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Two-positional Functional Frequency Device
for Automatic Regulation
I.A. MASLAROFF -—6 UZ & A1

Introduction

., The complicated character of the technological processes has
developed in parallel with other research methods of ascertaining
ways of improving the qualities of the two-positional method
for regulation. The simplicity of the device and the low price
of the required elements have not detracted from its significance.
From all published literature on this subject the extensive work
of Campe Nemm? is particularly noted. The author analyses
the existing methods of reducing the fluctuations of the unit to
be regulated: increasing the extent of current: the use of cut-off
two-positional regulation: and the introduction of inverse
connections on the first and second derivative, etc.

This paper gives some results of the methods undertaken to
improve the two-positional regulation by changing the frequency
of the influenced impulses. The methods are mainly directed
towards decreasing the fluctuations of the unit to be regulated.

The Essence of Two-positional Functional Frequency Regulation

The present survey refers to the monotonous varying
processes of a unit with a comparatively small changing rate
of regulation and the form of the equation to be used:

dA ) .
=0 ()

The principle of two-positional functional frequency regula-
" tion consists in the addition to the object of previously fixed
identical portions of the utilized unit in the form of impulses.
The frequency of these impulses depends on the difference 44
between the given and actual value of the unit to be regulated.
Initially the influence of the net delay in the system is neglected
in the survey.
Figure 1 shows the change of the unit to be regulated.
During the time of impulses it is determined by: 4 = Ay
. (1 —e7"T)) and during the pauses, by: A = A,etT
(t =0, A = A,). These two expressions are the integrals of (1)
in the presence and absence of current. In such cases, at the end

of the impulses and pauses, the unit to be regulated will be
determined by: ’

Ay=A,(1—e™"T)

By using the method of full fnathematical induction, we

determine that the value of the unit to be regulated after n .

consecutive cycles (impulses and pauses) will be equal to:

y =2 e tyT 3
A2"_=Ay(1_é_ti/T) Z e k=‘a . ( )
a=1

and after #n 4 1 serial impulses:

n

- % {x+ln-@-1) 61T
" te+[n—(a—1)1 /:I (4)

-A2'n+1=Ay(1“e_ti/T)|i1+ Z e k7
a=1

Eqns (3) and (4) show that by changing the duration of
pauses one can effectively influence the unit to be regulated.

In order to obtain the regulation we need the functional relation

t = @(44), at which the time of the pause will increase with the
decrease of the magnitude of the difference 4A4. Such a depend-
ence may be realized simply by introducing the exponential
block in the scheme of the regulator (Figure 2).

The equation, characterizing the work of this scheme is:

kAA(1—e "T)=B

The time constant of the exponential block of the scheme must
be much smaller than the time constant of the object.
Then at A4 = const. the time of the pause is equal to:

k44 '
kAA—B )

Eqn (5) shows large values of the difference when the
percentage change in the pause time is insignificant. At an
established regime when there are small values of the difference
between the given and actual values of the unit to be regulated,
the time of the pause is determined only by the parameters of
the object (T'> T,) where the delay due to the regulator is
slightly neglected in comparison with the common time of the
pause. In such a case the time of the pause is determined taking
into consideration that the consecutive fluctuations of the unit
to be regulated at a determined regime are also equal:

1= Tyln

34'=34" (6)

- =1/ Ty o= here
A=A, e T=y4 1 1ilTye=tT w
2 1 ~t ’ —t/T ) —/Ty o—11 + 8A'=Azns1 = Aznis; 3A"=A2,,+3—A2,,+2
Ay=A,(1—e"")+ 4,67 =4,(1—e"")e™ """ (2)  Since ‘,
A= ... A2n+3=Ay(]-_e—ti/T)+A2,,+2e—”/T
: l Aynsr=Aguyre 7
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the time of the pauses is equal to:

A2n+1 i
Arpst _Ay(l—e—n/T)

t,.,=TIn 7

By exerting an influence on the coefficient of amplification
and the internal limit of putting in motion B of the scheme it is
always possible to receive an equalization fo the maximal and
given values for the unit to be regulated. Then eqn (7) is modified
as: .

4 (72)
A,—A,(1—e7"T)

tn+1=Tln

The maximum value of the fluctuations of the unit to be

regulated is given by:
B —ti/Ty .~ ti/T

8A=AA=?=AQ——A2,,+2=(Ay—Ag)(1—e )e (8)

Eqn (8) shows that by decreasing the duration of the impulse
t; the fluctuations of the to unit be regulated may be most effec-
tively reduced. The coefficient of amplification k£ may be deter-
mined at a previously chosen value B of the limit out of the
duration of the impulse.

Influence of the Net Delay on the Two-positional Functional
Frequency Method for Regulation

Usually, the effect of the delay which increases fluctuations
of the unit to be regulated is shown in the systems of the type
examined. In the following it is proved that the influence of the
net delay upon the value of fluctuations may be substantially
decreased using the functional frequency method for regulation.
Actually Figure 3 shows that the additional increase of fluctua-
tions 84 4, which follows from the delay of the system, is equal to:

©)

With the usual two-positional regulation, the delay increases
the fluctuations of the unit to be regulated in the direction of its
decrease, as well as in the direction of its increase. These addi-
tional increases are of the same order.

It follows that with functional two-positional regulation the
fluctuation of the unit to be regulated increases in the direction
of its decrease and because of this the received additional
fluctuation is about twice lower.

The total value of fluctuations is:

SAy=8A+dA=(A,—A)(1—e e T+ 4,(1—e~*T)

SA,=A4,5,4,01 —‘C_MT)EAg(l _e 4Ty

(10)
If it is accepted that 64 = 64y, then:
A _e HlT ;
Al ) owr (n
4, (1—e™#/T)

From egn (11) some conclusions can be drawn for deter-
mining the parameters of the system to be regulated.

It is evident that at considerable values of the time of delay
At it-is apt to accept 4, > 4,, i.e. to use strong impulses.
However, at small values of Az it is apt to accept A,~ A,, i.e.
- the impulses will be comparatively weaker.
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From eqn (8) two fundamental parameters for the regulation
may be determined—the internal limit for setting in motion B
and the coefficient of the earlier amplification k. These para-
meters may be easily changed into parameters to be regulated
in large limits, depending on the requirements of the object
to be regulated. ’

Constructive Data of the Device for Functional Frequency
Regulation :

The device uses a vacuum-tube scheme (Figure 4) consisting
of a measuring part 1, amplifier 2 and an integral group 3,
two channels for constant current amplifiers 4 and 4’ and an
executive trigger 5. It differs from Figure 2 by the use of
a second channel for the constant current amplifier 4', which
is included in a circulating chain of the integrating group and *
the base constant current amplifier 4. Its purpose is to accelerate
the process for establishing the regime. When there are many
large values of 4A the output voltage of 4’ passes through the
logical scheme ‘IF’-6 and sets in motion the executive trigger.
In this way the scheme works as an ordinary two-positional
regulator. Placed in a regime, close to the one established, the
output voltage of the second channel is not in position to set
in motion the executive trigger, and the device works like a
functional frequency regulator.

In parallel with the passing of each impulse from the trigger
exit 5 to the object 7 the signal for clearing the integrating chain
is simultaneously passed through an internal link.

Experimental Data

Initially the device was constructed and tested for regulating
the concentration of solutions. Conductive transformers linked
by a bridge scheme with temperature compensation were used
as a measuring device*.

The excutive trigger exerts influence on an electromagnetic
valve which adds a drop of concentrate to the solution at each
impulse. The results obtained at the time of regulation were
very good. ' ‘

The device is used to regulate temperature, and for this
purpose the excutive trigger is replaced by a delay multivibrator.
The time of the impulse may be regulated at will by changing
the parameters of its device. Figure 5 shows the diagrams of
temperature change of one and the same object, recorded with
the help of an electronic p\otentiometer. It is seen that the quality
of regulation with the functional frequency method is much
better than that of the ordinary two-positional method.

Conclusions

1. The two-positional functional frequency device for
regulation allows the possibility of decreasing the fluctuations
of the unit to be regulated, particularly those emerged out of
the delay in the system.

2. By the character of its work, the device approaches the
statistical regulators.

3. The devices for regulation can be realized by using
practical simple means.

4. The test results prove the expedience of using this method
for regulation in many cases.

* Eng. D. Detcheva took part in the computing of the construction
of the device.
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Nomenclature

Ar  Time of the net delay
Number of the impulses

n
C  Coefficient of the generalized capacity of the object to be regulated 7 Time constant of the object to be regulated

A The unit to be regulated )
Ay Fixed value of the unit to be regulated

"Ag Given value of the unit to beT regulated
44 Difference between the given and actual value of the unit to be

regulated

QO Generalized quantitative index of the process

8A Variation of the unit to be regulated in the period of one impulse

or pause
t Time
t;  Time of the impulse'

Ag A2n+
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T, Time constant of the exponential block of the scheme
B Internal limit for setting in motion the acting block of the scheme

Coefficient of amplification -
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Curve 1—Change of the regulated unit in close proximity to the source  (a) Change of temperature by using a contact thermometer for regulation

of the impulses

of the object
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. (b) Change of temperature by using functional frequency - regulation
Curve 2—Change of the regulated unit in the field of the sensitive element '
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'Dynamic Planning for an Open-hearth Steel-making Plant
"M. KOROBKO and Yu. SAMOILENKO

Introduction

The output of an open-hearth steel-making plant depends, in the
. first place, on the output of individual furnaces. However, the
practice in works recently showed that the duration of the
melting operation could be reduced considerably as a result
of the use of oxygen. Under these conditions the output of the
plant is limited only by auxiliary equipment.

The operation of different furnaces of the plant is inter-
connected since they use the same machines and interchangeable
equipment, and also because they are served by the same
subsidiary works’ departments and means of transport. All that
is needed in connection with the running of furnaces is therefore
conditionally described as ‘auxiliary’.

All auxiliaries are usually designed for a capacity margin
of 15-30 per cent, which when trying to force melting rate is
very often shown to be inadequate. In conventional programming
the interconnected operation of furnaces causes frequent
organizational delays in melting, which results in peak require-
ments exceeding the capacity of auxiliaries.

The capacity of some auxiliaries can be increased relatively
easily, but for the majority of them, for the increase required,
it would necessitate a complex reconstruction of the plant
involving the spending of large sums of money.

Since the operation of furnaces depends on a large number
of factors, which change according to random laws, the
.optimum operation of the whole plant can be obtained only by
continuous operational progamming, which may be called
‘dynamic’ programming.

- The technical problem of dynamic programming for the ope-
ration of an open-hearth steel-making plant can be solved by
constructing a system with a computer capable, on the basis of
automatic processing of information concerning the progress of
melting and available capacities, of evaluating the volume of
work which could be done and, accordingly, of giving commands
to furnacemen and automatic equipment, responsible for the

control of the melting operatlon so that the maximum use could

be made of auxiliaries.

Theoretically, this problem may be considered as one of the
tasks of dynamic programming, the fundamentals of which are
explained in the works of L. S. Pontryagin, R. Bellman and
others. As is shown below, the presence of nodes in the optimum
phase trajectory is the main feature of the given problem. The
economic index, which represents the difference between the
value of increased production and the expenditure on automatic
control for a sufficiently long interval of time, is chosen as the
economic criterion for the quality of control. The term ‘expendit-
ure on control’ denotes the variable portion of-operational
costs for the automated part of production, which is conditioned
by the necessary change of technology embodied in the process
of automatic control.

On the basis of analysis of the operation of works! furnaces
under actual operating conditions, logical differential equations
were constructed for the progress of the melting operation. The
choice of the optimum direction at the nodes is obtained by the
subsequent comparison of different variants of the automatic
control for the process. An assessment is-made of the increase
in output, when the number of comparable variants for
homogeneous node processes is increased.

Organizational Conditions for the Operation of Furnaces

The melting of steel in open-hearth furnaces is essentially
a cyclie process, which consists of successive technological
periods during which certain auxiliaries are engaged. On a
modern, open-hearth steel-making plant there are up to 12
furnaces. A typical general layout of equipment at a plant is
shown in Figure 1. Similar mechanisms move along past a number
of furnaces on the same rail track; thus, their relative disposition
is shown to be subordinated to ground connection. Mechanisms
used for different purposes are not subject to the interchanges
of position. The essential auxiliaries for the programming

of the operation of furnaces are the charging machines, casting

cranes, ladle cars, teeming cranes and casting bays.

The manceuvrability of machines along furnace runways
is unlimited, so that all the working machines and the inter-
changeable equipment may_ be used. In the teeming bay the
mobility of crane equipment is limited ; therefore, the operations
in it are not always determined by the total number of the
mechanisms available. The effect of the possible idleness of
some teeming cranes caused by those currently in use should
be taken into account.

Every open-hearth plant has its own peculiarities; therefore,
the mathematical description should be made for the specific
plant. Thus, for example, on some plants the bunkers for the
charging of furnaces are not installed on the furnace floor,
and during the entire period use is made of the casting
crane, which increases the engagement of the latter; for the
charging of the furnace on other plants two machines are used
for the same furnace, and so on.

So far as the control of the melting operation is concerned
its periods consist of controlled and uncontrolied periods; but
so far as the possibility of freeing the auxiliaries on one furnace
so that they could be transferred to another furnace is conserned,
the periods of the melting operation consist of intermittent and
continuous periods. In the first approximation it is considered
here that the durations of the latter periods of the melting
operation are independent of those of the former periods, since
in further considerations this condition is not of material
importance.

In future, the existence of some relationship between the
durations of individual periods of melting may help to improve

502/1
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the programming. It is assumed also that in the course of each
period of the melting operation a certain amount of subsidiary
work is carried out.

The conditional graph for the melting operation, which
consists of the time periods used for the carrying out of such

work, with the furnace being served by all the auxiliaries, may

be termed the ‘condensed’ graph.

By virtue of the effect of a large number of random factors,
the durations of periods of the condensed graph, strictly speak-
ing, represent random quantities- and cannot be calculated
beforehand with the necessary degree of accuracy. Therefore,
the values for the assumed durations of the periods of the
condensed graph should be systematically corrected.

The volume of work ¢;, actually carried out on the ith
furnace from the beginning of taking the readings to the instant

- of time ¢, represents the basic coordinate, which determines the

progress of the melting operation in the furnace. The state of
a plant which consist of ‘a’ furnaces is described by the values
of ‘nw’ coordinates @, @y, ...,¢,, which may be considered as
the components of vector ¢ of the state of the melting operations
on the plant.

As an example, the engagement of the most essential
auxiliaries at different periods of time is shown diagrammatically
on the condensed graph for the melting operation (Figure 2).
The functions #; show how many units of 7 auxiliary are required
at different periods of the melting operation. These functions,
in the simplest case, take the values of only 0 or 1. For their
assignment it is necessary only to indicate the durations of
periods of engagement or the instants of time of their termina-
tion (with the known beginning of readings). In the first approx-
imation it is considered here that the durations of periods of
the condensed graph are assigned on the basis of mean statistical
data. The more precise data regarding the durations of the
periods may be obtained by using the results of the preceding
melting operations and by taking into account the current
information regarding the state of-the furnace and the quality
of the materials being used.

The technical and economic criterion of programming, which
makes possible the comparisons of different variants of the
progress of the melting operations in furnaces, should serve as
the basis for the choice of the optimum graph for the progress
of the melting operations. -~

This criterion which takes into account the expenditure on
automatic control is determined by the scalar product:

Q=[C{L@dt_—fof(w)(w—@dt}] o

here ¢ = c (¢, ..., ¢y), C; is the output of the ith furnace;
f(o) is the piecewise constant coefficient which depends on the
period of the melting operation and on individual characteristics
of .furnaces; w = w (wy, ..., w,), w; are the rates of melting
operations according to the condensed graph which take into
account the provision for the general forcing of the progress of
melting for all the furnaces; and ¢ = ¢ (¢, ..., Py,), @; are the
actual rates'of melting operations which take into account the
delays caused by the separation of furnaces.

For the ease of planning of the progress of melting operations
it is possible to consider that the processes in furnaces are
intermittent in character, i.e., their rates may assume the values
of only 0 or 1. This procedure, which follows from the analysis
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of phase trajectories, may be applied only in the programming of
the durations of periods and for the calculation of the mean
rates. But the actual process should proceed as uniformly as

possible in accordance with the mean rates found in programm-

ing. Otherwise, large fluctuations in the rate of the process would
lead to a strong increase in the cost of automatic control, which
would then no longer be taken into account by formula (1),
which is applicable only within a small range of rates. By

‘the interruption of operations, in future, if not specially stipu-

lated, only the corresponding increase in the duration required
for their completion will be understood.

In order to indicate the inadmissibility of delays during
continuous operations, multiply the right side of expression (1)

by the function
f Z [ —F; ((P.)]dt ©))

where symbol § denotes the step function of the following form:

f( =221, f(O) 1 3

F;(¢,) is the function which is equal to 1 for the continuous
operations and to O for intermittent operations.

Then, if any ¢; during the continuous operation becomes
less than w; the integral will have a negative value and the entire
expression (2) will transform to zero. The criterion also trans-
forms to zero, thus indicating the inadmissibility of delay
during the progress of a continuous operation.

Finally, the technical and economic criterion has the form:

Q=UO¢ dt—Lf (9)(w—9)dt, C] f {Z [%—F («p,-)] dt}

4

The Problem of Dynamic Programming

For automatic control it is essential to have information

regarding the volume of work ¢, for each of the furnaces, and

also information regarding the expected functions #; for the
engagement of the auxiliaries. The finding of the latter can be
made by the prediction of the condensed graph on the basis of
the a posteriori distribution of the periods of duration. In this
way the last experience of the operation of the furnace is taken
into account. This problem may be solved by the known methods
of extrapolation of random sequences. Since the subsequent
programming does not change the condensed graph, then

" its extrapolation may be considered as a problem independent

of the programming problem. R

In the first approximation it is possible to be guided by
mathematical expectations for the duration periods of the
melting operation. In the second approximation it is necessary
to take into account the effect of the elapsed duration periods
on the subsequent duration periods. For this it is necessary to
have the information regarding the instants of time for the
beginning and the end of expired periods, which will be received
from the corresponding monitors. On the basis of this same
information, by the method of extrapolation, the current
values of ¢; will also be calculated, as the initial conditions for
programming. In the first stage it is assumed that there is a
limitation to the calculation only of rate ¢;, averaged out
according to the current periods.

502/2
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The continuous determination of the optimum controlling
actions in the process of automatic control is the essence of
dynamic programming. In the given case this is the determina-
tion of the maximum loading for the finding of the optimum
distribution of auxiliaries, in the process of control of the
work on an open-hearth furnace plant.

The qualitative analysis of the working of the furnace and -

casting bays makes possible the construction of a system of
differential equations for the operation of furnaces. The right
side of each one of the equations represents a function, which
depends on the volume of work completed at a given instant of
time and on the availability of the auxiliaries for the furnace.
Each one of these functions is constructed in such a way that it
transforms to zero, if on a given furnace there is a lack of
auxiliaries, and transforms to w;, if the furnace at any given
distribution is served normally by auxiliaries.

[ Egn(s) 1*

Under which conditions:
xk>0 Zl 1+Z; 2+ +Z,,,Sk
i=1,2,...,e; k=1,2,...,n (6)

here: g1.(¢;) is the ‘charging function’ (equal to 1 during the
charging period and equal to 0 during the rest of the time);
wy, is the instantaneous output of the kth furnace, &;, k (@) is the
engagement function of the auxiliary of the i type on the kth
furnace, Z;, k is the number of units of auxiliaries of the i type
transferred to the kth furnace, » is the number of furnaces;
and e is the number of types of the auxiliaries.

For the furnace runway coefficients k; remains constant
during the entire operation, but for the casting bay coefficients
k,, k,, corresponding to the casting capacities, change and are
calculated as the number of free auxiliaries, idling between two
neighbouring positions. Here p and g are indices of the casting
capacities.

. The system of differential equations (5) together with the
constraints (6) and the criterion for the quality of programming
(4) give an approximate mathematical description of the organi-
zational conditions of operation of furnaces on an open—
hearth plant.

Without considering, for the present, the method itself of
o dynamic optimum programming for the distribution of capa-
cities, the basic problem is formulated as follows:
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Given the known initial values of variablesg;, ...,¢, and given
the previously calculated engagement functions g;, (@) an
h;, (@) it is necessary to find the distribution of the auxiliaries
so that the expected value of criterion (4) attains a maximum.

In addition to this basic problem for the automatic dispatch
control it is necessary to calculate beforehand the engagement
funetions, and after the solution of the basic problem to allocate
the auxiliary capacities of each type to individual furnaces.
In the first stage only the basic problem will be solved by the
computer. The engagement function will be fixed on the basis
of the mean statistical data, but the actual distribution of
capacities will be made by the operators of sections in accordance
with the calculated matrix of distribution || Z;, 1 ||.

The essence of the developed algorithm consists of the
following:

The initial values to variables ¢; are assigned, which (values)
correspond to the actual state of operations on the plant, and
some perm1551b1e dlstnbutlon of capacities are chosen,

Zy, @G=1,...,e; k=1,...n), ie a distribution which
satisfies condition (6). Under these conditions, generally speaking,
a number of furnaces will ‘run’, and a number of them will
‘stand idle’. System (5) is integrated up to that instant of time
when the current period on any of the running furnaces is
terminated. (The integration of the right sides in a piecewise con-
stant form is carried out very simply.) Then, having selected
a new permissible distribution,”the integration of the system,
etc., is continued. This gives the possibility of extrapolating for
the operation of the plant according to assigned initial conditions

‘for some succession of distributions, Z;, , (W) (n = 1,2, ..., N),

where n is the number of the integration steps. By assigning
various possible successions of distributions and by evaluating
the efficiency of operation of the plant by formula (4), where the
integration spreads over N-steps of the process, the most
efficient sequence Z*,,, (n) is selected. However, there is no
sense in completely realizing this sequence, since the conditions
of the plant may change and this solution may prove to be
inaccurate. It is sufficient to extract as the command for execu-
tion only the first step of this process, i.e. the distribution
Z*,, 1. (1). The next distribution is already better determined for
the next step by programming on the basis of the precise
initial data, etc.

The consideration of the equivalence of mechanisms of the
same type makes it possible for the distribution to be limited by
those mechanisms, which resulted in unfavourable coincidence.

* Eqn (5):

¢2-W2|:1 gz(%)f(Z,, 1)}[1 gz(¢z)J(Zr,

Pi=Wwy [1“81 ((pl)J‘(Zr, 2~ 1)] {lj J‘[ZE’ 1

—hyy (¢1):|+f[zr 1— 80— 1]}
[ ssof o]

¢n—1=wn—1l:1_gn-—1(¢n—1)J(Zr,n—2_1)][1‘gn—1(qon—l)Jv(Zr,n—l)] (5)
X{Ejzl,‘n—l_hi,n—l(¢n—1)+J[ r,n 1= gn 1((pn 1) 1]}

=W, [1 —8x ((pn) J\(Zr,n—l - l)il{Ij; f[Zi’ n hi, n(¢n)i|+J'|:Zr

Y n—&n ((pn)— 1]}
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The Analysis of Phase Trajectories

In the study of the dynamics of programming for the ope-
ration of a plant in the phase space of variables ¢y, ..., ¢, one
should limit oneself to the case of two furnaces, which makes
possible the consideration on a phase plane (Figure 3).

On the axes of coordinates the volumes of work done in
the first and second furnace are plotted. A definite band on the
phase plane corresponds to each melting period. Thus, the plane
reflects the condensed diagram of the melting operation.

As a result of the periodicity of the condensed melting
operation, the network of periods on the phase plane repeats
itself periodically along each axis. At the intersection of
the bands corresponding to those periods, for which the same
type of auxiliaries is required, rectangles are formed, which
correspond to such states of the plant, for which a necessity is
created for the doubling of the quantity of the auxiliary capaci-
ties. In a case when the same auxiliaries are required for two
furnaces, the indicated rectangles correspond to the situations
in which one of the furnaces is bound to stand idle in order to
give priority to the other furnace. These regions are shaded on
Figure 3. In other situations both furnaces may be ‘running’.

An arbitrary point A4 is taken and the possible variants of
motion of the deseribing point are considered, for which maxi-
mum instantaneous output of the pair of furnaces is reached, i.e.

max(c;@;+¢,9,),

If the deseribing point is found outside the shaded zone the
furnaces are fully provided for and they will operate at maximum
rates w; and w,. Under these conditions dg,/de; = tan g =
wo/w;. The levels of equal volume of production intersect with
the maximum rate and the output of the pair of furnaces is
equal to c; w; -+ cow,.

“In passing the barriers (of the shaded regions) the picture
changes. One of the furnaces is bound to stand idle whilst the
other may run at full rate. w; or w, The phase trajectory is
shown to consist of straight line ségments parallel to the
axes of coordinates, and the maximum instantaneous output
for these segments is equal to either ¢; w; or.cyw,.

If the given operation is continuous, for example, on the first
furnace, then the passage through the barrier along trajectory 2
(Figure 3) is not permissible, since the latter corresponds to the
stoppage of the first furnace during the completion of the period
considered.

In view of the linearity of the chosen criterion regarding the
rates of melting, its increment does not depend on the transfer
path if the initial and final points of the phase trajectories
coincide in pairs; and this is what gives the possibility of
representing the process as an intermittent one, which facilitates
the solution of the problem of programming. The final result
by means of interpolation is obtained in the form of a con-
tinuous graph.

Evaluation of the Efficiency of Programming for a Homogeneous
Node Process

The presence of the nodes in the optimum phase trajectory
does not allow the solution by the known variational methods.
The choice of the most suitable directions at the nodes repre-
sents the most difficult problem in the given case. The local 1y
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optimal trajcctory represents a node process which is shown
diagrammatically in Figure 5.

The principle of numbering the nodes is clear from the
figure. During the transition from the initial point to a given
point the time as well as the functional (4) receive definite in-
crements. The problem of dynamic programmi is reduced to the
finding of such a direction at the next node that it ensures
maximum value for the increment of functional (4) during the
further optimum progress of the process.

If the process is random, then the functional (4) is usually
previously unknown for all the nodes, and it is assumed that
only the probable distribution law for its increments at each
point along all the directions is given. The precise value of Q

. may be practically measured usefully only when following the

corresponding branch of the process.
k- Due to the absence of a mathematical description it is im-
possible to determine the true optimum direction at a node,
since it would be necessary for this to analyse the process
along an infinite interval. Therefore, it is necessary to limit the
analysis to a finite number of steps and to speak only of the
maximum value for the mathematical expectation in the in-
crement of functional Q for a single step a,, in the extrapolatlon
with # steps.

With an increase in the number of steps of prediction this

- value gradually increases, and by virtue of its limited nature it

tends towards a definite limit AQ nax.

The efficiency of dynamic programming for a node process is
determined by the value of a, and the determination of the
number n required for the realization of the given efficiency is
of practical importance. It is better to speak about the
determination of the number of comparable variants N, which
when the random process is stationary is directly connected
with n. From the value of N it is possible -to assess the time
required for analysis at the nodes using computers.

In the deseription of the computation method for the con-
vergence of the process of almost optimum solution, the case
of the stationary process, which is the most important from a
practical point of view, is considered. v

It is assumed that at all the nodes the nurnber of branches
is the same, equal to m, which shall be called the node order of
the node process and F(x) the distribution function for the in-
crement in functional Q, obtained for one step along any of the
directions, and W(x) = F’'(x) the corresponding distribution
density. The distribution function of the increment in Q after &
steps shall be.denoted by F;(x), if after the first arbitrary
step a path is selected, which gives the maximum increment
AQ, after the remaining kK — 1 step.

The distribution function ¥ (x) for the maximum possible

. increment after k steps, providing that the most suitable path is

selected, may be obtained by raising F(x) to the mth power.
Indeed, if &; is the increment of the functional Q along the
ith direction, then according to the multiplication ru]e for the
probabilities of independent events

Y(X)=P(£;<x)P({2<x5) ... P({,=x)=F(x) (7)

In accordance with the above definitios the value of a, is
determined by the formula: ’

a ‘—J xdF!(x) , (8)
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In view of the homogeneity of the node process we can
determine the distribution density W, (x) of the increment of
the functional as a result of the realization of » arbitrary steps,
as n is the multiple composition of distribution density W(x):

W, (x)=W (x)s W W) ©9)

The distribution function F,(x) is determined as

[* mea

and the probability distribution function of the maximum in-
crement in functional @, for 7 steps:

v [ mea

_and

am(n)=%ff xd[ W,.(é)dé] oA

An asymptotic expression is found for a,,(n) in the case of
a Gaussian node process, i.e. when

(x—a)?
1 -—
e 202

o\2n

where a and ¢ aré the corresponding mathematical expectations
and the variance.of the increment of functional Q for a single
step. In this case n the multiple composition W,,(x), as is known,
is the normal distribution law with mathematical expectation
‘na for variances no?, i.e. .

W (x)= 12)

(10)
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n @ x2
-7 srerte e an
Jnm2™ T® '

.

After partial integration and the correspondmg subsntutlon
of variables one obtains:

m"(m" - 1)

2ny/n

T()=

f ) {%{1+¢<me“‘"-2>6“’]}“ as)
It is denoted that .
m"—2=N, J,,,'[———e" al +2)} =T (N)
n m R
A(N)=J°° 9" () dx (19)
where ' o
(p=%[1+45(x\/ﬁ)]e_Jc2 (20)
' Expression (18) assumes the form:
I (N)=(N+2)(N+1)‘ JN{In mA ) @1

2n/In (N+2)

The main part of ’integral (21) is found by the steepest descent
method, then (21) is re-written in the form:

‘ z—nep (N+2(N+DNEV*D JInm
W, (x)= e 2" 13 I (N)= '_‘L— J;(N+2>'\/ N
N _ . \/ln (N+2)(2n) 22z,
and e : 1 .
F.() __[1 I (x na)] - (14 exp[—7 N(N+2) Zﬁ]B(N)( 22)
no ) v
. . \/ here Zj is the point of maximum of function In ¢, and
where @(x) is the integral of probabilities
. . 1
[2 [ _& B(N)= T o — 23
D(x)=" %—f e 2d¢ “(15) (N) \/N[(N+2)Z§+1]+ N (23)
. 0 :
' . ) . As a result the calculation of J,,(N) was reduced to the find-
Accordmg to formula (1) one obtains: ing of the asymptotic expression for Z, as a function of N.
© . x—na\ ™ By carrying out simple conversions and by using certain
a,(n)= 2"’" ‘xd|14+® \/ﬁd asymptotic formulae it is possible to show that
: 2\
1 . T (N)={ — 2zl
= 2m"f \/nax+na)d[1+<15(x)]"' ! (N) (e) V2nlem .
‘ In (167z1nN) InlnN 24
. =a+aJ,(n) - (16) \/1 117N [1 0(1—2—>] (24)
’ 1 @© it Knowing J,,(N) it is easy to determine the mean increment
Tn() \/ﬁ'zmn o xd[1+ qj(x)] . for functior_lal Q fof one step by formula
0 [ - an(N)=a+0T,(N),
=—L‘W.J‘ x[1+@(x)]™" "1 ¢'(x) dx
\/ n2™J-w which is equivalent to formula (16).
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By analysing the obtained result it is noted that
AQmax_ hm [a (N) a] (7< > \/27tlnm (25)

and that. thencforc, the gain secured as a result of ideal
planning is proportional to the variance of the random node
process and to the square root of the logarithm of the node
order. The relationship between the corresponding gain, obtained
as a result of dynamic programming, and the number of com-
pared’variants is expressed by the following formula:

a,(N)—a_ \/ In(16 xInN InlnN
Ny="my /7 7 A 26
Q( ) AQmax 1 1+21nN 1+0 lnzN ( )

The graph for this relationship is given in Figure 6. From
this graph it is seen that in order to obtain more than 60 per
cent of the maximum respective gain it is sufficient to select on
each step the best of the 10? variants.

Declassified in Part - 'Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

The number of steps, corresponding to the number of
variants, is easily determined by the formula

InN

Conclusions

Dynamic progamming for the operation of an open-hearth
steelmaking plant by means of a computer on the basis of the

- described method makes possible the acceleration of the melting

operation in furnaces, ﬁnder which conditions the possibility of
decreasing the duration of the melting operation is determined
by the so-called ‘condensed’ graph.

The minimum durations of the condensed graphs are de-
termined by the maximum employment of auxiliaries for
furnaces, although under these conditions certain types of -
auxiliaries may be or not completely utilized.

On the basis of the given work technical requirements for
a computer were estabtished, which is essential for the realiza-
tion of dynamic programming.

Reference _
1 SmrNov, V. 1. Course in Advanced Mathematics, Vol. III, Pt 2

C RP1_| RP2 JX;Q RP3 I ree/] |
1 ——— —
2 RK RK2 RK3 RKG_ RKe RRT

I e mas T I

) P ALk T LPs T Lo TGP T LPe T LF7 ) Les I Gps T hpiod LPiiJ Gpw
Z A A AN Nl L
AM1 \/ >< \(/ >< 5 - >< \ : -
a» ZKi ZK2 <P S} ZK3 < p ZK4
LM / \ M2 / \ M3 / \ MS 6 / \

\

‘ Figure 1. Sketch illustrating the general layout of an open-hearth steel-making plant

Pl: 12 furnaces
RP1: 4 casting bays, Nos. 1-4
RK1: 7 casting cranes, Nos. 1-7

ZK]1: 4 teeming cranes, Nos. 14
ZM1: 6 charging machines, Nos. 1-6

: casting rails

: slag rails

: furnace charge rails

: charcing machine rails
: ladle car rails

LA W~

M1: 4 fettling machines, Nos. 14

Addition_of
molten'pig iron
Repairs, (hot metal)
. Melting itial
periods Charging: hgé\tliang Melting Refining
hi(‘f’)|0k As required ———— ¢
Charging
machine(s) ,
hi (@), - >
Casting B
cranes :
° »
ha(‘l’)z ru-L
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cranes ] n F
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Casting ‘ :
bays !
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' Figure 2. Diagram illustrating the employment of auxiliary capacities at different periods of melting
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Figure 5. Sketch of the node process
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Figure 6. Relationship between the relative gain, obtained as a result
Figure 4. Phase diagram for the separation of furnaces of dynamic planning, and the number of comparable variants

.
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Working out a Method for the Cybernetic Control
of Integrated Electric Power Systems

V. A. VENIKOYV and L. V. TSUKERNIK

The rapid development of power engineering in the Soviet
‘Union, the planned expansion of electric power production to
2,700-3,000 billion kWh by 1980, the construction of electric
power lines of various voltages several million km in length, and
the creation of an integrated electric power system of the Soviet
Union with a high degree of automation of its operations, all
make it imperative to utilize new methods of analysis and
synthesis and new methods and means of control, and to create
cybernetics for electrical systems. Cybernetics is the science of
purposeful control in complex systems irrespective of their
physical natures. Cybernetics opens up vast possibilities for the
scientific development and practical solution of problems of
control in all highly complex electrical systems on the basis of
overall rules and methods of research. .

In an electrical system, the interaction of controlling and
controlled elements should take place in conformance with a
certain algorithm utilizing information received over various
communication channels. This organized system interacts also
with an external medium, which creates random or systematic
interference. Feedback is used on a large scale in the control
of an electrical system. All of this is characteristic for the
problems handled with cybernetics.

‘In modern methods of studying electric power systems, one
of the greatest deficiencies is the divergence of methodology for
doing research on various aspects of functioning systems. This
deficiency of the science of modern power engineering can in the
future become a serious obstacle to its development. Cyber-
netics, which systematizes and absorbs approaches to the study
of processes in various systems and finds common points among
them, determines the direction of methodological and practical
synthesis. For this reason, this is the right time to pose the
question of applying specific methods of cybernetics to the
solution of problems arising during the planning and operation
of electrical systems®.

The basic task of cybernetics of electrical systems is the
observation of general principles of operation of an automated
electric power system and its traits as a single self-controlling
system having optimum indexes of operation quality, both
from the aspect of economic feasibility and from that of quality
of the power produced and the quality of supplying the consumer
with it. In this regard, as shown in the diagram in Figure 1,
operating schedule reliability and the reliability of component
elements of the system are figured in the scope of the term
quality.

The development of machines, equipment, and regulators,
the design of automatic control installations, and the transmission
and processing of information, along with protective systems,
are not included in the cybernetics of electrical systems, even

though they have bearing on their overall circuitry and the
analysis of their operations. Thus, irrespective of the apparent
all-embracing nature of the definition given above, the cyber-
netics of electrical systems has a rather sharply defined group
of questions (Figure 2).

The first task of cybernetics is the development of methods
of analysis and synthesis of characteristics of the components
of electrical systems. For this, it is necessary to study the
elements of the systems and to obtain the kind of physical
concepts and mathematical description of the function of the
systems that can use information available in practice as a basis
for finding the optimum conditions of system operation as a
whole, both with respect to determining the system’s operating
regimes and its transient performance. In this case, the specific
definition of the physics of the phenomena is carried out with the
use of the probability theory and by simulation. It is done with
the application of algorithms.

The application of algorithms means, first, the mathematical
description of the processes for the purpose of obtaining their
common rules, which are determined by complex study using
the method of physical and mathematical simulation and natural
research, and secondly, through the formulation of common
methods of solving problems (on simulators and digital machines)
for determining the desired structure, parameters, and regimes
of the system.

1t is difficult to over-estimate the role of the development of
methods of applying algorithms carried -out on a sufficiently
broad scale. At present, the possibilities of computer technology
of discrete operation and of methods of simulation should be
utilized as more than a mere auxiliary supplementary means
of research. These methods should be made the basis of the
renovation of the methods of analysis themselves, which are
used in the solution of engineering problems.

The use of modern computer and simulation equipment with
old methods of analysis means not only a failure to use such
equipment at full capacity, but also complete failure to find any
way of applying it. This is why the application of algorithms,
the compilation of equations of physical phenomena in various
processes, the determination of the order of computation, the
indications of logical operation limitations,j etc., for the pur-
pose of obtaining the fullest possible solution of problems, is of
primary importance in the development of any branch of modern
natural and technical sciences.

The probability theory and the simulation of electrical
systems is linked to the work of creating principles of automa-
tion of production processes. The development of simulation
travels in various directions. For electrical systems, the develop-
ment of methods of incomplete physical simulation, which
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reproduces the occurrence of processes only in time or only in
space, and of full physical simulation, which reproduces the
processes under study both in time and in space, is of great
importance?. It is also a good idea to utilize mathematical
simulation, both analogous and structural, in which more
attention should be given to problems of matching structural
and analogous models; for example, the combination of simulat-
ing machines with the a.c. calculation panels.

The cybernetics of electrical systems requires the develop-
ment of simulation with the aid of digital differential analysers,
which should be regarded as simulation devices of a special type.
This type of simulation, which retains elements of digital com-
puters and continuously operating machines (analogue com-
puters) should justify themselves in a number of problems where
no great accuracy of answers is required and where program-
ming, and equipment used for universal digital computers,
turns out to be exceedingly complex. ’

The problem of simulating electrical systems by means of
the data of their normal operation is becoming of great import-
ance®. In line with the creation of models of this type, a number
of research projects are already under way, and must be guided
along the proper directions with.aid given to their development.
This research should form the basis of methods of determining
the dynamics characteristics of objects under normal operating
conditions with normal natural interference, and with the
creation of special installations which give the system harmless
test pulses. Research on simulating random processes in
electrical systems is also necessary.

The determination of the dynamic characteristics of electric
power systems by these methods of simulation must have an
overall logical scheme, differing essentially by the algorithms
of hunting the values of the parameters of the model: undeter-
mined algorithms (random hunting), incompletely determined
algorithms (determined hunting, but random preliminary
values), and fully determined algorithms. The basis of the
above-listed tasks of cybernetic simulation of electrical systems
is composed of the following?:

(a) Probability theory of electromagnetic and electromechan-
ical phenomena, which makes it possible to acquire experimental
data.and to cut down the number of transient processes which
are variable in their mathematical depiction. Probability theory
links mathematical and physical simulation of phenomena with
experimentation and makes it possible to undertake the applica-
tion of algorithms using the experimental data by the best
means possible.

(b) Methodology of carrying out a natural and a simulated
experiment is needed for greater knowledge of the nature of the
phenomena occurring in electrical systems and for determining
the interaction of individual elements and systems of these
elements with various automatic control and regulation devices,
in order to check the functioning of newly-developed instruments
in the system and, what is most important, to define more
precisely the mathematical depiction of their functions.

(c) Methodology of mathematical simulation makes possible
the rapid reproduction of the variety of interaction of various
elements of automatic regulation systems in conformity with
the hypotheses found in the mathematical depiction of phenom-
ena. Along with physical simulation, mathematical simulation
makes possible a more effective receipt of characteristics and
descriptions of functioning of systems, which are adequate for
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" the physics of the phenomena and suitable for practical problems

alrady assigned.

It should be noted that the the cybernetics of electrical
systems should in no case be oriented merely toward high-speed
discrete computation electronic computers. Any systems of
regulation, with uninterrupted or discrete devices, which solve
the tasks of purposeful regulation and have automatic self-
modification of their parameters in conformity to the type and
magnitude of disturbance, should be considered akin to cyber-
netic systems. Cybernetic regulation of an electrical system
cannot occur without information on the system’s functioning.
Information theory should be used for specific problems of
operation of electrical systems located within large areas and
composed of a great number of elements, in which case, the
operating regime of the systems requires a balance of generated,
converted, and consumed electric power at desired qualitative
levels each instant of time. Information in such systems should
satisfy the most rigid conditions with regard to the capability
of obtaining the quantity and quality of information trans-
mitted.

. The most important thing in this case is the question of the
minimum amount of information necessary for the regulation
of the system’s operation, and the reliability of transmitting and
coding this information for solving these and other concrete
problems for the regulation of electrical systems. This concerns

the problems of assuring the necessary transmision capacity -

of the information transmission channels and for communicating
a quantity of information with a probability of making contact
and with a capability of withstanding interference. In this section,
disturbances occurring at random and those with a basic effect
on the system’s operation, which are sometimes decisive should
be studied.

To illustrate the above-noted cases with concrete examples,
certain specific problems already encountered in electrical
systems are now reviewed:

(1) The obtaining of information on the regularity of distur-
bances and fluctuations of the operating regime which occur in
electrical systems. )

An electrical system constantly undergoes changes in load
and other disturbances of a random nature, which cause
fluctuation of voltage and frequency and changes in the power
currents flowing in the interconnected lines, along with changes
in the consumption of power by the load. These fluctuations of
an electrical system have a decisive significance for the establish-
ment of reserves of stability of automated systems and for
setting up specifications for the devices used to regulate
frequency, voltage, and a.c. currents on the interconnected lines.

In reviewing the given group of problems, such as the role
of the cybernetics of electrical systems, an engineer should
mainly concern himself with determining the rules of systems
fluctuations. Information on these variations should be broken
down into characteristic groups; its minimum necessary
quantity should be determined along with methods of converting
and transmitting this information to cybernetic regulation and
system control installations.

(2) Receiving information necessary for the economic
determination of produced power among stations of a system
(plan and operational information). This task is analogous to
the preceding one with the difference that the receipt of the
minimum necessary information on the system’s operating
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regime: its loads, and power station parameters, should be used

- for determining such active and reactive powers as may be

produced by the stations of the system, and for selecting the
design of the generating apparatus so as to have the minimum
overall cost of all power supplied to the consumer by supplying

him with the power of the quality he needs—in the first approxi-

mation of the evaluation of quality.

(3) The receipt of information for providing the quality of
electric power, in the second approximation of the evaluation
of quality, and, in connection with the solution of this problem,

the regulation of frequency and voltage in systems and power

pools composed of intérconnected systems. The automatic
maintenance of frequency and power current flow should be
done in such a way as to use existing equipment and operating

- regimes of systems to the optimum. For this purpose informa-

tion must be used as shown in (2). This information.is processed
in cybernetic control and regulation installations which transmit
pulses on to the proper servo-mechanisms, without which the
task. of cybernetu, control of a system’s reglme could not be

" solved.

~
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(4) The receipt of the necessary information on the beginning
and duration.of breakdown processes. Regulating installations |
of the cybernetic type should not merely regulate one or another
parameter of the operating regime in conformance with changes
in the regime of the system that happened in the past, but
should evaluate the possible future change in regime and predict
the nature of its passage. For all cybernetic installations, the
problem of receiving thc necessary information in a sufficient
quantity is a decisive question.

It is noted that cybernetic traits are already present in a

number of modern regulators, which are discussed in detail

below. In particular, this concerns the high-power excitation
regulators, which react to the speed and acceleration changes
in regime parameters, but not to the changes themselves alone®.
In using these regulators in a complex system, the question
arises: What limitations of information should be kept in view

in the designing of regulators. For example, the highly effective -

regulation of excitation of generators with the use of the first

and second time derivatives of the angles of divergence of the .

electromotive forces of the transmitting stations and the
receiving system, i.e., according to the slip and acceleration of
machines. However, it is always possible to find this angle in
a complex system. Furthermore, if the angle is found, the
question arises of how to transmit it: what effect will mistakes
in tele-transmission have; what effect- will short or long disrup-
tions in transmission have what should the accuracy be.

It is understood that similar and even more complex questlons
arise also with other methods of regulation and control. For this
reason, the establishment of a method of receiving and trans-
mitting the necessary information plays a prominent role in the
cybernetics of electrical systems. Cybernetics of electrical
systems will provide a means for determining the optimum
technical and economic solutions for the national economy, and °
for finding the minimum technical and economic information
needed for the long-range planning of electric power systems,
for. calculating the plans for their development, and for
operating them. In long-range planning, a large number of
variants of electric power supply of regions, countrles and
international power unions are calculated.

In formation forming the basis which should be used for

s 1
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making such calculations is very extensive and multifaceted.
In many cases this information is of a probabilistic nature and
has substantial interrelations, which are true to the nature of a

complex system. Therefore, the obtaining of a concrete answer -
in the solytion of technical problems absolutely requires cyber-

netic methods. Even such a comparatively simple and apparently
particular problem as the calculation of a city or industrial
network requires the application of probability theoryS. The
summary load of such a network is a random value, and a
change in its momentary values, maximum values, and their
coincidences, and average values is nothing more than a random

process. In calculating a network, attention should also be given-

to competitive factors, which, for example, reflect the dynamics
of change of resources of non-ferrous metals in the country during
the period of time under study.

[}
The calculation of electric power -at the time it is supplied .

to the consumers, who are very numerous in the nétwork, should
take place on the basis of the limits theorem of Liapunov.

Modern methods of calculation done mainly by the ‘engineering

simplicity’ of calculated formulae make grievous errors, and
a conversion to methods of analysis, which make allowance for
the above-mentioned complex interrelations and for decreased
error (i.e., approximation of the optimum value) of 10 per cent
in calculating the cross-section area of conductors, makes
possible, as some calculations have shown, to save on non-
ferrous metals by 25 per cent, and to effect a cut of at least
15 per cent in the installed capacity of transformers.

These figures were obtained expressly for industrial plant
and city networks. If high-voltage long-distance transmission
lines and rural networks were added, these results would be even
more striking. Of course the development of a cybernetic
installation for ngm g the actual optimum solution of the problem
of selecting the optimum arrangement of an electrical network,
and the optimum cross-section of its wires, needs proved initial
premises of the price or cost of metal and power and the possible
limitations. The science of socialist economics is capable of
giving truly objective methods suitable for' practical applica-
tion concerning the effectiveness of capital investment. Only by
this method can cybernetics produce a complete solution and
indicate the actual national economic optimum. However, even
the possibility of increasing the number of calculafed‘factors and
the acceleration. of computation gives a definite effect.

A much more extensive problem is now touched upon, and
the problem of locating planned thermal electric and hydro-
electric power stations on the territory of the U.S.S.R. reviewed.
Solutions being tackled at presént will never cover the problem

as a whole. They are usually based on the use of the concept of,"

‘substituting’ variants and assume that to find the optimum
solution it is possible to compare the proposed variant with
another, sometimes fictitious, variant used as a secondary
variant. Of course from some of the ‘substituting’ solutions it is
practically impossible to select the actual optimum solution.
“The selection usually is of a subjective ‘volitional’ nature and
sometlmes leads to extremely gross errors. A way out of this
situation'is found in approaching the selection of truly optimum
variants by starting with the determination of available and
future resources of the country among the branches of the
national economy and branches of pOWer englneermg connected
with these.

. Modern capabilities of cybernetics supplemented by the
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development of solutions of economic problems, with the use
of high-speed computers, will make it possible in the near
future to set up and solve such an overall problem, and in
addition, individual tasks. Thus, for example, the problem of
selecting such ways of developing electric power systems that
money allotted for operation and construction would provide
for the greatest possible increase in growth of electric power
with the least possible consumer cost, could be solved with the
aid of modern computers and cybernetic methods. An inten-
sification of the utilization of these, plus the development of
methods for obtaining the needed information for them is
entirely necessary.

In planning electric power systems as a whole, the use of
cybernetic methods requires a number of indicators: power and
load curve, distribution of power in an electrical system with
consideration for the hypothesis of development by stages, etc.
To select a locality for the construction of an electric power
station, the possible variants of its position and hunting data
should be indicated. On the basis of this and other suplementary
information and the use of a computer, the optimum solution
will be found, which will conform to those indicators which will
be accepted for the evaluation of the selected variants. Research
will make it possible to find the specific capital investment per
installed kilowatt at the power station and per kilowatt trans-
mitted over the lines. Specific expenditures for the production of
1 kW/h of power, the number of hours of utilization of installed
capacity, the cost of wasted power, etc. should be determined.

From a purely mathematical aspect, minimization of linear
or non-linear functions of a number of independent variables in
the solution of the problem of finding the optimum development
of an electric power system is wholly feasible; however, the
development of the indicators themselves requires technical-
economic research, which should concern not only power
engineering questions alone, but the entire national economy as
a whole, including research and study of the details of the
development of the consumers of electric power. It would be
possible to give an infinite number of examples showing the
necessity for receiving information, and, to use such information
on the basis of its cybernetic processing to find one or another
rule in the power systems; however, this paper is deliberately
limited to what is available.

The modern theory of regimes of automatically controlled
electrical systems and the theory of interaction of elements of
a complex automated power system should apply to the study
of methods of such a use of information that would provide the
optimum operating conditions of a self-adjusting cybernetcally-
controlled system. The cybernetics of electric power systems
should provide for the optimization of the regime of an electrical
system and for the creation of the means for realizing these
optimum regimes. .

In cybernetics practice, such as in the operation and planning
of electrical systems, methods of the probability theory and
dynamic programming should be utilized. The immediate task
of this section of cybernetics of electrical systems is the develop-
ment of a structural scheme of electrical systems as a whc_>1e
based on a single approach and including all elements producing
electric power, transmitting and distributing it; regulators
acting on the excitation and on the prime mover, and installa-
tions for improving the regime. Here should also be included
he development of systems of regulators, which change their

.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

parameters and setting with respect to the present condition of
a regime and what will happen in said regime in the future, as
determined by the computer devices of these cybernetic
installations.

The cybernetics of electrical systems solves this group of
problems on the basis of analysis of the structural schemes of
electrical systems and their regimes, and make it possible to find
methods of building regulating and control devices on the basis
of continuous or discrete computers. These devices evaluate the
changes in a regime and after finding the optimum conditions
for its activity, produce self-adjusting parameters. Installations
for controlling the distribution of loads among stations of
electric power systems can serve as examples of cybernetic
devices. These installations should receive the recessary
information from the system, process it, and, in conformance
with the established criteria of economic feasibility, at the same
time counting in other operational indices, for example, opera-
tional reliability, stability, etc., should produce the optimum
figures and transmit them in the simplest case to the dispatcher
of a system. In a more complex case (more highly developed)
they should produce and send control pulses to the proper
devices controlling the machinery of the stations, and also the
switching equipment of the network, the transformers, and the
generators. '

The final goal, the full optimum cybernetic control of the

system, cannot however, be achieved very rapidly, since at first -

it has to undergo gradual stages of development. Such a
development is shown in Figure 3, where in case (@) a person*
receives information on the condition of the system’s elements
(continuous line), feeds the programme and data into the com-
puter M, receives the results of the solution, and on the basis of
the solution takes one or another action, feeding a command
(broken line) to the system’s elements, and in this way causing
feedback. In case (b), the machine partially receives information
directly from the system, and in case (c¢), it receives all informa-
tion in toto and not only consults the engineer of the control
system, but also does part of the operations itself. In case (d),
all functions of obtaining information, processing it, and giving
control commands take place with respect to the machine;
a human being merely has the functions of developing and
feeding programmes and tending the machine. Control in this
case becomes entirely cybernetic. One of the important tasks
of cybernetics of electrical systems is the realization of the
optimum combination of ‘man and machine’ on the above-
mentioned stages of development of control. In this connection,
research in the field of ‘ehgineering psychology’ has already
started. In this research, much attention is given to conditions
of work of the personnel of electric power systems’.

To solve the problems of distributing the load among the
stations in a stable or slowly changing regime, successful use can
be made of both high-speed digital computers and continuously
operating types of machines. The use of digital computers for
calculating stable or slowly changing regimes of power systems

~does not pose any difficulties with regard to the provision of

high-speed work during control operations (Figure 4). However,
it would be incorrect to think that cybernetic control and regula-
tion in electrical system can be achieved merely with the very
high speed of the computers which are utilized. It was noted
previously that cybernetic regulators in their simplest form
have already appeared in our systems. The appearance of such

505/4

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3




regulators, naturally, is the result of the gradual development
of various types of regulation, a development during which the
features of another more progressive type of regulation are
gradually introduced into one type of regulation. In the table
given in Figure 5, characteristic curves are given of the develop-
ment of methods of regulating electrical systems. This primarily
refers to regulating the excitation of synchronous machines;
however, the same can be fully applied to other regulating
devices, such as frequency regulators, speed regulators, etc. as
examples. )

- The cybernetic features of an excitation regulator are dwelt
upon in a little more detail. Assume, that regulation takes place
according to the displacement angle of the rotor 4. If the
regulator reacts to a deviation of the displacement angle 46
[Figure 6 (a)], then its effectiveness is comparatively small;
however, if the time derivative of angle ¢ is introduced into the
regulation law [Figure 6 (b)], then the regulator will react to
them and will receive in effect the ability to foresee the flow of
the operating regime and to become a highly powerful acting
regulator having the traits of a future cybernetic regulator.
The addition of high-speed computers [Figure 6 (b)] converts
the regulator into a cybernetic device searching for the optimum
conditions of operation, and makes it possible to have forecasts
of the process not on a short-range, but on a long-range basis.

Interest is also shown in the solution of cybernetic control
problems by automatic regulators with ‘memory’ devices, which
make it possible to introduce the function of the derivative of
angle & (Figure 7) without tele-transmission. This equivalent

. function of the slip and acceleration of machines, for the vector

of the network voltage to a fixed point, relative to the axis of the
reading, which rotates, with a synchronuous speed of the
original uninterrupted regime, converting during the regulating
process to the synchronous speed of the newly established
regime. In Figure 7 (a) is shown the structural diagram of the
measuring unit of this type for an automatic high-power
excitation regulator®. Figure 7 (b) shows the structural diagram
of a measuring block of this type for an automatic regulator of
ion converters of highly power-consuming industries, and other
consumer facilities?. This kind of regulator is designed  for
increasing stability and attenuating variations of power systems
in long-distance electrical transmissions by means of proper
changes in the dynamic load curve. This is a basically new type
of cybernetic control in a power system in which not only the
generating installations and transmission system are the objects
of control, but the consumers of electric power as well.

It should be noted that the long well-known successful

- utilization of ‘memory’ devices for automatic oscillographs for

the purpose of recording pre-breakdown operating regimes is
achieving a rebirth in the cybernetic control systems of electric
power systems. Another example of a regulator with cybernetic
traits which has been put into practical use is the excitation
regulator of synchronous motors, which was made in the

- U.S.S.R. This regulator is a passive self-adjusting regulator

without automatic hunting for its optimum setting®.
Under normal voltage level of the network, a regulator

. should maintain unchanged the power factor of a motor, which,

for example, equals the figure which provides for the most
economically feasible operating regime of the motor. When the
voltage is lowered the regulator should increase the excitation
of the machine in conformance with the desirability of main-
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taining a constant voltage of the feeder circuit, thereby increas-
ing the reliability and quality of the electric power supply of
other fellow consumers. When the maximum permissible value
of rotor voltage or stator current is achieved, the regulator
should automatically convert to the stabilization of these
parameters for the purpose of averting overloads of the respective
networks. Limitation of the stator current when needed can
be carried out with a time delay so as not to obstruct the
momentary boosting of the excitation, which is carried out by
a regulator. with settings of the voltage of the feeder circuit for
increasing the stability of the system and the motor. When
circuit voltage is raised higher than normal, the regulator should
lower the excitation until the desired power factor is attained
without permitting the kind of over-excitation of the motor that
would cause the motor to desynchronize. This rule of regulation
is a programme of self-adjustment of the regulator. The first
basic part of this stabilization programming of the power factor
of the motor with the calculation of the voltage level of the
feeder circuit can be carried out by a system with a self-changing
setting; the second part of this programme, the introduction of
limitations, can be carried out by a system with a self-changing
structure.

The system of control is composed of four main units, which
correct the power factor, the circuit voltage, the rotor voltage,
and the stator current (Figure 8). Operating experience has also
shown that the requlator described above increases the operatio-
nal stability of synchronous motors and facilitates their resyn-
chronization when they become desynchronized. A short-stated
consideration should also be added concerning the necessary
development of a mathematical description of a complex
regulated or cybernetically-controlled electrical system. Two
features are evident here. First is the great complexity of the
system, which contains practically a limitless number of degrees
of freedom, reflecting its complex internal connections. In
developing methods of analysis, it is necessary while maintaining
the basic properties of the system as a whole, to reject the super-
fluous stages of freedom and to simplify the computation
system; otherwise, its analysis will be impossible even with the

application of extremely suitable high-productivity computer’

equipment. Second, is the presence in the electrical system of
probability processes which markedly influence the nature of
the operating regimes and their technical-economic evaluation.

Note. At first, progress with regard to probability methods
was very slow. The first criteria of reliability was the computed
probability of the fact that power of switched-off generators
would not exceed the reserve power during the period of peak
load. The method of computation was developed and methods
were found which connect the probability of emergency circuit
breaking and the duration of the peak, and even began to
determine the probability of insufficient output of electric
power, etc. At present, the use of probability methods has
reached such a state of development that they can be a genuine
working tool. However, a large number of unsolved problems
make a continuation of research urgently necessary, especially
the setting up of studies on simulators.

The fact that control and regulating devices should be
included in the circuitry of a system in the form of an integral
part and as a single whole is essentially new in the mathematical
description and compilation of a structural diagram of a system.
In this connection, it is necessary to obtain new equations and

505/5

i Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3




505/6

to devise structural diagrams of the conversion of an automatic-
ally regulated machine and the regulated system. In these
equations and diagrams, consideration should be given to the
possibilities of modern computer technology; therefore, the fact
is not excluded that in a number of cases they should be based
on new principles. For example, it will be clearly feasible to
reject the method of two reactions in the theory of synchronous
machines in studying electrical systems and to convert to the
forms of setting up equations which would have periodic
coeflicients. T

The further development of the cybernetics of electrical
systems requires a sharper definition of the mathematical
depiction of the operating regime of a system from the aspect
of technical-economic indices. Without this finer definition, and
without the estabishment of criteria of the technical-economic
optimum the capability of digital computers and cybernetics
cannot be-used!!.

An overall analysis of the work of a system, and an analysis
of the distribution of the load among the stations of the system,
makes it possible to arrive at conditions under which costs of
power supplied to the consumer would be the lowest possible.
The development of such an analysis in the form of methods of
relative growth (specific savings) or methods of direct testing
(Monte Carlo) or the ‘gradient methods’, for the purpose of
determining the regime most economically feasible is a task that
must be solved before any other. However, having equations of
transient processes, which make it possible to determine how
the process is going along from both a qualitative and quantita-
tive aspect in face of any disturbance, and equations for deter-
mining the operating regime that is optimal according to
economic indices, there would still not be enough information
for the optimal cybernetic control of a system.

In a system’s operation, along with low cost, provisions
should also be made for the quality of power and the operational
reliability of the system as a whole, including the operational
reliability of regulating and control devices. For this reason, an
obligatory condition for the realization of cybernetic control
should be the establishment of criteria of the operational
quality of a system. The quality of the electric power is charac-
terized by two indicators: maintenance of stable voltage for the
consumer, and stable frequency in the system or in its individual
unified sections. Of the criteria of quality of voltage, the most
promising is the use of the integral criterion proposed by Ayre®2.
This criterion evaluates the quality of maintaining steady voltage
with the calculation of the amount, duration, and probability
of its deviation. Instead of unproved ‘permissible deviation
limits’, this integral criterion makes it possible to determine the
probable time of operation of a network with various devi-
ations. '

The quality of network voltage can be approximatcly
evaluated with the use of special integrating devices, which
measure the above mentioned criterion. An analogous intcg al
criterion can be proposed also for the evaluation of the main-
tenance of stable frequency. Thus, from direct measur.mcnts,
which earlier had characterized the operating regimc, one
should now convert in an ever-greater degree to the measure-
ment of indirect values, which characterize the work of the
system with probability processes and interferences inherent
in a cybernetic system.
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The new criteria should be considered indices to be used for
the regulation of a system. The resulting conditions of optimum
regulation should be found by calculating all indices of reliability
‘and quality of the operating regime. A further important task
of cybernetics of power systems will be, as one can assume, the
creation of automatic self-adjusting devices, which provide the
criteria discussed above. The development .of these devices
should take place gradually with the utilization of regulation
devices based on the techniques of continuous mathematical
machines. As for the first, from the aspect of cybernetics,
high-power excitation regulators, which in the future will
be developed into self-adjusting regulation systems [see table
(Figure 5)] have so far been very incompletely developed.
As for the second, these are regulators and devices made with
the use of digital computers. The optimum distribution of loads
among stations of a system or systems is done with the large-
scale use of such machines. This kind of application of machines
is still limited in most cases to the computation of optimum
operation with the results of said computations being given to
a dispatcher. Further development should include the trans-
mission of signals for the cybernetic control of a system.

Difficulties appearing during the conversion from manual or
semi-manual control of a system to automatic, and later on, to
cybernetic control, are at present linked to the insufficient
development of technical-economic indices of optimum operat-
ing regime, the lack of transmitters for converting parameters
of the operating regime for feeding into the machine, and an
insufficient clarity with regard to which of these parameters
should be measured for an exhaustive characteristic curve of the
system’s operation. There is no doubt that these tasks will be
solved in the near future.

The following stage of rescarch should be composed of the
analysis of the possibility and feasibility of application, as noted
previously, of extra high-speed machines for the optimum
control of a system in the transient processés. Such control can

+ be conceived: according to information received on the charac-

teristic of disturbance, and accordinig to changes in the para-
nmeters of the operating regime (the machine computes the
future nature of the procedure of the process, and carries out
one or another operation to provide for the occurrence of the
process reflecting the desired criteria of optimality). A regulator
with hunting will make tests, and, in accordance with the
reaction of the system to these tests, should correct the settings
of the control and regulation devices. Another approach is
possible: for cxample, juxtaposition with earlier computed

. typical circumstances, etc.

The role of one or another type of machine for regulation,
will be determined by research and practical experience. A- wide
range of studies should be devoted to the analysis of the opera-
tions of an electrical system as a whole, having at the same time,
various means of cybernetic control: (a) with self-changing
setling—adjustment, . (b) with self-changing programme or
algorithm of operation, (¢) with self-changing parameters and
sclf-changing non-linear characteristics or conversion algorithm,
and (d) with self-changing structure.

A study of these tasks will lead to the creation of a general
theory of automatically regulated electrical systems. It should
be noted that the analysis of the above-mentioned systems should
also include the determination of the necessary and sufficient
conditions for assuring the stability of the regulated system, and
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if necessary, the conditions of non-variation of regulation in the
face of various types of interference.

Conclusions

The problems which have been reviewed and certain par-
ticular problems, which cybernetics of electrical systems should
concern itself with, do not of course, fully exhaust the substance
of such cybernetics, and in many cases, can be a subject for
discussion. .

The originality of the question makes it possible to regard
what has been mentioned above as mere material for discussion.
However, it is possible to insist that the new scientific discipline
of cybernetics of electrical systems should possess the charac-
teristic features which have been noted in this paper. The
concept of the continuity of methods of mathematical analysis
and physical (natural and simulated) experiment outlined here is
being proved by the entire development of practical application
of regulation and automatic control of an electrical system.
Having at hand only certain possibilities of setting up experi-
ments, it is possible to put into use quickly new cybernetic-type
devices now under development. Attempts at the juxtaposition
of experiments and mathematical analysis and the proposal to
eliminate experiments and simulation should be studied, and,
conversely, it should be noted that ‘cybernetics of electrical
systems’ provides for a synthesis if these methods.

In the definition of the concept ‘cybernetics of electrical
systems’ which is covered in this report, various well-known
theoretical conditions are joined together, but this circumstance
does not at all contradict the fact that with the use of overall
ideas of cybernetics on the basis of these conditions, a single
theory and a single scientific discipline are being created, and
knowledge of electrical systems is being developed and being
orientated toward its relationships with ‘other branches of
sciences, and toward a certain scientific synthesis.
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A Digital Optimal System of Programmed Control and
its Application to the Screw-down Mechanism of a Blooming Mill

- S. M. DOMANITSKY, V.V.IMEDADZE and Sh. A. TSINTSADZE

Introduction

- Digital servo programmed-control systems are finding con-
tinually wider applications in various branches of industry:
in particular, they are used for the automatic control of screw-
down and other mechanisms of rolling mills, for the control of
various moving parts in control systems for metal-cutting
machine tools, and in a number of other instances. The operation
of such mechanisms normally falls into two stages. In the first
stage the device must choose or compute an optimal programme,
working on the basis of information about the requirements for
the technological process, about the condition of the plant,
about external perturbations, etc. In the second stage the given
programme must be carried out according to an optimal law.
The term ‘optimal law’ is normally taken to mean the carrying
out of the given displacements with the maximum possible
response speed and with the required accuracy; in addition a
condition is often included covering requirements on control
response quality. )

While the function of choosing an optimal programme is
not necessarily inherent in the digital control system itself,
particularly when it operates in a complex installation with a
controlling computer, the function of carrying out the given
displacements according to an optimal law must still be organic-
ally inherent in the digital servo system. If this requirement is
not satisfied, such systems cannot be considered fully efficient,
since for many mechanisms, e.g. manipulator jaws, shears and
rolling-mill pressure screw-down, the response speed and
accuracy determine the productivity and output quality of the
whole line.

A system of programmed control has been developed by the

Institute of Electronics, Automatic and Remote Control of the
Academy of Sciences of the Georgian S.S.R. in cooperation
with the Institute of Automatic and Remote. Control of the
U.S.S.R. Academy of Sciences. The basic unit of this system
is a digital optimal servo system which has a number of character-
istic properties. The electric motor drive of the optimal system
works at accelerations that are maximal and constant in magni-
tude. This ensures the greatest response speed and simplifies the
design of the computing part of the programmed-control
system. The required system accuracy is ensured by the digital
form in which the programme is given and executed. The small
quantity of information processed in unit time has made it
possible to use a pulse-counting code rather than a binary one,
which improves the reliability and interference-rejection pro-
perties of the system. The system is entirely built out of ferrite
and transistor elements.

This report gives a general description of the digital optimal
programmed-control system, and also a practical example of its
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application to the automatic control of the screw-down mecha-
nism of a blooming mill; this device. has pdssed through
laboratory and factory testing, and by the end of 1962 it was
introduced into experimental service at the Rustavi steelworks.

Design Principles of the Programmed-control System

The basis of the system developed for programmed control
is the optimum principle; the execution of the required displace-

" ment takes place at limiting values of the restricted coordinates,

especially of the torque and rotation speed of the motor.

For the case where the drive control system has negligible
inertia, Figure 1 will clarify the above; it shows the law taken
for the variation of the control action F,, and the curves of
motor torque M, and speed n. The figure shows that during
run-up and braking the drive maintains the constant maximum
permissible value of torque developed by the motor. When
executing large displacements, after the motor has reached its
maximum speed np,x it is automatically switched over by the
drive circuit to operate at that constant speed (point MS on

" Figure 1). The instant of braking (point T3) is chosen by the

control system such that only a relatively short path remains
to be traversed up to the instant when the speed is reduced to
10-12 per cent of the maximum (point CS). The execution of the
rest of the path to the required low speed is automatically
performed by the drive circuit, and ensures maximum accuracy
in carrying out the programme. Figure 1 shows that the variation
of drive speed with time follows a trapezoidal law. For small
required displacements the motor does not have time to run up
to its maximum speed, and the speed variation follows a
triangular law. '

The above-mentioned properties of the drive allow the
controlling part of the programmed-control system to be
considerably simplified, since in this event it only has to generate
and execute commands for starting the drive in the required
sense, for braking and for stopping the drive.

The design logic is very simple for that part of the control
system whose purpose is to start the drive in the required sense
and to determine the instant for generating the command to
stop the drive; it is suitable both for control of low-power
drives that have no links with appreciable inertia, and also for
control of high-power drives with large inertia. The required
displacement path and sense of rotation of the motor are deter-
mined by comparing the given programme with the actual
position of the controlled mechanism (to give an error signal).
During the execution process the path traversed is continuously
compared with the initial error; the command to stop the drive
is generated at the instant when these two quantities become
equal.
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In the programmed-control system developed for the
blooming-mill screw-down mechanism, the complete range of
possible displacement values has been split into eight groups:

(1) less than 16 mm

(2) 16-32 mm

(3) 32-48 mm

(4) 48-64 mm

(5) 64-96 mm

(6) 96-128 mm

(7) 128-192 mm

(8) greater than 192 mm.

The use of narrower intervals for small A is explained by the
nature of the curve y = f(A), whose slope gradually diminishes.
The choice of the limits for the ranges was determined by the
ease with which the given division could be engineered.

A special device forming part of the controlling part of the
system automatically estimates the value of the initial error
before each action, determines the group into which it falls, and
sets up the mean value of y corresponding to that group. The
execution process itself proceeds similarly to that for the control
of relatively low-powered motors, the nature of it being optimal
in this case also by virtue of the fact that the run-up and braking
accelerations are still constant and correspond to the maximum
permissible torque value. It is only in the first two groups, for
rarely met small displacements, that the excessively wide limits
of variation of ¥ make it practically impossible to combine the
optimum principle with accuracy requirements. Hence for the
first group an action is used that is from start to finish at a lower
speed equal to 10-12 per cent of maximum, while a limited
speed is used for the second group.

If it is necessary to introduce self-adjustment of the quantity y
set into the control system, in this case it is evidently most
desirable to apply the principle of altering the y for a given
group by the same increment at each repetition of a A corre-
sponding to that group. A very complex installation would have
to be designed in order to be able to apply the principle of self-
adjustment of y after the very first action.

Operation Algorithm of the Programmed-control System for the
Screw-down Mechanism of a Blooming Mill

A system designed according to the above principle for con-
trolling high-powered drives has two memory devices for rolling
programmes: :

(1) A static programme store (SPS) for long:term storage
of fixed programmes specified according to the technological
set-up for rolling at the works—40 programmes in all, with a
maximum number of passes up to 23.

(2) A variable programme unit (VPU) for programmes that
change often and are not stored in the SPS. There are two
means for recording programmes on the VPU: (a) Manual
recording using a telephone dial, and (b) Automatic recording
of a rolling programme carried out under manual control by
an operator. This allows one to use the system for automatically
rolling a series of roughly identical unconditioned ingots for
which no fixed programme is yet in existence. The operator uses
his experience to roll the first of this series of ingots, the gap
sizes set on the rolls being automatically recorded on the VPU
during the rolling; the remiaining ingots of the series are then
rolled according to this recording.
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As well as these methods of use, the VPU car also be con-
nected to a computer calculating optimum rolling program-
mes. A single programme containing up to 35 passes may be
recorded on the VPU.

In the developed system the size of the required gap between
the rolls is given in the form of a ten—digit binary number, ex-

" pressed in millimetres and equal to the distance from the initial

point of a given position on the upper roll.

The operational algorithms for the systems of control from
the SPS and from the VPU are basically identical; they contain
the following operations or elements:

(I) Choice of operating régime (automatic operation from
SPS or from VPU).

(2) Choice of the necessary programme (when working
from SPS).

(3) Setting up the computing equipment to the initial position.

(4) Feeding in, from the programme store, of information
on the given position for the upper roll.

(5) Determination of the actual position of the upper roll
(interrogative operation) and computation of the initial error
signal. A .

(6) Determination of the determination of rotation of the
motor. '

(7) Setting up the value of the coefficient y.

(8) Start of operation.

(9) Attainment of maximum speed by the drive.

(10) Determination of the instant for braking to start,
generation and execution of the relevant command.

(11) Transition of the drive to creep speed.

(12) Determination of the instant for stopping the drive,
generation and execution of the relevant command.

(13) Transition from the given pass to the next one, all the
operations from (3) to (13) then being repeated.

All the operations are carried out automatically except for
(1) and (2) where the operator has to press the relevant push-
buttons.

The automatic recording of a programme on the VPU with
manual control follows this algorithm:

(1) Choice by the operator of the relevant régime.
(2) Setting of the upper roll to the required position.
" (3) Setting up the computing equipment to the initial position.

(4) Interrogation of the measuring equipment to give the
position of the upper roll, and translation of the resulting in-
formation into binary code.

(5) Transmission of the information to the VPU.

(6) On proceeding to the next pass, all the listed operations
from (2) to (5) are repeated.

Operations (3), (4) and (5) are carried out automatically
one after the other.

A programme can be set manually into the VPU using the
telephone dial while the system is in operation from the SPS.

Block Diagram of Programmed-control System

The block diagram of the control system is shown in Figure 4.
One of the fundamental elements of the system is a measuring
unit MU of original design. It fulfils two functions: (1) on
receiving an interrogation command it makes a single deter-
mination of the actual position of the upper roll, and gives out
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a number of pulses equal to the gap between the rolls in milli-

metres, and (2) it signals the path traversed, giving out during
the execution process a pulse for every millimetre traversed. In
order to carry out these tasks the MU has two independent
channels, one each for interrogation and for execution. It is
linked to the screw-down mechanism by a synchro transmission.
The interrogation operation takes place when the rolls are
stationary and during the rolling of the metal.

A reversible binary counter RC is used to determine the
magnitude of the initial error signal A, to derive the stop com-
mand and to record the rolling programme on the VPU. For
convenience in the design of the computer section, the counter
determines not A but its complement A = C — A. Here C=1-027
is the counter capacity. The demand (D) in the form of a ten-
digit binary number in direct code is introduced into the RC
by a parallel means. Then the interrogate command is sent out,
and the RC receives from the MU a number of pulses (®) corre-
sponding to the actual gap between the rolls expressed in the

complementary code ®=C-0. Hence the resultant number
in the counter is D + <D Two cases arise:

(1) D < ®. In this case the upper roll must be displaced
downwards by an amount A = @ — D. In the counter one gets:

D+®=D+(C—®)=C—(®—-D)=C—A=A

(2) D > ®. In this case the upper roll must be displaced

upwards by an amount A = D — ®. So that the quantity A
should be derived in the counter also in this event, interrogation
pulses must be added to D only till the counter is full; from
that instant the switch SW puts the counter into the subtraction
mode, and the arrival after this of the number

(C—®)—(C—=D)=D—0=A
of pulses from the MU gives in the counter the quantity
C—A=A

During the execution the counter always operates in the
addition mode. When it receives from the MU a number -of
pulses equal to A, it overflows

A+A=C—A+A=C

and gives a pulse from its last digit that is used in the command
unit CU1 to generate the ‘stop’ command.

A straightforward logic designed into the command unit
CU1 generates the command ‘up’ or ‘down’ according to
whether the binary counter has overflowed or not during the
interrogation process. These commands are passed to the logic
unit for the drive control.

A transfer register connected to the reversible counter and

repeating all its actions serves for the transfer of the quantity A
derived in the counter to the device for determining the coeffi-
cient y and to the non-reversible binary counter BC that serves
to determine the instant for giving the command to start brak-
ing. It is also used when a programme carried out by a rolling
operator is being recorded on the VPU. In this event the re-
versible counter is put into the read-out mode, and then inter-
rogation of the MU is carried out. As a result one obtains in the
counter and the transfer register' the magnitude of the gap
between the rolls in direct code:
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C—d=C—(C—D)=d

This information is read over in the transfer register and trans-
ferred to the VPU by a parallel means.

The frequency divider FD serves to generate the various
values of the coefficient y. It consists of a normal binary counter
to the cells of various digits of which are connected the inputs
of switches K4-K10. Thus, for example, if the outputs of the
first, third and seventh digits are connected to any switch, then
when 128 pulses arrive at the input of the frequency divider
from the MU, 64 + 16 + 1 = 81 pulses will reach the switch.
If the output of this switch is connected to the input of the
third digit of the braking binary counter, then evidently the
coefficient y = '81/128 * 4 = 2-53.

The role of the device described later for determining the
quantity y consists in opening whichever of the switches K4-K10
will set up the required value of y for a given A.

Since A has already been recorded in the braking counter,
therefore when A/y pulses have been received from the MU the
counter becomes full and its last digit gives out a pulse that is
then used in the command unit CU1 for forming the braking
command, realized by the drive control logic unit.

If, before the braking counter becomes full, the drive has
time to run up to its fixed maximum speed, then from that in-
stant all the switches K4-K10 are closed, and by opening
switch K3 the number of pulses originated by the measuring
unit is passed to the first digit of the counter. This carries out
the logic for determining the instant to start braking, as already
described.

The next section describes the devices for automatically
limiting the maximum drive speed and for transition to creep
speed during the braking process. The path length traversed at
creep speed is 3-5 mm.

The system is started up automatically by a photoelectric
relay system at the instant when the metal leaves the rolls. But
because the motor has a delay in starting of 0-6 sec, a correspond-
ing advance must be introduced. This is achieved by a special
assembly that indirectly measures the speed of the metal and
generates a pulse to start the system calculated so that the drive
starts at the instant when the metal leaves the rolls. This as-
sembly is not shown in Figure 4.

The system also contains a number of elements that carry
out various logical functions required for the sequencing of the
operations, for their automation, etc. In particular, a photo-
electric relay unit is mounted on the mill for automatic drive
starting. .

The system provides for control of the most responsible
operation—the stopping of the drive at the correct time. For
this purpose the reversible counter is duplicated. The outputs
of both counters are fed to a special control logic unit. If over-
flow pulses are not generated simultaneously by both counters,
this unit gives out both a stop pulse and a fault signalling pulse;
if both overflow pulses arrive at once, it generates only a stop
pulse.

Certain Basic Elements of the Control System

(1) Electric Motor Drive and its Control

The electric motor drive for the blooming-mill screws
is designed as a generator-motor system. A 375 kW d.c. generator
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powers the two 180kW screw-down motors connected in
series, and is controlled by a 4-5 kW amplidyne.

The drive must provide for the execution of a prescribed
path according to the optimal speed curves given in Figure .
In this connection the following requirements are placed on
the drive: '

(1) In order to obtain the maximum response speed, the
motor current must be held equal to the maximum permissible
during run-up and braking.

(2) Limitation of the maximum rotation speed of the motor -

is necessary.

(3) During the braking process an automatic transition must
be ensured to the creep speed n = nyjq.

(4) Heavy braking is necessary when the drive is finally
stopped from creep speed. ’

The layout of a drive satisfying these requirements is shown
in Figure 5. The control winding W1 of the amplidyne is con-
nected tothe output of a three-state semiconductor trigger circuit
which receives control pulses from the drive control logic unit.
The run-up and braking of the drive take place at an invariable
value of motor current I,, = (I,,,)max, Which is achieved by the
use of strong negative current feedback in the armature circuit
(feedback winding W4), with a feedback gain of 8-10. For
large error signals, when the voltage at the generator terminals
reaches its maximum value, depending on its polarity one of the
stabilovolts ST strikes. This causes the maximum-speed relay
RMS to operate and apply the generator voltage to winding W3.
The current flowing in this winding sets up a negative feedback
that limits the generator voltage and consequently the motor
rotation speed.

The creep speed is obtained by means of the twin-winding
relay RCS. This relay is operated at the start of the execution
by one of the windings being energized. At the start of braking
this winding is de-energized, and the relay is held on only by the
action of the second winding, which is energized from the
generator output voltage; as this voltage falls in consequence
of the braking process, the relay drops out and causes a strong
negative feedback to be applied, which together with the change
in the polarity of the current in the amplidyne control winding
sets up a speed that is about 10 per cent of the maximum.
Efficient braking from this speed on stopping is achieved by the
self-damping of the generator on- the removal of the control
action from the control winding W1.

As stated above, the drive control equipment consists of a
three-state power trigger circuit whose output is connected
through a balanced semiconductor amplifier to the amplidyne
control winding W1.

In order to obtain the required ‘variation in the control
action, pulses must be supplied to the appropriate inputs of the
trigger circuit. The order of application of the pulses depends on
the direction in which the upper roll has to be displaced; it is
developed by the drive control logic unit.

Signals are fed by six channels to the input of this unit from
the digital control system and the drive system. These commands
are as follows: selected direction of motion (up or down),
clearance to start, braking, transition to creep speed, and stop.
From these commands the logic circuit derives the signals
that go to the appropriate trigger circuit inputs.
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(2) Static Progmmmé Store

The static programme store SPS (Figure 6) is a matrix
memory device in which binary numbers forming a programme
are recorded by means of networks of semiconductor diodes.
It consists of a distributor, a programme unit and a numerical
unit. .

The distributor (see the bottom line of Figure 6) sequentially
sends out a read pulse to the programme unit (second line of
Figure 6) in accordance with the sequence of passes making up
each programme; it is a device without moving parts that
switches from pass to pass. The maximum number of passes in
the programmes is 23, and so the distributor has 23 digits
(23 ferrite-transistor cells).

The programme unit consists of 23 ferrocart programme
cores, each of which has one primary winding connected to the
distributor and 40 secondary windings (one for each fixed pro-
gramme). The secondary windings of all the cores for a given
programme are all connected at one end to a common bus,
while the other ends go to the diode numerical matrices. Selec-
tion of the required programme is made by connecting one or
other of these secondary-winding bus-bars to the output bus
(4 on the diagram). Thus the operator needs only to press a
button on the control desk to select the required programme.

(3) Variable Programme Unit

A fundamental element of the VPU is its store S7, con-

- sisting of a ferrite matrix on which 35 ten-digit numbers can be

recorded. Each core of the matrix has four windings: erase
(reset), carry-in of numbers, write (also serving as read-out
winding), and output (Figure 7). The carry-in and output
windings of the ferrites for the same digit are connected in
series (35 ferrites each); the write and read-out windings of all
the ferrites for a given number (pass) are also connected in
series (10 ferrites each).

The operation of the store is based on the well-known
Cambridge principle. But the design logic and circuit are
original and very simple.

For the recording of a number in the store, pulses are
applied to the input shaping circuits for the,appropriate digits.
At the same time an activation pulse is applied to the distribu-
tor, 35 of whose cells have their outputs connected to the corre-
sponding write and read-out windings. Figure 8 shows the form
of the pulses generated by the distributor and shaping circuits,
and also their relative timing. The sense of the current corre-
sponding to the top part of the pulses is for read-out. Hence,
as is clearly seen from Figure 8, the superposition of the two
magnetizations on the ferrite at the start only confirms the
absence of recording, while later on (when the bottom parts of
the pulses in Figure 8 coincide) a 1 is written.

When reading out numbers, an activation pulse is supplied
each time to the distributor, and the pulse coming from it
performs the read-out. So as to regenerate the read-out number,
feedback is taken from the output shaping circuit of each digit
to the input shaping circuit for the same digit, resulting in the -
appearance of a pulse from the input shaper almost at the same
instant as a register pulse appears; but the relation of the
initial parts of these pulses is such that this attenuates the read-
out pulse only negligibly. A coincidence of the magnetizations
(the lower halves in Figure 8) brings about regeneration of the
number—its re-recording. By this means the recorded pro-
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gramme may be reproduced a practically unlimited number
of times.

As already pointed out, the recording of a rolling programme
carried out by an operator under manual control is achieved by
means of the reversible counter included in the system. There is
a special original device for the manual recording of programmes.
A number is dialled on a somewhat modified telephone dial,
taking its digits in sequence one after the other. To record the
number 253, for example, 2, 5 and 3 are dialled in sequence,
while to record 72 one dials 0, 7 and 2 in sequence, etc. The
dial has two contact systems: one for numerical pulses and one
for control pulses, which are fed out on separate channels. The
dial is designed so that when one dials zero only two control
pulses are generated (one each for clockwise and anticlockwise
rotation of the dial); when one dials 1 there is one control pulse,
one number pulse and then another control pulse, etc. The
control pulses thus generated serve to activate the six-digit dis-
tributor controlling the recording system. The outputs of its
cells control switches in such a way that the first switch (hun-
dreds) is open at the instant when the number pulses come
through for the first digit of the number to be recorded, the
second switch (tens) for the second-digit pulses, etc. These
pulses are passed from the switches to a binary counter that
serves to form the binary code for the number (Figure 9).

This device works on the principle of introducing pulses
into the digits of the binary counter in such a way that the
sum of their values equals the number of pulses received.
For example, since the number 100 has the form 1100100 in
binary code, for every pulse arriving from the first switch
(hundreds) one pulse is put into the third, sixth and seventh
digits of the binary counter; so as to avoid disruption of the
computation in the event of digits being carried from lower to
higher columns, these pulses are supplied not simultaneously to
all three of the digits mentioned, but spaced by a time delay
which'is enough to allow the carry to take place.

After the dialling of the third figure is complete, the final
control pulse causes a pulse to be sent out from the output of
the sixth cell of the distributor, which in its turn brings about
the transfer into the store of the number formed in the counter,
followed by the preparation once more of the first cell of the
distributor. This makes it possible to dial numbers continuously
one after the other. The correctness of the dialling may be
checked on a visual indicator of dialled numbers, which uses
three dekatrons. The operator has the facility of erasing a
number when necessary by pressing a button (shifting the dis-
tributor backwards by one cell), and of then recording it again.

(4) Coefficient Selection Unit

Figure 10 shows the block diagram of this unit. As has
already been stated, the quantity y is chosen in accordance with
the value of A, while the whole range of variation of A is divided
into eight groups.

The unit contains three basic elements:

(1) Ferrite assembly (top line in Figure 10). These ferrite
cores serve for the estimation of the value of A, and are con-
nected into the lines for transferring A from the reversible
counter to the braking counter. There are eight of them alto-
gether, and on them are written the eight highest digits of A.

(2) Switch assembly (middle line in Figure 10). The switches
serve to control the lines for various values of . Since, as was
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pointed out, the execution for one group of A (from 0 to 16mm)
is carried out from start to finish at creep speed, the number of
switches is one less than the number of groups, i.e., seven.

(3) Transformer assembly (bottom line in Figure 10). The
transformers have ferrocart cores, and each serves for the
setting up of a certain value of y. For this purpose each core has
several primary windings, to which are connected the outputs
of those digits of the frequency-divider that are required to
give the necessary value of y. The secondary (output) winding
of the core is connected to. the input of the corresonding switch.

" The estimation of the value of A is based on the following
principle:
Since what is written on the ferrite cores is not the value of
A itself but its complement A wrt. 1024, the following picture
is obtained for various groups of values of A:

(1) A < 16: I's are written in all the digits.from the fifth
upwards; one or more of the cores for the first four digits
contains a 0.

(2) 16 < A < 32: 1’s are written in all the digits from the
sixth upwards; the core for the fifth digit contains a 0.

(3) 32 < A < 64: 1’s are written in all the digits from the
seventh upwards: the core for the sixth digit contains a 0.

(4) 64 < A < 128: 1’s are written in all the digits from the
eighth upwards: the core for the seventh digit contains a 0.

(5 128 < A: one of the digits from the eighth upwards
contains a 0. '

Making use of the above, the. device is designed in the
following manner.

Immediately after A has been recorded on the ferrite cores,
it is read out with polarity such that those cores containing 0’s
give pulses in their output windings. After amplification by
triodes, these pulses are passed to windings for opening switches
corresponding to these cores. So that several switches should
not open all at once, the opening winding for each is connected
in series with the shut-off windings for all the switches corre-
sponding to cores of lower digits. Thus each time only one
switch opens, corresponding to the core of the highest digit in
which no 1 is written.

To consider the means by which certain of the above inter-
vals are split into two, the interval 32 < A < 64 is taken as an
example. This is split into-the two parts (1) 32 < A < 48
and (2) 48 < A < 64.

In addition to the conditions for this interval, an extra one
will exist for the first half—the presence of a 1 in the fifth digit:
while for the second half it will be the absence of a 1 in the
fifth digit. In order to control the satisfaction of these con-
ditions, an extra ferrite core is connected in the transfer line
for the fifth digit, and on read-out it gives a pulse in its output
winding when a 1 is present on it. This pulse is amplified by a
triode and closes a switch corresponding to the band 48 <A <64,
and in spite of the fact that on all occasions when 32 <A <64
the switches for both parts of this interval receive opening
pulses, nevertheless for 32 < A < 48 only the switch for this
band is open. For 48 < A < 64 the main ferrite core for the
fifth digit closes this switch, and only the switch for the band
48 < A < 64 remains open.

The other intervals are split up in a similar manner.
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(5) Start Pulse Advance System

As was observed earlier, the task of this system is to generate
a pulse for starting the drive at a certain roughly constant time
(about 0-5-0-6 sec) before the metal comes out of the rolls. This

calls for an estimate of the speed of motion of the ingot up to

that instant.

For this purpose two photoelectric relays are mounted on
either side of the rolls, at distances of 0-5 and 1 m from the
plane of the axes of the rolls. These relays control the mode of
operation of a special reversible counter and a fixed-frequency
generator supplying pulses to this counter at frequency f.

Let ¢ be the time of advance, »; the number of pulses which

reach the counter from the instant of obscuration of the first
photocell until the obscuratioh of the second, # the number of
pulses that should reach the counter from the instant of ob-
scuration of the second” photocell until the generation of the
start pulse, and C the counter capacity.

Then, if for practical purposes the assumption that at the
end of its passage the velocity of the ingot is constant may be
taken as acceptable, one must have: ‘

n=n;—tf

The constant quantity ¢ - fis first set into the counter, which
is put into the read-out mode. At the instant when the first
photocell is obscured, a pulse switch is opened, and until the
instant of obscuration of the second photocell n, pulses enter
the counter. The following quantity is got in the counter:
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From this instant the counter is switched into the addition
mode, and when n = n; — ¢ f pulses have entered it a pulse
appears from its last digit, which is in fact used for starting
the drive.

(6) Measuring Unit

As has been stated, this unit has two channels: interrogate
and execute. Position transmitters with oscillatory circuits are
used for both channels, and both are equipped with discs
having tooth-like perforations round their edges. The disc for
the execution channel is linked by a synchro transmission to the
screw-down mechanism, while the disc of the interrogate channel
is continually rotated by a small motor, Pulses appear in the
channels when the teeth of the discs enter the inductors of the
corresponding sensor circuits. The instant for starting the count
of interrogation pulses is determined by a transmitter of the

_same type, for which there is one special tooth on the periphery

of the disc. The instant for stopping the interrogation is de-
termined by a special electromagnetic transmitter, which gives
out a pulse when a magnetic circuit linked by its parts to both
discs is completed. The measuring circuit is designed entirely
from elements without contacts.

" Conclusion

In conclusion it should be noted that the tests of the pro-
grammed-control system for the screw-down mechanism have
given positive results: the error in setting the upper roll did
not exceed 1-2'mm, while the time of operation of the screw- ‘
down mechanism over the complete programme was less than
the time of operation under manual control.
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A Study of the Dynamic and Static Characteristics of the
- Process of Fractional Distillation

LV. ANISIMOV

Introduction

‘Numerous studies of the dynamics of the process of fractional

distillation are based on the consideration of the theoretical and
not the actual column plates. For the binary systems the degree
of utilization of plates is taken into account but it is assumed
that this is independent of the parameters of the process®~17,18,
Such a simplified approach introduces substantial errors into
the calculations relating to the dynamics and statics of the
distillation process.

As a result of studies of the process of fractional distillation
for the binary mixtures?> 3, 8 % 11,12 jt was possible to determine
the effect of design parameters of the plate, physical and chemical
properties of the components and operating parameters of the
process on the mass-transfer kinetics. In this work the problems
connected with the calculations and analysis of the dynamics
and statics of the process for the separation of binary mixtures
in the distillation columns are considered in the light of the most
recent studies of the mass transfer on the plate, and recommenda-
tions are given for the choice of the optimum system of control
of the process.

Study of the Dynamic Characteristics of the Process and Special
Characteristics which Affect the Choice of the System of Control

A mathematical account of the process was obtained by
proceeding from the material balance of the more volatile
component of the binary mixture in the distillation column, and
the following assumptions were made:

(1) The working of the column is adiabatic.

(2) The liquid is not carried away from the plate. .

(3) The mixing within the liquid on the plate and in the
vapour is complete.

(4) The quantity of the vapour phase in the column is
disregarded. .

(5) The pressure on all the plates is equal to that of the
atmosphere.

(6) The condenser of the column is full.

(7) All the liquid on the plates is confined to the zone of -

mass transfer.
(8) The initial mixture and the reflux admitted are at boiling
point. :
(9) The mass transfer on the column plates is equimolar.
(10) The local mass transfer coefficient at a given instant of

For the top plate

dX
Hnd—‘cn=LDXD_Lan+Vn—lyn—l_'Vnyn (1)

For the feed plate

dx,

?=Lf+1Xf+1——Lfo+Vf—lyf—l_nyf+FXF (2)

Hf

For the column still
dX, .

HO?O=L1X1_VOYO_W*XW . (3)

It is assumed that in the still a single complete evaporation

“of the liquid portion takes place, under which conditions

Yo= Xp )

In accordance with the assumptions made, the liquid and
vapour flow rates are connected by the following equations:

V0=L1—-W=V]/=-'...=Vw_ (5)
LD=I/H—D:L'I="‘=L.[+1 (6)
Ly=L; +F=L, ;=..=L; U

The formulae, which allow for the hydraulic retardations
of the flow, the non-adiabatic character of the process, etc., to
be taken into account, are given in another work?, .

For the solution of egns (1)-(3) it is necessary to determine
the relation between the variables. _

The assumption about complete mixing of the liquid on the
plates makes it possible for the process of mass transfer, which
takes place during the motion of a certain volume of the vapour
phase through a liquid layer of constant composition, to be
considered 4.

The mass-transfer equation for the ith plate may be written
in the following form:

Vioydy=K,S;(yf —y)dt 8

Assuming that the quantities V;_,, K, and S, are constant
one obtains

_ Koi " Kot )
time is uniform over the éntire plate. ‘ Vi=Yi_1€ Vi-i +y;‘(] —e Vi-l) (9)
The material balance equations for the more volatile com- where '
ponent in the transient process are: K, =K,S,; 41, A (10)
508/1
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The general mass transfer coefficient on the plate K,;,
determinable by plate design, physical and chemical properties
of the components and by operating parameters, makes it
possible for the effect of these factors on the transient process
to be taken into account in the calculations.

According to the double resistance theory!8, the general
mass transfer coefficient is a function of the particular mass
transfer coefficients of the liquid and vapour phases:

(11)

where

oy*
"‘(a—>

the phase equilibrium constant.

The particular mass transfer coefficients may be calculated
on the basis of experimental data as definite functions of the
plate design parameters, physical and chemical properties of
the components, composition of the liquid and vapour phases

on the plate and of vapour or liquid flow rates in the column??, -

The system of eqns (1)-(11) describes the transient process
in the fractional distillation column for the separation of binary
mixtures, taking into account the kinetics of mass transfer on
the plates. ' ' ‘ »

As an example, the calculation and the analysis of the tran-
sient processes for the separation of the methanol-water mixture
in a distillation column are given. The initial data are as follows:
the pressure in the column is atmospheric; the number of plates
n = 18; the feed plate number f = 9; the quantity of still product
W = 166'5 kg-mole/h; the quantity of initial mixture F =
229-2 kg-mole/h; the quantity of distillate D = 62-7 kg-mole/h;
the quantity of vapour ¥V, = 141-1 kg-mole/h; the concentra-
tion of the more volatile component in the feed Xz = 0-273
mole fractions; the concentration of the more volatile compo-
nent in the distillate X4 = 0:973 mole fractions; the concentra-

. tion of the more volatile component in the still X, = 0-0085
~ mole fractions.

B,i=1-61V,_, 46 kg-mole/h/plate surface.
B1;=380kg-mole/h/plate surface.

The calculations for the transient processes in the column
were carried out on a universal digital computer for the following
step-like unit disturbances:

(1) For an increase in the concentration of the more volatile
component of the initial mixture

5

AXF=XFX'1—(‘)—6

(2) For an increase in the quantity of feed

5 .
AF—FXW

(3) For an increase in the distillate withdrawal

5
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(4) For an increase in the quantity of vapour leaving the
evaporator

5
100

The calculation results are given in the form of response
curves in Figures 1-4. The curves obtained by calculations based
on theoretical plates are shown by dots. The comparison of
curves shows that the results of calculations based on the theo-
retical plates and those based on the proposed method are sub-
stantially different, especially for the plates of the low separating
capacity.

By comparing the response curves it is possible to record
the following basic dynamic characteristics of the fractional
distillation process, which affect the choice of the control
system: :

AVy=V, x

(1) The greatest effect on the transient processes and on the
concentration distribution along the column height in the state
of equilibrium is shown by disturbances which violate the con-
ditions of the material balance in the column, especially by those
connected with a change in the distillate withdrawal.

(2) The transient processes in the column take place slowly;
in the example considered they require from 17 to 2:5 h. The
response time of the column depends on the number of plates,
relative volatility of the components and other factors?.

(3) The changes in the concentration of the liquid on the
upper and lower plates of the column are insignificant. The
greatest changes in the concentration of the liquid take place
in the so-called ‘controlling’ plates, which are situated approxi-
mately in the middle of the evaporating and restorative sections
of the column. The position of the ‘controlling’ plates may be
considered independent of the form of disturbances.

The input selection for the control of composition or tem-
perature of the liquid should be made from one of the controlling
plates. On no account is it possible to control the process
directly through the composition of distillate or still product,
since the static and dynamic characteristics of the process would
deteriorate rapidly.

(4) The change in the steam supplied to the evaporator gives
rise to transient processes in the draining and restorative sections
of the column, which are different in character. This is attributed
to the action of two opposing factors: to an increase in the
separating capacity of the column with the increase in the reflux
number, and to a decrease in the efficiency of each plate with an
increase in the vapour flow rate. At the very beginning the
changes in concentration for the restorative and draining sec-
tions of the column have different signs.

(5) In a transient process considerable delays in the change
of composition (of temperature) of the liquid phase occur. The
delays in the change of composition of the vapour phase on the
plates caused by the change in the vapour flow rate in the
column are considerably smaller. This is explained by the fact
that the value V of the vapour flow changes with a speed which
is close to that of sound; therefore, the conditions of mass
transfer on the plates change almost instantaneously, see eqn(9).
This phenomenon finds no explanation in calculations based
on the theoretical plates.

In the overwhelming majority of cases the control circuits
for the process of fractional distillation are limited to the prob-
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lem of stabilization of the parameters of the process?. Such
automatic control systems work more or less satisfactorily
if the disturbances are small and if variations in the quality
of the product are permissible. With appreciable changes in the
quality and composition of the initial mixture the continuoys
deviations from the assigned composition of distillate and still
product are unavoidable. In order to obtain products of high
purity under these conditions the invariance of the process
control systems is the most desirable.

A system of control cannot be made absolutely invariant in
respect of all the disturbances. In the fractional distillation pro-
cess the violations of the material balance caused by changes in
the quality and composition of the initial mixture represent the
basic disturbances. The violations of the thermal balance of the
process, the changes in pressure in the column, the variations
in the quantity of liquid on the plates and in the still, the changes
in the working efficiency of the plates caused by change in the
composition of the feed and in the vapour flow rate in the
column, etc. represent the less important and secondary dis-
turbances.

It is possible and expedient to construct a selective invariant
system of control, for which the basic parameter of the pro-
cess—the composition of the liquid on the control plate—will
be independent of the changes in the quantity and composition
of the initial mixture. :

With a selective invariant system of control only small
changes in the composition of the liquid on the control plate

under the action of the less important secondary disturbances )

of the process will occur. Therefore, the system of control
should be based on the combination of principles of control
according to disturbance and deviation of parameter.

An account of the fundamentals of the theory of combined
control and of the condition of invariance are given in other
works*-7?,

The amplitude and phase characteristics of the controlled
plant according to control and disturbance paths required for the
calculation of the conditions of invariance, are not difficult to
determine from the response curves obtained as a result of the
solution of the system of equations for the dynamics of the
process.

The changes in the quantity and composition of the initial
mixture violate simultaneously the material and the thermal
balance of the process. The system of control, which reacts to
these disturbances, compensates for their effect in the column
by the corresponding change in the supply of the reflux and
heating vapour. The oscillations in the pressure of the heating
vapour and reflux and the inaccurate readjustment of the control
elements represent the secondary disturbances, the effect of
which may be easily eliminated by applying flow ratio con-
trollers, which measure the magnitude of disturbance and of
response change in the supply of the controlling means.

The selective invariant system of control does not embrace
the controllable parameters, which have a smaller effect on the
dynamic and static characteristics of the process. These para-
meters are stabilized by customary controllers.

On the basis of what has been stated, a block diagram for a
combined selective invariant system of control for the process
of fractional distillation (described at the end of this paper—
see Figure 7), has been developed.

508 /3

The Static Characteristics of the Process

The task of automatic control consists in the determination
and maintenance of the optimum values of the controlling para-
meters of the process. ’

The calculated values of the following parameters of the
fractional distillation process are considered to remain approxi-
mately unaltered under operating conditions: the pressure in
the column, the level of the liquid in the still of the column, the
level of reflux, and the temperature of the initial mixture and
reflux. The control of these does not present any difficulties and
is not shown in the diagram of Figure 7.

The optimum values for the reflux number, the quantity of
the heating vapour and the location of feed plate change under
operating conditions. In the separation of multi-component

‘mixtures it is necessary to determine also the optimum quantities

and points of withdrawal for the intermediate products.

The optimum values of these parameters based on the mini-
mum cost of manufacture are determined as the functions of the
quantity and composition of the initial mixture, provided that
the product obtained is of precisely the composition assigned or
that it changes within the permissible limits.

For the calculations relating to the statics of the fractional
distillation process, the material balance equation for the state
established in the part of the column situated below the i~/th
plate is written

Livy Xivy—Viyit FXp—WX,=0 12)

where

Liy,;=V+Wwheni<fand Ly, ,=V,+ W—Fwheni>f (13)
" V,=V when 0<i<W (14)

Consequently, the material balance of the process for the
established state may be written in the form:

1 .
Xi=———V+W(Vy,-_1+WX0) when 0<i<f  (15)
1
=— (. _ o
Xi= 5= (V¥ies+ WXo—FXy) when f<i<n+1

(16)

The statics of the fractional distillation process is described by
the system of eqns (4), (8)—(11), (15) and (16). Its solution makes
it possible to obtain the static relations between the basic para-
meters of the process and the concentration distribution of the
more volatile component in the liquid on the plates for different
operating conditions.

The calculation of the static characteristics of the process
was made for ihe above-mentioned fractional distillation column
for the separation of the methanol-water mixture, for the differ-
ent quantities and compositions of the initial mixture, and for
the constant composition of distillate and still product. As an
example, in Figures 5 and 6 the static characteristics of the
column are given. From Figure 5 it is evident that within a
certain range of values for the concentrations X7 and loads Gr
there exists an extremum relationship for the steam consumptionQ
per unit weight of distillate G p. With the increase in Gr the heat
consumption per unit of Gp also increases, especially at high
concentrations Xz. From the graph it is possible to determine

5083
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the operating conditions for which the energy requirements will
be within the limits which are economically expedient.

From the consideration of Figure 6 it follows that the static
characteristics have an extremum and ambiguous values (the
assigned compositions of the final products may be obtained
under different operating conditions). Curves I and 1I, which
limit the operating region for the parameters of the process,

represent the locus of values of the coordinates ¥ and D, at.

which the compositions of the final products are exactly equal
to those assigned. The minimum energy requirements of the
process correspond to the minimum value for the vapour flow V'
which, at the given values of D, F and X will secure the assigned
compositions Xp and Xyp. One of the tasks of the optimum
control is the determination and the maintenance, in relation
to the values of F and X, of the values ¥ and D, which corre-
spond to the coordinates of points situated on the left side of
the static characteristics.

For each set of operating conditions there is a limiting load
for the column in respect of the quantity of the initial mixture
of a given composition, at which the operating region degener-
ates into a point, see the extremum on curve I. With a further
increase in the quantity of the initial mixture it is impossible to
obtain the assigned compositions for the final products.

A reduction in load decreases the necessary vapour flow,
which leads to an increase in the enrichment of the vapour
phase by the more volatile component, and to an increase in
the efficiency of mass transfer, see eqn (9).

The optimum place for the introduction of the initial mix-
ture into the column is determined for each set of operating

conditions, proceeding from the fact that the concentration of .

the more volatile component in the initial mixture Xz should
be equal to the concentration X, on the feed plate, i.e., the
following condition is observed:

X, 1 <Xp<X,;_y (17)

As a result of the analysis of calculations relating to the
statics of the process it is possible to make the following de-
ductions:

(1) The plate-type distillation column for the separation of
binary mixtures is a non-linear system. The independent para-
meters in the calculations relating to the statics of the process
are the load of the column based on the quantity of the initial
mixture F, the composition of the initial mixture Xz, the value
of the vapour flow rate in the column ¥ and the distillate with-
drawal rate D.

(2) The region of the static characteristics in which the con-
ditional products may be obtained is limited by the four in-
dependent parameters indicated. These limitations are con-
ditioned by the kinetics of mass transfer. The assignment of
values for X p and Xw, which fall outside the region of their joint
existence, may cause oscillating operating conditions in the
column (the conditions of joint existence of values for Xp Xw
are realized periodically). :

(3) The relation betwcen the final products of the column
and the vapour flow rate may have an extremum. An increase in
the vapour flow rate increases the motive force of the process
Y? — Y,, but reduces the efficiency of each plate, which gives
rise to the extremum. This phenomenon is not found in the
calculations based on theoretical plates. The extremum for the

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

static characteristics may be conditioned by the kinetics of mass
transfer, as well as by the carrying away of the liquid from the

"plates.

(4) The static characteristics are ambiguous. This property
develops only in calculations which take into account the kin-
etics of mass transfer on the plates. The range of characteristics,
situated on the left side of the extremum, represents the operating
range.

(5) The change in composition of the vapour phase on the
plates is usually more appreciable than that for the liquid phase.

(6) The optimization of the process produces increased de-
mands on the system of automatic control, in view of the steep-
ness and ambiguity of the static characteristics.

As a result of the investigations described it was possible to

develop a control system for the distillation process, which is '

shown in Figure 7. Controller 1 maintains the assigned optimum
rate of supply of the initial mixture to the column.

Instruments 4 and 5 measure the rate of flow of the initial
mixture and send signals to controllers 2 and 3 for the flow
ratios Gp/Gr and GFr/Q.

The dynamic characteristics of instruments 4 and 5 are com-
puted so that the conditions of sc¢lective invariance in respect of
disturbances for the rate of flow of the initial mixture are ful-
filled. Controllers 2 and 3 maintain the material and thermal
balance of the process.

The control based on the disturbance of composition of the
initial mixture and on the deviation of the composition of the
liquid on the controlling plate is achieved by these same con-
trollers through the assignments computed and set by computer
10 (universal digital computer).

Converters 7 and 8 receive signals from transducers 6, 9

- and 11 which measure the compositions Xz and X; and the rate

of flow G, and transform them into signals which in turn are

‘admitted to computer 10.

The computer performs the following operations:

(1) Calculation of the optimum load of the column Gp for -

the current values of Xz and setting of the assignment for the
rate of flow controller 1, see Figure 5.

(2) Calculation of optimum ratios Gg/Gr and Gr/Q in re-
lation to the current values of G and X and setting of the
assignment for controllers 2 and 3, conforming to the conditions
of selective invariance.

(3) Correction of the calculated optimum ratios Gp/Gr and
Gr/Q based on the degree of deviation of the basic controllable
parameter—the deviation of concentration of the more volatile
component in the liquid on the selected plate (closing of the
control loop by means of the feed-back signal).

(4) Calculation of the optimum feed plate number and shift-
ing of the inlet of the initial mixture to the necessary plate. -

(5) In the case of multi-component mixtures: caiculation of

the plate number for the withdrawal of the side product and
calculation of its quantity. The corresponding assigned opera-
tions: the changing over to the necessary withdrawal plate and
sctting of the assignment for the controller of the side product
flow rate are not shown in the diagram.

(6) Transition from one algorithm of control to another—in
accordance with the change in the optimization assignment, with
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the transition (having reached definite parameters values) from
starting to normal operating conditions and from the latter to
the shut-down, etc.

In addition to this the usual operations of automatlcally
checking the accuracy of calculations and the working order of
the computer, the printing of results, signalling of inaccuracy
and faults, etc. should be performed. In case of faults or
stoppage of the computer, the assignments to controllers should
remain at values determined at the preceding instant.

In the development of the considered control circuit it was
assumed that the temperature of the initial mixture is constant.
It is known that the heating of the mixture to its boiling point
represents the optimum condition. With the variable composi-
tion and constant temperature of the initial mixture the ratio
between the liquid and the vapour phase, and the enthalpy will
change. Therefore, in the case of the composition of the initial
mixture changing within wide limits, it is expedient to control its
enthalpy. For this, an instrument should be included in the
control circuit which would measure the enthalpy of the initial
mixture and send the signal to the computer. The computer
should calculate the optimum enthalpy value for the parameters
of ‘the initial mixture at the corresponding instant of time and
pass the assignment to the steam consumption controller, which
in turn should transmit it to the heat exchanger for feed heating.

The adaptation of the proposed control system is expedient
in those complex cases where it is required that the separation
of components of the mixture should be made with a high ac-
curacy and where optimization of the process is required.

Nomenclature

D Quantity of distillate (kg-mole/h)

W Quantity of still product (kg-mole/h)

F  Quantity of initial mixture (kg-mole/h)
Plate number, for still i = 0, for condenser i = n + 1

f  Feed plate number

H Quantity of liquid on the plate (kg-mole)

L Quantity of liquid running off the plate (kg-mole/h)

V  Quantity of vapour leaving the plate (kg-mole/h)

QO Quantity of heat supplied to the evaporator (kcal/h)

Gr,v,p,w,r Quantity of initial mixture, vapour, distillate, still product,

reflux (kg/h)

x  Concentration of the more volatile component in the liquid on
the plate (mole fractions)

y  Concentration of the more volatile component in the vapour

above the plate (mole fractions)

Concentration of the more volatile component in the vapour

X;~X; (0), mole fractions
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which is in a state of equilibrium with the liquid of composition x
(mole fractions)

K, General mass-transfer coefficient, related to the unit area of phase
contact, calculated by the vapour phase (kg-mole/m?/h)

S Phase contact area on the plate (m?)

B, Particular mass-transfer coefficient in the llquld phase
(kg-mole/m?/h)

By Particular mass-transfer coefficient in the vapour phase

- (kg-mole/m?/h)
v  Time (h)
Ar  Contact time of phases on the plate (h)
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increase in the quantity of the initial mixture amounting to 5 per cent

< Figure 1. Response curves for concentrations X; for a step-like unit
increase in Xr amounting to 5 per cent
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Figure 3. Response curves for concentrations X; obtained for a step-like
unit increase in distillate withdrawal amounting to 5 per cent
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Figure 4. Response curves for concentrations obtained for a step-like
unit increase in vapour flow rate in the column amounting to 5 per cent
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Figure 5. The graph illustrating the relationship between the heat con-
sumption per unit weight ‘of the distillate Q|G p, and the quantity Gr
" and composition Xr of the initial mixture
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Figure 6. The operating region for the static parameters of the fractional

distillation column. Curve I: quantity of the initial mixture F is variable,

whilst its composition Xy is constant. Curve II: composition of the
initial mixture is variable, whilst its quantity is constant -

P
7 T
|
¢ I
P
gl - Lo g
| I _ql\.—J:-— i
v |Q1 | } T TH _] controlling
= X { L TTm plate
I__. i 5} | I
s Qg N
i Y L]

1
sl
GW
Figure.7. Block diagram for a combined selective invariant system of
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The Realization of a Self-adapting Control
Programme in a System with a Digital Computer
~ P.F.KLUBNIKIN

Introduction

Recently there has been a wide expansion in systems in which
the control of a load is achieved using a digital computer.

‘In these systems by means of the application of the proper

control system it is possible to obtain a self-adaptive (self-
organizing) property, even in the case where there is no a priori
information on all the properties of the load and the change
of the load parameters in the course of time.

"The elements of the theory of the construction of self-
adaptive control systems are known, but the application of
them in practice often results in substantial difficulties connected
with the special digital computing systems. The main difficulty
is the determination of the characteristics of the load (for
example, the transfer function) under conditions of normal
operation of the system and the search for the control signal

input to the load, which gives, from one or another point of -

view, the best control process.

This paper is devoted to the questions of the realization of
a self-adaptive control programme in a system with a digital
computer. One method of constructing a self-adaptive control
programme is considered, which permits it to be realized
relatively simply. Results of the experimental investigation of
control systems are presented.

The Method of Self-adaptation in the Control Programme

Consider an automatic control system consisting of a con-
tinuous part (the load) and a digital computer (DCM, Figure I).
The DCM operates in a realm ‘of periodic repetition of a
programme with a time cycle 7"

Let the link between the control input X, and the output
quantity of the system X be given in the form

X*=W;(2) X3 : M

where X* and X,* are the values of X and X at the moment
of time T W3(z) is the transfer function of the 1nstantaneous
system; z = e~? = ¢~ 7% is a lag operator.

Then as is known'~3, in order for (1) to be satisfied the
control system can be realized in the form of the block diagram
shown in Figure 2, where for the transfer functions of the
elements of the programme the following conditions should be
satisfied

Ws (2)
Wy (2)
. where Wx(z) is the discrete transfer function of the load. The

transfer function D,(z) is chosen arbitrarily. In the most simple
case '

Dy (2)=W3(2), D3 (Z)"

@)

Ciz+0C,
C3 z+ 1
However, to satisfy the conditions (2) and, consequently to
obtain the prescribed properties of the system, is impossible

when the transfer function of the load Wgx(z) is unknown or
when its coefficients have an unknown time dependence, which

D,(2)= 3

is often the case in practice. It should be noted, that in the

indicated situation a general control programme, calculated in.

.. the presence of complete information about the load, is usually

not convenient.

" Therefore, the first step in a self-adaptive control programme
is. the determination of the discrete transfer function of the
load, which is written in the form

X* A"+ A,_ 2" 4 LAz

L =W, (2)=
@)= B,2"+B,_12" '+ ...B,z+B,

where n is the order of the load equations; A (), B;() are
time-dependent coefficients (| = 1,2, 3,...,n,7=20,1,2,..., n).

Consider that the computing-time cycle of the DCM is
chosen so that the coefficients 4;(f) and B;(f) are unable to
change significantly over several cycles, and that » is unknown:
Then in order to determine during the process of operation of
the system the current values of the coefficients A4; and B;, and
consequently Wy (z) for a given moment of time, it is possible
to use two simpler methods. _

‘The first method is similar to that described in a previous
work? and is based on the solution of a system of equations,
which is obtained by using the expressions (4), i. e.

Q)

X, Bo+ Xy 1Bi+ X4 2By + ... + X4, B,

=dy s 14} +dk+2A2+ R R N )

where £k =0,1,2,...,2n
_ dy=d(t—kTuX,=X(t—kT)

are the values of the input and output quantities of the load
measured in the kth preceding calculation cycle; 4,” and B,
are the approximate values of the coefficients for the current
calculation cycle.

. The system of eqns (5) is solved on the DCM relative to 4

A;' and By’ by one of the known methods, for example by the
method of iterations, and Wg (z) is determined in the same way.
The second method uses the principle of a ‘learning model’®
and includes the following.

Using the values of X;, and 45, (k= 0, 1, 2, ..., n) available

in the memory of the DCM, a search is carried out by the
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gradient method for the magnitudes of the coefficients A4;, B
which give a minimum in the mean difference

A =

av

||M§

X(t—vT) X (t—vT)I

3=

v

where m is the number of cyc]es for averaging
X*=Wy(2)d*
X = Wiy ()"

Waum(2) is a ‘model’ transfer function for the load formed
in the DCM. This method is illustrated in the diagram shown
in Figure 3.

.The second stage of the method described for bu11d1ng a
self-adaptive control programme is the determination of a con-
trol signal d, which will guarantee the stability of the system
and satisfy (1) or a better approximation to this condition. As

a criterion for the approximation to (1) it is more useful to-

select the mean absolute value or the mean square of the error

i
7 Z 's(t—vT)! 6)
1 s '
= 2 [s—oD}
where /1 is the number of averaging cycles
£ = [ (2)— W3 ()] X3

W' (2) is the transfer function of the instantaneous system,

W3’(Z)= WH(Z) [D (Z)DZ (Z)+D3 (Z)]

1+ D2 (2) Wy(2) : )
Substltutlng in (7) the values of Dl(z) and’ Dy(z) from (2),
one gets
W
)1 D, 2 W2
BO=T e e

Obviously in the general case Wiyar(z) # Wy (z) and conse-
quently W;'(z) # W,(z). However, as experimental investiga-
tions have shown, even a relatively rough approximation
Wrm(z) to W (z) for the condition of stability of the instan-
taneous circuit of the system (Figure 2), gives a behaviour of
the system that'is close to that prescribed.

Thus on the basis of (6) and (7) one has

g,=F(C,,C,,Cjs,...) (8)

The stability of the system reaches that sought in the region
of the coefficients C;,-C,, and C; of the minimum é¢,,. The
search is carried out by means of extrapolation in the DCM of

- X, in r-conditional cycles and the calculation of ¢,,r for these
cycles. _

The idea of the method is explained in the diagrams shown

-in Figure 4. As a result, for each cycle of the DCM the following
order of operations is obtained:

(1) Input X, and X.

(2) Extrapolation of Xy in r-conditional cycles.

In the simplest case for linear extrapolation from the preced-
ing cycle one gets ’
Xop(t+2zT)=z[X,(t)— X, (t—T)]+ X, (1) )]
(3) Determination of the coefficients of Wy (z).

(4) The search for the minimum e,,5 in the region of the
coefficients Dy(z) taking into account the next r cycles.

For the method of the modified gradient, on the basis of (8),
one has the following formulae

NCAN ‘FA(Cy+AC, Cz,

av

C3)—F(Cy,C5,Ci)

AC
¢ _Fa(C1, G +AC,C)—F (€1, C,, c3)
AC
(& Fa(CuCo C3+AC)—F(C;,Cy, Cs)
AC
AC; = —keP
AC,=—kelP
AC; = —kel&p
-G
X‘TE=W3 (Z)ons 2E—(X "'XE)DZ(Z)
Xismp DX, Xi= W ()4
dy=X3+ X% (10)

[Note the quantity AC can be taken equal to umty]

where £, are the partial derivatives with respect to the coeffi-
cients D,(z); k is the coefficient of a step in the direction of
the reversed gradient; AC is the trial increment; Xz, X, XoE,

X3k, di are the values of the corresponding quantities in the

conditional cycles within the DCM (the index E indicates extra-
polated values of the corresponding quantities).

(5) After an m step search the output signal from the DCM d
is calculated in accordance with the diagram shown in Figure 2.

d(t)=X, (1) +X, ()

X, )=C,[X: (- X O]+ C([X, (t—T)~X (t-T)]
—C3X,(t—T) ’

X, ()=G Xy (t—T)+ GZXO_(t—2 T)+ ... +G,Xo(t—mT)

X; (t)——G1Xo(t)+ (G B1+G2)Xo(t—T)

1

4+ . +A B,G, X,[t—(m+n— 1)T]——X3(t—T)

- '—j—:X3 [t—(n—.l) T] | ’ (11’)
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Here one takes
W3(Z)—G12+G222+G323+ +G Zm

(6) The output of the control signal d and the updatmg of the
information in memory.

In Figure 5 is shown the logical flow diagram of a self—
adaptive DCM programme which assures that the given opera-
tions and the calculations according to the formulae (9)-(11)
will be carried out. Circles indicate conditional transfer opera-
tors (transfer control), and the conditions are written inside
them. As can be seen from the flow chart, 15 cycles are provided -
for in the control programme, in the course of which normal

control is achieved according to the diagram shown in Figure 2. .

This is required for the accumulation of information in the
DCM. No particular explanation is required for the remainder
of the flow chart.

It must only be noted that the number of conditional cycles
in the DCM must be chosen so that the time for accomplishing
the operations described does not take longer than the cycle
time 7. If, for a minimum number of conditional cycles (one or
two), it is not possible to satisfy this condition, then it is necessary
to.use a DCM that is faster acting (in which each arithmetical
or logical operation is executed in less time).

Results of Experimental Investigations

In carrying out the experimental investigation of the load in
the system of Figure I its dynamic model was changed. The
dynamic model of the load was linked with the DCM through
- a device transforming a voltage into an 8-digit binary code or
the code into a voltage. The control input X is supplied in the
form of ‘a voltage and fed through the transforming device to
the DCM. The diagram for the realization of the control system
during the performance of the experiment is shown in Figure 6.

A control programme was fed into the DCM corresponding
to the flow diagram shown in Figure 5. The dynamic model of
the load was characterized by the transfer function

K(T,S+1)

S(TES?+2T,E5+1) (12)

Wy (S) =

The quantities K, Ty, 7, and £ can be varied in- time over
* the following limits: K = 01 + 0 001; Ty =15+ 02, T, =
0:2-0:5; &£ = 02 = 0-05.
The rate of change of the quantities indicated did not exceed
1-5 per cent/sec from the initial value. The calculation cycle in
the DCM was equal to 7= 0-15 sec. The connection between
the control input X, and the output of the system X was given
in the form

'W3(z)=%-.(z‘-{—‘zz+zs)A . 13

For fixed values of the coefficients W (s) of (12) and with
fulfilment of the conditions (2) the system has a first-order
instability and a transfer process defined by (13). The rate gain
in the system is relatively small. Its increase is limited by an

" instability in the instantaneous circuit for the selected structure

Dy(2) of (3).
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In Figure 7 is shown an oscillogram for the development of
a control system with normal control (self-adaptive programme:
excluded). As the experiment shows for normal control the
system is extremely sensitive to a change of the coefficients
D,(2), especially when this leads to an increase in the gain of the
instantaneous circuit. In this case a change in the coefficients -
C;, Cy, and Cy by 10-15 per cent makes the system unstable.
The same effect occurs in the system with a change in Wg(2).

On putting a self-adaptive control system into operation for
a short time (10-15 sec) the optimal value of the coefficients
D,(z) was found and the error was reduced to a minimum. In

the process of operating, the system automatically adapted itself

to the changed characteristics of the load.

In Figure 8 are shown typical curves of the change of the
coefficients Wy (z) during their determination in the DCM. The
transfer function corresponding to (12) is written in the form

a,z+a,z> +ayz’
(1-2)(a,z*+asz+1)

Wy (2)= (14)

It can be seen from the curves that even for 6-8sec the
coefficients of (14) a; approximate their true values; indicated
on the graph by broken lines.

The curves in Figure 8 were made for the very worst case,
where the determination is carried out by a step input to the
system applied at the time ¢ = 0, after which X, remains con-
stant. For an arbitrary time change of X,(#) the errors in the

determination of the coefficients are significantly decreased and -

do not exceed 5-10 per cent.

_In Figures 9 and 10 are shown oscillograms showing the
evolution of the system in the process of changing the coefficients
Dy (2), C;, Cy, and Cj. The oscillograms in Figure 9 correspond
to a combination of initial values of Ci, C,, and Cy for which
the total gain pa of the instantaneous circuit “of the system, i.e.,
W (1) Dy(1) is small and for which the variable input 51gna1
X,(9) error is large. The oscillograms in Figure 10 correspond
to initial values C;, C,, and Cj, which apply to an unstable system.
In both cases, in a relatively small time the system automatically
selects the optimum value of the coefficients D,(z), for which
the error is a minimum for the given control input X?).

[Tt is interesting to note that when the load simulator is
switched off (X = const.) in the course of a few cycles of the
operation of the DCM the quantity &,z is reduced to a minimum
in the same number as for Xo(0), which indicates the eﬂicxency
of the search method used.]

‘Conclusions

~ The proposed method of constructing a self-adaptive control
programme can easily be realized in a DCM and requires a
relatively small number of instructions in the programme.

For the determination of the dynamic properties of the load,
in the process of normal operation of the automatic control
system with a DCM, it is useful to use a transfer function in the
form Wg(z) (the equivalent of a difference equation). Here a
good result in the determination of the coefficients of Wi (z)
gives a method presented above, which is based on the pr1ncxp1e
of a ‘learning model’.

The experimental investigation showed the efﬁmency of the
self-adaptive control programme, constructed according to the
proposed method. .
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Figure 7. Oscillogram of the evolution of an input control system with
constant coefficients D,(z) with normal control
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Figure 8. Graph of the change of the coefficients a; in the process of searching in the determination of Wy (2)
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Figure 9. Oscillograms of the operation of the system:
AC=25 K=098, m=3, r=2 A=1C;q=0Cpy=Cy =0
(a) portion of initial operation
(b) portion after forming the coefficients
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Figure 10. Oscillograms of the operation of the systems: C = 275,
K=098 m=3,r=2,A=1
(1) initial operation
(2) after forming the coefficients )
(@) Ciy=—098 Cpy= =025 C4 =08
) Cy=—09 Cp= 022 Cu=1023
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Non Linear Programming in the Investigation of Optimal
Automatic Control Systems

N.Y. ANDREEV

This paper presents a method of solving a problem in non-linear
programming. The essence of the method consists in reducing
the set problem to a repeated search for a solution of a linear
programming problem and the choice of values for certain
additional parameters that are introduced. Non-linear program-
ming problems of a similar nature may be met with in the
selection of optimal automatic control systems.

Presently linear programming has deeply penetrated into the
techniques used for investigating automatic control systems.
Academician Pontryagin’s method?, which determines the
optimal control for an automatic system in a number of practic-
ally important cases (e. g. the solution of the problem of optimal
linear high-speed action), contains a linear programming
problem as one of its intermediate stages. Bellman’s method of
dynamic programming?, which is of great genecrality and is also
used for investigating automatic control systems, has a linear
programming problem as an intermediate stage in a number of
cases (when the profit function is linearly dependent on the
selected parameters). Linear programming methods are used
for solving reliability problems®, problems of rational tolerances
in the production of assemblies?, and many other problems
closely connected with the investigation and development of
automatic control systems. It should be noted that in a number
of practically important cases the investigation of automatic
control systems reduces to a complex problem—a non-linear
programming problem, whose solution has so far only been
obtained for certain particular cases?. )

This paper puts forward a method of non-linear programming
suitable for the solution of a broad range of problems. This
method relies essentially on the techniques of linear programming.
Therefore the formulation of the linear programming problem
is set out below.

As is known*~®, this problem is expressed in the following
manner. It is necessary to find the greatest value of a linear
function of » variables x;, x,, ..., x,,

L:L(xbe)--'an)=p1x1+p2x2+ +pnxn (1)

when the variables are subject to constraints of the form

.................... @

3)
dlrx1+ +dnrxn Slr

The relations (2) and (3) determine the region G of variation
of the variables x, ..., x,. These conditions can be transformed
in such a way that either m or r becomes zero?. In actual problems
one uses the method of writing the conditions that is most
convenient.

In actual problems the function L serves as an index of the
quality of the solution. The parameters x,, ..., x,, are character-
istic of the object and the investigation, and have various
physical significances according to the problem. For example,
in solving a problem on high-speed action these parameters
appear as control actions.

- A geometrical interpretation can be given to the linear
programming problem as follows: it is required to find the
greatest value of linear function L of the variables x,, ..., x,,
whose variation is confined to a region G given in the form of a
polyhedron in n-dimensional space.

Efficient techniques have been developed for solving the
linear programming problem® 5. But the linear programming
method is inapplicable when either the quality index is a non-
linear function F (xy, ..., x,) or the region G of variation of the
parameters Xx, ..., x,, is determined by non-linear relations
between them. Such cases arise, for example, in solving the
high-speed action of a system:

1. If the equations of the system include non-linear terms
in the control parameters (quality index a non-linear function
of the parameters);

2. If the region G of variation of the parameters is deter-
mined by non-linear relations, e.g. of the form

xi+ ... +x2<R?

(the region of control forms a hypersphere centred on the origin).

If only the relations defining the region G are non-linear
while the quality index is a linear function, one can replace this
region by one bounded by relations of the same type as (2) and 3)
which coincide accurately enough with the original region
(e.g- the hypersphere may be replaced by a polyhedron circum-
scribed to it). The problem is thus reduced to one of linear
programming.

If the quality index is a non-linear function Fwhile the region
G is determined by linear relations such as (2) and (3), one can
sometimes replace the non-linear function F (xg, ..., X) by one
that is piecewise linear, and proceed to solve the problem by
linear programming methods?. But this device cannot always be
used, and involves very bulky computation when it is applicable.

In view of what has been said, the following formulation
of the non-linear programming problem is of practical and
theoretical interest. Let the quahty index be a given non-linear
function F of the variables x, ..., x,,. Without loss of generality,
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it may be considered that the function F(x, ..., x,) may be
represented as a function @ of certain linear forms L,, L, ...,
Lk+l

F(x1,%35 000 %) =®(Ly, Ly, ...y Ly 1) 4)
where @ is a given function of the variables Ly, ..., Ly+1;
Li=qijotgi1 X1+ .. +qimX, ®)

the g;; being given numbers for i =i, 2,...,n and j =0, 1, 2,
..., h, while k < n.

It is required to find the greatest value of the function F
under the conditions (2) and (3).

Before proceeding with the solution of this problem, it must
be explained why the function F is replaced by ®. The fact is
that in many practical problems the number # of variables is
large, and this severely complicates the process of finding a
solution. Therefore it is worth while, if at all possible, to go
over from the function F of many variables to the function @
depending on a lesser number of variables L;. Such a transition,
as will be seen from what follows, simplifies the procedure for
obtaining a solution.

Two examples are given to illustrate this method of transition
to a smaller number of variables.

Example 1—F (x;, X5, X3) = X3 + x5 4+ x5 + 2 x; X3.

This function of threee variables x;, x, and x; can be
expressed as a function of two other variables L; and L,:

‘ Li+L2
F(xq,%5,x3)=® (L, Ly)= 12 z

where L; = x; + X 4 X3, Ly = X — Xp — X3.
Here n =3 and k£ = 1.

Example 2—F (x;, x5) = x% + x3.

This function of two variables cannot be expressed as a
function of a lesser number of variables L;. In this example one
may put L; = x, and L, = x,. Heren =2 and k = 1.

The greatest value of the function F in the region G of varia-
tion of the variables xi, ..., x, as defined by conditions (2) and (3)
coincides with the greatest value of the function ® in the region Q
of variation of the variables L, ..., L;+; as determined also in
the final analysis by conditions (2) and (3). The greatest value
of ® may be attained either within the region @ or on its
boundary S. Consider each of these cases separately.

First Case

Suppose the function @ attains a maximum within the
region Q. In this event the problem reduces to finding a maximum
of a function of k + 1 variables. It is known that a necessary
condition for @ to have a maximum is that its partial derivatives
should vanish:

o0
oL

i

=0, i=1,2,....k+1 (6)

at a certain point in the region Q of the parameter space
(L19 ey Lk+1)~

If @ is not differentiable everywhere inside Q, some of the
conditions (6) may be replaced by these: '

d®L, does notexist,v = 1,2, ..., m <k + 1.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

In the general case the system of eqn (6) may have several
solutions. Out of them must be chosen the one that corresponds
to the greatest value of ®@. Suppose this solution has been found:

Li=L,, i=1,2..k+1 Q)

Substituting the values (7) of the variables L; in eqn (5), it is
possible to determine the values of the quantities x; = x;,, at
which the required greatest value of F is attained. Thus, in this
case, the problem is solved by using the normal methods of
classical analysis. Conditions (2) and (3) are here used only to
reject those maxima of @ (or F) that do not fall within Q (or G).
This first case is rarely met in practice, since the quality index
is normally taken as a function F which has no maximum within
the region G. The case considered below is of greater practical

- interest.

Second Case

Suppose the function ® has no maximum within the region Q,
and attains its greatest value on the boundary S of this region.
In this case the determination of the greatest value cannot be
solved by the techniques of classical analysis, and so the follow-
ing two-stage method is proposed for solving this problem.

In the first stage one must determine the boundary S of the

region Q, while in the second, one finds the greatest value of the

function ® on §. Here one may make use of the ideas and
techniques developed by the author’ 8, applying them to a
problem of a different nature.

To determine the boundary S one may proceed in the
following manner. For fixed values of the variables

L1=C1,L2=C2,....,Lk=ck (8)

one must find the greatest (and least) value of L+, (see Figure 1,

- where k = 1).

Since the greatest and least values of L4, are determined
by similar means, from now on only the greatest values of
L4, are mentioned (i.e. only one half-branch of S is dealt with).

It follows that, to find one point on S, one must obtain the
gréatest value of the linear form L, under conditions (2), (3)
and (8). This is a typical linear programming problem. Condi-
tions (8) have essentially changed nothing in conditions (2)
and (3); the number of equations has merely increased. by k.
Taking various values of the parameters C,, C,, ..., Cy, one
can also derive the points on S corresponding to them. If these
points are chosen so as to cover the whole of S densely enough,
the first stage of the problem may be considered solved.

Now it is necessary to solve the second stage of the problem,
i.e. to find the greatest value of @ on S. This is easily solved if
the number k of dimensions of S is small. In this case the
greatest value of @ can be determined approximately by com-
paring the values of @ at the nodes of a network formed by
discrete values of the numbers C,, C, ..., C;.. If the number k&
of dimensions of § is large, producing a close network of values
of @ on S becomes an extremely laborious task, which cannot
always be carried out in a reasonable time even by the use of
modern high-speed computer techniques.

In this case the determination of the greatest value of ®
reduces to finding the maximum of the function

f=f (Cl’ Cysones Ck)=q) [Cn eees Ck’ Lk+1 (Cp ooy Ck)] ®
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where Ly, (Cy, ..., Cy) is the greatest (least) value of the linear
form L+, under conditions (2), (3) and (8). The greatest value
of fon S in general coincides with the maximum of this function,
i.e. isattained within the region of variation of the parameters C;.

To determine the maximum of f = f(C,, ..., C;) use can
be made of the method of most rapid descent?: ®. The combina-
tion of the method given above (which leads to the boundary §
of the reglon O, and to the function f) and the method of most
rapid descent (leading to the maximum of f) makes it possible
to avoid the computation of values of f at a large number of
points densely covering the whole region S of variation of the
variables Ci, ..., Cy, and to replace these bulky calculations by
more economic ones according to the following plan.

Let a first approximation to the variables

C1=C11, C2=C21, ceey Ck=Ck1

be chosen from any considerations. To this corresponds a value
of the function f; = f(Cyy, Cy, ..., Cyy). Now the direction of
the gradient of f at this point is determined, which as is known

is given by a vector in the space G = (Cy,..., C;), whose
projections on the C,, C,, ..., Ck axes are respectively

o o o

0C,” dC, " dC,

The partial derivatives 9f/0C; may be derived analytically if one
has succeeded in obtaining a simple analytical expression for f.

But one cannot count on this, since normally the expression
for fis complicated and, what is more, cannot be derived in
explicit form. Thus in the general case the derivatives dfC;
must be obtained approximately as the ratio of finite differences

o A
dC; AC,
where Af; = S(Cs oy Cl=p)1, Cy + AC,, Clrs - Crp) —
— f(Cys +.es Crp).
After determining the gradient of fat the point (Cyy, ..., Ciy),

a displacement in the space G is made along this gradient vector,
i.e. the values of f are considered for the following values of the
variables:

af
¢, °

k) are evaluated at C, = Cy,,

9
Corta~ f

8, C,= ac,

vers Co=Cpy+=
where the bf/bCi i=12,...,
Cg = C21, aeay Ck = Ckl'

The displacement in the chosen direction is terminated at
the value ¢ = ¢, at which the function

oC,

reaches a maximum. This maximum of &, (&) may be determined
graphically (see Figure 2).
The values of the variables

51(3)—f<c11+azz s Gy 2 g )

of af
~&1s
*ac, o ac,
are taken as the second approximation. The value of the function
f=/1=f(Cy, ..., Cyp) is taken as the second approximation

to f.

Ci1=Ci=Cy, s C=Chy=Cyy +5+
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Then the third and succeeding approximations to the
variables Cj, ..., C}, and the function f are obtained by the
method given above

The (v 4 1)th approximation is given by the formulae:

' of of
Ci(v+1)=clu+acl Ck(v+1)_ckv+ac
where & = ¢, corresponds to a maximum of the function

of of
5'()6)=f<clv+a—clﬁ) . Clw'*'a—ck8
fv+ 1 =f (C1 (w+1) Cz (w+1)s ==es Ck (v+ 1))

The process of finding the maximum of fis terminated when two
successive approximations to f differ by a negligible amount.

In the general case the function f may have several maxima,
and it is necessary to find the greatest of these. It should be
noted that in the general case the greatest value of fis attained
within the region S of variation of the parameters C;, Cy, ..., Cj,
i.e. it coincides with a maximum of this function. Only in rare

_ individual cases is the greatest value of fattained on the boundary

of the region S. This assertion follows from the fact that in the
general case the function F(x,, x,, ..., x/i) reaches its greatest
value on a face, and not at a vertex, of the polyhedron defined
by conditions (2) and (3).

Based on the above, the following sequence of operations
can now be recommended for determining a maximum of the

function f.
(a) Choose the ﬁrst approximation to the variables
Cr=Cy, ..., Cpy = Cpy.

b) Compute the value of the ﬁrst approximation to the
function f = f; = f(Cyy ..., Cip).

(c) Evaluate the components of the gradient vector of f at
the first approximation point:

of U
ac, "aC,

(d) Calculate the function

f

51(3)-f<c11+ac i

ooy Ckl +‘6—C—£>

for increasing values. of the parameter & = Ae-l, where
{=1,2,.... The increment Ae is chosen in accordance with
the peculiarities of f that become evident during the process of
computation: the more gentle the variation in f, the larger
can Ae be taken.

(e) Determine the value of the parameter & = g that makes
the function &; (&) a maximum.

(f) Determine the second approximation

9 o
C12~C11+a£ k2=Ck1+5a‘81

(g) Evaluate the second approximation to f:
f2 =f(C12’ C22, ER) Ck2)~‘
‘ ‘(h) Calculate the difference between the two successive
approximations to f; i.e. f, — f;.
This sequence is continued until the difference

Jen = fo = F(Cier), -, Clerd) — f(Crs -, Ci)
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becomes negligibly small. Ordinarily the number of approxima-
tions that have to be taken when using this technique is not great.
The computations involved can readily be programmed for a
computer dealing with finite differences.

One may naturally wonder whether the method of most
rapid descent cannot be applied directly to determining the
greatest value of the function F (xy, ..., x,,) under conditions (2)
and (3). In principle, this approach is also possible, but it leads
to substantially more complex calculations in the cases where (a)
the number » of variables x;, ..., x, is significantly greater than
the number k of variables C, ..., Cy, and (b) the number of
inequalities (and equations) in conditions (2) and (3) is large.

The considerable increase in the volume of computation in
the first case needs no explanation. In the second case, it arises
from the fact that the direct application of the method of most
rapid descent here requires that at each step of the calculation,
when ¢ is increased by Ae, one has also to check whether or not
conditions (2) and (3) are satisfied. Also the transition from one
face to another of the polyhedron defined by (2) and (3) involves
a change in the form of a function of » — r variables.

This complicates the programming of the computation.
It follows that the volume of work in deriving each approxima-
tion increases, and so does the number of approximations.

When the number of inequalities in (3) is small and
k +1=mn, both the methods become roughly equal in
time-consumption.

These two different cases have been considered above:
(a) The greatest value of F (and @) is attained within the region
of variation of the variables xy, ..., x, (or L,, ..., L;+y), and
(b) the greatest value of F (and ®) is attained on the boundary
of this region, the function having no maximum within the
region G (or Q). )

The case may arise [al though also improbable, as (a) above]
where the function F (or ®) has a maximum within the region G
(or Q), but attains its greatest value on the boundary of this
region. Consequently in this case the maximum of @ has to be
found and compared with the greatest value of this function
reached on the boundary S, and the greater of the two has to
be chosen.

It may be expected that the techniques of solving non-linear
programming problems will develop in the future, and that
experience in this field will accumulate. Therefore it is worth
making the following more general statement of the problem.

Let there be a method for determining the greatest (and least)
value of the function ¥ (x;, ..., x,,) under conditions (2) and (3)
that are imposed on the region of variation of the variables
Xy, -+ .5 Xp. It is necessary to find the greatest value of the function

F(xgy.x)=®(¥,Li,..., L) (10)

where L, = gpo + Gpi X1 + ... + qpu X0 = 1,2, .., k, k <n,
and conditions (2) and (3) are satisfied.

Consider @ as a function of the k + 1 parameters ¥, L,
..., L. The greatest value of this functipn may be attained
either within the region Q of variation of these variables or on
its boundary.

If the greatest value of @ is reached within Q (an improbable
case in practice), then the problem reduces to finding the maxima
of this function, which are determined by the equations:

o _, 00
R oL,

p

=0 - p=1,2,...,k (11)
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These equations enable one to determine the values of the
functions ¥ =%, L, = Ly, ..., L, = Ly, which correspond
to a maximum of ®@. If the solution of eqn (11) is not unique,
then one must choose from all its solutions the one that corres-
ponds- to the greatest of the maxima of ®. From the relations

\F(xl, ...,xn)=\_{lo
Qo+ dp1X1+ - Fap¥a=Lpos p=1,2,...k  (12)

one determines the values of the variables Xy, Xoq, ..., Xngo
corresponding to the greatest value of the function ®. In the
general case the solution of the system (12) is not unique.

If, however, the greatest value of @ is-reached on the bound-
ary S of the region Q (which is more likely in practical cases),
then it is desirable to solve the problem as stated in two stages.

First one must find the boundary .S, and then determine the
greatest value of @ on it. In determining the boundary S, it is
necessary to take given values of the linear forms

L,=Cy,Ly,=C,,...,L,=C, (13)

and then determine the greatest and least values of the function
¥ (xq, X, ..., X,) under conditions (2), (3) and (13).

It has been pointed out above that there is a method for
solving this problem [the addition of (13) does not in principle
alter conditions (2) and (3)]. Taking various given values of the
parameters Cy, ..., C;, one may obtain the corresponding values:

\P1=‘P(C1, Cz, “iey Ck)
o =(D[lP(C1a'“,Ck)’ Cls-n,ck]:f(cnm,ck)
X; =xi(C1,C2,...,Ck) i=1,2,..v.,7'l

The second stage of the solution consists in the determination
of the maximum of f= f(C, ..., C;) and the values of the
variables

X1 =X105X2=X205 405 Xy = Xpo
corresponding to this maximum. This part of the solution is
carried out in exactly the same way as for the first statement of
the problem. A simple example is now given to explain the

technique that has been proposed for solving the non-linear
programming problem.

Example’

Determination of the greatest value of the function
F(xy,%3,X3)=% (X5 +X3)
under the conditions:
X, +2x,+3x3;<60
x2>0,x,>0,x;=>0

The given function F of the three variables x;, x, and x; can
be expressed as a function @ of two linear forms L; and L,:

Ly=x;+x3, L =%,
with
®(Ly,Ly)=L," L,

511/4
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In this example @ is a monotone increasing function. Hence
it has no maximum, and attains its greatest value on the

boundary S. Following the procedure set out above, one deter-

mines the boundary S of the region Q of variation of the linear
forms L, and L,. In this. case the boundary is a certain curve
(a one-dimensional domain). _

In order to find S, it is necessary to take various given
values of the linear form L, and to evaluate for each the greatest
and least values of L,. The question arises of how to choose
these given values of L,. This question is easily answered. The
greatest and least values of L, under the above conditions are
readily obtained by linear programming methods and are:

0<L;<30

Taking a certain value L; = C;, where 0 < C; < 30, the greatest
value of L, is found (the least value of L, is of no interest in
this example, since @ is a monotone increasing function in the
variable L,). This greatest value is easily obtained by linear
programming methods (or by other means), and may be expressed
in terms of C, in the following form:

L;=60—2C,

The function @ can be expressed in terms of the parameter C;
as follows over the section of S that is being considered:

®=C,(60—2C,)

‘It can readily be seen that the function ® on the boundary S
attains a maximum at C; = Cyy = 15. .
Now it is easy to determine all the quantities of interest:

®o=Fo=15(60—2-15)=450
X10=60—215=30

Figure 1

511/5

' The values of x,, and x5, are obtained from the equations:

XZ+X3=15

30+2x,+3x3=60 (see above conditions)

Solution of these equations gives the following values for x,,
and xg,: ‘

x20é15, x30=0
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The Approximate Calculation of a Class of Automatic
Systems with Forced Parameter Optimization

Yu.I. ALIMOV

Introduction

§ 1. This paper considers an automatic system (hereafter called -

System A) that consists of linear continuous filters @; and @,
connected in parallel, with a test signal 0 (¢¥) at the input and

" closed-loop astatic systems for adjusting the parameters
X =(Xy, ..., Xn) of filter @, (see Figure I). The self-adjusting
circuit includes a”detector & of the error signal & (¢), phase
discriminators ®9,, averaging filters W, and integrating net-
works. The control actions in the parameter-adjusting circuits
are formed by using a search modulation uAx () of the para-
meters. The defined parameters ¥, and Y, of filters @, and @,
respectively vary with time according to a law that is only
known approximately beforehand.

In practice, the following varlants of System A are most
often met.

(1) Y; = const., X, = Y, (#). The filter ®, is a stationary
-calibration display unit, while the filter ®, is an automatic
system with extremal adjustment of its correcting elements,
compensating given to a extent the drift of the parameters
Y, ()'* or the variation in the form of the external action
0 (8.

(2) Yy = Y, (#), Y, = const. Filter @, is a controlled plant
w1th variable dynamic properties, while filter @, is a learing
model of this plant®,

Of course, the general case Y; = Y1 (1), Y, = Y, (1) is also
possible in practice; for example, a calibration display unit @,
with programmed parameter variation.

§ 2. In Part I of the paper the small-parameter method is
used in deriving enough general approximate equations for the
processes of self-adjustment in System A under the assumption
that the amplitudes of the search signals uAx (¢) are small. The
equations take account of the limited memory of filters ¢, and
¢,, and cover the case of any given explicit test and search
actions. The control signals in the self-adjusting circuits are
expressed in terms of the frcquency characteristics of filters ¢,
and ¢, and the spectra of signals 6 (f) and uAx (¢). In Part II
the general equations of motion for System A are simplified,
taking the assumption that the search signals uAx (f) are
sinusoidal. Then, as a simplified mathematical abstraction, the
case of an almost periodic action 6 (¢) is examined in detail in
Part III. A very simple analysis of the relevant equations of
motion shows the desirability, with a high-frequency sinusoidal
signal uAx; (¢), of using, in the phase discriminator, a reference
voltage phase chifted with respect to this signal, which permits
one to make use of the extra useful information carried by the

"quadrature component of the search-frequency signal, by ana-
logy with the practice, in radio engineering, of using amplitude

and phase modulation simultaneously’. Part IV uses the example
of awhite-noise test signal to show that the equations derived
may also be applied to the description of System A with stochas-
tically defined signals 0 (¢), without relying on the hypothesis of
the closeness of random processes in the system to stationary
ergodic ones. There is a brief discussion of the relation between
the results derived here and those in. previous papers'¢. Some
attention is also devoted to quasi-stationary modes of self-
adjusting operation.

In conclusion it should be stressed that all the de51gn examples
quoted have been chosen to be simple as far as possible, and that
the main emphasis is on the physical interpretation and qualit-
ative analysis of the mathematical relations derived.

1. Derivation of General Equations of Motion for the
Self-adjusting System Considered

§ 3. The most important of the assumptions, under which
the equations for the processes of self-adjustment in Systcm A
are derived below, are first set out:,

(a) The amplitudes of the search-modulation signals are
considered small, and to emphasize this they are denoted by
ulx (f) where y is a small parameter.

(b) It is assumed that System A starts to operate at a certain
instant ¢ = #,, having been in an equilibrium condition up to
that time, and thus the output quantity of filter ®; (i = 1, 2) is
determined by the relation

éi(t)zth(I)Ki(t,r)dr, i=1,2 )

where K; (¢, 7) is the weighting function of filter ;.
Equation (1) is expressed in the form
t

a;i(t)=ft_T0(t)K,-(t,r)drv.+j 6(x)K;(t,7)dr, i=1,2

to<t—T<t )
Let the filters @, be stable. Then if
16()]<const (—oco<t< + o) 3)

it may be considered that for a certain sufficiently large T the
first integral in eqn (2) is negligibly small, and

éi(t)ﬁjt 0()K;(t,7)dz, i=1,2 (4)
t-T

In other words, this means that by the instant ¢ information on
the state of filters ®; and on the values of.the signal 6 (7) at
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instants 7 > ¢t — T is practically completely lost, and the value

of &; (1) may be identified with the reaction of filter @, to the-

signal

0, (v) = 0(r)fort—T<1<t '
37710 outside that interval O

assuming that &, (z) = Ofort < t — T.

The conditional nature of any choice of a numerical value
for T matches the complexity of the actual situation: the
‘memory’ T of a linear system depends substantially on the
criterion chosen and on many factors that are often not subject
to any sort of accurate quantitative calculation (on the structure
of the signal 6 (¢) within the bounds of the natural and easily
enough controlled restriction (3), on the level of fluctuating
disturbance in the system, etc.). If filter @, is near to the stability
boundary in parameter space, then of course 7— co. If stability
is lost then (4) is not true even for T = oo, and strictly speaking,
one cannot apply either the theory developed below, which takes
no account of the initial perturbations always existing in a
system, or the theories of Krasovskiy?, Kazakov® and Varygin*.

(¢) Tt is also considered that the variation in parameters
Y; (9, Y, (¢) and X (¢) over the time interval 7 may be neglected.
The time-dependence of the frequency characteristics W, (jw) =
W, (jw, £) and W, (jw) =
Ax () = 0) is only expressed in.the taking of the values of
parameters Y; (¢), Y,(#) and X (¢) as ‘frozen’ at the given
instant 7:

Y, (0)=Y,(0), Y,(1)=Y,(t), X(1)=X(t) for t—T<t<T
(6

(d) Finally, for the sake of definition, it is assumed that the
state of filter ¢, is described by the ordinary differential equation

Y ay (Yy X +uAx) D E (=Y. b, 1(Y,, X +puAx) D' 0(f)
D= d m<n @
—dr -
with coefficients ay,; (¥, X) and bz,k (Y,, X) that are analytic
in, X. It is evident that
W, (]w) R,(jo) Q; ! (Jw) ®

where
Q> (D)=kz,1 Az, k (Y5, X) D*

Cm -9
Rz(D)=l=Z1 by, (Y, X) D'

Given assumptions (a), (b) and (c) the proposed method of
calculation can be generalized without much complication to
the case where pure delays are present in the filter @, under
adjustment. .

§ 4. It is observed that assumption (b) allows one to make
calculation in a frequency region bounded only by consideration
of the ‘shortened’ present spectrum?®

t t

0;(x)e i**dr  (10)

-0

6(z)e /" dr =J‘

of the signal 0 (¢). Thus, in particular, taking into account the

0T(jw> t)='

t—T

W, (jo, 1) of filters @, and ®, (with
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quasi-stationary nature of the filter W, (jw, /) the following
relations are obtained for & (¢):

¢y (t)=§1;Jv_w ¢ (jo, t)'ejmda’ (11)
where

&, (jo, )=W, (jo,1)-0r (jo, 1) (12)

Considering, instead of normal spectra, the ‘shortened’
present spectra of the type in (10) and (12), generally one can
reflect more accurately in a mathematical model the actual
situations that arise in the experimental development of System A,
and also simplify mathematical operations on the spectra of the
signals 6 (¢) and &, (¢) in those cases where the Fourier integrals
for these functions over the interval (— o, f) diverge. This
approach turns out, in particular, to be very convenient for the
examination of non-ergodic random processes in System A, as
it gives a natural transition to the description of the system in
terms of spectral power densities (see Part IV).

Since this paper only considers explicit (and, what is more,
only harmonic) search signals uAx (f), from now on in order to
simplify the text the ‘full’ spectrum is used as a convenient, if
less accurate, mathematical abstraction

Ax;(1)-e 1 dr (13)

-

pAX; (jw)‘=#f

of the search signal.

§ 5. A solution &, (¢) to eqn (7) is looked for in the form of
a series

D=0+l (D+ .. (14)

all the analysis below being taken only with the accuracy of
magnitudes of the first order of smallness with respect to the
quantity x4 [obviously one way of making the theory more
accurate is to take account of more terms in (14)]. Using the
normal procedure® for the small-parameter method, the follow-
ing equation for sequential calculation of the quantities &y, (7, ()
and &,; (f) are obtained from (7)-(9):

02 (D) 26 (V=R (0)0(), D= as)

0,(D) &3, ()= zAx (t)[aRz(D)em an(D)cm(t)]
16)

It is easily seen that given assumption (b) the memory of the
linear system (16) should be considered as limited to the time
interval 7. Hence, taking into account the quasi-stationary nature
of the filters W, (o, ¢) and W, (jo, ¢) and the identity 0 W, /0X;
= 0, the following expression is found for the ‘shortened’
present spectrum of the error

e =6 — &) — pén (® an -

¢(jo, t)“W(jw)Gr(jw, 1)

+4203" o) 3 f Y 0, (62 (v, 1)
Ax;(j(w-v))-dv (18)

where W (jo = W, (jw) — W; (jw)
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while the spectra 07(jw, 7) and Ax; (jw) are defined by eqns (10)
~and (13). ,
Furthermore, in accordance with the circuit shown in
Figure 1, one obtains for the X;-adjusting network

d

DX,= W, (D) {0} Axi(h, D=g (19)

where ¢ (¢) is the detector characteristic, while

o0
8(t)=——l—f e(jo, ) e’ dw (20)
2n)

The approximate system of eqns (17)-(20) that has been
obtained describes a very wide class of self-adjusting operating
conditions for System A.

The following points are stressed:

(1) These equations, written in terms of .the frequency
characteristics, are differential equations (generally speaking,
non-linear) and in a numter of cases are capable of more
effective investigation than the integro-differential equations
derived by Krasovskiy? and Varygin? in terms of weighting
functions.

(2) In distinction to the previous papers quoted®# the
derivation of eqns (17)-(20) does not rely on the assumption
that the weighting function, and consequently also the transfer
function, of filter @, is actually a function rather than a func-
tional of the signals uAx (¢).

II. Simplification of the General Self-adjustment Equations for the
Case of a Harmonic Search Modulation and a Square-law
Detector

§ 6. If during the whole time of operation of System A the
search uAx () are nearly harmonic, then it 1s convenient to
consider that

Ax, ()= A, cos it for —ao<t<oo, i=1,...,N 1)
(Q;<Qi1y)
Then in accordance with (13)
Ax,(jo)=n[5(0+2)+6 (@—2)] )

Substituting (22) in (17) and using. the known properties of
¢ functions, one firids:

e(jco, t)= W(]G)) 9T(jw> t)
N
%#Q;l(jw) )y
i=1
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Taking into account the even nature of the amplitude spectrum
and the odd nature of the phase spectrum in (24), one can
readily deduce from (20) and (22) the following expression for
the error ¢ (9):

s(t)ﬁ—i—fo {IW(jco)l cos(wt+@+a)

N
+%—u Y A;[ReC;cos(wt+a)
i=1

—ImC,; sin (ot + )] |65 (o, t)|} do

aW(Jw) oo
Ci=——-720,(j )I:Qz {j(w_gi)}+Q2{j(co+Qi)}:| 29)

In calculating the passage of the signal ¢ () through the
detector &, it is convenient first to separate, in each term of the

(25)

- jit

" integrand in (24) that is enclosed, in square brackets the com-

ponents in phase with the signal cos (wf +¢@ + «) and those
in quadrature with it. One obtains as a result:

e(t)y=n" 1 J‘:) {l:' W (jw)| +%/J ;1 A A (o, t):|

: N
cos (wt+ ¢ +a) +.% gy AB(w,1)
i=1

sin(wt+ ¢ +'oc)} 107 (jo, )| dw 27N
Where ) .

Ai(w, )=a;(w)cos Q1 + b; (w) sin Q;t
=220 1 0o 05 M7 “(@)cosor (@)

15

- W (@)l O (@)sin gy @)+ M] @)singl @) -
| (8)

b@) =" 1 @)sin g7 () M} (@) sin 7 ()

13

~ W (j)] S2(M (@)c0s g ()~ M () cos o7 ()

Q2 (]CO) — M- ) 'jwi;(w)
- 0,(jw) -  + joi* (w)
0 (i @+ay) M (@)

[the expressions defining the coefficients B, (w, #) are analogous
to formulae (28) and (29)]. In quasi-stationary self-adjustment

aW { j (co )} ) ' ' o modes, when £y is small compared with the actual frequencies w
T 07 {J (w_Qi)} 01 {J (w—€), t} (23)  of the test signal ‘0 (2), Q, (jw) = 0, (j(w + £))), so that
* Then let M e/ 1M eios" (30)
W (jo)=|W (jo)| '’ (¢ =0 (),
(o)=1W (ja)l e (p =0 (@) | RS R -
Or(jo, =167 (joo, )] " (e=a(w)) (24) “ X ' .
512/3
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§ 7. Most often the detector £ may be considered as either
square-law:

o(e)=¢> (32)

=" (33)

In both cases the theoretical analysis requires the square of the
error ¢ (f) to be calculated. Taking only terms of zero- and
first-order smallness with respect to quantity u, the following
expression is readily derived from (27):

or linear:

P (e)=lél

&2 (z)z;—ZJ‘wJ‘wD(Q, v)[cos((w—v) t'+9m——9v)
T JodJo

+cos((w+v)t+9,+9,)]dwdy (34)
where :
D(@,v)=107 (jo, D1 107 (v, )] (W (jo)l IW(jv)
N N '
x[1+§ >, A{Ai(@,01W (jo)l ™!
i=1
+4;(v,1) lW(jv)I‘l}] (35)
while
(36)

S0 =0 (0)+a(w)+y (w)

tan ¥ (0)=7 ¥ AB( z>[|W<jw)|+§l; LR t)]‘ |

In all the working below, harmonic search-modulation
signals are, in fact, considered and as a mathematical model of
System A one takes the system of eqns (19), (32)-(36). These
equations continue to hold adequately until the instant when
through the operation of the self-adjustment circuits the relation

|W (jo)|=pN max A, [4; (o, D) (37
it

becomes trﬁe (in that event the approximate expressions in (35)
for & (w, v) are already invalid).

III. Theoretical Analysis 6f Self-adjustment Modes with an
Almost Periodic Test Signal

§ 8. If over the whole time interval that this paper is con-
cerned with the test signal may be represented accurately
enough in the form -

0(t)=00+ Z 0, cos (wyt + o)
K=1

- By, o, wk#const, W <Wp 41 (38)
then it is convenient to consider (38).as being true for

— w0 < t< + oo, Then
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N
€ =[1 +‘§“Z A A (@, ) W (jo)| ™ ! + A0, )| W(jw)|™ 1]
8) +cos ((w;+ w,) 1+ e+ 3] - (41)

where ¥, and A, (wy, ¢) are as defined by (36) and (28).

It can be seen from (41) and (28) that the signal e;,; is made
up of a sum of harmonics at frequencies w; + @y, 0y w, + Q,
(k=1,...,M,s =1,..., N). In the phase discriminator of the
ith self-adjustment channel the output quantity ¢ (&) of the
detector & is multiplied by the harmonic reference voltage at
frequency £2;, so that with square-law detection a signal u; (¢)
is obtained consisting of harmonics at frequencies w;, + w; £ £,,
wy + o, + 2, + £, (with linear detection in general one also
gets other harmonic components with amplitudes that are first-
order of smallness with respect to quantity u).

If in (38) 0, represents a'slowly varying useful signal, while
the sum

x [cos ((w,—w) t+ 9, —

M

Y B cos (Wt +0oy)
k=1

(42)

represents intense disturbances at sufficiently high frequencies
(w; > 2 Qn), then correctly chosen smoothing filters
Wy (D) - D1 should pass only harmonics of the signal u; (¢)
with frequencies

o= w;— 2, wk—wt—(gsigi)

k>1  (43)

It is assumed that the disturbances (42) acting on the system
are such that for k > [ the conditions )

—0,#(2,+Q) (44)

are satisfied with adequate margin. Then it may be considered
that the constant component in the signal u; (¢) that is passed

_wl¢Qis

‘by the filter Wq;i (D) - D! accurately matches that harmonic

of the sequence wj; — w; — (2, — £,) for which k =1 and
s = i. Then according to (41) and the circuit of System A

W, (D) E, (¢ () i 05 0,1 s

where

E[f(r)]—hm—— f(T)d'c

T—>oo
and the values of the parameters X, Y1 and Y, in the expres-
sion for &2 (7) are taken as ‘frozen’ at the instant ¢ [see (6)], so
that
E,[¢* (t) m; cos Qit]=

T m IED+EPLED] o)

o X ) - _
S)_a—‘z ]W(]wk)|2(M;COS¢;c+Mik cosy) (47)

ED=— z 62 IW(ka)IZ (M cos +M; cos o) (49)

M -
0r(jo,O)l=n ), 0d(w—w), we=0  (39)
k=0 (3) zaﬁo( k)
- and in accordance with (32)-(35) - E;’ = Z 0¢ ]W(J ol (M sin Qi + M sin o)
(49)
M
208 _ . . where the quantities MY, ke!‘f’-k are defined by formulae (29)
2= L 00w W el e (40) wiere the a
512/4
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§9. The case of the quasi-stationary mode of operation
(6, = 0 and condition (30) satisfied) are first considered.
Equation (45) for the self-adjustment process becomes

dx; 1 o X

=W, (D) — pAmy ~— Z ek IW(]wk)[ (50)
dt 2 0x; S

and thus as a result of the normal operation of the self-adjusting
circuit (without loss of stability, without intense distortion
caused by disturbances etc.) the quantity

M
kzl 9:% |W, (Jo) — W, (jwk)lz (51)
will be a minimum, i.e. in the complex plane the frequency
characteristic of the filter being adjusted will approach that of
the calibration filter at the points w = w;, (k =1,..., M) in
some mean-square sense. If by varying the adjusted parameters
X the frequency characteristics W, (jw) and W, (jw) can be
made practically identical over some range of frequencies, then
this approach will merely signify that over the given frequency
range W, (jw) = W, (jw), and the result of the normal operation
of the self-adjusting circuit will prove practically independent

M
of the actual spectral composition of the test signal £ 6, cos

(wp t + «p), (w, > £2n) (see Example I). The latter statement
is not valid (see Taylor®, and also Example 2) if the filters
W, (jo) and W, (jw) essentially cannot be made identical.
In this event the closest convergence of the frequency character-
istics W, (jw) and W, (jw) takes place at those points w = w,
corresponding to large amplitutes 6, and the nature of this
convergence will change with variation both of the frequencies
w;, and of the ratios between the amplitudes 6.

Example I. In a System A with square-law detector, let
filter W, be a controlled plant-with transfer function W, (p) =
(bop + b)Y, and filter W, selflearning model® with a transfer
function of the form W, (p) = (Xop + X;)~%, where X; and X,
are the adjustable parameters, by varying which a complete
identity between the dynamic properties of model and plant
can, in principle, be achieved. If

0 (t)=0cos(Qt+a), (52)

then eqn (50) for the quasi- statlonary self-adjustment mode
takes the following form:

Q>Q,>0,

X,=k,W, (D) .
'[(Xl_bl)(X292+X1b1)_Qz(Xz‘b2)2X1] (53)
X2=k2W¢2(D)
J(X,=b) (X2 +X,b,2) - X, (b, —x,)*] (54)
ky=puA,m, 0% (b2 +b2Q) 1 (X2 + X20%)72, i=1,2 (55)

It can be seen from eqns (53)-(55) that as a result of the nor-
mal operation of the self-adjusting circuit X; — b; and X,—> by,
i.e. in fact W, (jw)— W; (jw), at whatever frequency £2 the test
signal (52) is applied. The self-adjustment process forms a
coupled control of the parameters X; and X,. The higher the
frequency £ of the test signal, the more intensively the adjust-
ment of X, takes place (¢f. Margolis and Leondes®). The stability
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for small variations of the equilibrium X; = b;, X, = b, in

_ the non-linear system (53)-(55) can readily be examined from

the first-order approximation equations.

Example 2. If in the system just considered the controlled
plant is close in its dynamic properties to the link W; (p) =
e 7% (bep + b)Y, while W, (p) = (Xop + X)), then for 7 # 0
complete identity of filters W, and W, cannot be achieved by
self-adjustment. Transcribing eqn (50) for this process, it can
easily be seen that the result

X;—b,cos Qr+b,Qsin Qr,

X,—b,cos Qr—b, Q" 'sinQr

of normal operation of the self-adjustment network may
already depend substantially on the frequency of the test
signal (52).

§ 10. Eqns (45)—(49) also permit a number of tonclusions of
a qualitative nature about non-quasi-stationary modes of self-
adjustment in system A4 (6° # 0, conditions (30) not satisfied)
to be immediately drawn.

1t is first observed that the equation

0,=0,(jo) (56)

defines a Mikhaylov hodograph!? for a stable [assumption (b)]
linear system, and consequently the curve (56) has a form
similar to that in Figure 2.

It then becomes clear from (45)—(49) that within the limits
of the errors introduced by the terms E? and E'2 the normal
operation of the ith self-adjustment channel reduces to the
minimization of the quantity

M
Z 0 IW (jor)i* (M cos g + M, cos @) (57)

The self-adjustment error associated with E% will be small

in most cases, since by the very sense of the quantities MZE 5 e1¢1k
[see (29) and also Figure 2] the partial derivatives 0/dx; (M,
cos@h + My cos@y) will hardly be significantly different
from zero. The error associated with E'? will also be insignificant,
since’ with |@ik |, |@w|<# the terms Mj singf and
M ; sin @ 7 are opposite in sign.

If

M cospy +Mycosp, >0, k=1,...M (58)

then the minimization of the quantity (57) has roughly the same
physical significance (see § 9) as the minimization of quantity (51)
in quasi-stationary modes, and thus the result of normal opera-
tion of the self-adjustment network should be taken as acceptable.
But the more strongly the self-adjustment mode differs from
quasi-stationary, the larger are the angles |@ % | and o % |< »
the smaller are for the coefficients in (58) (in particular,
the quantity M cosei + M;]cos@;7), since over a sub-
stantial range of frequencies the quantities M7, are hardly
much different from unity. As a result the quality factor for the
X; tracking system falls, while for |¢ & | > n/2 the coefficient
(58) becomes negative and minimization of the weighted sum (57)
of squares | W, (jo,) — Wy (joy) |2 loses its evident sense, or
even on inversion of the self-adjusting servo-system occurs
(particularly if all the coefficients (58) become negative, which
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may happen if a strong signal 6 (f) is applied at a frequency
close to a search frequency 2,—see Example 3).

Example 3. Let the adjustable filter in System A be a link
with transfer function W, (p) = kQ,(p) 1 = k(p? + 20p + w3),
the adjustment parameter being the gain k, modulated by a
signal Ak - cos Qt, while to the input of the system is applied

- the test action 0 () = 6 cos (wt + ).
ertmg out the general expressions for the quantltles

M*e*" =0, (jo) 0, [j(0+ Q)] ™" (59)

it can readily be established that condition (58) for the system
considered is explicitly inobserved if w, is small (wy,—>0), while
the frequencies £2 and w of the search and test signals coincide
and ‘exceed w,, since then

M+cos<p+—>%(§22+2a2)(§22+a2)_1
M cosp - —Q*w}
M*sin <p+—>—:‘1—rx(92+a2)“1

M sing” —2awg?

and the coefficient M~ cos ¢~ becomes in (58) greater in modulus
than the coefficient M+ cos @*.

It is observed that since in this case the quantities (59) are
independeént of k, the error associated with the term E? in
eqns (45)-(49) proves equal to zero [this situation will occur
evry time that the adjustable parameters of filter ¢, appear
only in the numerator of the transfer function W, (p)].

Considering eqns (40), (41) and (28), it is noted that to
increase the capability of the self-adjusting circuit for operating
in non-quasi-stationary conditions one may use-in the phase
discriminators ¢D; the reference voltages

M. COs it + m;gsin Q;t (60)
which are phase shifted with respect the search modulation signal
A, cos Qi't (61)

In this case the processes of self-adjustment will proceed in
accordance with the equations

Xe= W,;(D) [E, (&2 () my.cos Qt) + E, (2 (1) myesin Q;(1)]

(62)
where E, (&2 (t) my, cos £2;t) is determined by formulae (46)-(49),
while

E,(¢* (1) mlsstt)—i,uA my (B + E2 + ES)

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3‘

Here the necessary condition (58). for normal operation of
the self-adjusting circuits is replaced by the condition

— mygsin @)
+ M, (m;,cos @y +msingy) >0

M it (m;.cos ‘Pi:
(67)

which may prove much more favourable given a suitable choice
of the phase of the voltage (60); (i.e. of the quantities m;, and
m;g) the actual result of the undistorted forced process of self-
adjustment comes out in this case to be the minimization of the
quantity

M .
Z 013 |W(ja)k)iz [M:c (my.cos (Pi: — my,sin <P:<)
k=0

+ Mlk (mlc COS (plk + mls Sln (plk) (68)

In choosing the phase of the reference voltage (60) one can
aim not only at increasing the coefficient (67) but also at the
same time decreasing the quantity

+ T +
| My, (my.sin @y +m; COS @)

+ My (M sin @y +m;€os @y )| - (69)

i.e. (see (62), (66) and (49)) the error associated with the term
E®. In practice, as a rule, it proves tedious to achieve an
accurately optimum phase-shift (e.g. in the sense of a minimum
ratio between the quantities (69) and (67) between the signals (60)
and (61), since by virtue of (29) this shift depends not only
on the drifting parameters of filter ¢, (a similar situation
arises!! also in extremal control systems), but also on the form
of the test signal 8 (¢). Nevertheless by using a priori information
on the operating conditions of the system, or by carrying out
a running analysis of the signal 6 (f) and the results of system
operation, in a number of cases one can evidently achieve an
improvement in the dynamic properties of the given self-adjusting
system relatively simply, by using reference voltages of the form
in (60) that only approximate to the optimum. In order to
increase the stability of automatic phase-shift optimization
between voltages (60) and (61) one can correlate the search and
test signals in frequency [phase relations between the signals
0 () and pA,; cos £2,f have no effect on the quantities (47)-(49),
(64)-(66)].

The self-adjusting system, the phase of which use discrimina-
tors reference voltages of the general type given in (60) will
be denoted by System B.

§ 11. The equations of motion (45)-(49) and (62)—~(66) were
derived under the assumption that the frequencies of the search
modulation and the harmonic compdnents of the test signal all
satisfy the conditions (44). If these conditions do not hold, then
the voltages E? (2 (f) m;, cos £2,f) and E; (€2 (£) mys sinf2;1),

2 (63) toget}.)er with the signals (47)-(49) and (64)~(66), v.vill als.o
contain other components, which generally speaking will
EWD introduce certain additional distortions into the self-adjustment
si =_ Z ¢ |W (jwl* (M sin @i — My sin @) (64)  process. Equations (40) and (41) enable one effectively to
Tik=o calculate all these parasitic components of the control signal in

2)- e the self-adjusting network.
Ei'=— Z Gk IW (ka)l (M i SN @y — My singy) (65) For example, let only one of the conditions (44) be disturbed:
let the frequency of the pth harmonic of the test signal coincide
it oo (w with the search frequency in the ith self-adjusting channel,
E.(v?)= - Z 0z W (jol? (pa(x 1) (M;: €os (Pi: —Mycospy) e wp = ;. According to (41), in this case the signal
k=0 ‘ (66)  E, (% (f) my,cos 2,f) will contain an additional term E),
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generated by the presence in e;; of harmonics with frequencies
w, + w0, — 2,fork =0,/ =p,qg=iandk =p, 1 =0,9 =1)
- and wy +w, — (2, + ) fork =1=p, s =q=10):

E(‘*):im,cE [6,0, IW(O) W (jo,)l (epo+€0y)

+70,2, |W (jo,| %,,] cos
=m;, 0,0, W (0) W (jw,)|cos 9,

+— ,uA My, I,IW(]wp)ix[a (wp)COSZS

- b,» (w,)sin239,] - (70)
where 9, = 9 (w,), a; (wy) and b; (w,) are defined respectively
by eqns (36) (28) and (29) with 0= w,,

For the system considered in Example 3, the first term in
expression (10) is zero (since 0, = 0), while the second may be
calculated given the frequency characteristic of W; (jw). Even
in this actual example it is, on the whole, difficult to judge what
effect the use of a reference voltage of (60) type will have on the
additional error in question. One can evidently achieve a stable
reduction.in this error or even its conversion into a useful
signal; provided one correlates the search and test signals not

only in frequéncy but also in phase, so as to limit unforeseen -

variations in the angle 9,
IV. Calculation of Self-adjustment Operating Modes where the
Test Action is a Stationary Random Process

§ 12. Tt is assumed for simplicity that the filters W, (D) in Sys-
tem A consist of elements which carry out the ideal averaging of

the quantity m;, €3 (f) cos £2,¢ in time over the interval (t— Ty, 1):

t
&% (t)cos Qrdr

t—To

W, (D) [67 (1) m; cos 1] =% f an

and that the test signal 0 (¢) is a time-function whose ‘shortened’

spectrum (10) actual only slightly depends on the instant of ob-

servation 7 and is located in the region of quite high frequencies:

0 (jo, )=, (jw), 07 (jo)=0for o<w*  (72)

0 *—2Qy>Ty !, Q—Qi_>Ty" (73)
(@Q>Qr,, i=1,.,N)

Every actual filter W (jw) = W (jw) — W, (jw) has a ﬁnite‘r

cut-off frequency w,, (it is further considered that w* < w,),
so that in accordance with (19), (32), (34) and (71)—(73) the
equations for the process of self-adjustment of the gth para-
meter may be put into the form

. -0 @e t
X,;—‘-n:"2 dw dvTy?
w* [ t—T

G,(w,v,7)=D(w,v)[cos {(w—v)t+9,—9,}
+cos{(w+v)1+9,+9,}]cos QT

where D (w, v), 9, and &» are defined by eqns (35), (36), (28)
and (29). The quantity G, (w, ¥, ) is a sum of harmomc com-
ponents with frequencies .Q equal to

G, (w,v,7)dt (74)
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otviQ, oivi(Q+Q), (s=1,..,N) (75)
while the integral ‘
J G,(w,v,7)dt
t—To
is a weighted sum of integrals of the type
t
J cos (Qr+3)dr (76)
t—To

where {2 are the frequencies in (75) and @ are angles of the form
¥, £ 9v and 9, + ¢, + #/2. On rewriting the integral (76)
in the form

+To 1 .
J‘ cos|:Q<§+t—7To>+9]dé
-3+To

it is observed that in accordance with a known® integral repre-
sentation

' %n_lf. cos(Qr+9)dr=cos9-6(Q) (77

of the d function and for large enough averaging time intervals T
of the filter W, (D), the approximate equation

J' cos (r+9)dr = cos[g (z—% 7;0>.-|; 9] 5(Q)

o Zcos85(Q)  (78)

is true; using this, eqn (74) can be readily got into the form

Do

XqﬁT‘TO—l-kq‘n'lj G,(w)

w*

N
+5 T Aule (@) + (0, v) + 2, (0,v,]do

(79)
where
G, (@)=107(jo) 07 {j (w+fzq)} W (e W ’ee qu
'cos(9,—9u+0,)  (80)
g (@, )= T 07je) 07-(jv) W (joo) W ()|
' [I/tc ((l), V) cos (’gw - ‘9v) - Vis (CO, V) sin (‘90) - ‘9v)] (81)
Vie(w, ) =a; (@) W (jo)| ™ +a,(0) [W ()|~ &)
Viy(e,v)=b; () W (jeo)) ™+ b, () [W ()| ™
=0+ Q+Q,  vp=0+]2-8 (83)

[the quantities a;(w), b;(w) and ¥, being defined by eqns (28),
(29) and (36) and 1 the memory of filter W (jw)—see § 31.
Consideringthefunction (5)as a typical realization of a station-

* ary random process {6(¥)} and performing averaging according

to achievements, one can go from eqns (79)—(83) to equations in
the mean (as taken together) values X, of the adjustable para-
meters. If here the interval T is taken large enough, then in the
right-hand sides of these equations one may replace the quantities
T 07 (jw) 07 (jv) | by characteristics like the mutual spectral
power densities’? of-the process {0 ()} and certain random
processes obtained from {0 (t)} by simple transformations that
do not infringe the stationary condition.
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This paper does not deal with the more detailed analysis of
the general case, but gives the results of the calculation for the
quasi-stationary mode of self-adjustment, i.e. the mode in which

@0*>2Qy (Q>Q_4,i=1,...,N) (84)

with a test signal of white-noise type:
: 0 for w<w®

T ‘wTanﬁz}gZT‘leUwM2={Goﬂn(n>w*(8®

Since eqns (30) and (31) are satisfied in quasi-stationary
modes, and furthermore @, == ¥, 159, (0 > w*), one may
neglect the terms ¥V, (w, #) sin (3, — 9,) in (81), and so putting
Or (jo) == 07{j (0w + 229} and W (jw) = W{j(w + 224y, the
following equations for the self-adjustment process are arrived at:

- @ o (oo
Xq-'_‘-kgl:J‘ . IW(]a))|2da)+,LlAan\ ) W (jw)|* dw
% qdJ o*
1 X o (e -
+7#i; Aié}:ﬁﬂ W (j)l dw:| (86)
i#gq .
1

ko=T Ty “ k™ — m,.- G,

£l
The following cqnclusions are evident from (86):
(1) In the mode of operation (84), (85) studied, minimization
of the quantity

'
may be haturally considered the ideal result of the self-adjust-
ment process.
(2) The control signal for the gth self-adjusting network

contains derivatives of the quantity (87) being minimized, not -

only w.r.t. X, but also w.r.t. all the other adjustable parameters
X;, so that one has not got a pure gradient system of extremal
control.. ‘

(3) The equilibrium condition X, =0 (g = 1, ..., N) for the
system (86) is characterized for A, = A (i =1, ..., N) by the
relations : . :

fw”WVUwNZdw=-—f“¢wvuwn2dw (88)

w* w*
(i=1,..,N)

from which it can be seen that the more pronounced the extremal
nature of the dependence of quantity (87) on the parameters X,

o
HA(N+1) 5

i

@ (Y) S

o | e(t) > ¢ (e) ]
I N CA) bl |
. | . ’m1Ax‘(!) I
_.? ' |
P,AxN(t)l pAX(T % W (D) &2, I

| b
AR = g hil jpy

. WeN(D)
XN ¢D LXN
lmNAxN(t)
Figure I Figure 2 >

Jw¢UV<jwn2dw @®7)
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and the less essentially attainable the minimum of this quantity,
the closer will this condition be to the ideal result of self-adjust-
ment. )

(4) If quite large differences arise rapidly between the
frequency characteristics W, (jw) and W, (jw), the non-negative
term (87) on the right-hand side of eqn (86) will increase so
much that the operation of the self-adjusting network will be

reduced merely to increasing the parameter X, (X, > 0), and
this may lead to the system’s losing its required extremal
condition. )

Finally it is noted that the equations given by Krasovskiy?
for quasi-stationary self-adjustment with a white-noise test
signal contain only terms analogous to the second term in the
right-hand side of equation (86).

The author expresses his gratitude to Ye. A. Barbashin and
1. N. Pechorina for their discussion of this paper.

References

1 KRrASOVSKIY, A. A. Self-adjusting automatic control systems.
Automatic Control and Computer Engineering. 1961. No. 4.
Mashgiz

2 Krasovskry, A. A. The dynamics of continuous automatic control
systems with extremal self-adjustment of the correcting devices.
Automatic and Remote Control. 1960. London; Butterworths

3 Kazakov, I. YE. The dynamics of self-adjusting systems with
extremal continuous adjustment of the correcting networks in the
presence of random perturbations. Automat. Telemech. 21,
No. 11 (1960)

* VARYGIN, V. N. Some problems in the design of systems with
extremally self-adjusting correcting devices. Automat. Telemech.
22, No. 1 (1961)

5 TAYLOR, W. K. An experimental control system with continuous
automatic optimization. Automatic and Remote Control. 1960.
London; Butterworths

¢ MarGoLs, M., and LeonpEs, K. T.  On the theory of self-adjusting

control systems, the learning model method. Automatic and Remote
Control. 1960. London; Butterworths

? ITSKHOKT, YA. S. Non-Linear Radio Engineering. 1955. Sovetskoye

~ Radio

8 KHARKEVICH, A.A. Spectra and Analysis. 1953. Gostekhizdat

9 MALKIN, I. G. Some Problems in the Theory of Non-Linear -
Oscillation. 1956. Gostekhizdat

18 Popov, YE. P. The Dynamics of Automatic Control Systems. 1954.
"Gostekhizdat

' Co’eN HSUER-SEN.  Technical Cybernetics. 1956. Izd. Inostr. Lit.

12 LANING, G. H., and BETTIN, R. G. Random Processes in Automatic
Control Problems (Russian transl.). 1958. Izd. Inostr. Lit.

W+ Q;

wm

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3



Here the matrix

Declassified in Part - Sanitized Copy Approvéd for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

513/1

Optimal Control of Systems with Distributed Parameters
A.G. BUTKOVSKIY

In many engineering applications the need arises for control of
systems with parameters that are distributed in space. A wide

_class of industrial and non-industrial processes falls within this

category: production flow processes, heating of metal in metho-
dical or straight-through furnaces before rolling or during heat-
treatment, establishment of given temperature distributions in
‘thick’ ingots, growing of monocrystals, drying and calcining of

' powdered materials, sintering, distillation, etc., right through to

the control of the weather.

The processes in such systems are normally described by
partial differential equations, integral equations, integro-
differential equations, etc.

The problem of obtaining the best operating conditions for
the installation (the highest productivity, minimum expenditure
of raw material and energy, etc.) under given additional con-
straints has required the development of an appropriate mathe-
matical apparatus capable of determining the optimal control
actions for the plant.

Pontryagin’s maximum principle and Bellman’s dynamic
programming method have been the most interesting resuits in
this direction for systems with lumped parameters.

‘A wide class of systems with distributed parameters is

. described by a non-linear integral equation of the following

form:
.

om)=| K[P,S,0(S), U(S)]dS (1)

Q'(P)
Q(P)=|:
Q" (P)
describes the condition of the controlled system with distributed
parameters, while the matrix

Ut (p)
UP)=|:
U (P)

=1Q'(P)I @

=T P)] ®

describes the control actions on the system. Here and in the .

following, the index i will refer to a row number and j to a
column number in a matrix. The point P belongs to a certain
fixed m dimensional region D in Buclidean space.

The components of the single-column matrix

Kl (P)S’Q> U) '
K(P,S,0,U)= =[|K'(P,S,0,U)| (4
K" (P,S,0,U)

belong to class L, and have- continuous partial derivatives
w.r.t. the components of the matrix Q.

It will be assumed that the function U (P) is piecewise dis-
continuous, its values being chosen from a certain fixed permis-
sible set 2. Controls U (P) having this property will be called
permissible.

Further, from the set of conditions Q (P) and controls U (P),
related by integral eqn (1), let ¢ functionals be determined,
having a continuous gradient (weak Gato differential). :

I'=rem®)j, i=o,1,..,1 : Q)
I'=I'[Q(P),U(P)]=®'(z), i=I+1,... (6)
where R
2 F° [s, Q(S), U(S)] dS'
Pl F" [S,0(S), U(S)]dS“
ol DF[&Q(S’),U(snds-R ¥

The function ®%(z),i =1+1,...,gand F{S,Q, U),i =0,1...,k,
are continuous and have continuous partial derivatives w.r.t.
the components of the matrices z and Q respectively.,

The optimal control problem is formulated in the following
manner.

It is required to find a permissible control U (P) such that
by virtue of equation (1)

ap=1,p+1,...,q (8)

while the functional I? assumes its smallest value. Here p is
a fixed index, 0 < p < q.
The following rectangular matrices are introduced

I'=0, i=0,1,..

oo _ [o@'|. . o )

a-— SZ—JI’ .1—0,1,..‘.,1, J—O,l,...,k (9)
oF |oFi|. . o

éa— a_Q—J N ?—0,1,...,’(, ]—1,2,...,," . (10)

gradI=|grad;I'|; i=I+1,...,q; j=1,2,...,n (1)

. where grad ;I* denotes the Jth component of the vector grad I°

w.r.t. the coordinate Q7.
The following theorem?® can be used as the basis of a solution
of the problem formulated above on the optimum control of a

‘plant with distributed parameters.

Theorem. Let U = U (S) be a permissible control such that
by virtue of eqn (1) the conditions (8) are satisfied and the
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matrix function M (P,R) = |My,; (P, R, ij=1,2..,n,
satisfies the integral equation [linear in M (P, R)]
. a - i .
M(P,R)+@K[P, R,Q(R),URR)]

=LM(P, S)%K [S,R,Q(R), U(R)]dS

=j % K[P,S,0(S), USIM(S,R)dS  (12)

Then for this control, U (S), to be optimal there must exist

one-row numerical matrices

a=lco,Cy; .. Cell

and  b=|lcis 1,05 ¢l (13)

€y
of which at least one is not null, and also ¢, < 0, such that for
almost all fixed values of the argument S € D the function

n (S’ U)=a [gradI{Q(P)}’K{P’ S9Q(S)s U}
-j M(P,R)K{R,S,0Q(S), U} dR]
D N

'+bai<I>U F{P,Q(P),U(P)} dP]
z D

[5%1" (P.Q(P),U(P)},K {P,5,0(5), U}

—J M(P,R)K {R, S, Q(S), U}dR] |
+b %@[f F {P, Q (Pj, U(P)} dP:I-F {S, o(S), U}
’ (14)

of the variable Ue £2 attains é maximum, i.e. for almost all
S € D the following relation holds:

n(S,U)=H(S) ' (15)
where .
H (S)=supz(S,U) (16)
ue

As an éxample of the application of this theorem, consider
the important practical problem of the heating of a massive
body in a furnace. Let the temperature distribution along the
x axis, 0 < x < L, at any instant ¢, 0 < ¢ < T, be described by
the function Q = Q (x, £). Here the temperature U (f) of the
heating medium, which in this case is the controlling agent, is
~ a function constrained by the conditions

A< U (f)<4,, 0<t<T an -

i.e. in this case the set £2 is the interval [A4,, 4,].

It is known that the distribution function Q (x, f), if initially

zero, is related to the control U () by the following integral
equation «

Q(x, t)=jtk(x, t,t)U(t)drr (18)
0 »

where K (x, ¢, 7) is a known weighting function.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 CIA-RDP80T00246A022700330001-3

In the heating of a body there is usually given a temperature
distribution Q* = Q*(x) which is required to be attained in the
minimum time. However, if the equation

QG H=0*() (19)

for any permissible control is not satisfied for any fixed ¢,

0 <t < T, then the problem becomes that of determining a -

permissible control u« (f), 0 < ¢ < T, such that the functional

L .
I°=L [0* ()~ 0 (x, T} dx (20)

attains its minimum. Here y is a positive even integer.

Since the integrand in eqn (18) is independent of the con-

trolled function Q (x, f), then according to eqn (12) the
function M (¢,¢) = 0 for all ¢ and 7 in the interval [0, T].
It follows that the function & (z, U) takes the form

L .
n(t,U)=¢, JO é%[Q*(X)—Q]V'K(x, T, 1) Udx

=_—ycoUL [Q* ()~ Q(x, T K (x, T,7) dx
@1

Since in this case by the conditions of the theorem ¢® < 0,
so — yCy > 0, and hence the maximum of = (z, U) w.r.t. U,
with 4; < U < 4,, is reached when

A;+4,
U(m= 3 (22)
A,—4, g r—1 |
A A | [0° -0 DI K T

If we substitute expression (18) for Q (x, £) in eqn (22), then
we obtain an integral equation for determining the optimum
control action U (7). '

For example, ify = 2, 4, = — 1, A, = 1, then the optimum
control action satisfies the following integral equation: _

_ L T :
U(t)=sgnJv |:Q* (x)—f K(x,T,7) U(t)dr]K(x, T,7)dx
. 0 0 ) v
' (23)

Opening the brackets and altering the order of . integration,
one finally gets

"U(r)=sgn |:B () —f N(z,6)U(0) d9] (24)
: 0
where N (7, 0) is the )symmetrical nucleus

N(t,B):JLK(x,ﬂr)K(x,T,G)dx (25)
0 .

B(r)=JLQ* (OK(x, T,9)dx 26)
0

Methods of approximating partial differential equations by
finite difference equations can be applied successfully to the
approximate solution of problems of the optimal control of
systems with distributed parameters. This has the advantage
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that results obtained for lumped-parameter optimal systems
can be used.

As an example, consider the optimal control of a system
described by the following equation

°og  9Q
E_aW’ Q—Q(x,t)?OstS,OStsT @n
with these initial and boundary conditions
0 (x,0)=0o(x) (28)
o0 o0 _
ol ~e[UO-000], 2 =0 @

Also let the function Q* = Q*(x) be given. THe problem may
be formulated in double form:

(a) To find a permissible control U(), 0 <t < T, Ue 2
(2 is the set of permissible control values), such that the equation

Q(x, T)=0Q%(x), 0<x<S§ (30)

is satisfied for a minimal time 7.

However, in many cases eqn (30) cannot be accurately
satisfied for any 7. It then makes sense to formulate the pro-
blem as follows: )

(b) To find a permissible control U (), Ue 2, 0 <t < T,
where T is a fixed time, such that the functional

s
I =L [0*(0)—-Q(x,T)]"dx (31
which characterizes the measure of deviation of the actual
distribution from the given one (y a positive even integer), should
reach a minimum. v

Using the straight-line method, problems (@) and (b) may be
reduced to an ordinary problem of optimum control for systems
with lumped parameters.

In fact, splitting the interval [0, S] on the x axis into n equal
parts by the points x, =0, x; = 5, ..., x, = S, where s = S/n,
and replacing the second partial derivative of Q (x, f) w.r.t. x
in eqn (27) by the second difference ratio, we obtain a finite
" system of order (n + 1) of ordinary linear differential equations
for the functions ¢, (¢),i =0, 1, ..., n:

do=—(0+pB)qgo+0q,+BU

4 =0(qi-1—2q;+qi+1)s i=1,2,...,n—1 (3'2)
4n=0(qu-1—9n) ’
with the initial condition
q;(0)=Q,(is), i=0,1,...,n (33)
and the final condition "
q;(T)=Q*(is), i=0,1,...,n (34)

Here f and o are constant coefficients which can be expressed
in terms of a and «.

In problem (a) the functional that has to be minimized is the -

time 7. This problem can be solved by using the maximum

bl
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principle. Gamkrelidze® has shown that its solution always
exists and is unique.
In problem (b) the functional to be minimized is

n
1= [4.(D)-Q* @s)]" (35
i=

In certain cases it is required to determine the optimum
variation law for a control action which is itself distributed in
space, constraints being placed on it in time and also in spatial
coordinates.

For example, it is sometimes material that too great spatial
variations cannot be allowed in certain physical quantities such
as temperature, pressure, electric field strength, etc.

* We shall consider as an illustration the heat-exchange
equation '

b( 020D+ b(3 V() =0 (1, )+ QD =U (1)
Yy

: (36)
for the exchange between a stationary heating medium with
temperature U = Uy, 1), 0 <y <L, 0<¢t<T (y being a
spatial coordinate and ¢ the time), and a material moving at
velocity v = v (f) = 0 in the positive sense along the y axis and
becoming heated in the process of moving over the interval
0 <y < L. The state of heating of the material is described by

" the function Q (y, f). The initial and bondary conditions take

the form
Q(3,0=00(»), Q(0,0)=0 (37

In this case a permissible control is considered to be a
function U=U(Q, 9, 0 <y <L, 0<¢<T, that satisfies
the conditions

A, <U(y,H)<A, (38)

Ass%U(y, <A, 39

where A4;, Ay, A3 and A, are given constants.
Physically these constraints correspond to the fact that in

- feed-through heating installations one cannot allow too great

amplitudes of temperature fluctuation in the heating medium,
or excessive temperature drop over the length of the furnace.

In this case one has to determine the control U = U (y, 1),
subject to conditions (38) and (39), such that, in spite of all
possible disturbances of the heating process caused by variations
in the velocity v (f) and by variations in_the thermal parameters
b (y, 1) of the process, the deviation of the temperature of the

‘material leaving the furnace from a certain given temperature O* -

should be on the average a minimum, i.e. one has to minimize
the functional
T
I= f [Q*—Q(L, )T dt (40)
0
where y is a positive even integer. .

In order to reduce the partial differential equations to
difference differential equations, split up the interval [0, L] on
the y axis into n equal parts by the points y, =0, y; = 1, ...,
¥n = L, where | = L/n. Replacing the partial derivative w.r.t. y
in eqn (36) by the difference ratio, we obtain a system of order n

of ordinary linear differential equations in the functions g, (¢),
i=12,...,n

513/3
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UL )G+ b )00 =g ] +a=Ui) (@1

with go () =0, 0 < ¢ < T and ¢; (0) = Q, (il).
Equation (41) may be rewritten in the form

4=Pgi-1+oq;+U, i=1,2,..,n (42)

where U; = U, () = U (il, t), while the coefficients B and «;
can be expressed explicitly in terms of the functions v(f) and
bl o).

According to conditions (38) and (39) the function U; (0),
0 <t < T, is subject to the constraints

A <U,(0<A4,, i=1,2,...n (43)
AslsUi+1(t)—Ui(t)§A4l, i=1,2,..,n—1 (44)

The functional (40) must now be replaced by’ this 6ne:

. .
I =L [Q*~q, (1] dt (45)

" It can now already be seen that the maximum principle may
be used for determining the optimum control actions U; (o),
i=1,2,...,n0<t<T In this case the permissible region 2
from which the values of the control vector Uo=U0@0,...,
U, (¢) may be chosen is a closed convex polyhedron in » dimen-
sional space, described by eqns (43) and (44).

Observe that the function H (1,, U,) which has to be maxim-
ized according to the maximum principle in this case for each
fixed 7, 0 < ¢ < T, takes the linear form in the U;

U= 3 WU, 46)

Deciassified in Part - Sanitized Copy Approved for Releése 2012/12/13 : CIA-RDP80T00246A02270033Q001-3

Hence the problem of determining the optimum control
actions U;(t), i=1,2,...,n, at any instant ¢, 0 << T,
reduces to the linear programming problem of maximizing the
function H while satisfying conditions (43) and (44).

Thus it is that besides the accurate and quite general
methods of solving optimal control problems which have a wide
application in engineering, great significance is also attached
to approximate methods of solving these problems, based on
approximating partial differential equations by ordinary differ-
ential equations.
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Programme Control and the Theory of Optimal Systems
Ye. A. BARBASHIN

Introduction 8
Consideration is given to the system of differential equations

d—j=f(3;, n0)+u(c,y, 1) @

where x (¢) is an n-dimensional vector, y (f) an m-dimensional
vector, 7 (¢) a certain (in general random) vector function, and ¢
a constant vector, It is assumed that a certain trajectory x = ¥/ (¢)
in pahse space is given for 0 <t < T (0 < T < o). Assuming
that certain information is received on the variation of # (),
it is required to choose a vector ¢ (problem A), or a vector
function y (¢) (problem B), or a vector ¢ and a function y (¢)
(problem C), such that some solution of the system precisely
or approximately realizes a motion along the trajectory x ¥ ().
The problem formulated in this manner is a problem of pro-
gramme controt.

Let O in Figure 1 be the plant under control, whose object
is to achieve a certain given mode of operation x = (¢). To
achieve this, a unit Y is introduced that develops a control u.
In forming the control, use is made of information on the
operating conditions ¥/ (#) to be set up and .also on external
influences 7 (7); this information may be received in distorted
form for many reasons, e.g. delays and inertia in the trans-
mission line C, measurement errors, random errors, etc.

If the problem had an accurate solution, then the requlred
control would be determined by the relation

u(e,y(®, )=y f W ®,n(®),0 )

Hawever, in a number of cases the system (2) cannot be solved for
the control vector ¢ or the control function y (f). This may be
due to the choice of an inadequate number of dimensions for the
vectors ¢ and y (¢), or the presence of incomplete or distorted
information on the external influences % (£). It may also happen
that it is possible only to choose the control from some narrowly
defined class of functions, such as piecewise-continuous func-
tions, trigono-metrical polynomials, functions whose modulus
has a constant limit, etc.

Thus the impossibility of solving system (2) accurately may
lead to the statement of a number of problems of variational
type. Bellman® considered such a problem when he used the
dynamic programming technique to derive a control function

¥ () so as to make the maximum deviation of the system (1)

trajectory from the required one a minimum.

One can state the problem of finding control functions that
make a certain integral criterion of control quality a minimum.
These problems may be solved by making use of the maximum
principle of Pontryagin® 3, of classical variational principles?,
and of the principle of dynamic programming?.

One can state the problem of minimizing the error with
which the given trajectory satisfies system (1). If it is 2 question
of a minimum mean-square’ error, then this statement of the
problem leads to the SJmplest problems in the theory of mean-
square approximations®.

Finally, one can renounce all attempts to minimize the
deviation, and seek a solution that simply gives a sufficiently
accurate approximation. Thus, for example, Roytenberg’ seeks
a control function from the class of piecewise-continuous
functions to give coincidence with the system (1) trajectory
at a finite number of points on it.

It is observed that a distinction should be made between
tworessentially different cases in solving the problem of realizing
the given process. In the first case the initial points of the actual
and the required trajectories coincide; in the second the initial
condition of the actual process may have any value. Normally
in the second case the control is formed not only according to
the magnitude of the disturbance but also according to the
deviation of the controlled quantity from that required, i.e. in
this case the control system will include feedback.

Programme Control and Optimal Systems

It should be noted that if the optimum principle is satisfied
in one form or another in solving the problem of realizing a
motion along a given trajectory, then in a number of cases it
becomes possible to introduce feedback into the control system,
which permits one to automatically correct the motion along
that trajectory. This fact proves conclusively the advantage of
systems designed on the basis of one or other optimum criterion.

- However, a number of difficulties are met in applying optimum

criteria to the design of programme control systems and tracking
systems. First of all, they often lead to designs requiring heavy
computation or to designs that are technically " difficult or
impossible to execute. In this case, one must give up trying to
satisfy the optimum principle, and restrict oneself to an approx-
imate solution of the problem, with the aim of getting the best
quality of fit within the bounds of technical possibility.

Usually in applying the optimum principle one needs a
knowledge of the process to be realized over its whole duration.
But it may happen that only certain statistical characteristics of
the programmed process are known, or even that nothing is
known about its future. In the latter case the optimal control
theory is powerless, and the only reasonable approach is that
of minimzing the deviation of the velocity vector for the current
point from the tangent vector to a certain curve of pursuit from
a given class, perhaps determined by a system of differential
equations. Thus in this case the problem of minimizing the
deviation of the given process from that required is replaced by
the problem of minimizing the difference between two vector
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fields, one of which determines the actual motion of the point
and the other the required motion along a curve of pursuit.
It should be noted that an analogous result is obtained if the
control is chosen to give a maximum rate of decrease of a certain
Liapunov function set up for the perturbed-motion system.
The above approach, by introducing feedback, enables the
deviation of the actual process to be rapidly reduced from that
required, without the future course of the latter being known.
It is shown below that an analogous result can be obtained by
increasing the stability of the basic control circuit.

If the motion to be realized is known over the whole of its
duration, then the following is the most natural method of
solving the programme control problem. In the first stage a

. control that gives the most rapid means of reaching the given

trajectory is sought, and in the second the control that achieves

‘motion along that trajectory® is found.

The mathematical theory of optimal control that exists at

present is basically a theory of optimal stabilization. This means

that this theory permits, in the simplest cases, by the introduc-
tions of relay devices into the control system, an increase in the
system’s closed-circuit stability at zero input signal. In other
words, the quality of the system’s stability is heightened, using
optimum criteria, irrespective of the nature and type of input
actions that are processed. Clearly such a system will deal with
input actions in various manners according to their structure.
Below is given an example of a servo-system that reacts well
enough to step-function inputs, and consequently also to any
slowly varying inputs. However, in order to obtain this good
qualiy tin the system, the requirement for optimum closed-
circuit stability had to be abandoned.

Example

The control system having the block diagram shown in
Figure 2 is considered. Here f is the input signal, x the output
signal, K the amplifier unit, 4 the unit forming the gain x, which
in general is variable. The problem is to find the optimum law
of variation, given the constraint | k | < k,, and the condition
that the error ¢ decreases in some sense in the fastest way.

Since if this case the time for complete elimination of the error

is infinite from a mathematical point of view, the time for the
error to fall within a given region surrounding the origin has to
be discussed. Rapid action of this type will be called relative
rapid action in distinction to the normal type.

The case where the plant under control is specified by an
equation of the second order is considered, i.e. where L (p) =

p? + ap + b.Inthis case the differential equation being examined

takes the form

§+aé+be=f+af+bf—xe 3)

First consider the case where the external input f is absent, and
find the law of variation of x that gives relative rapid action.
According to the results of Yemelyanov and Fedotova®, the
gain should be determined by the formula

k=xkysgne(Tp+1)e O]
where 71 is the negative root of the equation

M dai+b—Ky,=0 %)
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Now consider the case where f is a step function, i.e. let
S=0fort < 0and f = f, for t > 0, assuming that the magnit-
ude f, of the step cannot be measured. Reserving the freedom
to choose 7, take the previous switching law given by eqn (4).
Clearly if k = K, eqn (3) after the step has passed will take the
form

Et+aé+(b+xy)(e—e,)=0 (6)
where &, = bfy/(b + Ky).
Correspondingly, for k¥ = — ¥ one gets
E+aé+(b—rgy)(e—e)=0 OB

where &, = bfy/(b — KO)

Assuming that x, is large enough a. qualltatlve plot in the
phase plane can be drawn for each of these equations without
difficulty. Equation (6) in the phase plane corresponds to a
family of spirals converging to a focus-type special point (&, 0).
Equation (7) in the phase plane corresponds to a family of
integral curves of hyperbolic type, with a ‘saddle’-type special
point (&;, Q) through which pass two integral straight lines whose
gradients are the roots of eqn (5).

Assuming now that the switching law is given by eqn (4),
the phase diagram shown in Figure 3 is obtained, provided only
that 74; < — 1, where 4, is the negative root of eqn (5) is
assumed. If the latter inequality is not satisfied, an obviously
unsatisfactory result is arrived at, since the switching line (T)
given by the equation T¢ 4+ ¢ = 0 will be cut by the integral
curves over the whole of its.length with ¢ < 0, while in our
case the straight line T is a sliding line everywhere except
over the segment EF, where E and F are the points of contact
with the integral curves corresponding to eqns (6) and (7). Thus
the switching line resulting from the relevant optimum criteria
will have been deliberately abandoned. If the representative
point M falls to the left of the line 7, then'it will slide along
this line as far as F, follow a curve of hyperbolic type as-
far as the line ¢ = 0, then a spiral as far as the right-hand part
of line T, where it will again start to slide towards E. On arriving
at E it will approach the point (&, 0) along a spiral if a > 0,
while if @ < 0 it will start to move along a cycle consisting of the
segment GE of line: T and the segment EHG of the spiral. Thus
any point in the plane arrives, eventually, either within a
sufficiently small region about the point (e, 0) or at a limiting
cycle corresponding to some self-oscillatory mode. It should be
observed that the amplitude of the resulting self-oscillations is
of the same order as &, = bfy/(b + Ko), and consequently can
be made as small as required by increasing .

It should be noted that by increasing 7 the length of the
segment over which it cuts the integral curves is decreased, but
the speed of sliding along this line is also lessened since, as can
readily be seen, the slidinglaw is given by the relation ¢ = &, exp
(— ¢/T). Thus proceeding from various quality criteria and
combining speculation with experiment a reasonable value for
the time constant T can be selected.

Toge ther with R. M. Yeydinov and I. N. Pechering the
author has been carrying out analogous investigations for a
third-order system. Here the main difficulty lies in the problem
of synthesizing a corresponding optima Isystem.

Connection with the Acqumulated Disturbance Problem

Returning now to the problem formulated in the first
paragraph; as far as the approximation to the final section of
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the trajectory is concerned, our problem is directly related to
that of Bulgakov!® on the accumulation of disturbances in a
dynamic system.

Introducing the substitution z = x — ¥ (¢) into the system
of eqn (1), we transform it into the form

gtf =4z, I)-H‘(C »y®,n@,t) - ®)

wh.re
Ziz,n, ty=) Z+Y ()0, 0~ WiD,n(0),1)
r (3, W @O0, )=f 1,00, D=y O+ule,y,D=r()

System (8) is a system of equaiions for perturbed motion,
the function r (¢) determines according to eqn (2) the approxima-
tion error of the programming or control functions, and the
deviation of the solution z (¢) of system (8) from zero coincides
with the deviation of the solutlon x () of system (1) from the
given function ¥ (¢).

If system (8) is linear, then for z(0) =0, 0 < ¢ < T< o
we have z (f) = Ar (). where A is a linear-bounded operator
transforming the function r (¢) into the functions z (¢). If || 4| is
the norm of the operator, then ||z ()] < || 4]| || ()| is obtained.
The latter relation is also the most general expression of the
solution to the problem of disturbance accumulation. By taking
various norms for r (¢) and z (r) and computing | 4|, the actual
inequalities that solve this problem!! 12 are obtained.

Connection with the Theory of Approximations

If as an optimum criterion that of the minimum error # (f)
(in any dimension)is taken, then the problem of realizing the given
" trajectory reduces to a problem in the theory of approximations.
This problem is most effectively solved in the case where r (7)
depends linearly on the programming parameters and functions,
and where we require a minimum of the mean-square approx-
imation error. In this case the elementary rules of the theory
of mean-square approximations are used for computing the

control. It should be observed that here two essentially different -

cases are met. Ini the first case, by selecting the programming
parameters from a sufficiently large number of them the approx-
imation error can be made as small as required, i.e. realizing the
given motion as accurately as necessary. In the second case the
error of approximation cannot be made less than a certain value.
Here it is worth while to state the problem of simultaneously
choosing optimal values for the parameters and optimal pro-
gramming functions. The success of such a choice depends,
roughly speaking, on how well the given trajectory fits into
linear subspaces in the various dimensions?!.

Trajectory Realization and Stability Theory

If it is wished approximately to realize motion along a given
trajectory for the whole interval 0 < ¢ < oo, certain difficulties

arise. It can readily be seen that such an approximate realization -

is possible if the zero solution of the system

»

wzen) ©

515/3

is stable in relation to continuously acting disturbances that
are limited relative to the dimension in which the approximation
error r (f) is evaluated. There exist!? stability criteria related to
continuously acting disturbances limited in modulus or in
mean value. Stability criteria can easily be deduced!* for use
with continuously acting disturbances limited in their mean
square, which are of most interest in our problem. However, in

solving the problem it was required to find convenient evalu-

ations of continuously acting perturbations that were simulta-
neously evaluations of approximation errors.

Such evaluations! were found and it turned out to be best
to make them in the dimension of space M with norm

(k+1) T
lr)I*= sup J [r(®)I*de
0<:<owdJ kT _
where |r (?)] denotes the length of the vector r (f). Massera was
the first!® to point out the important role of the space M in
stability theory.
Dwelling further on a questlon related to stability theory,

- the operating mode ¥ (z) is called stable in relation to the

system X = X (x, ¢) if the zero solution of the system

2=Xz+y @), H)—-X Y (1),1)

is asymptotically stable. From the preceding argument it is clear
that ‘only stable operating modes can claim to give a good
approximation. Unfortunately few criteria for operating mode
stability have so far been derived in relation to this system.
Clearly if the basic system is linear and asymptotically stable,
then any operating mode will be stable relative to it. The same
property is possessed by the systems considered by Krasovskiy

in his paper!6 (theorem 3.1). These systems are determ nud by

the fact that for each of them a constant symmetriral aatrix 4
can be defined having positive eigenvalues and such that the
symmetrized matrix

] (432),+(439),} (), -2

has ncgative eigenvalues u; satisfying the inequality u; < — d,
where d > 0 at all points of the space — o0 < x; < 00,0 <7< 0.

The interesting result obtained by Letovl? is also noted,
concerning non-linear control systems with parameters that
vary only slightly. He has proved for a large class of systems of
great importance in control engineering that the stability of a
given operating mode implies the stability of all sufficiently clcse

modes. In this case the closeness of the modes is assessed by the '

magnitude of the modulus of the difference between the pro-
gramming functions.

Probably further results in this direction can be obtained
on the basis of both existing and new criteria for asymptotic
stability of linear systems with variable coefficients. It can easily
be verified that in the unidimensional case Krasovskiy’s criterion
is a necessary and sufficient condition for the stability of any
mode. It would be interesting to know to what extent this
criterion is necessary for systems of a higher order.

Realization of Periodic Motions

Now let theright-hand side of .the system (1) and also the
function ¥ (:) be periodic in ¢ with period 7. Assuming that the
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zero solution of system (9) is asymptotically stable to a first
approximation, we can again formulate the conditions for a
given motion to be realizable with the required accuracy. But in
this case these conditions can be set more simply, since here
the dimension in space M is given by

llff(t)|12=J0 r (@)I* dt

Furthermore it can be shown that even in the presence of an
approximation error different from zero there exists an asymp-
totically stable periodic motion lying within an & neighbourhood
of the given periodic motion.

It should be observed that the results obtained can be ex-
tended without difficulty to the case where the motion to be
realized is discontinuous, or more accurately has discontinuities
of the first sort!%. In this case the programming functions will
appear as the sums of ordinary functions and linear combi-
nations of ¢ functions.

Programme Control of Randoni Processes

Up to now attention has not been directed to the external
.influence or, more precisely, disturbance # (¢). Normally 7 (f)
is a random function, and so the actual mode of operation will
be a random process. Naturally in this event the programmed
mode also is random. The extension of the preceding results to
the case of stochastic differential equations presents no difficult-
ies, provided the following points are borne in mind. A random
quantity, as is known, may be determined as a measurable

function defined in some choice space $ (or space of elementary

events). It is easy to see that the space ?_ can be constructed in
such a way that it is the choice space for all random functions
7 (©), € () and x (¢) -occurring in the equation
: dx
d_t=f (x, t,n (1) +u (L, E(1) (10)

where & (£) is the distortion of the disturbance 7 (f) (see Figure I).

If a norm is defined by any means in the linear space of
random quantities (as in the space of measurable functions

defined in the choice space S), then differential eqn (10) is
transformed into a differential equation given in the linear
normalized space R, whose elements are random vectors. Here
one should take as initial vectors in the solution of Cauchy’s
problem not only deterministic vectors but also any other random
vectors from R, while the derivative and integral of a random
function w.r.r. t should be understood as the derivative and
integral in Bochner’s sense. In particular, if as the square of the
norm of a random vector the mathematical expectation of the
square of the length of the vector is taken, then the concept of
the derivative and integral of a random function coincides with
the generally accepted one.

It should be observed that the theory of differential equations
in a Banach space is well developed at the present day. By
making use of this theory, one can readily formulate conditions
for the existence, uniqueness and extensibility of solutions?®,
and consider questions of stability!® or questions of the ex-
istence and research of periodic motions?®. All this enables the
setting up of a completely analogous statement of the problem
of realizing random processes and to obtain results identical
to those presented above®!.
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The reduction or elimination of the effect of disturbance by
continuous tracking of it has found wide application in the
theory of automatic control, mainly in the theory of composite
control systems. This theory uses the so-called invariance principle
developed by Academicians Luzin and Kulebakin, which has
served as the starting point for a large number of papers on
automatic control theory that have important applications.

Realization of Processes by means of Systems with Many-valued
Characteristics

Barbashin and Alimov?2 have shown how to reduce systems
of differential equations with relay-type hysteresis, and in
general many-valued characteristics to a differential equation
in a normalized linear space. Thus in this case also all the
preceding results can be obtained by the same method as was
indicated for the programming of random processes.

Conclusions

It has been seen in this paper that the accuracy of approxima-
tion to the trajectory depends on the degree of stability of the -
zero solution of the system (10). The better this stability is,
as judged by any of the existing quality criteria, the smaller
effect will approximation errors have on the deviation of the
trajectory from the given one. Thus the problem of improving
the response of programme control turns on the problem of
increasing the stability of motion. Here, in particular, the
theory of programme control again comes into contact with the
theory of optimal control.
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Some Problems of the Dynamics of a Hydfaulic
Throttle Control Servo-motor W1th an Inertlal Load

V. A. KHOKHLOV

Introduction

Two questions are considered in this paper. The first concerns

the limiting conditions under which a hydraulic servo-motor

may still be treated as a linear system. This is investigated .

without taking into account the compressibility of the liquid
in the hydraulic cylinder. The effect of this factor is taken into
account in the investigation of the second problem——that of the
limiting frequency of -oscillation. of the servo-motor piston
at which cavitation of the liquid in the hydraulic cylinder does
not occur.

The following assumptions are made: there is no hquld
leakage from or hydraulic loss in, the piping; the flow coefficient
in the control ports of the valve is constant; the working edges
of the sleeve and of the valve, in the mean position of the latter,
coincide; and the effective areas of the piston are the same on
both sides.

On the Limiting Conditions under which a Hydraulic Servo-motor
Working with an Inertial Load may be Considered as a Lmear
System

Figure 1 shows an outline diagram of the hydraulic servo-
motor taken for analysis. The differential equation of motion
for the actuator neglecting the liquid compressibility, and
with only inertial loading, has been derived by Katsl. In an
earlier paper? the author has given the following general form
of differential equation for a servo-motor under any kind of
load: :

: dx b .
a =k %fi/(pOpr'sgnp)*'p - (D

where x is the displacement of the piston in the hydraulic .-

cylinder, measured from its central position; x is the liquid flow
coefficient in the valve ports; b is the length of the working slit
of the valve port; F is the effective area of the piston; p, is the
pressure in the supply line; Ap is the pressure drop in the
capacities of the power hydraulic cylinder created by the external
load; p is the displacement of the valve; and sgn p is the sign
determlmng the direction in which the valve is displaced from
its central posmon

Equation (1) is non-linear. It is of interest to determine the
limits of frequency and amplitude of valve oscillation w1th1n
which the non-linear term Ap sgn p may be neglected in eqn ).
The solution of this problem is particularly interesting in the
case where an inertial load is displaced by the piston of the
hydraulic cylinder. Kats! has shown that for sinusoidal valve
motion the piston velocity may be expressed approximately in
the form of a series

517/1
' 0 6>
v-"-smr——Zs1n2‘c+ (3sin3 7+ 5sint)
3
+%sin3rcosf+... @)
where v is the dimensionless piston velocity. o
o gf ) ‘
o dt F [y dx ,

V== —_— . 3
dx\  wubp* \/ gpo dt @

dt /..

dx\ | » . . .
d_ is the no-load piston velocity corresponding to an amplit-
t/xx - '

tude valve displacement of p*, 7 is the dimensionless time

T=t 4)

and 6 is the dimensionless parameter

, . i .
9=ap*H / 5
. P FZ Do ()

where m is the mass of the load applied to the piston.

In his paper he also gives two more approximate methods
for solving the forced periodic motion of the piston in a hydraulic
servo-motor, and :shows that all three methods glve a satis-
factory approximation provided 6 < 1.

However with inertial loading the non—hnearlty of the equa- .
tion, of motion of the actuator feqn (1)] is determined by a
term depending not on its output veloc1ty but on the acce-
leration

m d2x
Ap=f i

According to the results of Kats! and making use of expres- -
sions (3), (4) and (5), 1t is possible to obtain:

L e=9 coste— b =9 cos
oSt cos’T— 5 Cos T
[(1—-3sin*c)+30sin*zcos 7]
92

32[ a- 3sm 1)+ 36 (sin? rcos-c)(l 3 sin’7)

+—2— 6% (sin’z cos -c)]
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Figures calculated from this equation for 6 = 0-5 and
0 = 0-1.are shown in graphical form in Figure 2.
These graphs show that with sinusoidal valve motion and for

9<01 (6)

the piston accceleration for the main hydraulic cylinder follows
an approximately cosine law (error not more than 5 per cent).
Thus if condition (6) is satisfied the term Ap sgn p may be
neglected in eqn (1), and 50 one may treat the servo-motor
working on an unertial load as a linear integrating element.
In order for condition (6) to be satisfied, by virtue of (5) we

must have:
: F2
YPo \2
wp *<01— umb <———g> N

On the Limiting Frequency for a Hydraulic Throttle-control
Servo-motor at which Cavitation of the liquid in the Hydrauhc
Cylinder does not Occur

The modern tendency to increase the accuracy and action
speed of servo-systems calls.for an increase in their natural
frequencies. While in electrical servo-motors the natural
frequency is essentially limited by motor heating, no such limita-
tion exists in hydraulic actuators. However in the presence of an
inertial load the frequency transmitted by a hydraulic throttle-

control servo-motor is limited. This limit is due to the fact that’

with this sort of load the actuator is working alternately as
a motor and as a pump. In the pumping condition, because of the
presence of controlling throttling devices and the limited supply
pressure, the pressure in the suction line may turn out to fall
below atmospheric. In this event cavitation occurs in the ligaid
in the hydraulic cylinder? 3,

At the same time the continuity of fluid flow, basm to the
analysis of hydraulic servo-motors, is broken.

Considered here is the problem of determining the limiting
frequency transmitted by the actuator under the condition
that cavitation should not occur in. the hydraulic cylinder. The
solution of this problem is carried out taking into account the
compressibility of the fluid, and with the' piston driving an
inertial and velocity load. Under these conditions the motion of
the piston in Figure 1 is determined by the followmg three
equations?:

(1) The equation for liquid ﬁow through the valve:
dx,

T u\/(l—%%sgnp>%'p ®

where x; is the displacement of the section of fluid close to the
end walls of the power cylinder (sectlons I and II in Figure I);

8Do \z
k,=p— [{=—
_“F\/<7>

(2) The equatioh for the forcés acting on the piston

d’x  dx
mW+hd —(xl—x)kR . (C))

where 4 is the viscous friction coefficient of the load and kR the
rigidity of the liquid.
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For motion of the piston close to its central position, from
the author’s previous results? one may consider the rigidity of
the liquid as constant and equal to 2 FG/l,, where G is the mo-
dulus of elasticity of the fluid and /; is the half-length of the
internal capacity of the hydraulic cylinder.

(3) The equation for elastic deformation "of the liquid in
the hydraulic cylinder: ' .

ApF =(x; —x) kg (10)

By eliminating the variables x; and Ap between eqns (8), (9)

-and (10) the equation of motion for the loaded hydraulic servo-

motor is obtained taking into account the compressibility of
the liquid:

mdx h &y dx
kg d® kg di? " dt

1 d?x dx
‘."vJ(“‘f;( ?*hdt>sg“") '’
' ' 1L

According to the author’s previous results® the continuity
condition for the liquid masses in the cylinder may be written
in the following form:

1 d2 b dx
Fp, dt2 BT

Since an analytical solution of eqn (11) is not possible, an
investigation of it was ‘carried out, by the author and T.N.
Kolerova, on the EMU-5 electronic analogue simulator. The
example chosen for simulation was a slide-valve-controiled
hydraulic servo-motor with the following numerical para-
meter values: F = 50 cm?; d, = 1-4 cm; pp,, = 0:024 cm;
b=umndy =44 cm; I, =5 cm; py =50 kg cm?; u = 0-57;
y =09 x 10%kg cm™3; m = 0-2 kg sec®> cm™; 2 = 12 kg sec
cm~!; G = 12,000 kg cm~2; kg = 24 x 10* kg em™L.

The following were used in setting up the problem: standard
computing amplifiers; a limiter to ensure that condition (12)
was fulfilled; an element performing the operation of square-
root extraction; a multiplier; and a two-position relay reacting
to the sign of the valve displacement.

<1 (12)

With the dimensions and parameters given above for the
servo-motor, the differential eqn (11) takes the form:

0-83x 107 3+5 10"5‘1" dx
ta
2 <
=52-7\/<50—<4><10‘3‘i1 +024§f>sgnp> - p*sin wt

(13) 1

- Solving this equation in terms of the highest derivative, and
transforming to the time-scale T = 50 ¢ for convenience, we get:

+ For convenience in solution, the quantity J/p, = /50 that enters
into ky has been included under the squaré-root sign on the right-
hand side of the equation.
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d3x
di -

2
+505\/<50 <10§ 2+12cc11 )sgnp) p¥sinQr  (14)

where 2 = 0:02 w.

The block diagram of the model representing eqn (14) is
given in Figure 3.

A voltage was applied to the input of the model that repres-
- ented a sinusoidal motion of the valve.

Altogether, four series of oscillograms were taken, corre-
sponding to fixed amplitudes of valve oscillation and to various
frequencies ranging from zero to 300 c/sec (zero to 6 c/sec on
the model scale).

These oscillograms were processed to give amplitude- and
phase-frequency charaeteristics for the actuator, which are
shown as continuous lines on Figure 4.

Arrows are used on the amplitude-frequency characteristics
to indicate the points determined by condition (12) as the
boundaries for transition to cavitation conditions. On the same
diagramthe broken lines provisionally show sections of amplitude-
frequency characteristics corresponding to cavitation conditions.
An amplitude characteristic is also drawn here for the same
servo-motor with no load, m = 4 = 0.

These characteristics indicate the presence of resonant modes
in the inertially loaded actuator. As the amplitude of valve
oscillation ‘is reduced, the resonant frequency tends (in the
example considered) to w, = 1,100 sec™%, which corresponds to
the oscillation frequency of the load mass of wy =V (kp/m)*.

. Investigations were also made for other combinations of
the basic servo-motor parameters. In particular, Figure 5 shows
three oscillograms obtained for periodic motions. of the actu-
ator with /; = 10 cm and the remaining figures as in the example
above.

Although the motion of the hydrauhc ‘servo-moior

allowing for liquid comprrssibility is described by the non-
linear differential eqn (11), still, as follows from the oscillograms
shown in Figure 5, sinusoidal displacement of the valve causes
a piston motion according to a law close to the harmonic. This
provides a basis for estimating the boundary of the cavitation
state working from a linear approximation, besides the inve-
stigation already described.

12 480——

To solve this problem eqn (11) is taken and the term on

the right-hand side omitted for the original equatlon of motion
of the hydraulic servo- motor

1 d2 +hdx sgn
PP\ dz gy Jsene
under the'square-root sign. The equation becémes:

.m d3%%  h d%x  dx
. kp

T a8 Th e Tar =k (15)

- The condition for no liquid discontinuity in the hydraulic

cylinder, for the case under discussion, can now be found.
For alinear system with periodic oscillations it is known that

d®x [d%x - dx

" Wer, sec™ (from simulator results) —
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Then, taking into account that the discontiomity of the liquid
is conditioned by the inertial load, condition (12) takes the form:

(&) f

where x* is the amplitude of oscillation of the hydraulic
cylinder piston.

Solving eqn (17) for w one finds the limiting oscillation
frequencies for the hydraulic cylinder piston at which continuity
of liquid flow is still maintained

wc,=\/ <fj;’f>l (18)

The value of valve oscillation amplitu}ie required to satisfy this
condition is determined from the amphtude—frequency character-
istic of the servo-motor.

The latter, according to eqn (15), has the form:

p"F 17)

x* k, 1 3

A((O)=‘.*=— : 2 2
P - S| a9
(1) ) o

The simultaneous solution of eqns (18) and (19) allows the
limiting permissible frequency w,, as a function of the amplitude
of valve displacement, to be found:

_ [ kke\ 1 h)2
Der=\J\\ o F 7+ 2 \m .
e T oo

From examination-of this equation it can be observed that
Wy = w® when

Kikg s b

PoF m

Thus continuity of liquid flow will only be maintained in the
hydraulic servo-motor provided that the amphtude of valve
oscillation does not exceed

h poF
*'___. 0
Pr=m Kk

1)

For the case con51dered p* = 00017 cm.

Table 1 shows the limiting frequencies for oscﬂlatlons
transmitted by the hydraulic servo-motor in the absence
of discontinuities, as obtained both through simulator investi-
gation of the non-linear eqn (13) and by calculation from
eqn (20) based on a linear model of the same actuator.

Table 1

p,cm 0-0022 | 0-007 | 0-013 | 0-024

960 [ 820 | 660

Wer, sec™! [calculated from eqn (20)] | 1060 976 887 750
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1t follows from these figures that the linear approximation 2 KHokuLOV, V. A. An analysis of the motion of a loaded hydraulic
‘ to the problem is acceptable for the determination of limiting servo-motor with feedback. Automat. Telemech., No. 9 (1957)
frequencies corresponding to the boundary at which cavitation
takes place; the figures in the table show relatively good agree-
ment. '

3 KHOKHLOV, V. A. An experimental investigation of the bulk strength
of liquid used in hydraulic servo-motors. Izv. Akad. Nauk
SSSR, Otdel. Tekh. Nauk, ser. Energet. Autom., No. 6 (1961)

References 4 KHokHLOV, V. A. Forced periodic motions of a hydraulic servo-

1 KAts, A. M. Automatic Control of the Speed of Internal Combustion motor with a position load. Automat. Telemech., No. 6 (1960)
Engines. 1956. Mashgiz : : . ’ . :

Figure 1. Outline diagram of hydraulic servo-motor with slide-
' valve control '
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Figure 2. Piston acceleration curves.for sinusoidal valve motion ) i
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Figure 4. Amplitude and phase-frequency characteristics for a hydraulic
servo-motor working on inertial and velocity load
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Figure 5. Oscillograms of forced periodic motions of a loaded hydraulic servo-motor:
(@ f=18(0)c/sec; (b) f=22(110)c/sec; (c)f= 26 (130) ¢/sec -
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Digital Controllers
T.M. ALEKSANDRIDI, S.N. DILIGENSKY and E.K. KRUG

Introduction

Many new problems are now arising in the automation of
many technological processes; increasing the accuracy with
which preset conditions are maintained, the need for simul-
taneous observation and control of a large number of parameters
characterizing the state of one plant, and so on. There are also
additional difficulties bound up with the specific features of
technological processes. Thus, information on the state of
certain parameters can be obtained only at discrete moments
of time (for example, when working with complex metering
devices, when the value of the controlled variable is established
on the basis of chemical analysis). ‘

It is only possible to increase the accuracy of control of any
magnitude if use is made of transducers having a sufficiently
small inherent error. Digital sensors appeared to offer a
great deal in this respect (these are transducers which convert a
non-electrical magnitude into an electrical one in digital form).
For example, the accuracy of operation of d1g1ta1 speed
transducers is 0-1-0-01 per cent and higher.

Centralized-control machines are used for simultaneous
monitoring of a large number of parameters. These machines
have facilities for indication and recording should the controlled
magnitude deviate from that specified. In these systems the
simplest control laws (for example, two-position) are some-
times reproduced. The use of such laws cannot provide high
control accuracy.

The application of conventional proportional-integral con-

- trollers, combined with centralized-control machines, and also
in other systems, in which measurement of the control variable
is effected at discrete moments of time, requires special storage
units. It is difficult to realize these units on the basis of analogue
equipment.

The problems listed above are easily solved by going over to
digital controllers. In digital controllers, the preset control law is
produced in a digital form. These controllers can operate with
digital sensors or with analogue-digital converters (such conver-
ters are used in centralized-control machines). The output signal
from the digital controllers is converted into analogue form.

The improvement of step motors opens up particular
prospects for the use of digital controllers. When step motors
and digital sensors are used, a purely digital control system can
be built.

A theoretical study of discrete control systems was described
by Tsypkin'. The first digital controllers were developed for
controlling the speed of electric motors2—2.

Today, apart from specialized digital controllers, there is a
need to develop unified digital controllers*; it is possible to

* Unified controllers reproduce typical control laws (e.g., pro-
portional-integral) and have a wide range of variation of the tuning
parameters. Therefore, they can be used for controlling various
technological processes.

construct these on the basis of an analysis of the dynamic
characteristics of digital controllers.

For unified digital controllers, a proportional-integral mode
of control is adopted. As research has shown®, PI controllers
provide high-quality control for many plants. Unified digital
PI controllers can be built either in the form of a single-channel
system, designed to.control one magnitude, or in the form of a
multi-channel controlling several magnitudes at the same time.
It is expedient to combine multi-channel digital PI controllers
with centralized control machines.

Single-channel and multi-channel digital PI controllers can
be built in accordance with two structural schemes. In con-
trollers with the first type of structure the integration operation
is effected with the aid of an integrator; the signal from the
integrator, which is added to a signal proportional to the
deviation, is sent to a proportional actuator. In a controller
having a structure of the second type, the actuator is an inte-
grating element, on the input of which are added signals pro-
portional to the deviation and to the derivative of the deviation.

This paper considers certain features of the dynamic pro-
perties of digital PI controllers, and describes the operating
principle of single-channel and multi-channel digital controllers.

Dynamic Properties of the Digital P/ Controller

The proportional-integral law of control in continuous form
is usually written as follows: :

p()=K, <x (t)+%fx(t) dt) (1)

where u(#) is a continuous function corresponding to the
output signal, and x (7) is a continuous function corresponding
to the input signal. ‘

A continuous PJ controller has two setting parameters: the
proportionality coefficient K, and the integration time con-
stant 7;. In unified PI controllers it is necessary that these
parameters can be changed within the limits: 0-2 < K, < 50
and 10 sec < T; < 3,000 sec.

It should be noted that in practice the tuning parameter
variation ranges in -analogue controllers are limited: the
maximum value of the integration time constant T; = 1,600 to
2,000 sec.

The proportional-integral control law in discrete form is
written as follows:

nO=Kx[nT]+K, T x[iT] @

when nT <t < (n+ 1) T. x [nT]is a lattice function, correspond-
ing to the input signal (deviation at moment of time z = nT);
K; and K, are constant coefficients; T is the sampling period.
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The discrete PI controller has tuning setting parameters: the
proportionality coefficient K;, integration time constant T =
K,/K, T and sampling period 7.

Figure 1 contains graphs which explain the nature of the
change of w () with stepwise and sinusoidal input signals
x (¢). Tt can be seen from this figure that the T;' of a discrete
controller, like the T; of a continuous contreller, is determined
by the doubling time. In unified discrete PI controllers the
limits of variation of K; and K;/K, T must be the same as the
limits of variation of K, and T.

Two standard structural schemes for discrete PI controllers
are given in Figure 2. The discrete PI controller of the first type
[Figure 2 (a)] consists of a converter of x ()—> x [nT] (1),
multiplication unit (X;), multiplication unit (K,), a discrete
integrator (DI), an adder (X)) and a converter of u [nT]— u (f)
which must at the same time serve as a storage unit.

The discrete PI controller of the second type [Figure 2 (b)]
consists of a converter of x (f)— x [nT), a discrete differentiator
(D D), multiplication unit (X;), multiplication unit (Kj), an adder
(2), a discrete integrator (DI), and a converter of u [nT]1— 1 (7).
(In a number of cases, one unit performs the functions of the
converter and integrator.)

It is convenient to compare the dynamic characteristics of
the discrete PI controller with those of a continuous PI con-
troller, by sending to the inputs of both controllers a sinusoidal
signal x () = Bsin Q¢ (B is the amplitude and L2 the pulsation).
In this case the output signal from the continuous and discrete
PI controllers equal, respectively:

uw(@®)=Asin(Qt—a)
n(@®=1®
The expressions of the frequency characteristics of the first

harmonic of the function f(¢) of proportional and proportional-
integral discrete controllers have the form:

sin—  or

wr(iD=K—gme ' 3
2
sinT
wPI(jQ)‘:Kl—ﬁ'
2
KAk T
1+fj-+————-—229Te (e @
Klsm—é—

Figure 3 shows the frequency characteristics of discrete and
continuous (broken line) P and PI controllers. It can be seen
from Figure 3 that the controller frequency characteristics
differ by no more than 5 per cent in modulus and 5° in phase
when the condition QT < 0-2 is satisfied. This means that in
practice systems with discrete-acting PI controllers can be viewed
as continuous, if the time of the cycle T is less than 0'1 T;
(T < 0:1T)), i.e., when the maximum frequency of the input
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signal Q.. does not exceed the value 2.« T; < 2 — 3 (which
is usually the case in systems with PI controllers).

In real systems with digital controllers the maximum input-
signal frequency is limited by the parameters of the analogue-
digital converters (conversion time 7,) and the inertia of the
actuators (77,,). Studies have shown that in practice the equations
of real digital controllers correspond to eqn (2), if there are
satisfied the conditions: )

Qmax Tx < 5): (5)
Qo Tiy<0-1 (6)
0-2Ti,<T NGO

4, is the level-sampling magnitude peculiar to all digital systems.
It is expedient to take 4, as not less than 0-:002-0-005 (relative
to the scale of conversion). In the process, amplitude of the
oscillation by the presence of J, does not éxceed a magnitude
equal to 0-2-0-5 per cent. ’

The magnitude of the minimal frequency of the input signal
Onin is limited for systems which use PI controllers built in
accordance with the second type of structural scheme [Figure
2 (b)]. In these controllers, the proportional component of the
law of control is ensured on account of the production of the
first difference Ax* = x*[nT] — x*[(n — 1) T']}. Setting ourselves
the accuracy of reproduction of the constant component, e.g.,
1 per cent (Ax* = 100 pulses) when &, = 0-002, the relation

0'2<Qmin Tmin : (8)

can be obtained, where Ty, is the minimum value of the cycle
duration.

Thus the presence of level sampling in a digital P controller,
of the second type leads, with a pre-set minimal time T, to
the limitation of the input-signal frequency band, with which
the constant component of the control law can be reproduced.

Single-channel Digital PI Controller

The single-channel digital PI controller (SDC controller)
is built with a structure of the second type®. It consists of a
time-pulse converter, a digital control element and an actuator
(when working with digital sensors, the converter is not neces-
sary). The converter is used to perform comparison of the con-
trolled variable ¢ (¢) with the set value @, (f) and to produce, at
discrete moments of time, pulses, whose length 7, is proportional
to the magnitude x [#T] = [p () — @, (9)]. These pulses, and
also signals on the sign of the deviation sgn x [#T], are sent to
the input of the digital control element.

In the single-channel digital PI controller, use can be made
of actuators with step motors and with constant-speed motors.
An SDC controller with an actuator having a step motor is
examined below. In the SDC controller, the step motor serves
simultaneously as a digital-analogue converter. (When a con-
stant-speed motor is employed, the controller has a digital-
analogue' converter which converts the number of pulses pro-

+ The magnitudes x* [(n — 1) T], x* [nT] and Ax*[nT] denote
the magnitudes x [(n —1) T, x [#T] and Ax [»T] converted into digital
form.
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portional to the variation of the control action into the duration
of one pulse.)
The control law of an SDC controller is written in the form:

HO=K; ¥ {(Ks x[IT1+K, GT]-x[G-D TD}

=K2K3 .glx[iT]+K1K3x [nT]
for nT<t<(m+1)T €))

where K; and K, are coefficients characterizing the parameters
of the differentiator and the integrating unit; K is determined by
the parameters of the analogue-digital converter and the
actuator (001 < K; < 1; K, =12, m=1,2,...,8; K; =20;
2 sec < T < 600 sec). Figure 4 shows a block diagram of a
digital control element (DU) and an actuator with a stepping
motor.

The discrete differentiator (DD) consists of a reversible
difference counter (DC), a block for tuning the coefficient
K; (BS) and control valves (K1,,).

The discrete integrator (DI) consists of a reversible counter
divider (CD), control valves (K/;), step-motor control unit co)
and a step motor (SM) with a reducing gear (R). CG is a cycle-
pulse generator which produces consecutive cycle pulses, the
intervals between which equal respectively T: yand T,. FG is a
generator of filling pulses with frequency fo- The control element
(DU) operates cyclically. A cycle of operation, of duration T,
consists of four periods.

First period: The first pulse S; over the cycle from the cycle
generator triggers the converter. The pulse from the converter
opens the corresponding valve KI, for the period 7, of gating
of x*[(n — 1) T1 pulses, of frequency f;, to the adding or sub-
tracting bus of the reversible difference counter, depending on
the sign of the mismatch sgn x [(# — 1) T]. The pulse converter
is not shown in the block diagram of the DU (Figure 4).

Second period: The pause between the moments of termina-

_tion of the pulse with duration 7,—; and the appearance of

pulse S,. The length of the pause T, — 7,- 4 can be changed at
will by varying T3, thus setting the necessary value of T.

Third period: The second pulse S, in the cycle from the
cycle-pulse generator once again triggers the converter, and
x*[nT] pulses are sent to the reversible difference counter during
the time ;. After this a digit proportional to Ax* [nT] = x*[nT]~
x*[(n — 1) T]is found to be written in the difference counter.

At the same time, during the third period, K, x*[nT] pulses
pass via the reversible counter-divider to the step-motor control
unit, and the shaft of the actuator turns through a corre-
sponding angle. This operation relates to the processing of the
integral component. '

The magnitude of K, can be varied by altering the division
coefficient of the counter-divider.

Fourth period: After the termination of the pulse with
duration 7, the unit for tuning coefficient K, is triggered; this
unit generates pulses of frequency /1 and £, (the ratio f,/f; = K,
is adjusted by altering the frequency /- The pulses with frequency
/1 are sent to the reversible difference counter, and it is zeroed.

- During this time, the pulses of frequency Jyare sent to the step-
motor control unit. The shaft of the actuator turns through an
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angle corresponding to K; Ax*[nT] pulses. The latter operation
relates to the processing of the proportional component of the
PI control law. '

The single-channel digital control element (DU) is built on
semiconductor devices. The circuits of the reversible counters,
the pulse generators, and the K; tuning unit are made up of
standard elements in the form of a flip-flop, a toggle-switch
relay, a multivibrator and logic elements. The assemblies of the
DU are designed in the form of one block (Figure 5). The power
amplifiers in the step-motor control unit are put into a self-
contained arrangement.

Multi-channel Digital P] Controller

k The multi-channel digital PI controller (MDC) is built with
the first type of structure?. It is designed for operation in con-
junction with a centralized control machine. Figure 6 is a block
diagram of a multi-channel control system. The system consists
of a centralized control machine (CCM), and a multi-channel
digital PI controller (MDC), which includes a multi-channel
control element (MDU), digital-analogue conversion blocks
(CDA;—CDA4,) and actuators (IM,—IM,).

The centralized control machine (CCM) has one analogue-
digital converter, to which are connected alternately 0]
controlled values (r = 1, 2, ..., I, Figure 6). The values of the
deviations of the controlled magnitudes x,*[#T] and the sign of
the deviation sgn x [#T'] are computed in the CCM. To the input
of the multi-channel control element are sent:

x,*[nT], sgnx,[nT]

and a pulse S, corresponding to the inclusion of the rth con-
trolled variable.

In the multi-channel control element (MDU) during the
cycle for ‘I transmitted values of x,*[nT] there are produced ‘I’
values of u,*[nT] in accordance with the equation below. The
tuning parameters for each channel are established independ-
ently. The limits of variation of the parameters equal 0-5< K; <40
and 003 < K, < 10 respectively.

The digital-analogue converters are used for the conversion
of u,*[nT] into the analogue magnitude u, () and for retention

- of the value of u, (f) during the time of scanning the other

controlled variables. The magnitude u, (f) is obtained in the
form of one of the signals taken as standard for the control of
analogue proportional actuators (e.g., a current of 0-5 mA).
The number of digital-analogue converters and actuators equals
the number of controlled variables (7).

A block diagram of a MDC:'is shown in Figure 7. DI is a

discrete integrator, consisting of an integral reversible counter -

(CI and a memory unit (MU); SU is a tuning unit, which serves
for tuning the coefficients K, and K,, for each channel separat-
ely; AC is a reversible counter for adding the discrete values of

- i=1

the proportional K, x*, [nT] and integral K,, Zx, [»T] com-
ponents. i=1

CU is a control unit, consisting of channel switch (CS) and
an order unit (OU). The channel switch counts the switching
pulses S from the CCM and issues the apprepriate order pulses
to the SU, the MU and the OU. The order unit produces order
pulses for the performance of all the elementary operations.
Fysign is a sign flip-flop, the output signal of which changes as
sgn x, [#T] varies; CDA is a digital-analogue converter. The
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complete cycle of operation of the multi-channel digital con-
troller is compounded of the time of scanning all the channels.
One (‘") interval of operation of the MDC is determined by the
time for which the MDCsystem s connected up to the rth channel.

The intervals of operation of the controller begin with the
sending to the CU from the CCM of a switching pulse which
is the rth in order over a given nth cycle. In the process, the
number of the next, rth plant is set in the channel switch and
there are formed the appropriate order pulses for the MU, the
SU and the CDA, the duration of which equals the full time
of the interval.

From the MU is selected the value of the 1ntegra1 for the

channel ‘r’, stored over ‘n— 1’ cycles—Kz,,Zx*[zT 1. This

value is sent in parallel binary code form to the IC and AC.
After this, mismatch pulses for the #’ channel—x*, [nT] arrive
at the tuning unit (SU) of the controller. The SU is so con-
structed that for each channel the tuning coefficients K; and K,
are set individually by hand, and upon selection of the rth
channel the corresponding coefficients are automatically
switched in by means of order pulses arriving from the CU.
K, x*, [nT] pulses arrive at the reversible adding counter
(AC), while the integral reversible counter (IC) receives
K,, x*, [nT] pulses. The sign of the mismatch is transmitted for
controlling the reversible counters. After the end of the addition
of the mismatch pulses, in the integral counter there appears
the value of the integral for the r channel after the nth cycle.

n—1
K2r Z x:k [lT]
i=1
The integral value obtained is written in the memory unit at
the appropriate location. In' AC, after the addition of the
mismatch pulses, there appears the value of the control action
for the rth channel in digital code:

=1
W 1=Ky 14K, $ 5, LT] (10)
i=
This value is transmitted by the corresponding order pulse in
the (AC) in the form of parallel binary code to the digital-
analogue converter (CDA) of the rth channel.

At the converter output the corresponding value of the
control action is established in the form of a direct current,
which varies in the range 0-5 mA. With this the interval of
operation of the MDC ends. Subsequently, the next switching
pulse is sent from the CCM to the control unit, and the digital
controller goes on to compute the control action for the » + 1th
channel. )

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

The unit for tuning the coefficients K;, and K,, consists of
a common part for all ‘I’ channels and ‘2]’ separate networks.
The common part of the tuning unit takes the form of additional
columns of counters (/C)and (AC)and a generator of frequency f;.
The tuning network for each channel has two switches, which
ensure the selection of the necessary quantity of additional
columns m,, and my,, of counters (IC) and (4AC), two toggle
switches and two valves. For example, the requisite value of the
coefficient K,, is set with the aid of a switch which determines
the value of m,, and by control of the toggle switch, which
generates a pulse of duration #,, for each pulse x*[»T]. The pulse
of duration t,, opens for this time the valve, which passes through
to the counter (I4) a pulse of frequency f,. As a result,

pulses arrive at the counter (CI) during the interval. The
coefficient K, equals

tar fo

I<2r= 2m2r

The multi-channel controller is built on semiconductor
devices. The networks of the reversible counters, the control
unit and the setting unit are based upon one logic element: an
inverter on one triode (P 16) with resistor logic circuits. Building
the MDC on the basis of one standard cell makes its circuitry
more technologically efficient and more reliable. A matrix unit
using cores with a square hysteresis loop serves as the memory
unit; the digital-analogue converter is based on networks of
current switches, and the CDA is a structurally independent unit.
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On the Searching of Extrema of Functions
in Automatic Control Systems

A.A. VORONOYV and M. B.IGNATJEV

This paper considers a distinctive approach to the problem of syn-
thesis of local systems for automatic search of extrema of func-
tions of many variables. The principle involved in construction
of systems which react upon the partial derivatives of the sought
function by the coordinates of the controlling devices is not new.

In the search of the extremum of the function of a single
variable the problem is sufficiently definite; however, when the
function depends upon several variables, the definiteness is lost
and the solution of the problem becomes multi-valued. The
function of a single variable y = f(x) is represented by a plane
curve, and if at a certain point x; one determines dy/dx, then
it is necessary to vary x in order to approach the required
extremum. A function of two variables may be represented by
a surface y = f(x;, x,). In this case, the path followed in passing
from a given point to the point of extremum, while remaining
on the surface, is not a singular one, but one of infinite multitude.

In 1959 Krasovskiy considered systems which searched the
path to the extremum by the gradient method’. He also showed
that depending upon the form of the surface y = f(xy, X, ..., X5,)
the gradient method may be varied by making the shift of the
controlling device x,; dependent on the derivative f; = 0f/ox;
and also upon the derivatives of the function f with respect to
other coordinates.

Approximately at the same time the Electro-Mechanical
Institute of Leningrad considered the problem of simulating
functions of many variables by, means of digital differential
analysers. This problem arose in connection with the construc-
tion of systems of programme control of metal cutting machines,

first for simulating plane curves and then for curves lying on

a given surface. The method which was utilized in this instance
made it possible to indicate the general methods of synthesis
with DDA (digital differential analyser).intended for simulating
various forms of multidimensional surfaces, and also to indicate
the quite general method of constructing systems of searching
of extrema of functions of many variables, based on the principle
of measurement of partial derivatives. The gradient method is
obtained in this instance as a special case. This method also
permits the searching of extrema, taking into account the bound-
aries at the intersection of multidimensional surfaces.

Before proceeding to the treatment of this method, it is
necessary to consider the question of the structure of differential
equations whose solution lies at the given intersection of
multidimensional surfaces? °.

The Structure of Differential Equations whose Solution Lies at the
Intersection of Multidimensional Surfaces

The problem of finding differential equations whose solution
is a given function is not a single-valued problem and its

rational solution depends upon the means which are used for
composing the sought system of equations, and upon which
properties of the functions are utilized in the solution.

Indeed, in mathematical analysis there are given proofs of
theorems on the singularity of solution of differential equations
under given conditions; however, it is obvious that the converse
problem has a multitude of solutions, that is, it is possible to
find a multitude of differential equations whose singular solution
will be the given function.

At the present time there exist two approaches for solving
differential equations. The first approach permits the construc-
tion of an equation by introducing a parameter, and in the
following this approach is called the parametric method of
synthesis. The second approach of developing the method of
synthesis is one which converts an equation into an identity,
which equation is obtained by differentiating the output function
with respect to the parameter.

Let there be a function

F(x{,%X3,...,%,)=0 ¢))

and an argument ¢. In the parametric method of synthesis one
finds first of all the parametric equations

x;=x;(@), i=1,2,...,n 2

which satisfy (1), and from these equations differential equations
are found whose solution will be given by functions (2). In this
case it is possible to find the differential equations by the method
of K (D) transform proposed by Kulebakin.

By the second method% 3 the parametric expression (2) is
not sought, but the differential equations whose solutions
satisfy (1) are immediately determined. As numerous observa-
tions indicate, the structures synthesized by the second method
are considerably simpler than the structures synthesized by the
first one.

The basis of this method of analytical construction of a differ-
ential analyser is the following lemma: having the function (1)
of n variables which has a derivative in the given range of the
variables, then in order that the solution of differential equations

dx; oo

M: i l=1,,2,...,n , (3)
under initial conditions satisfying (1) may transform eqn (1) into
an identity, it is necessary and sufficient that the eqns (3) trans-
form into an identity eqn (4):

o OF dx;

£ dx; d(p “)
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This lemma is then utilized for searching functions f;:
they are sought so that they may transform eqn (4) into an
identity. This problem has a multitude of solutions, and this is
what determines the fact that the problem of synthesis is not
a single-valued one. No matter how we may determine f;,
they will in all cases be some functions of partial derivatives
0F/0x;. In the operation the functions f; are sought out as
linear functions of partial derivatives under the assumption that
this is the simplest case. )

As is shown% 5 the differential eqns (3) whose solutions
satisfy (1) include arbitrary functions U; whose number s = C,2,
and the matrix of these arbitrary functions is symmetrical with
respect to diagonal with zeros along the principal diagonal. For
instance, the structure of differential equations whose trajectories
are disposed on surface F (x, y, z) = 0is determined by equations

, dx_'u oF " oF
de '3y %0z
dy_u '6F+u oF
dp "'dx' 0z
dz _u' oF _ OF
dp "*0x 0y

where u;, u,, ug are arbitrary functions which determine the
trajectory on the surface once they are given. They may be any
functions as long as they satisfy Lipschitz condmons for right-

hand sides of differential equations.
In simulating the trajectory at the intersection of surfaces

LX)=0  j=1,2,...m (6)

®

Fj(xnxza .
m<n

the number of arbitrary functions u, in the structure of differen-

tial equations is determined as
s=Cytt 0

and it is possible to determine the disposition of these arbitrary
functions in the structure of the equations. '

As an illustration of these methods of synthesis differential
equations will be found whose solutions are disposed on surfaces

=12 ®

At first the arbitrary functions are'designated, the number of
which in this case is C,® = 4,

F; (15 %2, X3, %4)=0,

w1 =Cyz3, Uy=C14, U3=Cy3s, uUs=Cp34

The coefficient in which the subscript of the term C contains
unity are disposed-in the first line; the coefficients in which this
subscript contains the number two, are 51tuated in the second
line, etc., that is, .

dx,
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where the letter D designates the sum of the products of partial
derivatives of the function (8) with respect to variables whose
subscripts are present in the subscripts of the term D.

e etc.
Ox; 0x, 0x, 0x,

125

" The superscript of the term D denotes the line.

The signs before the terms in eqns (9), as can be shown, are
determined by the following rule: consider the order of the
superscript and subscript of -the symbol D, for instance that
normally indicated by a pointer, and if there is an odd number
of violations of the normal order, a minus sign is used before
this term, and in other cases a plus sign is used. That is, for
terms of the'top line one has orders 123, 124, 134 in which
there are no violations, and these are accompanied by a plus
sign; in the second line there are 213 with one violation (2 being
greater than 1), and a minus sign is used; 214 with a minus sign,
234—no violations—a plus sign; in the third line, 312—two
v1olat1ons—plus sign; 314—one violation-—minus sign; 324—
one violation—minus sign; in the fourth line, 412—two viola-
tions—plus sign, and 413 and 423 also have plus signs.

In an analogous manner one determines the structure of
differential equations and the signs and dispostition of arbitrary
functions in the latter by simulating trajectories at any number
of intersecting surfaces with any number of variables.

It is of interest to note the presence of a maximum with
respect to the number of arbitrary functions in the structure of
differential equations for systems with a number of variables
greater than six. The number of arbitrary functions for n < 6
decreases as the number of intersecting surfaces increases.
For 7 > 6 the number of arbitrary functions for an increasing m
at first increases, and only after having attained a maximum for
m = (n — 2) with even values of n, and for m = (n — 2 - 1/2)
for odd values of n, does it begin to decrease.

The arbitrary functions u, in the structure of differential
equations may be utilized as means of control in specifying
prescribed motions on multidimensional surfaces, and as means
of self-tuning of an automatic control system. Formula (7)
relates the number of dimensions of the control space to the
number of degrees of freedom of an automatic control system,
and to the number of constraints imposed upon the system,
while the presence of a maximum in the number of arbitrary
controlling functions indicates an optimal structure as regards
self-tuning of a holonomous system for n > 6.~

Determination of Extrema of Functions

The problems of searching out the extrema of functions is
one of the most widely encountered ones. There exist different
methods of finding extrema in the presence of known partial
derivatives, and different methods of automatic determination

1 1 1
E=u1D23+u2D24+u3D34 of these partial derivatives. However, at the present time, the
dx methods of searching the extrema of functions in the presence
——2= _u,D};—u,D?, +u,D3, _of constraints placed upon the variables are not sufficiently .

d‘P ’ 9 .wel developed, and none of the existing methods assures that.
dx, 3 3 5 the motion to the extremum will proceed along a geodesic, or

W=“1D12—H;D14—u4D24 the shortest line.
In order to find the extrema one may utilize arbitrary
‘cili_ U, D 4 s D13 tu, D23 coefficients in the structur‘e of differential equatiqns.. Indeed,.in
@ order to assure the motion to an extremum-maximum with
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respect to coordinate x;, it is sufficient to prescribe such a motion

that the coordinate x; increases all the time, and this may be -

achieved by specifying the coefficients u; in a proper manner.
For instance, in order to attain a maximum with respect to z on
the surface F(x,y,z) = 0 it is sufficient to assume in the system
of eqns (5):

, OF . ,0F
u2=a15;, Us a26y
In this case
gi——u oF 26F aF
do~ 1E)y 1 ax oz
dy OF zaF oF )
@%'”%x 26y oz (10)

_d_é_ aF +a2 a_F'. :
do dx 2\oy

where dz/d¢ will be a positive definite form of a constant sign
for all real values of x, y, z, which assures the stability of the
process of finding the extremum in accordance with Liapunov®.
At the point of the maximum with respect to z, the velocities
with respect to all coordinates become zero. For a system of
eqns (10) the point of maximum with respect to z proves to be a
point of stable equilibrium. In the motion toward the extremum-—
minimum

,OF
azay

and dz/de will be a negative definite form.

In an analogous manner we determine the coefficients u, for
a specified motion toward the extremum for surfaces with a
large number of dimensions as well.

The synthesized structures may be utilized for searching out
extrema of functions with any number of variables for individual
surfaces as ‘well as for cases in which constraints are taken into
account, that is, for intersecting surfaces. For instance, in
searching the maximum with respect to coordinate (x,) at
the intersection of surfaces (8) for a specified motion toward
this extremum it is possible in the system of eqns (9) to let

D23

and dx,/d¢ will be a positive definite form, and this fact assures
. stability of the process of searching the extremum according to
Liapunov.

For a motion toward the extremum prescribed in this manner
there remain free arbitrary functions in the synthesized struc-
tures, the number of which functions is equal to:

S—Cm I_Cm .

These free arbitrary functions may be utilized for snnulatmg
the trajectory during the time of the motion toward the extremum.
In the example considered above there remains a free arbitrary
- function #; in the system of eqns (10). The free arbitrary func-
tions may be utilized for prescribing the motion toward the
extremum along a geodesic curve or one which is close to it.

It should be noted that all stationary points for the obtained
differential equations will be points of equilibrium, but only
points of the extrema will be points of stable equilibrium, while
the saddle points will be points of unstable equilibrium.

OF
U, =—afa

Uy =Dy, u3=Dy3, uy=
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If the number of intersecting manifolds is m = n — 1, then
they determine a line in the n-dimensional space. In this case
the problem is reduced to searching out the extremum in a
one-dimensional manifold. It may be assumed that dgp = wdt,
where ¢ is the time and o is an arbitrary function which satisfies
the Lipschitz condition, and .

dx;

T , X%, i=1,2,..,n

a)é (x1’x2’

For prescribing the motion toward the extremum in this case
it is only necessary to specify the direction of the motion along
the line. For example, in the motion toward the maximum with
respect to x,, it is suﬂic1ent to assume that @ = &, (xy, Xg, -+, Xn)s
and then

dx; |

Ezén(xl, Xpeens Xp) €1 (X1, X5 000y %)
dx,

d (xlaxz’ ,X)

There follows a comparison of the described method of searching
out the extrema and the gradient method. As shown by .
Krasovskiy’, the gradient method assures stability, accordmg
to Liapunov, -in the computing process of searching the extré-
mum. This constitutes the similarity between them. Bit the
gradient method assures the displacement toward the extre-
mum only along some special trajectory, while the proposed
method permits the variation of trajectory of motion toward
the extremum.

Indeed, in the system of eqns (10) there remained one free
arbitrary coefficient # which may be specified by a different
method and which supplements the definition o ftrajectory for
the motion toward the extremum. An analogous situation exists
also in searching. the extremum for other manifolds or their
intersections, except for those which are one-dimensional. The
gradient method constitutes -a special case of the considered
method of searching the extrema, when all the remaining
arbitrary coefficients are set equal to zero; for instance, for the
system of eqns (10), when #, = 0.

The remaining arbitrary coefficients may be prescribed in
such a manner as to assure the motion toward the extremum
along a trajectory which is optimal in some sense, including in
this number a geodesic trajectory.

Figure 1 shows a block diagram of a system which searches
out an extremum at the intersection of surfaces. The controlling .
signals produced by an analogue programming device (PD) are
supplied to several simultaneously optimized plants 0y, O,

., 0,. On these plants the current values of partial derivat-
ives which are supplied to the programming device are deter-
mined in some manner. The programming device constitutes
a differential analyser (in particular, an electronic analogue
installation) whose structure was described in the preceding
paragraph. The setter of trajectories (ST) carries out such
prescription of the arbitrary coefficients which remain free after
the prescription of motion toward the extremum in order to
assure the displacement toward it along.some desired trajectory.

If the equations F; (x5, X9, ...,X,) =0, j=1,2,... m are
known, then 0,,0,,...,0, are simply functional transforms. If
only a part of these equations is known, this means that a part
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of 0,0, ...,0,, are functional transforms (computer assemblies),
while the other part are the plants.

In Figure 2 is shown the block diagram of a system which
utilizes the method of searching the extremum described above.
As an example consider the case of searching the maximum on
a surface F(x;, Xy, X3, x,) = 0 with respect to coordinate x,.
The structure of the analogue device in this case is defined by
equations

.gﬁ—u 6F‘_u a_F_aF OF

dp  "'dx, *0x; Ox, Ox,

dx,__, OF  OF oF oF

dp "'Ox, *0x; 0x, 0x,

0x4 OF OF OF OF
‘a?—“za—xl—“uza—xz—a—x3 a—xy § an
dx, (OF\* (oF\*> [oF\?

0 \Ox, 0x, 0x3

In this instance we assume that 0F/0x, = — 1. The. current

values of partial derivatives may be determined by the method
of synchronous detection. The considered system for u, = u, =
= uz = 0 is transformed into a scheme of extremal system cited
by Krasovskii? and it differs from this scheme by the introduc-
tion of cross-links supplied to the input of the integrators. At
the same time, the coefficients u;, uy, u; may be either constant
magnitudes or functions of coordinates x;, and be controlled by
some index of the quality of operation of the system.

In specifying the motion along a geodesic curve in eqn (10),

' the free coefficient uy, for instance, may be determined from the

condition that for a geodesic curve the main normal to the
curve coincides with the normal to the surface, and at the same
time #, is determined as a complex function of coordinates.

If we search an extremum with respect to coordinate y
on the surface F(x,y,t) = 0, where ¢ is the time, then the
structure of the analyser which specifies the motion toward the
extremum will be defined by equations

ax__orer or
dt- ax oy %

dy_(ar\?  (oFY;
dr \ox ot

OF OF OF
l=uyr—— —
“0x 0t Oy
As can be seen, by virtue of the last equation of this system
of equations, the number of free arbitrary coefficients decreases.
It is possible to determine such constant ¢oefficients u, which
assure the motion toward the extremum, perhaps not along the
geodesic curve but at least along a path which is shortcr than
the trajectories followed during the motion toward the ex:remum
by the gradient method, that is, when the free arbitrary coe Fcients
are equal to zero. During the motion along a geodesic curve

-these coefficients in the general case will be complex functions.

For constant free arbitrary coefficients, the technical realization
of the proposed method is considerably simplified.
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On the Search of Extrema of Functions in Automatic Control

Systems

The operation involved in searching out extrema at the
present time is automated to a large extent and may be used as
a basis of construction of various automatic control systems.
In the case of a limited range of change of variables the extremum
may be sought taking into account the constraint.

Y x?=R?

The method described above permits this approach.
Frequently .in controlling chemical production of great com-
plexity the problem of optimization of the free index of the
quality of the process arises; for instance, if there is an object
with a characteristic F(x, y, z) = 0, and it is required to determine
such values of x, y, z which would provide an extremum to the
free index z' = I3 x + myy + n, z where I, mg, n; are constant
quantities, then this problem may also be solved on the basis
of the method considered above.

Rewriting these equations using other designations, one has

Fy(xy,%2,%3)=0
Fy=lix{+myx,+n3x3—x,=0

The structure of differential equations whose solution lies at
the intersection of these surfaces is determined as (9), where

D,i:m;,%—ii—l_,,%%
D13#n3?§—;—13%
D2y='—2—fzi,p3y=—STFB1

The partial derivatives of the characteristic of the plant may

_be determined by some automatic method®: .

The problem considered above may be formulated as a
problem of searching an extremum in a given direction, which
is characterized by coefficients /3, m,, n;. At the present time
an effort is being made to utilize the operation of searching
extrema for solving the problem of constructing the motions.
The problem of constructing the motions based on energy
levels': 2 m1y be formulated for the given kinematic scheme.in
terms of the intersections of the manifolds, and the motions
themselves may be regarded as a solution of the problem of
searching an extremum in a given direction.

In conclusion, consider the problem of possibilities of a
global search. The finding of an extremal extremum requires
a more thorough study of the investigated functions, and at the
present time. various strategies for solving this problem!s 0, 13
have been proposed. One can propose yet another strategy for
solving this problem as follows. Suppose that it is necessary
to find the maximal maximum. Having investigated the function
and having found several maxima, it is possible to pass a
surface through them and the maximum of this surface will be
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at least in the zone of gravity of the sought maximum of the
maxima. If the approximated surface will have several maxima,
then it may be smoothed in the same manner by finding the
second approximated surface, etc. The number of approximated

surfaces will be determined by the comp]ex1ty of the 1nvest1gated )

function.
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Synthems of Systems with the Fixed Charactenstlcs of
'Equivalent Self—adjustmg Systems

M. V. MEEROV

The problem of ‘self-adjustment’ in a control system arises in
connection .with the fact that in the operational process the
characteristics of the control object may vary within a wide
range. Under those conditions, the adjustment of the control
system, or even its structure, which was entirely expedient for the
initial form of the object’s characteristics, may prove to be
completely unsatisfactory for the altered characteristics.

A change in the characteristics of the object to be regulated
may be conditioned, basically, on the two most prevalent
factors. In the first place, a change in the characteristics may be
brought about by external disturbances that are applied to the
object; and in the second place, a change in the object’s character-
istics may take place in the course of its operation.

The problem of ‘self-adjustment’ also comes up in a number
of cases where the information regarding the characteristics and
properties of the object is insufficient; it is only known that the
object’s characteristics have an extremum for some qualitative
criterion, and the control system’s problem consists in a search
for this extremum and in maintaining the object’s operational
conditions on this extremum. A rather large number of studies
(for example, by Fel’dbaum® 24, and by Doganovskii and
Fel’dbaum?®) hav/e been devoted to methods of searching for,
and adjustment of the system to, the disclosed extremum. In the
present paper, methods are considered for the purpose of
constructing systems with fixed characteristics that would
maintain the most favourable adjustment, independently of
external disturbances, and the character of which may be
practically arbitrary. The sole limitation is the one regarding
disturbances in accordance with the modulus (absolute value).
In the present study, no consideration is given to the method of
searching for the extremal condition for some qualitative
criterion. If, however, the extremum is established by some
method or other, then the structures examined below maintain
this extremum automatically, without the need for a duplicate
search.

Methods of Constructing Control Systems for the Case where the
External Disturbances may be Measured

Consider the automatic control system whose schematic
diagram is shown in Figure I. In this diagram the designation
wy (p) is given to the transfer function of the regulating object,
kw; (p) and wy(p) to the transfer functions of the control
system and of the stabilizing device, and F to the external
disturbance. kw; and w;(p) have been selected in such a way
that, in the absence of disturbances, the F(p) process, which is
the most favourable from the point of view of the selected
qualitative criterion, is attained in the ca%e of a sufficiently large
amplification factor, k. Thus, for example, the optimum operat-

kwi (P) Xinpic (P) = KWy (D) Xouipu (P) — kw, (p) w3 (p) F (p)

ing conditions are realized where there is an unlimited increase
in the amplification factor, the-object is non-linear, and there
is a non-linear return communication in the optimum control
circuit with an automatic potentiometer5 ®. It is natural for the
designed circuit to remain stable where there is an unlimited
increase in the amplification factor. The following situation is
demonstrated: the structure, which is shown in Figure 1, upon
giving no consideration to external disturbances and where k
tends to infinity, is equivalent to the system in Figure 2, where
consideration is given to disturbances and where & tends to
infinity. In other words, in order to eliminate the effect of external
disturbances that are capable of being measured, they should
be supplied to the input of the stabilizing device in the form of an
additional signal. Actually, the transfer function of the system
in Figure 1, without calculating the external disturbances, will
have the form:

k (p) output (p)

xnput (p)
kw, (p) w, (p)
1 +kw, (p)w; (p) 2 kw, (p)w, (p)
1+ kw, (p) 1+kw; (p) w3 (p)+kw, (p)w, (D)
L+kwi (p)ws(p) 6

Assume that & tends to infinity; then,

wi (p)w,(p) w, (p)

kadjustcd (P):wl (p) w, (p)+w1 (p)w, (p)=w3 (p)+W2 V4

) 03

Now, the transfer function for the circuit in Figure 2 is found;
one has:

Y(p): kwl (p) {xinput - xomput_ [Y(p) +F (p)]W3 (P)} (3)

Xoupu (P)=w2 (D) [Y () + F (P)] C))
From (3),

y(p)=

1+ kw, (p) w5 (p) )

Substi.tuting the value y (p) from (5) and (4), one obtains either:
[L+kwy () W3 (P)] Xoutpu (P)
= kw1 (p) W2 (P) Xsapu (D) — kw3 (P) W3 (P) Xoutpu (P)
—kwi (D) w2 (D) w3 (p) F+w, (p) F +kwy (p) w3 (p) F
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from which: -
e ) ©
Where k tends to infinity, one obtains:
o )= e
) i Xoupu () _ w2 (P) .

Xinput (p) - wa (p)+w;3(p)

i.e. exactly the same expression as eqn (2). From what has been
obtained it follows that the system in Figure 2, where there is a
sufficiently large amplification factor, will behave as a self-
adjusting one, in the sense that its characteristics will remain
unchanged despite the presence of external disturbances whose
character is practically unlimited.

Methods of Plotting Structures for the Case where it Does not
Appear Possible to Measure Disturbances Directly

Now consider- the case where the object’s characteristics
change due to the effect of external disturbances, but where it
does not appear possible to measure these disturbances. Such
a situation is, for all practical purposes, highly prevalent.
A series of disturbances is difficult to measure, in the first place,
because of the properties of the disturbances themselves, and
in the second place because of the absence of sufficiently high-
speed measuring devices for the measurement of the external
disturbances.

. The solution of the problem in the given case is carried out
in the following fashion. Assume that the object’s character-
istics are known for the case where disturbances are absent.
For this case, a control system is constructed in such a way that
the optimum operational conditions should be attained when
there is an unlimited increase in the amplification factor, k.
Strictly speaking, in the absence of interferences, the system has
the form shown by Figure 1. As was indicated earlier in this
paper, in the case where k tends to infinity, one has:

koa. (P)=[w2 (D)]/[W3 (p) +w, (p)]

Now Figure 3 is plotted. The output of the controlling part
of the circuit, which is designated in Figure 3 by the letter y, is
fed to the input of the real object and to the input of the model
with the transfer function w; (p). In future, wy (p) is called the
transfer function of an ideal object.

The difference petween the outputs of the ideal and real
objects is fed through a converting device with a transfer
tunction weonvert (2), to the input of the stabilizing device. Now

- the transfer function of the system in Figure 3 is found.

y (p) = kwl (p) {xinput (p) — Xoutput (p) -
— W3 (p) [Y(p) + (xoutpu( (p) - Xoutput (P)) Weonvert (p)]} (8)

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

Xreet. (P) =W () y () (10)
On the basis of (9) and (10), one may write: _

xout‘put (P) - xou!pul (P) »
=w, () [y +F()-Y(@)-Y(»)]=w,(p)F(p) (1)

‘in calculating' (11), eqn (8) is written as:

Y(p) = kwl (p) {xinpu! (p) — Xoutput (p)
—w3(P) ¥ (P) — W3 (D) Weonvers (P) W2 (P) F ()} (12)

From (12), the expression for y (p) is found, namely:

By ]*

By substituting the expression for y (p) from (13) in (9), one
obtains, after some elementary calculations:

[1+kw, (p) w3 (P)+kwy (P) W (P)] Xoutpu (P)

=kwy (P) W2 (D) Xinput (P) ‘
—kwy (P) W2 (P) Weonver (P) W3 (P) F (p)

+wa (D) F(p)+kwy (D) w, () w3 (D) F(p) ... (14)

Assume that the transfer function of the stabilizing device
has been selected in such a way that the structure obtained
assures stability where there exists an unlimited increase in the
amplification factor, k. Dividing eqn (14) by k, and assuming
that & tends to infinity, one obtains, after some simplifications:

[W3 (8)+ W2 ()] Xouput ()= W2 (B) Xinput (7)
[ (2) W3 () = W2 (P) Weamverd ) W3 ()] F (2) .. (15)

As is evident from (15), in order to eliminate the effect of inter-
ferences, the transfer function of the converting device should
be selected from the condition:

Wy (p) W3 (p)—W% (p) Weonvert (p) W3 (p)=0 (16)
or:

Weonvert (P) = 1/W2 (P)

The realization of a device with a transfer function (16) may be
attained by methods of plotting structures that are stable in the
face of an unlimited increase in the amplification factor (6), and
it presents neither fundamental nor technical difficulties.
Generally speaking, the elimination of the influence of
interferences, in the given case, could be accomplished by the
method described by the author’. Naturally it is expedient to
make use of the indicated method if there are no additional
interferences at the system’s input. If, at the system’s input,
there are interferences, in addition to the useful signal, then it is
possible to show that the solution given here is more noise-proof.
Let us convince ourselves of the accuracy of this affirmation.
It is assumed that, in place of the transfer function kw; (p),

Xoutput () =w2 (P) [Y (P)+ F ()] (9) and in place of a stabilizing device with a transfer function
* Eqn (13): Y(p):kwl (p) xinput(p)—kwl (p)xoutput(p)—“kwl (P) W2 (p) Wconvert(p) W3 (p)F(p) (13)
1+kw, (p) w3 (p) '
523/2
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w, (p), which provides for stability in the face of an uhlimited

amplification factor k, ‘a system having the form shown in

Figure 4 is realized.
The introduction of an amplifier, with a high amplification
" factor, which is encompassed by a stabilizing device with a
transfer function wj, depends on the necessity of providing
stability to the entire system in the face of unlimited increase
in k. If w, (p) has a power ‘p’ in the denominator that is greater
than a ‘fourth’ one, then, as is shown in (6), it is possible to
introduce several amplifiers with high amplification factors and
realize a structure that would admit an unlimited increase in &
without disturbing the stability.

As is clear from (7) in this case, if Xinput CONtains no inter-
ferences, then an increase in the amplification factor k, up to
rather high values, eliminates the effect of the F interferences.

Assume that the input signal contains an interference Sinput
to the extent that

X xinpulu +finput

where xinpyt o, i the interference-free input signal.

A system of equations for the circuit in Figure 4 is drawn up,
for the case under examination. At the same time, instead of the
part of the circuit surrounded by a dotted line in Figure 4,
assuming that here & is a sufficiently large number, one should
straightway insert 1/wy (p).

input =

523/3
Where k tends to infinity, one obtains:
Wy (P) _W2 (»
output [ inputu (p) +fin ut (p)]
w3 (p) w3 (p) ’ S
or:
xoutput (p) = xinpu( u (P) +_finput (P) ' (20)

Consequently, one obtains at the output a magnitude that
is equal to the ideal input plus the interference.

Consider, at this point, the size of the magnitude at the
output, in the presence of interference at the system’s input, and
with the elimination of the effect of F interference by the above-
mentioned method.

Keeping in mind that at the input of the system in Figure 3,
along with the wuseful signal, there is an interference feed, one
has the following system of equations (Figure 3)

’ Eqn (21) *

or, considering (11), one has:

-
Eqn (23) |1

Substituting the value of y (p) from (23) in (9), and after some

from which: -

Y=k [xi"p““‘ (P) +Sinpuc (P) = Xoutpu (P)] - » an elementary calculations, one obtains:
Y, (p)=Y, (p)— - [ Ean(2¢) |TH
W3 (P)
k : N On fulfilling the condition w, (p) = 1/w, (p) and where k tends
= T~ [xinputu (p) +finpul (p) - xomput (p)_l (18) to inﬁnity, one obtains:
w3 (p) WZ (p)
V ) . xouxput (p) e S L N mput u (p)
Xoupu (P)=W2 (P) [ Y2 (p) + F (p)] (19) w3 (p)+ w2 (p)
Substituting the value Y, (p) from (18) in eqn (19), one obtains: L(P)“ Finout (D) (25)
) ' w3 (p)+w,(p) ™7 .
X ( )_WZ (p)xinputu(p) ( k.f;nput(p) . . . .
ouput P)=—"—"—"—+ p) s By comparing the results expressed in eqn (20) and in eqn (25),
w3 (p) w3 (p ) one can draw the following conclusions. In the first case (eqn 20),
KX gutput (D) ) the greater the amplification factor, the closer the output
+w2(p) F(p) W (p w2 (p) magnitude to the sum of the ideal input plus the full interference
or: ’k 3 at the input. In the second case (eqn 25), the picture is different.
[ 1+ *:I Xoutput (D) - Depending on the properties of the useful signal and of the
| w3 ( ) interference, especially for those cases where the frequency
: k ( properties of the interference, the parameters w;(p) may be
w2 (P) [xxnpulu (»)+ Sfinput (p)]+w, (p) F(p) selectefi in such a way as to reduce the i'nterference,. \.vlllich enters
w3 (p) at the input, together with the useful signal, to a minimum.
L%k . ! . ’
Eqn (2]) y (p) = kwl (.p) {xinput u (p) + finpul (p) - xoutput (p) — W3 (p) [y (p) + (,xoutp'ut (p) - xoutput (p)) Weonvert (p)]} (21)
®% . . ) o _
Eqn (22) y (p) = kwl (p) [xinput u (p) - finput (p) _xoutput (p) — W3 (p) y (p) —W3 (p) Weonvert (p) Wy (p) F (p)_i (22)
TE 235y 21 ) Dot (D) i (P) =X (2) =k (8 W2 (8) W3 (8) Weammen () |
y(p)= (23)
1+kwy (p)ws(p)
tt Eqn (24):

kWI (p) Wy (P) xinput u(p) +kW1 (p)+‘f1nput (P) - kwl (p) W% (p) Weonvert (p) W3 (p) F (p)+ kwl (p) W (p) W3 (p)]: (p)

Xoutput (»=

1+ kwy (p) w3 (p)+kw, (p) w1 (p)

(24)
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A Change in the Object’s Parameters Taking Place as a Result of
a Change in the Operating Conditions or in the Internal Factors

This case pertains to plants, in which, in the course of
operation, the parameters of the object itself may vary within
a wide range. In such cases, the sensitivity factor, according
to Bode®, represents an essential qualitative index of the entire
system. For the plants being considered here, the sensitivity
factor may be expressed in the following manner.

Assume that the object’s transfer function, as before, is
designated by w, (p). The overall tranfer function of the entire
system in relation to changes in the object indicated by k (p),
is expressed in the following way:

dk(p)

k(p) _ dk(p) w,(p)
dw,(p) dw,(p) k(p)
wa (D)
In the general case, the smaller the magnitude of Sk, (p), the
less sensitive are the dynamic properties of the system in its
entirety, to changes in the plant’s properties. For this case, the
system is considered ideal or self-adjusting, if the magnitude
S%@ does not depend on the characteristics of w, (p) or SkEn
tends to 0.

The following proof is given. Structures that are stable in
the face of an unlimited increase in the amplification factors, in
which stability is achieved by the introduction of ideal derivatives
and whose degree of ideality is determined by the magnitude of
the amplification factor (7), belong to the category of self-
adjusting systems in the sense indicated above. There is no
question about that. In Figure 5 one observes the structure of the
regulating system of the type under consideration. The transfer
function of the closed system will be written in the following
form:

ck(p) _
w2 (p) ™

(26)

NN

1 +——W3 0 w1 (p)

Now the expression for the sensitivity is found. In conformity

k(p)= (27)
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or, after simplification:

Sk (p) . 1

w2 (p) ™ k (28)
+ W, ( ) WZ (p )

where k tends to infinity, S 5% tends to 0. In other words,

in the sense indicated above, one obtains an ideal system.

Now consider the expression for sensitivity, if the structure
belongs to the category of those that are stable in the face of an
unlimited increase in the amplification factor, and where stability
is achieved by the introduction of passive stabilizing devices.

As an example, one should consider the simplest type of
such a system whose structure is shown in Figure 6.

The transfer function of the closed system in Figure 6 is
written as follows:

kw1 (p) w, (p)
k(p)= L 2 (29)
(p) 1+kw, (p) w3 (p)+kw, (p)w,(p)
The sensitivity, according to w, (p), is written:
~ Egn(30) |*
or, after simplification:
I
Where k tends to infinity, one has:
limst® = %@ (1)
2P 7w, (p)+ws (p)

Consequently, in the given case, even with sufficiently high
amplification factors, a change in the parameters or character-
istics of the plant exerts an influence on the dynamic properties
of the system.

Consider some methods for perfecting the system’s structure,
with the object of reducing to the minimum the effect of the
variation in the plant’s characteristics on the system’s dynamic
properties, and in this manner, make the system self-adjusting
in the above-determined sense.

with (26): Where external disturbances, which did not seem capable
k 2 of measurement, acted on the object, in this case, too, it is
—{1 W, (p)] < ( > w, (p) expedient to introduce a plant model into the system, in order
S’:v (P() s () W3 (p ) ) to obtain a self-adjusting system. A structural schematic diagram’
2 for the case under consideration is shown in Figure 6.
1+w3 (p) w2 (p) Keeping in mind the designations set forth in Figure 6, one
. writes:
kw,(p)

w,(p) (1 + 2((p) ) Egn(32) |1
) Here, x'output(P) is the representation for the output of the plant’s
Ws (p) e model and Xoueput 1S the representation for the plant’s output.
* Eqn (30): Sk _ kw, (p) [kW1 (p) ws (p) +kwy (p) w, (p) + 1] —kw, (p) kw, (p)w, (p) (30)

i [L+kw; (P) w3 () + kw1 (p) w2 (P)]
** Sk@ kw, (p)-kwy (p) w3 (p)+kw, (p) kw, (p)ws(p)

"2 kw (p) [1+kw, () ws (D) +kwy (D) w2 (D) 1+kw, (p) w3 (p)+kw, () w5 (D)

f Eqn (32) Y (p) = kwl (p) [xinput (p) — Xoutput — W3 (p) y —' W3 (p) (x:)utput (p) - xoutput (p))] (32)
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It is assumed that the model’s characteristics remain invariable.
Under those conditions, the difference x’qutput (P) — Xoutput (P)
is equivalent to the disturbance that is conditional on the change
in the plant’s characteristics. Consequently

X(Imtput.(p) - xoutput (p) =CF (p) A- (33)

C is a constant coefficient.
_ In this manner, ’

Xouput (P)=W2 (2) y (P)=w3(p) y (p) + Cw2 (p) F (p). (34)

Substituting in eqn (32), instead of X output (P) — Xoutput (P),
the difference value from (33), one obtains:

CEd |’

From the above, the expr‘ession for y (p) is found:
kwl (p) Xinput (p) - kwl (p) kDUlpl:ll (p) - WS(p)CF (p)

Substituting the value for y (p) from (36) in eqn (34), one obtains:

CEndm "

or, determining Xoutput (#) from (37), one obtains:

kw, (5) W) (P) X;mput + W(PXCF ()

_ 1+kwi (p)ws(p)+kw, (p) w3 (p) -
Where k tends to infinity:

y(p)=

(38)

Xoutput (p)=

w1 (P) W3 (P) Xinput (P)  _ W3 (P) Xinpu: (P)
wi (P)ws(p)+wi (P)wr(p) ws(p)+wi(p) (39)

From (39) it is evident that the output magnitude does not
depend on the change in.parameters of the regulation plant.

Xoutput (=

523/5

Under the conditions where w’ (p) corresponds to the optimum
operating circumstances, from the point of view of some
qualitative criterion, the process in the system will be maintained
automatically at these working conditions, independently of the
plant’s characteristic changes.

Thus, as a result of considering the three most interesting
cases involving changes in the characteristics of the control
plants—changes due to the effect if external disturbances, which
could be measured, those due to external disturbances that did not
appear to be capable of measurement, and those which resulted
from plant characteristic changes in the course of operation
that were independent of external disturbances-methods
were suggested for designing structures that would provide for
the independence of the plant’s selected operating conditions
from possible external and internal effects on it, and, con-

sequently, the structures obtained proved to be self-adjusting .

system structures.
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* Eqn (35):

** Eqn (37):

W () 91 (P) Xinpus (P) = K (B) Xouipn (P) = 03, (p) ko, (9) CF (p)

Y (p) = kwl (p) [xinpul (p) - xou!put (p) W3 (p)y (p) - W3 (p) CF (p)] (35)

output —

kw, (p) * w, (p)

Xinput > . > Xoutput

ws (p)

<

Figure 1.

L+kwi (P)w; ()

Wi (p)CF(p) (37)

kw () FO_ W

Figure 2.
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Signalling and Prediction of Failures in Discrete
Control Devices with Structural Redundancy

M. A. GAVRILOV

In solving problems of providing reliable operation of automatic
control devices, a great deal of attention is devoted to the use of
methods involving the application of structural redundancy.
These include all possible methods of duplicating individual
elements within units, as well as the more common methods of
providing redundancy of all the necessary elements and units on
the whole with the least possible number of additional elements.
The ever-increasing practical use of methods of structural
redundancy is a result of the fact that, in present complex
automatic systems, the control devices require such a large
number of individual elements to perform their functions that
even though the elements may have a very high reliability, the
necessary reliability demanded of the entire device cannot
be achieved. '

A number of works'—® is devoted to the question of the
introduction of structural redundancy and the determination
of the minimum number of additional elements necessary to
achieve the prescribed reliability of the device on the whole.
For discrete control devices it is most natural and suitable to
examine the required value of operating reliability of the device
as ‘being prescribed by a certain number of elements which
simultaneously fail during operation while nevertheless per-
mitting the device to perform accurately the control algorithm
assigned to it”.

The author of the present report showed® that when the
problem is treated in this manner, the determination of the
minimum number of additional internal elements necessary to
achieve a given reliability completely coincides with the task
of determining the minimum number of additional symbols in
the construction of correcting codes with correction of the
corresponding number of errors. In the same article a method
was given for constructing tables of states which provide for
a realization of the structure of a discrete control device having
the required reliability.

The proposed method links the problem of comstructing
such a device to the distrubution of the states of its internal
elements along the vertices of a many-dimensional cube of
single transitions in such a manner that the number of transitions
(distance) between the vertices, selected for the corresponding
stable states of the device, would be no less than:

D=2d+1 ' (1)

where d is the number of simultaneously failing elements with
which the devices must still exactly perform their control
algorithm.

In differentiating the demands on reliability (namely, separa-
ting them from the viewpoint of the number of simultaneously
failing elements), first, into that for which the device must
accurately perform a given control algorithm and, second, into

that for which it must not provide any actions at its outputs, the
value of the distance between vertices selected for the stable
states must be no less than: ‘

D=2d+4+1 )

where 4 is the number of simultaneously failing elements in
addition to d for which the indicated second condition of
reliable operation of the device must be fulfilled.

In discrete types of devices which have reliability as a result
of structural redundancy, the required reliability is retained
only until the moment of onset of permanent failure of even one
of the elements.

In fact, let the prescribed probability of failure of the entire
device on the whole require that the given control algorithm be
exactly performed with the simultaneous failure of d elements.
Then, with a permanent failure of any one of the elements, the
device will capably perform the control algorithm only upon
the simultaneous failure of d — 1 elements; that is, it will have
a probability of complete failure which is less than prescribed.

Particular importance is therefore devoted to rapid signalling
of failure of individual elements or their prediction, which
permits one to take timely measures to replace the faulty
elements or other measures which will return the probability
of failure of the entire device to its prescribed value. The present
report is devoted to an examination of the fundamental possibil-
ities of providing such signalling or ‘prediction for automatic
control devices designed on the basis of the principles described
by the author3.

First it is shown that the table of states constructed according
to the principles contains all the necessary information on
failure, both generally for all elements as well as for each of
them individually, and, even more, on the nature of the failures.

Those states of internal elements which correspond to the
stable states of the corresponding table of transitions and which
are distributed, as was pointed out above, in the vertices of a
many-dimensional cube of single transitions with a distance one
from the other of not less than D, are called basic. To each of
these states there must correspond a particular state of outputs
which provides for the performance of the prescribed control
algorithm.

Let the number of inputs of the discrete device be equal to a
and let it be given that, to perform the control algorithm with a
prescribed degree of reliability, that is, in the presence of
simultaneous failure of d internal elements, it is necessary
to have K internal elements. Then each of the basic states may
be characterized by a certain conjunctive member of a Boolean
function of length @ + K. In accordance with this the table
of states contains, on the left-hand side, @ + K columns of
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which a characterizes the states of the inputs and K charac-

terizes the states of the internal elements. The binary number

characterizing the state of the internal elements corresponds
to a particular vertex of the many-dimensional cube, selected
in distributing the given basic state.*

The failure of any element is characterized by a change in
the binary number, corresponding to a given basic state, from
zero to one or one to zero. The first is called a 0> 1 type
failure and the second a 1— 0 type failure. Each such failure
transfers the basic state to an adjacent vertex of the many-
dimensional cube. The simultaneous failure of any two internal
elements transfers the basic state to a vertex two units removed
from the vertex selected for the given basic state; it is adjacent
to any vertex to which the basic state was transferred by the
failure of any one of these two elements.

"In order to provide exact performance of the control
algorithm upon the failure of internal elements, each of the
states to which the basic state is transferred upon the failure of
any number of elements within the prescribed limits (that is,
inclusive to d) must compare in the right-hand side of the table
of states to the same state of outputs as the basic state. Therefore,
for each stable state of the table of transitions, for the case of
structural redundancy, there must correspond a particular
combination of states consisting of the basic state and all the
states to which it transfers upon failure of the internal elements.
All of these states are adjacent to one another, forming a certain
multiple of adjacent states. This multiple is called a set of basic
states. o

Frist it is shown that the set of adjacent states, together with
the basic states, may be described by a symmetrical Boolean
function whose active numbers represent a natural series of
numbers from K — d to K.

Let there be any state f;, corresponding to one of the basic
states and let this state be characterized by a row in the table
of states containing K; zeros and K, ones, where K; + K, = K.
Then, with d = 1, the collection of adjacent states X f;; contains
all the states differing from the basic by the replacement of one
variable by its reciprocal. More precisely, they are K, while K;
of them corresponds to a failure of the type 0— 1 and K, to
a failure of the type 1— 0. It is easy to see that the sum of these
states may be characterized by the symmetrical function:

p) fil =Sk-1(X1, %5, ..., )?Kla XKis12 XK1s20 000 xK1+K2)

if the basic state is considered a symmmetrical function of those
variables with an active number equal to K, namely:

Jio=Sk (%1, X5, cers XK XKy 00 ¥Ry 420 --~9xK1+K2)

The sum of the basic and set of adjacent states is thus
characterized by the symmetrical Boolean function: .

JiotZ fi1=S8k-1,k (X1, X2, ..., Xg, Xg+1>XK+25 005 XKy +K2)

If d =2, the set of adjacent states consists of all states
differing from the basic by the replacement of one variable by
its reciprocal, the number of which, as was pointed out, is equal
to K = Clk, and two variables. The number of the latter is
obviously equal C2%, and since each of them differs from the

* All references made below to internal elements with an identical
base pertain to inputs and sensing elements.
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basic by a change having a value of two variables, their total
2 f; corresponds to the symmetrical function:

Efiz :Sx—z(xh x25 erey pr xKHp xKH.z’ ser xK; +K2)

The Boolean function characterizing the basic state and the
entire set of adjacent states is thus a symmetrical function of the
type:

JotZfut+Zf,

N T T ¥ .
=‘SK"2,K—'1,K(XJ X25 -“3prxK1+17xK1+2: “':xK1+K2)

It may be proved in an analogous manner that in the general
case, with the simultaneous failure of & internal elements, the
basic state and the set of adjacent states may be characterized
by a symmetrical Boolean function of the type:

SK—d, K—d+1, ...,K(xla X2s eees XEys XK 419 XKy 409 2009 XKy +,K2)

Thus, the class of reliable structures of discrete devices is,
with respect to internal elements, a class described by symmetrical
Boolean functions of a special type, which facilitates their
realization since these functions have been most widely studied
and may be economically realized with-the aid of different types
of threshold relay elements, including electromagnetic relay
elements with several windings®.

The basic state is designated as f; and the set of adjacent
states corresponding to it as N;, assuming that f; + N; = F;.

The table of states of a discrete control device consists on
the left-hand side of all sets F; combined with the corresponding
values of inputs. For each of these sets there corresponds on the
right-hand side of the table, as was pointed out above, a state
of outputs which provides for the performance of the control
algorithm. One more output is added for which is included in
the table of states a zero for each of the basic states and a one
for any of the states which are included in the sets of adjacent
states. '

Since the latter corresponds to the failure of any one or to
the simultaneous failure of several internal elements, the appear-
ance of a one at this output occurs only by means of a decrease
in the reliability of operation of the discrete device and may be
used to signal the presence of a failure.

For example, let there be a discrete device with three inputs
and one output (Figure 1) and an action, equal to one, must
appear at the latter in the subsequent sequence of change of the
states of the outputs:

»—Al—_v—no
—_ OO
HQ.OO

011 :

Any subsequent change of inputs must lead to the appearance
of an action at an output to zero, while the further appearance
of an action ‘atv the output equal to one occurs only by the
repetition of the indicated sequence of change of the states of
the inputs. With any other sequence of change of the states of the
inputs, the action at the output must remain equal to zero.

The corresponding table of conversions is given in Table 1.
Here it may be seen that it is necessary to provide for four stable
states, which is possible with the aid of two internal elements.

When it is necessary that the aforementioned discrete device
performs exactly a preassigned control algorithm in the event
of the simultaneous failure of one of the internal elements, five
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Table 1 ’ Table 3
000 | 100 | 110 | o0 | o1 | 111 | 101 | oo X, X, X, X, X, C, C, C, Cy Cy Cy
(1)° (e | 2 4 (1) 4 4 4 0 0 0 0 O 0 0 0 0 0 ©
— 4 @°) 4 — 3 — — 1 0 0 0 0O 1 1°0 0 0 0.
— - 4 — 1 (3)° 4 — 01 0 0 0 1 01 0 0 0.
1 (4)° (4)0 (4)° (4)° (4)° (4)° 4)° 0o 0 1 0 O 1 0 0 1 0 O
. 0O 00 1 0 1 0 0 0 1 O
internal elements are required, as seen in 7able 5 of reference 3. 0O 0 0 0 1 1 0 0 0 0 1
The following distribution for the basic states is chosen: 1 0 1 1 0 000 0 0 0 0
00000 0 0 1 1 0 1 1.0 0 0 0 .
10110 1 1 1 1 0 1 01 0 0 0
01011 1 0 0 1 O 1 0 0 1 0 O
11101 :
; ) 1.0 1 0 0 1t 0 0 0 1 0
Then the table of states will have the form shown in Table 2.
In agreement with what was mentioned above, let us add the 1o 11k 1o 000
output C,, in the column of which are written zeros in 0 1 0 1 1 000 0.0 0
all the rows of the table of states corresponding to f; and ones t1r 0 1 1 r 1.0 0 0 0
in all the rows corresponding to N; (Table 3). Then this output 0 0 0 1 I 1 0 1 0 0 O
will signal the presence of a failure of any one or several of the o 1 1 1 1 1 0 0 1 0 O
internal elements. ) 0 1 0 0 1 1 0 0 0 1 O
Table 2 01 0 1 0 1 0°0 0 0 1
X, X, X, X, X, 1 1 1 0» 1 0O 0 0 O 0 O
0 1 1 0 1 1 1 0 0 0 O
0 1 o 1 0 1 1 0 1 0 0 0
1 1 0 0 1 1 0 0 1 0 O
1 1 1 1 1 1 0 0 0 1 O
11 1 0 O 1 0 0 0 0 1

~If one places the action from this output into a computer
and determines the number of times that actions equal to_one
appear at this output during a certain time interval, the answers
from the computer may be used to predict an approximation
of reliable operation of the device.

The described principle of signalling and prediction has
significant advantages in the sense that neither the signalling nor
prediction requires the introduction of any additional internal
elements. Usually the performance of these functions relies upon -
special units of the discrete device which require elements having,

N N m o mm o e e |y
[ ) PTRREE a EN CR RY -

©

o e e - O OO0 00 om0 00O W
o e = O O O O ke OO D kOO0 =0 O a
O O e b b b e b b D e D D e e e e e OO

O 00 OO OO0 O0OOO =~ OO0 C0C0 QO N

O = 00O KRR OOLOOLCOOoLOOODOOOOCOCO

SR e T = T e T B B = = = S N T i

F, in principle, a reliability as much as one order of magnitude
F, greater than the elements which make up the discrete device itself.
F, In the design examined above, comprising a structure of
F, signal outputs based on actuating devices alr.eady having internal
F elements, and -assuming that the connections between these
F4 devices and the sensing signal and predicting devices have
1 100 per cent reliability, one would expect that the signalling of
Fy failure would have absolute reliability in principle.
Fy In fact, only two mutually exclusive events may occur:
Fy (a) not one of the internal elements is faulty. Then the actions

equal to one appear at the corresponding operating outputs’

In this table : and at the signal output the action is equal to zero; (b) failure

00000 10110 01011 11101 ofoneor several internal elements occurs within the limits of d.
10000 00110 11011 01101 Then an action equal to one appears both at the signal and
01000 11110 00011 1010 Operatingoutputs.
_ Fy 60100 F, 10010 F, 01111 F, 11001 It is noted that achieving reliable operation by means of the
00010 10100 01001 11111 introduction of structural redundancy according to the principles
previously presented by the author® pertain to the internal
00001 10111 01010 11100

elements of the device as a whole, that is, both to the actuating
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and the reacting devices. Therefore, with respect to failures of the
actuating organs, the device retains its ability to perform
exactly the control algorithm upon the failure of either one or,
simultaneously, all of the actuating devices of a given internal
element for the conditions when these failures are all of a
single type.

The described principle of designing signal circuits makes it
possible to provide separately for signalling the number of fail-
ures greater than 4, including those located between the limits of
d + 1 and d + 4. Additional outputs must be added for this
purpose. This requires that ones be written in the specific rows
in the appropriate columns of the table of states; namely, for
signalling failures of elements within limits from d + 1 to d + 4
in the rows corresponding to failures in these limits, and for
signalling a large number of failures in the rows corresponding
to unused states.

It is obvious that the signalling of failures may be not only
general but also specific, or, for each of the internal elements
of the device separately. For this purpose one must have for
each of them an individual output, for which there must be
written in the columns of the table of states ones for all states
differing from the basic by the change in value of the correspond-
ing variable. For example, to signal the failure of element X; in
the above case, ones must be written for each first row of the
sets N, for the corresponding output.

Table 3 gives the corresponding values of outputs for each
of the internal elements. The realization of such outputs pro-
vides, in the event of faulty elements in the device, for advance
notification as to which of the internal elements is malfunc-
tioning or, with prediction, an approximate indication, per-
mitting timely replacement or adjustment of the element for
proper action.

Obviously it is possible to provide not only for signalling of
failures of individual internal elements but for the separate
signalling of the nature of these failures as well. For example,
in Table 4, for the internal element X; examined above, are
shown the operating states corresponding to failures of the
type 0— 1 [Table4(a)] and failures of the type 1—0
[Table 4(b)1.

Table 4
X, X, X, X, X X, X, X, X, X
1 0 0 0 0 0 0 1 1 0
1 1 0 1 1 0 1 1 0 1
(@) b)

In conclusion some of the problems of realizing signalling
and prediction networks are considered. The circuit of each
output in the structure of a multi-cycle discrete device must
contain actuating devices of both internal and sensing relay
elements. The signal circuits must contain actuating devices of
only internal elements. Therefore the rational design of the
structure of a discrete device would be that shown in Figure 2,
namely, a structure in the form of a certain [1, X] terminal net-
work having at its outputs all the functions of f; and N, and
containing the actuating devices of only the internal elements,
and an [M, N] terminal network containing the actuating devices
of only the sensing elements.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

As was pointed out above, the functions which realize the
basic states together with the sets of adjacent states are sym-
metrical with the operating numbers from K — d to K and for
their realization it is suitable to use so-called ‘threshold’ elements.
When such elements are used it is advantageous to use the
structure of the discrete device having a form shown in Fig-
ure 2(b), where the [1,K] terminal network is based on thresh-
old elements according to the number of basic states. The [M, N]
terminal network has the same make-up as that shown in
Figure 2(a), while the output circuits for signalling and predic-
tion of failures are derived from the outputs of the threshold
elements by means of their series connection (providing an ‘and’
operation) and from circuits corresponding to the function f.
Thelatter may also be designed with the aid of threshold elements
having symmetrical functions with the operating number K.

In addition it is noted that, in the case examined above, it is
most rational from the viewpoint of the simplest physical
realization of the structure of a discrete device to choose the
operating levels of the symmetrical functions not from K — d
to X but from 0 to d, while simultaneously taking not the
variables but their inversions.

In conclusion one should note that the method considered
previously by the author?, as well as everything discussed in
this report, refer to the case in which the probability of failure
for all internal elements has a single value, the failures
are symmetrical (that is, the probability of failures of the
type 0— 1 is identical to that of type 1— 0), and, in addition,
failures of individual elements are mutually independent. Con-
ditions differing from these necessitate a somewhat different
approach to determining the minimum number of elements and
the distribution of the states. However, the principles of de-
signing signal circuit and of prediction remain the same, with
the exception that the functions characterizing the basic sets
and the sets of adjacent states may not prove symmetrical.
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On the Theory of Self-tuning Systems with a Search
of Gradient by the Method of Auxiliary Operator
I B. KAZAKOV and L. G. EVLANOV

Structure and Equations of a Self-tuning System

In many cases important in practice, automatic control systems
may be represented in the form of a generalized system illus-
trated in Figure 1. The object of control is charaterized by an
operator of a given structure A (n), where # is a group .of para-

meters for which a priori information is lacking. The system of-

control is described by an operator B(£) which depends on the
group of parameters &; (i = 1,2, ..., n) which may be tuned.
In actual systéms, the aggregate of values of each parameter &;
forms a finite multitude Z,. The input signals of the system are
X(#), the useful random signal, and Z(¢), U(¢), random-
disturbances. ]

The equations of the automatic control system are as
follows:

Y=Am[V+U]

V=B()e 0))

s=X-}-Z—Y

In order to assure high quality functioning of the automatic
control system it is necessary to achieve tuning of parameters
of the operator B(£) in the presence of variation of the char-

"acteristics of the input useful signal X(7), of the characteristics

of disturbances Z(f), U(¢), and also in the presence of variation
of parameters % of the operator of the object of control.

In order to construct a circuit for self-tuning, an index of
quality I of the automatic control system is introduced. The
index of quality I is a function, or in the general case it is a
functional of tuned parameters. Ordinarily the index of quality

. Iis computed on the basis of error ¢ of the system:

I=Nf (5,8 @

where N is an operator or a functional, f(¢,£) is a function of

the error of the system dependmg upon the error & and the
tuned parameters &.
In order to tune the parameters of the system use is made of

the broad possibilities offered by the method of steepest de- .

scending slope or gradient, a discussion of which is considered
by Feldbaum!. Applymg th]S method for tuning parameters &

h
one has: 5 =Agradl 3)

In the particular case when the Iower (upper) boundary of the
multitude &; is attalned within X,

I, =extremum I (£) (5

For a complete description of the circuit for self-tuning it is
necessary to determine the method of computation of the com-
ponents of the gradient from the quality index for the tuned
parameters. In the given investigation a method is applied which,
in the following is termed the method of an auxiliary operator.
Its essence consists of the following.

If the information on operators B(£) and A(x) is known
a priori, it is possible to construct a certain auxiliary operator
C (&,7m) whose application to. the error of the tracking system
makes it possible to compute the components of the gradient
vector. )

The derivative 01/0¢; is computed by the direct differenti-
ation of the expression (2) assuming that the operators N and
differentiations with respect to &; are commutative.

ol _  9f(e¢) % | 0fi(e&) -
a_g“,._N Qe 0 N 0¢; ©

The derivative 0¢/0&; will be calculated by différentiating the
system of eqns (1). The derlvatxve of the error ¢ with respect
to &; is equal to _

Oe oYy .

AT (M

since the input signals X(#), Z(¢r) do not depend upon §Z The
derivatives of the output sighal are computed:

9y 0B(d) '
@—A(n) 3¢, 8+A(71)B(¢) 5 - (®)

Excluding from (7) and (8) bY/b&z and transformmg, one
obtains:

SE= [ A B 1A<n>a§§f> ©

- Introducing the designation

- aB .
where 1 is the scalar multiplier, and & is a vector function of the (é) “(10)
velocities of tuned parameters. In accordance with the gradient it i
method the self-tuning system assures the tuning of parameters one writes: ) .
& for the optimal value of index or quality I,. In the general case . g;;___ —Ci(n,&)e (11)
Io=inf I(¢) or I,=s,pI(¢) 4 or L :
ed; &ed; grade=—C(1,&)e (12)
527/1 ;
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where C (1,&) is an auxiliary operator-vector which is completely
determined by the operators A(n), B(&). Thus, the gradient of
the quality index for tuned parameters is determined by eqns(6)
and (11). L

The method of auxiliary operator requires an a priori
knowledge of information on the system, and this somewhat
restricts its generality. However, there exists in technology an
area of applicability of the method inasmuch as the predominant
majority of created automatic control systems can be described
mathematically.

" The advantages of the method are the absence of trial load
changes and the possibility of accelerating and sunphfymg the
process of computation of the gradient components. In self-
tuning systems with a search of gradient by the method of trial
load changes, a priori information on the object, other than the
knowledge of the band pass of the system, is not required. This
' permits a correct selection of the frequency of the trial load
changes and constitutes the advantage of this method. However,
its basic shortcoming is the limited quick response imposed by
the finite band pass width of the system. In the considered
method the band pass of the mathematical model of the system
(operator C) may be artificially broadened by changing the
time scale of the solution. The possibility of simplifying the
process of computation is based on the substitution for a com-
plex operator C of an approximate and simpler expression.

The auxiliary operator C (7,£) depends upon the para-
meters of the object and the system of control. A typical case
is one of absence of a priori information on parameters 7. In-
formation on parameters of the object may be obtained on the
basis of application of a tracking system, certain aspects of
whose application were considered by Margolis and Leondes?:3.

The structure of the operator of model A({) is based on the
utilization of a priori information on the object. The aggregate
of parameters { of the operator of the model is tuned for the
value 7. The circuit of the tracking model is constructed quite
analogously to the circuit for tuning. Introducing an index
of approximation J of parameters { into parameters 7,

J=Lé¢(g,) (13)

where L is an operator for computing the index J, and ¢ (¢)) is
a function of the error. The error is determined by the relation-
ship

g =Yy(®-Y ()

Here Yas(?) is an output signal of the model determined by the

expression
Yu(®=AQV (1%)

The change of the parameters of the model is carried out by
the method of steepest descending slope:

(14)

/

z=/11 grad J (16)
where 4, is a scalar multiplier, and ¢ is a vector function of the
velocities of the tuned parameters of the model.

In order to determine the components of the gradient one
applies the method of auxiliqry operator:
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Differentiating fhe relationship (14) with respect to Ci, one has:

Oe; _ Yy _ a 040,
o, o A

hence it follows that the auxiliary operator in a given case is an
operator-vector G({) with components

AQV= (18)

6 (o=28% (19)
Thus . l
gradJ=L{a% G5 V} 20)

Equations (13), (14), (15), (16) and (20) describe the operation
of the tracking model. A useful output of the circuit of the model
is the aggregate of parameters of model {. For ideal operation
of the model £ = 7. An actual model assures the attainment of
parameters { close to values n, and therefore, strictly speaking,

in the operator C it is necessary to replace parameters % by C.

The complete structural diagram of the self-tuning system in
accordance with eqns (1), (3), (6), (11), (14), (15), (16) and (20)
is presented in Figure 2. The schematic diagram was proposed
by Evlanov.

The structure of the self-tuning system contains three cir-
cuits: the basic circuit of the system, the circuit of the tracking
model, and the circuit of tuning of parameters. The circuit of
the tracking model assures the reception of information on the
parameters of the operator o’ the object. In the following the
operation of the circuit of the 1. 1cking model is assumed to be

ideal, that is, { = %. The circuit 1~ tuning the parameters as--

sures the tuning of parameters of th. control system in accord-
ance with the given optimal value of the quality index of the
system.

Investigation of a Self-tuning System a Quasi-stationary Regime

A typical regime of operation of a self-tuning system is the
case of a change of parameters 7 of the operator A(n) of the
object and the characteristics of external random disturbances
X, Z, U which are slow compared with the duration of transi-
tional processes in the basic circuit of the system. In this case

it is permissible to consider the circuits of tuning parameters

and the tracking model on one hand, and the basic circuit on

_the other hand, as being autonomous, since the tuned para-

meters £ and parameters # may be considered as constant during
the time of process control in the basic circuit. It is also assumed
that the tracking model carries out its functions in an ideal
manner. Under these conditions the process of self-tuning of
parameters £ of operator B(£) is investigated in the vicinity of
extremum of the quality index I.

The presence of extremum -in the quality index I of the
system with respect to all or several of the tuned parameters is
an important property of the self-tuning systems which permits
them to be tuned for an optimal regime. If the error of the
system & or another characteristics does not possess extremal
properties, then it is possible to construct an extremal quality
index by artificial means depending upon the direction of
aiming of the automat. This will be shown below by an example

6_J= 9 (31).% an of a typical tracking system. For the time being, however, it is
of; Oe; Of; assumed that the quality index I possesses extremal properties.
521
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The random error ¢ of the basic circuit can be expressed in
the form

e=m,+e’ | @n

where m, is the mathematical expectation, and ¢° is the centring

component of magnitude &. In the function of the error f(s,£) -

we shall also factor out the mathematical expectation

J6O=MfO+/°60 (22

where M is the operation of mathematical expectaticn, f° {¢,&)
is the random centred component.

The quality index of control I 1ntroduced previously may
now be presented as:

I*=NI*+N £O(e8) (23)

~where the designation I* is introduced for the statistical,
quality index of control

I*=Mf(e, &) 29

Computing the com_pbnents of the gradient of the quality index
of control by parameters &;, one obtains:

' % 0 0 0
o _aI* _of° om, Naf 0e° +Naf

o5~ NVar, TN om, o8, AR

Representing the statistical quality index I'* of control in the
vicinity of the investigated extremum by a quadratic form in
terms of deviations u; = &; — &, of parameters & from the
optimal values &, and considering that

aI* _,-' | . | s’
[af :I =&i0 0 .

‘at the point of extremum, we shall obtain for the current
values of 01*/0¢&; the expressions: .

) 1[ azl*] .

—= — | == u; 26

o¢; ;;1 2 afiaﬁj 0 . ( )
Differentiating expressions (24) twice with respect to para-
meters -&;, & and utilizing a system of equations of the basic

circuit of control for optimal parameters £;, of operator B(&),
one computes the coefﬁcxents

L
0%;0¢; fo

or* 1 (@2 Ay
" [651 o¢ :I - M{_f_(%g_.@ (CJ'OBO) (Cio80)

" in the form:

01 (eo, 0% f (e,
S L 20 oo+ 5 o)
éf(e,f) : 62f(e, n

where C,y (&,7) are the aux111ary operators (10) for optimal
values of parameters &,
Introduce the designations:

L] o | | ‘
2 |8geg, )% 0 B

527/3

(25)
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Takiﬁg into account »‘also that .
dm, oe° 0
aéi = —Cl m&., —a?i— —’Cie (29)

the formula (25) is written for the components of the gradlent of
the magnitude I in the form:

o_ 2 of° 6f° os°
o8V L, cots N g, Come= N g G+ N 5g - GO

Substituting the expression (30) into formula (3), one obtains
a system of equations of the circuits of tuning of parameters &;
in a scalar form:

% ¢ ° -0f° of°
— AN — —AN—==C; e+ AN~
ijUj om, 0e° + a 3
@3y
From this one obtains a system of lmear equations for the de-
termination of mathematical expectations of deviations m,, of
tuned parameters from the optimal values:

lNZa

~AN 3 ay= = (32)

In order to determine random components of deviations of
tuned parameters u,° one obtains the following system of linear
equations:

0
) — AN Z uja, ——AN[af :ICiomeo

of af°
—AN[a ]c 0+,1Naé | (33)

An analysis of approximate linear equations (32) makes it
possible to evaluate the stability of the process and to deternline
the systematic errors of self-tuning of parameters &;. In partic-

. ular, if the basic circuit of control is stationary and possesses

astatism of the kth order, then for stationary random disturb-
ances Z and U, and for an additive component of the useful
signal X in the form of a polynomial of the kth order, the left-
hand parts of eqns (32) are stationary. In this widely encountered
case the stability of self-tuning of.the parameters is characterized
by properties of characteristic equation. In this case the in-

‘vestigation of stability is carried out by ordinary means. In the

general case the systematic components of the errors of para-
meters are computed by equations:

(1= — Z g.,(t Dée@dr  (4)

“where g;;(¢,7) are the welght functions of the system of eqns(32).

If &;, = const., then the systematic values of errors of tuning '
of parameters m, = 0. Dispersions of the errors of parameters
are determined on the basis of the system of eqns (33) by -
applying the theory of transformation of random functions®.

From the analysis of stability, duration of transitional pro-
cesses of tuning, and evaluation of the precision, one .chooses
the coefficient 4 and also other characteristics of the circuits of
tuning.

The final evaluation of mathematical expectation of the

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3




527/4

error in the basic circuit of the system under the action of
circuits of self-tuning is obtained by the formula:

n.
m£=m£0+ Z mti (35)
i=1
where m, is the mathematical expectation of the error of
control ¢ for an optimal value of parameters.

The magnitudes m,, are determined by the expressions:

m & :‘\ Cio (60) [cimui]

where C; () are the auxiliary operators for optimal values of '

parameters &, and the magnitudes b; are equal to

The evaluation of dispersion of the error in the basic circuit
is computed by the formula:

) n n ’
D,=D,+2 ) k,,+ Y k., 37
i=1 i,j=1
where D, is the dispersion for optimal values of parameters ¢; ,
Keyep K:;e,; are the coefficients of correlation of random com-
ponents of the error of control &2 and the magnitudes &,° are

equal to . -
& =—ul[C;, (&) m,,] . (38)

Linear Tracking System with One Tuned Parameter

The application of the method to a linear tracking system,
with one tuned parameter, is now described. In tracking systems,
as a rule, the index of quality of control is assumed to be the
second initial moment of error e. This magnitude does not
possess extremal properties with respect to parameters & corre-
sponding to the change of input random actions X, Z, U.

Now consider an example of a tracking system having the
following characteristics: A(7) = 2, B(§) = &, X = at, U = 0,

D, . B

A

m, =0, :
N (w

z
and values of parameters given by 7 =10, a= 0,1, D, =104,
B =100. The second initial moment of error ¢ in a stabilized
regime is equal to:

o a? + D,p .
‘ f%”l% Eim+B

This relationship has no extremum with respect to parameter §&.

In the theory of optimal filtration the magnitude &* =
&€ — Z =X — Y is considered as an error. The second initial
moment of this magnitude possesses extremal properties. Thus,
under the conditions of the preceding example the magnitude
ap is equal to: . :

* al Dz"lél

A =—7—ry

T e+ B

This function has an extremum with respect te parameter &.
+* Itis possible to measure directly the magnitude ¢* in tracking
systems using a priori information on the statistical properties
of the input useful signal ar‘lld the disturbances. In practice it is
possible to measure the error ¢ and the signal Z, = Z, (Z,X)
_ related to Z. For instance, the function Z, may be obtained by
filtering with special filters the input signal X + Z and utilizing

. (40)

(39
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the information that the spectrum of the frequencies of the
disturbance Z, as a rule, is substantially broader than the spec-
trum of the useful signal X. Then the function Z,; will possess
characteristics which. are close to the characteristics of the
function Z. '

Measuring the magnitudes ¢ and Z it is possible to formulate
artificially a quality index having an extremal characteristic with
respect to coefficient of amplification &; of the correcting circuit
B(£). For this the function of the error is assumed to have the
form:

fe,O=e*+y (&) Z} L4

The function (&;) may be chosen in a specific case, for instance,

_from the condition of proximity of the extrema of functions

M [e— Z)? and M [e? + (&) Z?) with respect to parameter &;
for statistically prescribed input signal. . :

As an illustration of the method of prescribing.a function
w(&,) let us consider the case of good filtration when it is possible
to neglect the component X in function Z,. Let us determine
(&) = v&;, where v is a constant coefficient computed from
the condition of proximity of the values of parameters &;, for
extremal values of the functions & = Me® + v& D, and &; =
M (e~ Z)2. :

In Figure 3 there are presented graphs of functions & and o
corresponding to the minimal value and computed for the

preceding eéxample. For v = 0-1 the minima of the functions.

(curves with an index 1) coincide closely, and the optimal value
of parameter &, = 3-0. The change in a sufficiently broad range
of probability characteristics of disturbance Z, useful signal X,
and parameter % leads to a distortion of the form of the curves
& and «;, However, their minima coincide, but are not reached
for other values of parameter &, as shown in Figure 3. In
Figure 3 the index 2 denotes curves for D, = 10~% and the pre-
vious values of other parameters, , ’

In Figure 4 there is shown a schematic diagram of a linear
tracking system with tuning of the amplification coefficient &,
for y(&) = v&,. The function Z, is separated with the aid of a
band pass filter or a filter of high frequencies. Then the signal is
supplied to a square wave generator and a circuit with amplifica-
tion coefficient v&;, and then to a low frequency filter. Now
consider the quasi-stationary regime of self-tuning of para-
meters. Eqn (31) of tuning of parameter &, stated with respect to
deviation U, assumes the form:

(TD+1)D—Aay]uy=—2Am,[C16(0)+C1o(D)] €9

—Déy+2vm,Z,° - (42)

where

From these one obtains the following equation for the de-
termination of mathematical expectation m,,, :

(TDZ“"D_)*‘%) my, = —D¢&yp (44)

For 2 < 0 the stable process of tuning is assured. When one
determines the centred random component #,°, one obtains the
equations:

- [TD*+D—2a ]ul=—22m, [C10(0)+ Cso(D)] €0
+24vm, 29 (45)

527/4
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The magnitude m,, may be set equal to zero by proper selection

. of the corresponding filter, Taking this into account and also

utilizing expressions for ¢ in terms of X° + Z9 one obtains
from eqn (45)

W)=, (D)(X°+2%

=2m, [Co(0)+Cyo(D)]
(TD*+D—-Aa,)[1+A(D)B,(D)]

(46)

where

®, (D)= (a7)

" In this case, for computing the dispersion of parameter », in a
stabilized regime, one obtains:

0 ) :

D, = 1@, (iw)|” [S, (@) + S, (w)] do (48)

-

where S, and S, are the spectral densities of random functions
X and Z. For &), = const. the magnitude m,, = 0 in the sta-
bilized regime. In this case the systematic error of a following
system with self-tuning in a stabilized regime of operation is
equal to m, = m,,, that is, equal to systematic error for an

optimal value of parameter £;,. The random component of the

_error of following is equal to:

&=
b, A(D) 1 0, 70
—_— _ 49
[1?* 174D B0 P Tram B, * T2 @)
-~ where thé magnitude &, according to formula (36) is given by
0B, (&o) ' ‘

b =—"32%m 50
1 6610 B &0 . ‘ ( )
In computing the dispersion of error ¢ one obtains the formula:
© b, A (iw) . 1 2

D = NS Lok Stat AN - -
: J-w [1+1+A(iw)3(i@)@1(l@)] 1+ AGw) B(io) | |
[S:(0)+S.(w)]dw (1)

The calculations carried out for a tracking system (Figure 4)
having the values of the preceding example for A = 10%, T= 1-0,
and the optimal value of parameter &, = 30, show a sufficiently

527/5

good effectiveness of tuning. Thus, the mathematical expectation
of tuned parameter &; is equal to my, .= &, and the dispersion
of the error of tuning computed by formula (48) is given by
Dy, = D,, =4 x 107". From these calculations it follows that
the maximum relative error of tuning the parameter &, is equal
to 6:3 x 1072 per cent. As regards the error of tracking by the
following system, the mathematical expectation of this error in
tuning coincides with the value of this magnitude in an optimal
system m, = m, = 0:33 x 10~2, ‘

The dispersion of the error of tracking in a self-tuning system
computed by formula (51) coincides with a precision to three
significant figures with a value of dispersion of the error of
tracking in the optimal system D, ~ D, = 2-31 x 1073 Thus,
in the considered example the self-tuning system with the utiliza-
tion of the method of auxiliary operator assures an effective
tuning for the minimum of the second initial moment of error
in the presencé of random disturbances.

Conclusion

The considered scheme of a self-tuning system may be
effectively utilized both for the direct control of objects and the
synthesis of automatic control systems during their design. The
advantages of the system of self-tuning utilizing the method of
auxiliary operator are: relative simplicity of achieving tuning
circuits, effectiveness of operation in the presence of disturb-
ances, and the possibility of obtaining high values of quick
response.
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One Self-adjusting Control Systems Without Test
Disturbance Signals

E.P. POPOV, G.M. LOSKUTOV and R.M. YUSUPOV

Statement of the Problem

In this paper, the term ‘self-adjusting control system’ means a
system which performs the following three operations:

(1) Measures by means of automatic search or computes

from the results of measurements the dynamic characteristics
of the system, and possibly the characteristics of the disturbances
as well.

(2) On the basis of this or that criterion defines the controller
setting, parameters or structure needed for calibration (or opti-
~ mization).
(3) Realizes the resultant controller structure, parameter or
setting values. ‘

Many studies of the theory and practice of self-adjusting
control ‘systems for stationary controlled plants have so far
appeared in the world literature. There have also been con-
tributions on self-adjusting of quasi-stationary systems. But there
is almost a complete lack of contributions dealing more or less
specifically with problems of synthesis and analysis of self-adjust-
ing control systems for essentially non-stationary controlled
plants. Moreover, as far as the authors are aware, even in the
case of stationary and quasi-stationary systems, the process of
self-adjustment is frequently effected solely on the basis of an
analysis of the dynamic characteristics of the system, without

taking into account the unmeasured external disturbances acting.

upon the controlled plant. At the same time it is obvious that
external disturbance, besides the dynamic characteristics of the
system, determines the quality of the process of control.

Another drawback of many of the self-adjusting systems in
existence and proposed in the literature is the need to use
special test signals to check the dynamic characteristics of the
system.

This paper proposes, and attempts to validate, one of the
possible principles for the creation of a self-adjusting control
system for a particular class of non-stationary controlled plants.

The main advantage of the principle ‘in question is the
opportunity it provides to take account of both internal
(system parameters) and external (harmful and controlling
disturbances) conditions of operation of the system. In contrast
to the self-adjusting systems known, a system created in accord-
ance with the principle proposed will make it possible to obtain
automatically the fullest possible information about the process
under control without the use of test signals.

For the operation of a self-adjusting control system created
on the basis of the principle proposed, a mathematical model
of a reference (calculated) control system must be constructed.
A ‘reference system’ is understood to be a system the controller
of which is designed in accordance with the requirements on

the quality of the control process, w1th the assumption that the
mode of variation in time of the system’s parameters as well as
the disturbance effects is known.

The structure of the mathematical approximation of the real
process is selected to match that of the mathematical model of
the reference process. The self-adjusting system operates in such
a way as to ensure continuous identity between the mathematical
approximation of the real process and the model of the reference
system. In this connection, the problem is posed of making the
mathematical approximation of the real process as close as
possible to the model of the reference process.

Without loss of generality, the case of control of only one
variable is considered, which is denoted by x, and the correspond-
ing reference differential equation is written in the form

n—1

X+ Y a0x= 3 b0 0

The real process is approximated by a linear differential equation
of the same structure:

n—1

x™ 4 Z a; () xP= Z bm (P) fP - (2

t=t0,x (tx)=x% (i=0,1,...,n—1)

The operation of the proposed self-adjusting control system
will be examined in accordance with the sequence of the process
of self-adjustment, indicated at the beginning of the definition.

General Case of Determination of the Dynamic Characteristics
of a System

In order to create an engineering method of determining the
dynamic characteristics of non-stationary systems in the construc-
tion of a self-adjusting control system, this paper proposes the
use of the methods of stationary systems. For this purpose, the
non-stationhary system (1) is replaced by an equivalent system
with piecewise-constant coefficients. (The methods of stationary
systems are used on the intervals of constancy of the coefficients.) .
The transfer from a system with variable coefficients to one with
piecewise-constant coefficients is effected on the basis of a
theorem which can be formulated with the assistance of a
number of the propositions of the theory of ordinary differential
equations. In accordance with this theorem, the solution of a
differential equation of form (1) with piecewise-continuous
coefficients (a finite number of discontinuities of the first kind
is assumed) can be obtained with any degree of accuracy in a
preset finite interval (7y, Ty) by breaking down the latter into
a finite number of sub-intervals (¢x, fx+1) and replacement of
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the variable coefficients within each sub-interval by constants,
equal to any values of the corresponding coefficients inside or
on the boundaries of the sub-intervals under consideration.
In the general case, it is expedient to effect the breakdown
process by the method of multiple iteration of solutions on a
high-speed computer.

Let the differential equation with variable coeﬂicwnts )
be approximated by an equation with piecewise-constant
coefficients.

Then, for ¢ € (tx, tx+1), one may write

m+zmﬂ?—zmﬂ° ®)
i=0

In accordance with differential equation (3), the real process
is approximated by the equation

n—1 m
x™ + 20 ax® = _zo b fO e
i= i=

As the dynamic characteristics of the system at the first
stage of operation of the self-adjusting system on each interval
(tk, tx+1), the coefficients ;g ¢ = 0, 1, ..., n — 1), by (i = 0,
1, ..., m) are defined.

The simplest way to define these coefficients lies in defining
the values of x and f and their corresponding derivatives at the
points tg = Ty, Ty, ..., Tg = k41 — AL

By substituting 'these values into eqn (4), one obtains for
each interval (tz, tx+1) a system of S algebraic dissimilar
equations for defining the searched coefficients.

In practice it is not always possible to measure the disturbing
effect f and its derivatives.. Therefore, in the general case, the
above-mentioned method of defining the coefficients a;x and b;x
" cannot be directly employed.

This difficulty may be avoided in the following way. The real
process is approximated, not by differential eqn (4), but by a
differential equation of the form

"= ¥ B s ©

n—1

™4 Y g x
i=0

In eqn (5) the disturbing effect and its corresponding derivat-
ives are taken to equal the reference values. This avoids
the need to measure the real disturbance f, and makes it
possible to use the above-mentioned means of defining the
coefficients of the differential equation approximating the real
control process. The non-agreement of the real disturbances
with the reference ones are taken into account through the
coefficients a;x and b;x. Therefore dashes are placed over them.

In the general case X® £ x® ({=0,1,...,n) ie., there
is an approximation error, In view of this, in the transfer from
eqn (4) to eqn (5), it is necessary to evaluate the maximum
possible value of this approximation error, using for this
purpose the assumed values of the limits of variation of
disturbance f.

If for some class of controlled plants it can be assumed that
in the process of operation only scale of the disturbance changes,

i.e., the equality

fFO)=Cx fe (1), te(tx tx+1) _ (6)

where Ck is the random scale of disturbance, is satisfied, then
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the approximation error is absent, and the connection of the
coefficients of eqns (4) and (5) is expressed by the equalities:

EiK=aiK(i=0, 1, ey n_l)
BiK=CKbiK(i=03 1, seey m)

Equation (5) is used (henceforward, to simplify the notation,
the dashes over the coefficients and the variable x are dropped)
for definition of the coefficients a;x and b,x. It is assumed that
measurements x, x’, ..., x(™ are performed at the points
K =Ty Ty oons TS = K41 — At. '

The values of fg, fz, ..., f5'™ are known. Then, for the
definition of (n + m -+ 1) desired coefficients in each interval
(tx, tx+1) one obtains the following system of S algebraic
equations, which will be written in abbreviated form thus:

Q)

n—1

Z x® (zpaix— Z fél) (T;) b;K_ =x® (zp (G=12,..,9)
i=0 (8)

It is not always expedient to solve directly system (8) for
S'=m -+ n+ 1, since, on account of the existence of measuring
instrument errors and random high-frequency control process .
oscillations, the accuracy of definition of the coefficients will
be very low. Moreover, for the same reasons, system (8) may
be altogether incompatible.

To eliminate the case of incompatibility and to increase the
accuracy of definition of the searched coefficients the method of
least squares is employed: 2. In so doing, the problem of
approximation is also solved. When utilizing this method,
it is expedient to take S > m + n + 1.

Using the method of least squares, the coefficients a;x, b;x
are defined, minimizing according to these coefficients the
function

S
L= _21 p()L;
i=

where

n—1
Lj= Z x(l)(Tj)aiK Z f <)) 1K+x( )(T)

i=0
is the disagreement, and p(t;) are weight coefficients which
define the value of each measurement and, accordingly, of
each of equation of system (8).

The necessary condition of the minimum of function L is the
equality to zero of its first-order partial derivatives according to
a;x and b;x. Having computed the partial derivatives and
equated them to zero, one obtains an already compatible
system of m + n - 1 linear algebraic equations for the defini-
tion of m + n + 1 coefficients:

—a}——i p(t; =0(i=0,1,...,n—1)
' ®
6abL i p(‘tJ)L oL ‘—0(1—0 1,...,m)
K j=1

Solving system (9) by known methods, one obtains the
values of a;x and b;x.

In certain cases the process of control at intervals may be .
approximated by a differential equation of the form

n—1
x4 Y ax xP =g (1) (10)
i=0

528/2

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3




where

Ppx ()= Z bix f2(1)

This coarser approximation will make it possible to reduce
computing time considerably by a reduction of the quantity of
searched coefficients; in the given case only the coefficients a;x
are desired.

In the given approximation the deviations of the values of
real coefficients b;x and real disturbances f will be taken into
account in the system via the values of the coefficients a;x.
System (11) will be the initial algebraic system for definition of
the coefficients:

n—1

) x® (t)) aix=Pex (z) -x® @) (=12...9)

i=0

(11)

For definition of the searched coefficients a;x by the method
of least squares, one minimizes the function

L= Z p() L

j_.

(12)

where
n—1 . I
L= iz'o x® (T aw+ x™ () — ek (z)

Using the necessary condition of the existence of a minimum
of function (12) for the definition of n, coefficients a;x (i = 0,
1,...,n — 1), one obtains a system of n algebraic equations:

s
oLy _ z ()Lj

=0 (=0,1,. -1
aazK ji=1 ( )

(13)

All the above discussion and the operations were performed
on the assumption that the values of the control variable
and the necessary quantity of derivatives at the moments
of time of interest are available. In practice, however, one is
usually limited to second-order derivatives.

In a number of cases real high-order systems may be
approximated by second-order differential equations, preserving
the description of their main dynamic properties. But even in
the case of more complex high-order systems it is possible to
suggest a number of algorithms for defining the searched
coefficients, given the existence of a limited quantity of derivat-
ives, some of which are as follows:

(a) Derivatives of higher orders of the control variable can
be calculated with the assistance of a digital computer on the
basis of the Lagrange and Newton interpolation formulae or
according to the formulae of quadratic interpolation (method
of least squares).

(b) If one integrates each term of eqns (5) and (10) n — g¢-

times, where g is the order of the senior derivative of the control
variable, which one can measure in a system with the requisite
accuracy, then, taking the limits of integration tx, 7; (j =1,
2,...,S), one obtains the integral forms of eqns (8) and (11)
respectively. If reference values are given to the magnitudes
x D (41), x " (tg), ..., x "D (tg) in these equations,
then for defining the coefficients ;g (i =0, 1,...,n — 1) and
bk (i=0,1,...,m) it is sufficient to measure the derivatives
to the gth order

(¢) Practically all existing controlled plants and control
systems can be described by a set of differential equations, each

528/3

of which characterizes one degree of freedom of movement and
therefore has an order no higher than second.

(d) Sometimes, to reduce the order of the derivatives required
for measurement, one may also take advantage of a number of
coarse assumptions in relation to the terms of eqns (5) and (10),
which contain derivatives of high orders.

For example, in these equations the values of the derivatives
x(®, x(n-1) x(r—etl) can be assumed equal to the reference values.

(e) The coefficients of approximating eqns (5) and (10) can
be defined without any recourse to algebraic systems (8) and (11),
if one uses the following method®.

Let the composition of the control system include an analogue
simulator, on which is set up a differential equation of form (5)
or (10). In this simulator there is a controlling device, which
provides an opportunity to effect variation of coefficients a;x
and b;x in a certain way.

The control system memorizes the curve of the real process
in the interval (tx, tx+1 — Af), and selection of the coefficients

‘a;x and b,k is performed on the simulator in such a way as to

bring together in a certain sense the real process and the solution
of the equation set up on the simulator.

When the quantitative value of the proximity evaluation
reaches the predetermined value, the magnitudes of coefficients
a;x and b;g, are fixed and extracted for subsequent employment
in the self-adjusting control system. Obviously the simulator
operation time scale must be many times less than the real time
scale of the systém. Only under this condition can the requisite
high speed of self-adjustment be achieved. Practically any time
scale may be realized with the assistance of analogue computing
techniques.

Automatic Synthesis of Controller Parometers.

For the operation of the majority of self-adjusting systems,
the system operation quality criterion is.set in advance. For
systems constructed on the basis of the proposed principle, it
is generally expedient to use as the criterion the expression

n—1 m
M=} (ax— ai)*+ Y (bix— bi)? (14)
i=0 i=0
This criterion generalizes both the methods of approximation
of the real control process expounded above.
To simplify subsequent operations, the following notations
are introduced.

box=auk; b1x=0n+1,x s Dk = in,

Expression (14) can then be rewritten in the form

2. __Jn+m for (5)
» 0T -1 for (10)

On each interval (¢, fx+1) the adjustable parameters are so
selected as to bring expression (15) to the minimum. The ideal,
i.e., most favourable, case would be one when M would reach
zero as the result of selection of the adjustable parameters. This
is not always possible, however. In the first place, not all the
coefficients a,;x (i =0, 1,...,n,) are controllable. Second, in
multi-loop non-autonomous systems even the values of the
controllable coefficients cannot all be tuned up to the reference
values simultaneously, since the relationship of the coefficients

no
M= Z (aix—aix)
i=0
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a; to the adjustable parameters, although usually linear, is
nevertheless arbitrary in relation to the quantity of adjustdble
parameters, the sign and the coefficients with which these
parameters enter into expressions for a;.

The second difficulty may be avoided by means of successful
selection of the reference system or by complete disconnection of

the loops (channels) of control of the main variables, i.c., by .

satisfying the conditions of autonomy.

It is assumed that all the coefficients a; = 0, 1, ..., n,) are
controllable (in practice the values of uncontrollable coefficients
may be reckoned to be reference values). Then, for the coeffici-
ents a; one may write

ai=ai(K1,K2, ceey Kp; Tl’ T2, ceey Tq; ll’ lz, ey l,.)

(i=0,1,....1,)

where K, K,, ..., K, are the gains of the controlled plant;
13, Ty, ..., Ty are the time constants of the controlled plant and
the controller, and 4, l, ..., I, are the gains of the controller
(adjustable parameters). ‘
Since the coefficients a; usually depend on the adjustable
parameters linearly, one may write -

a;= ), w;li+v; (i=0,1,...,n0) (16)
e
where !

Tla TZ’ sees T;;);

p;

W= (K, Ky, ..., K
Vi:Vi(K1, v.,,Kp; T17 T29 ooy TZI)

Using the necessary condition for the existence of a minimum
of function M, one obtains the following algebraic system for

determination of the setting values /,, &, ..., /,
5 Oaix (11, 1y, ..., 1,
Z Law (il ) —afK] __K__l.élz—)=0
i=0 j

It is assumed that when the system is in operation, the
adjustable parameter values only change in accordance with
their computed values, i.e., at any moment of time one knows
the magnitudes of /,, I, ..., [,. Then, for the interval (tx, tx—y)
until the moment of correction of the adjustable parameters in
accordance with expression (16), one can write:

(18)

N
ax=7y, Mijx L k—1+Vix
Jj=1

From system (18) one may determine the magnitudes of
Myg and v,x (i = 0,1,...,m; j=1,2,...,r) since the values
of a;x(i=0,1,...,m) and l, k1 (j=1,2,...,r) are known.

Taking into account eqn (16), after substitution of the
values of M;;x and v,k the algebraic system (17) for defining
Lz, bx, ..., Lxtakes the form

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

Realization of Adjustable Parameters

Block-circuit with a Self-adjusting System using a Digital Computer

The duration of the intervals of constancy of the coefficients
of reference eqn (3), when ‘a digital computer is used in the
control system, must satisfy correlation

txke1—tx=Ty + T+ T3+ At (20)
where T; = A7 (S — 1) is the time required to carry out measure-
ments; Ty = N/n, is the time required for the computations;
T, is the time of actuator generation; 0 < Ar < tg41 — tx;
Av = 7,4, — 7 is the period of measurements (j = 1,2, ..., S);
ng is the computer speed of action, and N is the number of’
operations required to define coefficients g (j=1,2,...,r).

It is obvious that to ensure better operation of the self-
adjusting system, it is necessary to reduce as much as possible
the magnitude T =T, + T, + T;. ‘

Now the opportunities for reducing the time 75 are dealt
with. This question is directly linked with the choice of the
actuator. Electromechanical servosystems with a considerable
time constant are usually employed as actuators at the present
time. But it turns out that it is possible to suggest a number of
purely circuit variants of the change of the transfer functions or
of gains of the correcting devices (regulators) of the system.
These inertia-less actuators are termed ‘static’. It is particularly
advantageous to produce static actuators with the-aid of non-
linear resistors (varistors), valves with variable gains (varimu),
electronic multipliers, etc.

Consider, for example, one of the variants of a static
actuator based on an electronic multiplier. Let the made of
contro] have the form

y=73 Lx¥
ji=1

and let the jth adjustable parameter have the value /,° at moment
=1 (start of operation of the system). While the system
operates in accordance with the signals of the computer, the
value /; is constantly being corrected.

Thus, at the end of the interval (¢, fx+1) one has

Lx=1+41;x
j=1 i=1

Obviously each addend in the right-hand side of expression
(21) can be instrumented with the aid of the circuit in Figure I,
where EM is the electronic multiplier, and AD the adder.

The following are self-adjusting system computer operating
algorithms: when the real process is approximated by
differential eqns (5), the algebraic systems (9), (18), and (19);
when the real process is approximated by differential eqns (5),
the algebraic systems (13), (18), and (19).

It is obvious that in the general case it is more convenient
to solve the problem of self-adjustment according to the proposed

@n

o r principle with the aid of a high-speed digital computer. It can
L Z Hijr tjx T Vik ik |Hijk be specialized for solving systems of algebraic equations.
=0 L\j=1 Figure 2 shows the block diagram of a self-adjusting system
(j=L12,...,r) with a digital computer.
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Some Particular Cases

In the preceding sections the proposed principle for creating
a self-adjusting control system for non-stationary objects was
expounded in general form. In practice, one may naturally
encounter cases when the given principle can be used in more
simplified variants. Several such opportunities are considered.

(1) Obviously, the entire theory expounded above can be
applied fully to stationary and quasi-stationary systems, which
are particular instances of non-stationary systems. In this case
the durations of the intervals of constancy of the coefficients
(tx, tx+1) equal, for stationary systems '

K—_—O tK+I_tK=tl—t0=T0_t0 (22)
for quasi-stationary systems

where Atp is the control time (duratlon of the transient process).

As can be seen from relations (22) and (23), in stationary and
quasi-stationary systems one is less rigidly confined to the time
of analysis of the real process and synthesis of controller para-
meters. It is therefore possible to define coefficients a,;x and b;x
more accurately and to use criteria which reduce the self-
adjustment process speed, but make it possible to increase
the accuracy of operation of the system. Among such criteria
one may cite, in particular, the integral criteria for the evaluation
of the quality of a transient process®.

For stationary and quasi-stationary systems the problem of
self-adjustment in accordance with the principle proposed above
may be solved as a problem of the change in position of the
roots of the transfer function of a closed. system, i.e., the self-
adjustment problem may be solved in accordance with the
requirements of the root-locus method, which is extensively

- employed in automatic control theory. A feature of the use of the
proposition of the root-locus method in accordance with the
principle under consideration is that the zeros and poles defined
by the coefficients a;x and b;x are fictions since they not only
depend on the parameters of the controlled plant and controller,
but also depend on real disturbances as well.

(2) In practice, one may encounter cases when a controller
is required to ensure only the stability of a system in the course
of operation. As is known, the stability of linear stationary
systems is determined by the coefficients of the characteristic
equation. This proposition is also valid for certain quasi-
stationary systems (method of frozen coefficients).

Therefore to solve the problem posed (the provision of
stability), the control system must define the actual values of
the coefficients of the left-hand side of the differential equation
of the system and must set on the controller such gains
factors as will satisfy the conditions of stability, for example the
conditions of the Hurwitzian algebraic criterion. On the assump-
tion that disturbance f is constant in the interval (x, tx+,) the
coefficients of the characteristic equation of the system on this
interval are determined in the following way.

The differential equation of the system for 7€ (i, tx+,) is
written in the form '

n—1
X+ Y axP=Fg
i=0 '

where Fx is in the general case the unknown right-hand side,
constant for ¢ € (¢, tx+,). The algebraic system for determining
the described coefficients will then be written thus:
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n=1
X(")(‘L'j)-{- Z x(l)(Tj)aiK=FK (j=1,2,...,
i=0

Since Fx is unknown, but is constant in the interval (x, tx+1) it
is eliminated with the assistance of one of the equations of
system (24). For this purpose one uses the equation

S) (24

n—1

xXM()+ Y, xV(v) ax=Fx(1<I<S)
i50 '

After eliminating Fx one has:

"il [x(i) (Tj) —x® ()] ax=—~ [x(") (Tj) —x® (]
i=o
(j=12,...,1-1,14+1,...,8) (25)

By resolving system (25) directly with .S ==n 4+ 1, or by the least-
squares method with S > n + 1, one determines the coefficients
ax (=01, — 1), the values of which are used, if the need
arises, for synthems of the values of the controller parameters
which ensure the stability of the system.

Conclusion

The paper has expounded only the basis of the proposed
principle for the construction of a self-adjusting control system
in general form and in certain particular cases. Studies are under
way on problems connected with the approximation of differen-
tial equations with essentially variable coefficients by differential -
equations with piecewise-constant coefficients, with the selection
of the type of computer to operate in the self-adjustment loop,
with the dynamic precision of the self-adjustin system, etc. The -
investigations which have been made allow one to hope that the
use of the principle expounded in this paper for the construction
of self-adjusting control systems will prove extremely effective in
many cases when it is expedient to use the natural oscillations
of the system, without introducing test disturbance signals.
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Optimal Processes in Systems with Time Lag
N.N. KRASOVSKII

Introduction

The problem of forming the optimal process input for a regulator
in a system with time lag of action and signals is considered in
this paper. The questions considered belong to the class of
‘problems of optimal control. These problems were first stated
and developed in the U.S.S.R by Feldbaum?. The mathematical
theory of optimal processes was worked out by Pontryagin
et al?, on the basis of their Maximum Principle. Their studies
have given rise to a great number of works: for instance,
that by Rozonoer®, and also the Theory of Dynamic Program-
ming?, developed by Bellman and his colleagues on the basis of
the optimality principle and the functional equations which
follow from it, which embraces a very wide class of problem.
Reference can be made to the authors whose works, among
others, have a direkt connection with this paper5-18.

Reference can also be made to the works of those authors
who, among others, have studied optimal control problems in
after-action systems, and in more general systems with dis-
tributed parameters!®—22,

The present work originates from the studies of Letov?: 24,
and the statement of the problem adopted here is a generaliza-
tion, for systems with after-action, of the statement of the
problem given by Letov®. The problems for systems with delay
of the feedback signals considered below are related to problems
of dual control® or of the theory of adaptive processes?®,

The solution proposed is based on the method of Liapunov
functions and the theory of stability of motion®’ 28, developed
for equations with time lags®®, and modernized in accordance
with the principles of Dynamic Programming®. Statements of
the problems are given in this paper, and criteria of optimality
and the principles of solution are formulated. For systems
which can be described by a few actual equations, the explicit
analytical form of the optimal regulator is given. Approximate
methods for calculating optimal control are described, and
problems complicated by random circumstances considered.

Time-lag of Signals in the Plant

Consider a controlled system (Figure 1) where z (¢) is a
controlled vector quantity at the output of the plant 4, and &, a
scalar quantity, is the input of the regulator B, constituted
on the basis of information on the actual error x = z — 2% and
possibly also on the actual values of the load 7 (¢). The special
feature of the system is the time-lag of the signals in the plant 4
(Case I), or of signals in the feedback channels (1) and (2)
(Case 1I), or of & in channel (3) (Case III). Each case will be
examined separately. If Cases I—III are combined in one
system, the statement of the problems and the solutions must
be combined accordingly.

Case 1. Assume that the disturbed motion of the system is
described by the equation

%:f[t,x(t),x(t—hl),-~-,X(t—hk),71(t),f] (1)

where x is an n-dimensional error vector, A; is the time lag of
signals in the plant O < h; < h, i =1,...,k), f is a known
vector function of its own arguments, determined by the structure
of the system, and 7 (¢) is the load or disturbance. Besides this,
a functional determining the quality of the process is given, and
there may be a restriction on the magnitude of the control
signal &.

The disturbed motion x (f) of system (1) with after-action,
with ¢ >ty >0 is determined, as is well known, by the
history x (¢, + 0) (— h < 0 < 0) of this motion. The initial
function x (fo + 0) (— 4 < 6 < 0) will therefore be called the
initial disturbances (with ¢ = #;). It is also convenient to con-
sider, as quantities describing the state of system (1) at instants
t > t,, and determining its future motion when = > ¢, sections
of the trajectories x(t +-6) (— 2 <6 <0). It is therefore

. suitable to form the control signal & (f) at each instant ¢ on the

basis of information on the whole of the realized trajectory
x(t+0) with — 2 <0 <0. In other words, analytic con-
struction of the regulator?* means finding & in the form of a some
functional & () = £ [t, x (¢ + 0)), determined on the curves
x(@t+0)={x;¢+0, —h<6<0,i=1,..,n} In future
it will be assumed that the argument 6 varies within the limits
— h < 6 <0. The continuous functions x (6) or x (¢ + ) of
the argument 0 are assumed to be elements of a certain space X
with a matrix

lIx (O =max RO+ ... +x7(0)*
Also used is the notation
I Ol =(x3 (0)+ ... +x7 (0,
IxOI =GO+ ... +x7 ()

Three problems are considered:

Problem 1. Find a control signal § = &0 ¢, x (0) such that the
motion x = 0 in a closed system (1) (that is, with & (£) = &° (¢, x
(¢ + 0)) is asymptotically stable®® with respect to the disturbances
x% (ty + 6) (¢y = 0) from a region

1x° () <Gy 2

and such that for all ¢, >0 and x° (¢, + 0) out of (2) there
holds a minimum

J [0, %%, €% =min J [ 1o, x°, €] 3)
4 : )

Here

t

J [0, x°, €] =J. "o [t x(t, 6, x°,£), & ()] d (4)
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where w is a given non-negative function, x (¢, #y, x", &) is the
trajectory of (1) with initial conditions #, and x° (¢, + 6) and
a selected law of control & (¢¥) = & [t, x, (t + B)]. The control
signal £ can be constrained by a supplementary restriction
&€ & (for instance, | £ | < 1).

Problem 2. Find a control signal & = &%, x () assuring
a minimum of

JT [tO: x0: éo] =min ‘]T {:tO: x09 5] (0St0_<_ T) (5)
ez

where

JT [tO! xO, ﬁ] ‘—"f (<) [t9 tO’ xO»’ 5), é(t)] dt

1
+ [x (T, 16,x°, 8] (6)
and T < oo is a given instant of time, while ||x° (#y + O} < G,.

Problem 3. Find a control signal & = £° [z, x (0)] assuring
minimum of

J o [to, X% E°]=minJ , [0, x° €] @)
EeZ

where ||x, (f, + 0| < G, and

J o [t0, X%, E]=lim Ir when T— o0 (8)
T—1, .
In Problems 2 and 3, as in I, it is assumed that the initial
conditions x° and trajectories x (¢, 7,, x%, £°) do not go beyond
certain previously fixed regions. -
The sufficient conditions of optimality of the control signal £°
will be formulated for Problems 1 and 2.

Theorem I. Let it be possible to indicate functionals
v[t,x(0)] and &°[z, x (0)], defined and satisfying in some
region [|x (6)| < G the following conditions:

(1) The functional » is positive definite with respect to
[|x ). '

(2) The functional v admits an upper limit with respect
to lx @.

(3) The following inequality is satisfied:

in / [o[1,x(6)] when [x(0)] =G,
% (6)=G]=sup [v[1,x(6)] when [ (8)] <G]

(4) Along trajectories of (1)* the derivative (dv/df), of the
functional v satisfies the condition

(%%)fo +w[t,x(1), ] =§1:i;1 [(%Et>é+w [t,x(1), 5]] =0 (9)

in the region ||x (z + )] < G, and is negative definite with
respect to ||x (#)| in this region.

Then &°{r, x (r + 0)] is the optimal control signal for
Problem 1, and the following equality is valid:

[0, x° (to+0)]=J [to, x° (1o +0), &°] (10)

Note. Properties (1) and (2) generalize in a natural way the
corresponding properties of Liapunov’s functions®” that is (1)
means that there exists a function w (r) > 0 with r 5 0, such
that o [1, x ()] = w (|x @) with [lx ®)] = |x @), and @)

- limo[t,x(8)] =00 when |x(0)|— oo, |ix(9)¥||x(0)[|
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means that there exists a function W (r) satisfying the conditions
W) =0,0[s, x(0)] < W{(|x (®]). If in Problem 1 the region
G, encompasses any possible large initial disturbances x,
(the problem of optimal stabilization as a whole), the region G
must coincide with the whole of the space X, and (1) is replaced
by the condition

(11)

uniformly with respect to 7.

The demonstration of Theorem 1 is made by reasoning
typical for the theory of stability of motion?, but taking into
account the principles of dynamic programming?.

The sufficient criterion of optimality for Problem 2 is for-
muiated as follows:

Theorem 2. Let there exist for every |x°(z, + 0) < G, and
to € [0, T) an admissible control signal & (f), that is, a control
signal for which the trajectory x (¢, #,, x°, £) may be prolonged
in some finite region G until the instant ¢+ = T, and therefore the
integral (6) is finite. If one can find in the region G functionals v
[t, x (0)] and £° [1, x ()] satisfying conditions (9), and

[T, x(0)]=¥ [x(0)] (12)

then &0 is the optimal control signal for Problem 2, and the
following equality is valid:

v[16,x° (1o +0)]=J 1 [t6,x° (1 +06), £°] (13)

The solution of Problem 3 can be obtained by passage to the
limit from the solution of the problem when T— .

Note. If the load (¢) is random or the system is subject to
random disturbance, Problems 1 to 3 are modified as follows:
integrals (4), (6) and (8) are replaced by their mathematical
expectations (the conditional mathematical expectations for
the appropriate initial conditions #, x° 7%, and in Problem 1
the requirement of stability is replaced by the requirement of
stochastic stability®®. In this case seek the control signal £° in
the form of a functional &° [z, x (¢ + 0), n (¢ + 7)], where
—h<6<0and — h* <7 <0, while 2* =0 is the value
of the maximal after-action for the probability process # (t)
(if % (¥) is a Markov process, then A* = 0). The criteria of
optimality given above preserve their form, with the modifica-
tion that v must here also be a functional v [t, x (6), n (7)),
and the derivative (dv/dt), is replaced by its average value®®
(dM{v}/dt)é.

Conditions (9) reduce to partial derivative equations of
a special kind. The solution of these equations in the general
case is cumbersome; it is possible, however, to indicate a number
of cases when an explicit form can be found for the optimal
control signal, or when a numerical procedure for its deter-
mination can be indicated. .

The results of applying the proposed criteria to systems
described by equations of actual form will be illustrated.

Let the transient process be described by the linear differen-
tial equations

S Y ay0x,(0+ X ey (0x;(—W+bg+an) (14
j=1 i=1

where a;;, ¢y, a; and b; are known functions of time or constants.
First assume that % (#) = 0, and then consider Problem 1 for
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system (14), assuming that

o . .
=J‘ |:Z x2 () + A& (t):l dt, A>0—const (15)
to Li=1
any initial disturbances x° (7, + 6) are admissible.

Here the functional v from Theorem 1 must be chosen in
the form

o[6xO]= ¥ [ds(0%0)%,(0)

l]—

+2x;(0) J ’ Bi;(t,0) x;(6) d0

+JO J‘O 745 (1,0,7) x;(8) x; (v) dOdr] (16)
—hJ —h :

which generalizes in a natural way the Liapunov function
widely used in stability theory, as a quadratic form. If for every

initial condition x°, 7, there exists an admissible control signal .

& (1), that is, a control signal () for which integral (15) converges
uniformly with respect to #,, then there exists a functional v (16)
satisfying the conditions of Theorem 1. From this it is directly
concluded that in this case there exists an optimal control
signal £° having the form

Lx(+9)]
- % [moxo+

0

vi(t, D x; (1 +9) d9:] (17

Conclusion

The optimal regulator £° in system (14) with condition of
minimum (15) is seen to be the regulator B, which applies to the
input of the controlled plant 4 at every instant ¢ a quantity
£ (17), worked out on the basis of a measurement of the
error x at the given instant of time ¢ and at previous instants
t — h < v < t, while the results of measurement of the previous
errors x (t) = x (t + ¥) must be processed in the integrators
Jv; (¢, ® x; (¢ + ¥) d¥. The control signal £ depends linearly
onx(t+ N(—hLKF<O0).

It is interesting to observe that for a system (14) with discrete
delay 2 > 0 the optimal control signal must be worked out by
an element with continuous distribution of the after-action
v; (¢, ) over the whole of the time-lag interval — 4 < ¢ < 0.

Now let % (¢) == 0 be a known function of time. Consider
for system (14) the problem (2), where

Joe f [zx (t)+l£2(t)j|dt+ Y Yyx(Dx(T) (8)

i=1 i, j=1

Here any restricted control signal & () is admissible, and the
following assertion is valid: a functional v satisfying the con-
ditions of Theorem 2 exists, and differs in form from the func-
tional (16) by the term

n 0 .
= ; CHOR? (0)+f_h (LN x;(HdH+e () (19)

From this assertion follows the conclusion that in this case
an optimal control signal always exists, and differs in form from
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the control signal (17) by a term &* = x () which is a function
only of time ¢.

Note. The conditions for Problem 1 Solvability for sy-
stems (14) and (15) reduce to the possibility of constructing an,
admissible control signal & (f). Here, as also in the case of
systems without delay, the question is connected with the
conditions of controllability of the system!!» 3., System (14)

(with 7 (f) = 0) will be called fully controlled in the interval

[te, 1] (t; > fo, + k) provided that for every initial condition
x%(t, + 0) there exists a continuous (piece-wise-continuous)
control signal & (r) such that x (¢, 1, x% §) = O when t; — A <
< t < t,. The conditions of controllability, as in the case with-
out delay3!, can be investigated starting from the ‘L problem’. If
system (14) is fully controllable in every sufficiently long section
of the ¢ axis, then it is optimally stabilizatle in the sense of
Problem 1. It is also observed that such stabilization is certainly
possible if system (14) is asymptotically stable with & = 0, or if
the delay # > 0 is sufficiently small (or if the ¢;; are small), and
for the system dx;/dr = Za;; x; + b;& the conditions of full
controllability are fulfilled: the vectors {b;}, {llal{b:}},

. {lla;;"1{b;}} are linearly independent. The conditions
of solvability of Problem 1 for (14) and (15) can also be ascer-
tained in the process of solution, if the solution is sought by
passage to the limit from the solution of Problem 2 for (14)
and (18) (with w; =0, n =0 and with T— ), which is
sometimes a convenient method in practice.

Now consider Problem 3 for system (14): accept that in (8)

w = z x2 4+ A &% and assume 7 (¥) to be a random Markhov
i=1
function (for definiteness, of the pure discontinuous or diffusion
type). Moreover, assume that system (14) is subject to some
irregular disturbance of the white noise type, causing diffusion
spread of x (¢) in the time df with a matrix of second moments
”M{dx dx:r}“ = ”0'15 (1) dr.
The followmg result is obtained: if system (14) with (t) =

is stabilized in the sense of Problem 1, then an optimal control
signal £9 exists and has the form

£ [ty x(t+6), 1 (1]
-3 [ui %D+ J

o]

v (t,0)x; (t+0)d0] R TORRCD)

—h

1t is interesting to observe that the first term here tallies
with (17), and the random term « (¢, n (¢)) determined by the
actual values of % (f) is the same as it would be if, with 7 > 1,
the function 7 () were d-t.rmined and tallied with the prediction
of its mathematical expectation M {5 (v)/n ()} made according
to the actual value of 7 (f). The magnitude of the dispersion of
1 () and the quantities o;; (f) do not affect &% and manifest
themselves only naturally in the quantity M{ Ju[t,, x°, 7°, &°1}.

As has been shown above, it is very laborious, in the general
case, to construct the functional from Theorems 1 and 2. The
following methods may be indicated for approximate its deter-
mination (and consequently that of £%): the small parameter
method; approximate solution of the functional equation (9);
approximating v in the mean; replacing the equations with
delays or the functional equation (9) by finite difference equa-
tions; replacing the equation with delays by a set of equations
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for the Fourier coefficients of a section of the trajectory
x(t+0) — B <0 <0. These methods can be illustrated by
numerical examples.

Delay of Feedback Signals

Consider now the system of Figure 1 when there is no after-
action in the plant A, but signals in channels 1—3 can be
delayed.

Case II. Let the motion of the plant 4 be described by the
vector dlﬂ'eren‘qal equation

X FLex Dm0, ]+ @1)

where x, 7, £, f have the same meaning as in the first part of the
paper, and ¢ is a disturbance of the white noise type, giving
rise to diffusion spread of x (¢) in the time dz with the matrix

M {dxi dxj}"'; = Ilaij O de (22)

The problem is to minimize the quantities

Jr=M {f Ta) [t x(D),¢& (t)] dt+y [x (T)]} dt  (23)

and

J,=lim TJT with T— o0 24)

0

The peculiarity of the case in question is that information
concerning the actual values of the error x (¢) and load % (¢) are
supplied by way of channels 1 and 2 with delays of 4, >0 and
hy > 0 (or either &, > 0 or hy > 0) respectively (h; < h, hy < ).
In other words, assume that in the regulator B at the instant ¢
in the closed interval [0, T] the values of the actual quantities
x (t — hy) and 7 (r— hy), where % (£) is a random Markov func-
tion, are known. Also assume that the regulator B is capable of
remembering up to the instant ¢ the signal & (¢ -+ 6) worked out
by it with — 2 < 6 < 0. Denote the set of magnitudes x (z — /),
n—h)and £+ 0) (-~ h<0<0) by y(&), and x (— &),
0 (— hy), £(0) (— h < 0 < 0) by respectively y. The quantity
» (¢) makes it possible to compose a probability description of
the plant 4 at the instant . The quantities Jr (23) and J., (24)
with the chosen law of control & may be regarded as functionals
with respect to y (¢,), that is,

T
M {j w[t,x@), (O] dt+y (T)} =Jr[t0,y°(t0), €] (25)

lim
T

=T 10,10 8) (26)

It is therefore reasonable in this case to seek the optimal
control signal £° as a function of y (), that is, in the form of a
functional

E=¢lLy®]. @7)

Call the admissible control signals the set of such functionals,
sufficiently regular to give a meaning to the solution of (21) with
&(#) of (27), and, possibly, constrained by supplementary re-
strictions arising from the statement of the problem (for
instance, | &| < 1). Designate the set of admissible control
signals by the symbol Z. Now the problem can be formulated.
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Problem 4. 1t is required to find a control signal £° belonging
to £ which minimizes (25) for all y° belonging to Y, #, > 0.

Problem 5. 1t is required to find a control signal £° belonging
to 5 minimizing (26) for all y° belonging to Y,, t, > 0. Here Y,
is some region of the components y given in advance,

Denote by x (¢, y° (¢,), &) the random motion of the system,
generated by the initial conditions y° () with a certain choice
of the control law; moreover, assume necessarily, with t, = h <
< t < t,, that the control signal & (¢) tallies with that & (t0 + 6)
(to + 6 = 1) which is a component of y° (z,).

Now formulate the criterion of optimality for Problem 4.

Theorem 3.1t is assumed that for all y°(#,) belonging to Y, and
0 <ty < T there exists an admissible control signal & (7) (or
&=£& [t,y (O] such that (25) has a meaning, is finite, and almost
all the realizations {x (5, y°(t), %), n (¥ (ty), £@+ 6
(— h < 0 < 0)} belong to ¥, where Y is a certain region of
values of y. Let it be possible to find functionals » [f, y] and
&0 [z, y] satisfying the conditions

(1) o[ Ty (T)]=M{ [x(T, y(T), &)1} (28)
for all y (T) belonging to Y

@ . <ch”{1&)§0+1\4 (oltx(ty(®.8.£])

= min [(‘iff) +M{w[tx(ty<t),é>,¢]}] 0 (29)

for all y (f) belonging to Y and all ¢ in the closed interval [0, T].

Then £° [¢, y ()] is the optimal control signal for Problem 4
and v [tg, ¢° (¢,)] = min Jp [z, ¥° (£,), 1. v

The solution of Problem 5 is obtained by passage to the
limit from the solution of Problem 4.

. The results of applying the given criterion to a system

described by equations of an actual form are illustrated.
Consider Problem 5 for the system

‘:1_’;_ i 0y (0%, +bE+an®+9  (0)

with the condition of minimum (26), where

JT=M{fT[_ i_ wij(t)xi(t)xj(t)-l-')néz(t):|}dt

+ Z ll/,,x(T)x (T) - (3D

lj—

The delays along both channels 1 and 2 are assumed to be
equal to 2 > 0, and it is admitted that any initial deviations
x%(ty — k) and % (1, — k) belong to (173, 7).

With sufficiently wide assumptions concerning the character
of the Markov probability process % () and with the condition
of full controllability of the system dx;/dt = Za;; x; + b; &,
the functionals v [z, ¥] and £° [¢, y] satisfying criterion (21) can
be found, and passage to the limit with 7— < can be carried
out. Problems 4 and 5 can also be solved. In addition the
following result is valid.
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Results N

The optimal control signal for Problems 4 and 5 stated with
conditions (30) and (31) has the form

E1yO1= xR+ n -]

+fo o[t,0]&[t+0]d6 (32)

The term » is determined at every instant ¢ with respect to

the redlized 7 (r — &), but to calculate it one must know the
prediction M{n (z)/n (t — h)} with © > ¢ — h.

Here the functional v [z, y (£)] has the form of the sum of the
quadratic and linear functionals of x; (¢t — &) and £ (z + 6)
with coefficients dependent on % (¢ — k).

Analysing the resulting solution &° the following conclusion
is arrived at: the optimal control signal £° chosen here at every
instant ¢ is the same as would be obtained in a deterministic
system and without delay of the feedback signals; however here,
instead of the known quantities x; () of the deterministic system,
their best mean square predictions M- {xi O/x@—h,n@—h),
§(t + 6)(— h <06 < 0) must enter into the control law, and
the deterministic load 7 (7) (z-> f — h) is likewise replaced by
the mean prediction M {7 ()/n (¢t — h)}.

Case III. This case reduces naturally to the previous one,
and it is not considered individually.

When several of the cases analysed are.combined in one
system, the statements of the problems, criteria of optimality
and results are combined correspondingly.. )

In conclusion it is observed that CaseIl can be included in the
more general case when incomplete information is transmitted
the feedback channels 1 and 2. For it can be assumed along indeed
that at the instant ¢ there are applied to the regulator B signals
v (9 and { (1), statistically connected with x () and n(#) (in
Case II, {y (1), L.} = {x(t—h), n(t— k), E(¢ + 6)}) and
an optimal control signal in dependence of these signals can
be constructed. The foregoing reasoning and conclusions are
generalized to this more general case. The quality of the process
depends on how much the processes {y (1), (0} and {x (1),
n (t)} are connected informationally, or, in other words, how
far the processes {x (f),n ()} are observable’* with respect

to {» (1, (O}
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Problems of Continuous Systems Theory of
Extreme Control of Industrial Processes
A.A. KRASOVSKI

Many continuous industrial processes lend themselves to the
following plan. There is available some quantity »# of adjustments
or controls of machines, apparatus, regulators securing an
industrial process. The flow of the industrial process and the
parameters depend on the coordinates. of the adjusting or
control elements (adjustment parameters).

Together with the controlling adjusting element coordinates
the output parameters are affected by various disturbance factors
(change of material parameters, wear of machines and tools,
temperature and moisture variations and other factors).

The output parameters are controlled continuously or dis-
cretely (but with sufficiently small intervals of discontinuity by
special measuring devices—output parameter information
transmitters (Figure I) influenced by disturbance factors and

also by random variations of adjustment parameters. The output

parameters are subjected to continuous variations.

Even though a practically ideal adjustment of the machine
system, securing the industrial process, is initially attained, after
some time the disturbance factors will bring forth considerable
changes in the output parameters. In order to prevent the drop-
ping.out of the output parameters from the established tolerances
(scrap output), adjustment and tuning of the machine system is
necessary. Various means of automation of these operations are
possible. If it is precisely known which parameter and to what ex-
tent it is affected by one or another controlling adjusting
element, the usual feedback principle may be used (regulation
by defiation). For this it is necessary first to smooth the
results of measurements in order to eliminate overshoots
of the system in the presence of small, random deviations within
the tolerance limits. Methods of such automatic processing of
information may be set up, based on the widely utilized methods
of non-automated statistical control>. The measured and
smoothed signals of output parameter deviations are conveyed
to the performing arrangements and cause changes in the
controlling adjusting element coordinates. Such systems are
sometimes called staistical autotmata3.

Undoubtedly the introduction of statistical automata will
prove to be an important step in the automation of industry.
However, a necessary condition of their application must be a
sufficiently complete a priori information about the character-
istics of the industrial process. In many cases this information
is absent, and even if it is available during the initial period of the
systems adjustment it loses authenticity in time, due to the
change in properties of the industrial process.

Under these conditions the application of usual, non-self-
adjusting control loops (statistical automata) becomes impos-

possible schemes of extremal control systems with continuous
industrial processes and some questions of the theory of these
systems. It is a development of earlier work by the author!.

For the realization of an extremal control a quality
output (production) index Q is selected, having extrema at
wanted values of product parameters. Such an index may be,
for example, the sum of the squares of deviation of the output
parameters from the standard values. The quality index Q
is determined by a computer (calculating machine in diagram
Figure I) based on information transmitter data on current
values of output parameters. To secure the basic function of the
System-maintenance of the quality index at the extremum
level, search oscillations are necessary. Natural high frequency
random oscillations, as well as artificially produced oscillations
of controlling elements, may be employed as search oscillations.
Naturally the first method is preferable, since it is not linked
with any increase of high frequency fluctuations of the pro-
duction parameters.

In order to make use of natural oscﬂlatlons as search oscilla-
tions, it is necessary to measure them. The measurement of
search oscillations is done by information transmitters for these
oscillations (Figure I), which measure controlling element
oscillations and disturbance effects transmitted to them.

The measured search oscilations are transmitted to a
simulator or a dynamic model ,of the industrial process. The
purpose of the simulator is to transform the search oscillations
in the same manner as these oscillations are transformed in a
real process. For many industrial processes the simulator may
be carried out in the shape of a delay line.

The output signals of the simulator are transmitted to the
multiplying elements, to the other entrances of which is trans-
mitted the computer signal which is proportional to the current
value of the production quality index. The output values of the
multiplying element are smoothed by the low frequency filters
and are transmitted to the entrances of the control devices
which move the controlling element.

“If the quality index deviates from the extremum value, then
a correlated component of the search fluctuations appears at the
computer outlet. Values of the mathematical expectation of the
duplicating links signals differing from zero then appear. Slowly
changing signals are separated out by the low frequency
filters and start the control devices. The controlling elements
act on the production parameters in the direction approaching
the extremum of the quality index.

The values of control parameters, together with the dlsturb-
ance effects transmitted to them, are designated as X, (v = 1,

sible. In these cases it is expedient to utilize an extremal control. 2, ..., n). Each control parameter brought forth has three
The present work is devoted to the investigation.of some 'components
530/1
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X, =X} +6X,+8X,,

Here X,* working clements are output values of the ex-

tremum controlling portion of the system; 60X, are search
elements for which it is expedient to utilize hi_gh frequency
controlled effects transmitted to the control parameters. and
0X,, are uncontrolled disturbance effects transmitted to the
control parameters.
. The current value of the productlon quahty index in
general is a function of indicated control parameters and
disturbance effects f;, f5, ..., fs according to transmitted con-
trol parameters.

When the transient process - characteristics are described
sufficiently accurately by time delays, then the current value of

the production index is expressed by the function of preceding .

values of indicated control parameters and disturbances effects.

Q=Q[X1(t_rl)7'“aXn(t_Tn)’fla'“afm] (1)

The selection of the composition of control parameters
must conform to the following condition. To each -set of

permanent control parameter values must correspond a definite

(with an accuracy up to the level of noises) set of production
parameter values. In other words, in a static regime and with
absence of noises a unilateral conversion of control para-
meters into production parameters must be realized. It should
be noted that no mutual unilateral conversion is required, so
that the number of control parameters may greatly exceed the
- number of controlled production parameters.
~ Invirtue of one-sided-unilateral conversion, to each extremal
function of production parameters, corresponds an extremal
function of control parameters. ‘

As agreed, the production quality index is an extremal
function of its parameters. Therefore, function (1) in relation
to the control parameters X, Xy, ..., X, is also extremal.

Adjustment-loss Time

Assuming that a process having unchanged, fixed workirg
components of control parameters X,*, is under investiga-
tion, and assuming also that, by the initial adjustment, it was
possible, at some time # =¢,, to attain the extremum value of
- the production quality index, then under the influence of

distrubance factors the production quality index will in time -

deteriorate spontaneously, in spite of the constancy of the
control coordinates (Figure 2). At the expiration of time T
the quality index will get out of the permissible limits. The
disturbance effects are random functions of time or random
values, although in some individual applications their mathe-
. matical expectations may dominate centred random elements.

The chance of producing quality index with time Q (¥) is.

also a random time function, known to be non-stationary for
this process with a fixed adjustment. And so, repeating the
above test, one gets new realizations Q (?) and new time values
T; (Figure 2). .

The overall adjustment-loss time by. the quality 1ndex 0
is designated as the mathematical expectation M (7;) of time
intervals T;. So the -overall adjustment-loss time expresses the
mean value of fime interval, after which the production quality
index of the industrial process with a fixed adjustment gets out
of the penr11551ble limits. ’
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The adjustment-loss time, understandably, depends on the
nature of the industrial process and its automation level by means
of frequency automatic systems. If the overall adjustment-loss
time is great, then: a non-automatic, hand control is not
difficult and there is no need to use a complex self-adjusting
system. If the aggregate adjustment-loss time is small, then a
person is unable to secure adjustment even with the presence
of appropriate data transmitters and self-adjustment becomes
necessary. .

It should be noted that the higher the speed of the industrial
process and the stricter the demands on the quality of production,
the smaller is the overall adjustment-loss time. Acceleration
of the industrial processes and stepping up of demands on the -
quality of production are inherent characteristics of technical
progress. Therefore, the application of self-adjusting control
systems of industrial processes has a broad prospect.

Equations of Extreme Control Processes

It is assumed that, in the vicinity of the extremum point,
serving as a working portion of the system under consideration,
the quality index (1) approximates with sufficient accuracy by

- the quadratic shape of preceding values of cootrol parameters -

and by the additional member 6Q; expressing the influence of

-disturbing effects £, ..., fin:

1 " - . .
Q(t)=Q,+7‘ ZlaikAki(thi)AXj(t—Tj)
,J=
aZQ .
+6Qfaij_aji—m (2)

here
AX,=X,— X, =X¥4+6X,+6X,, (
=X, =AX,+0X,+6X,,

are complete deviations of brought forth coordinates (para--
meters) of control , AX,* = X,*— X, are working deviations
of control coordinates, and Q; -is the extremum value of the
quality index. In case the computer of the quality index does
not bring about smoothing (smoothing is secured only by
subsequent elements of the circuits) and the production para-
meter measuring instruments are practically non-inertial, or
their inertness is accounted for in the values of time delays 7;,
the output value of the computer equals:

. ’ U(6)=0()+50,(0)

* Here 6Q,, (¢) is the element created by the errors of the

production parameter-meters and the errors of the computer.

* Thus
UO=0++ Y ayAX(1~w)AX,(1=7)+50 ()
where b
60=60,+50,

The value U () in the multiplying elements of the synchronous
detectors (correlators) is multiplied by the search signals 6X,
displaced in time in the delay simulator. The errors in delay
simulation are designated d7,.

To the second entrances of the multlplymg elements are

530/2 ' L -
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transmitted values dX; (¢ — v, — d7,) and the output signals of
these elements equal V, = U (2) X, (t — 7, — 07,).

The linear portion of the controlling system without any
common restriction is divided into a set of filters and integrat-

ing elements (Figure I). The output working coordinates equal '

Xi =i Y WD)V,

v—1

Here || W3, (D)|| is the matrix of the transfer functions at low
frequencies. Thus :

. - n d
DXF=DAX+DXu= Y W4,(D)V D=
v=1
or

DAX} =Y W, (D)[u(t)dX,(t—7,—1,)]=DXy
v=1

utilizing expressions (3) for U (), one finds

DAX,T:% Y a; W, D {[AX] (1—1)+6X,(t—1) .
i2, j1, v :
X ()] X [AXE (1—1,)+ 6K, (1=1) +6X 1, (t—7))]
X 6X , (t—1,—67,)] |
+3 Wi, (D) [(Q1+0Q) 6X,, (t—1)—7,)] — DXy @)
(k=1,2,...,n)

Summation by indices 7,j,» is carried out within the limits
from 1 to n.

Qualitative Analysis of Extremum Control Processes

Quasi-stationary Regime

The quality demand of an extremum control process reduccs
to the following. With considerable initial deviations from
extremum the state point must move to the ‘extremum as
smoothly as possible (without much overshoot). In a steady
operation the state point must stay sufficiently close to the
extremum.

Let eqn (4) be converted into:

DAXk Z au VVkv(D)
l ], -
[AX(1—1)0X,(t—1;) 6X, (t—7,—51,)]
L
52 WD)

Za,JAX*(t T)AX*(t T)éX(t

by J

+ Z al] ka(D)

l;]y

—ot,)

- [AXF (- r)éXJw(t 7;,)0X, (t-—‘c —5rv)]
+0¢—DXy : )

530/3
here
5@—5% W (D) ([, (1= 5) + X, (t— )]
x[6X,(t—1)+6X,;(t—1;)]6X,(t—7,—d1,)}
+I W (D[Q+3Q) X, (-5 =0c)]  (©) -

Values d¢p;, may be treated as the effect of errors, noises and
search elements, brought to the outputs of filters of the syn-
chronous detectors, provided there are no working deviations
(AX;* = 0). These functions do not depend on working devia-
tions (it is assumed, that 6@ does not depend on working
dev1atlons) and on the whole may only obstruct the movement
of the state point to the extremum. _

Thus, d¢; always plays the role of disturbance effects ‘and

‘it is expedient to decrease them as much as possible. If the

search elements 6.X;, have permanent constituents then, as seen
from expression (6), it is impossible to decrease indefinitely
d¢;, by any increase of time constant filters of the synchronous
detectors. Indeed, according to (6), the constant components
80X, will cause deviations at the outputs of the synchronous
detectors. .

7 Z a; ka(O)éX 6X ;60X +Z ka(O)(Qv+5Q) 5X,

Where at least part of the transfer coefficients W, (0) is

- known to differ from zero, since otherwise the circuit of the

extremum control is inefficient. Thus, it is expedient to secure
zero parity of the permanent elemeents of search constituents
i.e. the centering of the search oscillations. This is easily attained
by installation of high frequency filters at the outputs of the

"search oscillation pickups.

In particular, an ideal high frequency filter separates, from’
the input value, the high frequency constituent not correlated
with the remaining part of the input value. This is illustrated
by the graphs in Figure 3, showing a density spectrum curve S(w)
of the input function, which is assumed to be stationary and
ergodic and amplitude frequency characteristic 4 (w) of an
ideal high frequency filter.

An ideal filter separates the high frequency const1tuent with
a spectral density S8, (w) Figure 3(b) not correlated with the
filtered component (spectral density Sw (w)), since the mutual
spectral density of these components equals zero.

If the data meter controls the full input coordinate of
the system X, = X,* 4 6X, + 6X,,, then the ideal high
frequency filter in a stabilized operation separates the high
frequency constituent 60X, not correlated with constituent
X,* + 0X,,. It should be noted that stationary X,* may be
expected only in a stabilized regime of the system operation.
In transient regimes X,* is a non-stationary random function
and even with the use of ideal filters the search elements
prove to be to some extent correlated: w1th the working
elements X, *.

However as is seen from the followmg in the present system
(perhdps even more than in other continuous extremum sys-
tems), a quasi-stationary regime is profitable. In a quasi-station-
ary regime the transient process times are great compared to
correlated times of search elements. When a quasi-stationary
condition is secured and with the application of high frequency

- 530/3
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filters near to ideal the search elements may be considered

with a high degree of accuracy not correlated with Xv*, both

in a stabilized and in a transient condition of the system.
Based on the above the search elements d.X, it is assumed

_ as centred by random functions not correlated to AX*, 6X,,, Q.

Investigation of other members of the right portions. of egn (5)
is now made. The second member of the right portron may be
rewritten in the shape

2T W (D) [F*5X, (-7, ~67)]

where .
F*:Z.AXf‘(t—ri)AX;‘(t—rj) (7
,J . :

In view of the definiteness of the signs of the functions of
working deviations this member cannot facilitate the organiza-
tion of movement to the extremum. '

Thus, members (7) play the part of impeding effects and it
is expedient to reduce their influence to the minimum values.

The only accepted means of reducing the effects of these
members is the raising of frequencies (decreasing the correlation
times) of the search elements at given times of transient
processes of a closed loop or, inversely, increasing cumulative
times at given correlation times of search elements. Either
one or the other means switch to a quasi-stationary regime.
In a quasi-stationary regime the effects-of members (7) can be

-neglected. The following members of eqns (5)

Z a;; Wi, D) [AX] (t—1) 06X, (t—1;) X, (t—1,—d1,) (8)
i, j,v
although linearly depend on working deviations, are also playing
the role of impeding effects.

In fact, as agreed 0Xj, and 6X, are not correlated and 48X,

are centred. Therefore, the mathematical expectations of the
products 68X, (t — ;) 0X, (t — 7, — d7,) equal zero. Thus,
the expressions in the square brackets represent linear forms of
working deviations, whose coefficients are centred ‘high fre-
quency’ random time functions. These members can only
increase the scattering of the trajectories of the state point
during its movement to the extremum.

In the quasi-stationary regime, because of the intensive

' suppression of the h1gh frequency - constituents, members (8)

may be neglected.
Turning to the investigation of the ﬁrst member of the right
portions of eqns (5) it is noticed that the product of search

constituents may be represented as a sum of the mutual cor-.

related (at j 5 ») or a auto-correlated function and a centred
random function. Moreover, if the ‘search constituents are
stationary and are stationary combined, then the correlation
functions depend only on the argument difference.

v —01,)=R;, (1,—7;+67,)+&;, (1)

where &;, (¢) are centred random functions members

Y ay W AXEL () ©

i, J,v

play the same kind of negative role as members (8). In a quasi-
stationary regime the influence of these members may - be
decreased to the same extent, as the influence of members (8),
since the correlation times of function &;,(¢) are compared with

.
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the correlation times of function 0.X;,, 4.X,. In a quasi-stationary
regime one neglects the influence of members (9).

And so, the general equations (5) give up their place to the
following equations of a quasi-stationary regime of the system
under consrderatlon

DAX? = 2 a; Ry, (1,—7;+6%,) Wy, (D)AXF (t—1))

i

+wu0—DXH (10)
(k=1,2,...,n)

These general equations of a quasi-stationary regime are
simplified in concrete, particular cases.

First of all it is noted that the correlation times of search
signals are small, due to the presence of high frequency filters.
Therefore, for a typical case, when the delay times z; are not
identical it may be assumed

0 for j#v

R,(dt,) for j=v - an

ij(’CV—Tj+5‘CV)={

It should be noted that the same correlations take place also at

strictly identical delay times 7, = 7;, but not correlated
search constituents. In practice, non-correlated natural search
constituents may be obtained by means of installing instead
of high frequency filters, band filters with non-overlapping pass-
ing bands. The shortcoming of this method is the considerable
lowering of the level or efficiency of the utilized search elements,
especially in multi-instrument systems (» dimensional).
At condition (11) eqns (10) take the shape

DAX:‘*‘ Z Wkéi(D)AX?‘(t_Fi):5¢k_Xkl (12)
i=1 .
where

Wkt(b) Z, atv v(ér ) I/Vkv (D)

It is also possible to introduce transfer functions of a closed-
loop system, then

AX} =505 3 (- D ALDIES X (1)
where
D+ W (D)e™ ™. Wie ™ |

Ay, (D) is the determinant, obtained from A (D) by crossing out
‘K’.column, ‘v’ line.
The roots of a characteristic equation

Le L WEL (D) ... WE (D)
P T R

are simply determined in case when times 7, are practically
equal, the synchronous detector filters are.neutral and possess
identical transfer functions:

53074
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AX,,* where

forv#£k
W(D) for v=k

In this-case the characteristic equation (14) breaks up 1nto n
equations of

R, (61,) Wy, (D)= {

Je™ 1.

where C, is the semi-axis of the determining ellipsoid

Z ay AX,AXk =1
i k=1 .
If by decreasing the gain W (0) the roots of the characteristic
equation are made so small, that ¢™* ~s 1, W()) ~ W (0), then
in accordance with (15)

w0
A, = — —C 3 ) < 0
and similar slow processes of extremum control always possess
monotonous stability. However, at small gains the extremum

_ control time or the self-adjusting time is great and the errors

considerable. o
Errors produced by drifting of the extremum with con-
stant speed equal

N WA ;
AXy=—% O] v;( DA, (0) X, (16)
It is noted that the value v
A, (0)
k+v Zkv Y/

equals the area bound by the curved weighting function K, (£)
of a closed-loop system, corresponding to the transfer function
) Akv (D )
A(D)

k+vAkv(0)
AR YO)

Kkv(t) di= Tkv (17)

Values Ty, have time dimensions and will be called ‘areas of
weighting functions’. If the system of extremum control is in
general disconnected at AX,* (0) = 0, To Wy,© = 0,

5fk=_ )
- t - y .
AX{= ——j X,di=—X,,t
0

where we consider X, = const. :
With a disconnected system of extremum control, deviation
AX,* increases and in t1me I;; exceeds the permissible value

AX;:g == j}cht (18)

Time intervals T are called adjustment-loss times, as distinct
from the general adjustment-loss time, mentioned above.
From (16) and (17) it follows that

\

AXI( - Z Tkv vl
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Errors AX,*, produced by constant drifting of the extreme
point in a closed system; naturally, must not exceed AX;,*.

It follows from this that the weighting function areas must
satisfy correlations

Z Ty Xt | < Tl X il =1 X (19)
v=1
Assuming in particular )
Xll = ... =Xk—ll =X_k+ll = e =an =’0

(moreover AX,,* remain final values) one obtains
ATl <T,

i.e. the weighting function areas must be smaller than the
adjsutment-loss times.

The curtailment of the weighting functlon areas (decrease
of static errors) may be attained by means of increasing of the

amplification. However, the increase of gains, beginning -

with certain Values, leads to loss of stability of the extreme
loop

The increase in critical values of the gains and curtail-,

ment of times of transient processes of the extremum loop
requires the diminution of transient displacements 7, between
points of action of controlling elements and contro! points
of output parametérs in the industrial process itself.

The control of output parameters may be realized at the
output of the whole industrial process [Figure 4 (a)], in the
intermediate points [Figure 4 (b)], and at the output [Fig-
ure 4 (c).

From the viewpoint of lag decreasmg and possibility of time

' curtailment of transient processes, a circuit having parameter

control in the intermediate points has a decisive advantage over
a scheme with control of output [Figure 4 (a)] final since it
corresponds to the arrangement of information transmitters
in the immediate vicinity of the controlling elements. However,
this circuit also has one essential drawback.

The quality index extremum, calculated on the- ba51s of
measurements in intermediate points may not correspond to the
extremum of output quality at the industrial process output.

A more -perfect circuit is the combined type [Figure 4 (¢)]
where the control in the intermediate points is combined with
the output parameter control at the industrial process exit.
In this circuit the signals of the parameter transmitters of the
finished production pass through low frequency narrow-band
filters Q, for instance integrating elements, after which they are
added to the signals of corresponding transmitters, controlling
the output parameters in the intermediate points. This circuit
conserves the quick action ef circuit 4 (b) and at the. same
time possesses the accuracy of control of slow changing para-
meters, near to the accuracy of control of circuit 4 (a). -

However, the above extremum control system even with an
improved informational section has a limited general application.

In fact, as seen from egn (12) the dynamics of quasi-stationary
processes of extremum control in this system depends on co-
efficients a;, of quadratic shape of the quality index; depends
on time lag 7,, errors of simulation of this de]ay éz, and
intensity of search elements.

For some industrial processes these parameters may be
considered permanent, for others they are subject to com-
paratively slow random variations.
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For the first processes the extremum control loop once
adjusted maintains its efficiency for a long time. In the second
case the extremum control loop itself needs periodic adjust-
ment, accomplished by changing the transfer functions Wy, (D)
of the filters or just their gains W, (0), and also, perhaps,
the time delays.

The necessity of adjustment arises due to the fact that, even
though the stability of slow processes of the extremum control is
maintained in a wide range of variations g;,, R, (J7,), a guarantee
of the necessary quality of the extremum control is possible
only by a suitable selection of transfer function filters.

To this must be added, that even in those processes where
parameters a;,, T,, R,(67,) remain unchanged the initial
adjustment requires either a priori knowledge of these para-
meters, or their experimental determination.

Raising the chance of general acceptance of extremum control
systems with continuous industrial processes, in the sense of
volume decrease of necessary a priori information, may be
attained at the expense of parametric extremum adjustment of
the basic extremum loop.

Self-Adjusting System with Parametric Extreme Adjustment of
the Basic Loop

To realize an extremum adjustment of the basic control, it is
desirable to select the adjustment parameters of this loop and the
quality index so that the latter shall be the only extremum in the
working portion of possible variations of adjustment parameters.

As an adjustment index of the basic loop, it is natural to
select the mean value, more accurately, the mathematical
expectation of the same production quality index Q, which is
utilized in the basic extremum loop.

Moreover, in accordance with (2)

n

MIOI=0it5 3 ayMIAX (=) AX,(1=5)]

+M[6Q,]

it is possible to show, if the errors of simulation lag are so
restricted, that

R,(61,)>0 (v=1,2,...,n)

(20)

where d,;; = W, (0).

Then the estimation M [Q] always has an extremum by the
adjustment parameters d,; whereupon this extremum is the
only one in region (20). .

Taking into account the availability of the single extremum
by the adjustment parameters and the general principle of
extremum control, it is easy to lay out a control system of
an industrial procss with seelf-adjustment of the basic loop.

This chart is shown in Figure 5. The basic loop of the
extremum control .of the industrial process is here similar to the
one previously examined. The difference is only in the presence
of multiplier ‘matrix’ links, which realize varying transfer
numbers d, .
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Besides the basic loop the system has a loop of extremum
adjustment of the transfer numbers matrix.

It is assumed that the transfer numbers a;, of the indu-
strial process change slowly in time even as compared with
quasi-stationary processes of the basic extremum loop. More
accurately, it is assumed, that the time of substantial change
of the transfer numbers a;, is considerably greater than the
general adjustment-loss time T (see above). It is noted that, in
principle, forced self-adjusting processes of transfer numbers
are also possible. However, the dynamics of forced processes
is complex, and for their organization it is not enough only to
have the existence of an extremum of appraisal M [a] by the
transfer numbers of the basic loop. Thus, as. a typical regime of
the system operation with two extremu loops, a regime with the
following grading of process flow speeds is assumed: (a) Search
elements in the basic loop (the frequency processes);
(b) working processes in the basic loop; (c¢) search of os-
cillations in the loop of extremum self-adjustment of the
transmitting numbers, and (d) working processes of the
extremum self-adjustment of transfer numbers (the frequency
processes).

At the above grading of process flow speeds, both the
processes in the basic loop, as well as the processes in the self-
adjusting loop of transfer numbers are quasi-stationary. The
dynamics of working processes, moreover, are near to the
dynamics of ideal gradient systems (4). From this position
and presence of extremum of transfer numbers d,; it follows,
that upon fulfillment of weak conditions (20) a quasi-stationary
process of self-adjustment of the basic loop is always stable.

The above control system has considerable universal accept-
ance. By joining it with a plant (industrial process) with
little known characteristics, the system matches automatically
transfer numbers corresponding to the quality index extremum
in the framework of the given structure of the system.

A further increase in “flexibility’ or universality of the system
is made by introducing extremum adjustment of the delay simula-
tor, extremum adjustment of the filter time constants and others.
However, all of this involves further complexity of the system.

The possibility of Extremum Control of Non-automated Control
and Adjustment

_ The main difficulties in introduction of extremu control ofm
industrial processes at the present stage are connected withthe
complete automation of output parameter control and complete
automation of machine adjustment, securing the industrial
process. The technology of most industrial processes even con-

~ tinuous, did not yet reach the level at which it is possible

to achieve continuous automatic control and adjustment. There-
fore, it is of great interest to find the means of extremum con-
trol for discrete semi-automatic or hand control and adjust-
ment. / '

The general algorithm of the extremum control and the com-
puting section of the control system may, moreover, remain the
same, as in a continuous automatic system.

Estimation of the information output capacity of the
measuring points, necessary for transmission of the search
elements, indicates that for processes with considerable ad-
justment-loss times a non-automated control is possible. For
such processes, a periodic hand adjustment of machines is also
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possible, which guarantees the industrial process taking place.
In this case the output signals of synchronous -detectors are
transmitted to the integrated indicators. Operators (adjusters),
guided by the indicators of these devices, are periodically
correcting the adjustment of the machines. With this type of
organization of the extremum control the control system itself
becomes a computer, either digital or analogue, equipped with
input and output arrangements. The closing of the ldop of an
extremum control is here accomplished by .men supervisors
and operators.
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Invarlance of Sampled data and Adaptive Sampled-data Systems

V.M. KUNTSEVICH and

One of the important scientific trends in the theory of automatic
control is the theory of the construction of systems on the basis
of compensation of the influence of disturbances, or the theory
of invariance of the control led value.

" As is known, however, the invariance theory was recently
used extensively only for ordinary continuous control systems~7.
Attempts were made in a number of works® % to extend the
general principles of this theory to sampled-data control
systems, but there has not yet been any full and systematized
statement of the invariance theory for such systems. That said
above relates in a still greater degree to adaptive systems in
general and sampled-data systems of this type in particular.
Since adaptive systems are a special type of non-linear systems,
then, as will be shown below, the introduction of compounding

“disturbance links makes it possible not only to improve the

quality of systems when compensating the influence of distur-
bances, but also to extend the stability region of these systems.

The authors consider the main aim of their paper is to
demonstrate the fact that the sampled-data system analysis and
synthesis methods expounded below can serve as the basis for
the construction of control systems with considerably greater
accuracy than existing systems.

Henceforward the following constraints and assumptions
will be accepted: (a) synchronous sampled-data systems with
amplitude modulation are considered; (b) the sampling period
T is constant; (c¢) the pulse element is ideal; (d) the equations are

.written in deviations; and (e) initial conditions are zeroth.

Since sampled-data systems of fairly complex structure will
be considered, the consideration will begin with the method of
solving the equations of multi loop sampled-data systems.

Sambled-data Systems

Multiloop Sampled-data Systems Equations

A number of works'®—23 have been concerned with the
compilation and solution of the equations of sampled-data
systems. The solution of the equations of multiloop sampled-
data systems is given in the most general and convenient form
by Burshtein!”. The method suggested below has features in
common with Burshtein’s method, but allows one to avoid a
number of intermediate operations and to simplify the calcula-
tions. )

In the most general form the equation for the kth coordinate
of a multiloop sampled-data system can be written thus:

50 =3 Wa@x0) + T 3 by () by
m m  Pri
+ =21 kl(s)F (S) + Zl 2 Cku F* (Z) Cku (S) ¢ (1)

Yu. V. KREM ENTULO

where x;, x; are the coordinates of the system, F; the externa
disturbances, n, m the number of selected coordinates and
external disturbances respectively, /y;;, Py;; the number of parallel
links (pulse-continuous) between the coordinate x; and x; and
the coordinate x; and the external effect F; respectively; W, b, b/,
¢, ¢’ and R are the corresponding transfer functions, shown in
Figure 1, which depicts part of a multiloop sampled-data system
(kth node).

If one takes into consideration the additional coordinates:

bnx (5)x1(5) Xu+1 (5)
b,,,“(s)xi(s) xn+1.,(3) (2

nl(s)x (S) xn+ln+ ll(n—l)*l(s)

1n1.,.(5)x (S) Xpt1g 4 +1,,(5), €LC.

then the equations of the multiloop sampled-data system can
be given in an ordered form:

Z ay;(s)x;(s)+ Z ay;(5)x7 (2)=A,(s)

3
Z ay;(s)x;(s)+ Z ay; () X7 (2)=Ay(s)

where

n n
N=n+ 2 Z Iki
k=1i=1
is the full amount of coordinates of the system (including the
additional ones),

m P
Ak(s) I:Z RI\I(S)F (S) + Z Z CkUF*(Z)Cku(S):I

4 () =W (s);  au(s)=Wu(s)—1; ak; (s)="bki; ()

and are numbered in accordance with (2).

System (3) formally contains N equations with 2 N unknowns.
x;(s) and x;* (2). As in ref. 17, the terms containing transforms
of the coordinates will be transferred to the right-hand side.
The resultant system will be solved relative to the arbitrary
coordinate x; (s). This gives:

x,(9=228) G

where
ayp(8), s ayn(s) )
A(s)=] v rerrenenen. (5)

Ay (8), ..., ayy (5)

is the common determinant of a purely continuous system.
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Determinant (6) may be presented-in the form:

Eqn(7) |

The first of the determinants entering into (7) will be denoted
by 44’ (s), and the remainder by A’m‘ (). Bearlng in mind the

notation adopted: ,
AA (s) ul * Ax*k ()
xj(s)=m_ kzlxk(z)< 4() ) (®)

Subjecting (8) to a z transform and cancelling out like terms, the
following relation is obtained:
*
> (2);

s 1+(? i) |-(%4) - 3, Fo %
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which column of the common determinant A is subject to
substitution, while the lower index indicates substitution by.
coefficients for particular variables. Thus, A% x*; means that the
kth column of the common determinant 4 is to be replaced
by coefficients at the jth discrete coordinate.

System (10) can be solved, relative to the coordinates of
interest, by ordinary, algebraic methods. Sampled-data systems
with various types of link will now be considered.

Sampled-data Systems with Continuous Compounding Links

An automatic ¢ontrol system with one pulse element, which
can be described by a system of three linear equations with
constant coefficients, is studied. The block diagram of the system
is given in Figure 2, which .also shows the transfer functions
of both the main loop and the additional links.

The initial system of equations is:

(k# j) 9) @ (8)+0—W,, W,,(s)+0=(s) A(s)
Thus the initial system (3) can immediately be raised to a — W, (5) We.o ) @(s)+v(s)—W,, () u(s)+0
full system by equations of type (9). The full system of equatlons
of a multiloop sampled-data system has the form: 02 () () + W, ()Y (5) (1)
% () () % () *( ) () Wu¢(5)¢(5)+0+ﬂ(5)_W,w(s)v*(z)
ag;()x;()+ ) ai:(s)x7(z2)=A4,( ,
jo TR Gy TR ' = W, (8) () + Wy () ¥ ()

N

N.
Y ay;i($)x;(s)+ ;1 ay;(s) x}k (z)=An(s)

I:l + <Aj">*(z):| X1 (2)
+ Z <

) (2)xj(2)= (%) (2);
j; (AA ) ()%} (2)+ |:1 + (A—Z“—> (z):l xk(z)= (%) ‘ (2);

(10)

In accordance with the method expounded above, this
system is made into a full one by the deficient equation:

(Bl

Henceforward, only programme and servosystems will be
considered; hence, in (11), A (s) = 0.

From (11) and (12) one can easily find an expression for the
controlled coordinate in which one is interested.

@ (5)=K, ()Y (s)

(12)

N KO kKK @) (13)
When writing the determinants forming part of (10), the 1-K7(2)—K;K¢ (2)
following symbolization is accepted. The upper index shows where
N
* ays(s), .. a1j-1(s); 4y (S)_z1 ai,-(S)x}‘(Z);al,-H(S),---,am(S), v
j=
ij(s)= .......................... N ........ e (6)
a1 (5), - de—l (8); An(s)— '21 az’v,i(s) xf (2); aANj+1 (5); ..., ann (s) \
i=
Hk 31 (8) s @yjry (8); A1 (8);a1541(8)s enes an(s)
ij(s)= _
ayy (8), .-es aNj+1 (5); An(9); aANj+1 (), ..., any(s)
M
N 1a11(8), s @yj-q (S);a’m(s)_; agje1(8)seeesann(s)
- 5@ |
k=t Ay (5)s - anj-1 (8); ank(8); aNj+1 (), s ann(9)1
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Wooyu (5) W,y (8) W () Wou(s)
K= O @ 2 O TTo0,, G e O
KS (S)= Wus(s)'l' W (S) :[1(5)’
K6 (S) (p;(p (S) VVva (S)+ I/Vv/,t (S) me (S);

N K7 (S) = U[l (S) W;w (S)

Conditions of Absolute Invariance. The condition of absolute
invariance for servo and programme systems is:

P ()=K, (¥ (s)
K5 (s)
1- K% (2) - KK% (2)

{[(Ks +K,K¢) ‘//]* (Z)} =y (s)

or
—e(5)=K5 ()Y (s)

] K3 (s)

1 —K;k (z)—K;K%(2)

{[(Ks+K,Ke)¥]* (2)} =0
) ‘ (14b)

where £(s) = p(s) — (p(s) is the system error of the system;
K’ (s) = Ky (5) — 1.

The basic differences between the conditions of invariance
for continuous and sampled-data systems is emphasized. While
in continuous systems the conditions of absolute invariance do
not depend on the form of v, and are determined only by the
parameters of the components of the system, in the sampled-data
system under consideration, these conditions (14) essentlally
depend on the form of the input signal .

It can be shown that the condition of absolute invariance
physically signifies the equality to zero of the sum of the indivi-
dual components of the coordinate ¢ produced both as a result
of the direct effect '1/1 upon the system, and also on account of the
effect via the additional (compounding) links.

Invariance Conditions for Discrete Moments of Time. The
invariance conditions (14) were obtained from the requirement
of the equality to zero of coordinate ¢ at any moments of time.
One may pose a less rigid requirement—the equality to zero of ¢
at the sampling instants, i.e.,

8[nT] 0

"The condltlons under which (15) is satisfied are called
‘conditions of invariance for discrete moments of time’. If (14)
is subjected to a z transform, then the problem is solved at first

sight. However, it is easy to show that the invariance conditions

for discrete moments of time as well, will depend upon .
An attempt is made to obtain the conditions, independent
of y. Both parts of (14b) are multiplied by

Ky (5)+ K5 (5) Ko ()
K5 ()

and then subjected to a z transform.

! *
_<E 8)(2) W)*(z )+<K ) ( )

(W) (2)
1-K7 (2)-K;3K5 (2)

(14a)

(15)
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By equating the right-hand side of (16) to zero, the following
invariance conditions are obtained for discrete moments of time:

K, <K5+K6)}*(z)=0

1—K;“(z)+[ Y

2

The conditions of absolute invariance for a similar con-
tinuous system (i.e., a system having the same structure) can be-
given in the form:

K3 (s)[Ks5(s)+ K¢ (s)]
K5 (s)

If (18) is subjected to a z transform, eqn (17) is obtained,
i.€., the introduction of a pulse element into an absolutely invariant
continuous system does not impair the conditions of invariance
Jfor discrete moments of time for the so-called *fictitious coordinate’

L(s)
K5()
As shown by Krementulo!® from the equality to zero of
&, [nT], there still does not follow the equality to zero of ¢ [nT].
The additional conditions will be given, under which & [#T] = O,

and does not depend on the form of . (14b) is subjected to a
ztransform, and then 1 — K (2), found from (17), is substituted:

K3 (2)

Kl KL )k k2
K, '

(K™ (2)+[(K5+1) Key1* (2)}

The additional condition:
K:+K * K:+K * ,
[( st 6+K6)K24/] (2)= (— 6> @) Kyy*(2)
K K,
(20)

Condition (20) is satisfied if [(K; + Kg)/K,']1+ K¢ contains
proportional components or components with a pure time lag.

1-K,(s)+ =0 18)

&p(8)=

e(s)

X

—e* (Z)=K'2¢*(Z)—{

(19)

‘From (20) and (17) can be found the transfer functions of

continuous compounding links.

Sampled-data Systems with Discrete Compounding Links

A brief examination will be made of the properties of a
typical sampled-data servo-system, the block diagram of
which is given in Figure 3. The expression of the system

error ¢ is:
%
o (o) = IO Ve @) 1)
L+ W5 (2) Wy, (2)
The condition of invariance at discrete moments of time is:
.p ( ) = (22)

tpu( )

In the general case, W,.(z) and WW (z) are the ratio of
polynomials according to the positive powers of z, the power

(16) of the numerator being less than that of the denominator.
is obtained, where / (s) = K; (s) + K, (s) K; (5). Since W,;'; (2) must be inverse to W, (z), then it cannot
531/3
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be physically realized (advancing components are required
for this).
It is important to note that the introduction of the link
W, (z) and the satisfaction of the invariance condition (22)
do not alter the characteristic equation of the system:

Kg (2) P*(2)+K7 (2) Q" (2)=0;

(Ki@) P* @)_Wﬁ())
K¥(2) 0*(z)

and therefore do not influence the stability of the system.

Examples were given by Kuntsevich!? to show that even in
those cases when W,j"‘,, (2), obtained from condition (22) cannot
be realized, provided it is selected in a particular way, it is
possible to increase considerably the accuracy of a sampling
servosystem.

When for any reasons it is mconvement or impossible to
introduce the compoundmg link W, (z), one may introduce
into the system additional links, equivalent to the direct com-
pounding link W,,";, (2). Eqn (21) can be brought to the form:

1
L+ Wy (z) W, (2)

Woe(2); (23)

¢ (2)= ¥ (2)

W W2
W W ()[ ()+<p (2)]

It is not difficult to see that (24) is met by the scheme
shown in Figure 3 (b).

If (22) is satisfied, then the condmon of absolute invariance
has the form:

(24

V() _ Wi (5)
V@) Wa(2)

The latter equality can be satisfied only in some particular
cases, and, as shown by Krementulo!!, requires the inglusion
of advancing components if v [0] = 0.

(25)

Sampled-data Systems With Pulse-continuous Compounding Links

In this section a servosystem will be used as an example to
show that when pulse-continuous links are used it is in principle
possible to achieve absolute invariance in a combined sampled-
data system.

Assume that the block diagram is predetermined, i.e.,
Woe (8), W, (s) and W, (s) are known. A compounding 11nk
with respect to. the mput signal Y W,, (s) is introduced to
improve the dynamic properties. The transfer function of this
link has to be determined.

The expression for the system erroris:

—&(8)=[W,, (5) W, (s)—=1]y (s)
W,.(s) W, (s)
1+ W, W, ww(z) V7 G W Wou Wop (@] 26)

Having equated & (s) to zero the condition of invariance of
the system is obtained from which the transfer function of the
compounding link can be determined: :

NLANO)
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The signal of the compounding link ¢, (s) cquals:

Y (s)
Wor (5)
This signal can be realized with the aid of the scheme shown
in Figure 4 (b). In a similar continuous system, the compounding

link with respect to w, chosen from the conditions of absolute
invariance, equals:

vy (s)= FW, () [ W U5 (2)— ¥ ()] (28)

w0 (8)—1] (29)

W;u//(s) ( )+ an(s)[
It can be seen that for both the sampled-data and the con-
tinuous system the compounding link has one and the same
structure and consists of identical components. The difference
lies in the fact that in an absolutely invariant sampled-data
system some of the components are connected up via additional
pulse elements operating synchronously and in phase with the
main one. What has already been said also holds in the case
when real pulse elements are used.

Extremal Sampled-data Systems

Systems without Compounding Links

Today a large number of extremal sampled-data systems of
various types are known, which have been studied by many
scientists. But certain specific features of these systems remain
unexplained. Of the known extremal sampled-data systems an
analysis will be made on the basis of full and precise equations
of dynamics of only one system which, as was shown in (29),
provides the best tracking quality with continuous drift of the
extremum, and whose properties are at the same time closest
to those of a hypothetical system measuring the position of the
extremum point without any errors.

As in most works, the controlled plant with extremal
characteristics will be considered to be one which consists of a
linear inertial component and an inertia-less component with
extremal characteristics.

The equation of the non-linear component, taking into
account the action of two kinds of disturbances (or two com-
ponents of one and the same disturbance), which displace the
extremum point, will be written in the form:

(30)
where ¢ is the index of the extremum, and , 4 are disturbances
of an arbitrary kind, inaccessible for direct mcasurement by
virtue of the conditions of the problem. Let the remaining

equations of the extremal system (see Figure 5) in the absence
of the components shown in Figure 5 by the dotted line, be:*

x(s)=W, (31)
(31a)

* Since the system under review is non-linear, then strictly speak-
ing, neither the ordinary nor the discrete Laplace transform is applic-
able to it. Therefore the final results will be obtained with the aid of
a set of non-linear difference equations. To simplify things, the

0= —03(x+¥)*+2A

om () M (s)

where
M=pu+m

W ()= ¥y % 27 Laplace transform will only be used in application to the lmear
wy (S) W‘P"( ) (S) [ l// (Z) l// (Z)] ( ) components
531/4
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m(s)= W, (s)m{ (z) (32)
where z

m} (z)=ajwm (32a)

1(8) =W, (s)u™(2) (33)

Ya=4¢,(=1)" (34)

u*(2)=W,y (2) ya(2) (35)

Here (31) is the equation of the linear part of the plant,
(32) the equation of the modulation circuit, (34) the equation
of a controller with synchronous detector, (35) the equation
of the correcting elements, (33) the equation of the servo-
motor and x, 4, @, # and y the controlled coordinates.

Henceforward it is taken that the dynamic properties of the
plant and the slope &4 of the extremal characteristic are constant

_or quasi-constant.

The error of the system is denoted as:

e=u'+2 (36)
and also the notations are introduced
x*(2)=p"*(2)+m*(2) (37
where
W (2)= Wy W (2)u™ (2) (37a)
m'*(z)=W, Wi (z) m} (2) (37b)

On the basis of (37b) and (32, 32a), the modulating effect
m',, scaled to the input of the non-linear element, can be
represented in the form

. my=aycostn=d,(—1)" (38)

where aps is determined from the particular solution of the
difference equation

ay(=1)'=ay Wy Wo(E)(=1)" ~ (39)

which is obtained following the replacement of (32) by the
difference equation corresponding to it.
Solving jointly (30), (36), (37) and (38) gives

Y= —2aM°‘3(en+en—1)+A)hn—1(_1)"—'“3(33—&3—1)(—1)"
(40)
From (40) it can be seen that the signal on the output of the
component (34), apart from the useful component proportional
to the error contains further additional terms, one of which
A2, (— 1" reflects the influence of the disturbance 4,, and
the third term shows that the measurement of the position of the
system relative to the extremum point is not ideal.
~Further replacing (35) and (33) by their corresponding
difference equations, and solving then jointly with (40) and
(37a), the equation of the dynamics of the system is obtained
in the form of a non-linear difference equation with time-
varying coefficients

[2apyos W(E)(E+1)+E]e,—asW (E)[eZ, { —e2) cos mn]
=Y+~ W(E)[44,cos nn]
where W (E)= W,y W, (E) W, (E) (41)

As was shown by Kuntscvich?: 3, the non-linear eqn (41) -

has the peculiarity that at a particular correlation between the
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system parameters and the spced of variation of disturbances
@n, Ay the stability of the system is impaired, whereas analysis
of the linearized equation obtained from (41), disregarding the
non-linear terms (as done by Chang?®, Van-Neis?® and Ivakh-
nenko?’) does not permit one to detect this phenomenon.
Therefore the feasibility of constructing an adaptive system, the
error of which would be invariant in relation to v, 4,, acquires
particular interest, since it involves not only the improvement of
the quality of the system, but also the increasing of its stability
margin.

Invariance of Extremal Control Systems with Indirect Com-
pounding Links .

Since, by virtue of the conditions of the problem, the
possibility of direct measurement of the signals y and 1 is
excluded, the possibility will be considered of using indirect
compounding links with respect to % and A similar to those
considered above.

Consideration will first be given to the possibility of attaining
invariance of system error at discrete moments of time, relative

to w,*.
From (41), (36), (42), and (42a) and also from Figure 5, it
follows that N N -
v @)=e* () -1 (2) @)
or U™ (2)=e€"(2)— W 1" (2) (42a)

For the construction of the correcting link with respect to -
p in accordance with (42a), the variable 4',, can be obtained
with the aid of a model of the linear part of the controlled plant
(see Figure 5*%). A signal proportional to e, (or, more strictly,
containing e,) can be obtained on the output of an additional
synchronous detector (see the part of Figure 5 outlined by
broken line), the equation of which is:

Yn=0,(1)" (43)
Solving (30), (36) and (43) jointly, gives
y,/'= —2aMOC3€"'—O(3 (63—}-(11%4)(—1)“4"/1“(— 1)" (44)

For filtration of the parasitic quasi-periodic terms of signal
(44) on the output of the detector in the network in Figure 5,
a low-frequency filter is provided.

Taking this into account, the signal on the output of the
additional control loop is written in the form

W, ~ D(E)Y, (45)
- D(E)=2aya;3 W, (E) Wy (E)

Omitting the intermediate operations, the equation of the
dynamics of the system in Figure 5, with an additional control
loop, is obtained, on the basis of the equations cited above and
also eqn (45), in the form
[2apyx3 W (E)(E+1)+E]e,—as W (E)[(e?, , —eZ)cosnn]
=[1-2aya, Wem W (E) Wq; (E) Wy (E)] W44
—W{(E)A4,cosnn (46)

By equating to zero the operator comuitiplier for v in the
right-hand side of (46), an expression is obtained of the impulse

where

* It is noted that in contrast to ordinary servosystems, in which
the input signal may also contain a noise which has to be suppressed
as effectively as possible, the task of an extremal system in all cases is
complete performance of signal .
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transfer function Wi (E), which ensures the mvarlance of the
system from v, at discrete moments of time

1. 1

Wi (E)= @1

2ayas W, (E)W (E)

From (46) it can be seen that the satisfaction of the con-
ditions of invariance (47), and the presence of the filter in the
compounding-link network (as distinct from the filter in the
main network of the controller), do not alter the form and
coefficients of the left-hand side of the equation of the dynam1cs
of the system, i. e., do not directly influence the stablhty of the
system.

When the required transfer funct1on Wx* (2) is physxcally
unrealizable, then, as for ordinary servosystems, a considerable
improvement of accuracy (increasing of the degree of astatism)
can be achieved by appropriate selection of the transfer function
Wk* (z). An example is given in the Appendix of the method
of selection of the coefficients of the transfer function Wx* (2).

+ In deriving the conditions of invariance (47), the quasi-
periodic non-linear terms in (44) were disregarded in order to
simplify the investigation. As follows from the example in the
Appendix (see also Figure 6), the mﬂuence of these terms is in
fact small.*

A brief examination will now be made of the possibility
of minimization (or complete elimination) of the system error
due to 2. From the equation of the system dynamics (46) and
(40), it follows that for the predetermined structure the possibi-
lity of constructing a correcting link with respect to A(¢) in a
similar way as with respect to y, without constructing an analogue
of the non-linear component,is excluded. By virtue of this, with
the scheme structure adopted, only methods of minimizing the
influenceof 4 (#) can be considered. One such method, based on
the selection of the corresponding function W, (z) was con-

"sidered by Chang?5, Van-Neis? and Ivakhnenko®”. The results

obtained by Tou2t may also be used here.
Appendix

Example—In Figure 5 let

' . o
WxM F (S) = T :

- _%
s+1° Wi ()= s

to which there corresponds

* _ dl“z (1‘—d1)z
Wem Wuu(z)— m
Bi(2)

B3 (2)

and further, let

Wi (2)=

where By (2) and B (z) are polynomials from z, dy=e~T/%.

It will be taken that
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It is not difficult to see that in the given case the impulse
transfer function W# (z), as determined from (47), which is
required for attainment of the conditions of invariance, is
physically unrealizable, and only the approximate satisfaction
of the conditions of invariance can be spoken of ; by virtue of this,
Wi (2) will be sought in the form of the series

K 1\
Wi @)= 3C (Zz 1) @

Denoting the left-hand side of equation (46) by L (E)e,, in order
to abbrevidte the notation, one ean write it for 44, = 0 for the
given example, bearing in mind (48), in the form: .

L(E)en=EBz(E){—2‘11\40‘10‘20‘3(1"‘11)(1“‘12)
X[Cidy,+Cod®,_ s+ ... +CxA™ Y, k+1]
+4 Wt A, [(1—dy) +(1— dz)]+AL//n(1 dy)(1—d,)}

(49)
Provided 1 '
Ci=7——— (50)

2.ap00y 05005

the error from the first difference 1, is eliminated, since, when
this is satisfied, the equation of the system adopts the form

L(E)e,
=EB,(E) { =2 aye;0,03 (1 —d,) (1—d) [C A%, + ...
+Cxd" Yoy 1 1+ A, +(2—d  —d;) 47y, (51)

Further taking :
2-d;—d;)

C2=2 ayti003 (1—d) (1 —d,) (52).
and bearing in mind that
Ailf"/n_Ail//nﬂ:AiH‘//n—l
(51) can be rewritten in the form
L(E)e,
=EB, (E){ -2 aya 0,05 (1 —dy) (1—d,) [C3dY, o+ ...
+Cxd Vg1 1]+ A, = Co8?Y, (53)

from which it will be seen that, irrespective of the coefficients
W, (2) the error is eliminated from the second difference ,,.
Since further increasing of the degree of astatism on account
of the correcting link is impossible in the given example, C; =0
will be taken for i > 3.

. For quantitive evaluation of the quasi-periodic terms in (46),
which have not been taken into account, in Figure 6 the transient
in an extremal system is plotted, taking into account these
terms for v, = fn, 42, = 0 for eqn (46).

For the transfer function of the components cited in the

, 1—e™T | example under consideration and for W}z = 1, the precise
W, (s) =“’s— r_zs_—i_-_l_ equation of the dynamics of the system has the form:
to which there corresponds ‘ ‘
P 1 —d Age,sst+Aie,r+Ase, 1+ Aze,
2. ~T
W (z )_ dz’ (dy=e /rz) =a2(1—d1)[e,2,+2—e,2l+1+d2(ef+1—e3)](—1)"
_ ‘ _ _ 2 2 29( 1\ ;
* The system in Figure 5 was checked experimentally on an elec- h toy(1-d)(1-dy) [e"+ 1te+2 aM] (=1 . 4
tronic analogue by A. A. Tunik, and the check confirmed the effective-  N€I®
ness of the introduction of indirect correction?'. Ao=1; A;=2ayos(1-d)=(1+d;+d,);
, 531/6
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A2 =20Ma2 (1 _dl) (1 _d2)+d1 +d2 +d1d2;
Ay=~—dd,—2ayo;(1—d,)d,;
Here, for comparison, the transient processes in an extremal
system without correcting link with respect to 1, have been
plotted, in which W, (s) and W, (s) are the same as given
above, and low-frequency filter with transfer function
1—-eT 1
s T35+ 1

is included into the main extremal-control network z transform
of W, (s) is

Oy =0 0y03

W, (s)=

1-d
(A (Z)=z—dz

where d = &7/,
Bearing this remark in mind, for the given case, the equation
of the dynamics (41) of the system adopts the form
E)en+3 +Allen+2+AIZen+1 +A’3€n

—og(l—d)[el s —eley+ds(efs;—eN](—1)"
=A3l//n+1 +[(1 _dl)+(1_d3)] A2¢n+1
+(1—d)(1—d3) 4,4

where

Ao=1; Ai=2apo;(1—dy)—(1+d;+d3);
Ay=2ayos(1—dy)(1—d3)+d, +d;+d,ds;
Ay=—-2ayo;(1—d,)dy—d,ds;

As can be seen from the curves in Figure 6, an increase in f
(the rate of drift of the extremum) leads to the loss of the
stability of the system (55). Thus the introduction of compound-
ing links with respect to ¥, not only improves the quality of
the system, but also preserves its stability, thus extending the
sphere of application of extremal systems to Ihe case of high
extremum drift rates.

(35)

Ay =01%0%3
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Figure 1. Block diagram
of combined control system.
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Figure 2. Block diagram of combined control system
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. Figure 5. Block diaér‘am of Jiﬁ"erence-type sampled-data extremal

Figure 3. Block diagram of servosystems: (a) with direct link with
respect to assignment; (b) with indirect link with respect to assignment '
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system with indirect compounding link
I: plant; 1: multiplying unit; 2: memory element
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* Figure 6. Transients of extremal system for yn = fn, Adin =0

I:

II:

Figure 4. Block diagram Sri:uctural scheme of combined servosystem  11I:
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in system (54) with compounding link for satisfaction of con-

* dition (50); (xy0xp = 04; &y = 1; dy = 04; d, = 0:8; f = 3-5);

in system (55) (ditto, but d; = d, = 04; § = 2);
in system (55) (ditto, but for § = 3-5)

. *
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Optlmrzatlon and Invarlance in Control Systems
with Constant and Variable Structure

B. N. PETROV G.M. ULANOV and S.V. EMELYANOV

Invariance and Optimization in Automatic Control Systems

Optimization of Automatic Control Systems and K (D) Image
Theory

The object of the general theory of optlmrzatlon of automatic
control systems with respect to accuracy is the optimal synthesis
of control systems operating under conditions of continuously-
acting disturbances..

In the deterministic set-up of the problem!~3: 7 8 the optimal-
ity criterion is the achievement of the highest degree of ‘accuracy
of the automatic control system, as measured by the error e,
which is equal to the difference between the desired g (¢) and
the realized x (7) value of the state of the system e = g (£) — x (2).
" In the case of static synthesis the optimal system found from
the probability characteristics. of the controlling signal and the

interference, has a transfer function @y, and possesses the -

greatest accuracy only in the mean.

The main results relating to the construction of optimal
systems in the case of the deterministic set-up, have been
obtained by the theory of invariance, on the basis of which
there can be effected the construction of automatic control
systems with an error ¢, equal to zero or extremely small in the
presence of disturbances, the measurement or use of which for
the purposes of control is feasible. The conditions of the theory
of invariance of automatic control systems, in the case when
disturbance links do not nullify the numerator of the transfer
function (and thus the corresponding transfer function), and
when f(¢) is specified, are expressed with the aid of the K (D)
image introduced by Kulebakin

K(D)-f()=0, K(D)£0, f()%0... [©)

K (D) and f(r) are linked by the conditions of the operator
K (D) image of the functions!. In this case for a stable system
its transfer function must either be the conform K (D). unage
or have this operator K (D) image as co-multiplier.

In the statistical set-up, with regard to determination of the
transfer function of a control system in the case when it has an
infinite memory, according to the mean-square error minimum
criterion, one of the main results was obtained by Wiener. Ob-
viously, in one case it is possible to establish precisely the corre-
- spondence of optimal systems in the case of the statistical and

deterministic'set-up of the problem. When the dispersion f ()
) tends to zero, Wiener’s optimal system and the optimal system
as determined by the conditions of _invariance coincide and
should, strictly speaking, lead to the same results. The generality
of systems obtained in this case according to Wiener, and of
invariant systems, in particular systems meeting the condition
of Kulebakin’s K (D) image, are demonstrated. Taking the
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ifiterval of observation of f(f) to be mﬁmte, and thus being
concerned only with the forced output of the system, the
transfer function of a Wiener optimal system is characterlzed
by the magnitude of the MS error & (ref. 6):

211

é

=57 {Sn(w)—/cbopt(jco)/zS,(w)}dw... @)

Sy (w) is the spectral density of £(z), S,, (w) the spectral density .
of the desired output signal. In the reviewed problems of
control for stabilization S, (w) is conformally equal to zero,
- since, with complete filtration of external disturbance S, the
desired output of the system must be conformally equal to zero.
The conditions of zeroth error &2min = 0 lead to the following
requirement in respect of the optimal transfer function of an
automatic control system:.

=0 S, (@)=0 3)
|(Dopt (]CO)|2 Sf(w)—o . (4)

The latter can be satisfied for ® p)-f@ = -0, which is a
sufficient condition.
In the case indicated, when
° A (p)
: A
where A, (p) is the numerator of the transfer function, and A (p)
is the characteristic polynomial of the automatic control system,
expression (4) can be found for (@) A (p) = 0 or (b) K (p)— o,
where K (p) is the coefficient of transfer of the automatic control

=0

‘system (the characteristic equation of the control system is

A(p)=K(p)+1=0).
The above-mentioned conditions correspond to the known

" conditions of invariance, the realization of which in physical

systems is determined specially.

Without individually examining the above-mentloned
possibilities (for @ (p) = 0), the case of the non-zero operator
@ (p) # 0 will be considered.

If Oppek 0 and Sy 0 the satlsfactron of condition (4)
is possible when

D) £ (=0 ®

This requirement corresponds to the condition of invariance
optimal according to Wiener in respect of disturbance f o,
and coincides with the X (D) image!. An analogous method is
used to establish the community of invariant systems and
systems optimal according to Wiener, in the case of other
control problems. Thus the K (D) image can serve as a tool
for automatic control systems optimatization theory.
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As an example, consideration is given to the forced motion

of an automatic control system under the influence of an external .

disturbance, which. is described by, the equation

A(p) x()=(p*+ w})sin vyt

. The transfer function of system @ (p) = p? + wg?A (p),
by virtue of condition (5) corresponds to an optimal system,
since it contains the K (D) image of the action f(¢) as a comul-
tiplier (p? 4+ w2 'is the K (D) image of f(¢) = sin wy?).

Then, according to condition (4), the function |® (jw)|? and
Sy (w) will respectively have the form of Figure 1.

The product of the function |® (jw)|?S; (w) equals zero,
since |® (jw)|2 > 0 when w # wg, |® (jw)|? = 0% when w = wg

0 L0 F 0k

S, (@)=8lo—ax| { o

» 5funct

Generalization of X (D) Image Theory for the Case of Statistically

Given Disturbances f (7)

The K (D) image theory expounded in the works of Kuleba-
kin, was developed for the case of a disturbance f (), preset as
-a determined function of time ¢. To the class of. functions
particular, those which permit approximation of f(), as
accurate as one likes, by ‘integrals of linear differential equa-

- tions, homogeneous and having constant coefficients. Shannon® -
has shown that a very broad class of functions, with the-

" exception of hyper-transcendental functions and & functions,
may also be approximated by the solutions of homogeneous
differential equations with constant oefficients.

The need to develop statistical methods in the theory of
invariance and in particular in the case .of K(D) images is
explained by the following. The theory of invariance up to ¢
depends essentially upon the form of £ (). The absolute invari-
ance of automatic regulation and control systems in the case
when the transfer function of the systems, as® function from
f(?) equals zero, is generally speaking real for any f(¢), con-
strained with respect to the modulus, in particular in relation
to those about which information is missing. )

. ~. Inthe case of the K (D) image the effect of absolute invariance
may only be observed for a completely defined function f(#),
knowledge of which, as a determined function of ¢, must be
available with a probability of 1. Thus. essential for the theory
of invariance is knowledge about f(¢), which is nesessary in

different cases with a probability from 0 to 1, particularly when

investigating invariance with accuracy up to ¢. In the case when
f(#) is given in a probabilistic sense, the effect of invariance—
particularly from the viewpoint of the K (D) image theory—was
" not examined, and the theory of invariance itself is not developed

at the present time. An attempt is made below to apply the.

theory of statistical optimization to the determination of the
statistical probabilistic conditions of automatic control systems
invariance, and generalize the theory of K(D) images for this case.
Henceforward, as previously, we are examining the effect of in-
variance, the class of statistical actions f(#) and control systems
relating only to stationary systems and stationary actions f@@).

Approximate Conditions of Optimalization Using the K (D) Image
in the Case when Dispersion is Present

In the well-known works of Kolmogorov!® and others it is
shown that any stationary random process may be represented

Declassified in Part - Sanitized Copy‘Approved for Release 2012/12/13 CIA-RDP80T00246A022700330001-3

as the limit of a sequence of processes with a discrete spectrum.
The general expression of a* stationary random process f(f)
in this case may be as follows:

f(t)¥Ki axsin(wxmox) ©

=1

where a,, a,, ag, ..., K, ...,

a, are uncorrelated random magni-
tudes with mean value zero, i.e.,
M,=0 i=1,2,...,n
M M, =0 i#]j

where M is the sign of the mathematiccl expectation.

It is also known® 0 that for each stationary process f (¢) it
is possible to indicate a number ¢ as small as desired and as
large as convenient an observation time range thereof T, for
which there exist such pairwise uncorrelated random magnitudes

ay, a, ..., a, that the completeness of approximation to the
n.

series X ag sin (wkt + @x), determined by the mean- square
K=1
difference, will be such that

"M|x(t)— Z aKSIH(wKt'I'(PK)l <E

It has thus been shown that each stationary random process .
f () can be approximated as accurately as desired by the sum
of harmonic oscillations with random uncorrelated amplitude -
and phase. Most essential henceforward is the fact that w;
characterizes the constant frequencies of process f(#).

For the above series the correlational function Ry (7) has,
as it is known, the form

n
a
R,(‘c)=K21 —25003 wit (M {f(H)}=0)
where w, is the lower frequency of the spectrum of the random
process, equal to ®; = 27/tax, Tmax 1S an interval of time,
beginning with which |R,(7) < £| R;(0) where & is usually
taken to equal 0-05.

For the R, () under consideration, the spectral density -
S;(w) represents a discontinuous function, consisting of
d functions of the form A

n 2

sf(w):K;1 %ﬁa(w—

By virtue of the foregoing, the condition of an optimal control
system is given by the expression

Iq)opt (](1))'2 Sf ((D)=O

or on the basis of (7)

™

|okl)

n

(@ G)** Y
. K

“E5(@—logh =0

Since the second co-multiplier of (7) characterizes the

'spectral density of some periodic function, the expression

obtained may be written in the form

opt(p) als]n(w1t+(p1)+q)opt(p) aZSln(w2t+(p2)+
+<D0p‘(p)a s1n(co t+¢,)=0
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In this expression the magnitudes ay, as, ..., @, and @y, P2, @,
are random, undetermined uncorrelated magnitudes, wg are
constant for the given f(#). For determination of @,y the fact
that ax,@x are unknown is not essential, since @, (p), being

the K (D) image of f(f) = Z aK sin (wk t + @k) is only deter-
K=

mined by the frequency parameter Wy Since Cl)opt (p) for each
partial frequency wg of the spectrum equals p? + wg? the
following will be the general expression of @, (p)

@wxm={fluﬁ+w@}®am

where(I) (p) is the remaining comultlpller of the functlon Dopi(p)

after the removal from it of H (p? + wr?.
-1

The general problem of the approximate optimization
(Dop't (p) of a system in the presence of a random stationary
disturbance £ (f) is thus solved with the assistance of the K (D)
image. Expansion of the stationary random process f(f) into
series (6) is a complex problem and it should be carried out on
the basis of a preliminary examination of the process f (7).
So henceforward consideration is given to an assumed case
in which the process f(f) can be characterized by the presence
of several main periodic oscillations in the spectrum. In this
case the construction of systems satisfying the condition of
the K (D) image is facilitated by the limitation of n. In a
number of practical examples of the use of the K (D) image

for dynamic systems of the damping type, the conditions of the

K (D) image are approximately satisfied only for one n = 1.
The conditions of search of systems satisfying the requirements
of K (D) images may be effected on the basis of the statistical
properties of f(¢r). In the above case the automatic control
system under consideration must satisfy the condition

K(D)- i agsin(wgt+ @g)=0 ®

Noting that the K (D) image is itself invariant to random
magnitudes of the series f(¢) to the random amplitude ax and
phase gk, and depends only on the determined values of wy,
we shall find the K (D) image for g = #/2 and ag = a®[2
t— 7).

. n
Condition (8) will then have the form K (D) X ax/2 cos
k=1
wgT=0 or K(D)R(t) =0 where R(7) is the correlation
function of f(r). Thus the condition of the invariance of the
system to the disturbance f(7), obtained on the basis of the
theory of the K (D) image, is equivalent to its invariance.to the
correlation function R (7) of disturbance f(¢). The conclusion
obtained is based on the expression of the stationary random
process f(f) (with a definite degree of accuracy) by a discrete
. Kolmogorov series®, for which the corresponding spectral
density is also the sum of discrete values in the form of &
functions. The possibility of using the discrete series (6)
determines the applicability of the formula obtained for the
case of an f(f) given by continuous graphs of spectral
density.
The condition of invariance to a random function, analogous
to the condition derived above, can be obtained if the random

532/3

function is expanded not into a Kolmogorov series, as was done
above, but into a canonical series®*.

The random function f (f) can be represented by 1ts canomcal
expansion

f= mf(i)ZVf(t)

where m;(#) is the mathematical expectation of f(®), which will
henceforward be put equal to zero: V, are uncorrelated centred
random magnitudes, coefficients of the canonical expansion,
and f, () the coordinate functions of the canonical expansion.

The random coefficients V, in the general form of canonical
expansion of a random function are determined by the formula’®

V,=Q°F°(t)

where .Q(,,)' are arbitrary linear functionals, which must satisfy
the conditions of biorthonogality for the mutual ‘non-correlated-
ness’ of the magnitudé V,; f° (¢) is a centred random function
(F (1) =2, Vo f°)

The condltlon of invariance of a control system to disturb-
ance f () will be written in the form:

Dop (p) FO(1)=0 (D (p) #0) ®

The coordinate functions f (¢) in the general form of canonical
expansion of a random function are determined from the formula
5 O=5 Q(U)Rf( )
where D,, is the dispersion of an elementaryy random function,
and £27™ is an arbitrary linear functional, the lower index of
which signifies that this functional is applied to Ry (t, 7), viewed

as a function 7 at a fixed value of ¢.

Substituting into (9) the values of the coordinate functlons
and of coefficients V,,

— 1
O A
P (D) L XL - A" R,=0 . (10)
) v
(!5 is a functional conjugate with £). The expression (10) is
represented in the form
— | o
YQvf, (055 Pop (P) R (1) =0 (11)
n v
For the identical equality of (11) to zero it is necessary and
sufficient with F® (1) # 0, Oope (p) # 0, Ry (1) # 0 that ope(p)
be the K (D) image of the correlation function R () or contain
it as a co-multiplier.

However, it should be noted that the representation: of
random processes by a spectral series (or canonical expansion)
will practically always have a limited number of terms. This
constraint causes the appearance of non-zero deflections on
the output of the ‘invariant’ system (non-absolute invariance).

The evaluation of this relation has its own s1gmﬁcancc and
is not examined here.

Combined Tracking Systems with Variable Structure . .

Combined trackirig« systems are one of the most significant
spheres of application of the principle of invariance in automatic
control. In the combined system [Figure 2 (a)], reproduction of

* The idea of this solution belongs to A. S. Shatalov

532/3

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3




532/4

the controlling action is implemented with the aid of a two-
channel system or a system with two cycles: an open-loop

cycle us (p) = K3 (p) g (p) and a closed-loop cycle
: _ _Ki(p)K;(p)
U T AOT AR

- where K;(p), K,(p) are the transfer functions of the elements of
the closed-loop cycle, K;(p) the transfer function of the open-
loop cycle, u, the output coordinate of the open-loop cycle and
x the controlled coordinate. :

The transient processes in such systems can be described by the
linear non-homogeneous differential equation M(p)e = N(p)g(¥)
where M(p) and N(p) are operator polynomials relative to p,
p = d/d¢, ¢ is the error signal. The independence of the error
signal from the control action g(¢) is usually determmed by the
condition

N (p)=0 (12)

in this case the forced component ¢ (¢) of the general solution
force

of the equation of the system is conformally equal to zero. The
links with respect to the controlling action g () are selected in
such a way as to satisfy condition (12). This is usually achieved
by making the coefficients of the polynomial N(p) consist of the
difference of two magnitudes, one of which is determined by
the disturbance effect (parameters of the open-loop cycle). It is
practically impossible to satisfy condition (12) accurately.

~ An attempt will be made to solve this problem in another way.
A tracking system will be constructed in such a way that the »-di-
mensional phase plane of a normal system of non-homogeneous
differential equations, by which it is described relative to e,
where & = (g, &, ..., &), contains some (17— 1)dimensional
hyperp]ane S, and it will be requlred that the motion of the
- state point in S be described by a system of homogeneous

differential equations. Then, if the state point under any initial -

conditions and for any forms of g(¢) terminates its motion in
this (n— 1) dimensional diversity of S, the error of signal & will
always tend to zero (¢— 0) for any g(). In. other words, the
controlled coordinate x(¢) will reproduce any, continuous g(#)
without static error, and the requirements for the operator N(p),
determined by condition (12), will be absent. If the function g(#)
has a discontinuity at some moments, then slight dynamic
errors will appear at these moments. An attempt will be made
to solve this problem, using the principles of construction of
anable-structure automatic control systems2,

Conditions of Invariance in Combined Tracking Systems with
Variable Structure '

In the domain, G, of an » dimensional space &, ..., &, let
the motion of a-dynamic system be described by a system of

non-homogeneous differential equations with a discontinuous

right-hand side
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where
Ji (é’ g (t)) =
cﬁj) g:(H<0

a;,b;,b;*, c; are constants, g,(¢) is a function defined and continu- '
ous on the whole time interval . Let the hyperplane S, set by the

Bffor( ¥

equatlon Z c;&¢; = 0 divide the domam G into sub-domains

Jj=1
G+ ( Z c;g; > 0) and G~ ( 2 ¢;g; < 0), in which the vector
=1

function f(g, 2(5) of system (13) is constramed and for any

constant value of time ¢ on the approach to S from G+ and
G- there exist its limit values f* (£, 2(¢)) and f~ (¢, 2(¢)). On
the approach of the solution £(¢) to some domain U < S let
the vector functions f+ and f~ be directed towards the hyper-
plane S (f5 > 0, f3 < 0, where fi and f5 are the projections
of the vectors f+ and f~ onto the normal to the hyperplane S,
directed from G~ to G1). Then, when &(¢) hits U there arises
the so-called sliding mode and the solution of system (13) does
not depend on a;, b;, b;*, g;(¢). In fact in this case, as shown by
Filippov!3, in the domain U~ there exists a solution &(f) of
system (13), and the vector d&/dt = f9 (&, £(¥)), where f° =
(f%, ..., £, lies in the hyperplane S and is determined by the
values of the vector functions f+ and f—.

From the condition that f° (g, 2(:))e S there follows the
linear relationship of the components of the vector fo

n

Y. ¢fi =0

(14)
=1
where f? is the Jth component of the vector f° whence
' . __1 n—1
IR=—73 ¢f} (15)
. G =t

. Hence the solution of system (13) for &(f) € U coincides with

the solution of the system of similar homogeneous differential

equations o
=7°@® (16)

Here

o> €n)

fj = j+1(j=i:25---,

é=(81,..

n— 1)5 fno

nl,_.

Z 1+1

_ ¢jare constants.

Obviously the solution of system (16) does not depend on
a;, b, b;*, g;(¢). Use will be made of this property of the solution
of the system of non-homogeneous differential equations with
a discontinuous right-hand side for the construction of a com-
bined tracking system with variable structure.

dé -
—= t 13 .
dt =/ &30 (13) t In the case ( n )
Here . _ Zce)g,()=0
ZtJ:(glz'""en)’g=(gla-"agm)3f=(f15'--: n) .
- fi=ge, (=1,2,...,n—-1) ' v (5, 8(t) = b; for (jzllc,-sj)g,.(t)—)—i—o
fi==2 ag+ IR ACRIOCKAO) v, (,2(t)) = bf for (_anlcj sj) g:(t)—>—0
i=1 i=1 - j= _
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Let the structure, selected in a definite way, of the open-loop
cycle of a combined tracking system [Figure 3(b)] change

n
stepwise on some hyperplane S = 2 ¢;&; = 0 in such a way
j=1
that the movement of this servosystem is described by a system
of non-homogeneous differential equations with a discontinuous

right-hand side (13), where V/; (&, £(9)) = F[D; (&, ()]
Kifor( y cjsj> g:(H>0T

j=1 ,

, (i=1,2,...,n)
Kf for('z cjaj) g2, (H)<0

j=1

D, (2, (1) =

K; K;* are constants, determined by the open-loop cycle para-
meters. It is assumed (@) that the domain U exists, it includes
the origin of the coordinates, and the solution of the system of
differential equations (16) satisfies the given requirements on
the quality of the process of control (control time and maxi-
mum dynamic error of the system must not exceed certain pre-
determined values;) (b) there exists a sufficiently large domain of
initial conditions under which the solution of the system of

equations (13) hits the domain U; (¢) in the domain U there do

not exist trajectories serving as sectors of limit cycles with a
partially sliding regime.

Then the solution of the initial non-homogeneous system of

differential equations (13) will depend on the controlling action
£1(2) and the parameters of the closed-loop and open-loop cycles
only up to the moment when &(f) hits the domain U, where the
solution coincides with the solution of the similar homogeneous
system of differential equations (16) and depends only on the
coefficients ¢;. Thus in this case, in the reproduction of the con-
trolling -actions g,(#) the magnitude ¢, — 0 on a finite interval
of time ¢, and the controlled coordinate x(f) reproduces g, ()
without static error. The quality of the process of control in
such systems depends loosely on the variation of the parameters
of the open-loop and closed-loop cycles, since the solution &(f)
depends on these parameters only until it hits the domain U. It
must be noted that in the systems under examination, the open-
loop cycle for g;(?) # 0 in isolated cases exerts an influence on
the stability of the tracking system. In particular, as an example
will demonstrate, even when the change of the parameters of the
closed-loop cycle leads to the loss of the stability of the closed
loop, then on the whole for g,(¢) # 0 the open-loop cycle with
variable structure will ensure, in some domain of initial con-
ditions, the stable operation of the tracking system. The above-
-listed properties of combined tracking systems with variable
structure advantageously distinguish them from ordinary linear
combined tracking systems. '

“AnExample ofa Combined Tracking'System with Variable Structure

Let the equations of the individual components of a com-
bined servosystem with variable structure have the form

\

n
1 In the case ( _Elc,- s,-)gi(t) =0
j=

X

@, (EF() =K, for ( ?léj sj) g:t)—>+0

i

<.
i M 0

D,;(5,8() =K for ( cje]-)gi(t)-—a—o

'
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ﬂl =ky, 6, Ty, T, G () +(Ty + T2) d4 (Q'*‘ g1 (=kaus
+K for (c,¢, +c,8,) g4 (£)<0*

(I)1_ G g ()= ‘
—Kfor(c,e;+¢6,) g, (1)>0

- where ky, ks, K, Ty, Ts, ¢, ¢, are constants. The block

diagram of the system is depicted in Figure 3(a) and (b). In this
case the combined tracking system, after the elimination of the
intermediate coordinates u;, iy, tig, x is described by the follow-
ing system of non-homogeneous differential equations with a
discontinuous right-hand side: S
de -
P10

Here

CE=(81,82), =81, 82, 83), S =(f1, f2) an
fi=¢s, fo=—2bé —whe; + g5 () +2bg, (1)
+1 (g (D)) g ()
where - .
‘ ) __T1+'T2 2_1+k1k2
2b= LT, . Po= LT,
‘ _1+(D1(5ag1(t)) .
%(&&(0—T
o dg (¢ dg, (1)
g ()= gc;t() g3(t)=—g—§?(—) .

We shall examine the behaviour of a combined tracking system
with variable open-loop structure which reproduces various
controlling actions g,(f), while the parameters of the transfer
function of the closed-loop cycle K,(p) can be chosen within
wide limits.

The phase-plane method is used for analysis of the system.
Let the controlling action g,(f) = A, where A4 is a constant and
the parameters of the tracking system k,, k,, T3, T, K are
selected in such a way as to satisfy the following conditions:

Kyt (18)
b%>w} 19)
Db (b - ) (20

(&)

Then for g,(#) > 0 the phase plane of the system will have the
form shown in Figure 4(a), (b) and (¢). In this case, under any
initial conditions the state point will tend to hit the straight
line ¢; & + c,&;, = 0 which serves as the boundary of disconti-
nuity of the right-hand side of eqn (17) while on the boundary
of discontinuity the vector functions f+ (sheet I) and £~ (sheetII)
are always directed towards this straight line and, hence, when
the state points hits it the solution of eqn (17) coincides with
the solution of the similar homogeneous differential equation

dé o,
3=/"® @1
* For (c, 8, + ¢,8)8,(t1) =0

D, (5,8,(t) = + K for (c,e, + c,6) g,(t) >+ 0

D, (5,8,(1)) = —K for (c, e, + c,6,) g, (t)—>—0
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Here

82(81,82),70:(floafzo)
f10=32>f2=£1‘£2
C2

Thus the right-hand side of the equation determines the motion
of the system only up to the moment when the stale point hits
the boundary of discontinuity, and then the motion of the
system can be reflected by an equation without a right-hand
side (21) or, after the appropriate transforms, by the equation

€181+ ¢,8,=0 (22)

In this case, therefore, static error will be absent. We shall
follow the variation of the static and dynamic properties of the
system as the parameters of the transfer function of the closed-
loop cycle K,(p) vary.

Let the parameters of the closed cycle vary in such a way
that the closed loop of the system becomes unstable, e.g., con-
sider that the sign is altered in front of the term 2b ¢, in eqn (17).
In this case the system will also become unstable for any para-
meters of the linear transfer function of the open-loop cycle.
When there is an open-loop cycle with a variable structure, the
phase plane will have the form shown in Figure 5. As before,
the state point, under any initial conditions, will hit the straight
line (22), on which there exists a finite length m#» which includes
the origin of the coordinates 0, where the conditions of the
existence of a sliding mode are satisfied. The tracking system
will thus be stable. For a particular set of initial conditions
the process will run without overshoot, and as before there
will be no static error. Thus the variable-structure tracking
systems under consideration are insensitive in relation to
variation of the system parameters.

It is not difficult to show that for g(¢¥) < 0 all the examined
properties of the combined tracking system with variable structure
will remain unchanged. We shall consider whether these pro-
perties of the system are preserved when reproducing other
forms of controlling actions, e.g., g;(f) = «t, Ae** where «, &;
are constants.

In this case one will be dealing with a non-stationary phase
plane. By examining the field of the tangents to the phase
trajectories for various fixed moments of time ¢, the change
of the directions of the vector functions f¢ and f can be followed
and thus the answer given to the question of the existence of a
section of sliding mode mn on the straight line (22) and the
landing of the state point on this section.

Let the control action g,(f) = «¢.

We shall examine the static and dynamic properties of a
tracking system for the first case of combination of closed-loop
cycle parameters. For the instant 1 =0 [Figure 6(a)] the
direction of the vector functions f* and £~ in the vicinity of the
straight line (22) is such that the section of sliding mode mn
on straight line (22) is everywhere absent. However, with the
time, beginning with some ¢ = #;, the field of the tangents
to the phase trajectories changes in such a way that the
vector functions f+ and f— in the vicinity of the straight
line (22) are everywhere directed towards this straight line
[Figure 6(b)]. Since, with time [Figures 8(c), 9(c) and 10(c)]
the inclination of the tangents to the phase trajectories is
deformed in such a way that at the limit it tends towards
straight lines [Figure 6(c)], the above-mentioned static and
dynamic properties when the system will also be preserved when

the system is reproducing a controllin action of the kind underg
review. Let the controlling effect be g,(¥) = Ae*’. From the
analysis of the variation of the fields of the tangents for
various instants ¢, it follows that even when reproducing a
transcendental controlling action, static error is absent.

With the aid of an electronic simulator we shall study the
behaviour of such a combined tracking system with a variable
structure in the reproduction of controlling actions of the form

g ()=A,at+A,, Ae™ where A, 0, A(, 04, 4,

are constants.
Let the parameters of the tracking system equal

T,=1, T,=1, k=1, k=1, K=2

As follows from the oscillograms in Figure 8(a), (b) and (c)
all the controlling actions under review are reproduced without
static errors with a good quality of the transient processes.

We shall change any one of the parameters of the controlled
plant, e.g., ko, from the value k, =1 to k, = 10, and follow the
change of -the static and dynamic errors of a combined tracking
system with variable structure. As can be seen from the oscillo-
grams in Figure 8(d), () and (f) the static properties of the

. system have been preserved in this; as before, it reproduces,

without static errors, all the types of controlling actions under
consideration, while the dynamic properties have not suffered
any qualitative changes—the time of the transient processes has
been slightly reduced.

Conclusions

The paper considers the invariance of automatic control
systems in the presence of statistically given disturbances. The
invariance conditions, obtained on the basis of the K(D) image
theory, have been generalized for the case of statistically given
disturbances. For stationary systems of automatic control and
stationary disturbances £ () the conditions of the K(D) images
in relation to the disturbance prove to be equivalent to the
condition of the K(D) image in relation to its correction func-
tion.

A new principle has been proposed for the design of in-
variant tracking systems inrelation to continuous functions of the
controlling action, which ensure the absence of static error. It is
shown when using an open-loop cycle with variable structure
that it is possible to reproduce, without static errors, an extensive
class of controlling-action functions. When selecting the open-
loop cycle transfer function there is no need to satisfy the
classical conditions of invariance, which require the right-hand
side of the non-homogeneous differential equation to vanish.
This property of the systems under consideration makes it
possible to build invariant tracking systems without differentia-
tion of controlling action. The wvariable-structure combined
tracking systems considered are insensitive to the variation of
the system parameters within a certain range.
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Time-optimal Systems with Random
. Noise Disturbances
V.V. NOVOSELTSEV

Introduction

This paper examines the problem of optimal control of a plant
with constant coefficients, having one input and one output:

s=f1G)+ A1) W

Here x is an n-dimensional vector which defines the state of the-

plant, v is the control signal sent to its input.

Functions f* (x) and f2 (x) are defined and continuous for
all x and contmuously differentiable with respect to all coordin-
ates of vector x:

x;=d'x/d¢

Equation (1) is linear with respect to » and non-linear with
respect to x, and is therefore somewhat more general than the
equation

%=Ax+Bu

usually considered for the case of a scalar control signal u.

Figure 1 shows a block diagram of the system under con-
sideration in the presence of interference; the fo]lowmg symbols
are used:

A—controller
B——controlled plant (1)
H—inertia-less plant coordinate metering channel
G—inertia-less control signal-to-plant channel
. Z—master-signal channel
h, g and z—set random interference in channels H, G and Z
respectively
u—control signal (scalar) -
v—noise-distorted control signal
xg—true state of plant
x,—observed state of plant
x,—set point of system phase space
x—vector of error x = x, — x, i

The true-state point x; has to be shifted into some small

vicinity of the set point (origin of the coordinates). Then in the

" optimal system the following equality must be satisfied!s 2;
E{T [x(o)]} =min

The minimal value of E{T (x)} will be denoted by T* (x).
Then in the optimal system

E{T[x}=T*[x] - 2

Here x(") is the initial value of the error vector.
However, considerable difficulties are involved in calculatmg
the system directly from this criterion. It is far simpler to use

the criterion of the minimum time of the transient process for the
mathematical expectation (the minimum time required to bring
the system to a state of statistical non-displacement)® 4. Usually

- considered for the determination of this time is the relationship

& = E{x}, which describes the transient processes in some
equivalent system without interference. A system in which .is
provided the minimum time of the transient process for the
mathematical expectation 7' (&) = 0 (x)

0(x)=min=0*(x) 3)

will be termed optimal with respect to the criterion 6*. A system
in which condition (2) is satisfied, will be termed optimal with
respect-to the criterion 7%,

Functions T* (x) and 6* (x) are defined and contmuous for
all points of the phase space and T* (x) > 0, 0* (x) > 0 while

T* (x)=0*(x)=0

when, and only when, the point x lies in the set vicinity of a
finite point
n—1 )
Y (x)*=s® @
i=0
Consideration will be given to the state of the control -
system only at discrete moments of time, as in solving similar

Jproblems by the dynamic programming method. For this the

small interval of time A will be introduced and it will be con-
sidered that on this interval the values of the control action and
the interference signals remain invariant, but at moments of
time £ = kA they change stepwise. Interference on nelghbourmg
intervals will be considered independent.

Control action u is constrained with respect to the modulus

lul<N | ' < (5

To simplify the examination it will be assumed that both u
and v are quantized in level with a sufficiently small pitch of
quantization, and:

weQ) Q)={uy,u, ..

CQ()={vy,0,,..

In such a case it is convenient to describe the influence of
random interferences in the following way.

Since at the controller A there arrives only the value of the
error x distorted by the noises along channels H and Z, instead
of the correct, necessary control action # at each moment of
time another control action, generally speakmg distinct from

Ly T<oo

veQ(v) LU l<oo
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uo(x(™), will be chosen. The probability of the choice of control
action u at a given moment of time, when in fact control action
1%, denoted by p,°’, is optimal, depends in the general case
on the position of the image point x in the system phase space.
Thus, in a relay system this probability is heavily influenced by
distance of the image point from the switching surface. When
this distance is great, the probability of error-in choice of the
control action is small, but as this distance is reduced even very
weak interference can lead to error in the choice of control
action. If one denotes the probability of an event which consists
in the appearance on the output of A4 of signal «,,, whereas the
optimal choice would be 4#° (x) = u; by p,,;, then .

“Pu(x)Pu(x) ce P1r (%)
[ Puou G = || P21 (%) P22 (X) ... P2, (%)

1pr1 (x) pr2 (X) « Prr (x)

(6)

The control actlon u (x®) =y, chosen at the kth moment by
controller A4 reaches the plant along the channel with noisy G,
where, under the influence of interference g control action u
becomes control action V. The probability of the transforma-
tion of u; into v; will be denoted by.g;;. Then

l‘h1‘112--~‘hz
190l =]921922 - 92 0
9r14r2 4|

Both matrices ||p,0,*| and ||g,.| can be Jomed into one, whlch
will fully describe the action of all the interference upon the
system:

N1Punli= 1P 190 ®)

Matrix (8) determines for each point of the phase space the
probability of the arrival at the input of the plant of control
action v;, when u; is the optimal action.

Basic Relationship for Time-optimal Systems with Interference

In the optimization of control systems with respect to the
criterion T* by the dynamic programming method, the following
equation can be obtained:

T*[x®]=A+ min T*[x** 1)] )
ub e @ (u)
Here x® and #(® denote the values of x and u on the kth
interval of time. Equation (9) is the basic relationship in solving
such problems? 5. This relationship will be given another form
more suitable for the purposes of this paper®.
- In open form eqn (9) is written as follows:

T* [x¥]= A+m1n{ > Py (x*) T* [x®* ] } (10)

(m)

m=1,2,...,r

In the latter equation min {,,} ‘denotes the minimum of the -

numbers «,,, and [x(*~D] the position of the image point at the
(k + Dth moment of time, provided that at the kth moment

the point was in the position x(* and at the plant input there
arrived control action v;. Thus the mth term of the expression
in brackets is simply the mathematical expectation of the time
of the transient process in the choice at point x(® of control
action u,,. Averaging is performed for all the states of the system
at the (k + 1)th moment of time. The probabilities p,,; in (10)
are elements of the matrix ||p,g.|, which is determined by (6).

By introducing the sampling interval A eqn (1) can be
rewritten in the form

x* D =xP p ol +v-9f i=0,1,...,n—1

x,(,k+ 1)=U(k+1)

where, for brevity, is written A - f1 =¢3; A - f2 =2 In sub-
sequent operations the relationship to x(®), where possible, is
dropped. If in the expansion of T* into a series, it is possible
to limit ourselves (for sufficiently small A) to terms of no higher
than the first order of smallness, then

T* [x(kf 1):IjE T* [xgk+ 1)’ xgk+1) ,(‘k+11)]1

* k k k
ST [x0,x®, L x®)

n—1 aT* x(k)
[ ][w,

+2

+o;07] (11

Substltutlng (11) into each bracketed term in (10) after
elementary transforms

* (k+1) * nt dT*
Z P T [x*"D];=T* + Z o

i

*

+ Z { Z PmjV ,} (12)

.. is obtained.

The following notations will be introduced
1 .
on(X®)=E {0ty x*)} = 3. p 6®) -0, (13)
j=1

(64 9], =E {x** Dx®, o} ()} (14)

Here v,,* (x(®) is the mathematical expectation of the signal v,
and [£%-D],, the mathematical expectation of the random
vector x(*) for the selection at the point x® of control

" action #(® = u,,. Then, on the basis of (11)- (14) the initial

relatlon (9) can be written in the form:

T*[x®]=A+min {T*[£** D]} m=1,2,..,r (15)
(m) ’

Control action u,,, with which the minimum is reached, is the
T*-optimal control action at the point x(® of the system phase
space. ' ’

Equation (15) is the basic relation in examination of time-
optimal systems with noise present.

The optimal control action at each moment of time must be
so selected that the magnitude of T*[E** D} at the next stepis
minimal. .

534/2

Declassified in Part Sanitized Copy Approved for Release 2012/12/13 : CIA- RDP80T00246A022700330001 3




.

Control Algorithm in a System Optimal with Respect to
Criterion T*

Consideration is given to the point x(*) and the sequence
of control actions u® = u,, a0 = ug, ..., u+S =y under
the influence of which the image point shifts consecutively from
position x(* to positions [E(’““)a, [£ED] g, .o [EE) g s g
Let the sequence u,, ug, ..., 4, be selected in such a way that:

* (4) The point [£+S) g lles in the vicinity of the set point (4).

(B) For all sequences u(k) w3 ulktd) where d < S,
condition A4 is not satisfied.

Then the sequence x,, ug, ..., #, is optimal with respect to the
criterion 6*, and S is the number of steps in the optimal transient
process with respect to the criterion 6%, It will be temporarily
assumed that there exists and is known a control algorithm
optimal with respect to the criterion 6*, which permits the
construction of such a sequence of control actions for any x.

The recurrent relation (15) will now be applied to the point
[Ek+D]

CTE[ERHD] = Admin {T*[E4* ]} n=1,2,..,r (16)
(n)

Substituting the resultant expression back into (15), one obtains:

T*[x®]=2 A+ min {T* [¢**],} 17

(m, n)
m=1,2,...,r; n=1,2,...,r
similarly

T*[x®]=s-A+ min {T* [C("”)]m,,, 1}
(mym, - 1) (18)
)

m=1,2,...,r; n=1,2,...,r; I=1,2,...,r

One now selects m = «,n = f, ...,] = 0. Then, by virtue of
condition A, the second addenda in the right-hand side of (18)
vanishes, and, bearing in mind B,

T* [x(")]=S-A 19
can be written. ’

Thus in the case under consideration the duration of the
transient process with respect to criteria 7* and 0* is identical,
and at each point of the phase space the control actions optimal
with respect to * and T* coincide.

The control algorithm optimal with respect to criterion 0%,
ensures the optimality of the system with respect to criterion T*
as well.

Consideration is now given to the construction of algorithms
optimal with respect to the criterion N. The plant studied is
linear and is described by the equation

n—1
X;= ) a;X; i=0,1,...,n—1

&, 00% . (20)
X, =0

It will also be assumed that the control algorithm, which
ensures time-optimality i_n the absence of interference, is known
and set in the form of a switching surface in an'n-dimensional
space.

YN, Xgy X150y Xy5-1)=0 21
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Equation (21) contains in an explicit form the magnitude N from
eqn (5). In the absence of interference the optimal equation has
the form

= Nsigny (N, x)’ (22)

and only the values of v = u = -+ N reach the plant input.

If on the control system (20)—(21) there are noises, then in
place of a system with interference, an equivalent system without -
interference can be considered, in which instead of the coordin-
ates x (¢) the relationships & (f) = E {x (t)} are considered. The
optimal control action in such an interference-free system will
be optimal with respect to the criterion 6* in the initial system
with interference, and will hence be optimal with respect to the
criterion 7*.

The maximum and minimum values of the signal »* which
reaches the plant input when || < N w111 be denoted by vpr*
and v, *.

For the symmetrical matrices (6)~(8) vm™* = — v,*. For
simplicity, the examination will be confined to the case when the
signals vps* and v, * are obtained following the selection on the
controller of control actions ¥ = + N and # = — N respect-

"ively.

Introduced here is the coefficient of efficiency of control in
a system with interference, which has an obvious sense:

* *
oy (%) vm(x)
y( =200 @3)
If function y (x) is defined for all x, continuous and continuously
differentiable with respect to x, then it is convenient to examine

as an equivalent system a system for control of an equivalent
non-linear plant. Eqn (20) is then written in the form:

n—=1

x;= 2 a;x;;x, —y(x) u | @

i=0

i=0,1,...,n—-1"

and the constraint | # | < N is retained.

The optimal control of plant (24), with the constraint
| 4| < N, conforms to the maximum. principle’.

It is noted that replacement of eqn (20) by eqn (24) is not
obligatory. Using the results obtained in Fillipovs’ work8, it is
also possible to examine eqn (21) directly, but with the replace-
ment of constraint (5) by a constraint of more general form:
ueQ (x).

The following three cases of the action of interference upon
the system are considered: '

(1) In the system, interference is present only in channel G.
Here, as follows from (7), ¥ = const, and constraint (5) is replaced
by the constraint | u | < yN.

The plant equation remains unchanged The 'optimal
switching surface has the form

lp(vN3x05xls--'sxn~1)=0 (25)

(2) Interference is absent from the channel G, but the
influence of interference 4 and z manifests itself in the appearance
of additive noise along the coordinates xg, Xy, ..., X,—; at the
controller A there arrive the values

534/3
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Xo =X, +eqny

xf =x; +eqmn

%
Xp—1 =Xy H -y

while the random component is constrained with réspect to the
modulus:

|’11|S71:k3 l=03 13 ""sn_]- (26)

In this case it can be shown that the optimal switching line
in a second-order control system has the form: .

W (N, xo+75 sign xo, x, +n¥signx,)=0  (27)

Optimality is ensured for all points of the phase plane
sufficiently remote from the set point. It may be assumed that
an equation analogous to egn (27) is also valid for a system
controlling plants of a higher order with real roots.

(3) In the system there is present both interference in the
channel G and unconstrained interference 7.

In this case it is possible to construct approximately optimal
control systems, in which the duration of the transient processes
exceeds the minimum possible time by not more ‘than the
preset e.

One such system is considered in Example (3).

Examples

(1) The Optimal Second-order System with Noise in the Commum-
cations Channel

Consideration is given to a control system which has been
thoroughly studied for the case of no noise; the block dlagrams
of this are given in Figures 1 and 2.

The equation of the optimal switching line of the system
without interference has the form:

2 .
Xo=— 2kN sign x (28)

It will be taken that under the influence of interference g
the control signal is able at each moment of tlme to adopt
independently one of the following values

au with probability p,

a,u with probability p, (29)

a,u with probability p,,’
(u adopts the value =+ N). In this case-
m
Y= Z a;pi»
i=1

and in accordance with (25) the equation of the optimal switch-
ing line in the system with interference (29) has the form
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(2) The Optimal Second-order Control System with a Digital
Computer Inside the Control Loop

Consideration is given to a second-order plant control system,

a block diagram of which is given in Figure 3. The optimal

switching-line equation® has the form:

o T, ﬁ T2
[”F(l—a,/KlF)] =|:1+F(1—b,/K»2F)] G

here a, and b, are the values of a and b at the end of the second
section of the optimal trajectory,

a,—a _b—-b
KI ) B“— K2

F is the amplifier saturation level.
It is assumed that the optimal control of the plant (Figure 3)
is realized in the loop containing the digital computer, so that

the coordinates « and f are determined with an-error, and the

values « + n, and 8 + ng reach the controller input.

The random signals nx and ny are, for example, quantization
noises and on each interval adopt one of the evenly distributed
values with a probability density:

1f in,, ,,|<A

O if [, 5> Ay,

p(n, )= (32)

The optimal switching-line equation, in accordance with (27)
has the form
a+A,signo | B—Agsignp |
1+—"2— | =[14—" L= 33
[ +F(1~a,/K1F>] [ T F(A=b/K,F) @)

(3) The Second-order System with Noise in Channel H

The block diagram in Figure 4 is considered. Here in the
channel serving for metering the coordinate x; the additive
interference 7 is a Gaussian noise with zero mean value:

p()= ﬁ_ep{ 2’70} (34)

It is required to ensure time optimality with accuracy of no
less than 5 per cent with an aperiodic transient process.

It is known that transient processes without overshoot in
the system under review correspond to the switching lines

2

kN

Xo= sign x, (35),
when a < 2, while a 5 per cent extension of the transient process
in the processing of step signals is obtained when a = 1-650.

In a relay control system the coeﬂiment y (x) is determined
by the equation

r(¥)=1-2pz(x) : (36)

xf . where pm (x) is the probability of wrong chmce of control
Xo=— m Sign xy (30) action at the point x:
2kN ) a;p; . ’ . )
i;l tP Py (x)=P {signu® (x)= —signu(x)}
534/4
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The magnitude of y (x) rises as the distance r; = x;, — Xy

increases, and at some r,* becomes greater than 0-825. Here
X1, is the coordinate x, of a point lying on the switching line and
having a coordinate identical with the point under consideration
Xom = Xp°

‘p (x0m‘x1n: N)=0

For all the points x, for which r, > r], the magnitude of
¥ (x) will be replaced by y* = 0-825. The resultant control
system with interference will possess the property, that for all
x v (x) < 0-825, while for r, < ry, ¥ < 0-825.

The reduction of ¢ (x) when r; < r,* stems from the presence
of the constrained mterference 1n* which only manifests itself
when 1r; <nr*

In*|<ri - @7

The examination of a system of control of a plant has been
arrived at with the equation k/p? under the constraint

[u| <0-825 N

[in such a system the switching-line equation has just the form
of (35)], while on the system there acts the constrained inter-
ference (37). It only remains to find the magnitude of r; and
substitute it into eqn (27). ' '

From the general formula -

P{a<n<p}= % l}p (o’nﬂ\/2> -® <a"°\‘/2>:|

. taking (36) into account, one obtains

y=®<%fﬁ>

and for y = 0-825 one has r; = 1:343 g7
The equation of a switching line which is optimal with
accuracy up to 5 per cent has the form:

. (¢, +1-343 g, sign xy)?
o 1-650 kN

sign x, _(38)

Results

Figures 5 and 6 show the graphs of performance of a step
51gna1 of 20 V amplitude by a system controlling a plant 1/p,,

=20V,

Figure 5 corresponds to Example 1, and in Figures 5-(a)

Step A G l 9 B
signal v K
' pZ

—

Output
signal x(t)

cy
<y

Y

Figure 1

Figure 2
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and 5(b) y = 0-645. The switching line equation in Figures 5(a)
and 5(b) has the form:
z

40 “Leignx, ‘ (39)

xo=

. The 'optimal transient process (Figure 5) is ensured in a system

with interference following the choice of-the switching line
xz
T 258
Figures 6(a), (b) and (c) illustrate Example 3 for ¢ = 4 per cent,
y* = 0:90. Figure 6(a) shows the performance of a step signal
of amplitude 20 V without interference with switching line (39).
Figure 6(b) demonstrates the performance of the signal for
o =143 V and a switching line which is optimal without
interference. The optimal (with accuracy up to 4 per cent)

transient process without overshoot is shown in Figure 6(c).
The sw1tchmg-11ne equation is

xo = Slgn xl

. x;+23-6sign x
Xo= — (1 363 1) gnxl

The frequency band of the noise signal f7; is 10 c/sec.
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Fundamentals of the Theory
of Non-linear Pulse Control Systems

Ya. Z. TSYPKIN

Introduction

The theory of linear pulse control systems has attained a high
level of development and the main problems in the analysis and
synthesis of such systems can be solved. However, with regard
to non-linear pulse control systems, the theory is still in its
initial stage. Up to the present time non-linear theory has been
confined mostly to the investigation of periodic conditions.
Yet periodic conditions are not operational conditions and the
important problem still remains to ensure the stability of non-
linear pulse control systems and to assess the ‘quality’ of stable
processes. Attempts to employ the methods of investigating
periodic conditions for estimating stability when the required
periodic conditions are no longer present are often unjustified
since the absence of a particular type of periodic condition is
no guarantee that other forms of periodic or almost-periodic
conditions are not present.

For solution of the stability problem it was quite natural
to try to employ the ideas of Liapunov’s second method which
is widely used in the theory of continuous systems, in extend-
ing them to difference equations'~5. ’

However, such an approach involves difficulties associated
with the need to transform the equations of non-linear pulse
systeme into their normal form, the arbitrariness of the selec-
tion of Liapunov functions and the impossibility of establishing
any general properties of non-linear pulse control systems.

The approach to the problem in this paper is based on an
idea which Popov® 7 used in the investigation of non-linear
continuous control systems. The distinctive feature of this
approach is that it is closely associated with such physical
concepts as the frequency and, transient responses, and it pro-
vides the widest sufficient conditions of stability which can be
obtained by all the Liapunov functions of the quadratic type.
This approach greatly simplifies an assessment of the quality
of processes in non-linear pulses control systems. It is possible
to establish when the absence of periodic solutions guarantees
stability and, finally, use may be made of methods similar
to those employed in the investigation of linear pulse systems.

Statement of. the Problem

A block diagram of a non-linear pulse control system is.

shown in Figure I. It consists of a non-linear element in
series with a linear pulse part LP which is an open linear
pulse Joop. The linear pulse part incorporates a pulse element
for amplitide modulation of arbitrarily shaped pulses and
a continuous part. :

Letus suppose that the. characteristic ® (x) of the non-linear
element satisfies the following conditions (Figure 2):

537/1
@) ®(0)=0
(b) 0<‘ch")<1<0 m
© o lim ®(x)+0
x>t oo

which corfespond to the fact that this characteristic belongs to
the interval (0, k;). - ‘
The main problem is to determine the stability of the systems

- which are to be considered for any initial deviations and to

determine the quality of behaviour in stable systems. Stability .
of this kind which is independent of the particular shape of the
characteristic of the non-linear element and which satisfies the
general conditions (1), is called generally absolute stability®.

Equations of Non-linear Pulse control Systems

Let one suppose that the continuous part of the linear pulse
part LP receives perturbations in the form of initial conditions
with r = 0..One puts f[n] for the response of this continuous part
to partial conditions and applies it to the input of the non-linear
pulse system (Figure 1). If the continuous part, and therefore
the linear pulse part; is stable, then '

lim f[n]=0 )

The equation of the pulse control system with respct to the

- error x [n] can take either of two forms.

(/) With respect to original lattice functions:

xlil=f ] ¥ win-mloGIn)  ©)
(if) With respect to their transforms:
X*(9)=F*(g)—W*(q) D{®(x[n]} C)]
Here? w
Z*(@)=D{z[nl}= T ¢ "z [n] )

is the discrete Laplace transform (D transformation): ¢ = ¢ +/j@
is a parameter of transformation; @ = wT is the relative
frequency: T is the repetition interval®;

W*(q)=D{w[n]} ©6)
is the transfer function of the linear pulse part;
WEn]=W(E), t=n : (M

is the impulse characteristic of the linear pulse part; x[r], f[n]
are the lattice functions, which correspond to the error and the

537/1
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reduced input: X *(q), F *(q) are their transforms and, finally,
® (x) is the characteristic of the non-linear element.
For a stable linear pulse part

lim w[n]=0 | ' 8)

n—o

This impiies that the corresponding transfer function W*(q)

has no poles in the right-hand half-band Reg=>0, — < Img <.

The Sufficient Condition of Absolute Stability

A pulse control system is absolutely stable relative to any
perturbation f [#] which satisfies the condition (2) if -

lim x[n]=0 )

n-* a0

In order to establish the fact of absolute stability, one estimates -

the solutions x [#] of the equation w1th respect to the original
functions.

By analogy with the ideas of Popov® 7, the aux111ary func-
tions are now introduced

@ (x[n]) 0<n<N '
on[n]= { n<0,n>N- (10)
and ) :
1
12 [n]sz ["]“EQ’N [n] _ (11
where _
xylrl=f[n]- ¥ win—mloy[m] (1)
It is obvious that for 0 <n <N
 xy[n}=x[n]
‘where x [n] is the solution of eqn (3).
Now the following expression is formed
PN= Zo on[n]y[n] (13)
which, having regard to (10) and (11), is equal to
hd 1
=Y <<p (<[ x [n] = 0% x [n])) 14
n=0 \

According to the Liapunov-Parseval equality® eqn (13) can also
be represented as

e N e 15)
where : ‘
% (j@)=D {on [])o-sm (16)

" and by virtue of (11) and (12)
Yy (j@)=D {WN [n]}q=j$=szjB)_ (W*(Jw) + >(I)N(Jw)
an

These spectral functions exist if condmons 10) ‘and (8) are
fulfilled.
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Substituting (16) and (17) into (15) and after simple trans-
formations one gets

‘ _—_1_ T e YR S _ F (]CO) I -
pN_znf_n \/ReH (]C!J)q)N(](IJ) 2RCH*( w)i do A
1 {7 F*(jo) ,_
T2 . ReTl* (jw) o2 (18)
where L
Re IT* (jo)=Re w* (ch))+I—Z->0 (19

The function
. N |
T (jo)=W* (j@)+ &

which plays the main role, is called the analogue of the Popov
function.

Since the first integral in (18) is negatlve by discarding it,
one obtains the inequality

[F*(jo)|*
p N = %
8 7 ) _ . Rell*(j@)
By virtue of (19) the quantity c is positive: it is independent of N.
Substituting into the left-hand side of (20) the value of g
from (14) one obtains
O (x [n]))

‘";O@(-x‘[n],)x[n]( o

According to the condition (1a), the sum on the left-hand side
of (21) is positive, moreover it is limited. The series which is
formed from this sum as N— oo, therefore converges. Using
the known theorem of the convergence of series with positive
terms, one concludes that

lim @ (x [n]x [n](l —%Bg)))ﬂ

n—w

MLV T (20)

(1)

Hence, by virtue of the conditions (1), it follows that

lim x[n]=0
n—ao
Thus a pulse control system which has a stable pulse linear
part and a non-linear characteristic @ (x) and which satisfies’
the conditions (1), will be absolutely stable if the real part of the
analogue of Popov’s function is positive, i.e. if

(22)

' 1
ReIT*(j@)=Re W*.(jc_u)+f>0 (23)
The condition of stability (23) determines the magnitude of
the interval (0, k) which includes the non-linear characteristic
@ (x) for which the pulse system is absolutely stable. This
condition is sufficient. '

Frequency Criteria of Absolute Stability

To, formulate the criteria of stability of a pulse control
system one introduces the concept of a static gain of the non-
linear element

°6)

S(x)= 29

5372
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which is the slope of a straight line passing through the point
of the non-linear characteristic for a specified value of x. The
maximum Sp.x and the minimum Sy, static gains are
determined by the rays of a sector which is tangential to the
characteristic (Figure 3). A non-linear pulse control system in
which the non-linear element is replaced by a linear element
with some fixed gain, k, is said to be a linearized pulse control
system. For a linearized pulse system to be stable, by analogy
with the Nyquist criterion’, it is necessary and sufficient that the
frequency characteristic of the linear pulse part LP should
not embrace the ponts —1/k, jO. It will be said that a linearized
system is obvtously stable if the frequency characteristic of the
linear pulse part does not intersect the straight line — 1/k.
Then, according to the condition of stability (23), the fre-
quency criterion of absolute stability of a non-linear pulse
control system can be formulated in the following way. A non-

linear pulse control system with its characteristic belonging to .

the interval (0, k), will be absolutely stable if the linearized
pulse system corresponding to it is obvtously stable or if the

frequency characteristic W*(j®) of the linear pulse part does

not intersect the straight line — 1/k (Figure 4).

The greatest value & = k° which determines the span of
the interval (sector) in which the non-linear characteristic is
located, is determined by drawing the vertical tangent to W*(j®).
The difference k — Spax-Characterizes the margin of stability.

The stability criterion of a pulse control system can also
be formulated with referenec to the frequency characteristic
K*(j&o) of a closed linearized pulse control system. Selecting
k = ky/2; then .
' ko )

5 J
K*(jo)=—"r—— - (25
1 +—29 W (j@)

According to the usual constructions of the frequency
characteristic of a closed loop from th e frequency characteristic
of an open loop?, for a obvtously stable linearized pulse control
system if k = k,/2, one has

|[K*(j@)| 51 (26)

Thus a non-linear pulse control system with its characteristic
belonging to the interval (0, k,) will be absolutely stable if the fre-
quency characteristic of the closed linearized pulse control system
K*() with gain k,/2 does not exceed unity in absolute value.

One Notes that the frequency criteria are also applicable in
those cases when the continuous part contains delay elements
or elements with distributed constants.

The frequency criteria of absolute stability can also be
expressed in analytic form. The first criterion is closely related
to the problem of Karatsodor, whilst the second criterion is
closely associated with Shur’s problem in the theory of analytic
functions?, ' '

The analytic form of the criteria is considered in a special

paper. One will not consider it here as, more over, the use of -

frequency criteria is the simplest way of elucidating various
general properties of non-linear pulse control systems.

"Generalization of the Stability Criteria

Non-linear pulse control system which contain a stable
linear pulse part have been considered above. Now suppose that
the linear pulse part i$ neutral or unstable. This implies that
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-its transfer function W*(g) has poles on the imaginary axis, and

in particular, at the origin or in the right-hand half-band
Reg >0, — n < Img < a° Since the determined sufficient
conditions must hold for any non-linear characteristic which
belongs to the interval (0, k), they must also hold for a linear
characteristic which belongs to this interval. But for sufficiently
small gains z of this linear characteristic, a closed pulse control
system will behave like an open pulse control system corre-
sponding to the linear pulse part, i.e. it will be neutral or un-
stable. Therefore, for instances of a neutral or unstable linear
pulse part it is necessary to impose additional limitations on
the minimum static gain Spm,. Let us elucidate these limita-
tions. Given a proportional feedback with the coefficient z
across the linear pulse part (Figure 6), one supposes that the
structure of thelinear pulse part is such that for a finite z < Spin
the closed linear pulse part is stable. The frequency criteria of
stability are then applicable to this non-linear pulse control
system, but the role of the frequency.characteristic of the
linear pulse part W*(j®) will now be played by the frequency
characteristic of the closed pulse control system, which is a new
linear pulse part equal to

w*(j@)
1+zW*(j@)
But the blockdiagram of a non-linear pulse control system
[Figure 6(a)] can easily be converted to the form of Figure 6(b)
where f[n] is now the response of the closed pulse control
system, and the non-linear characteristic is equal to

D(x)+zx (28)

A
However, since this characteristic must satisfy the condi-
tions (1),

WE (j@)= @7)

z<@<k (29)

i.e. Smin >z

Thus the formulation of the frequency criterion remains unchan-
ged. Only the characteristic of the non-linear element must now
belong to the sector (z, k), and the frequency characteristic
of the lineari pulse part W (j@) is determined by the expression
Q. v

One Notes that if the linear pulse part is neutral and its
transfer function W*(q) has only one zero pole, whilst the rest
of the poles have negative real parts, then z in eqn (27) can be
arbitrarily small and for this case one has

W (j@)=W* (j@) (30)
i.e. in this case there is no need fo construct W¥(j®) from
W*(jé) on the basis of the relation (27). .
If the non-linear characteristic @ (x) at x > x® goes outside
the limits of the sector (z, k), which is usually the case for
non-linear characteristics of the saturation type, the frequency
criterion of stability guarantees stability with deviations of the
error not exceeding x°.
The frequency criteria of stability also hold for those cases
when the non-linear characteristic (or gain of the linear pulse

. part) is a function of time n, if ® (x, n) for any n > n, satisfies

the conditions (1), i.e. if it belongs to the sector (0, k,) or in
the case of a neutral or unstable linear pulse part belongs to
the interval (z, k).
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The Necessary and Sufficient Conditions of Absolute Stability for
Some Non-linear Control Systems

Frequency criteria of absolute stability determine the
sufficient conditions of absolute stability. It is obvious that in
those cases when these sufficient conditions of absolute stability
coincide with the necessary and sufficient condition of stability
of linearized pulse control systems, they also become necessary
conditions of absolute stability. Let us define the class of non-
linear pulse controt systems for which the conditions of absolute
stability are necessary and sufficient. This problem was first posed
by Aizerman!?, for continuous control systems, and slightly later
by Letov®. The solution of this problem is of importance since
it permits reduction of the investigation of the absolute stability
of non-linear pulse control systems to the well-known investiga-
tion of the stability of linear pulse control systems.

It follows directly from the formulation of the frequency

criterion that this class of non-linear pulse control systems’

includes those for which the obvtous stability of linearized pulse
control systems coincides with their stability. The frequency
characteristics of these latter pulse control systems W*(j@) [or
W#(jw)] must have the form shown in Figure 7(a) and ().
The frequency criterion of absolute stability determines the
necessary and sufficient conditions for all non-linear pulse con-
trol systems of the first order (with amplitude- or pulse width-
ortime-modulation), and also for non-linear pulse control systems
of any order whose frequency characteristic W*(j) has the
largest real part in absolute value at the boundary frequency.
It is worthwhile pointing out that for this class of system the
absence of periodic conditions according to the improved
method of harmonic balance!?, testifies to their stability. For
digital automatic systems, as shown elsewhere!?, the deter-
mination of periodic conditions with a relative frequency @ = n
entails drawing a straight line with a slope — 1/W *(j®) in the
plane of the non-linear characteristic (Figure 7)*. If the maximum
real part W*(j®) in absolute magnitude is attained for @ = =
(which always occurs for firstorder pulse control systems), the
condition requiring the absence of aperiodic conditions with
a relative frequency @ = = coincides with the condition of
absolute stability.

Estimation of the Degree of Stability

For the simplest estimate of the quality of the behaviour
of a non-linear pulse control system, onewill use the concept
of degrees of stability which characterizes the process damping
speed.

For this purpose, instead of the auxiliary functions (10) and
(11), the following functions are introduced.

O SV
and on 1 6n‘
U [n]=xy[n] "~ onn]e (32)

where 6 > 0 is some constant quantity. :
. Multiplying both sides of (12) by e®", there is obtained

n

xy[nle™=f[n]e"— ¥ wln—m]e’ "™ yy[m]e™ (33)

m=0
* The author points out that in a previous paper!? he has given an
erroneous slope.
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Remarking that according to the shift theorem?®

D{z[n]e"},-jm=2"(—5+ j@) (34)

and following the same discussion as in the establishment of the
condition of absolute stability, the conclusion is reached that

lim x[n]e™=0 (35)

if the real part of the analogue of the shifted function of
Popov is positive, i.e. if _
- NN |
Rel’I*(—5+]a))=Re_W*(—5+]a))+7>0 (36)
As will'be seen from eqn (35), the rate of damping is deter-
mined here by the quantity . The determination of the condi-
tions for which non-linear pulse control systems have a specified
degree of stability, Jy, thus entails the use of the frequency
criterion of stability and its application to the shifted frequency
characteristic .

W*(=8q+ j@) (37

or

W* (=30 + j®)
T+ 2W* (=3, + j@)

for a fixed value &, (Figure 9).

Since the poles of the transfer function W*(— ¢ + ¢) depend
on ¢ and with increase of d are shifted in the direction of the
right-hand half-band, the greated value of § = dp, is attained
for a value

W (—6+ jo)= (38)

(39

which still ensures stability of a closed linear pulse part. Thus
the increase of J is possible until the poles W*(— § + g) are
located at the origin or-on the imaginary axis. With an increase
of ¢ the quantity k° usually decreases, whilst z increases. There-
fore, the less the difference Smax — Smin, the more attainable is
a large degree of stability. This estimate is also applicable to
non-linear pulse control systems in which he characteristic of
the non-linear element depends also on time.

zo< S,

min

The Overall Quadratic Estimate

Another important estimate of the quality of behaviour is the
overall quadratic estimate of the output of a non-linear element
I,=7Y, ®*(x[n]) (40)

n=0

To determine the upper boundary bf this estimate, one will
avail one-self of Popov’s ideas'®. Consider the inequality (21) for

© N = o, representing it in the form

o=y ®*(x[n <—x—["1 ——>gc 41
B p ";0 ( [ ]) q)(x [nJ) K ( )
Since .
x b
D (X)" Smax
the inequality (41) can be strengthened and
1 e .,
- 4
(Smx K) nzofb (x[n])<C (42)
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Taking into account the notation of (40) and (20), from (42)

one gets kS L (= |F*( )12
max [ ]w —
=15, 87 f Reli () > W
where
Re IT* (j@)=Re W* (j&) +—— _—1———1—>0 (44)
k™ k ko

Replacing Re [T*(j@) in eqn (43) by its maximum value, one
finally gets

kOkZSmax 1 *
Izﬁmg J\ |F (]w)l do (45)

The right-hand side of inequality (44) contains an undetermined
parameter k; here (Figure 3)

Shax<k<kg (46)

This is so selected that the coefficient is minimum for the inte-
gral (45). It can be shown without difficulty that in this case

kO - Smax
k B 2 kO Smax (47)
and therefore finally get
k22, 1 f
I _——'“”"—— F*(j®)|*d@ 48
2 ( k() max) 2 [ (J )l ( )
But according to the Liapunov-Parseval® equality,
1 n .— . oo !
5= f IF*(j@)* dd= Y, f*[n] (49)
- n=0

Therefore eqn (48) can also be represented as

2 Q2 ©
ko Smax

Legoes 3 £ (50)

max =
It follows from (50) that the upper boundary of the overall qua-
dratic estimate is determined by the sum of the squares of the
discrete responses of the linear impulse part to the applied
inputs. If the linear impulse part receives an input f; [#] which
decreases with time, then

fIn]= Y win—m]f;[m]
and this implies that

F* (jo)y=D{f [n]}q=j'a7=‘9 {W*(Q) FT (q)}q=j'z5
The computation of the right-hand sides of (48) or (50) is carried
out analytically or graphically by known rules®. The upper
boundary of the dverall quadratic error is less, other things

.being equal, the greater the margin of stability ky — Smax. This

estimate is also applicable when the characteristic of a non-
linear element depends also on time.

Conclusion

This approach to the problem makes it comparatively simple
by the concepts of the linear theory of pulse systems to determine
the region of absolute stability of non-linear pulse control systems
and to estimate indices of the quality of processes (the degree of
stability and the overall quadratic estimate). The fact that the
stability and estimates of indices of process quality are indepen-
dent of the actual shape of the characteristic of the non-linear
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element, provided only that this characteristic belongs to the
specified sector, makes it possible to ensure values of estimates
of the indices of quality for variation of the characteristic of the

_ non-linear element or of the parameters of the linear pulse part

which also lead to a change in the boundaries of the sector (z, k).
In some cases it is therefore no longer necessary to use special
additional self-adjustingcircuits which complicate non-linear
pulse control systems.

In this connexion it is extremely important to determine the
structure of non-linear pulse control systems, the sensitivity
of which is low in relation to variations of the non-linear
characteristic and to the parameters of the linear part. For
this purpose use may be made of the results of investigations
into the sensitivity of linear pulse control systems.

Generalization of the method of investigating non-linear
pulse control systems to pulse control systems which contain

.a linear pulse part with time-variable parameters, and several

non-linear elements, widens the range of problems which can be
solved and, in particular, makes it possible to investigate non-
linear pulse control systems in wich pulse-width, pulse- phase
and pulse-frequency modulation is provided.
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Synthesis of Optimum Sampled-data Systems
\ L.N.VOLGIN

Introduction

The transition to the scientific design of compound automatic
complexes and the resulting increase in the calculation difficulties
demand the finding of new ways for the formalization of solu-
tions and simplification of calculation. The creation of the
methods of linear, non-linear and dynamic programming
should be regarded as considerable achievements in this field.
The method of polynomial equations used below, the efficiency
of which was demonstrated on a number of problems of auto-
matic control, may be added to this number of methods. The
polynomial equations consist of a variety of diophant equations,
the specific methods of solution of which are easily programmed
for digital computers. The development of the operator method
of analysis for the linear pulse systems, of the discrete Laplace
transformation, or z-transformation (see Tsypkin!, Gurevich2,
Zadeh and Ragazzini®, and others), and the emergence of a

large number of different methods for the synthesis of the

optimum linear pulse systems (the works of Tsypkin*—$, Bergen
and Ragazzini’, Chang®°, Jury!, Bertram!?, Potapov!s,
Krasovskii4, Perov'®, and others) were the reason for the
creation of the method of polynomial equations. )

At present the theory of optimum pulse systems for the
control of linear plants lies at the foundation of design of self-
optimizing systems, which contain digital computers. In these
systems the automatic linearization of equations for the plant
during the operation of the system is achieved on the basis of
principles described in the works of Kalman'®, Bigelow, and
Ruge'?, and others. Thus, the theory of optimum linear pulse
systems develops into the theory of an extensive class of self-
optimizing pulse systems of control, adaptable to the changing
characteristics of the controlled plant and to the parameters
of external signals.

The basic difficulties which arise in the design of the systems
containing an optimizing model for the medium are associated
with the violation of the conditions of ‘approximation’ of
simulation, which require a continuous relationship between the
quality of control and the change in the parameters of the plant
being simulated. Some of the above-mentioned authors touch
upon the questions .of control for the plants with negative
dynamic properties, during the compensation of which the
violation of ‘approximation’ is possible. The criteria of approxi-
mation found under these conditions, which do not allow the
contraction of the zero and poles of the transfer function
of the plant for the individual structures of automatic sy-
stems, served as the starting point for the search of ana-
lytical conditions of approximation, suitable for any struc-
tures. The investigation of the conditions of approximation for
automatic systems showed that they are closely connected with
the conditions of stability, and that the distinctive feature of
these conditions is based on the distinctive ideas about the

‘coordinate’ and ‘parameter’. The conditions found below,
which combine the conditions of stability and approximation,
are called the efficiency conditions, since the term ‘efficiency’
literally reflects the essence of the considered phenomenon.
From the analytical conditions of efficiency for different struc-
tures of automatic systems emerge different criteria for efficiency.
On the basis of these criteria it is possible to conclude that the
criteria of stability adopted at present are inadequate for the
synthesis of efficient systems. The attempts to solve the problems
of synthesis for automatic systems often encountered in literature,
inaccurate on the whole or having a very limited field of applica-
tion, are explained by this. The author has shown®-2° that the
polynomial equations represent a mathematical tool which is
adequate for the problem of synthesis for efficient automatic
pulse systems. A systematic treatment of the method of poly-
nomial equations is contained in the author’s monograph2e.
In the given paper a derivation of the analytical conditions of
efficiency is given, and a brief survey made of the problems of
automatic control, solvable by means of polynomial equations.

Denotations and Terms Used

1. Symbol z is used for transformations, where z is the delay
operator for a single cycle.

2. The systems and signals are represented by the rational
real functions of z of the form F = A4/B, where A and B are
polynomials of z.

3. The factorization of functions F with reference to contour
I'{| Z| = 1} gives the real functions F* and F-; F = F*F-,
where the sign F+ denotes the absence of zeros and poles
of the function in the region D~{| Z| < 1}, and the sign F-
denotes their absence in the region D*{| Z |> 1}.

4. The separation of functions F with respect to contour I”
gives the real functions F = F; -+ F_, where the sign F denotes
the absence of poles of the function in the region D—, and
the sign F_ denotes their absence in the region D*.

5. The representaion (the transfer function) of the controlled
plants will be made by G = P/Q, where P and Q are poly-
nomials of z; the representation (the programme) of the pulse
unit will be made by W = C/D, where C and D are polynomials
of z; the representation of the pulse system as'a whole will be
made by H, and the representations for the input and output
are equal to X and Y respectively.

Analytical Conditions for the Efficiency of Pulse Systems

By considering the mathematical model of an actual physical
system, one is deliberately making a differentiation between the
‘coordinates’ of the system, the changes in which are reflected
by the given model, and its ‘parameters’ which are determined
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as fixed numbers which, in the given model, form the basis for
calculations. However, the practice of construction of auto-
matic systems shows that the uncontrollable discrepancies
between the calculated and the actual parameters may be the
cause of profound disparity in the calculated and the actual
behaviour of the system. The failure to take this fact into
account will sometimes lead to the construction of inefficient
systems. The majority of automatic systems (the systems of
stabilization and programme control, the computer and the
reproduction systems, the systems for transmission and process-
ing of data) require a continuous relationship for the behaviour
and the small changes in external conditions, which are expressed
in the change of input coordinates and parameters of the system.
The conditions for which a continuous relationship between
the coordinates of the system is observed are the conditions of
stability. The conditions for which a continuous relationship
between the behaviour of the system and the deviations of its
parameters from the calculated values, which are assumed to be
constant in a given model, is observed, are the conditions of
approximation of simulation. The general condition of efficiency
for an automatic system, constructed on the basis of a definite
calculated model, which unites the conditions mentioned, may
be formulated as follows. With small variations in the input
coordinates and parameters of the system the variations in the
output coordinates should be small.

Let us find the analytical conditions for the efficiency of

an automatic pulse system, with a single input and a single -

output coordinate, described by the following difference
equation:
(xnx —-15 ‘9xi‘myi>yi—1:'--ayi—m)zo (1)

where & is the continuous function differentiable with respect
to all arguments, i is the discrete time, and n>and m are the
corresponding number of stored values x at the input and y at
the output. At the foundation of calculation of the system lies
the linear model, obtainable by means of linearization of
the equation of the system in the vicinity of the current
‘operating point’:

" 0F
kZ’O <ém>0 it z <6}’; k>y‘ «=0 @

. The numbers

_ 0F \ . b= — 0F
h= 0X;-1/0 ke 0yi-1/o

which do not depend on index i over the interval of time under
consideration, represent the equivalent parameters of the linear
model.
Using z-transformation of number sequences®, the equation
for the linear model (2) may be written in the form:
Y=HX 4)

where H is the representatlon of the model, which is the rational
function

3

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

model by the variations 8H, 62H, 6°H, ..., which must satisfy
the general condition for the efficiency of the system.

By varying the relation (4), the corresponding variations for
the output of the system are obtained:

Y=H-6X+0H' X

. y 6
?Y=H'6°X+20H-6X +6°H X ©)
The conditions under which the variations in the /output coordi-
nate remain small have the form:

(8Y)_=0; (3*Y)_=0; (6°Y)_=0,... Q)

By separating the right sides of expressions (6) the analytical
conditions for the efficiency of the pulse system are obtained:

H_=0; (0H)_=0; (6°’H)=0,... (8)

in which case the first of these conditions is the usual condition
of stability, whereas the last are the conditions of ‘approxima-
tion® of simulation. The necessity for taking into account the
large variations is caused by the fact that as regards the para-
meters of the system its representation is a non-linear function.
It is possible to construct an example where the violation of the
efficiency is caused as much as is desired by a high variation®.
However, in practice, mostly violations of the first two con-
ditions of efficiency are encountered.

Criteria for the Efficiency of the Basic Structures of the Automatic
Pulse Systems

. The method of combining the controlled plants and the
computing units is called the structural system of control. The
simplest pulse systems of automatic control contain a single
computing unit with representation (programme) W and a
single controlled .plant with representation G. To each
structure of the system of control corresponds a definite func-
tion H, which depends rationally on W and G:

H=HW,G) )

which is called the representation of the system. For each
structure of control there is a definite class of permissible
functions H, which may be realized in the system by the choice
of different control programmes W, remaining at the same
time within the limits of conditions of efficiency. The structures,
which permit the realization of arbitrary functions H are called
the ideal structures. The structures which do not have even a
single permissible function are called the inefficient structures.
From the point of view of the condition of stability only the
stable functions of type Hy are the permissible functions.
However, if it is necessary to realize an unstable function, then
the condition of stability may be discarded by limiting oneself
to the fulfilment of the conditions of approximation.

By taking into account the variations in the representation

A _ > kK p_ “ ko of the controlled plant, simulated by function G, the condi-
H_f’A_ Z‘ @z, B= Z biz ® tions of efficiency (8) applied to system (9) may be written in
the form:
The representation of a real system, the parameters of which 2y
change in relation to time and coordinates, but sometimes also =0; oH 6G> 0°H .52 G) =0: (10)
in an unexpected form, differs from the representation of its - 3G 0G? >
540/2
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The functions H, 0H/OG, 02H/0G?, ..., derived by differentiation
of (9), depend on W and G. In synthesis of systems for the
automatic control of the programme of the computing unit,
W is chosen in relation to the representation of plant G:

W=W(G) (11)

The verification of the synthesized systems for efficiency is made
by the substitution of this relationship in the expression (10)
after carrying out the operations of differentiation in them.

In a general case the pulse systems of automatic control
contain several controlled plants and computing units, which are
connected up into a single structure. These systems may have
several inputt and outputs. The verification of the conditions for
efficiency should be carried out in this case by the variation of
all the output coordinates for the variation in the representations
of all the controlled plant.

The compensation for the negative dynamic properties of

" the controlled plant, by means of the computing unit having
the same negative dynamic properties, is the cause of violation of
the conditions of efficiency of pulse systems of automatic
control. Namely, such a compensation takes place, for example,
during the trivial recalculation of the programme for the com-

puting unit W for a simple closed system, the representation of .

which is:
WG
H= 1+ WG (12)
by the formula:
1 . H

by proceeding from the initial function H, which is chosen
without taking into account the conditions of efficiency.

This assumption will be proved. By carrying out the fac-
torization of the representation of the plant it is obtained that;

G=G*G~ (14)
Functions G+ and G-, equal to:
G*=P*|Q*; G =PQ" s

are the positive and the negative portions of the representation
of the plant. .

The positive plant, which has representation G*, is charac-
terized by the following dynamic properties: stability, instan-
taneousness of reaction, and smoothness of transition process.
The negative plant, which has representation G-, displays
negative dynamic properties: instability, retardation of reaction,
and sudden ejections in transition process.

By modifying formula (12) one obtains:

w 2w, >
—m _m 5 G’ vee (10)

First of all, conditions will be found under which the closed
system is ideal, i.e. capable of reproducing the arbitrary func-
tion H. The corresponding programme for the calculating unit
is chosen in accordance with formula (13). By substituting this
formula in (16) one obtains:

6H -8G; 8°H=

9°G.

5H=H(1—H)a§;52H= —2H? (l—H)F,

540/3
o 5H=H(1;H)<‘%P—%Q>;
B Q8%*p 26P-6Q 25°Q\.
52H——2H2(1—H)< pr szz.fr 0 ) a7

The ‘conditions of efficiency (8) require that P~ =Q~ = 1.
Thus, the closed system is ideal only in that case when the
plant is positive. In the case of the plant with negative
dynamic properties the function H is not reliazable because of
the violation of the conditions of approximation.

It will be shown that the closed automatic system is efficient
for any controlled plant, under which conditions the class of
permissible functions of this system is equal to

s

H=P 0F,
where F; is the arbitrary stable rational function of the form:
F,.=A/B* (19)

and 0 is the polynomial which satisfies the polynomial equation
in respect of the unknown polynomials 6 and /7:

AP 0+Q II=B* ' (20)
The corresponding programme of control has the form:
AQ*0 '
“P+Il 0

It will be verified whether the conditions of efficiency are
fulfilled. By substituting (21) in (16) and by taking into account
(20) one obtains:

B AT .Q(SP—PéQ.
- ( B+)2 P ¥ Q + B
52 H_2A202H.Q252P—2Q5P5Q+2P52Q
’ (B*) (PH*Q"
The conditions of efficiency are fulfilled for any values of G.
In the case of a stable controlled plant the polynomial 6,

" SH

e

_as follows from the polynomial eqn (20), becomes arbitrary,

and the class of permissible functions is extended to
22)

Thus, one proves the criterion for the efficiency of a closed sy-
stem, which requires in addition to the fulfilment of the usual
criterion of stability, that the programme of the computing unit
does not shorten polynomials P~ and Q—*. '

Using the analytical conditions of efficiency, it is possible
to derive the criterion of efficiency for any structures of auto-
matic systems. By means of these conditions it is easy to prove,
for example, the following well-known propositions:

H=P°F,

(1) The systems on the limit of stability are inefficient.

(2) The open systems of control are efficient only for the
stable plants.

* Applicable to the stable plants the criterion of non-contraction
P~ was, for the first time, introduced in the work of Bergen and
Ragazzini’. :
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(3) The ideal structures of control for the plants having
negative dynamic properties do not exist.

(4) The parallel system of control is ideal for stable plants;
the sequential (cascade) system of control is ideal only for
positive plants.

In view of the non-existence of ideal structures of control
for the arbitrary plants, the criterion of efficiency of the auto-
matic system more rigid than the criterion of stability. Only
for the positive plants are the general criteria of stability of the
linear systems adequate.

In order not to violate the conditions of efficiency, the
optimum function H of the system .should be sought for in the
class of permissible functions. The wider the class of per-
missible functions for a given structure, the higher the quality
of the optimum system, remaining conditions being equal.
Therefore, in the synthesis of a system of control for a given
plant, a structure of control having as wide a class of per-
missible functions as possible, a structure close to an ideal one,
should be chosen.

The Use of Polynomial Equations in the Synthesis of Optimum
Pulse Systems

It has been established that the classes of permissible func-
tions for the pulse systems are expressed in terms of polynomial
equations. In the author’s work®=20 it was shown that the
synthesis of optimum pulse systems of control for the linear
plants based on a number of basic criteria may be made entirely
by means of polynomial equations. The finding of the optimum
programme of control is, as a rule, reduced to the solution of
a system of polynomial equations. The computation methods for
the solution of a system of polynomial equations applicable to
the use of digital computers have also been developed and their
advantage over the ordinary methods in the synthesis of con-
trolled programmes for the plants of a high order with complex
~ correlational relationships was proved. By means of the poly-

nomial equations, a number of new problems of automatic
control, in particular for the unstable controlled plants, was
solved. The basic problems for the synthesis of pulse systems
and their solutions, obtained by the method of polynomial
equations, omitting the proofs because of the lack of space,
are now enumerated.

The problem of synthesis of the pulse system with the mini-

imum transient period for a given input action:
X=R/S (23)

where R and S are the polynomials of z, is reduced to the solutlon
of the following polynomlal equation:

P 0+SQ II=R (24)

in respect of unknown polynomials.0 and /7. The corresponding

controlling programme is equal to:

__ 0%
T P+SI

(25)

The representation of the transient process has the form:

E=QI (26)
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The minimum duration of the transient process, which ensures
the fulfilment of the conditions of efficiency, from the number o1
cycles, is equal to the sum of powers of polynomials P~ and Q0—.

With the limitation for the module of the controlling action:

lul<r (i=0,1,2,...) @7

the corresponding problem is reduced to the finding of a non-
minimum solution of the polynomial equation, which is found
by special computing methods. The modification of the poly-
nomial equation (24) leads to the derivation of a system which
has no pulses.

The problem of synthesis based on the criterion of the
minimum of the total quadratic error:

d 1 _..dz
f=i;0 ef:%t—jff;rE(z)E(z 1)—2

is reduced to the solution of the system consisting of two
polynomial equations:

P O+Q II=I*P Q0 |*
P70+ U+¢=I+P_Q_

in respect of the unknown polynomials 6, 77 and ¢. The poly-

nomials 7 and U are the numerator and denominator of func-

tion X (z) X (z%). The corresponding controlling programme
is equal to

(28)

(29)

+
w22
P'I

(30)

The calculation of the quadratic error may also be made by
means of the polynomial equation®,

" The problems of synthesis of the optimum pulse systems of
automatic control and of processing of data for the random
input signals, by taking into account the universal nature and
the prevalence of quadratic dispersion criteria, represent the most -
favourable field for the application of polynomial equations.
The general problem of synthesis of a pulse system, optimum
according to the criterion of dispersion of the error for finite
time of transition into the unshifted state is reduced to the solu-
tion of a system consisting of three polynomial equations, one

.of which secures the efficiency of the synthesized system, the

second, the finiteness of the settling time and the third, the
minimization of dispersion of the error. The solution of this
general problem determines the solutions of the numerous
particular problems of extrapolation, filtration, differentiation
and integration of random processes by means of pulse
computing units. The optimization of the pulse systems, by
arbitrary criteria of quality, is reduced to the combination of
the method of polynomial equations and the general methods of
mathematical programming. By means of the theory of poly-
nomial equations it is possible to synthetize the most economic
programmes for the processing of data by the method of least
squares. The obtained results show that the polynomial equa-
tions represent a suitable mathematical tool for the programming
of many procedures of computer mathematics and of mathemat-
ical statistics, which are widely used in the self-optimizing
systems of automatic control.

* Polynomial with the reversed order for the sequence of coeffi-
cients is denoted by symbol A.
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Conclusions

The-conditions of efficiency, formulated in this paper, limit
the possibility of change in the dynamic properties of controlled
media by means of pulse computing units. Under these con-
ditions the worst properties of the plant—instability, retarda-
tion, fluctuation—are shown to be the most difficult to overcome.
The limits of the accuracy of control for the dynamic plants by
means of the pulse computing units whilst being wider than for
the units of the continuous type, are, however, not limitless.
Physically, this means that the inertia of the plants cannot be
completely overcome. The problem of the theory of automatic
control lies in the further clarification of the limits of possible

accuracy of control, and the realization of these possibilities -

through the design of the most perfect controlling machines. It is
hoped that the future development of polynomial equations
will prove to be one of the important aids in the solution of
this problem.
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Step Motors with an Active Rotor
Yu. K. VASILIEV, Yu. A. PROKOFIEV and G. Ya. WAINBERGER

Step motors are synchronous pulse motors, intended for the
transformation of electrical control signals into discrete (stepped)
movements of mechanisms. The speed of revolution of a step
motor is regulated by alteration of the frequency of the control
pulses, and the angle of rotation strictly corresponds to the num-
ber of pulses sent. At zero frequency the rotor of the motor is held
by an electromagnetic field or some other locking arrangement.

The control programme of a step motor is introduced through
a switch, which serves for shaping, amplifying and distribut-
ing the pulses to the motor windings. The switch is based on
thyatrons or controlled semiconductor elements, but in a num-
ber of:cases may also be mechanical.

" The use of step motors allows one to make open-loop discrete
‘systems without checking the production of the output values
(without position ‘pick-ups) and without feedbacks, which
simplifies automatic systems considerably. The quality of such
systems (speed of action and accuracy) is predetermined to a
considerable extent by the properties of the step motor.

The required accuracy in the production of the output values

can in principle be obtained by the appropriate choice of the-

unit angle B, of the step motor (the angle of rotation when one
pulse is sent). In practice, in existing step-motor designs the
smallest value of the unit step is limited to the minimum possible
tooth pitch and lies within limits of 0-5-3°.

Further reduction of Og.p, where this is necessary, is effected
by using mechanic reducing gears.

The speed of action of a system depends on the resolution
of the step motor and switch at the selected value of the unit
step. The resolution or the limit tempo (N) attained by the rotor
when the motor is in synchronous operation with a smooth
increase of the frequency of the supplied pulses, and the resolu-
tion or limit tempo (A N) with step increase of the pulse repeti-
tion frequency from the immobile state of the step motor rotor
(receptiveness) are distinguished.

In both cases, the absence of motor hunting at a given load
on the shaft and at the predetermined moment of inertia of the
load serves as the criterion of stability. Thus the following will
be the operating characteristics of the system of a step motor
with a switch:

AN=f(My) or AN 0., = f (Mpy) and

N=f(Mpg)or N-0.,=f(Mg) when J=const
where J is the moment of inertia of the load, and My is the
moment of resistance of the load. .

At the present time, step motors are used in machine tools
and automatic gas-cutting outfits with programme control as
the drive or servo-drive of the advancement gear, for remote
control of the position of controlling valves and slides, for
programme input . (punched-tape or punched-card drive),

E

for actuating synchros, as a
counter-adder, etc.

It is also possible to use step motors in automatic closed-loop
discrete systems with discrete position pick-ups and feedbacks.
The use of step motors makes it possible to replace many of the
closed-loop servo-systems in ex1stence at present by simpler
open-loop systems.

There is a large number of types and designs of step motors?:2
with various principles of operation and design formulation.
They can all be divided into three groups according to their
operating principle: (a) electromechanical step motors; (b) step
motors with reactive rotor; (c) step motors with active rotor.

The characteristic of the first type is that the motors have a
rachtet mechanism which limits their speed of response, power-
and service life. The second type, which has up to now been
most widely used in the triple-stator form, does not have this
major disadvantage of the electromechanical motors and can
have comparatively good indices (weight, dimensions, frequency
characteristics) provided that it is made for small unit angles
(0-5-6°). It should be noted that these motors tend to operate
unstably, especially during idle running and under high dynamic
loads, which makes it necessary to take special measures against -
rotor swinging (clutches, various damping devices, current cut-
offs). Active-rotor motors, which have control windings placed
on the rotor or stator and electromagnetic or permanent-magnet
excitation, in principle allow one to obtain higher utilization
of materials, as a result of which their weight indices and
dimensions are improved,. at high speed of action (N Bstep and
AN-0gep). In practice these advantages of active-rotor step
motors manifest themselves most fully, starting from high unit
angles (Ostep > 22'5°). Reduction of the unit angle, which is
very important, all other conditions being approximately equal,
is possible in the double-rotor or double-stator step-motor
designs considered below.

The double-rotor step motor* has a stator with a concen-
trated winding (or without a winding, made from permanent
magnets) and a rotor consisting of two sections fitted on the
same shaft with a shift of half a pole pitch (Figure 1). The num-
ber of teeth on the stator equals their number on the rotor, and
each tooth is a pole. The stator winding is an excitation winding
and during operation its polarity remains unchanged. The
control windings are located on the rotor and are supplied
with pulses of current in accordance with various graphs
[Figure 2(a), (b) and (c)].

With alternate-simultaneous supply of the control windings
[Figure 2(c)] the number of fixed positions of the rotor is
doubled. Although in this case the switching circuitry be-
comes somewhat more complex, the resolution of the motor is

potentiometers and switches,

* Soviet patent certificate No. 131811,
granted to Yu. K. Vasiliev.

dated 10 June, 1959,
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increased considerably as the result of fractionation of the step.
The motor is reversed by altering the order of sequence of the
positive and negative pulses in one of the controlled windings
of the rotor.

The advantages of the double-rotor motor are design and

technological simplicity, compactness, good use of active mate-
rials and a high ratio of the maximum electromagnetic moment
of the motor to the moment of inertia of the rotor (dynamic
quality). The zone of stable positions (0z) of the rotor, in com-
parison with the magnitude of the step (fsip) in double-rotor
step motors [Figure 3(a)] is greater than in a triple-stator motor
[Figure 3(b)], which reduces the possibility of hunting of the
motor in the case of considerable loads or oscillations of the
rotor.

Moreover, the control of the motor by means of the rotor
makes it possible, even in the case of power motors, to use a
control network based on semiconductor triodes, since the m.m.f.
of the rotor is usually 2-4 times less than the m.m.f. of the
stator, the winding of which is not switched.

The rotor can be made beak shaped, as is done in electro-
magnetic clutches or high-frequency machines. Special beak-
shaped constructions with stationary coils which create the rotor
field, enable sliding contact to be avoided.

The disadvantages of the double-rotor motor are the fact
that use is not made of the reactive moment proportional to
sin2 6, the four slip rings on the rotor (in the non-beak-shaped
design), and the need to produce heteropolar current pulses in
the control windings.

The double-stator step motor* consists of two machines,
the rotors of which are placed on the same shaft. The stator and
rotor have windings and a sahent system of pole teeth
(Figure 4). )

The rotors or stators of the machines are shifted relative to
one another by one half a tooth pitch. The control windings

are located on the stator (rotor), and the rotor (stator) is sup-

plied with d.c. of unvarying magnitude.

Production of the step of a double-stator motor occurs in
the same way as in the double-rotor motor.

The rotor may be built with permanent magnets, which
makes it possible to avoid slip rings; a certain degree of opening
of the slots on the rotor and the stator enables one to utilize the
reactive moment, but considerable opening of the stator slots is
undesirable, since it leads to impairment of the shape of the
angular static characteristic and to a reduction of the resolution.

The double-stator step motor may be made of the face type with

ordinary or printed circuit rotor windings.

The double-stator and double-rotor. step motors are made as
power and micromotors.

There are two-phase step motors with an active rotor and

with radial positioning of the two sections (phases) of .

the motor stator, as in an ordinary two-phase synchronous
machine?.

The double-rotor and double-stator step motors examined in
this paper, with axial positioning of the sections (phases), have
basic advantages over motors with radial location.of the sec-

tions in a lesser moment of inertia and a greater stator tooth -

division, with an identical unit step, i.e., in better utilization
of the materials of the machine.

* Soviet Authors Certificate No. 129110, dated. 10 June, 1959, in
the name of Yu. K. Vasilyev. )
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Some Problems of Step Motor Theory

The main problems of research into step motors are as
follows:

(1) The development of a method for calculating the static
angular characteristic M, = f(6), where 0 is the error angle
between the vectors of the stator and rotor m.m.f. (Figure 8),
and M, the static moment developed by the immobile motor.

(2) The development of a method for calculating the fre-
quency characteristics N = f(Mp) and AN = f(Mp).

(3) Energetic investigation of step motors—losses and

efficiency.

(4) Investigation of the geometry and the formulation of a
calculation method.

(5) The developmeht of a technique for experimental study
of step motors. .

(6) Stud); of step motor control circuits.

This paper considers approximate methods of calculating
the static and frequency characteristics, which make it possible
to determine the main parameters of a ‘designed machine.

Calculation of the static angular characteristic is necessary
for correct designing of step motors, selection of the symmetry
of slot geometry, and also for accurate calculation of the fre-
quency characteristics.

The static characteristic can be obtained very accurately by
the graphic method in ‘accordance with the expression of

. the moment, written in the general form:

K=n ‘l//K
v _d f

=g " dd KZ,O ixd Yk (1)7

o°

where K is the number of connected windings, W is the portion
of the energy of, the electromagnetic field of the motor which
is converted into mechanical work, ix is the winding current;
and yx is the ﬂux coupling of the windings. '

For this the ‘curves yx = f(ix) have to be calculated for
various rotor positions. However, this calculation presents con-
siderable difficulty because of the complexity of the field picture.
To ascertain the nature of the variation of the fluxes in relation
to the position of the rotor, and to make possible accurate
calculation of the magnetic circuit, the magnetic field in the
gap was simulated (by Rybalenko) on an EGDA integrator?,

By way of example in Figures 5(a) and (b), field pictures are:

given for two rotor positions. The results of actual measure-
ments of the magnetic fluxes of the motor practically coincided
with the simulation findings. An approximate expression of the
moment can be obtained from (1), assuming the magnetic
permeability of the iron to be constant. The saturation of the
magnetic circuit is taken into account by the introduction of the
concept of the rated air gap 6’ which assumes the magnetic
circuit. to be unsaturated for the same flux as in the case of a
saturated circuit. .

5’=K d.

where ¢ is the real gap; K, the coefficient of saturation, equal
to ZF/Fd; ZF the total m.m.f. of rotor and stator per one pole,
and F§ the m.m.f. per one real gap.
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Other assumptions:
(@) The number of teeth on stator and rotor is the same and
equals the number of poles
Zs=Zg= 2p

() The air gap beneath the pole has a constant size: the size
of the gap is small in comparison with the pole (tooth) pitch 7;

(c) All the changes undergone by the curve of the field in the,

gap from the presence of the salient stator and rotor poles are

replaced by corresponding changes of the m.m.f., assuming the

gap to be uniform and equal to the rated one;

(d) From the stator and rotor m.m.f. curves, use is made of
the first harmonics. Moréover, account is taken of the travelling
gaps in the stator and rotor m.m.f. from the opening of the
slots both on the rotor and on the stator (Figure 6). :

Bearing in mind the assumptions adopted an expression of
the moment for one rotor is obtained, after transformations,
which consists of three components:

M,: MR+MST+M @

Mg is the reactive moment from the m.m.f. of the rotor with
open stator slots,
Mg=a,F% sin20+a, FZ sin40

My is the reactive moment from the stator m.m. f. w1th open
rotor slots,

Mgy=b, F2 sin20+b, F2 sin40
M, is the active moment.
M,=c,F,F,,sin0+csF,.F,,sin30+csF,,F,,sin50

The coefficients a,, a,, by, bs, ¢;, ¢5 and c; take into account
the slot geometry of the tooth layer of stator and rotor and
equal -

a,=2mo,sinma,
2

a4,=sin”no,

by =2 o, sin no,,

by =sin’na,

. 1 .
ot SIN 7oL, + o T, SIN T -

. 2
€1 =700, + 370 »+5

1. .
+§ sin 7ot sin 7o,

.3 . 3 . 3. .
c3=57roccs1nmxp+§7rocpsmnac+zsmmcsmno¢p

5. .
¢s=gsinmo, sinna,

With simultaneous connection of the two phases in ac-
cordance with the network shown in Figure 2(b), the second
harmonic in the resultant moment is missing. It should be
noted that even a small opening of the rotor and stator slots
has a considerable influence on the moment-curve shape.

541/3

Only for «, = o, = > 0-95—the coefficients of the pole
overlap of the rotor and stator—does the angular characteristic

_. approach a sinusoid. An unsuccessfully selected slot geometry

can lead to considerable gaps in the moment curve, which
either reduces the frequency characteristics of the step motor
or, because of the swings of the rotor, makes its operation in a

“wide range of frequencies 1mp0551b1e In a number of cases,
‘the stator or rotor slots are bevelled to improve the angular

characteristic. Figure 7 gives the calculated and experimental
static characteristics of pilot models of active-rotor step motors.

Approximate Calculation of the Characteristic ANnp = f (M)

The aim of the calculation is to determine the minimum
time between two consecutive control pulses (¢,min), at which
the rotor still runs up from a state of rest without missing steps
under the preset load. '

Then :

‘ AN, ,=——
' tu min

" (steps/sec)

The above problem will be considered using as an example a
double-stator.(or double-rotor) motor, when the control wind-
ings are supplied alternately [Figure 2(a)]; for approximate
calculations it is assumed that the currents change instan-
taneously, and the angular static characteristic-of each rotor
has a rectangular shape.

In this case the rotor motion equation adopts the form

dzﬁ dg
'dtz dt

Here § is the angle between the axis determining the instant-
aneous position of the rotor relative to the positive direction of
the stationary axis of the stator winding.

J is the moment of inertia of the motor and the mechanism. .
The direction which corresponds to the movement of a right-hand
screw when it is turned in the direction of flow of the current
in the winding will be taken as the positive direction of the axis
of the winding. The angles will be positive clockwise, counting
from the axis of the stator winding. Figure 8 shows the schematic
manual position of the step motor windings in one plane.

D is the damping coefficient of the moment of the type of
‘viscous friction’ (for example the moment from eddy currents

J —+M ——MHs1gn|:((1£j| €)

-induced in the iron of the rotor or a special damping cell).

dp
MH sign I:‘a?]

" is-the moment of load of the dry friction type.

M, is the electromagnetic moment of one rotor, For
60 = 0.+ @ M_ has the plus sign (+), and for 6 =0+ — =
the minus sign (—).

Switching in one of the rotor windings leads every time to
the instantaneous rotation of the vector of the m.m.f. of the rotor
anticlockwise through an angle — /2. The movement of the
rotor itself is effected in a positive direction. Thus the instan-
taneous position of the vector of the m.m.f. of the rotor relative
to the stator m.m.f. vector (Figure 8) for any step is equal to
the difference of the angles 8 and # 7/2, i.e.

1
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- At the end of each step the angle 0 determines the angular
dynamic error of the step motor. Introducing into eqn (3) the
parameter H and after carrying out transformation, one obtains
for ‘p’ pairs of poles

4 dp . [dp
Hd—t2+AEf_i 1=—Bsign [W] v @
where :
—y2l.d
H=314 » M

is the inertial time constant of the step motor in electro-radians.

Since this parameter includes the ratio M./J (dynamic*

quality), it determines to a considerable extent the dynamic
properties of the system ‘motor plus mechanism’.
- tis the time in radians; 7 [rad] = 314 t [sec]

434D
D M e’
is the damping coefficient.
. M,
B=
M,

is the moment of load in fractions of the electromagnetic
moment.

The run-up of the step-motor rotor is effected not over one
step, equal to #, iy, but over several steps (Figure 9, curve2).
If at the end of the first step the motor makes some negative
angular error —A6, then at the end of the second step the rotor,
having a greater mean speed during the step, commits a smaller
angular error |Af,| < |A6,| (the total error over two steps
equals 0, = — [A6; + A6,], etc.). In some Kth step the rotor,
over the time #, n;, 'can have a mean speed sufficient to traverse
an angle éreater than 0, and the total error begins to decrease.

Subsequently the process -of change of the dynamic error
0 = f(n) may have an oscillatory. nature (Figure 10). Under
certain conditions (fow damping, unfavourable shape of angular
characteristic) there may exist frequency bands (usually in the
under — 100 ¢/sec range) where the error oscillation is of a
resonance nature. The amplitude of the rotor oscillation rises
and this unavoidably makes the motor fall out of synchronism.
The following may. be effective measures against this phenom-
enon: load (which reduces the amplitude of the oscillations of
the rotor); improvement of the shape of the angular character-
istic, and so on. Such conditions require special consideration.

These approximate computations of the characteristic .

ANnp = f(B) will be confined to conditions under which the
assumption is valid that the rotor will remain in synchronism
if the total error in the first swing does not have a limitlessly
increasing nature (Figure 10, curves 1 and 3), but has a definite
maximum. Under limit conditions this maximum must be de-
termined by the criterion of stable operation of the motor in
the first oscillation of the function 6 = £ (n).

The following proposition may serve as such a crlterlon if
during the run-up,when there takes place a process of increment of
the error 6, the rotor, at the moment when switchings occur, does
not enter the zone of excess braking moments (i.e., 0 < [—=|,
which leads to a falling out of synchronism), the motor will
attain in a speed at which the level of the error remains un-
changed (Figure 10, curve 3) or decreases (Figure 10, curve 1).
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Thus the criteri_on of ‘stable operation of the motor in the
first swing of the error will be

T

2
for a rectangular characteristic independent of the load.

In view of the above criterion, the rotor in the first period
of the run-up will be under the influence of excessive accelerating
moments, and will move in one direction. Therefore, eqn (4)
will be re-written in the followmg form:

d’p ﬁ
de*
By solving this equation a formula is obtained from which

can be found £, mix and, hence, ANnp as well, if the load Band
damping coefficient 4 are set. '

nmax—|_n+estep| =

H +A

SN )

= estep

H {{64, 1-B © Ogep A t
e step 1 1_ step ___umln =
+ A {(tumin A)n[ (1 B)tumin_ estep 0 (6)

forA=0

T (62)

In such a form the resultant expressions, within the limits
of the assumptions adopted herein, are suitable for calculations
“ of the characteristic ANnp = f(B) of other types of step
motors; in which fge, # 7/2°

For double-rotor and doilble-stator motors

Aanzé_li\/z(lj_B)(n_estep)

step

ANnp=355 \/% (steps/sec) (6b)

As can be seen from formula (6a), the speed of action of the
motor will be the greater, the smaller the size of the step in
electrical radians. In this case, however, there is a simultaneous
increase of the dynamic errors which, as for example in reducer
step motors®; can attain a magnitude of several steps. )

Calculations and experiments show that the shape of the
angular static characteristic is far from rectangular and in a num-
ber of cases is better approximated by a sinusoid or a triangle,
although an analytical solution in the general form becomes im-
possible. Therefore, for motors with 0y, = 7/2 and a sinusoidal
angular characteristic, the other assumptions being the same,
a calculation was performed of the characteristic ANnp = f(B)
(Figure 11, broken line) on an MN-7 mathematical simulator,
specially prepared to solve this problem?.

In this case the initial equation was

2 T
g 02+zxd%—sin6:—Bsign[%] (D
which is obtained from eqn (5) via the substitution
2
B= 9+n =i’f— A=

and of the rectangular characteristic by a sinusoidal one.
The given equation is valid for one step (# ='1). In solving the.
next step new initial conditions obtained from the solution of
the preceding step were each time introduced automatically:
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do
> |doly,

_|do
“lde

The introduction of ¢, which is proportional to the time,
made it possible to impart a universal nature to the family of
characteristics AN#'p = f(B), since, calculated for w, = 1, they

can easily be recalculated for other w, by multiplication of
AN’np and «' by the new value of w:

Tt
O5n> 0k -1 +

Kn—1

!
N,,=AN,, w,
a=a""w,

®)

Approximate Calculatibn of the Characteristic Nnp = f (Mg)

When the limit tempo under conditions. of synchronous
revolution is considered, the rotor does not swing around the
position of equilibriuim, since the opportunity would always
exist to reduce the time between two control pulses (¢,) to a

value which would precisely equal the time needed by the rotor -

of the motor to traverse the angular step Hstep This means that
the rotor will .operate on that section of the dynamic angular
characteristic when over one step the maximum of electro-
magnetic energy is consumed and the initial conditions at each
step will be the same. Moreover, in the testing of experimental
' models, unevenness of rotor travel practically disappears even
in the absence of load startmg from approximately 75 steps/sec
‘(Figure 12).
The motion of the rotor may therefore be assumed to be

uniform, i.e., .
dp . d2p

Tt=const and T =0

Thus the energy brought to the rotor is expended electro-
magnetically on the performance of mechanical work.

8m +0step » o
M’j(e’ fus T) d0=JMH 05[€P+D% ) (9)

(iJ:4 u

M, is the total dynamic moment created by the two rotors of the

step motor (or the dynamic angular characteristic). It depends |

on the error angle 0, is a function of a parameter of the step 7,
and the time constant of the switched windings 7. For a step
motor controlled by means of simultaneous supply of the wind-
ings [Figure 2(b)], the expression of the dynamic moment has the
form:
214 (80~6)

Tmean ©

M9=Mmax\/§{cos 0—

2t
1+e * Tmean

[cos 9(1—6‘%,,;)-sin 0 (1 —e_%;e;ﬂ} (10)

_ Here, 0, is the angle corresponding to the load moment.
. This formula is obtained on the condition that the angular
static characteristic is sihusoidal, when the currents in the con-
" trolled windings rise and fall according to exponential relation-
ships with some mean time constant Tyean, in Which the para-
meters of the control circuit may also be taken into account.
The formula presupposes a periodic process of variation of
- of the current for any relation between t, and Tyean mcludmg
when Tipean > 1. -
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Having substituted M, under the sign of the integral of
formula (9), the electromagnetic energy used up on the per-

- formance of mechanical work is obtained after integration. The

maximum of this energy will determine ¢

2*/2Mmax k=D

umin

an
where ) ’
'K=\/(1 —A)2+(1 —c)2

_lumin 2 tu min umin _M)
2e Fimean <1 n Tmean) (1 +7E Tmean> (1 —e Toen

A= . )
{ _ 2 tumin) 4t
(1+e Tmean )<1+ 21’41:21(1 .
i min Ztumm 2tumm < _2tumjn)
C_Ze Tmean<1+nTmeBn> (1 nFmean) 1—¢ Tmemn

_Ztumin 4t
(1+e Tuean )(1+ 27!:me>

mean

Setting various values of My the required characteristic
ANnp = f(Mp) can be calculated for particular parameters

Tmean and D where Nnp = steps/sec.

W min
_ The theoretical conclusions obtained were for the most part
checked experimentally on double-rotor and double-stator step
motors. Table I gives the calculated and experimental findings
for the values of ANnp under no load and for various additional

“flywheel masses, while Figure 13, shows the calculated and ex-

perimental characteristic Nnp = f(Mg)-

The calculations were performed in accordance with for-
mulas (6) and (11), with a thyatron switch, a rope brake and
scales were used for the experiments.

Table 1

2-stator s‘ep motor M,z =,.2,700 gcm;

Ostep = 22:5°, 2p = 8; Jp = 0-5 gem/sec?; D=~=3
Jaddit (gem/sec?) -ANnp experimental ANnp calculated
0 ‘1 54 . 164
1-18 77-5 89
2:1 59 72
3-94 45 _ 55
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Most Recent Development of Dynamic Programming Techniques
and Their Application to Optimal Systems Design

R.L. STRATONOVICH

Introduction. Block-diagram of an Optimal Controller

As is known!~%, dynamic programming theory solves, in prin-
ciple, a large number of the problems connected with optimal
systems synthesis. The applicability of dynamic programming
methods is not impaired by taking into account white gaussian
noise and other random factors in various components—the
statistical nature of the signal to be reproduced, imprecise
knowledge of it, random influences on the controlled plant, or
interference in the feedback circuit (Figure 1). Of course, as the
problems grow more complicated, the actual performance of
the calculations becomes more and more difficult.

Although the basic principles of dynamic programming
were expounded long ago, the number of non-trivial problems of
optimal control theory actually solved by this method is not
large. This is explained by purely computational difficulties
which have to be overcome before a solution is found.

What has been said confirms the importance of the develop-
ment of new methods and techniques to increase the effective-
ness of the theory and make it easier for concrete results to be
obtained.

In complex statistical problems the effective use of the
theory becomes possible as a result of the introduction of
‘sufficient coordinates” on which the risk function depends.
The importance of this concept was noted by Bellman and
Kalaba?, and the author has clarified and developed it further®: 6.

The sufficient coordinates form the space in which the Bellman
equation is considered. A non-trivial statistical example is used
in this paper to illustrate the effectiveness of the introduction
of sufficient coordinates. In the example, the sufficient coordin-
ates are a combination of a posteriori probabilities and the
dynamic variables of the controlled plant.

In complex statistical problems the introduction of sufficient
coordinates has the result that the optimal controller breaks
down into at least two consecutive units, each of which is
constructed according to its own principles. The first unit SC

(Figure 1) produces the sufficient coordinates X’ . In some
dynamic programming problems it is trivial, but in complex
statistical problems it may perhaps prove most important. In
the latter, it is synthetized with the aid of methods similar to
those of non-linear optimal filtration”. In the example considered
below, it simply coincides with a unit effecting optimal non-
linear filtration.

The signals from the SC unit output are sent to a further
unit OC, which produces the optimal control action. The form
of this unit, which converts the sufficient coordinates into a
control signal, is found by consideration of the Bellman
equation. This unit can be synthetized without great difficulty
if the risk function is first found as a solution of the Bellman

equation. The most difficult problem is the obtainment of this
solution. Therefore, techniques and methods, which make it
easier to obtain the solution of this equation, are of interest.

The equation is made far simpler by considering the station-
ary mode of operation, when the time-dependence and time-
derivative are eliminated from the Bellman equation. The corre-
sponding stationary equation was considered by Stratonovich
and Shmalgauzen®, and the method quoted is also described
in this paper. Furthermore, to solve the resultant equation, use
is made of the asymptotic step-by-step approximation method,
first expounded by the author®. This method is convenient for
the case of small diffusion terms, and makes it possible to
obtain consecutive approximations whose accuracy is deter-
mined by the magnitude of the coefficients for the second
derivatives in the Bellman equation.

It must be noted that the number of methods for approximate
solution of the Bellman equation, which can be thought up for
the solution of concrete problems, is practically unlimited ; each
method is best suited for the solution of problems of a particular
type. To them must be added the obtaining of a solution on
analogue or digital computers. Out of the whole range of
methods, a special approximate method will be described and
applied to the example under consideration, in the concluding
part of the paper. The essence of this method is that the risk

function is represented as a function whose appearance is fully

determined by a finite number of parameters a, The Bellman
equation for the risk function is replaced by a systemof equations
which specify the evolution of these parameters in inverse time.
This system is roughly equivalent to the original Bellman
equation. ’ '

The unit OP (Figure 1) simulates this system of equations
and determines the parameters @ as a function of time. It
operates as a self-contained unit, if measurement of the statistics
of the processes and other variables is not carried out in the
course of operation, and must finish its work before the start
of operation of the main system. If the operating conditions
change, then there may be a need for periodic plotting of the
process of determination of the parameters by the OP unit in
application to the new operating conditions. Such a system will
belong to the class of adaptive systems. The OC unit produces
the optimal control action in response to the values of the
sufficient coordinates and the risk function parameters corres-

ponding to a given moment of time. The corresponding algorithm -

is derived from the form of the Bellman equation and the
adopted approximation of the risk function.

Usually the transition to a finite number of parameters entails
some deterioration of the quality of operation of the system. The
greater the number of parameter taken, the higher the accuracy

550/1




550/2

of approximation and the closer the system to optimal, but, on
the other hand, the more complicated the OP unit. For a
specified number of parameters is is important to determine the
successful choice of the means of approximation. Here a great
deal depends on the ingenuity and inventiveness of the designer.
In this paper, one natural means of selecting the parameters is
suggested—taken as the parameters are the bottom coefficients
of the expansion of the risk function by a suitable full setof
functions. ’ '

The block diagram of an optimal controller given in the paper
is of a basic nature, and in fact not all the units need be there.
In some problems the SC unit can be left out because of triviality.
The OP unit can be separated from the system. It can be
replaced by a preliminary calculation, and the parameter
values can be taken into account once and for all in the syn-
thesis of the OC unit. The situation is different if the system
itself investigates varying conditions of operation. In that case
to the units OP, SC, OC (if there is no OP unit) must be sent
the signals from the appropriate metering devices.

Example—Sufficient Coordinates—Stationary Fluctuation Regime

Let the variable part of the system—the controlled plant CP
(Figure I)—have a transfer function K(p). Let the control
action u be limited to the values — 1 < # < 1. The input signal
x,, like the output signal y,, is assumed to be known accurately.
Let the signal on the input x; = s; + &; be the sum of the pulse
signal s, = 4- 1 and interference be the normal white noise
E (ME, =05 ME &y, = %0 (7).

The task of the system is to ensure that the coordmate of
the plant y, reproduces as accurately as possible the pulse
signal s,. If s, = 1,-but y; # 1, the penalty ¢ (1, y,) in a unit of
time is taken. The functions ¢ (<= 1, y,) can differ. For the step-
by-step method, which is used to obtain formula (22), the
condition that these functions be differentiable is essential.
Henceforward, to make things specific, use will be made of the
criterion of the minimum mean square error, which corresponds
to the functions '

c(sM=(s-y>" )

It will be assumed that the signal s, is a priori a symmetrical
two-position Markovian process, moreover. the a priori pro-
babilities p; (= 1) = P[s; = &+ 1] satisfy the equations

d;:i(ll)= _dl’fit_l)-_- —up(D+pp(=1)

This means that the pulses and intervals are independent
and distributed according to the exponential law P [t > c] =
— g HC, ’

1t is required to design an optimal controller which produces
a control signal u; so that the mean penalties are reduced to a
minimum. The latter is a function of the sufficient coordinates.

The sufficient coordinates of the given problem will be
considered. Their definition, which is given by the author® ¢
reduces to the requirement of the sufficiency of the selected
coordinates in three respects: .

(a) Sufficiency for determination of the conditional mean
penalties:

rt=M[ctlx‘n ut,'c<t:| (3)

©))

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

(b) Sufficiency for indication of the constraints of choice of
the control solution and (c) sufficiency for determination of the
future evolution of the sufficient coordinates themselves (for
the determination of the probabilities of their future values).

In the given problem the limitations of choice | u;| <1 at
each moment of time / depend on nothing at all, so point (b)
can be disregarded. Point (a) will be considered, and the a
posteriori probabilities w; (1) = P[sy = &+ 1/x,, 7 < {] in-
troduced. Then the mean penalities (3) will be written

7‘:=C(1,Y)W:(1)+C(—1,J’)W:(—1)

Requirement (@) will obviously be satisfied if the sufficient
coordinates include the coordinate y and also the a posteriori
probability or a magnitude replacing it, say z = w (1) — w (—1).

The evolution of the variables of the given problem will be
considered. The equation determining the behaviour of y,
depends on the appearance of the function K(p). Obviously

dy, fpp 1
—&?—u +n, with k—‘; (4)
and
dy, dy,
TP a dz = pu,+pn, (%)
with
. o
k(p)= PR o

Assume that n, is normal white noise (Mn; = 0; Mnny, =
= N& (z)). Then in case (4), y; will be (with the fixation of
{u.}) a Markovian process, and the probability of the future
values y;+, will be entirely determined by the value at the
present moment of time. In case (5), the two- dimensional
process (¥;, dy;/df) is Markovian. The probability of the future
values is determined by these two magnitudes y;, dy,/df, and
therefore the sufficient coordinates must necessarily include,
apart from y,, dy,/ds for satisfaction of requirement (c). If, for
example, the interference {n;} would be a unidimensional
Markovian process, then n; should be be included among the
sufficient coordinates.

 The mode of variation of z; is now found, and it is proved
that it does not require the introduction of new sufficient
coordinates. The variation of the a posteriori probabilities is
induced by two causes—a priori transfers between states s = 1,’
s = — 1, and also variation of the a posteriori probabilities as
a result of supplementary observation of the process x;. If there
were no observation, the probabilities w, (= 1) would vary in
accordance with eqns (2):

dwctlgl): —pw (D) +pw, (1)

(6)
dw,(=1)
Codr

If there were no a priori transfers, the a posteriori probabilities
after the observation x, = s + &, in the interval f, <7 <¢
could be expressed through the probabilities wy (4= 1), before
this observation in accordance with the Beiss formula

————=pw,()—pw(=1)

M

w(s)=constw [, to<T<t] =y —5* Wo (5)

550/2

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3




Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP8OT00246A022700330001-3

Here w [£,] is the probability distribution for {£,, #, <
which for white noise, as is known, has the form

wlé& ]—constexp[—;—f &2 dr]

Substituting into this & = x_ — s, and relating — 1/2 ngo
(x .2 + 1) dt to the multiplier C, which does not depend on y, in
accordance with (7), gives

7 < 1]

B t
w,(s)=Cexp %J‘ XS dr:l W (5)

to

From this, differentiation according to ¢ gives

dw,(s);—l dC x.s .
& | € E*’}“J wi(s) ®

Returning to the case of the a priori transfers, eqns (6) and (8)
must be combined. This gives

dﬁ?)=—pwu)+uwc—n+[ 4"£§9J w(h)
9%59=muu—mw—n+[—ﬁ+3;%q =n @

The derivative 1/c de/d¢ is determined from the condition of
retention of the norm d/dt [w, (1) + w, (— 1)] = 0 and proves
equal to — x,/k | [w(1) — w(— 1)]. Substituting this value into
(9) and transferring to the varlable z=w(l) — w(— 1), gives
the equation :
dz 9 1-— 22
a- - HZ+- e
which was derived by the author® on the basis of the general
theory.

Since in (10) x; = s; + &;, and &, is white noise, the pro-
babilities of the future values are determined by the value of z;
and the behaviour of s;, 7 > f. But since s, is a Markovian
process, its behaviour is determined by the value of s;, which
is described by the probabilities w;, (s,), that is to say, once
again by the coordinate z,, Hence the introduction of new
variables in accordance with requirement (c) is not necessary.

Equations (4), (5) and (10) make it possible to write an
alternative equation or Bellman equation for the given problem.
Case (4) will be dealt with first. Introducing the function of
minimum future r1sks

S(y,z = mmM{[ Crd‘cly,,z,}
t

g, T2E

(10)

(1)

(T is the time of termination of operation), and compilirig the -

difference of these expressions for the two moments ¢ and
t + 4, gives the equation

S (PysaZs 4 4t) — S (¥,52,,t
{ 124 t+AA) V1,2, )+Ct|yt3zt}

(12)

951,21 +1im min M
6 4-0 ug

(t<t<t+4)

In computing the limit which stands here, a Taylor expansion
by the increments y,— ¥y, 2414 — z; will be performed and
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both the linear and quadratic terms will be taken into account.
The differentiability of the risk function is assumed. Eqn (4)
gives :

lim M.Vt+A~yt=

o Yera= ) ‘
; ST =N 13
lim v u,;lim M- Y (13)

4-0
Computation of the Fokker-Planck coefficients for the second
coordinate z, is somewhat more complicated. In the process, the
equality

M {xtlzt} =M {s,lz,} =2z
must be taken into account, eqn (10) must be used, and the

well-known technique of averaging stochastic eqns (10) must be
applied. The result of the averaging has the form

z,} =—2uz,

lim M{———Z‘” — 4

4-0 4
1—22 9 (1—-z2\1-22
+ M{xtiz,}+a—2t< ” ) p =—2uz, (14)
Moreover
) }‘m(l)M Gr4a=Y) Wr4a—1)=0
: (Zt+A_2t)2| } (1—z})* . (Xera—%)"
lim M z lim M 22—
40 { 4 It K2 4s0 4
22
_A-z) (15)
K
Hence, eqn (12) adopts the form _
3 inl 2355, 08 N ES A=z a's
5 Tmm — Oy "5z 2 oy 2k 0z°
1 1— )
+C(1, ) +Z+C(—1,y)—2—z=0 (16)

The second term can also be written in the form — 10.S/0y|.
To the resultant eqn (16) must be added the boundary con-
ditions. In view of the fact that |s| < 1, only the domain |y| < 1
need be considered. Because (16) contains the diffusion term
1/2N 9%S5/0y* on the boundaries y = 41 there must hold the
conditions

oS )

—(x1,z,)=0 17

5 (tL20= th)
Since 0 < w(s) < 1, for the second coordinate one has jz| < 1. -
On the sides z = 4+ 1 of the square the diffusion coefficient for

the second diffusion number 1/2 x (1 — z2)2 02 /0 z2 vanishes. .
Therefore, instead of the conditions bS/bz = 0 on these sides
the more trivial conditions

65

(y,—+—1 ) <o

(18)

are satisfied.

Ry will be used to denote the domain of the space of the
sufficient coordinates, where 0.5/0y > 0, and correspondingly
R_ where 05/0y < 0. The boundary I' between R+ and R—
will be termed the switching line or separatrix; it is to the
finding of this line that the calculation of the OC unit (Figure I)
reduces. On it are satisfied the conditions of continuity of the
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risk function and its first derivatives 0.5/0y, 05/0z. These con-
ditions are a consequence of the diffusion nature of eqn (16).
From the continuity of the derivative 0.5/0y there follows the
condition

a—S—O onT
oy
Eqgn (16) describes the evolution of the risk function with the
inverse passage of time. The role of the initial condition for it
is played by the fixation of the risks at the moment of termina-
-tion of'the operation S (y, z, T). If there are no special additional
. considerations, then S (y, z, T) can be made equal to zero.

The Bellman equation is also derived in a similar way for
more complex functions K(p). As in case (5), the velocity
v = 0y/0t must be included among the sufficient coordinates.
Then the function S (y,v, z, t) will satisfy the equation

(19)

s, 05 o5 loS| , 05 pN O
ot ;ay”au"av Moz T2 o
1 o°s 1 1
S it L)5E=0 @)

An important particular problem among the group of prob-
lems connected with optimal systems synthesis is the problem of
calculating the optimal stationary mode of operation. In this
case the operation-termination time T tends to infinity. Then,
irrespective the values of the coordinates at the moment ¢ a
stationary fluctuation mode is established in the system, char-
acterized by some mean penalty y in a unit of time. This means
that when T increases, e.g., by 4¢, the risk function increases
by y At

If the difference S(f) — y (T— ) is formed and the limit
transfer T— oo performed, the resultant functlon will not
depend on time. In case (4) this function

f(Zy)=iiiIl [SUz)—y(T-1]

as can easily be seen in accordance with (16) satisfies the equation

of of N 62f
0

_+ Z— = af
Wz =257t

(1— 352 L yr—2yz41—y

1)

[here (1) is used]. Moreover the same conditions (17)-(19) are
satisfied on the boundaries as before. The solution of eqn (21)
makes it possible to find simultaneously the function f(y,2),
the switching line I' and the stationary mean penalty y. The
same holds for eqn (20).

Solving the Bellman Equation

In view of the difficulty of obtaining a precise solution of the
alternative equation, various approximate methods can be
developed. Some of them will be illustrated, taking eqns (16)
and (21) as an example. Of course the methods—for example,
the method of parameters—permit generalization to other more
complex cases as, say case (20), but then the laboriousness
of the calculations increases markedly. The results obtained
with the aid of (16) are also approximately valid for case (20),
when ¢ > 1, i.e., when the inertia of the controlled plant plays
a small part and can be disregarded.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/13 : CIA-RDP80T00246A022700330001-3

In this case, the optimal control action depends on the
variables y, z, and equals # = 1 in the domain R+ (correspond-
ingly, # = — 1 in R.). Figure 2 shows the approximate location
of these domains, and of the switching line; the mean transfer
velocities M dy/dt, M dz/d¢ are also given. An approximate
calculation was performed of the switching line in the stationary
case (eqn 21), by the asymptotic step-by-step method developed
by the author®. For the case N = 0, 2u < 1, the switching line
of the first approximation was found to be

2 1 252
z(y)=y+ ”yl( 4Z )yz

The higher approximations have an order of (u/k)? and
higher.

The second approximate method of solution, which has a
wider sphere of application, will be dealt with in greater detail.
This method is linked with the determination of the parameters
of the risk function, to which corresponds the umt OP in
Figure 1, as was stated in the introduction.

One of the ways of introducing the parameters is the ex-
pansion of the risk function according to some preselected
suitable system of functions. For the given example these are
the functions of the variables y and z. Let ¢4(»), ..., @~ ()
and y,(2), ..., W51 (2) be the selected functions, Then the para-
meters of the risk function will be the coefficients a;;(¢) of the
expansion

(22)

r—185-1 .
S(y,z,t)~ Z Z aij(t) (Pi(J’)‘/’j(Z) (23)
i=0 j=0
Since the above systems of functions -are not complete, re-
placement of the risk function by the expression given usually
entails some errors. To make the coefficients a;; more exact, any
criterion is set, e.g., the minimum integral from the square of
the difference

j I I:S Za”(pnlfj]zdydz min

will be required.
The variation of this expression leads to a system of linear
equations

Z‘aij (01 00) (‘/’ﬂpm) =(S, )
—-1; m= 0,.

(29
e=0,.. ,S—

which permits a;; to be calculated, if S (3,z,7) is known.
Here is written

1 1
((pi, (pe)z—Z_J‘ PP dy:
-1

1 1 1
(Ss (pelllm)zfj‘ J‘ Sgoel//m dde
-1J -1
With the aid of the inverse matrices

leiell = 1(@s @l ™5 Nl = 1 Yl ™"

the solution of system (33) can be written as

aij = Z Cie c;'m (Sa q’e‘ﬁm)

e,m

(25)

(26)
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How the equation for the parameters is obtained from the
alternative equation will now be shown. Let the latter have the
form .

= 7[s] @7)

IDifI’erentiating (26) according to time, and substituting (27) into

the right-hand side gives
— = Z Cie cjm ('/' [S] (pe‘pm)

If the replacement of (23) is performed here, this 'will give a
closed system of equations for the parameters

da,~ i ’
d_tj = Cie Cim(F [ Apg @], 0N m) (28)
e,m p.q

Theexample being considered will be utilized to illustrate
the application of this method. Because of the boundary con-

dition (17) it is convenient to select the functions ¢@;(y), each.of -
which possesses this property dg,/dy (4-1) = 0. For the second -

coordinate z, there is no such condition, so
' . , — ny
r=s=3;00(N=Yo (=10, (y)=/2sin ==

@2 (y)=/2c0smy; Y, (2)=2;,(2) =2

can be written. :
In the given case (¢;,¢,) = ¢;, = 0;0;

1 9 15

103 707
i :

1 1 15 - 45

39 % 7% 7

. Since the risk function is symmetrical S (y,z,1) = S(—y,—z,1)
(w1th symmetrical penalties S (y,z,T), then in expansion (23)
there should be present only symmetrical terms

2
+(az0+az,2%)/2cos 1y S @0)

S,z t)~aoo+a0222+auz\/§sin——y'

Moreover, putting a,y = & ay,; a;; = fay, it is expedient to
make the substitution
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In addition, w1th1n the framework of the selected approxi-
mation

32 8 8 i
—_ 2 2~——— 2. ~—s SN —
(=29 35 7z,y.n281n2.).)

2 L _4 cos T
Y 3 7 y

After the above substitutions, eqn (16), where 1/, c(1,y)

A+2)+Yse(—1,))1—2)=3»*=2yz + 1 adopts the form

da;;
L o

——lalllzpu(pl

NG

+2u[2a,2% +a1,120,+2a,5,2°0,]
—l<g—§~% Zz) [ao2+ azz?z]
+g";_2 (411201 +4(a20+ 2222 95]
'_ ‘7;\/_2 +~\£ zp—1
-Sebarately equating the coefﬁcients of the fllmctions q.oiz.j

gives five equations for the day/d¢ derivatives. The most im-
portant of these are the three equations :

day, 20 422 n’ 8\/2
& \/21 11|P11<a L aL +2ua11+ Na11+~

da,, 0 433 32 a,, 2\/5
ar \/fl 11]920( 1 dy ~35 + N zo+“
da a,, a 8 a
d;z \/ —la 11|P22<ai? aj2)+4 a22+7 ;2'*‘2 Na,,
‘ - (33)

The switching line is found by equating to Zero the derivative
(31). The equatron of this hne has the form

4(a+ﬂzr)sm y=zp;zr=2zr(y) (34)

The course of the switching line is determined only by the
relations & = 92¢ ,B 222 of the parameters entering into (33).

As is usual 1n dynamlc programming, egn (33) must be
solved for the inverse passage of time. If the inverse time
t; = T— t is introduced, the conditions corresponding to the

L (0s =T agy z'cos =z y—2(a+pz*)sinny end of operation wil'l_look like ‘initial’ conditions. In the.absence
Oy \/ 2 o2 . of conclusive penalties at the moment 7 the corresponding con-
- ) ; : ditions will be null: .
N_—lall,zpij(“’ﬁ)(Pi(y)Zj . (31
\/2 i ay1=0,0=0d,,=0when ;=0 oz-—,ﬁ 0

where ’ .
01 (% B)=Y CioCin0 v When a sufficiently long time ¢ passes, the mode of operation
H o e (32) of the system approaches the stationary. This corresponds to the
([ approach of the parameters ay, ay, ay to the stationary values
O o= _J‘ f 2 cos T y—2(a—z%f)sinny 0.(y)z"dydz aly, a.go, als. Tk.le latter are the solution of the.system of three

4 ] 1)~ o2 equations obtained by equating to zero expressions (33).
550/5
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Using (29) and (34), formulae (32) can be brought to the form
Pit (0(, B)=30:;

9 15
P10, B)=70io—70i2;

45 15
Pi> (“,ﬁ)=z‘aiz—jaio;

1! [1-2zi*2 7 o 1-zitt
"ff*?f_l[ TR R

1___ j+3

Hastey

) sin ny] @:(y) dy (35)
For further- calculation of the functions g;; («,f) numerical

methods can be employed, or use can be made of one or another
approximation of the function zp(»).

The solution of the given problem consists in the fact that

the unit OP (Figure I) realizes eqns (33) in inverse time, and
unit OC realizes the switching line (34).

Optimal
controller oP

Figure 1. Optimal servosystem. SC: sufficient-coordinates unit; OP:

parameter-determination unit; OC: optimal control unit; CP: con-
trolled plant; DK = SC; 0| = OP; OY = OC; PO = CP
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The Realization of Optimal Programmes
| in Control Systems
'G.S. POSPELOV

Methods of mathematical programming [the term is used to
mean the application of mathematics to the practical activity
of planning, development, decision-making etc., and is a natural
generalization of such concepts as linear (or non-linear) dynamic
programming] are spreadinig to all branches of the national
economy, €COnomics, engirleering, industry, agriculture and
so on. This presupposes the development of mathematical
models of the events or sets of controlled plants which require
to be controlled. Once the aim of control has been formulated,
the task is to determine the optimum strategy of control whereby
a programme of effects upon the controlled plants produces in
some sense the optimal result.

It must be emphasized that the programmmg methods
determine the strategy of control or a priori programme. The
degree of coincidence between the actual result or process pro-
duced by control and the result or process anticipated from the
a priori programme, is indicative, in particular, of the perfection
of the mathematical model or of our knowledge about the

" controlled plant.

However, a mathemancal model is a model and not the
phenomenon itself, and, apart from this, during the process of
realizing the a priori programme, the controlled plant can be
affected by a variety.of factors and perturbations which are not
taken into account in the model. This can lead to deviations,
and sometimes to substantial deviations, from the programme
results, which by definition are optimal.

If the programme is time scheduled, ‘use can be made of -

feedback to correct the effect of perturbations and inaccuracies
in the mathematical description so as to ensure an actual
programme closer to the optimal one.

The most completely represented by mathematical models
are control systems. Taking their case as an example, we will

consider the possible ways of realizing optimal programmes; in -

this instance, controll programmes.

A mathematical model of a control system is usually formed
by means of ordinary differential equations. The control pro-
gramme is broadly defined to cover the planning of the dynamic
characteristics of the control system, its programme of operation,
and the variation of the relationship. In all cases it is assumed
that the system is provided with complementary feedbacks which
improve the realization of the predetermined programme or a
priori programme.

(1) The desired dynamic characteristics of a system are

realized by complementary self-adjusting circuits, which in this
case are complementary feedbacks which improve the realization

of the predetermined programme of the control system of

operation. Figure I shows the well-known self-adjusting system
of an automatic pilot which controls the angle of pitch of an

aircraft!. The self-adjustment circuit changes the gain of the
angular velocity circuit such that the margin of stability of this
circuit is maintained constant. The correcting circuit 2 is selected
to obtain a sufficiently high gain K.- Under these conditions the
transfer function of the closed angular velocity circuit is close
to unity. Therefore,. despite the variation of the properties of
the controlled plant (owing to changes in flying conditions), the
dynamic properties of the angle of pitch circuit will be deter-
mined by the transfer function of the model, i.e. in all cases
they will be quite close to the predetermined or planned prop-
erties. Another example is the self-adjusting control system with
extremal tuning of the correcting circuits®>. Both examples refer
to continuously operating control systems. :

A somewhat special problem arises in the preservation of
planned dynamic properties for ‘single-action’ systems? for which
the behaviour is significant on a finite interval #(0 < ¢ < 1),
and for which the operating process is, as a rule, a transient
process. Here one meets with the problem of maintaining a
desired nature of transient behaviour, or a programme of
motion of the representative point in phase space, on condition
that the mathematical model does not exactly describe the
dynamic properties of the controlled plant, nor the perturbations
acting on the latter during the motion. Several possible ways
of solving this problem are now indicated with simple examples.

Let the mathematical model of the controlled plant be
represented in the form

4

X=u

&y

where x is the output coordinate and u is the controlling action.
~ Given the equation of the controller under the form

U= —agx 2)
the equation of the mathematical model of the system as a '
whole is

(3) .
Accordingly, for any initial condition x,, the process of motion
is characterized by an exponential with the exponent — a. Now

suppose that there is a suspicion that, in fact, the control object
is described by the equation

56=f,(x,u, t)

@
Jxu,)=—a(t) ¢(x)+F(O+u ®)

a(t), u, F(r) are random functions and qb.(x) .is also rahdom.
Here it is known beforehand that | a (1) ¢ (x) + F(#)| < | u]|.

where

-
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In this situation one can make a decision concerning the discrete
control of the plant, such that at each step it is possible to con-
trol the fulfilment of the a priori programme, which is expressed
as a function of time in the following manner:

‘ (6)

With discrete control we require for control a relationship
between the value of x (f) and the value of this coordinate at the
instant of time ¢ + Ay, i.e. the quantity x (z + Az). According
to (6) this programme relationship is given by the relation

x(t+At)=x(t)-e*"A‘ ‘ Q)

where At is the interral of discreteness or the step of control.
Using an analogy between the numerical solution of differential
equations by difference methods and the discrete control of
controlled plants, one writes the equation (5) in discrete form

X=xge

where

.f<t+%)=f|:x(t+%>,u<t+%£>,t+§:|

The discrete form (8) of the 'solutio.n of eqn (5) is used in the
method proposed by Bashkirov. (The method of Bashkirov is
described in the monograph by Popov:) According to eqn (8),
by measuring the value of x (¢) at each step one can select the

increment Au-at the instant ¢ - (A#/2) such that x (¢ + A#) is .

governed by condition (7). The diserete form (8) is convenient
in that the interval At/2 is available in the procedure for calculat-
ing Au (¢ + At/2). The information for calculating Awu (¢ + A¢/2),
apart from the known value of the desired x (¢ + Ar), is obtained
from the preceding values of Au and x. In the general case
Au (t + At/2) is calculated by the formula:

Au(t+%)=Au<t—%) l//[x(t+At) x<t—%) x(t— At)}

)
The form of the function ¢ depends on the particular theory of

extrapolation which is adopted.
The information about the preceding values of x and u also

includes information about changes in the properties of the

object and of the perturbation F (¢). The use of this information
for calculating Au (¢ + At/2) represents the additional feedback
signals, or self-adjusting signals, and makes it possible to realize
more accurately the desired programme of motion more exactly®.
Equation (5) and its results can be generalized without
difficulty to multi-dimensional systems of any order. In this
“case the equation of the controlled plant in the vector form is

dX

T fX,U0,1) (10)
where X is the vector with the components x; (( = 1,2, ..., n),
fis the vector with the-components f; ( = 1, 2, ..., n), and U is
the control vector with the components u; (i =1,2,...,9);

Yy <n

The maintenance of planned dynamic properties of single-
action systems can also be realized by a continuous control.
Suppose, for example, that the mathematical model of the
controlled plant is written in the form .

x(l+At)=x(t)+f<t+%>-At ®)
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X+tax=u “(11)

and | u| < u,
Suppose also that it is required to realize the system with
maximum opérating speed. According to Pontryagin’s principle®
of the maximum, the equation of the controller is of the form

u=—u,sign [x+f(ai,>'c)] (12)
However, there is a suspicion that in fact the controlled plant
can be described by the equation

x+ai () X+ai () x=u+F(1) (13)

In view of the incomplete information about a;* (¥), a* (¢) and
F () it is impossible to prescribe the control law of type (12)

“which ensure the maximum operating speed.

In view of this one proceeds as follows, forming the accelera-
tion control circuit X = n by means of the controlling action u
(Figure 2). If the pass band of this circuit is sufficiently high the
error &, = n,, — n will be close to zero and the programme
acceleration will be equal to the actual acceleration. In more
complex cases the acceleration control circuit, like the pitch
angle control circuit (Figure 1), can be a self-adjusting circuit.
If now the programme acceleration is close to the actual accelera-
tion, any desired variation of the coordinate x and its derivative
may be required. Thus, to form the system of maximum operat-
ing speed in accordance with the mathematical model (11), it is
sufficient to put

Xp=X=—a; X—uysign[x+ f(a;,%)] 149
The block diagram which realizes (14) is shown in Figure 3.
In expression (14) u, is always less than «, since some part of the
control resource u, = u; goes to compensate the perturbation
F(r) and to compensate the difference between the coefficients
a;* () and ay* () on the one hand and the coefficients of the
mathematical model @; and a, = 0 on the other. Thus, at the
expense of some reduction of operating speed (since u; < ug)
a definite realization of the programme for the optimum
transient process is obtained.

Any other law of variation of the coordinate x can be
required in this example. It may, for example, be required that
the transient process should take place in accordance with the
solution of a linear equation with constant coefficients

(15)

For this, it is obviously necessary to put X,, = — a;% — a,x.

Figure 4 shows oscillograms which have been obtained on
the electronic simulator for the case when | ay* (7)] < 0-05;
a* (1) < 1:0; a; = 04; a, = 0:04. The gain of the servo
motor of the acceleration control circuit was taken as 10 I/sec.
It will be seen from the oscillogram that the perturbation F (7)
and the fluctuations of the coefficients a;,* (£) and a,* (¢) have
no effect on the course of the coordinate x which is governed by
the solution of eqn (15).

The results explained by this example are also capable of
very wide generalization. The generalization consists in that
for a known indeterminacy of the properties of the controlled
plant and of the acting perturbations it is advisable to organise
a self-adjusting subsystem of rapidly varying coordinates of the .
controlled plant or of its higher-order derivatives. After the
programme variation of the rapidly varying coordinates or of

X+a;Xx+agx=0
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their higher-order derivatives has been largely determined by
this subsystem, the law governing the variation of the slowly
varying coordinates or lower-order derivatives of the output
quantity of the controlled plant can be built as desired. The
additional feedbacks which make it possible to realize the
required programme of dynamic properties of the system in the
example under consideration are the feedbacks amongst which
are the self-adjusting circuits for acceleration control.

Very often the realization of desired dynamic properties for
single-acting systems is handicapped by unfavourable combina-
tions of initial conditions. In non-linear systems these unfavour-
able combinations of initial conditions can lead to instability
of the process for a given realization. The effect of unfavourable
combinations of initial conditions can be eliminated by changing
the initial values of the coordinates and by the formation of special
signals which act on the system and which are functions of the
initial conditions. Briefly, this means creating special feedbacks
with respect to the initial conditions. The idea of using feedback
with respect to the initial conditions has already been published
in a paper by the author®.

(2) In developing systems with programme control of the
output coordinates of the controlled plant use may, to a large
extent, be made of the foregoing ideas and methods which relate
to the realization of programmed dynamic properties of control
systems.

Suppose, for example, that it is required to vary according
to the programme g, (¢) the output coordinate x () of the con-
trolled plant (Figure 5). For this the input of a closed system
consisting of the controlled plant and the controller receives the
programme signal g, (£). For a system with a high pass band,

_if no perturbations are present, it is well known that x = g,(#).
However, a random perturbation which is not taken into account
can considerably distort the desired programmed variation of
&,r(0). In order to fulfil more accurately the programme, an
additional feedback is formed (shown by the dotted line in
Figure 5) and the programme correction circuit abcdega is there-
by formed. The programme signal g, (#) is compared with the
actual signal and the difference signal acts at the input to the
fundamental system via a self-adjusting correction circuit with
a high gain Wx. The correction circuit-may consist of the
elements 2, K, 6,7, 8,9, 10 and 11 which are shown in Figure 1.
Assuming, for the sake of simplicity, W; = K, the following
operator relationship is obtained between the input and output
for the circuit of Figure 5:

_$w(1+K)
1+Ko(p)

¢:(p)

IO

oD+ 16)

where
W,

and ¢,(p)= [EN7ATA

¢(p )—1+WW

and expression (16) can be written as
1. .
—=+1
00(+1) B L
1 K
Id +¢(p) T +¢(p)

It will be seen from (17) that if K— o
x=gp (1)

x= g (D+ 17

(18)
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independently of the action of the perturbation F(f) and the
fluctuations of the parameters of the controlled plant. It is
understood that in this case condition (18) is fulfilled approxi-
mately since K = oo is not realizable in actual conditions.

Another example of programme control is the method of
stabilizing acceleration (Figure 2 and 3) with subsequent con-
struction of the desired programmed variation of the coordinate
X, by means of a computer.

Using this method the ‘logarithmic navigation’” can be
realized when the acceleration according to the programme
k %/x, and consequently, the coordinate x is the solution of the
differential equation

xX—kx=0

A very important case of programme control is that when it is
important to maintain a functional relationship between one
coordinate and another. For example, the optimum programme,
as regards operating speed, for the altitude and speed of an
aircraft, as calculated, for instance, by the method of dynamic
programming, is a programme in the coordinates H and V,
i.e. it is given as a functional relationship H,, = H,, (Vyr)
(Figure 6), both the quantities H and V here being the output
coordinates of an aircraft controlled by the altitude rudder (the
thrust of the engine is usually maximum in this case). The
relationship H,, = H,, (V,,) can always be represented para-
metrically:

Hpr = le' (t)
Vor (1)

The altitude control circuit H can now be formed by the usual
method (Figure 7). If the system is unaffected by perturbations
and the calculated characteristics of the aircraft coincide with
the actual characteristics, and if the atmosphere through which
the aircraft is flying remains standard, the completion of the
programme H,, (f) will at the same time imply the completion
of the programme V,, (¢), and consequently of the programme
relationship H,, = H,, (V,,). However, if all the stated condi-
tions are not fulfilled, the completion of H,,, (r) will not generally
imply the fulfilment of ¥, (f), and consequently the completion
of H,, = H,, (V). For the planned programme H,, = H,, (V)
to be fulfilled with acceptable accuracy, it is necessary to intro-
duce a programme correction circuit®. For this purpose the
programme value of speed is compared with the actual speed
and the difference in terms of the transfer function W;, changes
the rate at which the programme is delivered, i.e. the speed of
the clocks of the programme mechanisms H,, and V,,, (Figure 8).
As a result the speed of the clock mechanism of the programme
is not uniform and the programmes H,, and ¥, become func-
tions of some irregularly varying argument 7, i.e. H,, () and
V, (). Elimination of the argument 7 again brings us back to
the original relationship H,,.(V,,). However, insofar as the rate
of delivery of the programme signal H,, at the input of the system
conforms to the fulfilment of the speed programme, the accuracy
of the realization of H,, = H,, (V,,) is substantially increased.
A similar circuit can be constructed for the motion of some
controlled plant along a prescribed unperturbed trajectory
¥, = ¥, (x,) in the coordinates x, y (Figure 9). However, this
report is confined to the plane problem. Suppose that the speed
of the object is ¥ and that the orientation of the speed vector
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is characterized by the angle y. The obvious relationship bet-
ween the coordinates x, y and the speed is expressed as follows

y=Vsiny+W, . " (19)
x=Vcosyy+W, (20

where W, and W, are perturbations in the form of speeds of
displiczment of the environment relative to the system of co-
ordinates x, y. [In the formulae (19) and (20) the actual values
of the coordinates of the controlled plant are used. The values
of the desired unperturbed trajectory are denoted as x, and Vel
Consider the kinematic problem, i.e. suppose that the angle P
of the speed vector can be arranged arbitrarily. On this assump-
tion the control circuit for the coordinate y is formed. Here it
is required that )

siny=k,¢ 21

where
E=y,=y (22)

the term y,, = y,, () here being the programme value of the
coordinate y, whlch does not coincide, as will be seen below,
with the unperturbed value Ve =y,(®."

The equation for the coordinate y is found from the equa-
tions (19), (21) and (22):

PV, y=Vk, v, ()+W, : (23)

Assuming y = y, + Ay, we obtain now the equation for the
deviation Ay from the unperturbed motion

Ay +Vk,Ay=Vk V=Y =Y+ W, (24)

It is worthwhile selecting the programme signal Yor. in accordance
with the formula

—yr e
ypr>_ yc + Vka (243)

_For this value of the programme signal, eqn (24) becomes

Ay+Vi, Ay=W, ' (25)

This implies that in the absence of the action W, the deviation
from the unperturbed projectory will tend to zero. A constant
action will cause a constant error.

The control block diagram for the coordinate y is shown in
Figure 10. 1t is obvious that a single control circuit according to
the coordinate y cannot ensure the necessary control of the
coordinate x or the fulfilment of the required programme
Ye = ¥, (x,). According to the circuit shown in Figure 10, the
coordinate x varies according to the expression

t t t : .
x=Vf costl/edt—Vf tany,-Aydi+ | W,.dt (26)
' 0 ) 0 :

The first term in eqn (26) is the desired unperturbed value of

X = x,, the second term can be limited, since it is. determined
by the error in the circuit for the stabilization of y, and the third
term for W, = const will continuously increase. In order to
realize the programme of motion along the unperturbed trajec-
tory it is necessary to proceed in the same way as in the previous
case (see Figure 8), i.e. it is necessary to form, by measuring the
error x,, — X, a signal which acts on the speed of the programme
mechanism y,,. (v) and x,,, (7).
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It should be noted that it is much simpler to correct the
programme by varying the speed of the programme clocks if
in the first example d¥/dr > 0, and in the second example if
dx/dt > 0. Generalizing, this method of correction to the pro-
gramme of a system with n coordinates and y controlling devices,
we shall note that in this-case the argument of control (the non-
decreasing coordinate ¥ in the first example, and the non-
decreasing coordinate x in the second) should be any constant
sign form of system derivative?.

Frequently this form of coordinate originates naturally from
the statement of the problem. For example, this is the case if it
is required to control the ingredients of a mixture as a function
of the volume of this mixture when this volume is varying in a
monotonous way.
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1 - object: 2~ correcting circuit; 3 —model; 4,5 — measuring devices

for the angular velocity O and the angle 9; 6, 7 — detectors; 8, 9 — high
and low pass filters; 10 — servo motor; 11 — limiter
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