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THEORY OF THE MAGNETIC BOUNDARY LAYERF

by V. N. Zigtﬂev
(Communicated by Academician L. N. Sedov, October 1k, 1958)

Doklady,- Akac_lemii Neuk SSSR, volume 12k, No. 5 (1959) pp. 1001-100k

In this work, examples are cited which iliﬁ.strate the phenomenon that -a moving
plasma is shielded from an external magnetic'ﬁeld and from the electric currents that
flow in it; the thickness of the shielding layer, called a magnetic boundary leyer, has
the order ! /EZ_' for motions at large magnetic Reynolds numbers.

1) If we introduce the vector potential of the magnetic field W (H = curl w)
then the equations of magneto-hydrodynamics can be put in the form

BW

z = . ‘ W =
eV -V x curl W = —grad? + 7,V W div W=0
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where |/  is the velocity vector with components v (=1 2, 3) ;
/ aW X ' )
-— 9rad = E + T 57 H E is the electric field strength;

-7)M is the magnetic viscosity, which in the genersl case is a function of the
temperature T a.nd the pressure f H /0 is the -density of the medium;

f f + H 3 H 1s the megnetic field strength; T, is the
viscous stress tensor; S 1is the entropy of unit mess; f is the coefficient
of thermal conductivity; ? is the vector current density. The first equation
of the system as written resembles the equation of hydrodynemics in Lemb's form. The
electrodynamical part of the equations of magneto—hyd.rodyna.micé in their customary form
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can be obtained from the first equation of the syétem if orne applies to it the curl
operation and sets -/m = const in the: flow. |
2)  Let there exist a semi-infinitec plate (coinciding with the half-plane
XZ, X>0O ) ealong which there flows an electric current in the direction Oz ,
and let the plate be immersed in & ' y , H,
conducting fluid at rest, the

current in the plate being.insulated /
from the fluid. ' ,

—
It is easy to see that there is 1
introduced in the fluld a magnetic field denoted by the vector ﬁ , parallel to
the pla.ne X . We now bring the fluid into motion at velocity 7 in the

direction Ox , and we consider reglons of the flow, sufficlently removed fram
the edge of the plate in the direction of the X - axis, so that *Ehe co'rrespond:l.ng.
megnetic Reynolds number Ke, = “L /Vm will be & large quentity; then, on the
basis of the preservation of vector lines in a medium of infinite conductivity, and
on the strength of the requirement /?e >> ! » the magne’cic field vanishes in
the main flow and persists only in the layer adjacent to the surfa,ce of the plate and
having a thickness of order / /@_ . We cell this layer the magnetic boundary
layer of the first kind. ‘
h If we consider asgain the problem of a semi-infinite plate in a stream of
conducting fluid for the case /?e > ] , Where this time a current flows on the
plate in the direction of the X -axis with a constant linear (along OZ ) intensity
(the plate is insu.‘!.ated. from the outer flow with the exception of the leading edge ’
and regions removed from the begirning of the pla.te) , then, on the besis of the
properties of the preservation of vector lines 7« (2) , the electric current in the |
fluid is localized in a layer adjacent to the plate and having & thickness of order

L /Re.. . We call this layer g \ 4
a magnetic boundary layer of the "

second lci.nd_. | -
3) Carrying out, in the eguatioms ‘_

of para,graphvl) , estimateg similar to thosg Pig. 2. - _
made concerning the ordinary boundery layer (see, for example, (1)) for the magnetic
boundary layer of the first kind, we cbtain the following“ 'equations:

haant &
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where |4/ 1is the 2 - component of the vector W H /w is the coeffieient of the

ordinary viscosity.
Analogously, the eq_ua.tn.ons of the magnetic boundary layer of the second kind

take the form

__ai'/ oOH [ du QV. = ¥ 87'/-/
+ U +v2 (24 ) oy

at ax 97 ax Qy
9“ v24 - _ 2 Su . 2 =
/“ax"'/” EV %*ai(fag)) '3?1‘

TS xlwg;):/l(??) 9;( ) Zr —s;'f

In a.rriving at the equations for magnetic boundary layers of the first and
second kinds, terms have been reta.ined, in the" equatimo of paragraph 1) whose order
relative to those cmitted is 1/ Re., ° o : ' !

'As is clear from the equa.tions of magnetlc boundary leyers, the pressure
across them can change 'by meny times (since the quantity f—a— H /831' = const across
the 1ayer), something which markedly distinguishes the boundary layers under considera~
tion from the ordinary ones. This circumstance, existing as a consequence of the
electi‘o-magnetic field forces, can 'be applied'in questions of thermally insulated bodies:
it is sufficient to mske H/&r/ o> fw ( see, for example, the two articles (2)),
since near the plate there appehrs & zone of cavitation, i.e., a zone, where f"’“O

In the case of an incompresmble fluid, the equatlons of the steady magne‘c*c,
boundary layer of the first kin.d take the form:

D(V\'Q‘W):_ﬂ a‘w;Dayﬂb) D/ay) ) 7 'Y
Dlejy) ™24 Dlxiy) 4’? Dlxjy) e o

while the equé.tions for the steady boundexy layer of the second kind are:
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vhere is the stream function, the kinematic viscosity coefficient.
‘ A L) For the equations of the magnetic boundary 1ayer" of the first kind for
an incompressible fluid, there exists the following class of similar solutions:

R N T WAz ey APIC
y=_7)""a"‘x“g_ J ﬁ=537<‘;+7zw

vhere &, /é ) J fw o ' are certain constants.
The ﬁmctions f ? satisfy the system of ordinary differential
equatlons ‘
Y9fipg9’ F=9"; (ou;m —BFE - (ar0) 7 1499 = &G + oF "
Here o =7/, y =(5-2)/a » A=Y= (Jrz)/4 - In the case

vhere f"" = const ) Y_,d X+
-For the equations of the magnetic boundary layer of the second kind for an

incampressible fluid, the analogous class of similar solut:.ons ta.kes .the form:
’ 73 /
= AUl XA F)  Ho= X h(E)
. , _".— B
§ = J&ﬂm xX* ) ﬁ" = ng;"- fYno
where the functions £(3) and h (5) satisfy the equations:
CYRFLBRF =k @) £ = S+ £

‘Here A = (J—z)/4 ,/3=([+z>4, Y is an_arbitrary constent; if f‘m = const
= &+ . ' .

5) In the classes of solutions mentioned in paragraph L) solutions are to
be found for problems of the flow over semi-infinite plates in the presence of &
magnetic boundary layer of both the first and second kinds, if the X = component
of the magnetic field H, = const = H, along the plate.

In the case of the magnetic boundary leyer of the f:Lrst kind, the problem
cames down to the solution of “the system of equa:b:.ons (o( -V )/5_3(, b ; _J _0)

§f- 9 = 297 77”— el =zwf" (x =_7/»/1§£_)

with the following boundary conditions:.

g =0 ¢ = ‘= ; /= ————-——h{’
a') '/‘, 7( o / ? /4?0-\ a
b) K"’ a —_— ?/_. o) .
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If we<f, that is, 1f the processes associsted with the influence of the ordinary
viscosity are non=existent, then conditions a.) are replaced by:
-/\= '  1[01’ S- = 0
'~ In the case of the magnetic If;unda.ry layer of the second kind, the pro'blem
canes dqm to the solutien of the Blasius equation : (= -'n )/: % Y= Sz0)

ST IRYY.

and the integral

hit)= G + G, ex/sj ax(o(——jf(t> at ) L5

The boundary conditions teke the form: ‘

e) ¥=0: F=f'=0, h=H, A%

b) I {'—’1 h——o

If W<< { ,then F£= T  end h = H, % l/z[/ erf(’/)] » where

erf (x) 1is the error function ( (&), p. 120).

In the class of solutions of paragraph L) are also con‘ca.ined the ‘solutions
corresponding to the flow over bodies in ‘the presence of a ‘magnetic boundary layer,
with the magnetic field given on its internal boundary and the velocity given on the
externael boundary, accord.ing to & power law.

6) In the case of the magnetic boundaiy layer of the first kind the electric
field is equal to z2éy0 and the Jcmle heating appears at the expense of the enexrgy of
the main stream; in this case there sppear additiona.l resistive forces (besides the
usual ones of viscous friction). In the case of the magnetic boundary layer of the
second ld.nd., the electric field, on the other hand, is ‘the prj.ncipa.l factor; Joule

- heating appears due to the work . of the - externsl e.m.f.s (a propos of this, see also (3))

“The examples considered show that a moving plasma tends to be shielded from an-
externa.l magnetic field and fram the electrlc currents that flow in it - this a.nalogously
to the known effect of shielding of & plasma at rest from an external electric field.
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