions may be combined, provided that the following

boundary conditions for the functions of the intetnal expansion are satisfied:

O(Pr) """'700
U (W)~ S _ . |
() =~ P et J{—-”? v (10.6)

'_hf,(w-)* o J - .

R in ‘tixe first approximatlon, =
) =N )
11‘< ) \j:o n[ | PP -jYP,_apr < ([‘9'7§)

Px()‘r)’s"o T
b (1) Hee X700

I

ﬁ

w' &
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in the second approximation, and
2

——

‘éz( (- 2y, S
Ua(’\r) (‘f’h‘w\t&,\):oﬂ)]o) N R

[P

z
37 | :
' st = o9 (10.8)

| . RZ(N)*(—%”%HOO_*_ Hw)J\p*‘i‘—%;.

in the third approximation.
11, Substituting the expansion (10.5) into the initial system of equations (7.4),

and equating the principal terms, we obtain the system of equatiohs of the first

approximation, which may be written in the form:

The boundary conditions for these equations are the conditions (10.6) as well as the

conditions on .the rigid surface.which, on the basis of (7.6), (7.7), we write in

]

the form:

Y, (0)= uo(oM() o

(11.2)
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this means, we aseume that in the first approximation, the body in the flow is a plane
seni-infinite plate. If the Prandtl number G) =1 » the integral of the heat flux equation,
that satlsfxes the boundary conditions (10.6) and (11.2), is
{ .
h S

[N

(IL. 3)

The following will be limited only to this case. The momentum equation reduces then +o

the forn

5“1 | (Uou >+ 7(‘“ Uo +i—%<5-u§>:o, .(II.LP);

where, in’ correspondence with the third of the boundary conditions (10. 6)

PFZO

(11, 5)

" The 'boundary conditions of (ll 4) are ’che second of the conditions (10 6), and (11.2)* )

| ifter determining U, (N), the function o (K) is obtained by integrating the

fourth of the equatlons (11.1); taking (11.3) and (11.2) into account, thlgylelds-%r

{
1

L I R A
%“'Zy' mJ uo d”

(11.6)
F:.nally, the first of the boundary cond:.tlons (10.6) 1eads to the relation:
lv - . (w .
PR N, _ &=4 | N
. . yo.o 2 Poo J uo d (II.7)

in which the integrmdmioéfiy&@g} on 8 . Hence, (ll 7) is the necessary

— -
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boundary coﬁdition for the external first-approximation problem, by means of which the
quantifies yééand E o &re now related."l‘his means;athat it wniquely defines the
constant C . l.e., the shape of the sh'ock—wave surface;, and completely closes the
system of relations of the first approximation: The problém of the flow past a
-semi-infinite plate, thus stated, has been solved in /3/.
12. Let us now exémine the second and third approximatioﬁs. First, on the 'basis of -

the second of the equatlons (7 4) and the boundary condition (10 7). we get '

R G +$) =0 -

(I2.I)
"The third of the equAtions (7.4), after certain transformations taking the relations

of the flrst approxmatlon into account, leads to the integral

i’b "T'.uou =0 ) . -
— L L - (I2.2)

This solution satisfies the boundary conditions (10.7). since in accordance with (2.8)
~and (8.7) Hoo'*'uo:O . It alsousatisfies with the requirea order of approximation
_‘che boundary conditions a‘t; {the 'wallf which can be readily seen by substituting the
rexpansmns (10.5) into (7.7). R

.+ Now, after certain transformations, the first of the momentum equations (7.4) leads

to the following equation for function w :

b(u u)+——w‘ }.%‘—52?( 3(} e
.3)

Its boundary conditions are the second of the conditions (20,7) and the condit Slon ot

attachment (7. 7). icee,

) (o) =0 ) u(;«r)*v )\f | N—sv-ﬁo (12.4)

' Finally, the function 3 @Latlsﬁes the dlfferentlal equation

o '1‘\&'&5+uo I .
L 1? oy =g, | | |
e ETERTENS g

.y
IR
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4

-

. ] *
as a boundary condition for this equation serves the first of the conditions (10.7) );
Integration of (12.4) yields the value of the function 3,(0) at the wall, that
determines its form in the second approximation, In the same manner is.found the systems

of relations of the third appronmat:.on. the 1ntegrals

P (?l’b+k92>

S e—— - - . - - . e ( IZ.S)
'/Z/Q_ 0 !MouQ_ =0 o . - o .':
(12.86)'
the chfferentlal equation for the function u.2 (ﬂ)
K— ; b (uo )“‘“")‘f D;;. 5Lu°+<--9§+§-8,>}u2=o (12.7)

with the boundary c;ondlta.ons

MZ(O):’-O ’ ?-(.N’.) (3KVUZO+-\)‘IJAF 3 ﬂPk N“"w 12 8)’
as well as the equation for the function ¢
"'-\Lv ° ‘ --$ i+ UO = ) ’ ’

?2 e ur et Y ‘ (12.9) |

the solution of which must satisfy the first of the conditions (10 8) As a result, may

be obtained the value of the function ;LCO).
Thus,. the sought shape.of’ the wall on which takes ;olace a pressure distribution

prescribed in the first-approximation theory to a plane semi~infinite plate, is

Y EY(0)F (1210

Note, that in éorespondancg with the previously performed estimates of the n‘e'glected '

1

3 37_"'3'2;*
T (0%

-N—" :

)

-

t

*) Note, that the character of the asymptotic behavior of all functions of the internal

expansion, as prescribed by the boundary conditions (10.6) through (10.8), completely
corresponds to the chiracter of the behavior resulting from an analysis of the
differential equations for these functions.
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- e 4
terms, this result contains a relative error on the order of or g R whereas
.4.
the first-approximation theory involves a rela'clve error on the order of § 36"
Synthesizlng the results, we wrlte the final expressions for the pressure

distribution F3 over the surface of the body in the flow, and the shape of tne body.

To this end, as usual, we consider the Reynolds number of the problem

- Co0 = | mj{w | S | (I3.1)

where X is the dimensional distance from the leading edge,

The resulting expression for the pressure at the body is then:

 Erfee,

and for its relative thiclmess:
- : 3 £,

) &

Y~y V¥4 Moo = Vs M) © 3T

==Y (o + Y, (0 e :
93“:w?'_)u VRew #:00) VRew /| . (13.3)

The formula (13, 3) defines the asymptotlc shape of the contour of the body on whlch

2]

" takes place the pressure dlstrlbutlon (13 2).

gzz.z)’

i

w

The results of numerical calculations performed for the case X = 1.4, give the

£ oliowing values for the sought constants:

na,(o)r-o.ueo, - - ?@@ =2.2752.
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K - .

. . CONCLUSION

The performed investigation demonstrates that by treating the problem of the
hypersonic flow of a gais'a‘t',,m-c\o"ED A past a slender body as a problem of the stroﬁg '
interaction of the boundaxry laye: at the surface.of the bbdy with the inviscid region
of the flow field, it is possible to obtain a sélution of this problem at a higher order
vof approximation than by the techniques brifiously used. further improvement of the
accuracy of the obtained results (determinatioﬁ of the higher-order terms of asymptotic
expansions) will lead %o the necessity of accounting for the viscosity in the external
portion of the flow field, and to additional terms in the equations (that are neglected
in boundary layer theory) for the internal region. As has been shown in the works /1, 5/,
however, suchia treatment, .strictlyispeaking;’ is inadmissible. because the terms that have
%o bevconsidered in’the Navier:Stokes:equations are of the same order as the Barnett

terms which these equations to not take into account.
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