50X1-HUM

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

ed for Release

2001300040009-0

Declassified in Part - Sanitized Copy

INTRODUCTION

In this volume, lectures to the workers of the Laboratory of Mathematical Machines of the Czechoślovakian Academy of Sciences held at the Working Conference in Dome by science worker J.E.Purkyne in December 1952 are published. The next volume will contain works in the field of computers for processing data submitted by the above-mentioned Laboratory. The acceptance of the works is the province of the Science Council of the Laboratory for Mathematical Machines.

The main purpose of the first volume is to acquaint a wide public with an outline of the work carried on at the Laboratory for Mathematical Machines in the field of automatic computing. The text of the manual is the work of the staff of the Laboratory. The results of the original works were reviewed, and the most important items selected for publication.

The formulation of the central automatic calculation, its codes, the method of construction of the computation are the work of Antonin Svoboda.

The adaptation of the codes in conformity with the constructive requirements of the machines and the extension of the codes necessary for time-saving are the work of Vaclav Cerny. 3 ⇔_

The examples of the manual were prepared by:

1.0

Declassified in Parl

Jan Oblonsky (The computing of cos x), Olga Pokorna (The Geometry of Problems 30 in Optics), Zdenek Pokorny (The Computing Problems in Optics), Jiri Raichl (The Computing of Solutions of Differential Equations).

The formulation of the multiplication perforations and their codes is the work of Antonin Svoboda.

The investigation and execution of the multiplication perforations are the work of the Aritma Research Institute.

The methods of solving the problems described in the second part of the manual and the applied symbols (Operating Tables) are the work of Jindrich Mark.

i

CIA-RDP81-01043R001300040009-0

Sanitized Copy Approved for Release 2012/12/11

The staff of the Laboratory for Mathematical Machines had to overcome many basic difficulties. Thanks are due to all who contributed their active support, particularly the Czechoslovakian Academy of Sciences, in whose framework the Laboratory for Mathematical Machines has been successfully developed, and the Mathematical institute of the Czechoslovakian Academy of Sciences, especially its Director, Academician E.Cechovi, who has lent his unselfish support to this development for a number of years. Thanks are also due to the research workers of Aritma for willing and dewoted collaboration.

Thanks are also due to the staff of the Laboratory for Mathematical Machines, and particularly to those members whose collaboration facilitated the preparation of this Manual. Prof. Dr. Hruska carried out the critical scientific examination of the manuscript. Special thanks are due to the Prague printers, shop 05, their Manager K.Wickovi and especially their type setters, who composed even the most difficult parts of the text and tables unusually carefully and in the shortest time.

ii

CIA-RDP81-01043R001300040009-0

Approved for Release 2012/12/11

Prague, 31 December 1952

Declassified

0

Collective IMS

INTRODUCTION TO METHOD OF OPERATION AT AUTOMATIC CALCULATION

CHAPTER I

AUTOMATIC CALCULATION

1.1. Survey

Calculation, logarithmic and other tables are the oldest aids to rapid numerical calculation. In later years computers were designed and developed for completely automatic calculation.

The employment of computers is today so widespread that everybody has at least a clear idea of their use.

A computer has a keyboard for the digits and various operation keys for the solution of operations with digits. When operating the calculating machine, the operator reads from the formula the numbers on which he has to operate, sets them in the machine, carries out the necessary operation, reads off the results, and inserts it into the formula. The transfer of the numbers from the formula to the machine and of the result from the machine to the formula is not as difficult and tedious a job as the execution of arithmetical operations with pencil on paper. The computer carrying out such arithmetical operations rapidly is desirable not only because it accelerates the work but also because it facilitates and improves it by excluding calculating errors.

An automatic computer is a machine which carries out automatically a large number of arithmetical operations, automatically manipulates the numbers on which it operates, and automatically adjusts itself to the operating procedure.

It is incorrect to describe the computer without the last of the mentioned characteristics. According to this incorrect description, the automatic computer is based on the simple mechanization of the working procedure of the calculator using the calculating machine. Such an automatic calculation would mean only the acceleration of numerical calculation carried out by the mathematician in the usual

1

0

WEY. The working procedure would be planned according to the old methods of numerical calculation, and the solution of the problem with the automatic calculator would consist only in the calculation of terms in advance of their fixed positions in a planned and known sequence.

The first "automatic calculators" were the result of constructions according to this naive description. This was a type of calculating machine, consisting of a combination of machines with which the operator calculated formulas mechanically. The gadget which controlled the sequence of manipulations and operations with the numbers resembled a telegraph transmitter. A group of openings in perforated paper tape was scanned and the place of transmission of the imprint carried the manipulation and operation with the numbers inside the calculator.

The modern automatic computer does not proceed slavishly according to a preliminarily-prepared sequence of manipulating and operating commands, which are called the instructions. The automatic calculator described in the first part of this manual selects while calculating the instructions in dependence on the results of the operations and usually creates regularly new instructions when old planned instructions are absent. The plan according to which the selection of instructions is carried out and the creation of new instructions is called the instruction network. We shall see that such a plan differs substantially from the instruction sequence of the instruction-machine part with scanning of the telewriter tape.

The development of the numerical method of calculating has been greatly influenced by every advance in the art of calculating means. When, however, the influence of logarithmic tables and calculating machines is compared with the influence of automatic calculators, it is seen that the change in the method of numerical calculation was a revolution. Specifically, with the classical method it was sought to decrease the number of numerical operations or to simplify them (e.g., replacing multiplication by addition). The extremely large number of operations made this expedient impracticable. The modern method of automatic calculation

2

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009

disregards the number of operations, so that it can utilize the calculating methods which are impracticable from the viewpoint of the classical method. (For example, the functional value of a trigonometric function is found in the classical method with the help of a Table, while with automatic calculation any such value is easily and advantageously calculated as the sum of the members of the corresponding polynominal). In automatic calculation, a large number of operations is not disadvantageous because its operating speed is considerable.

The application of automatic computing to the solution of technical and research problems has, however, one fundamental trait which should be stressed: every solution of a problem with automatic calculation represents a complex mathematical experiment carried out according to arbitrarily-established conditions. By varying these conditions and comparing the variation in the results it is often possible to find the answers to other accompanying disagreements. The employment of automatic calculation, of course, brings to light purely theoretical questions, which in many cases serve as the starting point for new research in other fields of mathematics.

INTRODUCTION TO THE METHOD OF OPERATION

1.2. Calculation by Formulas

In formulating a working procedure for automatic computing, the start is made with the classical calculating method by formulas. The working procedure begins with the selection of a suitable numerical method, the notation of the mathematical expressions, the analysis and planning of the operations, the selection of the starting values, and the preparation of the formulas. If the starting values are arranged according to a single index (in sequence), the calculating is carried out with the help of the single formula in the form of separate Tables. At a large number of independent variables (large number of indexes) a bound volume of Tables or a whole series of such volumes is prepared.

The formula with the plan of operations constitutes a model of the selected

.3

370

calculating method. An example of a classical formula is shown in Fig.1.1. The last column, the values of g_s are calculated in succession with the help of the formula from the values of s given in the first column according to the expressions given in the headings of the columns. These constitute the instruction series.

The operation procedure when working by formula begins by taking one, two or more of the values written in the formula, proceeding with the operation in accordance with the expressions in the headings of the columns, and finally noting the results in the corresponding places of the formula. The columns are filled with various values of the same variables, while the lines contain the values of various variables which are operationally dependent on each other.

The operations in working by formulas are usually carried out with the calculating machine or with the help of Tables. The formula is usually arranged in columns because the arrangement in line has great disadvantage when using the calculating machine and Tables. On the basis of the columns already filled, the unfilled columns are filled. At the filling of the same column the operation remains unchanged for all of its places, the computer remains set for the same type of operation, the values vary regularly, the setting of the values in the machine and their registration are regular. Thus it is little fatiguing, easily supervised, and therefore reliable.

The working procedure such as filling a formula by columns is suitable for devices operating with perforated plates. It is unsuited as the basis for the plan of operational sequence in automatic calculation, because it makes impossibly high demands on the memorizing capacity of the machine.

1.3. Instructions

In calculating by formula, the instructions constitute the directions for filling further places in the formula. The instructions, therefore, contain the following information:

whence: from which place of the formula to take the number to be operated on;

CIA-RDP81-01043R001300040009-0

4

roved for Release 2012/12/11

direction: how to operate on the taken number;

where: into which place of the formula to insert the result.

For the working procedure by formula shown in Fig.1.1 a sequence of operations of this type can be prescribed. The number of terms of such a sequence will be equal to the number of operations necessary for filling the formula (counting one operation for each place). By selecting suitable symbols the instructions for the formula can be prepared. While such instructions are never prepared in practice, it seems desirable for the present purpose to explain the working procedure at automatic calculation.

20- 1.4. Instruction Symbols

Declassified in Part

0...

1.

1

1 1

16

18_

34

The address is the number which clearly expresses the place of the formula. The address determines the place from which the number to be operated on is taken, and the place where the result of the operation is noted. The address also denotes the place into which the instruction is written. If it is not expressly desired to state the content of a place, i.e., whether by number or instruction, the expression "word" is used for the content of the place.

The number assigned to the address a is denoted by the symbol $\langle a \rangle$.

The instruction assigned to the address b is denoted by the symbol .

The equation $x = \langle a \rangle$ means either of the following two expressions: "x = the number assigned to the address a", or "the number assigned to the address A = x".

No developing character is attributed to the equation. The equation is simply a verifying equality.

Operations: An operation here is every fully defined working procedure by which a new item of information is obtained from a previous item of information. Arithmetical operations are denoted by the usual symbols. If it is desired to express the value to be operated by a given address the simple symbol < > is used as defined in the preceding paragraph.

5

RDP81-01043R001300040009-0

STA

2<u>3</u>0

1				· · · · · · · · · · · · · · · · · · ·	-	are assessing the column							
		(x). 1.				(s) N			$(\cos \Lambda_{2}^{(2)})$	0,55.0			
	<u>بر</u>	Т. ⁴ . Г. о				۰, ۱.0 , ⁰ 00		i	(8) - 19 (8) - 1	(s) X (s).	ж Ж		
	(w/10	150° 6.111	$_{1}^{(s)} X_{1}^{(s)}$	(a)* X ^(s)	0.1 . <i>*</i>	- 116.5 ⁰ 1	sin $X_{3}^{(s)}$	r.os X (⁸⁾	0.707.) A	$\frac{1}{\sin \sqrt{2}} \frac{0.707}{1}$		ortula	
0	20 0.00000	40 450,000	60 0.50000	80 0,86603	1-040 	420 	140 0.89493	160 0.44620	180 0,84571	200 0,63313	220 1.11608	iz_	
1	$\frac{21}{0,25892}$	41 148.418	#1 0.52371	81 0.85189	101 0.1		Contraction of the second s	-0.30071		201 0,56310	221 1.11777	'n bŗ	\$
2 2	22 0.58489	42 146.426	62 0,55306	82 	102 0.2	122 98.50	142 0,98902	$162 \\ -0.14781$	182 0,93491	202 0,49224	$\frac{222}{1.11647}$	ation	Ψ.
3 3	23 0,99526	43 143.917	63 0.58901	83	103 0.3	123 - 89,50	$143 \\0.99996$	163 0.00873	483 0,36641	203 0.42382	223 1.11357	lculat	
4	24 1.51189	44 140.761	64 0.63256	84	104 0.4	124 80.50	144 - 0.98629		184 0.98968	204 0.36164	224 1.11025	- Cal	
5 5	25 2.16228	45 136.786	85 0.68472	85 0.72880	105 0.5	125	145 0.94832	165 0.31730	185 1,00567	205 0.31022	$\frac{225}{1.40764}$	-	
6	26 2.98107	46 131.782	66 0.74568	86	106 0.6	126 - 62.50	$ \begin{array}{r} 146 \\ 0.88701 \end{array} $	$ \begin{array}{c} 166 \\ 0.46175 \end{array} $	$186 \\ 1.01505$	206 0.27496	$\frac{226}{1.10593}$	[•3]	
7	27 4.01187	47 125.483	07 0.81428	87 0.58046	107 0.7	127	147		187 1.01782	207 0,26246	$\frac{227}{1,10484}$	μ.	STA
8 8	28 5.30957	48 117,552	68 0.88659	88 -0.46255	108	128 44.50	148 0,70091	168 0.71325	188 1.01232	208 0.28069	228 1.10358		
9	28 6.94328	49 107.569	69 0.95336	89 0.30185	109 0,9	129	149 0,58070	$\substack{169\\0.81412}$	189 0,99341	209 0,33883	229 1,10167		
10	30 9.00000	50 95.000	70 0.99619	90	110	130 - 26.50	150 0,44620	170		210 0.44617	230 1,10104		

POOR ORIGINAL

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009

0		
Thus	, for example:	a the second to address a
n in	<a> + 	denotes addition of the numbers assigned to addresses
		a and b.
t l L	sin	denotes the sine of the argument assigned to address p;
1	<m> + n</m>	denotes the addition of the number n to the number as-
1		signed to the address m;
	m + n	denotes the addition of m to n;
	<2> x <3>	denotes the product of the numbers assigned to the ad-
•••••••******************************		dresses 2 and 3.
	Derrolonment. The	result of the temporal development of the working procedure
	-	
is (denoted by the deve.	lopment-sign \rightarrow , at which: denotes the number x substituting the number assigned to
	x → <a>	
		address a;
•	<a> → 	denotes the number assigned to address "a" substituting
•		the number assigned to address "b";
•	<c> → λ</c>	denotes the number assigned to address "c" substituting
•		the number y;
- - -	x → y	denotes the number x substituting the number y.
	< a > + → <c></c>	denotes the addition of the numbers assigned to ad-
1		dresses a, b, substituting the number assigned to
ann an Airtean Airtean an		address c;
ے ۔ پ	n + 2 → n	denotes the addition n + 2 substituting the number n;
4.		to start the addition of the number assigned to address a
a Ali Ali ang	<a> + <a> → <a>	to the (same) number assigned to address "a" substi-
1		tuting for the number assigned to address "a".
		ion illustrates the intermediary character of the working pro-
		ss "a" the number $\langle a \rangle$ is taken twice. The addition of $\langle a \rangle$ +
. +	$\langle a \rangle = 2 \langle a \rangle$. This r	esult is assigned back to address "a". After carrying out the

7

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

. Å.,

4

STAT

2.61

instruction, it is obvious that the number on address "a" will be twice what it was before. The development sign must never be substituted by the equal sign.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

The symbols connected by the development sign constitute the operation symbol. To the left of the development sign of this symbol is the operation prescribed by the operation sign, whose execution gives the resultant information. The development sign symbolizes the working procedure, in which the originally filled right side of the operation symbol with the development change in the resultant information is defined by the left side.

The unfilled instruction symbols just defined are sufficient for specifying the working procedure for filling the formula of Fig.1.1. This specification is briefly set forth in Fig.1.2 in the form of the sequence of operation symbols. Such concrete calculating instructions do not have much practical value for a calculation by formulas, and its mechanization leads to the conception of automatic calculation of an obsolescent type.

A cursory glance at Fig.1.2 shows that some of the operation symbols have a common form, although the contents differ. The necessity may arise of carrying out an operation for changing the content of an instruction. It may also sometimes be desirable to repeat a same instruction two or more times. All that is necessary for doing this is to select between the instructions as required during their execution.

If after the end of an operation this latter is continued according to an instruction selected from a number of possibilities, the possibility is obtained of ramifying the working procedure in dependence on the result of the final operation. If one of the branches which has been formed in this way is introduced into an instruction which has already been carried out, an iteration process is obtained. For facilitating the description of the iteration process, the instruction symbols are supplemented by the instruction symbols of several data.

<u>Complete Instructions</u>. The symbols presented above contain the following information: from where to take the number to be operated on, how to carry out the

8

CIA-RDP81-0104

oved for Release 2012/12/11

Statement Production of the

Declassified in Part

STAT

operation, where to assign the result. The specification is supplemented with:

The address to which the instruction is assigned so that it can be continued if the result of the operation is negative.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009

0

ĉ.

12.

16

18 ...

20.

Nr.,

34

31

10

ð

ì

امین این این ۱۹۰۰ (۱۹ The address to which the instruction is assigned so that it can be continued

1 ^{01/(0)}		(20)
$10^{(1)/10} - 1$	>	$\langle 21 \rangle$
ف • •		· •
• • •		
$10^{(10)/10} - 1$	→	$\langle 30 \rangle$
$150^{\circ}-6$, 111° , $\langle 20 angle$	• ->	〈40 〉
$150^{\circ}-6$, 111° , $\langle 21 angle$	·	< 41>
• • •		•
• • •		•
• •		•
$150^{\circ}-6$. 111 $^{\circ}$. $\langle 30 angle$	>	$\langle 50 \rangle$
$\sin \langle 40 angle$	\rightarrow	(
		•
• • •		
•		•
		•
•		
$\langle 180 \rangle^2 + \langle 200 \rangle^2$	>	$\langle 220 angle$
$\langle 181 \rangle^2 + \langle 201 \rangle^2$		221 >
• • •		•
· · ·		
• • •		•
$\langle 190 \rangle^2 + \langle 210 \rangle^2$	>	$\langle 230 angle$

Fig.1.2 - Instruction Sequence of Expressed Operation Symbols

if the result of the operation is positive.

The use of two addresses in each of the instructions assumes that each of the instructions has its own address, at which the specification is revoked. Complete general instruction symbols are assigned to a formula according to the following model:

The first column contains the address to which the instruction is assigned, with the specified symbol on the same line to the right. The second column is the

9

CIA-RDP81-01043R001300040009-0

operation symbol. The third column is the address to which the instruction is assigned if it is to be continued in the event that the result of the operation is not negative. The fourth column represents the address to which the instruction is assigned if it is to be continued in the event that the result is negative.

		T	
		 1	
.+A	$\langle a \rangle + 1 \rightarrow \langle a \rangle$	AB	AB
AB	$\langle a \rangle = \langle N \twoheadrightarrow \langle b \rangle$; AC	.4.4
AC	$0 \rightarrow \langle a \rangle$	AD	.4D

Fig.1.3 - Group of Complete Instructions in General Form

If the addresses in two successive columns are equal to each other (as is the case with instruction! <AA> and ! <AC>, the operation is continued regardless of the sign for the result obtained in the operation. With instruction ! <AB>, instruction ! <AA> is repeated until the number on address "a" has increased at least to N.

6

Fig.l.4 - Development Diagram Corresponding to Group of Instructions of Fig.l.3

Declassified in Part

Then the operation is continued according to instruction ! <AC>.

The addresses of the instructions in the general instruction symbols are usually denoted by two capital letters.

The instruction network is completed by the logical joining of the system of instructions according to which the given problem can be solved.

CIA-RDP81-01043R001300040009-0

STAT

The working procedure is often represented in the form of the development diagram, in which the instructions are expressed by graphic operation symbols entered in the fields. The fields are joined by arrows indicating the development of the working procedure and its ramification in dependence on the sign of the result of the operation. A simple example of such a diagram is shown in Fig.1.4. In complicated cases it resembles a network with many branches, and is appropriately known

Sanitized Copy Approved for Release 2012/12/11

0 as the instruction network.

2.5

ť

15.

18.

2.1

13

4

فرجنيه

The working procedures specified in Figs.1.3 and 1.4 are concordant.

1.5 Example for an Instruction Network

The preparation of the instructions is carried out first purely by formula, in order not to have to include new terms, which might give rise to difficulties.

a)	b)		Instruction	+	
	0 -= <0>	!Q0			
	1 <1>	!Q1			
	2 == <2>	!Q2			
	$X = 1.44 \Rightarrow \langle 3 \rangle$!Q3			
	$e = 0.001 = \langle 4 \rangle$			• •	
	$x_n = \langle 5 \rangle$		21 ZEN		AB
$\begin{array}{c} x_0 = 1 \\ X/x_n \end{array}$	$\frac{X}{x_n} = \langle 6 \rangle$	АА АВ	$ \begin{array}{c} \langle 1 \rangle \rightarrow \langle 5 \rangle \\ \langle 3 \rangle : \langle 5 \rangle \rightarrow \langle 6 \rangle \end{array} $		AC AC
$\left \frac{X}{x_n} - x_n \right = q$	$q = \overline{1}$	AC	$ \langle 0 \rangle - \langle 5 \rangle \rightarrow \langle 7 \rangle$		AD
$\begin{vmatrix} x_n & \\ q = e \end{vmatrix}$	q - e = 7	AD	$\langle 7 \rangle \cdots \langle 4 \rangle \rightarrow \langle 7 \rangle$	AE	AG
$\frac{1}{x_n} + x_n = 2x_{n+1}$	$2v_{n+1}=7$	AE	$\langle 6 \rangle + \langle 5 \rangle \rightarrow \langle 7 \rangle$	AF	AF
$\begin{array}{c} x_n \\ 2x_{n+1} : 2 = x_{n+1} \end{array}$	$x_{n+1} \rightarrow x_n$	AF	$\langle 7 \rangle : \langle 2 \rangle \rightarrow \langle 5 \rangle$		AB
c)		$\mathcal{A}G$			

Fig.1.5 - Instruction Network for Root Extraction expandiciona a) Mathematical **field** (Rozbor); b) Address (Slovnik)

c) Stop, perforation

Let us calculate the root of 1.44 by the iterative process, defined by the

relation

$$x_{n+1} = \frac{1}{2} \left(\frac{X}{x_n} - x_n \right)$$

for $n = 0.1, \dots, x = 1, X = 1.44$.

The condition for continuing with iteration is

$$\left|\frac{X}{x_n}-x_n\right|=q\geq e=0,001.$$

11

STAT

The result is regarded as the final value of x_n .

Procedure at a Proposed Instruction Network

First select the address to which the constant is assigned. Then form in succession the values expressing the variables. First calculate q which furnishes the criterion for continuing with iteration. If q is not smaller than e, calculate $x_n + 1$, repeat the calculation of q, and according to its value continue with iteration, or terminate the iteration and enter the result on the card. A working specification of a proposed instruction network is given in Fig.1.5.

Investigation of the working procedure given by this instruction network prepared by the formula shows that a total of 8 fields (addresses) is sufficient. At actual calculation, however, it is often necessary to specify names in several fields. An example of the changes in this formula is presented in Fig.1.6. In the sixteen columns of this Table, the sequence of the development of the whole formula is shown according to the instructions denoted by the addresses in the headings.

AUTOMATIC CALCULATION

1.6. Simple Scheme

0.

1

14

The working procedure of automatic calculation is illustrated in the form of a very simple scheme in Fig.1.7. The principal parts of the automatic calculator are shown:

the memory - representing the formula;

the control - representing the calculator;

the operational units - representing the Table and the computer; the entrance - serving for feeding the initial information; the exit - serving for reading off the result.

1.7. Working Procedure

Before starting to calculate, the prepared batch of perforated cards containing the initial numerical data and instructions is placed in the inlet. The automatic

STAT

293

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5		. 7. 3. 		30 32 34		2 0	6		STAT
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			a)								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	AA	AB	AC	AD	AE	AF	AR	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0	0	0	0	0	0	0			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		· 1	(1,00000	1,00000	1,00000	1,00000	1,00000	1,00000			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2	2.00000	2,00000	2,00000	2,00000	2,00000	2,00000 ~			<i>·</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	1,44000	1,44000	1,44000	1,44000	1,44000				University of the second se
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	0.00100	0.00100	ر 0,00100 ک	ر 0.00100	0,00100	0,00100			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	Ĺ	1,00000	1,00000	1,00000	ر 1,00000	1,00000	1,22000	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ម		Ľ	1,44000	1,44000	1,44000	1,44000	1,44000	Υ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7			Ľ	0,44000 L	0,43900	2,44000	2,44000	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		·	AC	AD	, 	4 F	4.0	10			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L'	0	0								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		t	1,00000								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	2,00000								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	1,44000		}		-				
$5 1,22000 \qquad 1,22000 \qquad 1,22000 \qquad 1,22000 \qquad 1,20016 \qquad $		4			Ý						
$6 \qquad 1.18033 \qquad 1.18033 \qquad 1.18022 \qquad 1.1802 \qquad 1.1802 \qquad 1.1802 \qquad 1.18022 \qquad 1.18022 \qquad 1.18022 \qquad 1.1$		5				Y					ь)
- 1,18033 1,18033 1,18033 1,19984 1,19984 1,19984 1,19984		6	Ĭ		(1,20016 -	
$7 \rightarrow 0,03967 \downarrow 0,03867 \downarrow 2,40033 f 2,40033 2,40033 \downarrow 0,00033 \downarrow -0.00067 -0.00067$		-		¥	A.			· · · · · · · · · · · · · · · · · · ·	1,19984	1,19984	

Fig.1.6 - Film Strip of Contents of Memory at Root Extraction

According to Instruction Network of Fig.1.5

a) Address instruction; b) Result

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009

ير ب

Ò. computer reads off the information on the cards and assigns it to its memory. The 2 --memory, which represents the formula, stores the initial data. After starting the 4. machine, the control selects from the memory the first instruction, composed of the б_ operation sign and five addresses i, j, k, r, s. The control selects the numbers 8 ---- 8 from the memory of addresses i, j, and sends them to the operation unit. Simulta-10 ---neously, the control acts on the operation unit in such a way as to carry out the 12 operation specified by the sign f. The result of the operation is assigned by the]4... control to the memory of address k, where the sign of this result is read off. 16 ---After setting the read-off sign, the control selects the next instruction from the 18 ... memory of address r (if the result is positive), or from the memory of address s 20___ (if the result is negative). 22___

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

The automatic computer proceeds in this way from instruction to instruction, pursuing various paths in the instruction network, until it arrives at the instruction which gives the command for stopping the machine. The result of the calculation is then already prepared in the memory and recorded on the batch of perforated cards prepared in the exit.

48___

50L

52---

54 _

58. 58.

£ί

Declassified in Par

14

STAT

29,

Fig.1.7 - Idealized Scheme of an Automatic Computer CONTROL MEMORY a) Entrance; b) Memory; c) Control; INSTRUCTIONS d) Memory; e) Operational unit; f) Exit

Part

STAT

CHAPTER 2

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

CODES OF AUTOMATIC CALCULATOR

WORDS

2.1. Words

The automatic computer processes information according to words, sometimes created, of invariable magnitude. Each work is composed of 32 binary numbers, which just fills one place in the memory (denoted by one address). Of these 32 numbers, 31 are carriers of specific information, while the remaining number is formed in dependence on all the other numbers of the word in such a way that the sum of all 32 numbers of the word is odd. The dependent number is called "parity". If it is denoted by a question mark and the other numbers by dots, we get the picture of the word

?

The parity serves for verifying the correctness of the transfer of the word to the machine.

By definition, the number or instruction is the word. The specification by which the number or instruction is expressed by a word is called the code.

CODES OF NUMBERS

Our automatic computer employs for the depiction of numbers two different codes: Code B and Code D. If the number is given in the binary form, it can be directly depicted by Code B, while if the number is given in the decadic form it can be directly depicted by Code D.

2.2. Code B

The automatic computer works with the binary number N given on 24 valid binary numbers. The highest valid digit of such a number may have various orders of

STAT

magnitude depending on the position of the binary decimal point. It is very advantageous to place the binary decimal point in such a way that it stands close to the left ahead of the highest valid digit of the given number, and so that a new number is formed whose product of multiplication by the corresponding power of 2 is equal to the original number.

For example, the number

IIII0000IIII,0000IIIIIIII

Is in this way transformed to the product of

,IIII00001111000011111111 . 2¹².

The number formed by this transformation is called the "binary numerical picture X" of the number N. The power of two is called the "Exponent P". The absolute value of the given number N is then expressed by the double number X, P, at which there is valid

 $|N| = X \cdot 2^P$

and at the same time

$$2^{-1} \leq x < 2^{0}$$

The symbol of the number N is depicted by the binary digit Z. At positive N Z = 0, at negative N Z = I.

The absolute value of the exponent is expressed by a five-place binary number, the symbol of the exponent is expressed by the binary digit z according to the same specification as with the symbol of the number N.

The word depicting the number N according to Code B is formed according to the example

?	II.	Ż		2
parity	binary numerical picture of X	symbol expo	absolute value onent	symbol for number N

Before the particular word depicting zero is introduced, the latter cannot be expressed at all because the first digit of a nonzero binary numerical picture is

17

-RDP81-01043R001300040009-0

always I. Zero is expressed by a word according to the example

2:3: Code D.

The automatic calculator receives and delivers decadic numbers N with 6 valid decadic digits. As with Code B, the decimal point is placed in such a way that it stands to the left ahead of the first valid digit, and so that the formed number is multiplied by the corresponding power of ten. The absolute value of N is then expressed by the double number T, Q at which is valid:

 $|N| = Y \cdot 10^Q$

and simultaneously

$$10^{-1} \leq r < 10^{0}$$
.

The symbol of the number N is expressed by the digit Z, and the symbol of the exponent Q is expressed by the digit z in exactly the same way as in Code B.

Six decadic digits of a decadic numerical picture Y are expressed by six fourplace binary numbers according to the model.

The absolute value of the exponent Q is expressed by a five-place binary number, whose highest digit is always zero.

* The binary numerical representation is denoted with the corresponding octet in such a way that the triplets of the binary number are expressed in succession by the octic digits 0, 1, 2, 3,,4, 5, 6, 7. For example, the binary numerical representation.

,III 100 001 III 000 0II III III

is denoted in the form of

,74170377.

In Code B, the exponent P is also affixed to the octet.

18

STAT

The word depicting the number N according to Code D has the form
?
, Z
parity decadic number of picture Y
symbol absolute symbol for
value, number N
exponent

classified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

For example, the number - 45,0769 is expressed according to Code D by the word I , 0100 0101 0000 0111 0110 1001 0 00010 I

2.4. Numerical Range of Machine

The numerical range of the machine is determined by Code B and not by Code D. Therefore the automatic calculator calculates only with the numbers depicted according to Code B. A number fed to the machine in Code D must be transformed to Code B before it is used. From this it follows that the machine is unable to process numbers higher than the highest of all the numbers expressed according to Code B.

The highest number depicted according to Code B is

2 147 483 520 2³¹.

This number is depicted according to Code B by the word

0 ,IIIIIIIIIIIIIIIIIII 0 IIIII 0. The smallest nonzero, positive number depicted according to Code B is 0.000 000 000 232 831 = 2⁻³²

Its depiction is

CODES OF INSTRUCTIONS

2.5. Codes of Instructions

Declassified in Part

An instruction contains the directions for the operation and five addresses (see Sect.1.4). It is composed of two words, each of which contains, besides the parity, three binary numbers A, B, C. The number A has 10 binary digits, the B has

19

Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

 9_{p} the C has 12. The word depicting one half of the instruction has the form

Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R0013000

parity

?

Declassified in Part -

The double forming the single instruction is always fed to two neighboring places of the memory. The first part of the instruction is always fed to the memory of even address. The other part of the instruction as a rule is fed to the memory of the next higher address. To prepare the machine with memory of the instruction for the operation, select the first half of the instruction according to the even address.

В

С

STAT

The instruction (both words) contains the operational signs f_1 and f_2 and 5 addresses i, j, k, r, s.

In the first word, , assigned to the even address:

A

- A denotes a ten-place binary number given by the address k of the place in the memory to which the result of the operation, denoted $\langle k \rangle$, is to be assigned;
- B denotes a nine-place binary number given by the even address (so that 9 places are sufficient) r of the instruction according to which the machine will continue to calculate in the event of a positive result of the operation ($\langle k \rangle \ge 0$);

C denotes a twelve-place binary number f_1 given according to the operational code of the operation which the machine has to carry out according to the words fed to the memory of addresses i, j. The individual digits of the operational sign f_1 are denoted in the form

IJKNDSWXYZMT

In the second word, assigned to the address by one higher than the address of the first word:

A denotes a ten-place binary number given by the address j of the number $\langle j \rangle$ to be operated on;

B denotes a nine-place binary number given by the even address of the

instruction according to which the machine will continue to calculate in the event of a negative result of the operation $(\langle k \rangle < 0)$;

C denotes a twelve-place binary number composed of the two-place operational sign f_2 and a ten-place binary number given by the address i of the number $\langle i \rangle$ to be operated on. The digits of the operational sign f_2 are given according to the operational code of the action of the entrance and exit units of the machine. It is designed in the form of

	<u></u>			
	Parity	A	В	С
1. Word	?	•••••		•••••
		k k	r/2	fl
2. Word	?	•••••	•••••	••••••••••
		j	s/2	f_2 i

GH.....

Fig.2.1 - Arrangement of Information in Words Constituting the Instruction

2.6. Operational Codes

The selection of the operation is carried out by the machine according to the operational signs f_1 , f_2 . Here the binary digits of both operational signs are combined to one fourteen-place sign in the form of

IJKNDSWXYZMTGH

regardless of the fact that the part GH is in another part of the instruction than the remaining part IJKNDSWXYZMT. The combined sign is here more legible. Included in the instruction are only those elements of the operational sign f which correspond to places where the sign of unity is in the binary picture. For example, if the binary picture of the operational sign is

IJKNDSWXYZMTGH = 00001000000100 ,

the instruction is abbreviated to

DT.

21

STAT

The operational code, according to its operation, is depicted by the operational sign f. A survey of all of the operational signs is presented in the Tables of Figs.2.2 - 2.5. In the first column of the Tables there are symbols in general form, in the third column are the detailed denotations of both words specified by the pertinent instructions according to the instruction code. The double capital letters by which the addresses are denoted are only included for convenience, and have no relation to the operations.

MUTUAL RELATIONS BETWEEN OPERATIONAL SIGNS

The meanings of the operational signs are given in Figs.2.2 - 2.5. It is, however, necessary to discuss in detail the operations and the mutual relations between the operational signs.

2.7. Principal Operational Signs

id

13

20.

2.1

12

Sign:	S Addition with correction	<i> +</i>	<j></j>	\rightarrow (K>
	N Multiplication with correction	$\langle i \rangle$ ·	<j></j>	\rightarrow (k>
	D Division with correction	<i> :</i>	<j></j>	\rightarrow (k>

The machine starts here with $\langle i \rangle$, $\langle j \rangle$ from the memory of addresses i, j. The specification of the operation is carried out with respect to the sign. The result of the operation is rounded off to 24 valid binary digits. The corrected result replaces the memory of address k. The next instruction is selected according to the sign of the result.

Sign: T... transformation Tl $\langle i \rangle \rightarrow \langle k \rangle$ at j = 0 T2 $\langle i \rangle \rightarrow \langle k \rangle$ at i = 0

At j = 0, the machine carries out the transformation of Tl to the number $\langle i \rangle$. The machine starts with the memory of the address i of the number depicted according to Code D. The picture of the same number is formed according to B and the result replaces the content of the memory of address k. The machine requires that the exponent Q of the number $\langle i \rangle$ be equal to zero.

At i = 0, the machine carries out the transformation of Ta to the number $\langle J \rangle$. The machine starts with the memory of the address j of the number depicted according to Code B. There is formed the picture of the same number according to Code D and the result replaces the memory of address k. The machine requires that the number

 $\begin{array}{ll} \langle j \rangle \text{ be corrected in advance in such a way that } 0.1 \leq \langle j \rangle < 1 \\ & & \\ & \\ & \text{Sign: ST ... addition with}_{j} \text{ correction} \\ & & \\ & & \\ & \text{NT ... multiplication with}_{j} \text{ correction} \\ & & \\ &$

DT ... division with correction

The machine starts with the numbers $\langle i \rangle$, $\langle j \rangle$ from the memory of addresses i, j. The specification of the operation is carried out with respect to the sign. The result of the operation is handled in such a way that the first 24 valid binary digits are left without correction. The result of the operation replaces the memory of address k. The next instruction is selected according to the sign of the result. Symbol: SX ... elimination of the exponent Exp $\langle j \rangle + \langle i \rangle \longrightarrow \langle k \rangle$ The machine starts with the numbers from the memory of addresses i, j. From the number $\langle j \rangle$ the exponent P or Q is eliminated. This exponent is annexed to the number $\langle i \rangle$ with respect to the sign of the result depicted according to Code B, replacing the content of the memory of address k. According to the sign of the result the next instruction is selected.

Symbol: WX ... replacement of the exponent $\langle i \rangle = Exp \langle j \rangle \rightarrow \langle k \rangle$ The machine starts with the numbers from the memory of addresses i, j. From the number $\langle j \rangle$ the exponent P or Q is eliminated, which is replaced by the number $\langle i \rangle$. The result replaces the content of the memory of address k. According to the sign of the result, the next instruction is selected.

4 ()...

Symbol: SYZ ... elimination of the sign Sgn ⟨j⟩ → ⟨k⟩
The machine starts with the number from the memory of address j. From this
number is eliminated the symbol of the digit Z. This digit as a number according to
Code B, and replaces the content of the memory of address k.

Symbol: WYZ ... replacement of the symbol

The machine starts with the numbers from the memory of address i, j. From the number $\langle j \rangle$ is eliminated the symbol Z and replaced by the number $\langle i \rangle$. The result replaces the content of the memory of address k.

Symbol:	SXY		elimination	of	the	number	A	A!
	SZ	• • •	elimination	of	the	number	В	B.
	SY	8 4 4	elimination	of	the	number	C	c!

The machine starts with the content from the memory of address j (which is one half of the instructions) and the number from the memory of address i. From the word $!\langle j \rangle$ the given number (A, B or C) is eliminated, which is annexed to the number $\langle i \rangle$ with respect to the sign and the result, which is depicted according to Code B, replacing the content of the memory of address k. According to the sign of the result the next instruction is selected (see example in Fig.2.6).

Symbol: SWXY ... annexation to the number A

in the instruction

SWZ ... annexation to the number B

in the instruction

 $B!\langle j \rangle + \langle i \rangle \rightarrow !\langle k \rangle$

 $A!\langle j \rangle + \langle i \rangle \rightarrow !\langle k$

SWY ... annexation to the number C

in the instruction

 $C!\langle j \rangle + \langle i \rangle \rightarrow !\langle k \rangle$

The machine starts with the content from the memory of address j (which is one half of the instruction) and the number z from the memory of address i. In the word $\langle j \rangle$ the given number (A, B or C) is annexed, the number $\langle i \rangle$ with respect to the sign. The resulting word (which is changed by one half of the instruction) replaces the content of the memory of address k (see example in Fig.2.7).

24

Symbol: WXY ... replacement of the number A

WZ

49

40

in the instruction

in the instruction

 $\langle i \rangle = \mathcal{A}! \langle j \rangle \rightarrow ! \langle k |$

... replacement of the number B

 $\langle i
angle = B! \langle j
angle
ightarrow ! \langle k$

STAT

ع^{ر ب}

WY ... replacement of the number C in the instruction

$$\langle i \rangle = C! \langle j \rangle \rightarrow ! \langle k \rangle$$

The machine starts with the content (one half of the instruction) from the mem-_; ory of address j and the number from the memory of address j. In the word $!\langle j \rangle$, , the given number (A, B or C) is eliminated and replaced by the number $\langle i
angle$. The resulting word (which is changed by one half of the instruction) replaces the content of the memory of address k.

2.8. Supplementary Operational Symbols

0

4

Declassified in Part -

Besides the principal operational symbols, which have an independent operational significance and cannot be combined with each other, there also exist supplementary operational symbols, which never occur independently but only in combination with the principal operational symbols.

Symbol: I ... suppression of the sign of the number $\langle \mathrm{i}
angle$ $\langle i \rangle$

> J ... suppression of the sign of the number $\langle j \rangle$ |(j)|

At the selection from the memory of addresses i, j the machine suppresses the signs of the digits of the given number and carries out the operation specified by the principal operational symbol. The result of the operation replaces the content of the memory of address k. These symbols do not exclude each other, and can be used in combination with all of the principal operational symbols with the condition that the suppression of the signs of the digits is carried out with the number and 64. not with the instruction.

Symbol: K ... suppression of the sign of the result $|\dots| \rightarrow \langle k \rangle$ At the replacement of the content of the memory of address k with the result of the operation given by the principal operational symbol, this result is provided with the positive sign. This symbol can be used in combination with all of the principal symbols with the condition that the result of the operation is a number and not an instruction.

Symbol: M ... minus with the number $\langle i \rangle$ $-\langle i \rangle$

Sanitized Copy Approved for Release 2012/12/11

STAT

رم^و

CIA-RDP81-01043R001300040009-0

The machine has in all two possibilities of influencing the symbol of the number selected from the memory of address i. At the employment of the supplementary symbol I, the sign is suppressed directly at the selection of the number $\langle i \rangle$ from the memory, which leads to operation on the positive number. At the employment of the symbol M, the machine selects the sign of the number lead to the operation from the memory of address i. Consider now the consequence of the influence on the sign at operation on the number - $\langle i \rangle$ at combination of the two symbols I and M. The symbol M can be used in combination with all of the principal and supplementary symbols with the condition that $\langle i \rangle$ is a number and not an instruction.

Symbol: G ... reading the card G

۱,

÷1.

2.5

The symbol contained in any instruction effects that the machine first reads off the word on the card fed into the receiving end of the machine and assigns it to the memory whose address is perforated in the same card. Then the operations specified by the remaining operational symbols are carried out. If the fed cards contain the corresponding holes, the machine also reads off the successive cards in the same way. The process is continued until the machine encounters a card without the symbol. This symbol G can be used in combination with all of the principal and supplementary symbols except the symbol H.

```
Symbol: H ... perforation of the card Hl .... from the memory
H2 .... from the operation
```

The differentiation between the symbols Hl and H2 is carried out by setting the switch on the control board before the computing begins.

The symbol Hl contained in any instruction effects that the machine first perforates into the card the word selected from the memory whose address is pre-perforated in the same card. Then there are carried out the operations specified by the other operational symbols. If the fed cards contain the corresponding holes, the machine also perforates the successive cards in the same way. The process is repeated until the machine encounters a card without the symbol. This symbol can be

26

STAT

ړن

employed in combination with all of the principal and supplementary symbols except the symbol G.

The symbol H2 contained in any instruction effects that the machine perforates the card with the results of the operations given by the remaining operational symbols. The result of the operation replaces the content of the memory of address k. The machine at the same time perforates the card with the corresponding index. This symbol can be used in combination with all of the principal and supplementary symbols.

Symbol: (empty) stopping the machine STOP The machine stops.

16

31

22

Declassified in Part

Sanitized

27

2012/12/11

CIA-RDP81-01043R001300040009

Approved for Release

Declassified in Part - Sanitized Copy Approved for	

STAT

					•				
	-)		b)					c)	1
	a)	<i>C)</i>	d)	-+					
	s	AA	$\langle i \rangle + \langle j \rangle ightarrow \langle k angle$	AB	AC	AA	k	AB/2	8
	15	ЛА					<i>j</i>	AC/2	ii
	N	BA	$\langle i \rangle$. $\langle j \rangle \rightarrow \langle k \rangle$	BB	BC	BA	k	BB/2	<u>N</u>
	<u>, </u> ,					•	;	BC/2	ii
	D	CA	$\langle i \rangle : \langle j \rangle { o} \langle k angle$	CB	cc	CA	k	CB/2	<u> </u>
	1/						j	<i>CC</i> / 1	i
	T	DA	$T1\langle i angle ightarrow \langle k angle$	DB	DC	DA	<u>k</u>	DB/2	<u>r</u>
							0	DC/2	i
	1	DD	$T2\langle j angle ightarrow \langle k angle$	DE	DF	DD	k	DE/2	T
							j	DF /2	0
			$\langle i \rangle \stackrel{+}{\longrightarrow} \langle j \rangle \rightarrow \langle k \rangle$	EB	EC	EA	k	EB /2	ST
	ST	EA					j	EC/2	i
					EF	ED	k	<i>EE</i> /2	NT

Fig.2.2 - Meanings of Operational Marks

a) Operational mark; b) General instruction symbol; c) Address of instruction;

d) Operational symbol; e) Complete instruction

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

1. V

	a) DT	C) EG	b) d)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• 7	;	a)	s	STAT
			ь)	· · · · ·		•		3)	s	TAT
			1	+-				3)	s 	STAT
			1	+-				3)	i	
	DT	FC:					•	2		
-	ĐT	EC!				1364	k	EH/2	DT	
-		17(1	$\langle i \rangle \stackrel{!}{=} \langle j \rangle \rightarrow \langle k \rangle$	EH	EI	EG	j	E1/2	i	
	SX	FA	$Exp \langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle$	FB	FC	FA	k	FB/2	8X	
							j	FC/2	i	
	WX	FD	$\langle i \rangle = \operatorname{Exp} \langle j \rangle \rightarrow \langle k \rangle$	FE	FF	FD	k	FE/2	WX	
					· · · · · · · · · · · · · · · · · · ·		<i>j</i>	<i>FF</i> /2	i	
	SYZ	GA .	$\operatorname{Sgn}\langle j angle ightarrow\langle k angle$	GB	GB	GA	k	<i>GB</i> /2	SYZ	
				<u> .</u>			<i>j</i>			2>
29	WYZ	GD	$\langle i \rangle = \operatorname{Sgn} \langle j \rangle \rightarrow \langle k \rangle$	GE	GF	GD	<u>k</u>			
					1		1			
	SXY	HA	$A!\langle j\rangle + \langle i\rangle \rightarrow \langle k\rangle$	HB	HC	HA		a sa ang ang ang ang ang ang ang ang ang an		
			5 				1			
	SZ	HD	$B!\langle j\rangle + \langle i\rangle \rightarrow \langle k\rangle$	HE	HF	HD				ľ
				1			1			
	SY	SY HG	$C!\langle j angle + \langle i angle imes \langle k angle$	нн	HI	HG	<u>k</u>			
	23	SYZ WYZ SXY SZ	SYZ GA WYZ GD SXY HA SZ HD	$SYZ \qquad GA \qquad Sgn \langle j \rangle \rightarrow \langle k \rangle$ $WYZ \qquad GD \qquad \langle i \rangle = Sgn \langle j \rangle \rightarrow \langle k \rangle$ $SXY \qquad HA \qquad A! \langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle$ $SZ \qquad HD \qquad B! \langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle$	$SYZ \qquad GA \qquad Sgn \langle j \rangle \rightarrow \langle k \rangle \qquad GB$ $WYZ \qquad GD \qquad \langle i \rangle = Sgn \langle j \rangle \rightarrow \langle k \rangle \qquad GE$ $SXY \qquad HA \qquad A!\langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle \qquad HB$ $SZ \qquad HD \qquad B!\langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle \qquad HE$	$SYZ = GA = Sgn \langle j \rangle \rightarrow \langle k \rangle = GB = GB$ $WYZ = GD = \langle i \rangle = Sgn \langle j \rangle \rightarrow \langle k \rangle = GE = GF$ $SXY = HA = A!\langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle = HB = HC$ $SZ = HD = B!\langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle = HE = HF$	$SYZ = GA = Sgn \langle j \rangle \rightarrow \langle k \rangle = GB = GB = GA$ $WYZ = GD = \langle i \rangle = Sgn \langle j \rangle \rightarrow \langle k \rangle = GE = GF = GD$ $SXY = HA = A!\langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle = HB = HC = HA$ $SZ = HD = B!\langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle = HE = HF = HD$	$WX \qquad FD \qquad \langle i \rangle = Exp \langle j \rangle \rightarrow \langle k \rangle \qquad FE \qquad FF \qquad FD \qquad i$ $SYZ \qquad GA \qquad Sgn \langle j \rangle \rightarrow \langle k \rangle \qquad GB \qquad GB \qquad GA \qquad \frac{k}{j}$ $WYZ \qquad GD \qquad \langle i \rangle = Sgn \langle j \rangle \rightarrow \langle k \rangle \qquad GE \qquad GF \qquad GD \qquad \frac{k}{j}$ $SXY \qquad HA \qquad A!\langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle \qquad HB \qquad HC \qquad HA \qquad \frac{k}{j}$ $SZ \qquad HD \qquad B!\langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle \qquad HE \qquad HF \qquad HD \qquad \frac{k}{j}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

10222302.00231533848

.

Q^C

Fig.2.3 - Meanings of Operational Marks (continuation)

a) Operational mark; b) General instruction symbol; c) Address of instruction;

d) Operational symbol; e) Complete instruction

Declassified in Part

			Part - Sanitized Copy Approved for Release	201212111.0								
· ,												
	a)						- · · · · · · · ·					
		c)	d)					e)				
	SWXY	IA	$A!\langle j angle + \langle i angle angle !\langle k angle$	IB	IR	IA	k	IB/2	SWXY			
							j	IB_i2	i			
	SWZ	IC	$B!\langle j\rangle + \langle i\rangle \rightarrow !\langle k\rangle$	ID	ID	1C	<u>k</u>	ID/2	8WZ			
							j	1D/2	;			
	SWY	IE	$C(\langle j \rangle + \langle i \rangle - 1) \langle k \rangle$	IF	IF	1E	k	IF/2	SWY			
							<i>j</i>	<i>IF</i> ,2				
0	WXY	JA	$\langle i \rangle = A \langle j \rangle \rightarrow ! \langle k \rangle$	JB	JB	JA	<i>k</i> :	<i>JB</i> /2	WXY			
							<i>j</i>	J B/2	ř			
	WZ	JD	$\langle i \rangle = B! \langle j \rangle \rightarrow ! \langle k \rangle$	JE	JE	JD	k	JE/2	IFŻ			
							;	<i>JE</i> /2	<i>i</i> .			
	WY	JF	$\langle i \rangle = C!\langle j \rangle \rightarrow !\langle k \rangle$	▶ ! <k> JG</k>	JG	JF	k	JG/2	IF Y			
							i j	J(l/2)	i			

STAT

Figure (Pearings of operational factor continuation)

a) Operational mark; b) General instruction symbol; c) Address of instruction;

d) Operational symbol; e) Complete instruction

			in the second s							STAT
a .	-)	b)						e)		
	a)	<i>c)</i>	d)	.+-				-/		
	М	KA	\dots $\langle i \rangle \dots \rightarrow \dots$	KB	KC	KA	k	KB/2	М	
							j	KC/2	i	
	I	KD	$\ldots \langle i \rangle \ldots \rightarrow \ldots$	KE	KF	KD	k	KE/2	<i>I</i>	-
		_	• •		1		j	KF /2	i	-
	J	KØ	$\dots \langle j \rangle \dots \rightarrow \langle k \rangle$	КН	KI	KG	k	KH/2	J	
			·				j	<i>KI</i> /2	i	-
	K	КJ	→ < k >	KK	KK	KJ	k	<i>KK</i> /2	К	
	-						j	<i>KK</i> /2	<i>i</i> .	1
31	G	KL	({→	KM	KN	KL	k	KM/2	••••	3
							i	KN/2	Gi	-
	H	КО	Η1 →	KP	KQ	к0	k	KP/2		- 9
							j	KQ/2	Hi	-
		KR	$H2 \ldots \rightarrow \ldots$	→ KS	KT	KR	k	KS/2		
							j	KT/2	<i>Hi</i>	_
		KU	STOP			KU	0	0	-	
								••••		

Fig.2.5 - Meanings of Operational Marks (continuation)

a) Operational mark; b) General instruction symbol; c) Address of instruction;

d) Operational symbol; e) Complete instruction; f) Empty

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

Nº.

Fig.2.6 - Course of Operations According to Operational Mark SXY

a - Address of memory; b - Content of memory; c - Control receives instruction; d - Machine starts with word (depicted by one half of the instruction) from memory of address CA and word (depicted by number) from memory of address b; e - According to operational mark SXY, machine carries out elimination and addition $A_{i}^{i}(CA) + (b) \rightarrow (a)$; f - Result number assigned to memory of address a; if sign of result is positive ($Z_{k} = 0$), control selects next instruction from memory of addresses DE, DE + I; g - If sign of result is negative ($Z_{k} = 1$), control select next instruction of memory for addresses KA, KA+1

Fig.2.7 - Course of Operations According to Operational Fark SWXY

.a) Address of memory; b) Content of memory; c) Control receives instruction; d) Machine starts with word (depicted by half the instruction) from memory of address DE and word (depicted by number) from memory of address a; e) According to operational mark SWXY machine carries out addition of $A!(DE) + (a) \longrightarrow !(DE)$; f) The result change in the half instruction replaces the original half instruction in the memory of address DE; control selects next instruction from memory of addresses MA, MA + 1

in the

0 2.9. <u>General Survey of Fundamental Operations</u>

Operational Mark	Operational Symbol
S_{-}	$\langle i angle + \langle j angle o \langle k angle$
N	$\langle i angle \; . \; \langle j angle ightarrow \langle k angle$
D	$\langle i \rangle : \langle j \rangle \rightarrow \langle k \rangle$
T	$T 1 \langle i \rangle \rightarrow \langle k \rangle$
	$T2\langle j angle ightarrow\langle k angle$
M	$-\langle i angle$
Ι	$ \langle i \rangle $
J	< j>
K	$ \dots \rightarrow \langle k \rangle$
G	<i>G</i>
H	H1
	H2
ST	$\langle i \rangle \stackrel{+}{-} \langle j \rangle ightarrow \langle k angle$
NT	$\langle i \rangle \stackrel{.}{=} \langle j \rangle \rightarrow \langle k \rangle$
	$\langle i \rangle \stackrel{.}{=} \langle j \rangle \rightarrow \langle k \rangle$
SX 	$\mathrm{Exp}\left<\!j ight>+\left<\!i ight> ightarrow\left<\!k ight>$
WX	$\langle i angle = \operatorname{Exp} \langle j angle o \langle k angle$
SYZ	$\mathrm{Sgn}\left< j \right> ightarrow \left< k \right>$,
WYZ	$\langle i angle = \mathrm{Sgn} \left< j ight> ightarrow \left< k ight>$
SXY	$A {:} \langle j angle + \langle i angle ightarrow \langle k angle$
NZ	$B \langle j \rangle + \langle i \rangle ightarrow \langle k angle$
ST	$C!\langle j \rangle + \langle i \rangle \rightarrow \langle k \rangle$
SWXY	$A {\mid\!\! \langle j angle} + {\langle i angle} o {\mid\!\! \langle k angle}$
SWZ	$B \langle j angle + \langle i angle ightarrow \langle k angle$
SWY	$C!\langle j angle + \langle i angle ightarrow !\langle k angle$
WXY	$\langle i angle = A! \langle j angle o ! \langle k angle$
WZ	$\langle i angle = B! \langle j angle ightarrow ! \langle k angle$
11.).	$\langle i angle = C! \langle j angle ightarrow ! \langle k angle$
	STOP

(empty)

31ı

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

STAT

THE PREPARATION OF AN INSTRUCTIONAL NETWORK

The procedure for the preparation of an instructional network has three parts, as follows:

a) Selection of a suitable numerical method;

c) Detailed preparation of the instructional network.

WORKING PROCEDURE

24- 3.1. Selection of Numerical Method

The study of numerical methods suitable for automatic calculation is in itself a new branch of mathematics. To this branch, a series of works will be devoted in future yearbooks of the Manual.

32_

4.2....

5. ...

Declassified in Part

0 .

1.1

19.

 $2 \odot$...

 $\circ \circ$

3.2. Mathematical Formulation and Preparation of a Network in General Form

The three main columns of this form have the headings: "Analysis", "Vocabulary", "Instruction". The "Instruction" column is subdivided into 4 columns, titled: -"Index", "Operational symbol", " + ", " - ". The pages of the form are numbered and carry the designation of the job to which they are related. The form is filled with the corresponding mathematical symbols and the symbols described in Chapter 1.

The mathematical formulation begins in the "Analysis" column. The factual data are expressed in succession in mathematical terms, followed by successive specification of the arrangement of these terms. There are also frequently entered mathemat-

.35

Sanitized Copy Approved for Release 2012/12/11

CIA-RDP81-01043R001300040009-0

STAT

_ ical statements which do not participate directly in the process but constitute the ___basis thereof. The next step of the construction is the drafting of the instructional network in general form. This is done by filling in parallel the remaining columns of the form. The column "Vocabulary" contains the symbols describing the contents of the addresses and memories. The "Instruction" column has the general in-10 .-structional symbols according to the mathematical expressions in the "Analysis" column. Each instruction is denoted by an index composed of two capital letters. This is done for facilitating the orientation in the instructional network, since in a group of instructions belonging together the individual instructions all begin with the same initial letter. The second letter gives the order of the instruction in the 20_ group (for example, BA denotes the first instruction in the group of instructions B). The column "Instruction" contains also the clews for the constants set in the memory of the machine. A clew has the character of an instruction, and is denoted in the "Index" column by a mark composed of an exclamation mark, the letter Q and an ordinal number (for example, 224 is the clew of the number 24 to the stored constant).

-3.3. Preparation of the Detailed Instruction Network

Sanitized Copy Approved for Release

12

16

18

3

ċ

Declassified in Part

The preparation of the detailed instructional network is carried out on "Model 2" form, page 1 of which is shown in Fig. 3.2. The four main columns of this 3 form have the headings: "Index", "Address", "Entrance Information", "Variable Information". The "Index" column contains the reference to the line of "Model 1" form. The "Address" column is subdivided into two columns. The first of these columns has ¢., preprinted the octonary of the address of the work entered on the same line, and the te .. second contains pre-printed the verifying mark P. The "Entrance Information" is -likewise subdivided into two columns. The first of these columns contains all of 5 --- the words stored in the machine before the beginning to compute, and the second con-52 - tains the mark symbolizing the numerical code to be used (B or D). The "Variable 51. Information" column gives the symbols of the variables of the constants which occur in the corresponding address during calculation.

STAT

.y₆₀

0____ A complete "Model 2" form consists of 32 pages of 32 lines each, or a total of 2 - 4 1024 lines. The lines of the "Address" column are numbered in advance. Instead of 4 minus the usual decadic marks the octonary marks from 000 to 1777 are used in the preprint. Each line of the executed form is permanently coordinated with one place of the memjory of the machine.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

Б

5

lassified in Part

Sanitized Copy Approved for Release

10-"Model 2" form is filled according to the inserted "Model 1" form. This fill-12... ing is, of course, quite tedious, and requires concentrated attention, but repre-14 sents, in contrast to the preparation of the instructional network in the usual form, 16 ... nearly all mechanical work.

18 It should be noted that entered on the form at the individual addresses are all 20. _ the given instructions and constants. For reasons following from the construction 20 _____of the machine, always inserted into the memory of address 0000 is the constant, and 24 into the memory of the address 0001 the constant 1. These constants are, of course, preprinted on the form. The entering of the instructions is carried out by executing the "Index" column, where the general symbols of the addresses of the instructions _ are entered according to the "Model 1" form. Thereafter, the constants of the prob-_lem set before the beginning to compute are entered. On both forms these constants 34..... _are denoted by the letter Q. According to the vocabulary of "Model 1" form, the 33 memory is finally replaced by a variable magnitude. On the basis of this work it is 3..... -advantageous to affix concrete numerical values of the general addresses in the 4vocabulary. The selection is noted in the "Remarks" column. At the same time, the __Wariable Information" column is supplied with the development of the variable con--tent of the memory.

· After entering all of the words, the "Entrance Information" column is inserted. 1 -The numbers correspond with the employed code (B, D), while the instructions are 51. -entered according to the name of the model (Figs.2.2 - 2.5). It must be mentioned that all of the addresses are written in the form of the fundamental octonary.

The preparation of the instructional networks ends with the detailed and com-

CIA-RDP81-01043R001300040009-0

38

STAT

Job

Model	2
-------	---

0 -----

Ľ

) :-

 $\mathbf{2}$

34

3.

49....

4

ţ

С

odel	2					Page 1
INDEX	Addres	58	Entrance Information		Variable Information	Hemarks
!Q0	0000	P.]	0 00 0 00000000	B	0	- contractor de la contra
!Q1	0001		,40000000 0 01 0	B	1	
	0002				· · · · · · · ·	, <u> </u>
	0003	Р			••••••	
	0004					
	0005	Р			•••••••••••••••••••••••••••••••••••••••	
	0006	P				
	0007					
	0010	 	· · · · · · · · · · · · · · · · · · ·			
	0011	Р				
	0012	P		•	· ·	
	0013		a anan 1915 an an ang s	_		
	0014	<u>P</u>			and the second	
	0015		•			an a the same constants a setting of a constant water
	0016					2 1
	0017	<u>Р</u>				
	0020			:	· · · · · · · ·	·
	0021	Р		1 1 1 1	· ···	·
	_0022	Р			and a constant of the	· • • • • • • • • • • • • • • • • • • •
	0023					!
	0024	P	- · · · · · · · · · · · · · · · · · · ·			
	0025	· .	······································		. 	
	0026				••••••••••••••••••••••••••••••••••••••	
	0027	Р				-
	0030	<u>P</u>	lan an a			
	0031				ریپ رو بر میک میک میک م	
	0032				a an	
	0033	<u>-P</u>	,		en e	
	0034				····	
	0035	- P			********	
	0036	<u>р</u>				
	0037					

Fig.3.2 - First Page of "Model 2" Form

39

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

plete filling of "Model 2" form. According to the "Address" and "Entrance Information" columns there is then perforated the entrance batch of perforated cards.

3.4. Instructional Network for the Calculation of cos x

In the following the preparation of the instructional network for calculating the value of y equals cos x will be described.

Selection of the Method of Calculation

0 ...

4 ...

6

ŧ , ,

20.

33

ć:

Employed in the calculation is the familiar exponential series

$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$

Because the value of argument x is unknown in advance, and the series for the magnitude of x converges slowly, it is necessary before proceeding with this series to calculate the argument of the same functional value between 0 and $\pi/2$. The iteration is calculated by addition of the exponential series, because this is the most advantageous method for the automatic computer. The calculation is terminated as soon as the next term of the series is smaller than the given ε .

The mathematical formulation and the drafting of the instructional network in 22 general form are carried out on "Model 1" form shown in Figs. 3.3 and 3.4. On the ... first page of the form, in the "Analysis" column, the arrangement of the argument is 3 formulated in the specified limits. For the sake of simplicity we shall start at 40 ...this point with the absolute value of the argument. First we subtract 2π until we -get a negative result. Then we reach z_N , located in the interval - 2π to 0. To this z_N we then add $\pi/2$ until we get a positive result, which will be v_m , located in 44 -the range 0 to $\pi/2$. The second column of the Table, entered after completion of the 1 - "Apalysis" column gives $y = \cos x$ for various possible m values entered in the first column of this Table. Since we wish in principle to calculate only according to the 51.series for the cosine, we put $y = s \times \cos w$. The values for s and w for various m values are given in the remaining two columns of the mentioned Table. On the second 57

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

STAT

2 -

3.4

• 4

A

51

5

Declassified in Part

page of the form (Fig.3.4), in the "Analysis" column, the method for calculating the sum of the exponential series is formulated and the condition for its completion is stated.

The drafting of the instructional network for the described arrangement of the argument in general form is carried out in the remaining columns of the form in Figs.3.3 and 3.4. We begin with the two clews 1Q0 and 1Q1 for setting the standard constants 0 and 1 in the memories 0 and 1 and with the clew 103 for setting the given argument x in the memory a. We proceed according to the first instruction AA: "Take the absolute value of the number set in the memory a and replace its content with the same memory a. Regardless of the sign of the result (in this case it will always be positive) continue further according to instruction BB". After carrying out instruction AA, $|\mathbf{x}|$ is set in memory **a**, which is entered in the "Vocabulary" column. The next instruction AB is: "Set the product of the numbers set in memories pl and pa in the memory b. Proceed further according to instruction AC". After execution of instruction AB, the constant 2π is set in memory b. With this, however, we are prepared to calculate zn. For the calculation, memory a is used where $z_0 = |x|$ has already been prepared. The calculation is carried out according to instruction AC: "From the content of memory a subtract the content of memory b, and replace the content of memory a by the result. At a positive result proceed 30 _ further according to instruction, at a negative result proceed further according to 49 instruction AD". It is obvious that the execution of this instruction must be re-___peated until a positive result is obtained. At the first negative result the opera-<u>tion</u> is discontinued, because then the sought z_N is already set in the memory (and recorded in the "Vocabulary" column), and the calculation is continued according to _ instruction AD. This instruction is carried out for replacing the content of mem-----ory b (where the set constant 2π is no longer needed) by the new constant $\pi/2$. Thus we are prepared to calculate v used in memory a. At this point of the instructional 53 network, simultaneously with the calculation of v_m , the ramification of 4 possible

Approved for Release 2012/12/11

CIA-RDP81-01043R001300040009-0

4/3

STAT

further processes specified in the Table in the "Analysis" column for various m 0 ... values is made. This is carried out using instructions AE, AF, AG and AH. By execution of instruction, the content of memory a or $\pi/2$ is increased. At a positive result we are ready to proceed further, because then m = 1, in memory a the 6 value vi is prepared, and we change over to instruction AI, where first w and s at t. ... 11 ---m = 1 are calculated. In the event of a negative result we continue according to instruction AF. The execution of this instruction again increases the content of memory a or $\pi/2$. In the event of a positive result m = 2, we have v_2 , and we change over to instruction AK, where first w and s at m = 2 are calculated. In the event of a negative result we continue according to instruction AG. The execution of this instruction again increases the content of memory a or $\pi/2$. In the event of a positive result we continue according to instruction AL (for calculating w and s at m = 3). In the event of a negative result we continue according to instruction AH. This increases for the last time the content of memory a or $\pi/2$, after which the - calculation for m = 4 is obtained according to instruction AM.

Instructions AI, AJ, AK, AL and AM are carried out for preparation of the values of w and s needed for the further computing for memories a and c according to <u></u>. . the Table in the "Analysis" column. At m = 1, the execution of instruction AJ furnishes s = 1 in memory c. In the next instruction AJ, from $\pi/2$ set in memory b is subtracted the value v_1 set in memory a, and the result w is put back into memory a. After execution of these instructions, the machine continues according to instruction BA, which begins the actual calculation of the exponential series. At m = 2, the execution of instruction AK furnishes s = -1 in memory c, which is immediately followed by further calculation according to BA, since $w = v_2$ is already 41 inserted into memory a. At m = 3, execution of AL furnishes s = -1 in memory c, 5 which is immediately followed by instruction AJ, and the device continues according to BA. At m = 4, the instruction AM acts on memory c, and the operation proceeds further according to instruction BA.

And the Constant

Declassified in Part

STAT

Declassified in Part - Sanitized Copy	Approved for Release 2012/12/11	: CIA-RDP81-01043R001300040009-0

·

4

STAT

÷		•		¥7		Instruction			Remarks	Mo
Analysis				Vocabulary	Index	Operational Symbol	+	-	Itemetiks	Model 1
				$0 = \langle 0 \rangle$	120	$0 \rightarrow \langle 0 \rangle$				
				$1 = \langle 1 \rangle$	iqı	$1 \rightarrow \langle 1 \rangle$				
x				$x = \langle a \rangle$!Q2	$x \rightarrow \langle a \rangle$				
y = c	206.x = 006.2									
	008 x			$ x = \langle a \rangle$	AA	$\langle 0 \rangle + \langle a \rangle \rightarrow \langle a \rangle$	AB	AB		
x =	• •			$\pi = \langle pl \rangle$	1Q3	$\pi ightarrow \langle p1 angle$				
	$= z_n - 2\pi$	n = 1,	2,, N	$2 = \langle p2 \rangle$!Q4	$2 \rightarrow \langle p2 \rangle$	10	10		
2π	$\leq z_{f} < 0$			$2\pi = \langle b \rangle$ $z_n = \langle a \rangle$	AB AC	$\langle p1 \rangle \cdot \langle p2 \rangle \rightarrow \langle b \rangle$ $- \langle b \rangle + \langle a \rangle \rightarrow \langle a \rangle$	-	$egin{array}{c} AC \ AD \end{array}$		ł
				$ z_n = \langle a \rangle $	10		1.0			, o
z, +	$\frac{m\pi}{2} = v_{\rm m},$	m =	1, 2, 3, 4	$\pi/2 = \langle b angle$	AD	$\langle p1 angle: \langle p2 angle ightarrow \langle b angle$	AE	AE		Case:
	$v_{\rm m} < \pi/2$			$v_m = \langle a \rangle$	AE	$\langle a \rangle + \langle b \rangle \rightarrow \langle a \rangle$	AI	AF		
· = .	·m \ /•/=			m	AF	$\langle a \rangle + \langle b \rangle \rightarrow \langle a \rangle$	AK	AG		4
y = 6	1.00610				AG	$\langle a \rangle + \langle b \rangle \rightarrow \langle a \rangle$	1	AH		COS
				$s = \langle c \rangle$	AH AI	$ \begin{array}{c} \langle a \rangle + \langle b \rangle \rightarrow \langle a \rangle \\ \langle 1 \rangle + \langle 0 \rangle \rightarrow \langle c \rangle \end{array} $		AM AJ		
778	у	8	w	$w = \langle a \rangle$	AJ	$(1) + \langle b \rangle \rightarrow \langle a \rangle$ $(1) + \langle b \rangle \rightarrow \langle a \rangle$		BA		×
					AK	$-\langle 1 \rangle + \langle 0 \rangle \rightarrow \langle c \rangle$	BA	BA		
1	sin v.	1	$\frac{1}{2}\pi - v_m$		AL	$-\langle 1 \rangle + \langle 0 \rangle \rightarrow \langle c \rangle$	AJ			
		-			AM	$\langle 1 \rangle + \langle 0 \rangle \rightarrow \langle c \rangle$	BA	BA		
2		1	v _m							i i
3		-1	$\frac{1}{2}\pi - v_m$							
	1	-								·

-0

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009

				29 		
Analysis	Vocabulary		Instruction			
	l	Index	Operational Symbol	+		Remarks
$\cos w \doteq S_{j} = 1 - \frac{w^{4}}{2!} + \frac{w^{4}}{4!} - \frac{1}{j=0} = \frac{1}{j=0} u_{j}$	$w^2 = \langle a \rangle$ $u_j = \langle b \rangle$ $S_j = \langle d \rangle$ $j = \langle e \rangle$ $2j = \langle f \rangle$	BA BB BC BD BR	$ \begin{array}{c} \langle a \rangle \cdot \langle a \rangle \rightarrow \langle a \rangle \\ \langle 1 \rangle + \langle 0 \rangle \rightarrow \langle b \rangle \\ \langle 1 \rangle + \langle 0 \rangle \rightarrow \langle d \rangle \\ \langle 0 \rangle + \langle 0 \rangle \rightarrow \langle e \rangle \\ \langle p 2 \rangle \cdot \langle e \rangle \rightarrow \langle f \rangle \end{array} $	BC	BD BE	
$u_0 - S_0 = 1$ $u_{j+1} = - u_j \frac{w^4}{(2j+1)(2j+2)}$	$(2j + 1) = \langle f \rangle$ $(2j + 2) = \langle g \rangle$ $() \cdot () = \langle g \rangle$ $u_{j+1} = \langle b \rangle$ $e = \langle p_3 \rangle$	BF BG BH BI BJ 125			BJ	
$\begin{aligned} u_{J} &- \varepsilon < 0 \\ u_{J-1} &- \varepsilon > 0 \end{aligned}$	$ u_{j+1} - e = \langle f \rangle$ $S_{j+1} = \langle d \rangle$ $j + 1 = \langle e \rangle$	BK BL BM	$-\langle p3 \rangle + \langle \mathbf{b} \rangle + \langle f \rangle$ $\langle \mathbf{b} \rangle + \langle \mathbf{d} \rangle + \langle \mathbf{d} \rangle$ $\langle 1 \rangle + \langle \mathbf{e} \rangle + \langle \mathbf{e} \rangle$	BL BM BE	BM	+ l → j
y - s. S,	$y = \langle b \rangle$	CA CB	$\begin{array}{c} \langle d \rangle . \langle c \rangle \rightarrow \langle b \rangle \\ STOP \end{array}$	CB	CB	

Fig.3.4 - Second Part of Instructional Network in General Form

CIA-RDP81-01043R001300040009-0

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11

Page 2

, s

STAT

4

5

Computing the sum of the exponential series begins with instruction EA, which effects the replacement of the content of memory a with the value w^2 . The next instructions BB, BC and BD produce the setting of the initial values u_j , s_j and j for j = 0 in memories b, d and e, where the values are replaced. Instructions EE, EF, BG, BH, EI and BJ carry out the calculation of the further members of the series according to the formula given in the "Analysis" column. The form also contains the command !Q5 for setting the constant ε in memory p3. This constant is used by the next instruction EK for verifying whether the iteration must be continued (according to instruction EL) or whether the machine is ready to proceed further with the computation (for which the instruction CA is valid). In instruction BL, the addition of the terms of series is carried out until the sum is reached. Instruction EM increases the content of memory e by unity, after which the machine proceeds with further iteration, beginning with instruction EE. Instruction CA effects the replacement of the content of b with the calculated y, after which instruction CB intervenes, which stops the computation.

The detailed instructional network is prepared on the forms of Figs.3.5, 3.6 and 3.7. On the first page of the "Model 2" form of Fig.3.5, in the first two lines, the memories 0000 and 0001 are entered, depicting the constants according to the commands !Q0 and !Q1. On the further lines of this page and nearly all of the second page (Fig.3.6) contain the instructions, each of them always in two lines. The third page of the form (Fig.3.7) gives the contents of the constant and variable memories in the course of the calculation. In the "Remarks" column there is always given on the corresponding line the coordination of the memory with the general address of the instructional network from the "Model 1" form.

The instructions are written in the manner described in Chapter 2. For example, the instruction on addresses 0002 and 0003 reads: "Take absolute value of number set in memory 0100, add to it the content of memory 0000, and set result in memory 0100 (replacing previous content); proceed further according to instructions

45

STAT

HiH

÷ 4

1.

20. 20.

22,

ę,

34.

38_

38.

45.

4.1

£ ;

4.

Declassified in Part -

Case: $y = \cos x$

Index	Addre	55	Entrance Information		Variable Information	Remarks
!Q0	0000	P	0 00 0 0000000,	B	- 0	
!Q1	0001		,40000000 0 01 0	B		[· · · · ·
AA	0002		0100 0004 SJ) an sanada ana any ing) anarony antanà () sanatana na mana ing ing	
A.A.	0003	Р	0100 0004 0000			n de la composition de
AB	0004		0101 0006 N			4
AB	0005	P	0110 0008 0111			
	0006	P	0100 0008 SM		•	
AC	0007		0100 0010 0101			•
	0010		0101 0012 D	-		
AD	0011	P	0111 0012 0110			
	0012	P	0100 0022 8			· · · · ·
.AE	0013		0101 0014 0100	1		
	0014	P	0100 0026 8	_	! !	
AF	0015		0101 0016 0100	1		
	0016		0100 0030 8			
AG	0017	Р	0101 0020 0100			1
	0020		0100 0032 8			
.4 H	0021	P	0101 0032 0100	,		
	0022	P	0102 0024 8	1		
.4 L	0023		0000 0024 0001	1		
	0024	р	0100 0034 S.M			
AJ	0025		0101 0034 0100			
	0026		0102 00 34 SM			
$\mathcal{A}K$	0027	P	0000 0034 0001	-		1
	0030	p	0102 0024 SM			
AL.	0031		0000 0024 0001			
	0032		0102 0034 8			
AM	0033	Р	0000 0034 0001			
	0034		0100 0036 N			
<i>B.</i> 4	0035	P	0100 0036 0100			1
	0036	р [0101 0040 8	1		2 · ·

Fig.3.5 - First Part of Instructional Network

47

2012/12/11

CIA

043R001300040009-0

Sanitized Copy Approved for Release

0

16. ..

101

 ~ 0

20

23

с.,

4 to ...

٩,

Case: $y = \cos x$

Index	Address	Entrance Information	Variable Information	Remarks
ئىسىتى . ئ	(W)40	0103 0042 8	The same second seco	
BC :	(414) P	0000 0042 0001	a sala ani ang	·
	0042 P	0104 0044 8		
BD	0043	. 0000 0014 0000	and a second	an a
	0044 P	0105 0046 N		
BE	0045	0104 0046 0111		
	0046	0105,0050 8		
BF_{\pm}	0047 1	0001 0050 0105		•
	0050 P	0108 0052 N		
BG	0051	0001 0052 0105		an a
	0052	0106 0054 N		مرابق مستقد الارزانية (
BH	0053 P	0406 0054 0105		
	0054	0106 0056 7	· · · · · · · · · · · · · · · · · · ·	
BI	0055 P	0106 0036 0100	E	
	0056 P	0101 0060 N M		-
BJ	0057	0106 0060 0101		1
	0060 P	0105/0062/SMJ		
BK	0061	0101 0066 0112		
	0062	0103 0064 8		
BL	0043 P	0103 0064 0101		
	0064	0104 9044 8	· · · · · · · · · · · · · · · · · · ·	·
BM	0065 P	0104 0044 0001		
	0066 P	0101 0070 N		
<i>C</i> .1	0067	0102 0070 0103		
	0070	0000 0000		• •
$C_{i}B_{i}$	0071	0000 0000 0000		
	0072 P	t the second sec		
	0073			i
	0074 P			1
	0075	an ana ana ang ang ang ang ang ang ang a		
	0076			

Fig.3.6 - Second Part of Instructional Network

48

CIA-RDP81-01043R001300040009-0

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11

STAT

STAT

28

Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

5.

Declassified in Part -

Sanitized Cor

ARSTRAD BLOCK - - - -

CHAPTER 4 INVESTIGATION OF A CENTERED OPTICAL SYSTEM WITH THE AUTOMATIC CALCULATOR

Declassified in Par

0.

2

4 ----

б.,

8

10.

2....

12 ...

16

18

58]

50

Decla

We conclude the first part of this Manual with two concrete examples of the application of the automatic computer. The first of the examples is from the field of geometrical optics.

INTRODUCTION

In calculating a high-quality optical-system, the most important part of the 2.0 working procedure is the elimination of the imaging error with the help of the form-22 stive parameters (dimensions). This must be done by calculating the ray path of the given optical system and that of the optical system obtained from this system by changing one of the formative parameters by a small amount. For example, in a photographic objective the formative parameters are usually more than twenty. This 30__ means that we must carry out besides the fundamental calculation of the ray path at teast twenty other similar calculations. It is not sufficient here to calculate the path of one ray. At least five rays must be calculated for each point of the image, 36_ and three points of the image already require the calculation of 300 ray paths. 3 : Of course, by formulary calculation with the help of Tables and the computer, 40_ wirk and time are saved. This suggested the idea of carrying out the variation of 42 the formative parameters solely on the basis of the ray path contained in the plane 45-of symmetry of the optical system, because its calculation is relatively simple. 48-The calculation of a ray path convergent with the optical axis is not mathematically 50-difficult, but time-consuming. With the help of the computer, however, it is very 52-bity to prepare the instructional network, according to which the device calculates the a mhort time a ray path convergent with the optical axis. 54_ The construction of the instructional networks for the calculation of ray paths 55

50

STAT

divergent and convergent with the optical axis will be explained. It should be noted that in the preparation we proceeded more on the basis of decadic considerations than the economy of the instructional networks. However, for the present capacity of the computer, there is sufficient room for setting instructions for the calculation of the sum of the squares of errors and instructions for minimizing these. The discussion of such a supplementary working procedure is beyond the scope of the

51

CIA-RDP81-01043R001300040009-0

for Release 2012/12/11

50----5--

50

Ċ

Declassified in Part

0

2 -

¢._

£

{:

STAT

Geometric analysis of the Problem 4.1. Formulation

Ċ

1

18

ウッ

2

The investigation of a centered optical system involves a repetition of the solution for the problem of the transition of a given ray through the given optical system. This problem can be formulated roughly as follows:

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-

Assume a system with a certain number m of spherical areas with their centers 12.... in the axis x_1 . The last of these areas is the focal plane. The remaining part of the areas have the form of the surface of the individual lenses of the optical system. This part of the areas will be called the boundary. Figure 4.1 shows examples of convex, concave, and plane boundaries of a focal plane. Each of the given m areas has a certain constant N. (relative refractive index, i.e., the ratio of the 20.___ refractive indexes in front and behind the boundary*). The ray is further identified by its individual directional vector and point. The intersection of the given ray with the first boundary must be determined. In addition, the new individual vector giving the direction of the ray after refraction must be determined (with the help of the constant N1. This refracted ray is then again determined by the individual directional vector and the point (intersection with the first boundary). Then the intersection of the refracted ray with the second boundary must be determined, and then the new direction of the ray, and so forth, until the focal plane is reached. In this case only the intersection of the ray with this plane, must be determined and the problem of the transit of the given ray in the optical system is solved. This shows that with the solution the problem is practically reduced to a few repetitions of the solution of two such geometrical problems **.

* N_j is a constant as long as only the wavelength of the light is considered. ** The points will be denoted the same as their half vector, so that we may speak of point $x_j \equiv (x_{j,1}, x_{j,2}, x_{j,3})$. The variable point (vector) will be denoted $x \equiv (x_1, x_2, x_3).$

52

v Approved for Release 2012/12/11

Declassified in Part - Sanitized Co

CIA-RDP81-01043R001300040009-0

STAT

1. Determination of the Intersection

18

20_

 $2^{\circ}2$

30...

34

6C.

Given a straight line with its individual directional vector $a_{j-1} \equiv (a_{j-1,1}, a_{j-1,2}, a_{j-1,3})$ and point $x_{j-1} \equiv (x_{j-1,1}, x_{j-1,2}, x_{j-1,3})$. Determine the intersection $x_j \equiv (x_{j,1}, x_{j,2}, x_{j,3})$ of this straight line with the spherical area given by the center $s_j \equiv (S_{j,1}, 0, 0)$ and the radius R_j (or with the plane $x_1 = S_{j,1}$).

Fig.4.1 - Examples for Types of Areas in an Optical System a) Convex boundary; b) Plane boundary; c) Concave boundary; d) Focal plane

2. Determination of the New Direction

Declassified in Part -

Sanitized Copy Approved

a) Determine the uniform vector $n_j \equiv (n_{j,1}, n_{j,2}, n_{j,3})$ normal to the area (given in problem 1) in the point x_j .

b) Determine the uniform vector $\mathbf{a}_j \equiv (\mathbf{a}_{j,1}, \mathbf{a}_{j,2}, \mathbf{a}_{j,3})$, which is the linear 5 - combination of the vectors \mathbf{a}_{j-1} and \mathbf{n}_j (i.e., located in the same plane; see Fig.4.2) 5 and for whose angle β_j with the vector \mathbf{n}_j there is valid sin β : sin $\alpha_j = N_j$; Nj is 58

53

CIA-RDP81-01043R001300040009-0

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CLA-RDP81-01043R001300040009-0 0 given by the constant and α_i if the angle of the vectors n_j and a_{j-1} . 2-At the solution of this geometrical problem, some facts must be taken into 4 account according to the physical sense of the problem. These facts are considered ----6 in detail in paragraphs 4.6-4.11. -----12 **b**) a) 14 16 _ X, X 18____ 01-1 20_ 2221 -26 ... Fig.4.2 - Transit of j Rays at Boundary 23._ a) For $N_i < 1$, b) For $N_j > 1$ 30.... 32_ 4.2. Transition of a Ray Through a Spherical Boundary 34_ We describe the procedure of the calculation for the stage where the transition 36 _ of a j ray is investigated in an area. It should first be noted that this area is 35.... spherical. Known in this case are: 40___ the straight lines 4.7 $\mathbf{x} = \mathbf{x}_{j-1} + \mathbf{a}_{j-1} \mathbf{f}, \qquad \forall \mathbf{a}_{j-1} = \mathbf{a}_{j-1} \mathbf{f}$ 44 . $x_1 = x_{j-1,1} - a_{j-1,1}t$ $x_2 = x_{j-1,2} + a_{j-1,2}t$ 4.5 $x_3 = x_{j-1,3} + a_{j-1,3}t$ 50___ ... the spherical area 51----- $(\mathbf{x} - \mathbf{s}_j)^2 = R_j^2$, t. j. $(x_1 - s_{j,1})^2 - x_2^2 - x_3^2 - R_j^2 = 0$. 34 . .! 58 the constant Ny. 58 STAT 54 6

1. Calculate the Intersection of the Ray with the Spherical Surface a) Determine the value of the parameter t for the intersection: $(x_{j-1,1} + a_{j-1,1}t - s_{j,1})^{2} + (x_{j-1,2} + a_{j-1,2}t)^{2} + (x_{j-1,3} - a_{j-1,3}t)^{2} - R_{j}^{2} = 0$ $(a_{j-1,1}^{2} + a_{j-1,2}^{2} + a_{j-1,3}^{2})^{t^{2}} + \frac{2}{2}(a_{j-1,1}t^{2} + a_{j-1,2}t^{2} + a_{j-1,3}t^{2} + a_{j-1,3}t^{2})^{t} + (a_{j-1,1}^{2} + a_{j-1,2}^{2} + a_{j-1,3}^{2} - 2x_{j-1,3}t^{2} - R_{j}^{2}) = 0$ $(a_{j-1,1}^{2} + a_{j-1,2}^{2} + a_{j-1,2}^{2} + a_{j-1,3}^{2} - 2x_{j-1,3}t^{2} + a_{j-1,3}t^{2} + a_{j-1,1}t^{2} + a_{j-1,2}t^{2} + a_{j-1,2}t^{2} + a_{j-1,3}t^{2} + a_{j-1$

b) Calculate the coordinates of the intersections:

$$x_{j,1} = x_{j-1,1} - a_{j-1,1}t_j, \qquad x_{j,2} = x_{j-1,2} - a_{j-1,2}t_j, x_{j,3} = x_{j-1,3} + a_{j-1,3}t_j.$$
(4.2)

24 __ 2. Calculate the Vector aj

2.....

4

6 ...

E. Some

11.

1 .

14

16 ---

18

20.

20

3 :

40___

10

1

4 (s. 📖

5

53

ς,

6

Declassified in Part -

a) Determine the vector $n_j \equiv (n_{j,1}, n_{j,2}, n_{j,3})$: The vector joining the point $34 = x_j$ of the spherical area with its center s_j has its direction normal to point x_j and $3 = magnitude R_j$. Combine the uniform vectors normal to n_j , then

$$n_{j,1} = (x_{j,1} - s_{j,1}) : R_j : \qquad n_{j,2} = x_{j,2} : R_j : \qquad n_{j,3} = x_{j,3} : R_j : A \qquad (4.3)$$

b) Calculate the constants C_j , K_j and combine the vectors a_j . The sought vectors a_j must have the following three characteristics:

$$\mathbf{a}_i = C_i \mathbf{a}_i + K_i \mathbf{n}_i$$

$$|\boldsymbol{a}_j| = 1, \qquad (4.5)$$

STAT

199

$$\sin \beta_j = N_j \sin \gamma_j, \qquad (4.6)$$

* We select "+" for concave boundaries and "-" for convex (See paragraphs 4.9 and t_{1} .

** Reorientation to the normal (See paragraphs 4.7 and 4.13.

•

1

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

•

149

1.000

Since a_{j-1} , n_j are known, we easily find the value cos $x_j = a_{j-1} \cdot n_j$, and hence also the value Kj.

Calculation of the factors

 $a_{j,1} = C_j a_{j-1,1} + K_j n_{j,1}, \ a_{j,2} = C_j a_{j-1,2} + K_j n_{j,2}, \ a_{j,3} =$ $= C_{ja_{j1,3}} + K_{jn_{j,3}}$

completes the calculation of the transition of j rays through (spherical) areas.

4.3. Transition of Rays at a Plane Boundary

If the j area is a plane of equation $x_1 = s_{j,1}$, it is simpler to calculate the intersection of the ray with this plane. Part la) is calculated and replaces part la[†]): 18.

 $x_{j-1,1} + a_{j-1,1}t = s_{j,1}$

20___ We assume

1 6

22

20 ...

4.0

5

 $a_{j-1,1} \neq 0,^{6}$

so that

$$t_j = (s_{j,1} - x_{j-1,1}) : a_{j-1,1} . \tag{4.12}$$

The further calculation is the same as that for the spherical area, but part 2a is 27. omitted because the vector normal to the considered plane is known: $n_j \equiv (1, 0, 0)$. 30. So far it has been assumed that the transit of one (given) ray in the optical 32... 34_ system is being investigated. It is, however, necessary to select a suitably resolved ray with various directions and various places of origin in the optical sys-3C. tem.

4.4. Selection of the Place of Origin

The plane (x_2, x_3) is selected in such a way that all of the points belonging to the part of the area coming into consideration for the first boundary have a positive but minimal coordinate x1. If this first boundary is convex or plane, the beginning of the coordinates is located in the intersection of the optical axis of the system with this boundary. In the plane (x_2, x_3) a lattice is given of 28 points

57

* Concerning exclusion of the case aj-1,1 = 0 see paragraph 4.6.

STAT

according to Fig.4.3, where Δ is a given (by definition) length. If a ray arising

6

8

10-

12

14 ___

16 ---

18_

20_

22

24

28___

30____

36.

30.

40___

4.

4

46...

40...

50.

52-

58

60.

0

Declassified in Part

25 ----Fig.4.3 - Selection of the Place of Origin of a Ray in the Optical System

Fig.4.4 - Selection of Entering Direction of Ray

Sanitized Copy Approved for Release

in the optical system in a given direction is to be investigated, we select in the given direction each of the points of this lattice with the starting point in this direction, and express it by $x_0 \equiv (x_{01}, x_{0,2}, x_{0,3})$. The order in which we select the points of the lattice is indicated in Fig.4.3 by arrows.

4.5. Selection of Direction

The direction of the entering ray is determined by the connection between the points $p \equiv (p_1, 0, 0)$ and $q \equiv (0, 0)$ q2, 0) oriented from q to p (see Fig.4.4). This $p_1 > 0$ is constant (selected in dependence on the angle of vision of the 32 given optical system), and with q_2 we select in succession the points 5, 4, 3, 2, 1, 34_0. For the uniform vector $\mathbf{a}_0 \equiv (\mathbf{a}_{0.1}, \mathbf{a}_{0.2}, \mathbf{a}_{0.3})$ in this particular direction,

is valid:

$$a_{0,1} = p_1 : \sqrt{p_1^2 + q_2^2},$$

$$a_{0,2} = -q_2 : \sqrt{p_1^2 + q_2^2},$$

$$a_{0,3} = 0. \quad (4,13)$$

We calculate then for the given optical system the paths of the rays in six different directions and for each of these directions we investigate 28 different

STAT

56 ... places of origin of the rays in the optical system, and hence we calculate in all 56_ 168 rays.

4.6. Impermissible Angle of Ray with Optical Axis

If the positive direction of the ray includes the positive direction of the axis x_1 , the ray loses significance for our purpose. If, therefore, the directional cos a satisfies the inequality

> $a_{i,1} < \varepsilon$ (4, 14)

at $\varepsilon > 0$, by definition we cease to investigate the path of such a ray (here, among others, the case a = 0 in eq.4.12 is included). .i^{-1.1}

16 - 4.7. Orientation of a Normal Vector

10.

18 __

26,...

24

252

<u>a e</u> .

30-

32...

34....

35.....

3 🔄

40____

4

44

49 __

48

50.....

52-

55

5

Ċ

With a convex boundary we orient the normal vector in the direction toward the

center of the spherical area and with a concave boundary in the direction away from the center. This assures that the angle β of the directional vector of the ray with the normal vector, in the considered case is always acute, so that $\cos \beta_i < 0$ is excluded (which justifies selection of the "+" sign with the root in (4.10)).

4.8. Imaginary Intersection

CIA-RDP81-01043R001300040009-0

Significant for our problem is only the real intersection of the ray with the concerned area. If, therefore, the ray does not encounter a real spherical area, - we do not calculate the ray and we cease to investigate the path of this ray (in

some calculations, according to eq.(4.1), we therefore, exclude the case $A_j^2 - B_j < 0$).

54 4.9 Selection of One or Two Real Intersections

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11

Fig.4.5 - Transit of a Ray through an

Impermissible Part of the Area

For a convex boundary, of two real intersections of the ray with the concerned STAT

. 59

spherical area, only the one can have significance which has the smaller coordinate X. Therefore the other intersection is not calculated. Analogously, for a concave boundary we calculated only the intersection with the greater coordinate x (accordingly, the sign of the root is selected for some of the calculations according to eq.(4.1).

4.10. Impermissible Part of Area

2.....

C

16

18_

201

20

 \hat{r}

30-

51

ć

Declassified in Part

Figure 4.5 shows the significance of a part of an area which can never be used in the given optical system. If the ray (as indicated in Fig.4.5) intersects any part of the area in this portion, it loses significance for the problem. We cease to investigate its path. In calculating this case, it is found that the parameter t_j of the intersection of the ray with the additional area (i.e., the point x_j) comes out negative. 91.....

4.11. Total Reflex

It is necessary to exclude the case where total reflex occurs at any boundary. This case is found when, at the calculation the direction, the ray, after transit through the considered boundary, expressed below the root in eq.(4.10), comes out negative or zero. Such a case is not further investigated.

3 4.12. Distinguishing between Spherical and Plane Boundaries

In the first part of the calculation of the transit of the ray through the 4 (...... boundary it must be decided whether the considered area is spherical or plane. In order to enable the machine easily to specify the proper calculation, we assign to every plane the value $R_j = 0$ (although this does not have geometrical sense!), while for spherical areas we always have the radius $R_{j} \neq 0$.

4.13. Distinguishing between Convex and Concave Boundaries

It has been found advantageous to assign to the radius R, with convex boundaries the "-" sign and with the concave boundaries the "+" sign, and then to set the

STAT

values of the radii in the machine with these signs. In this way the machine is able in advance, at the calculation according to eq.(4.1) to instruct where the $n_{+}n$ or the $n_{-}n$ sign for the root is to be selected; it is sufficient to give the 6 root the same sign as R, has. Further, such assignment of the sign to the radius R_{ij} (in calculating according to (4.3)) is assured in agreement with the normal vector (see Paragraph 4.7). Starting here, the symbol R, is defined as the radius already provided with the corresponding sign.

4.14. Distinguishing between Focal Plane and Boundary 16 -

We require an element with whose help the machine is instructed to change the 18_ 20 procedure in the moment when the calculation of the path of the ray is finished, i.e., when the ray reaches the focal plane. An element is used with which the con-22 24 - stant N_m = -1 is assigned to the focal plane (although this does not have physical 26 sensel). For all of the remaining areas we thus have $N_{+} > 0$.

4.15. Characterization of Boundary Constants

On the basis of what is stated in the three preceding paragraphs, the j bound-32... ary is fully characterized by the constants R_j, s_{j.1}, N_j. These constants indicate 34.... the size and location of the boundaries in the system, as well as those of the other 36.... -considered areas. This is utilized for the construction of the instructional net-3.8..... work. 40_

DESCRIPTION OF CONSTRUCTION OF INSTRUCTIONAL NETWORK

4.16. Group Arrangement

Declassified in Part

Sanitized Copy

2 -

10-

28-

301

42.

44_

45

57

6(

The instructional network is diagrammatically represented in the group arrange-48 -ment of Fig.4.6. For the detailed investigation of the network it is advantageous 50... --- to use the "model 1" forms shown in Figs.4.7-4.13. A survey of the storage of the 52necessary constants in the memory of the machine will be found in the three pages of the "model 2" form shown in Figs.4.21-4.23. 5

61 ...

CIA-RDP81-01043R001300040009-0

Approved for Release 2012/12/11

STAT

Until the instructions in some part of the instructional network are established in a particular sequence, no mention is made of individual instructions. The entire group of such instructions is denoted in Fig.4.6 by a rectangle. Some groups will include the part of the instructional network in which the instructions are established by a somewhat more complicated procedure. Thus, for example, the group 117. of instructions FA to FZ (briefly, the group F) contains, besides others, the in-2 structions FQ to FU, according to which the machine repeats the root-extracting 14 cycle several times. The cycle is described in detail in paragraph 1.5. The group 15 ---F in Fig.4.6 is denoted by one rectangle. 18 _ The manner in which the individual groups can be established is indicated by 20_ arrows in the grouped scheme. 22 For the solution of the given problem, it is necessary to be able to solve 24other problems. This article will explain the parts of the instructional network 25 with whose help the further problems are solved in the machine. 26. 4.17. Problem 1. 30_ Given is the boundary with its constants Rj, sj,1, N; (the constants are set 32 in accordance with the remarks presented in paragraphs 4.12-4.15). Further given is the ray falling on the boundary with its constants a j-1,1' j-1.2' a j-1.3' xj-1.1' 36___ 32- xj-1.2, xj-1.3. To be calculated are the constants of the same ray after refraction at the 40 49 boundary. Problem I is solved with the part of the instructional network for instruction 44 45 EA to instruction NZ. Instruction JA and the address relating to instruction VA 48 are in this case disregarded. The given constants are stored in the memories n0, 50-1 nl, ..., nl0 (concretely 460, ..., 470)*. The constants a j1, a j,2, a j,3, x j,1, x j,2, x replace in the respective 5:2--54 55 # c.f. paragraph 4.22 STAT 62

Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

Declassified in Part

Fig. 4.6 - Group Scheme

46 a - Start (A) Exit of initial direction q_2 Determination of components of vector \mathbf{a}_0 , \mathbf{x}_0 (C) Set-43 ting of addresses for \mathbf{R}_j , \mathbf{s}_j , 1, \mathbf{N}_j (D) Storage of \mathbf{R}_j , $\mathbf{S}_{j,1}$ (E) Sphere-plane (F) Calculation of parameter \mathbf{t}_j of intersection (G) Calculation of parameter \mathbf{t}_j of intersection b - Imaginary in-50 termeter \mathbf{t}_j of intersection (G) Calculation of parameter \mathbf{t}_j of intersection b - Imaginary in-51 termeter \mathbf{t}_j of intersection (G) Calculation $\mathbf{x} \rightarrow \mathbf{x}_{j-1}$ (J) Storage \mathbf{N}_j (K) Sphere-plane 52 (L) Calculation normal \mathbf{n}_j (M) Calculation normal \mathbf{n}_j (N) Calculation \mathbf{a}_j , $\mathbf{a}_j \rightarrow \mathbf{a}_{j-1}$ d - Total 53 reflex; e - Great angle (O) Increasing of addresses for \mathbf{R}_j , $\mathbf{s}_{j,1}$, \mathbf{n}_j (V) Empty exit; (P) Exit 54 $\mathbf{x}_{n,2}$, $\mathbf{m}_{n,3}$ (R) Trial $\mathbf{x}_{0,2}$ $3\Delta \rightarrow \mathbf{x}_{0,3}$ (S) $\mathbf{x}_{0,2} - \Delta \rightarrow \mathbf{x}_{0,2}$ (T) $3\Delta \rightarrow \mathbf{x}_{0,2}$ (U) $\mathbf{q}_2 - 1 \rightarrow \mathbf{q}_2$

.63

CIA-RDP81-01043R001300040009-0

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11

55.....

44

STAT

memories the corresponding constants a j-1.1, a j-1.2, a j-1.3.

0

8.

10

122

ći.

Declassified in Par

For the purpose of instruction EA or KA an investigation is made whether the considered boundary is a spherical or a plane area. According to this instruction the expression

> |R.| - C. (4.15)

is calculated. The value ε is a positive constant given in such a way that it is smaller than the radius of any of the given spherical areas. For any spherical area, 14 15 __ therefore, the expression (4.15) comes out positive, while for any plane area, where We always have $R_j = 0$ (c.f. paragraph 4.12), it comes out negative. 20

If the problem concerns a sphere, the group of instructions F is valid. These 22 instructions are based on the first two constants of the boundaries and on all of 21- the constants of the straight lines (stored in the respective memories). The cal-25 culated parameter is stored in memory h7 (concretely 427). The instructions of group F serve for calculating according to the procedure described in the first part 3 of paragraph 4.2. If the problem concerns a plane, the instructional group G is 32___valid. The latter is based on the same kind of calculating information as group F, 34 and is intended for equivalent information, whose results are stored in the same 30 memories as group F. The calculation is carried out in the manner described in 38-paragraph 4.3 for planes.

40_ The instructional group H, which is common to spheres and planes, starts with 42 a known constant of the straight line and a known parameter of the intersection, 44-stored in the respective memories. This value serves for calculating the coordinate $\frac{16}{10}$ of the intersections x j.1, x j.2, x j.3. The resultant coordinate replaces the given constant x_{j-1.1}, x_{j-1.2}, x_{j-1.3}, which is no longer needed. The instructions of 50 this group serve for the calculating procedure according to eq.(4.2).

52 The further calculating procedure in turn depends on the second area. It is determined by instruction KA. If the problem concerns a sphere, instructional group -1 is valid, which, with a coordinate of the points $x_{j.1}$, $x_{j.2}$, $x_{j.3}$ on the area and STAT 58

a given constant of the area Rj, sj.1, determines the components of the uniform vec-21 tor to the normal, and is stored in memories h10, h11, h12 (concretely 430, 431, 432). Proceed according to eq.(4.3). If the problem concerns a plane, the uniform 6 vector to the normal is known in advance. Instructional group M in this case only 8_ stores the known vectors (1, 0, 0) in the corresponding memories, which require a 10 vector $n_j \equiv (n_{j,1}, n_{j,2}, n_{j,3}).$ 12 .

The further procedure is common to spheres and planes. Instructional group N 14 is employed. The latter is based on a known uniform directional vector a_{j-1} of the 16 . ray before refraction, a uniform vector to the normal nj, and a known mutual index of refraction Nj. All of the values are already stored in the memories. In this 20 procedure, the uniform directional vector $a_j \equiv (a_{j,1}, a_{j,2}, a_{j,3})$ of the ray after 22 refraction is determined according to the second part of paragraph 4.2. There vec-24_ tors replace the given directional vectors a j-1 in the corresponding memories.

This completes the description of the part of the instructional network solving problem I.

32_4.18. Problem II

Ö

18

26 1

28_

30_

56

58_

60_

Declassified in

34_ Given is the entire optical system with its constants R1, s1.1, N1; R2, s2.1, 36-N2: ...; Rm, sm.1, Nm. Given also is the entering ray with its constants a0.1, a0.2, 38___ $x_{0,3} = 0; x_{0,1} = 0, x_{0,2}, x_{0,3}$

To be calculated are the two coordinates $x_{m,2}$, $x_{m,3}$ of the points in the focal 40 ⁴² plane where the ray hits after passing through the optical system".

44 Problem II is solved with the part of the instructional network BA to OC to-46 gether with instructions PA and PB. The constants of the optical system are stored 48 in memories p0, p1, p2, ... (concretely 500, 501, 502, ...). The constants of the 50_ entering ray a 0.1, a 0.2, x 0.2, x 0.3 are in memories kl, k2, m0, ml (concretely 441, 52-

65

54 ... * The first coordinate point in the focal plane is denoted xm.1 = Sm.1.

STAT

300040009-0

Declassified Copy Approved for Release 2012/12/11 442, 450, 451)*. The resultant values are perforated into the cards by the machine. In order to be able to use the part of the instructional network solving prob-6 1 an I, it is necessary to be able to fill the required memories. We begin with the 81 first boundary, so that in memories nO, n1, n2, (concretely 460, 461, 462) must be 10 stored the constants R1, S1.1, N1. These, together with the remaining constants of 12 the system are stored in memories p0, p1, p2, ... (concretely 500, 501, 502, ...). 14 _ The instructions leading to transmission of the constants are: 16 - $\langle p0 \rangle + \langle 0 \rangle \rightarrow \langle n0 \rangle$, DA 18._ DB $\langle p1 \rangle + \langle 0 \rangle \rightarrow \langle n1 \rangle$ 20_ $\langle p2 \rangle + \langle 0 \rangle \rightarrow \langle n2 \rangle$ JA 22_ Moreover, it is necessary to replace, at least, in memories n3 to n10 (con-24eretely 463 to 470), the constants of the entering ray by the constants of the 26 _ incidence of the ray at the boundary. These values are stored in memories k1, k2, 28_ mO, ml. 30. We therefore also give instructional group B by which this is accomplished. 32_ According to these given instructions, the machine must begin by solving prob-34. 1em I for the first boundary. The constants of the ray after refraction, calculated 36 as results, form the basis for the solution of problem I for the second boundary. 38 The machine is provided directly with the corresponding memories. In order to be 40 able to begin with the solution of problem I for the second boundary, also the con-42 stants R2, \$2.1, N2 must be stored in place of the constants of the first boundary. 44_ This is accomplished with instructions DA, DB, JA, as explained above, except 46 that the corresponding addresses are suitably changed. Since the contents of memories p0, p1, p2, p3, ... are full, it is necessary in each of the instructions to 50. 52-* The values a 0.3, x 0.1 are not reserved for particular memories, because a 0.3 = 54 $= x_{0.1} = 0.$ 5.6 58 STAT 66 60___

CIA-RDP81-01043R001300040009

332

Decla

Ő. sugment the respective address by three. 2 -This change is accomplished by the instructions of group 0, of which we cite 4 the first: 6 ... $C!\langle DA + 1 \rangle + \langle g10 \rangle \rightarrow !\langle DA - 1 \rangle !^{10}$ 04 8... This instruction as changed by instruction DA is as follows: 10 -DA $\langle p3 \rangle + \langle 0 \rangle \rightarrow \langle n0 \rangle$. 12. Similarly, instructions OB and OC are transformed by instructions DB and JA. 14 After this, instructions DA, DB, and JA can be properly used for solving prob-15 -1 m I for the second boundary, etc. 18_ The process is repeated until the ray reaches the focal plane. Then the neg-20. ative sign of the constant N_m (c.f. paragraph 4.14) produces the effect that the 22 result of the operation according to instruction JA comes out negative (a negative 24... mumber is regarded as zero). Then in second address of the further procedure, 26 _ ise., PA is valid. The machine does not further calculate the direction of the ray, 28_ but perforates the card with the coordinates of the ray, which are already the re-30. quired results. 32_ As can be seen, in the moment when the machine finishes problem II, the in-34 structions DA, DB, JA are changed. If the machine returns later to the solution of 36_ problem II, these instructions must always be brought back to the original state. 38 In every calculation of problem II this is done according to instructions CA, CB, 40_ CC. 42_ This completes the description of the part of the instruction network solving 44 problem II. 46. 4:19. Problem III 48_ Given is the whole optical system with its constants R1, s1.1, N1; R2, s2.1, 50-# Instruction OA means: Start with the second word of instruction DA, to whose 52third part (i.e., to the address for Ry), add the content of memory glo (i.e., the 54 number 3), so that the changed word replaces the original word. 56_ 5.3 STAT 67 60

classified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0
N_2 ; ...; R_m , $s_{m,1}$, N_m . Also given is the direction a_0 of the entering ray with the constants a 0.1 a 0.2 a 0.3 = 0. To be solved is problem II for 28 points selected in succession after the starting point $x_0 \equiv (x_{0.1}, x_{0.2}, x_{0.3})$ according to the mystem described in paragraph 4.4.

Problem III is solved with the instructions that were necessary for solving problem II supplemented by the instructions QA, RA, RB, SA. All of the given values are stored in the same memories as in problem II. Instead of the coordinates of 14 the starting point (i.e., in memories mO and m1), the coordinates of this point of the lattice shown in Fig. 4.3 are stored, with which the start has to be made, i.e., 18_ points (0, 3Δ , 3Δ).

This satisfies all of the conditions needed to begin the solution of problem II - for this point.

After exit of the results (with instructions PA, PB), the solution of problem $26 \pm$ il must be repeated for the further points of the lattice. In view of the change 28in the position of the starting point, instruction QA is used, which changes its 30 third coordinate by A. Then it is possible to return to instruction BA. If in any 32 problem II x_{0.3} = 0, the result of operation QA comes out negative (we tried to cross 34 the left edge of the lattice in Fig.4.3). In this case it is again necessary to 35 -put $x_{0,3} = 3\Delta$ (return to the right edge of the lattice, and to change $x_{0,2}$ by Δ . 38 These two steps are accomplished according to instructions RA and SA. Before start-40 ing to execute the instruction SA, however, it is tried (instruction RB) whether transgression of the lower edge of the lattice is likely to occur. Problem III is 40_ solved, and the result of the operation according to RB shows that further execution 45. of instruction SA would be attended by transgression of the lower edge of the lat-48 50_____**vice.**

4.20. Problem IV 52--

Dec

58

60.

6

8-

10 -

12.

15 -

20_

22_

24 ...

54 Given is the entire optical system with its constants as before. To be solved 56 is problem III for all of the directions an of the entering ray selected in the

68

STAT

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0 Ö manner described in paragraph 4.5. Before exit of the result of every problem III, 2° the value q must exit, which is characteristic of the considered direction. 4 Problem IV is solved with the entire described instructional network (at which 6 instructions VA, VB are disregarded). 8... All of the given values are stored in the same memories as in problem III, but 10 the constants a 0.1, a 0.2, giving the directions of the entering ray, are not yet 21 set. They must first be calculated from the values p1 and q2. The constant p1 is 14 stored in memory gO. The value q2 is in memory kO, and is at the beginning equal 16. to five. 18_ The instructions of group A effect, on the one hand, the entrance of the value 20_ q_{2} , and on the other hand the calculation and correct storage of the values $a_{0,1}$ 22 ^a0,2' 24_ This is the beginning for the solution of problem III for the first direction. 26 After this problem has been solved, instruction TA is valid. The purpose of this 281 instruction is to reach the state where the values 3Δ , 3Δ are in memories mO, ml. 30 This is necessary in order to be able again to begin the solution of problem III 32 for the next direction. The change in the direction is tried with instruction UA 34 by changing the value q₂ by unity. Then it is possible to return to instruction AA. 36

- Problem IV is completely solved when at execution of instruction UA 2 this latter 38-- comes out negative. Then the machine stops.

42-4.21. Remarks on Instructions VA and VB

56

58_

601

other purposes.

Declassified in Part

These instructions effect that at the exit the resultant coordinate is perfo- 46 rated into the card from memory gll. This is such a large number that it cannot be 48 regarded as the coordinate of the point in the focal plane. The presence of this 50 number in the card indicates that the considered ray did not reach the focal plane. 52

The content of memory gll must be replaced in the instruction network for still

69

STAT

The instructions of group V are valid whenever any of the four cases occur mentioned in paragraphs 4.6, 4.8, 4.10 and 4.11.

The case of paragraph 4.6 occurs when the result of operation NV comes out negative. In the case of paragraph 4.8, the result of operation FE comes out negative. The case of paragraph 4.10 occurs when the result of operation FZ or GA comes out negative. In the case of paragraph 4.11 the result of operation NL comes out negative.

This completes the description of the entire instructional network.

18_ 4-22. Summary

Ö

 $2 \cdot$

4

6

8.

10.

12.

14

16

58

60

Declassified in

The preparation of such an instructional network requires considerable effort, 20 but it must be remembered that the work is rather permanent and that the network can 22 be used for investigating any centered optical system*. Before beginning the solu-24 26 _ tion of the problem, the information has been stored in the memories of the machines, where not only the constants but also the entire instructional network is perforated 28_ into cards. The entire batch of these cards is kept after the solution of the problem. If the same problem comes up later for another centered optical system, all 32_ that is necessary is to exchange in the corresponding batch of cards those contain-34_ 36 ing the constants of the old system with those containing the constants of the new 38-system. The entire batch is placed into the machine ", and the machine can be 40_started.

The cards with the results come out of the machine in the following order: 44____The first card contains perforated the constant $q_2 = 5$, denoting the common entering 46____

 48_{--} * Here we have only systems with spherical or plane boundaries. However, it should 50_{--} be noted that it is always possible to prepare the instructional network in such a 52_{--} way that it can also be used for systems containing, for example, also paraboloid 54_{--} way that it can also be used for systems containing, for example, also paraboloid

STAT

323

55 the Even regardless of the sequence of the cards in the batch.

ч÷ц

•

STAT

180

4			
direction of the	first 28 rays. The next	56 cards contain the numerical value	68 01
the coordinates x	x, of the point in wh	ich these rays intersect the focal p	lane.
4 For each of these	rays the corresponding	value x2 is perforated in one card a	nd the
6	ert card. The order of	the individual rays of the considere	d di-
	he the order of the star	ting points in Fig.4.3. Perforated	into
		that the values of the coordinates i	
next 56 cards bel		second entering direction. After the	
cards follow the	cards with the value q2	= 3, etc.	
16 All cards co	ontaining the results con	ning from the machine are given a ser	ial
18 mmber, so that	when it becomes necessar	y later to use some of the cards ther	re is
		cards with the results can be used a	
99	r mechanical processing.		
24			
26			
28	가 같은 것은 것은 것은 것이다. 것은 것이다. 것 같은 것은 것은 것은 것은 것이다.		
30			gran an a
36			
38			
40			
42			2.
44			
46			
48			
50			
5 2-			
			anny an annan an an anna sea
54	n na na na kana na		
56	an a		
58		71	
60.	and an and a second		

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

	54 2 5 5 4 4 4 4 5 54 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<u>ĔŦĔĿĨĿĨĿ</u>	30 	20 18 10 22 22 18 24 1 1 1 1 1	, F L			<u> </u>
	Analysis	Vocabulary		Instruction		1	Remarks	Model
			Index	Operational Symbol	+	-		ц Ч
	A MANA LANA ANA ANA ANA ANA ANA ANA ANA ANA	$\theta = \langle 0 \rangle$!Q0	0 → <0>	1.			Η.
		$\begin{vmatrix} 1 &= \langle 1 \rangle \\ R_1 &= \langle p0 \rangle \bullet \end{vmatrix}$!Q1 !Q2	$1 \rightarrow \langle 1 \rangle$ $R_1 \rightarrow \langle p0 \rangle$				
		$s_{1,1} = \langle p \rangle$!Q3	$ \begin{array}{c} n_1 \rightarrow \langle p0 \rangle \\ s_{1,1} \rightarrow \langle p1 \rangle \end{array} $			n an	
	The second limits of	$N_1 = \langle p2 \rangle$!Q4	$\dot{N_1} \rightarrow \langle p2 \rangle$				1
				2018년 1월 2012년 1월 2012년 1월 2013년 1월 2019년 1월				
		영영 중심 문화						
	a an							Pr
		$p_1 = \langle g0 \rangle$ $q_1 = \langle k0 \rangle$!Q5 !Q6	$p_1 \rightarrow \langle q0 \rangle$			As the	Problem:
		$q_1 = \langle \mathbf{r} 0 \rangle$ $\Delta = \langle \mathbf{g} \mathbf{l} \rangle$	100	$5 \rightarrow \langle k0 \rangle$ $\Delta \rightarrow \langle g1 \rangle$			initial	8
							the num-	
-1							ber 5 is	မှု
72			AA	$H2\langle k0\rangle + \langle 0\rangle \rightarrow \langle h0\rangle$	1.14		set.	Optical
	$a_{0,1} = \frac{p_1}{\sqrt{p_1^2 + q_2^2}}$		AB	$\langle g0 \rangle : \langle g0 \rangle \rightarrow \langle h0 \rangle$	「そん」という	AC		4
	지는 것 이 것 같은 것 같아요. 가 안 주		AC	$\langle k0 \rangle$. $\langle k0 \rangle \rightarrow \langle h1 \rangle$		AD		Sy
	$a_{0,1} = \frac{-q_{1}}{\sqrt{p_{1}^{1} + q_{1}^{1}}}$	$p_1^2 + q_2^2 = \langle h 0 \rangle$	AD	$\langle h0 \rangle + \langle h1 \rangle \rightarrow \langle h0 \rangle$	4E	AE		System
	$p_1^{\mathbf{r}} + q_1^{\mathbf{s}}$			이 이 이 방법은 것 같은 것이 같아요.			The first	
	a _{bj3} == ()	$u_n = \langle h 3 \rangle$!Q8 !Q9	$11 \rightarrow \langle h13 \rangle$ $\epsilon_1 \rightarrow \langle g4 \rangle$			approxima- tion is	
		0,5 -= 〈g14 〉	!Q10	$0,5 \rightarrow \langle g 4$			set as	
							u ₁ = 11.	
	$\left \frac{p_1^2+q_2^2}{u_n}-u_n\right <\epsilon_1$		AE	<h0> : <h13> - <h1< td=""><td>1.1.1.1</td><td>.4 F</td><td></td><td></td></h1<></h13></h0>	1.1.1.1	.4 F		
			AF	$ -\langle h13 \rangle + \langle h1 \rangle \rightarrow \langle h2 \rangle$	AG	AG		
	$u_{n+1} = 0.5 \left(\frac{p_1^2 + q_2^2}{u_n} + u_n \right)$		AG	• $\langle q4 \rangle + \langle h2 \rangle \rightarrow \langle h2 \rangle$	AH			
E	$n_{n+1} = 0.5$	그는 그는 것은 그는 것을 같아.	AH	$\langle p_{1} \rangle \rightarrow \langle h_{2} \rangle \rightarrow \langle h_{2} \rangle$ $\langle h_{1} \rangle \rightarrow \langle h_{1} \rangle \rightarrow \langle h_{1} \rangle$	246			

	5		30	26 22 22 20 16	\$* 			
		T						-
	Analysis	Vocabulary		Instruction			Remarks	Model
			Index	Operational Symbol		+ -		lel
73	$u_n \rightarrow \sqrt[3]{p_1^2 + q_2^2}$	$ \begin{array}{c} u_{n+1} = \langle h 3 \rangle \\ \sqrt{p_1^2 + q_2^2} = \langle h 3 \rangle \\ a_{0,1} = \langle k \rangle \\ a_{0,2} = \langle k \rangle \\ a_{0,2} = \langle m 0 \rangle \\ x_{0,3} = \langle m \rangle \\ \end{array} $ $ \begin{array}{c} p_0 = \langle g 1 \rangle \\ p_1 = \langle g 2 \rangle \\ p_2 = \langle g 3 \rangle \end{array} $	AK AL AM 1Q11 1Q12 BA BB BC BD BE BF 1Q13 1Q14 1Q15 CA CB	$ \langle g14 \rangle \cdot \langle h1 \rangle \rightarrow \langle h13 \rangle $ $ \langle g0 \rangle : \langle h13 \rangle \rightarrow \langle k1 \rangle $ $ - \langle k0 \rangle : \langle h13 \rangle \rightarrow \langle k2 \rangle $ $ 3d \rightarrow \langle m0 \rangle $ $ 3d \rightarrow \langle m1 \rangle $ $ \langle k1 \rangle + \langle 0 \rangle \rightarrow \langle n3 \rangle $ $ \langle k2 \rangle + \langle 0 \rangle \rightarrow \langle n4 \rangle $ $ \langle 0 \rangle + \langle 0 \rangle \rightarrow \langle n5 \rangle $ $ \langle 0 \rangle + \langle 0 \rangle \rightarrow \langle n7 \rangle $ $ \langle m0 \rangle + \langle 0 \rangle \rightarrow \langle n7 \rangle $ $ \langle m1 \rangle + \langle 0 \rangle \rightarrow \langle n10 \rangle $ $ p0 \rightarrow \langle g11 \rangle $ $ p1 \rightarrow \langle g12 \rangle $ $ p2 \rightarrow \langle g13 \rangle $ $ \langle g11 \rangle = $ $ = C! \langle DA + 1 \rangle \rightarrow ! \langle DA + 1 \rangle $	AN BA BE BC BD BE BF CA	AE AE BA BB BC BD BE BF CA CB	Set x _{0.2} = = x _{0.3} = 3Δ	1
	$ R_j - \epsilon < 0$? [Expression (4.15)]	$R_{j} = \langle n0 \rangle$ $s_{j,1} = \langle n1 \rangle$ $a_{j-1,1} = \langle n3 \rangle$ $a_{j-1,2} = \langle n4 \rangle$	CC DA DB EA	$\langle g12 \rangle :=$ $= C! \langle DB + 1 \rangle \rightarrow ! \langle DB + 1 \rangle$ $\langle g13 \rangle =$ $= C! \langle JA + 1 \rangle \rightarrow ! \langle JA + 1 \rangle$ $\langle p0 \rangle + \langle 0 \rangle \rightarrow \langle n0 \rangle$ $\langle p1 \rangle + \langle 0 \rangle \rightarrow \langle n1 \rangle$ $- \langle g4 \rangle + \langle n0 \rangle \rightarrow \langle h0 \rangle$	CC DA DB EA FA	DA DB EA	Addresses p0, p1 were reached with instructions DA, DB at execution of instructions CA, CB	Page

STAT

Fig.4.8

$\begin{vmatrix} F_{j} \\ F_{k} \\ F_$	InstructionOperational Symbol $(n1) + (n6) \rightarrow (h0)$ $(n3) \cdot (h0) \rightarrow (h1)$ $(n4) \cdot (n7) \rightarrow (h2)$ $(h1) + (h2) \rightarrow (h1)$ $(n5) \cdot (n10) \rightarrow (h2)$ $(h1) + (h2) \rightarrow (h1)$ $(n5) + (h0) \rightarrow (h1)$ $(n0) + (h0) \rightarrow (h2)$ $(n0) + (h0) \rightarrow (h2)$	FB FE FC FC FD FD FE FE FF FF FG FG FH FH		Model 1
$\begin{vmatrix} a_{j-1,1} = \langle n5 \rangle \\ x_{j-1,1} = \langle n6 \rangle \\ x_{j-1,1} = \langle n10 \rangle $	$-\langle n1 \rangle + \langle n8 \rangle \rightarrow \langle h0 \rangle$ $\langle n3 \rangle \cdot \langle h0 \rangle \rightarrow \langle h1 \rangle$ $\langle n4 \rangle \cdot \langle n7 \rangle \rightarrow \langle h2 \rangle$ $\langle k1 \rangle + \langle k2 \rangle \rightarrow \langle h1 \rangle$ $\langle n5 \rangle \cdot \langle n10 \rangle \rightarrow \langle h2 \rangle$ $\langle k1 \rangle + \langle k2 \rangle \rightarrow \langle h7 \rangle$ $\langle n0 \rangle + \langle h0 \rangle \rightarrow \langle h1 \rangle$	FC FC FD FD FE FE FF FF FG FG FH FH		
Procedure for Sphere: $\begin{array}{c} x_{j-1,1} = \langle n6 \rangle \\ x_{j-1,2} = \langle n7 \rangle \\ x_{j-1,1} = \langle n0 \rangle \\ $		FC FC FD FD FE FE FF FF FG FG FH FH		
Procedure for Sphere: $\begin{array}{c} x_{j-1,1} = \langle n6 \rangle \\ x_{j-1,3} = \langle n7 \rangle \\ x_{j-1,1} = \langle n0 \rangle \\ $		FC FC FD FD FE FE FF FF FG FG FH FH		
Procedure for Sphere: $ \begin{array}{c} x_{j-1,1} = \langle n7 \rangle \\ x_{j-1,3} = \langle n10 \rangle \\ x_{j-1,1} = \langle n10 \rangle \\ FB \\ FD \\ FC \\ FD \\ FC \\ FD \\ FC \\ FD \\ FC \\ FC \\ FD \\ FC \\ FC$		FC FC FD FD FE FE FF FF FG FG FH FH		
Procedure for Sphere: $\begin{vmatrix} x_{j-1,1} = \langle n10 \rangle \\ x_{j-1,1} - s_{j,1} + a_{j-1,2} + a_{j-1,2} + a_{j-1,2} \\ B_{j} = x_{j-1,1}^{2} + x_{j-1,2}^{2} + a_{j-1,2} + a_{j-1,2} \\ -2 - 2x_{j-1,1} + x_{j-1,2}^{2} + x_{j-1,2}^{2} - \\ -2 - 2x_{j-1,1} + x_{j-1,2}^{2} + x_{j-1,2}^{2} - \\ -2 - 2x_{j-1,1} - s_{j,1} + B_{j}! \\ -1 - ([x_{j-1,1} - s_{j,1}] - R_{j}] + \\ + x_{j-1,2}^{2} + x_{j-1,3}^{2} - \\ + x_{j-1,2}^{2} + x_{j-1,3}^{2} - \\ B_{j} = \langle h6 \rangle FN \\ FL \\ FL \\ FM \\ FJ \\ FL \\ FL$		FC FC FD FD FE FE FF FF FG FG FH FH		
$\begin{vmatrix} A_{j} = a_{j-1,1} (x_{j-1,1} - e_{j,1}) + \\ + a_{j-1,2} x_{j-1,1} + a_{j-1,2} x_{j-1,3} + \\ B_{j} = x_{j-1,1}^{2} + x_{j-1,2}^{2} + x_{j-1,3}^{2} - \\ - 2x_{j-1,1} - x_{j,1} - x_{j}^{2} - \\ - 2x_{j-1,2} + x_{j-1,2}^{2} - \\ - 2x_{j-1,2} - x_{j,1} - x_{j}^{2} - \\ - 2x_{j-1,2} - x_{j,1} - x_{j,1} - \\ - 2x_{j-1,2} - \\ - 2x$		FC FC FD FD FE FE FF FF FG FG FH FH		
$\begin{vmatrix} A_{j} = a_{j-1,1} (x_{j-1,1} - e_{j,1}) + \\ + a_{j-1,2} x_{j-1,1} + a_{j-1,2} x_{j-1,3} \\ B_{j} = x_{j-1,1}^{s} + x_{j-1,2}^{s} + x_{j-1,3}^{s} - \\ - 2x_{j-1,1} e_{j,1} + x_{j-1,3}^{s} + x_{j-1,3}^{s} - \\ - 2x_{j-1,1} e_{j,1} + x_{j-1,3}^{s} - \\ = [(x_{j-1,1} - e_{j,1}) - R_{j}] + \\ + x_{j-1,2}^{s} + x_{j-1,3}^{s} + \\ + x_{j-1,3}^{s} + x_{j-1,3}^{s} - \\ B_{j} = \langle h6 \rangle FN \\ FM \\ FM \\ FM \\ FM \\ FM \\ PM \\ PM \\ PM$		FC FC FD FD FE FE FF FF FG FG FH FH		
$\begin{vmatrix} + a_{j-1,2} x_{j-1,3} + a_{j-1,3} x_{j-1,3} \\ B_{j} = x_{j-1,1}^{2} + x_{j-1,3}^{2} + x_{j-1,3}^{2} & FC \\ FD \\ FD \\ FE \\ = [(x_{j-1,1} - e_{j,1}) + R_{j}] \\ \cdot [(x_{j-1,1} - e_{j,1}) - R_{j}] + \\ + x_{j-1,3}^{2} + x_{j-1,3}^{2} & FI \\ FJ \\ FK \\ FL \\ FM \\ B_{j} = \langle A6 \rangle \\ FN \\ FO \\ A_{j}^{3} - E_{j} = \langle A0 \rangle \\ FP \\ u_{n} = \langle A14 \rangle \\ !Q16 \\!Q17 \\ 0,5 = \langle g14 \rangle \\ FQ \\ \end{vmatrix}$		FD FD FE FE FF FF FG FG FH FH		
$\begin{vmatrix} B_{j} = x_{j-1,1}^{*} + x_{j-1,2}^{*} - R_{j}^{*} = \\ -2x_{j-1,1}e_{j,1} + e_{j,1}^{*} - R_{j}^{*} = \\ = [(x_{j-1,1} - e_{j,1}) + R_{j}] \cdot \\ \cdot [(x_{j-1,1} - e_{j,1}) - R_{j}] + \\ + x_{j-1,3}^{*} + x_{j-1,3}^{*} \end{vmatrix} = A_{j} = \langle hT \rangle \qquad FF$ FI FJ FJ FK FL FM FJ FL FM FL FM FL FM FL FU FL FU FU FU FU FU FU FU FU	$ \begin{array}{l} \langle \mathbf{h} \mathbf{b} \rangle + \langle \mathbf{h} \mathbf{b} \rangle \rightarrow \langle \mathbf{h} \mathbf{b} \rangle \\ \langle \mathbf{n} 5 \rangle \cdot \langle \mathbf{n} 10 \rangle \rightarrow \langle \mathbf{h} 2 \rangle \\ \langle \mathbf{h} 1 \rangle + \langle \mathbf{h} 2 \rangle \rightarrow \langle \mathbf{h} 7 \rangle \\ \langle \mathbf{n0} \rangle + \langle \mathbf{h0} \rangle \rightarrow \langle \mathbf{h1} \rangle \end{array} $	FE FE FF FF FG FG FH FH	2	
$\frac{-2x_{j-1,1} \bullet_{j,1} + \bullet_{j,1}^{2} - R_{j}^{6} =}{= [(x_{j-1,1} - \bullet_{j,1}) + R_{j}]} \cdot A_{j} = \langle hT \rangle \qquad FE \\ FF \\ = [(x_{j-1,1} - \bullet_{j,1}) - R_{j}] + A_{j} = \langle hT \rangle \qquad FF \\ FG \\ FI \\ FJ \\ FL \\ FK \\ FL \\ FM \\ FL \\ FM \\ Ha \\ = \langle hI4 \rangle \qquad SQ16 \\ SQ17 \\ O,5 \\ = \langle g14 \rangle \\ FQ \\ Ha \\ SQ16 \\ SQ17 \\ SQ17 \\ SQ17 \\ SQ17 \\ SQ17 \\ SQ17 \\ SQ18 \\ SQ1$	$ \begin{array}{l} \langle n5 \rangle \ . \ \langle n10 \rangle \rightarrow \langle h2 \rangle \\ \langle h1 \rangle + \langle h2 \rangle \rightarrow \langle h7 \rangle \\ \langle n0 \rangle + \langle h0 \rangle \rightarrow \langle h1 \rangle \end{array} $	FF FF FG FG FH FH	7	
$\begin{vmatrix} = [(x_{j-1,1} - \sigma_{j,1}) + R_j] \\ \cdot [(x_{j-1,1} - \sigma_{j,1}) - R_j] + \\ + x_{j-1,2}^2 + x_{j-1,1}^2 \\ \downarrow \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\langle h1 \rangle + \langle h2 \rangle \rightarrow \langle h7 \rangle$ $\langle n0 \rangle + \langle h0 \rangle \rightarrow \langle h1 \rangle$	FG FG FH FH		
$\begin{vmatrix} .[(x_{j-1,1} - s_{j,1}) - R_{j}] + & FG \\ + x_{j-1,2}^{2} + x_{j-1,1}^{3} & FH \\ + x_{j-1,2}^{3} + x_{j-1,1}^{3} & FJ \\ FJ \\ FK \\ FL \\ FM \\ FM \\ FN \\ PO \\ A_{j}^{3} - E_{j} = \langle h0 \rangle \\ FP \\ u_{n} = \langle h14 \rangle \\ !Q16 \\ !Q17 \\ 0.5 = \langle g14 \rangle \\ FQ \\ \end{vmatrix}$	$\langle n0 \rangle + \langle h0 \rangle \rightarrow \langle h1 \rangle$	FH FH	•	
$\begin{vmatrix} .[(x_{j-1,1} - s_{j,1}) - R_j] + & FG \\ + x_{j-1,2}^{2} + x_{j-1,3}^{2} & FH \\ + x_{j-1,2}^{3} + x_{j-1,3}^{3} & FJ \\ FJ \\ FJ \\ FK \\ FL \\ FM \\ FM \\ FN \\ PO \\ A_{j}^{3} - E_{j} = \langle h0 \rangle \\ FP \\ u_{n} = \langle h14 \rangle \\ !Q16 \\ !Q17 \\ 0.5 = \langle g14 \rangle \\ FQ \\ \end{vmatrix}$	$\langle n0 \rangle + \langle h0 \rangle \rightarrow \langle h1 \rangle$	1 1	1	
$\begin{vmatrix} +x_{j-1,2}^{2} + x_{j-1,1}^{2} & FH \\ +x_{j-1,2}^{2} + x_{j-1,1}^{2} & FH \\ FJ \\ FL \\ FM \\ FL \\ FM \\ FN \\ FO \\ u_{n} = \langle h(4) \\ !Q16 \\ !Q17 \\ 0,5 = \langle g14 \rangle \\ FQ \\ \end{vmatrix}$		1 1		1 1
$\begin{vmatrix} F_{j} \\ F_{k} \\ F_$	VIEW / VIEW / TO VIEW ?	FJ FJ		
$\begin{vmatrix} B_{j} &= \langle h6 \rangle & FL \\ FM \\ FN \\ FO \\ A_{j}^{0} - E_{j} &= \langle h0 \rangle & FP \\ u_{n} &= \langle h14 \rangle & !Q16 \\ !Q17 \\ 0.5 &= \langle g14 \rangle \\ \end{vmatrix}$	$\langle h1 \rangle$. $\langle h2 \rangle \rightarrow \langle h0 \rangle$	FK FK		
$\begin{vmatrix} A_{j}^{2} - B_{j} \\ \vdots \\ H_{j} = \langle h0 \rangle \\ H_{j} = \langle h0$	$\langle n7 \rangle \cdot \langle n7 \rangle \rightarrow \langle h1 \rangle$	FL FL		
$\begin{vmatrix} B_{j} &= \langle h6 \rangle & FM \\ FN & FO \\ FO \\ A_{j}^{s} - E_{j} &= \langle h0 \rangle & FP \\ u_{n} &= \langle h14 \rangle & !Q16 \\ !Q17 \\ 0.5 &= \langle g14 \rangle \\ \end{vmatrix}$	$\langle h0 \rangle + \langle h1 \rangle \rightarrow \langle h0 \rangle$	FM FM		
$\begin{vmatrix} B_{j} &= \langle h6 \rangle & FN \\ FO \\ A_{j}^{3} - E_{j} &= \langle h0 \rangle & FP \\ u_{n} &= \langle h14 \rangle & !Q16 \\ !Q17 \\ 0.5 &= \langle g14 \rangle \end{vmatrix}$	$\langle n10 \rangle + \langle n11 \rangle \rightarrow \langle n1 \rangle$	FN FN		
$\begin{vmatrix} A_j^3 - E_j = \langle h 0 \rangle & FO \\ FP \\ u_n &= \langle h 4 \rangle & Q 6 \\ Q 17 \\ 0,5 &= \langle g 4 \rangle & FQ \end{vmatrix}$	$\langle h0 \rangle + \langle h1 \rangle \rightarrow \langle h6 \rangle$	FO FO		
$\begin{vmatrix} A_j^{\mathfrak{g}} - E_j = \langle h 0 \rangle & FP \\ u_n &= \langle h 4 \rangle & !Q 6 \\ !Q 7 \\ 0,5 &= \langle g 4 \rangle & FQ \end{vmatrix}$	$\langle h0 \rangle + \langle h1 \rangle \rightarrow \langle h0 \rangle$ $\langle h7 \rangle \cdot \langle h7 \rangle \rightarrow \langle h0 \rangle$	FP FP	• · · · · · · · · · · · · · · · · · · ·	
$\begin{vmatrix} u_n &= \langle h 4 \rangle & !Q 6 \\ !Q 7 \\ 0,5 &= \langle g 4 \rangle \\ FQ \\ FQ \\ \end{vmatrix}$	$ \langle h1 \rangle : \langle h1 \rangle \rightarrow \langle h0 \rangle - \langle h6 \rangle + \langle h0 \rangle \rightarrow \langle h0 \rangle $	FQ VA		
$\left \frac{A_{j}^{2}-B_{j}}{u_{n}}-u_{n}\right < \varepsilon_{x} $		ryiA	Set as first	
$\left \frac{A_{j}^{2}-B_{j}}{u_{n}}-u_{n}\right <\varepsilon_{t}$	$50 \rightarrow \langle h14 \rangle$		approxima-	
$\left \frac{A_j^2 - B_j}{u_n} - u_n\right < \varepsilon_r $	$\epsilon_1 ightarrow \langle g ar{ extbf{o}} angle$		tion is	
$\left \frac{A_j^2 - B_j}{u_n} - u_n\right < \varepsilon_t $			$u_1 = 50$	
$\left \frac{a_{j}-b_{j}}{u}-u_{n}\right <\epsilon_{i}$			· · · · · · · · · · · · · · · · · · ·	1.
1 AJ 74 7 8	$\langle h0 \rangle$: $\langle h14 \rangle \rightarrow \langle h1 \rangle$	FR FR		
u_{π} FR +-	$-\langle h14\rangle + \langle h1\rangle \rightarrow \langle h2\rangle$	FS FS		1
			i i	
$u_{n+1} = 0.5 \left(\frac{A_j^2 - B_j}{u_n} + u_n \right) $ For	$-\langle g5 \rangle + \langle h2 \rangle \rightarrow \langle h2 \rangle$	FT FX		
u_n "	$\langle h1 \rangle + \langle h14 \rangle \rightarrow \langle h1 \rangle$	FU FU		1
$u_n \rightarrow \sqrt{A_j^* - B_j}$ $u_{n+1} = \langle h 4 \rangle$ FU	$\langle n_1 \rangle + \langle n_1 + \rangle \rightarrow \langle n_1 \rangle$	FQ FQ		Page

Fig.4.9

CIA-RDP8

-01043R001300040009-0

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 :

Analysis	Vocabulary		Instruction	-		Remarks	Model
		Index	Operational Symbol	+	-		Ľ
	1/			1			
	$\sqrt{A_j^2 - B_j} = \langle h 4$	FX	$\operatorname{sgn}\langle n0\rangle \to \langle h0\rangle$	FV	FY		
		FX	$\langle h0 \rangle = \operatorname{sgn} \langle h14 \rangle \rightarrow \langle h0 \rangle$	FZ			
		FZ	$(n0) = \operatorname{sgn}(n14) \rightarrow (n0)$ $(n0) \rightarrow \langle h7 \rangle \rightarrow \langle h7 \rangle$		VA.	-	
		GA	$-\langle n6 \rangle + \langle n1 \rangle \rightarrow \langle h0 \rangle$	1	1.4	1	
Procedure for Plane:	$t_i = \langle h7 \rangle$	GB	$\langle h0 \rangle : \langle n3 \rangle \rightarrow \langle h7 \rangle$		HA		
$s_{i-1} - x_{i-1-1}$				1			I.
$t_j = \frac{s_{j,1} - x_{j-1,1}}{a_{j-1,1}}$ [Expression (4.	$\frac{12}{a_{i-1,2}} = \langle n4 \rangle$. 1 . 1			
	$a_{j-1,3} = \langle n5 \rangle$			i.			
	$x_{j-1,1} = \langle n6 \rangle$						
	$x_{j-1,2} = \langle n7 \rangle$			ł			
	$x_{j-1,3} = \langle n10 \rangle$			1			
$x_{j,1} = x_{j-1,1} + a_{j-1,1}t_j$		HA	$\langle n3 \rangle$. $\langle h7 \rangle \rightarrow \langle h0 \rangle$		HB		
$x_{j,1} = x_{j-1,1} + x_{j-1,1}$	$x_{j,1} = \langle n6 angle$	HB	$\langle n6 \rangle + \langle h0 \rangle \rightarrow \langle n6 \rangle$		HC HD		
$x_{j,2} = x_{j-1,2} + a_{j-1,2}t_j$	· · · ·	HC	$\langle n4 \rangle : \langle h7 \rangle \rightarrow \langle h0 \rangle$		HE		
· ;; = · ; = · ; = · ; = · ; = · ; = · ;	$x_{j_12} = \langle n7 \rangle$	HD HE	$ \begin{array}{c c} \langle n7\rangle & + \langle h0\rangle \rightarrow \langle n7\rangle \\ \langle n5\rangle & , \langle h7\rangle \rightarrow \langle h0\rangle \end{array} $	HF			
$x_{j,3} = x_{j-1,3} + a_{j-1,3}t_j$	$x_{i,s} = \langle n10 \rangle$	HF	$\langle n10 \rangle + \langle h0 \rangle \rightarrow \langle n10 \rangle$	1	JA		
	$N_{i} = \langle n2 \rangle$	JA	$\langle p2 \rangle + \langle 0 \rangle \rightarrow \langle n2 \rangle$		PA		
$ R_j - \varepsilon < 0 ?$		KA	$ -\langle g4\rangle + \langle n0\rangle \rightarrow \langle h0\rangle$	LA	MA	Address p2	
[Expression (4.15)]	$x_{j,1} = \langle n6 \rangle$					was reached	
	$x_{j,2} = \langle n7 \rangle$	i				with instruc-	
	$x_{i,s} = \langle n 0 \rangle$			1		tion JA in execution of	
	$R_i = \langle n0 \rangle$,				instruction	
	$s_{j,1} = \langle n1 \rangle$					1 ·····	
Procedure for Sphere:		LA		LB	LB	00	
$n_{j,1} = (x_{j,1} - a_{j,1}) : R_j$	$n_{j,1} = \langle h10 angle$	LB	$\langle h0 \rangle : \langle n0 \rangle \rightarrow \langle h10 \rangle$		LC	1	
$n_{j,1} = x_{j,1} : R_j$	$n_{j,2} = \langle h11 \rangle$		$\langle n7 \rangle$: $\langle n0 \rangle \rightarrow \langle h11 \rangle$				D.
$n_{i,3} = x_{i,3} : R_i$	$n_{j,8} = \langle h12 \rangle$	LD	$\langle n10 \rangle : \langle n0 \rangle \twoheadrightarrow \langle h12 \rangle$	NA	NA		Page

 α

Fig.4.10

Approved for Release CIA-RDP81-01043R001300040009-0

	5 5 5 4 5 4 5				<u>Î I I</u>		1-L-L
		Vocabulary		Instruction		Remarks	Model
	Analysis	VOCADULALY	Index	Operational Symbol	+ -		191
	Procedure for Plane:		MA	$\langle 1 \rangle + \langle 0 \rangle \rightarrow \langle h 1 0 \rangle$	MB ME	3	P
	$n_{i_{i_1}1} = 1$		MB	$\langle 0 \rangle + \langle 0 \rangle \rightarrow \langle h 1 \rangle$	MC MC	1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d	
·	$n_{j,2}=0$	$N_i = \langle n2 \rangle$	MC	$\langle 0 \rangle + \langle 0 \rangle \rightarrow \langle h 2 \rangle$	NA NA		
	$n_{j,1} = 0$	$\begin{array}{ll} N_j & -\langle n2 \rangle \\ a_{j-1,1} & =\langle n3 \rangle \end{array}$					
		$a_{j-1,1} = \langle n4 \rangle$					
		$a_{f-1,1} = \langle n5 \rangle$ $a_{h,1} = \langle h10 \rangle$					
		$\begin{array}{l} \mathbf{n}_{j,1} &= \langle \mathbf{A} 1 0 \rangle \\ \mathbf{n}_{j,1} &= \langle \mathbf{A} 1 1 \rangle \end{array}$					2
		n _{j,0} = (\$12)				B Since vec-	Problem:
	$C_j = N_j [\bullet q_{\bullet}(4, 9]$	Ni. aj-Li = (n3)	NA	$\langle n2 \rangle \cdot \langle n3 \rangle \rightarrow \langle n3 \rangle$	NB NI	tor aj-1 is	
	$N_j \cos \alpha_j = (N_j \bullet_{j-1}) \cdot \bullet_j$	$N_j \cdot a_{j-1,2} = \langle n4 \rangle$ $N_j \cdot a_{j-1,3} = \langle n5 \rangle$	NB NC	$\langle n2 \rangle \cdot \langle n4 \rangle \rightarrow \langle n4 \rangle$ $\langle n2 \rangle \cdot \langle n5 \rangle \rightarrow \langle n5 \rangle$	ND NI	no longer	0
76		1. J - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	ND	$\langle n3 \rangle$, $\langle h10 \rangle \rightarrow \langle h0 \rangle$	NENI	r needed. it	Optical System
£ .			NE	<n4> . <=== <== <== <== <== <== <== <== <==</n4>	NF NI	F must be re-	<u>s</u>
			NF NG	$\langle h0 \rangle + \langle h1 \rangle \rightarrow \langle h0 \rangle$ $\langle n5 \rangle , \langle h12 \rangle \rightarrow \langle h1 \rangle$	NG NO	vector	s
•		N 008 a == (\$7)	NH	$\langle h0 \rangle + \langle h1 \rangle \rightarrow \langle h7 \rangle$	NI N	INjªj−1	Ya
	$K_i = + \sqrt{1 - N_i^2 + (N_j \cos \alpha_j)^2} - $		NI	$\langle n2 \rangle$, $\langle n2 \rangle \rightarrow \langle h0 \rangle$	NJ N.		Š
	N; cos a; [Corrected eq.		NJ	$-\langle 1 \rangle + \langle h0 \rangle \rightarrow \langle h0 \rangle$	NK NI NL NI		
	(4.11)]	$-D_i = \langle h0 \rangle$	NK NL		VAN		
	$-1 + N_j^2 - (N_j \cos \alpha_j)^2 = -D_j$	$ \begin{array}{c} -D_{j} = \langle h0 \rangle \\ h_{s} = \langle h15 \rangle \end{array} $	1Q18	$1 \rightarrow \langle h15 \rangle$			
			!Q19	$\epsilon_3 \rightarrow \langle g \theta \rangle$	1	Set as a	
		$0,5 = \langle g 4 \rangle$				first approx- imation is	Page
			NM	$-\langle h0 \rangle$: $\langle h15 \rangle \rightarrow \langle h1 \rangle$	NNN	$N u_1 = 1$	
	$\left -\frac{-D_{j}}{u_{r}}-u_{r}\right <\epsilon_{s}$		NN	$ -\langle h15\rangle + \langle h1\rangle \rightarrow \langle h2\rangle$	NO N		Vr

and a subsection of the section of the subsection of the section o

63

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

	6 53	56	54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		30	16 18 20 22 22 26	A	N9 		A N
	<u></u>			. <u> </u>	<u></u>					STAT
		ľ		Τ	T	Instruction		, i	Demosilier	Model
			Analysis	Vocabulary	Index	Operational Symbol	+	-	Remarks	
			$u_{n+1} = 0.5 \left(-\frac{-D_j}{u_n} + u_n \right)$ $u_n \to \sqrt[3]{D_j}$	$u_{n+1} = \langle h15 \rangle$ $\sqrt[]{D_f} = \langle h15 \rangle$ $K_j = \langle h5 \rangle$	NO NP NQ NS NT	$-\langle g6 \rangle + \langle h2 \rangle \rightarrow \langle h2 \rangle$ $\langle h1 \rangle + \langle h15 \rangle \rightarrow \langle h1 \rangle$ $\langle g14 \rangle \cdot \langle h1 \rangle \rightarrow \langle h15 \rangle$ $-\langle h7 \rangle + \langle h15 \rangle \rightarrow \langle h5 \rangle$ $\langle h0 \rangle \rightarrow \langle h0 \rangle$	NQ NM NT	NS NQ NM NT NU		1
			$a_j = N_j a_{j-1} + K_j n_j$ [satisfied by eq.(4.4)] $a_{j,1} < \epsilon_4 ?$ [inequality 4.14]	$a_{j,1} = \langle n3 \rangle$ $a_{j,2} = \langle n4 \rangle$	NU 1920 NV NW NX NY	$ \begin{array}{l} \langle n3 \rangle + \langle h0 \rangle \rightarrow \langle n3 \rangle \\ \hline e_4 \rightarrow \langle g7 \rangle \\ - \langle g7 \rangle + \langle n3 \rangle \rightarrow \langle h0 \rangle \\ \langle h5 \rangle \cdot \langle h11 \rangle \rightarrow \langle h0 \rangle \\ \langle n4 \rangle + \langle h0 \rangle \rightarrow \langle n4 \rangle \\ \langle h5 \rangle \cdot \langle h12 \rangle \rightarrow \langle h0 \rangle \end{array} $	NW NX NY			Problem; (
•	777			$a_{j,s} = \langle n5 \rangle$ $3 = \langle g10 \rangle$	NZ NQ21 OA OB	$ \langle \mathbf{n5} \rangle + \langle \mathbf{h0} \rangle \rightarrow \langle \mathbf{n5} \rangle \\ 3 \rightarrow \langle \mathbf{g10} \rangle \\ C! \langle DA + 1 \rangle + \\ + \langle \mathbf{g10} \rangle \rightarrow ! \langle DA + 1 \rangle \\ C! \langle DB + 1 \rangle + $	0A 0B	0A 0B	Increase addresses "i" in in- structions	Optical Syst
				$x_{m,t} = \langle n7 \rangle$	oc	$+ \langle g10 \rangle \rightarrow !\langle DB + 1 \rangle$ C! $\langle JA + 1 \rangle +$ + $\langle g10 \rangle \rightarrow !\langle JA + 1 \rangle$		OC DA	DA, BD, JA by 3	8
		•		$x_{m,s} = \langle n10 \rangle$ $x_{0,1} = \langle m0 \rangle$ (m1)	PA PB	$H2\langle n7\rangle + \langle 0\rangle \rightarrow \langle h0\rangle$ $H2\langle 10\rangle + \langle 0\rangle \rightarrow \langle h0\rangle$		PB QA		
				$\begin{array}{rcl} x_{0,3} &= \langle m1 \rangle \\ \Delta &= \langle g1 \rangle \\ 2\Delta &= \langle g2 \rangle \\ 3\Delta &= \langle g3 \rangle \end{array}$	1Q22 1Q23 QA	$24 \rightarrow \langle g^2 \rangle$ $34 \rightarrow \langle g^3 \rangle$ $-\langle g^1 \rangle + \langle m^1 \rangle \rightarrow \langle m^1 \rangle$	R 4	BA		Page

Fig. 4.12

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

$\frac{Analysis}{q_{s}} = \langle k0 \rangle$ $\frac{a_{s}}{q_{s}} $	AnalysisVocabularyInstructionRemarksIndexOperational Symbol+-Index $(g_3) + (0) + (m_1)$ RB RB RB $(m0) + (g_2) + (h0)$ SA TA $g_3 = (k0)$ TA $(g_3) + (0) + (m_0)$ BA $g_4 = (k0)$ UA TA $(g_3) + (0) + (m_0)$ UA UA TA $(g_3) + (0) + (m_0)$ UA UA VA TA $(g_3) + (0) + (m_0)$ UA UA VA TA $(g_3) + (0) + (m_0)$ UA UA VB TA $(g_3) + (0) + (h0)$ VB VB VB $H2(g11) + (0) + (h0)$ QA QA G_4 $STOP$ $STOP$ $STOP$ $STOP$ $STOP$	\bullet)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$RA \qquad \langle g3 \rangle + \langle 0 \rangle \rightarrow \langle m1 \rangle \qquad RB \qquad RB \\ RB \qquad \langle m0 \rangle + \langle g2 \rangle \rightarrow \langle h0 \rangle \qquad SA \qquad TA \\ SA \qquad -\langle g1 \rangle + \langle m0 \rangle \rightarrow \langle m0 \rangle \qquad BA \qquad BA \\ TA \qquad \langle g3 \rangle + \langle 0 \rangle \rightarrow \langle m0 \rangle \qquad UA \qquad UA \\ UA \qquad -\langle 1 \rangle + \langle k0 \rangle \rightarrow \langle k0 \rangle \qquad AA \qquad ZA \\ UB \qquad VB \qquad$						24 - 12 		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$RA \qquad \langle g3 \rangle + \langle 0 \rangle \rightarrow \langle m1 \rangle \qquad RB \qquad RB \\ RB \qquad \langle m0 \rangle + \langle g2 \rangle \rightarrow \langle h0 \rangle \qquad SA \qquad TA \\ SA \qquad -\langle g1 \rangle + \langle m0 \rangle \rightarrow \langle m0 \rangle \qquad BA \qquad BA \\ TA \qquad \langle g3 \rangle + \langle 0 \rangle \rightarrow \langle m0 \rangle \qquad UA \qquad UA \\ UA \qquad -\langle 1 \rangle + \langle k0 \rangle \rightarrow \langle k0 \rangle \qquad AA \qquad ZA \\ UB \qquad VB \qquad$		Analysis	Vocabulary	Toder		1.1.		Model
am: Optical Syste	78			g ₅ =: <40>	RA RB SA TA UA VA VB	$ \langle g3 \rangle + \langle 0 \rangle \rightarrow \langle m1 \rangle \langle m0 \rangle + \langle g2 \rangle \rightarrow \langle h0 \rangle - \langle g1 \rangle + \langle m0 \rangle \rightarrow \langle m0 \rangle \langle g3 \rangle + \langle 0 \rangle \rightarrow \langle m0 \rangle - \langle 1 \rangle + \langle k0 \rangle \rightarrow \langle k0 \rangle H2 \langle g11 \rangle + \langle 0 \rangle \rightarrow \langle h0 \rangle H2 \langle g11 \rangle + \langle 0 \rangle \rightarrow \langle h0 \rangle $	RB SA DA BA UA UA UA VB VB	B A A A B	
		78							em: Optical Syste

STAT

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009

č

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0 в. Problem: Optical System 2 -Model 2 Page 1 41 Index Entering Altered Address Remarks б., Information Information P !Q0 0000 0 00 0 00000000 B --- 0 8. = 1 0001 !Q1 4000000 0 01 0 B 10 -0002 0420 0004 8 AA 0000 0004 0440 H2 12 -0003 P 0004 0420 0006 N 14_ AB P 0005 0400 0006 0400 16 -0006 P 0421 0010 N . AC 0007 0440 0010 0440 18_ 0010 0420 0012 8 AD 20_ P 0011 0421 0012 0420 22. $\mathbf{\ddot{P}}$ 0012 0421 0014 D AE 0013 0433 0014 0420 24 ---0014 P 0422 0018 KSM AF 26 ____ 0015 0421 0016 0433 0016 0422 0020 SM 28..... AG 0017 \mathbf{P} 0422 0024 0404 30_ 0020 0421 0022 5 AH 32_ 0021 P 0433 0022 0121 P 0022 0433 0012 N 34_ .4K 0023 0421 0012 0414 36_ 0024 p 0441 0026 D AL 38_ 0025 0433 0026 0400 0028 0442 0030 DM 40. AM 0027 P 0433 0030 0446 42_ ()030 Р 0463 0032 8 BA. 0031 0000 0032 0441 44_ 00320464 0084 5 BB 46_ 0033 P 0000 0034 0442 48_ 0034 0465 0036 8 BC 0035 p 0000 0036 0000 50. 0036 p. 0466, 0040 8 BD 52-0037 0000 0040 0000 54_ 56_ Fig. 4.14 58 STAT _79 60,

Stand Prairies

Model	2		Problem: Opti	cal System	Page
Index	Addres		Entering Information	Altered Information	Remarks
in the second	0040		0487 0042 8		
BE	0041	P	0000 0042 0450		
	0042	P	0470 0044 8		
BF	0043		0000 0044 0451	•	
	0044	P	0053 0046 WY		
CA	0045		0053 0046 0411		
	: 0046		0055 0050 WY		
CB.	0047	·P	0055 0050 0412		
and the second	0050	P	0157 0052 WY		
CC	0051		0157 0052 0418		
	0052		0460 0054 S		
DA	0053	P	0000 0054	0000 0054 0500 etc	
1	0054		0461 0056 S		
DB	0055	P	0000 0056	0000 0056 0501 etc	
	0056	P	0420 0060 JSM		
EA	0057		0460 0186 0404		
	0060	P	0420 0062 SM		
FA	0061		0466 0082 0461		
	0062		0421 0064 N		
FB	0063	P	0420 0064 0468		
17141	0064		0422 0066 N		
FC	0065	Р	0467 0066 0464		
FD	0066	Р	0421 0070 S		
ΓD	0067		0422 0070 0421		
FE	0070		0422 0072 N		
r Ci	0071	P	0470 0072 0465		
FF	0072	Р	0427 0074 S		
r r	0073		0422 0074 0421		
FG	0074	P	0421 0078 S		
r (1	0075		0420 0078 0460		
FH	0076	_	0122 0100 SM		
<i>v 1</i> 7	0077	Р	0420 0100 0480		

Fig. 4.15

80

2012/12/11

for Release

CIA

54 58

бС.__

Declassified in Part

....

-RDP81-01043R001300040009-0

STAT

Mode	12	and an area was	Problem: Optic	al System	Page 3
Index	Addre	588	Entering Information	Altering Information	Remarks
FJ	0100		0420 0102 N		
EJ	0101	р	0422 0102 0421		
Fh	0102	P	0421 0104 N		1
	0103		0467 0104 0467		
FL	0104	Р	0420 0106 S		
F L	0105		0421 0106 0420		
FA	0106	-	0421 0110 N		
L 1	0107	P	0470 0110 0470		
FN	, 0110	P	0426 0112 8		
	0111		0421 0112 0420		
E.	0112		0420 0114 N		
FC	0113	P	0427 0114 0427		
FI	0114		0420 0118 SM		
	0115	P	0420 0310 0426		
	0116	P	0421 0120 D		
F	0117		0434 0120 0420		
	0120) P	0422 0122 KSM		
F 1	0121		0421 0122 0434		
	0122	2	0422 0124 SM		
F	0123	в Р	0422 0130 0405		
F	0124	ŧ.	0421 0126 8		
F	012	5 P	0434 0128 0421		
	0120	3 P	0434 0116 N		5 - 1
F	012	7	0421 0118 0414		
	013	0	0420 0132 SYZ		
F	X 013	1 P	0460 0132 0000		
	013	2 P	0420 0134 WYZ		
F	013	3	0434 0134 0420		
	013	4 P	0427 0142 SM		
F	Z 013	5	0420 0310 0427		
· · · · · · · ·	013		0420 0140 SM	an na amang pina na pin	

54

5C .

58

61

Fig. 4.16

...81

Declassified in Part

Sanitized Copy

Approv

.

STAT

10009

γ.,

--5 t ...

56

58

 $\dot{\epsilon}^i$

Sec.

-							
	Model	2		Problem:	Optical	System	Page
		4	···· ·				1 450
	Index	Address		Entering Information		Altered Information	Remarks
		0140 I	,	0427 0142 1			
	<i>₿</i>	0141		0463 0142 0420		n an	
	HA	0142	-	0420 0144 N			
	<i>п.</i> ч	0143 1	>	0427 0144 0463		a a substantia a	-
•	HB	0144		0468 0148 8		n Ann an s-	
and and		0145	>	0420 0148 0466		n an	-
	HC	0146 1	>	0490 0180 N		· · · · · · · · · · · · · · · · · · ·	
	пс	0147		0427 0150 0464			
a an di	HD	0150		0467 0152 8	1	د. او در معمود در از از موجوری بوشونو از ۲	-
		0151 1	3	0420 0152 0487	1	an a	-
	HE	0152 1	2	0420 0154 N		مدارية المتعادية والمتعادية المتعادية	-
		0153		0427 0154 0485			
	HF	0154 1	р	0470 0158 8	1	· · · · · · · · · · · · · · · · · · ·	
	111	0155		0420 0158 0470		المراجع والمحمد و	
water 1	J.A	0156		0462 0180 8		· · · · · · · · · · · · · · · · · · ·	
	J.1	0157 1	р	0000 0270		0000 0270 0502 etc.	
**************************************	KA	0160		0420 0162 JNM		an and an an an and an an an and an an an	
	11.11	0161 1	р	0460 0172 0404		and a second	
anna se 1 di Singaria Francisca	LÅ	0162	р	0420 0184 NM		ر المحمد بر الله الم المحمد المحمد الم المراجع المراجع المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد ا	
	17.4	0163		0468 0184 0481			-
- 	LB	0164	р	0430 0188 /)	مدينيون مغير ال		
	111)	0165		0460 0166 0420		antine	
••••••••••••••••••••••••••••••••••••••	LC.	0166		0431 0170 D	· · · ·		
	D ()	0167	P	0460 0170 0467			
	LD	0170	р	0432 0200 D			
		0171		0460 0200 0470			
and in the second s Second second	1.1.1.1	0172		0430 0174 8			
() ()	MA	0173	р	0000 0174 0001		· · · · · · · · · · · · · · · · · · ·	
	MB	0174		0431 0176 S			
	MB	1 1	P	0000 0176 0000			
	MC	0176	р	04 32 0200 S			-
	nei C	0177		0000 0200 0000			÷

Fig. 4.17

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 :

82

CIA-RDP81-01043R001300040009-0

STAT

	1	fodel	2		Problem: Op	tical	System	Page 5	
-		Index	Addres	8	Entering Information		Altered Information	Remarks	,
			0200		0463 0202 N				
	алан 1911 - Алан	NA	0201	Р	0463 0202 0462				
			0202	Р	0484 0204 N				
••••••		NB	0203		0464 0204 0462				t so s Cos
			0204	P	0465 0206 N		the stand of the second state of		
		NC	0205		0465 0206 0462				
-			0206		0420 0210 N	-			
3		ND	0207	P	0430 0210 0463	-	<u> Angenetika angenetika angenetika angenetika angenetika angenetika angenetika angenetika angenetika angenetika</u>		
)		17.63	0210	Р	0421 0212 N				
		NE	0211		0431 0212 0464				
2	· · ·	A.F. #2	0212		0420 0214 S				
		NP	0213	P	0421 0214 0420				
5		NO	0214		0421 0216 N				
		140	0215	P	0432 0216 0465				
8		NH	0216	P	0427 0220 8	_			
0			0217		0421 0220 0420				
2		NI	0220		0420 0222 N				r.
	•	141	0221		0462 0222 0462		an a		
4		ŊJ	0222		0420 0224 SM				
6			0223	P	0420 0224 0001				i L
j. Jerene		NK	0224		0421 0226 N		la de la companya de		i -
	1994 - 1994 1997 - 1997		0225	p	0427 0228 0497				- .
0		· NL	0226	P	0420 0310 SM		and the second secon		: : :
2		31	0227		0420 0230*0421				· ·
	· · ·	NM	0230		0421 0232 DM		·	<u></u>	H M M
4			0231	P	♥ · 0435 0232 0422				4.
5		NN	0232	P	0422 0234 KSM		-		
3			0233		0421 0234 0435			م مراجع المراجع	
·		NO	0234	P	042270236 SM **		الم		:
;()	•		0235		(1422 1)242 ()4(06				1
;2		NP NP	0236		0421 0240 8	1 	and an		
54		•	0237	P	0435 0240 0421		· · · · ·		•

...83

2012/12/11

CIA-RDP81-01043R001300040009-0

56 58

Declassified in Part

Sanitized Copy

Approved for Release

60

STAT

2.4

1. 6 6 1

6.1

Fig. 4.19

84

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

and the state of the

5

58]]

61.

STAT

1. A. A. A.

21

Sacar Single

Model	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Problem	1: Optica	1 System	Page
Index	Addres	58	Enterir Info rmat i		Alter Informat	
RB	0300	P	0420 0302 8	· · · · · · · · · · · · · · · · · · ·		
	0301		0402 0304 045	0		
84	0302		0450 0030 81	· · · · · · · · · · · · · · · · · · ·	الم	
	0303	P.	0450 0030 040	11.)
TA	0304		0450 0306 8			
	0305	<u>P</u>	0000 0308 040	13		
U.A	0306	P	0440 0002 84	<u>r</u>		
	0307		0440 0314 000		· · · · · · · · · · · · · · · · · · ·	
1.4	0310		0420 0312 8			
	0311	<u> </u>	0000 0312 041	<u> H2 </u>		
• _{VB}	0312	<u>P</u>	0420 0274 8			· · · · · · · · · · · · · · · · · · ·
	0313		0000 0274 04	<u>11 H2</u>		
ZA	0314	- P	0000 0000			
	0315		0000 0000 000	00	· · · · · · · · · · · · · · · · · · ·	
	0316					
	0317					
	0320					
	0321	<u>P</u>				· · · · · · · · · · · · · · · · · · ·
	0322	<u>P</u>			· · · · ·	
	0323	•			-	
	0324	P		·		مار محمد المعالم المع ال
· · · · ·	0325					
	0326		• • • • • • • • • • • • • • • • • • •	17 - A - A - A		
	0327	- <u>P</u>	• • • • • • • • • • • • • • • • • • •			- · · · · · · · · · · · · · · · · · · ·
	0330	<u>-P</u>	· · · · · · · · · · · · · · · · · · ·	-		· · · · · · · · · · · · · · · · · · ·
	0331	-				
	0332					· · · · · · · · · · · · · · · · · · ·
	0333	. <u>P</u>				
	0334				<u></u>	
	0335				· · · · ·	
	0336		_ <u></u>			···· · · · · · · · · · · · · ·
i	. 0.337		1			

6

Declassified in Part

Sanitized

Copy

i

85

Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

21

Model 2

0 _

2 --

Ċ.,

б

8.

)() _____

12...

14 _____ 16 ____ 18 ____

20

22

2 ; ...

<u>e</u>:___;

. ..

301_ 32_:

34_

30

15

50. . 52--

5, 3

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

Problem: Optical System

Index	Addre	58	Entering Information	Altered Information	Remar	
!Q5	0400		<i>Þ</i> 1			
!Q7	0401	P			g1 =	
!Q22	0402	p	2/1		g2 ==	
!Q23	0403	-	31		$g_{3} =$	
!Q9	0404	P	. ŧ ₁			
<u>!Q17</u>	0405		Éi		g 5 =	
!Q19	0406		E :			
!Q20	0407	P	Ë,	•	g7 ==	
!Q21	0410	P	,6000000 0 02 0		g10 -	
!Q13	0411		,50000000 0 11 0	= 500 = p0	g11 =	
!Q14	0412		,50100000 0 11 0	= 501 = p1	g12	
!Q15	0413	P	,50200000 0 11 0	= 502 = p2	g13	
!Q10	0414		,40000000 0 00 0	= 0.5	g14 =	
	0415	P				
	0416	P				
	0417					
	0420				h0 =	
	0421				h1 = b	
	0422			• • •	h2 = 4	
	0424		-	August		
	0425			K _j	h5 = 4	
	0426			$B_j, -D_j$	h6 = c	
	0427			$A_{j}, t_{j}, N_{j}, \cos \alpha_{j}$	h7 = 4	
ļ	0430			n _{j,1}	h10 = 4	
	0431	P		n _{j,3}	hll = 4	
	0432	P		n j.,	h12 = 4	
! Q 8	0433		,54000000 0 04 0	$= 11, u_{\rm H} \rightarrow \sqrt{p_1^2 - q_2^2}$	h13 = 4	
!Q16	0434	P	,62000000 0 06 0	$= 50, \ u_n \to \sqrt{A_j^2 - B_j}$	h14 = 4	
Q18	0435	<u> </u>	,40000000 0 01 0	$= 1, u_n \to \sqrt{D_j}$	$h_{15} := 4$	
	0436				1	

Fig. 4.21

86

CIA-RDP81-01043R001300040009-0

11

57 5 <u>ئە</u>

Declassified in Part -

Sanitized Copy

Approved

Entering Information

,50000000 0.03 0

34

3.4

Problem: Optical System

Altered

 $= 5, q_2$

Information

et al. 1

110,2

x_{0,2}

x ., 3

R j

*j.1

 N_{j}

a j_1,1

a'j_1,2

(1 j-1,1

r

° j-1,8

x 1-1,2

Page 9

Remarks

-440

. 441

m0 = 450

ml == 451

 $n\theta = 460$

n1 = 461

n2 = -462

n3 - 463

n4 - 484

n6 == 466

n7 == 467

n10 = 470

- 🌢 🖉 👘

465

STAT

21

n5

442

k0.

k)

k2

v	*****	•
	-	
e		
2	1	

Model 2

.

Address

0440 P

0443 P

p

P

Ρ

P

P

Р

 $\dot{\mathbf{P}}$

P

p

Р

P

 \mathbf{P}

0441

0442

0444

0445

0446 0447

0450

.0451 0452

0453

0454

0455 0456

0457

0460

0461

0462

0463

0464

0465

0466

0467

0470

0472

0474 0475 · P

0476

0477

0473 🕴 P

Index

Q6

:Qit

!Q12

	1
	I
. ~	6
· ·	8
3	.:

......

<u> </u>	
35	
18	

20____

22

24 _____ 26 ____

3.2

36.....

42

48___

34_____ 36___

4 0

4 4_____ 4 6___

50_____ 52___

56

50.

54

Fig. 4.22

87

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

	Mode]	_ 2		Problem: O	Problem: Optical System		
	Index	Addre	38	Entering Information		Altered Information	Remarks
	1Q2	0500	P	R ₁		9999,999	p 0 = 5(90)
	!Q3	0501		411			p1 = 501
	1.24	0502		N, °			$p^2 = 50^2$
••••• 1		0503	P	etc.			etc.
		0504		-			•
		0505	P				
		0506	P				· .
		0507		n de la companya de la desta de la companya de la c	-		
		0510	•		-		
-		0511	P				
		0512	P				
		0513			-		
		0314	P				
		0515		an a			
<u> </u>		0516		014			
		0517	P		_		
		0520			-		
		0521	<u>P</u>	 Manana sa	-		
		0522	P		-		
		0523				-	
		0524					
		0525					
		0526					
		0527	P				
		0530	P		-		
		0531			-		
		053.9					
_		0533	P				
		0.534			_		
		0535	<u>P</u>		_		
		0536	P		_		
	•	0537					
	н л , 			Fig	• 4•2	3	
] .				

Ĵį

2	CHAPTER V
4	
	SOLUTION OF CONVENTIONAL DIFFERENTIAL EQUATIONS OF THE 2ND ORDER
6	WITH THE AUTOMATIC CALCULATOR
8	
0	The following solutions of concrete problems by means of the computer are se-
2	lected from the field of conventional differential equations. There are two such
4	problems:
15	1. Investigation on a very simple example of the formulation of the instruc-
18	tional network for the solution of a differential equation;
20	2. Ascertainment of modifications enabling employment of proposed instructional
22	nstwork for another automatic calculation.
21_	Purposely selected was a very simple example in order to avoid difficulties in
26	grasping the essential matter. The solution is obtained by a more complicated
2-8	method which can be readily applied to very complicated systems of differential
30_	equations.
32	Let us examine the solution of the equation:
34	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = P_{\mathbf{s}}(x) + f(t) \; ,$
36	
38	where
40	$P_3(x) = a_1 x^3 + a_2 x^2 + a_3 x + a_4$, $f(t) = \frac{b_1 t + b_2}{c_1 t^2 + c_2 t + c_3}$
42	satisfying the starting conditions
44	
46	$x = x_0, \frac{dx}{dt} = v_0$ for $t = t_0$
48	It is additionally assumed that the sought integral curve does not approach any of
50	the singular points of this equation. This equation is easily transformed into the
52	systems:
54	
55 58	
مسد. نیان	89
6 0	

CARTER STRATE STRATE STRATE STRATES ST

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

distant.

in the reaction

3. S. S.

1.1.1.1.1.1.1.1.1.

STAT

achamic area

(

11.

Ł

1.

÷.

12713 and the stand of the second second

2---APPLICATION OF THE METHOD A 5.1 Runge-Kutta's Method 6 ... For the solution, the Runge-Kutta method* is used because it requires a very 8 mall number of memories for the machine. In view of the simplicity of this case, 10 this circumstance is rather unimportant since scarcely 10% of the memory capacity 12 _ of the machine is utilized. A deficiency of memories manifests itself in the use 14 __ of systems having a very large number of differential equations. 16 -We select the corresponding increment h independent of the variation in t, 18 ____ and, beginning with the given initial conditions v_0 , x_0 , t_0 (denoted v_{10} , x_{10} , t_{10}), 20_ we first calculate 22 ____ $k_{i0} = [P_{3}(x_{i0}) + f(t_{i0})] \cdot h ,$ $l_{i0} = v_{i0} \cdot h ,$ (5.1)24 ----25 ____ and from this we calculate 23_ $\begin{aligned} k_{i1} &= \left[P_{s}(x_{i1}) + f(t_{i1}) \right] \cdot h \\ l_{i1} &= v_{i1} \cdot h \end{aligned}$ (5.2) 30____ 32___ where 34_ $v_{i1} = v_{i0} + \frac{k_{i0}}{2}$, $x_{i1} = x_{i0} + \frac{l_{i0}}{2}$, $t_{i1} = l_{i0} + \frac{h}{2}$ 36 With the help of these values we determine 38----40..... $\begin{array}{c} k_{i2} = \left[P_{s}(x_{i2}) + f(t_{i2}) \right] \cdot h \\ l_{i2} = v_{i2} \cdot h \end{array} \}$ (5.3)4? 44 where $v_{i2} = v_{i0} + \frac{k_{i1}}{2}$, $x_{i2} = x_{i0} + \frac{l_{i1}}{2}$, $l_{i2} = l_{i0} + \frac{h}{2}$ 45.... 48____ ____ and finally 50 $k_{i3} = [P_{s}(x_{i3}) + f(t_{i3})] \cdot h$ (5.4) $l_{in} = v_{in} \cdot h$ 52-5.4 * Laska-Hruska, Theory and Practice of Numerical Calculation 56 58_ STAT 90 60

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-(

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R00130004000

Copy Approved for Release 2012/12/11

The further integral points of the curve are then given by

 $v_{i+1,0} = v_{i0} + \frac{1}{6}(k_{i0} + 2k_{i1} + 2k_{i2} + k_{i3})$ $x_{i+1,0} = x_{i0} + \frac{1}{6}(l_{i0} + 2l_{i1} + 2l_{i2} + l_{i3}),$ (5.5) $t_{i+1:0} = t_{i0} + h$.

Using these values as the new starting conditions, we obtain by the further 15 steps of the Runge-Kutta method the new integral points of the curve. This procodure is constantly repeated. Since the calculation of the expressions for 18

k_{ij}, 1

24 - where

more

2 -

<u>8</u>_

6 💪

10 ----

12"...

14

20.

22....

26

25....

50-

50-

54

56.

58

66.

Declassified in Part -

j=0, 1, 2, 3

30 is the same, it can be carried out with the same part of the instructional network. 32___ It is sufficient if we are only concerned with the exchange of the numbers v_{ij}, $x_{i,j}$, $t_{i,j}$ for $v_{i,j+1}$, $x_{i,j+1}$, $t_{i,j+1}$. On this part of the instructional network it 36 will then be possible to establish the further operations, namely, the calculation 32 of $v_i + 1,0$, $x_i + 1,0$, $t_i + 1,0$ according to eq.(5.5). Such a network, however, 40 would contain a relatively large number of instructions, and hence would require a 42_large number of memories for storage of the intermediate results kin, lij. This 4: increased demand on the memories would, of course, be a matter of indifference 46 with this very simple system, but in the solution of systems with a large number of 48- differential equations a deficiency of memories might occur.

5.2 Modification of the Runge-Kutta Method

Next let us try to reformulate the instructional network more economically. It is again required to calculate equations (5.1), (5.2), (5.3), (5.4) with the

Sanitized Copy Approved for Release 2012/12/11

CIA-RDP81-01043R001300040009-0

STAT

same part of the instructional network. In the calculation, the numbers vij, xij, tij are exchanged. We assume that, for facilitating the calculation of the first two equations of (5.5), it is necessary to add some further instructions, i.e., 6 apparently seven. We multiply in (5.1), (5.2), (5.3), (5.4) instead of the number h the numbers h/6, h/3, h/3, h/6, by which we get on the left side $k_{io}/6$, $k_{i1}/3$, $k_{12}/3$, $k_{13}/6$. These need only be added instead of v_{10} for getting the desired Vi + 1.0. This addition is carried out in such a way that at the end of the in-- struction network, according to which $v_{i,j} + 1$ is calculated, the instruction which _____retains this value is added. Between the individual calculations the starting values $v_{i,j+1}$ and $t_{i,j+1}$ must also be calculated with the help of k_{ij} for 20 further calculation. Exactly the same considerations apply to l_{ij} and x_{ij} . 22_ 24 _ MECHANICAL SOLUTION OF PROBLEMS 26 5.3 Draft of the Instructional Network in General Form Before beginning to solve the problem, the necessary constants and starting 28... 30 values v io, x io, t io must be stored in the machine in the corresponding memories. 32_ These correspond to the tabulation for the calculation of the form. We carry out 34 the calculation for j = 0, and in the groups of instructions A and B we calculate $36 - f(t_{i,j})$ and $P_3(x_{i,j})$. The manner of constructing the instructional network for the 32-calculation of these expressions need not be described here, since the mathematician 40 will already be sufficiently familiar with this. 42___ Instruction CA has the form of $P_3(x_{ij}) + f(t_{ij})$. With the groups of instruc-44_tions D we calculate $\frac{k_{i0}}{6} = [P_3(x_{i0}) + f(t_{i0})] q_0, \qquad v_{i0} + \frac{k_{i0}}{6}, \qquad q_0 = \frac{h}{6}.$ 46.__ 43_ The group of instructions E gives 50- $\frac{l_{i0}}{6} = v_{i0} q_0, \quad x_{i0} + \frac{l_{i0}}{6}$ 52-51 $x_{i1} = x_{i0} + m_0 \frac{l_{i0}}{6}$, $v_{i1} = v_{i0} + m_0 \cdot \frac{k_{i0}}{6}$, $m_0 = 3$. 56 58___ 92 60... 342

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

0

22_

24

26 ____

28....

40

42_____

45_

56_ 58

60_

Declassified in Part

Next we must carry out the calculation for j = 1. For the calculation of the 2 form we must tabulate the new values. For the calculation by machine this is carried out with the instructions of group T. We come to instruction FA, which 6 increases the address of the instruction by 2. This establishes the instruction by 8. which the calculation is repeated. As soon as this instruction is reached for the 10 second time, the machine is proceeding along the path j = 2. In the group of in-12. structions beginning with TA $m_0 = 3$, this is exchanged for $m_1 = \frac{3}{2}$ and $q_0 = \frac{h}{6}$ 14 for $q_1 = \frac{h}{3}$. In the group of instructions beginning with TC, the values change 16 $t_{i0} t_{i1} = t_{i0} + \frac{h}{2}$ regardless of the variables. It is therefore necessary to continue to calculate 20___

$$\frac{k_{i1}}{3} = [P_3(x_{i1}) + f(t_{i1})]\eta_1, \quad \left(v_{i0} + \frac{k_{i0}}{6}\right) + \frac{k_{i1}}{3}, \quad \eta_1 = \frac{h}{3}$$
$$\frac{l_{i1}}{3} = v_{1i} \cdot q_1, \quad \left(x_{i0} + \frac{l_{i0}}{6}\right) + \frac{l_{i1}}{3},$$
$$x_{i2} = x_{i0} + m_1 \cdot \frac{l_{i1}}{3}, \quad v_{i3} = v_{i0} + m_1 \cdot \frac{k_{i1}}{3}, \quad m_1 = \frac{3}{2}$$

³⁰ - Next we carry out the tabulation with instruction TE along the path j = 2, in ³² which $m_1 = \frac{3}{2}$ is exchanged for $m_1 = 3$. Regardless of the variable it remains unthe changed, because $t_{12} = t_{10} + \frac{h}{2}$. We must therefore repeat the calculation of f(t)and continue until in the group of instructions B

$$\frac{k_{i2}}{3} = [P_3(x_{i2}) + f(t_{i2})] q_2, \qquad \left(v_{i0} + \frac{k_{i0}}{6} + \frac{k_{i1}}{3}\right) + \frac{k_{i2}}{3}, \qquad q_2 = \frac{h}{3},$$

$$\frac{l_{i2}}{3} = v_{i2}q_2, \qquad \left(x_{i0} + \frac{l_{i0}}{6} + \frac{l_{i1}}{3}\right) + \frac{l_{i2}}{3},$$

$$x_{i3} = x_{i0} + m_2 \frac{l_{i2}}{3}, \qquad v_{i3} = v_{i0} + m_2 \cdot \frac{l_{i3}}{3}, \qquad m_2 = 3$$

⁴C In the further calculation we exchange in instruction TF $q_2 = \frac{h}{3}$ for $q_3 = \frac{h}{6}$ and ⁵C change the values regardless of the variables in the group of instructions begin-⁵Z ⁻ ning with TC ⁵4

.93

242

б

8.

36

38-

40

42_

44____

45

48-

50-

52--

54 _

56.

58

60_

$$k_{i3} = [P_3(x_{i3}) + f(t_{ij})] q_3, \quad \left(v_{i6} + \frac{k_{i6}}{6} + \frac{k_{i1}}{3} + \frac{k_{i2}}{3}\right) + \frac{k_{i3}}{6} = v_{i+1\cdot 0},$$

$$\frac{l_{i3}}{6} = v_{i3}q_3, \quad \left(x_{i6} + \frac{l_{i6}}{6} + \frac{l_{i1}}{3} + \frac{l_{i2}}{3}\right) + \frac{l_{i3}}{6} = x_{i+1\cdot 0}.$$

The group of instructions beginning with TG furnishes the commands for perfor-10 ating the numbers $v_i + 1.0$; $x_{i,+} + 1.0$; $t_i + 1.0$; and at the same time tabulates them 12 as the starting values for the next step of the Runge-Kutta method. Thus the 14. 16 actual induction from i to i + 1 is obtained. The group of instructions beginning 18 With TG, however, must still correct the address of the instruction FA by which the 20___ instruction is set for the continuation in such a way that the machine continues 22 _ along the path j = 1 when instruction FA comes up again. Since the solution of the equation is of interest to us in the particular range (t_0, t_{max}) , included in this 24 group is instruction TM, by which the sign of the difference $t_{io} - t_{max}$ is ascer-26 tained. As soon as it comes out positive, the machine has reached the limit of the 2.9 30_ range in which we are insterested, and it stops.

The whole calculation proceeding in the machine may be briefly stated in the 34_____form of the following equations:

	$[P_{3}(x_{ij}) +$		
v ₁₀ +	$\sum_{k=0}^{j} r_{ik} = (v$	$r_{i0} + \sum_{k=0}^{j-1} r_{ik}$	+ r _{ii}
	v _{ij} . q _j		
	$\sum_{k=0}^{j} s_{ik} = (a$) + 811
	$= x_{i0} + n$ $= y_{i0} + n$		

Before each calculation, it is necessary to replace in the corresponding memories the numbers q_{j-1} , m_{j-1} by the numbers q_{j} , m_{j} according to the tabulation in

94

231

0.. Fig This is repeated four times is 2, 3. **The** 2--diagram of the instructional network is represented in Fig. 5.2. The proposed in-4 . structional network in a general form is presented in Figs. 5.3, 5.4, and 5.5. 6 For better orientation it may be 81interesting to note that the calculation 10 ---0 1 3 2 j of this equation in 50 steps took about 12 2 ĥ half an hour. As already mentioned in h h 'n 3 14 95 6 3 6 the beginning, we used the Runge-Kutta 16. mj 3 ŧ 3 3 method in this case only for didactic 18_ reasons. If it had been the purpose 20. Fig.5.1 to obtain the solution in the shortest 22 possible time, a method of differentiation requiring a larger number of memories 24. would have been selected. In this way the time required for calculating the same 26 number of steps would have been reduced to about a third. 28. Finally, it may be interesting to note that recently a special method has 30. been established for solving differential equations with the automatic computer*. 32 It is also based on the Runge-Kutta method, and the calculation requires an even 34_ smaller number of memories than for the Runge-Kutta method as it has been employed 36_ here. 38_ 40_ 42_ 44_ 46. 48_ 50_ 52-* Gill, A process for the step-by step integration of differential equations in an 54. automatic digital computing machine 56. 58. 95 60_

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-

STAT

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0							
	Declassified in Part	 Sanitized Copy 	Approved for Re	lease 2012/12/11 ·	CIA-RDP81-0	1043R001300040	009-0

			Instruction	in an	ST/
	Analysis	Vocabulary	Index Operational Sym	bol + -	Remarks
Fig.5.3 - Instructional Metwork for Solution of Differential Equation	$i_{0} = i_{0}$ $b_{1}i_{1j} + b_{2} = g_{1}$ $c_{1}i_{1j} + c_{0} = g_{0}$ $(c_{1}i_{1j} + c_{0})i_{1j} = g_{0}$ $(c_{1}i_{1j} + c_{0})i_{1j} + c_{0} = g_{1}$ $i_{1j}c_{1} + c_{0} = g_{0}$ $i_{1j}c_{1} + c_{0} = g_{0}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} (1) & AC & AC \\ (12) & AD & AL \\ (12) & AE & AB \\ (12) & AE & AB \\ (12) & AE & AB \\ (12) & AC & AC \\ (13) & BA & BA \\ (1) & BB & BE \\ (1) & BC & BC \end{array}$	Equation

	5 5 4 5 4 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	38 38 38 38 38 38 38 38 38 38 38 38 38 3	20 15 14 20 18 16 20 18		™ TAT_1
			Instruction	Remarks	
	Analysis Ve	cabulary Inde	x Operational Symbol		Mode 1
	$g_6 + a_3 = g_7$	$g_7 = \langle z l \rangle BD$	$\langle z1 \rangle + \langle w3 \rangle \rightarrow \langle z1 \rangle$	BE BE	
	g_7 , $x_{ij} = g_8$	$g_8 = \langle z \mathbf{l} \rangle BE$		BF BF	μ
	$g_{5} + a_{4} = P_{3}(x_{ij})$	$P_3(x_{ij}) = \langle z1 \rangle BF$		CA CA	•
	$P_{\mathbf{s}}(x_{ij}) + f(t_{ij}) = g_{\mathbf{s}}$	$g_{\theta} = \langle z \mathbf{l} \rangle CA$	$\langle z1 \rangle + \langle z2 \rangle \rightarrow \langle z1 \rangle$	DA DA	
		$\frac{h}{6} = \langle u1 \rangle \qquad Q18\rangle$	$\frac{h}{6} \rightarrow \langle ul \rangle$		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{h}{6} = \langle w5 \rangle \qquad !Q19$	$\frac{h}{6} \rightarrow \langle w5 \rangle$		Pro
	$\begin{array}{c c} r_{j} \\ \downarrow \\ r_{j} \\ \bullet \\ \bullet \\ \downarrow \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet$	$r_{ij} = \langle z l \rangle DA$	$\langle zl \rangle \langle ul \rangle \rightarrow \langle zl \rangle$	DB DB	Problem:
	$v_{i\theta} + \sum_{k} r_{ik} = g_{i\theta}$	$y_{10} = \langle pb \rangle DB$	$\langle \mathbf{z}\mathbf{l}\rangle + \langle \mathbf{p}6\rangle \Rightarrow \langle \mathbf{p}6\rangle$	EA EA	
•	$ \begin{array}{c} c \\ o \\ c \\ \end{array} \\ v_{ij} \cdot q_j = s_{ij} \end{array} $	$s_{ij} = \langle z3 \rangle EA$	$\langle p5 \rangle$. $\langle u1 \rangle \rightarrow \langle z3 \rangle$	EB EB	lffe
86	$\begin{array}{c} C \\ O \\ T \\ t$	$g_{11} = \langle p3 \rangle EB$	$\langle z3 \rangle + \langle p3 \rangle \rightarrow \langle p3 \rangle$	EC EC	Differential
		3 (#2) !Q20	$3 \rightarrow \langle u2 \rangle$		tia
	lo	3 = <#6> !Q21	$3 \rightarrow \langle u t t \rangle$		
	0	$m_{j}a_{ij} = \langle z3 \rangle EC$	$\langle z3 \rangle$. $\langle u2 \rangle \rightarrow \langle z3 \rangle$	ED ED	Equ
		$x_{i,i+1} = \langle p_i^2 \rangle \qquad ED$	$\langle z3 \rangle + \langle p1 \rangle \rightarrow \langle p2 \rangle$	EF EF T.4+2	Equation
	$\begin{bmatrix} r_i \\ p_i \\ p_j \end{bmatrix} v_{i,j+1} = v_{i0} + m_j r_{ij}$	$m_j r_{ij} = \langle z 1 \rangle \qquad EF$ $v_{i,i,j} = \langle p 5 \rangle \qquad EG$	$\begin{array}{c} \langle z1 \rangle \langle u2 \rangle \rightarrow \langle z1 \rangle \\ \langle z1 \rangle \langle u2 \rangle \rightarrow \langle z1 \rangle \end{array}$	EG EG = TE	ior
	$ \begin{array}{c} v_{i,j+1} = v_{i0} + m_j r_{ij} \\ v_{i} \end{array} $	$egin{array}{ccc} v_{i,i+1} = \langle p5 angle & EG \ 2 & = \langle w7 angle & !Q22 \end{array}$	$\begin{array}{c} \langle z1 \rangle + \langle p4 \rangle \rightarrow \langle p5 \rangle \\ 2 \rightarrow \langle w7 \rangle \end{array}$	FA FA při j=0 TE+2	þ
	ω του	$Z = \langle w_i \rangle$ Q_{22} FA	$B!\langle FA \rangle + \langle w7 \rangle \rightarrow !\langle FA \rangle$	TA TA = TF	
				pFi = 1	
				TF+2	
				= Ta	
				při j = 2	

23

Page 2

Declassi	ied in	Part -	Saniti	zed Co	ру Ар	proved for	for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0
·				1.1			

Analysis Vocabulary Index Operational Symbol Remarks				8 2 3 8 5 5 	
	Analysis	Vocabulary	Index	Operational Symbol	Remarks
$j+1 \rightarrow j$ 3:2 = $-\frac{1}{2}$ - $-\langle u2 \rangle$ TA (w6): (w7) - $u2$ TB TB		3 3			del 1

-

99

2-

	$j+1 \rightarrow j$ $3:2=\frac{3}{2}$	3 - < u2>	TA	<#6> : <#7> → µ2	TB	TB
	$\frac{h}{6} \cdot 2 = \frac{h}{3}$	<u>h</u> - <u>3</u> (ul)	TB	<#5> . <#7> (#1)	TC	TC
	$\frac{h}{6} \cdot 3 = \frac{h}{2}$	$\frac{h}{2} - \langle z \rangle$	TC	$\langle w B \rangle$, $\langle w 5 \rangle \rightarrow \langle z 1 \rangle$	TD 4	rD
Fig.	$t_{i,j-1} + \frac{h}{2} = t_{ij} \text{ jen pro } j = 1, 3$	$t_{ij} = \langle p \overline{t} \rangle$	TD	$\langle \mathbf{z} \mathbf{l} \rangle + \langle p 7 \rangle + \langle p 7 \rangle$	AA .	1.4
Ст Ст	m ₁	3 (u2)	TE		BA I	BA .
Ŧ	$q_{\mathbf{s}} = \frac{h}{R}$	$\frac{h}{-6} \langle u1 \rangle$	TF	(#5) (4 (0) - (#1)	TC	rc
Continuat		<i>#i</i> +1,€ · ≤ <i>p</i> 4>	TO	H2(p6) (0) -+ (p4)	THI	"H
i.		$x_{i+1,0} = \langle p1 \rangle$	TH	$H2\langle p3\rangle + \langle 0\rangle + \langle p1\rangle$	TI.	TI
แล		· I _{I+1,0} ≈ ⟨p7>	TI	$H2\langle \mu 7 angle = \langle 0 angle = \langle \mu 7 angle$	TJ	rj –
t.		r _{i+1,0} ⟨p2⟩	TJ	$(p6) \leftrightarrow (0) \Rightarrow \langle p5 \rangle$	TK 1	
0		$egin{array}{ccc} x_{i+1,0} & \langle p5 angle \ & \langle n9 angle \ & \langle n9 angle \end{array}$	TK !Q23	$\langle p_3 \rangle \leftrightarrow \langle 0 \rangle \Rightarrow \langle p2 \rangle$ $\langle m \psi \rangle = \langle m \psi \rangle$	TL'1	r <i>L</i>
÷۰	1 + 1 -+ 1		TI.	<i>Î‼</i> /FA5 ± ⟨₩9⟩ → !⟨FA5	TMT	М
Fis	1 1 in	- / (w10)	1Q24	Imax -> <er10;< td=""><td></td><td>1</td></er10;<>		1
άq Vi	mat /0	g = /21>	TM	/w10> + (p7> + (:1>	8T 1	IA .
ŝ		1	ST	∠0% + ∠0% ∠0%		
.~ .						
		1				
i					· ·	

-01043F

Page 3

Problem: Differential Equation

0. 2 CHAPTER 6 4..... PROCESSING OF PERFORATED CARDS 6 OPERATION WITH PERFORATED CARDS 8___ In contrast to the automatic calculator, which processes numbers and instruc-10 ---tions automatically, the machine employing perforated cards processws automatically 12 only the numbers perforated in the perforated cards. The instructions must be set 11 15 in the machine by the operator, i.e., a person must operate the machine. 18 6.1 Perforated Cards 20___ For calculating purposes we distinguish between instruction cards, which con-22_ _tain as written symbols the instructions for the operator (Fig.6.1) and number cards 24____ P(1+n/m)2-2/1/ -U. 1+14 - 1L. 30 31 13 0.5 x un K 1.5.0,5 un . zn 0,5 unx, In D(m) DIM (14) (12) 05× (31) 15 - (32) (32) × (33) ين هن مسلم أنه 30 30__ 33 34 35 36 38 57 38 34 35 26 37 38 59 40 4 32_ (34) × (33) 5 - (36) (37) × (33) (32) X (38) 34 36 36___ 77771 39 40 32____ 40_. Fig.6.1 - Instruction Card for Set 3 42_ ____on which the numbers entering into the operations are designated according to a 14 __particular code (Fig. 6.2). For both the instruction card and the number cards, 15. preprinted, ninety-column perforating cards are used. As a rule, standard cards 43... are used, for operations with standard numbers. The mode of operation with standard 50. --- cards does not differ from that with ordinary cards. The standard card is purposely S::----divided by lines (designated by ruling in Figs. 6.1 and 6.2) into ten number fields 54 -of eight columns each: 1 to 8, 9 to 16, ..., 78 to 85. Columns 41 to 45 and 86 56 58 STAT 100 50

2 -

ير ميد 6.,

8....

10 -

12 ---

14

15 -

18.

20_

22_

24-

26

29___

30_

32_

34_

36_

32

40_

42_

14.__

d.£ ____

58_

61

Declassified in Part

to 90 are reserved for indexing the individual cards, for correlating the set of cards, and for perforation of the simole constants which during the calculation come up repeatedly or very frequently. Every field of the standard card has its serial number, and can be filled with a standard number, which is composed of the sign and 7 digits.

1.089150+1.089150+0.544570+0.955425+0.520300 101 · 0,497107 - 1,002893 · 0,958189 · 0,521805152 + 0.0 1 2 5 111

Fig.6.2 - Number Gard of Index 101 (Columns 43 to 45), Set 3 (90 Columns). With the card were carried out operations 31 to 42 according to the instruction caard (Fig.6.1). (The title numbers are actually

printed on the card)

The instruction card has number fields distinguished by serial numbers. An example of an instruction card is shown in Fig.6.1. On the first line of each of the fields of the card (on the unprinted part) the mathematical statement of the operation is written whose result is to be perforated in the field for this operation. (The symbol D () means that the value must be put in parentheses before beginning the operation of perforating the corresponding number card). The second 45 line states the same operation with the help of the serial numbers of the fields 50___ in which the values are present which enter into the operation. On the third 50line is the serial number of the field (for example, 30 to 39) and on the fourth 54_. line the serial number of the operation (for example, 30 to 43). A decimal point 56 1

STAT

is placed in each of the designated fields.

2 ---

50

58

60 _

The symbol 113 in the first row of Fig.6.1 means: "Arrange the set of cards 1 4 relatively to set of cards 3 in such a way that the nth card of set 3 follows the б. nth card of set 11" The symbol 30 Kat means: "Verify the agreement between the con-82. tent of field 30 and the content of field 31, and the correctness of the perforation 10 --at the place designated by the letter KI" The symbol K means: "Verify the previous 12 operation and the correctness of the perforation at the place designated by the 14 letter KI" The symbol $1\uparrow_3$ means: "Separate set 1 from set 31" D(n) means: "Per-16 forate before beginning to calculate with the cards of the corresponding Index nit. 18 Similarly D(N), D(x_n), D(152) and D(S3) means: "Perforate the number N, the value x_n 20_ the constants 1, 5, 2 and the numbers of set 31" 22

The standard number card with ten number fields (Fig.6.2) corresponds to one 24 row of the ten-column calculating form (see Paragraph 1.2). Each of the fields 26contains the sign in its first column. If the sign is positive it is without a 28. perforation in the first column; if it is negative, there is a perforation in the 30_ first column at the place preprinted with $\frac{3}{h}$. In the second to the eighth columns 32. each of the fields is reserved for desitnating a seven-place number. The odd digits 34 are designated by a perforation in the corresponding column, in some places by a 36. preprinted pair of numbers. The upper digit of the preprinted pair is read (for 38 example, the perforation in the place of the preprinted pair $\frac{7}{8}$ denotes the digit 7). 40_ Even digits are denoted by two perforations in the corresponding column. One of 12 these perforations is always together with a preprinted nine. In reading, the 44 lower digit of the number pair is valid at the place where the upper one is perfor-46., ated. Figure 6.2 shows an example of a number card with the titles given. The 48_ numbers 1 to 90, which are printed below the lines denote the numbers of the col-50 umns. A decimal point defines the decimal place. \$2--

An instruction card corresponds to an instruction row of the calculating form. 54 _ Accordingly, the individual number cards correspond to the individual number rows

102

0. of the form, and the number fields of the set of cards which have the same serial ై number correspond to the columns of the form. Every number card is designated by 4_ an index (in Fig.6.2, for example, in columns 41 to 45), which corresponds to the 6 serial number of the corresponding row of the form. A pack of cards corresponding 8. to all of the row of the first to the tenth columns of the calculating form is 10called a set. Since a row of the calculating form usually has more than 10 columns, 12 it is necessary to "lengthen" the cards of set 1 with an additional card of set 2, 14 _ and, if necessary, with one of set 3, etc. (in Fig.6.2 the numbers of sets are 15 -- designated in columns 89 and 90). 18_

20 6.2 Operation with Cards and Operation with Numbers

22___

56 ...

58___

60_

To each set of number cards belongs one instruction card.

According to the data on the instruction cards, the operation with the cards 24 and the operation with the numbers are carried out. The operation with the cards 25 is carried out with the classifier, and the operation with the numbers with the 30 perforator, the calculating perforator and the tabulator.

32_ In the operation with the cards, combination and classification of the number 34_ cards are employed. The operation of combination is used, for example, when one 36- set of number cards is combined with the following set in such a way that the 36- first card of the second set follows the first card of the first set, the second 40-4 card of the second set follows the second card of the first set, etc. This combi-42- nation is carried out with the classifier, for example, according to the perforated 44_ indices in the index fields. In the arrangement of the cards, the pack of cards 46 formed by the combination of two sets, for example, must be reclassified into the 48.... first and the second set. Also when tabulated values of functions have to be em-50.... ployed in the calculation, the "tabulation" of the cards is carried out according 52--to the argument of the corresponding set of cards, and the corresponding functional 54 Values are calculated by interpolation*. (For footnote, see next page)

103

STAT
Ô. With the perforator, the initial values and the indices of the individual cards 2are perforated into the cards. Ą ___ With the calculating perforator the following operations are carried out: 6 a) Operations on the same cards (Fig.6.3) -----8 --aa) Multiplication of two numbers perforated in any two fields of the same 10 card and perforation of the result in any empty field of the same set. 12 ---14 (2+)+(22) n 40) . (1) a) 20 24 21 22 23 16 ____ 10 11 12 13 14 2 18_ 25 26 27 28 29 15 16 17 18 19 20_ Ъ) 22____ PL 1 <u>Ye (z.)</u> 24____ 2 c) 1. 2 (r2) 26 2 22 __ **Q**ŧ Y2 (2,) ŧ X, 28___ 3 (r3) Pa g, X2 (23) 3 Xj 30___ 94 [(r.) 4 P. 4 Y. (Z.) 32____ Pn ₫'n. ñ Yn 12.1 ñ 34___ 36___ 38____ 40 Fig.6.4 - Operation from Card to Card. 42 Fig.6.3 - Operation on the Same Card. $p_i + q_i = r_{i+1}$ (The broken lines $x_i \times y_i = z_i$ 4 denote operations in the second "run" a) Instruction card with instruction 46_ for field 12; b) Card No. (Index); of the machine) 48_ c) Set No. 50-52-* It must be borne in mind that this operation must be carried out by machine 54 ... because several hundred cards are always processed at the same time 56 58 104 6 C . .

oved for Release 2012/12/11

CIA-RDP81-01043R00⁻

Declassified in Par

157

0. ab) Addition of two numbers perforated in any two fields of the same card, and 2 --perforation of the result in any empty field of the same card. 4 ac) Raising to the second power the number perforated in any field, and per-6 _ foration of the result in any empty field of the same card. .8 ad) Division of two numbers perforated in any two fields of the same card, 10 and perforation of the result. 12 b) Operations with card to card 14 ba) Multiplication of two numbers perforated in any two fields of an odd card, 16 --and perforation of the result in the next even card. 18_ bb) Addition of two numbers perforated in any two fields of an odd card, and 20_ perforaation of the result in the next 22____ 00 ΟÍ 02 03 04 even card. 24 ---(02)+(42) n bc) Raising to the second power the 41 40 42 43 44 26 4 number perforated in any field of an odd 45 46 47 49 48 28____ card, and perforating the result in the 30___ next even card. 32_ (1,) ₹, Í. For carrying out any one of opera-34___ 2 (t.). ٧, tions b), one empty card is placed in 3 36___ front of the pack. In this way an odd h 38____ 4 1. 5, 7, card is always next to an even card. At 4 Ò___ f_R n the next passage of the pack through the 4?__! machine, the results are also obtained 44_ on the originally even cards. 16. c) Operations from leading Card 48-Fig.6.5 - Operation from Leading Card to Trailing Card (Fig.6.5) 50____ to Trailing Cards. $h_i \times r_i = t_i$ The leading card is denoted by the 52perforation present in the left edge between the upper and lower half of the card 54 (see Figs.6.6 and 6.7). The value perforated in this card is retained in the 56. 58

105

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

6° _

STAT

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0 Ö. machine until no leading cards are any longer present. e De hum ca) Multiplication of the number perforated in the leading card by the numbers 6 in perforated in the trailing cards (until the next leading card), and perforation of 6 L the results in the card containing the second factor. 8 101 06-2DIM DI0,5000) Olal Uniol DI2ad DI by 121 5 3 3 14 _ 5 5 5 717 7 7 15 -58 35 54 25 DIO 18____ 2 2 2 2 2 2 2 2 12 2 2 2 2 2 111 20____ 22_ 24-Fig.6.6 - Instruction Card for Perforation of Leading Card 26 1 by Perforator 28-301 cb) Addition of the number perforated into the leading card with the numbers 32_ perforated into the trailing cards (until the next leading card), and perforation 34 of the results into the card containing the second term. 35_ -d) Operations from Leading Card to Trailing Even Cards [with Leading Card Followed 38_ by Empty Card (Fig.6.8)] 40.... da) Multiplication of number in leading card by number in odd card, and per-42 foration of result into even card. 44. db) Addition of number in leading card with number in odd card, and perfora-45... - tion of result into even card. 48.... e) Operations along Pack of Cards (Fig.6.9) 50---ea) Successive subtraction of values perforated into the same field of all 52--cards of one set, and perforation of the intermediate results into the individual 5. cards. 56, STAT 58_ 106 60 ...

roved for Release 2012/12/11

CIA-RDP81-01043R001300040009-0

Declassified in Part

Sanitized Copy Apr

\$5

and with the cold and the state of the

Ö of the intermediate results into the individual caards. 2 -All of the enumberated operations occur automatically with respect to the signs 4: The operation of the tabulator is usually combined with the printing of the б., values perforated into the cards and the subtraction of the values perforated into 81 the particular columns of the card (at the processing of the cards with the tabu-101 lator, the card columns are not divided into individual fields) with simultaneous 12 printing of the sums, the intermediate results, and the grand totals. 14 161 18_ 20. 2224 26 -28_ 30-32. 34. 36_ 38-40_ 42_ 44_ Fig.6.10 - Perforator 45_ Perforator 6.3 48_ The perforator is an electrically-driven machine, which perforates the initial 50values, the index, the constants, the perforation of the leading card, etc. into 52the perforating cards. The pack of cards to be perforated with the information according to the written or printed data is placed into the feed magazine with the 56. 58_ STAT 108 60..

Ö

2-1

6 _

10 -

12_

14

16 _

18_

20____

22

24 ---

26

28___

30___

32___

34__

36_

38_

49_

42

14_

46_

58

61

8____

4

face of the cards upward and the cut corner to the left. By pressing the number keys of the keyboard, the necessary digits are set in the corresponding columns 1 to 90. In contrast to the typewriter, where the roll with the paper moves during the typing of the letters and digits and the writing is obtained directly by pressing the character keys, the setting carriage of the perforator moves from the first to the 90th column, giving only the setting. When the "operating key" is pressed

Fig.6.11 - Classifier

all of the set data are perforated into the card, the card moves automatically to the storage magazine, and the machine feeds the next lowest card. The set values remain intact, and the machine perforates the cards at a rate of 5000 to 6000 cards per hour, or the set values are automatically cancelled and the operator sets the new values for the next cards.

CIA-RDP81-01043R001300040009-0

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 :

Verification of the correctness of the perforating is obtained by repeating the perforating, the perforation slightly displaced (by half the perforation). This verified perforated card then contains only oval holes which can easily be verified, even by eyesight.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

6.4 <u>Classifier</u>

0 _

2 -

Ą _,

6 :

8.

10-

52-

58_

60_

Declassified in Par

12_ The classifier is used for carrying out operations with the cards. The pack 14 of cards is placed in the feed magazine in the same way as in the perforator. The 16 feeder feeds the cards of the pack one by one from below to the machine at a rate of 24,000 cards per hour. Each card stops for a moment under the feeler of the 18_ carriage, where the column is determined according to which the card is to be 20_ 22_ classified, and where the carriage will stop. According to the information con-24- tained in the determined column, one of the thirteen* storage compartments opens, 26 _ (Ten of these thirteen compartments correspond to the ten digits 0 to 9). The 28_ bransporting roll moves the card to the open compartment into which it falls.

In this way, by one "pass" through the machine the pack of cards can be re-32_ worted into as many batches as there are different kinds of information in one 34_ column. If, for example, a pack is to be reclassified consisting of two kinds of 36_ sets, for example, set 14 and set 15 (whose number indices are designated in col-38_ usns 89 and 90), then the feeler of the carriage is set for column 90. The cards 40_ with the digit 4 perforated into column 90 falls into compartment 4, while the 42_ cards perforated with the digit 5 fall into compartment 5.

The combining of cards is carried out in such a way that the pack is first sorted according to the lowest index. The cards are then again made up into a sorted according to the lower card is taken from compartment 0, then from pack in such a way that the lower card is taken from compartment 0, then from compartment 1, then from compartment 2, etc., until finally from compartment 9.

54 * The classifier is, of course, also used for processing other types of cards, 56 which, however, is of no interest to out present purpose

Con States

110

STAT

Then the pack is classified according to the next higher index. Since the machine feeds the cards of the pack from below, first the cards the the mark O fall into the compartments O to 9, then the cards with the mark 1, etc. in accordance with the second order given in the corresponding column. The batches obtained in this way are again put together in such a way that the lower card is fed from compartment O, then from compartment 1, etc. This pack is again classified according to

Fig.6.12 - Calculating Perforator

the columns with successively higher indices to the highest, and by repeated combination we have obtained the card arrangement according to the indices. If the index is composed of several different marks, the combining is carried out in the same manner. First, however, it must be decided to which series the individual marks correspond.

50_6.5 Calculating Perforator

0

2.~

4.

6

8

10-

12 -

14

16 ---

18_

200

22:

24.

26

28-

30:

32

34

36.

38-

40

42_

44_

46..

48-

58

60.

52- The calculating perforator is a semiautomatic relating calculator which auto-54 matically processes according to the present perforating operation a perforating 56 datum in a perforating card and perforates the result into the same or into the

111

STAT

Ő

2 -

Ę.,...

6

8

10-

12 -

14

16 -

54.

56. 58

60

chine is 3000 operations per hour.

The operation, which is described above (Paragraph 6.2), is set by hand next card. on the control board of the machine. The field to be perforated is set on the perforating part of the movable perforator carriage. The pack of cards is placed in the feed magazine in the same way as with the perforator or the classifier. The machine is fed from below one by one card at the rate of 6000 or 3000 cards per hour. The fed card stops for a moment under one of the feelers where it is felt. An electric signal corresponding to the datum on the card is transmitted to the control baord. From here the signal is transmitted only from the number field participating in the operation to the arith-18_ 20 metical unit. In a split second the arithmetical unit carries out the opera-22_ tion and sends the result via the control 24 --a 6 militiant board to the setting electromagnet of the 26 s gun perforating part of the machine. Here the card is fed to the perforating part of the 30_ 322 machine and again stops. In the next 34 moment the card is perforated with the 36_ datum set by the electromagnet on the 38perforator carriage. The perforated card 40_ is then placed in the file. 42 The machine processes numbers with 44 regard to the sign. In the use of stand-46_ ard numbers it carries out 6000 multipli-48_ cations or additions of two 7-place num-Fig.6.13 - Tabulator 50bers or 3000 divisions of two 7-place 52---

112

CIA-RDP81-01043R00

oved for Release 2012/12/11

STAT

24

numbers per hour. Operating with single cards in succession, the rate of the ma-

The operation of feeling the card carries out the calculation and the perfora-2 ---tion of the result. Every operation is verified by the verifying operation while 4 processing the next card in the calculating perforator. Multiplication is verified б by exchanging the factors and by changing the order of one of the factors. This 8 ... assures that the other parts of the machine participate in the verifying calcula-10tion. The probability is minimal that the same error will occur in both the orig-12 inal and the verifying calculation in exactly the same two different places of the 14. machine. The result of the verifying calculation is not perforated in the card. 16 . The card with the verified result is, however, felt, and compared in the machine. 18_ If the two results are in agreement, the machine perforates into the card above 20_ the verified result the words "perforation correct". The machine carries out this 22 verifying operation likewise at a rate of 6000 operations per hour. 24.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

The verification of addition is carried out in such a way that in the second 26 calculation the terms are added with the opposite signs. The machine therefore 28. operates with both terms filled up with nines with entirely different digits in 301 the same decimal place. Also in this case the probability is very small that an 32 error in the machine will occur at the same decimal place of the corrected digits. 34 The verified result is, however, perforated in some empty field of the card. By 36 another calculation the verified result is added with the result to be verified. 38 If the addition comes out zero, the machine perforates the words "perforation cor-40 rect" above the verified result. The verification of addition takes two normal 4? operations. It is therefore carried out at a rate of 3000 operations per hour. 1.1 Division is verified by multiplying the quotient by the divisor without per-46_ forating and by comparing the product with the divident for correctness of the per-48. foration. 50.

6.6 Tabulator

Declassified in Part -

52

54.

56

58

60_

Ö

In the solution of mathematical problems, the tabulator is usually used for

Sanitized Copy Approved for

STAT

printing the results. The pack of cards is placed into the feed magazine in the ame way as with the other described machines. The machine is fed from below with card after card at a rate of 6000 cards per hour. Every card stops for a moment 6 in the feeler chamber, where it is felt by the feeler needle. According to the felt information, the machine sets the corresponding characters of the writing segment against the writing roll, and by touching the typing keyboard the felt informa-12 tion is printed on the paper roll by the writing ribbon.

The tabulator is also provided with a subtracting position and a subtraction column for the purpose of entry. In a reversed movement of the gear of the writing Regment to the starting position, this segment eggages with the gear of the subtractor, and, depending on the sign, the present and printed value is either added or subtracted. On the signal "print the intermediate result", the segment engaged with the subtractor is already moving forward (setting), and its end position is determined by the content of the subtractor. Here the setting segment cancels the content of the subtractor. After the intermediate has been printed, the segment, in forward movement, is in engagement with the gear of the main subtractor instead of with the gear of the nullified subtractor, so that the already-printed intermediate result is added to it. On the signal "print the main sum total", the writing segment in its forward movement is in engagement with the gear of the totalling subtractor, which sets its content into the terminal position of the writing segment. After the grand total has been printed, this subtractor is cancelled.

114

STAT

28. 30. 32. 34. 36 38-40_ 42_ 44. 46. 48_ 50. 52-54. 56 58

60

Õ

2

4

8

10 -

14.

16 -

18.

20_

22

24-

2 ----CHAPTER 7 EXAMPLE OF SOLVING & TECHNICAL PROBLEM BY MACHINES FOR THE PROCESSING OF PERFORATED CARDS PROBLEM AND GIVEN VALUES 7-1 Coordinate Table for the Production of Compressor Blades Only in large-scale production of compressor blades is the copying of a model on a coordinated milling machine economical. For this purpose it is necessary to 16 calculate the coordinates of a large number of points of a curve equidistant to the periphery of the profile section of the blades. The equidistant clearance from the periphery is obviously equal to the radius of the working tool. The coordinate system is first selected in such a way that the beginning falls in the "entrance corner" of the profile and the X-axis passes through the "exit corner". Also the depth of the profile c, which is equal to the distance of the exit corner from the entrance corner, is at first selected equal to 1. It is only at the end of the 301 calculation that the reduction of the coordinates to the required depth of the 32 profile and the transformation of the coordinates to the given coordinate system 34.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

are carried out. 36

Ö.

4__

6 ..

8-

10-

12

14

18

201

29

24:

26

28.

58_

60.

Let us discuss the problem of calculating for each of 33 profiles 110 points 38 equidistant to the top of the periphery and 110 points equidistant to the bottom 40 of the periphery, i.e., a total of 7260 points. Parallel calculation of such a 4? number of values can be carried out advantagoously with the machine for processing 44 perforated cards. Since the principal part of the work is done on the calculating 45 perforator, which, during the processing of the values, perforates in the same card 48. or in adjacent cards, a very-restricted interpolation method is selected. The re-50 quirement that the interpolation curve must be "smooth and not "undulating in the 52limits of the precision makes us formulate a method which is simple with respect 54 to the employment of the machines and at the same time satisfies the required 56.

115

STAT

4_

26 -

29_

30

32_

58

6° __

Declassified in Part

7.2 Bases for the Solution of the Problem

For each profile N (N = 1, 2, ..., 33) are given the numerical values m_N 6 _ and p_N for calculating the center line [the coordinates of 17 points x_n , d_n * situated 2 symmetrical to the profile (n = 0, 1, ..., 16) for $x_n = 0$; 0.0125; 0.025; 0.05; 10-0:075; 0.1; 0.15; 0.2; 0.3; ..., 0.8; 0.9; 0.95; 1.00 and for the depth of the 12 14 __ profile $c^* = 1$] tabulation of the thicknesses symetrical to the profile t_t and the 16 - required thickness of the profile t_N , the required thickness of the profile c_N , the radius of the tool r and the position of the profile in the given coordinate 18__ 20 system coordinating the "entrance corner" (I_0, I_0) and the angle γ , which includes 22 the joining line of the "entrance corner" and the "exit corner" with the I-axis. The center line is composed of two parabolic curves given by the equations 24

$$y = \frac{m}{p^2} (2px - x^2) \quad \text{for} \quad 0 \leq x \leq p \quad (7.1)$$

$$y = \frac{m}{(1-p)^2} \left[(1-2p) + 2px - x^2 \right] \quad \text{for} \quad p \leq x \leq 1 \quad (7.2)$$

34. Calculated first are the ordinates of 17 points of the center line for the thick-36. ness of profile $c^* = 1$ at putting $x = x_n$ in eqs.(7.1) and (7.2), where the value x_n 38. agrees with the value of the abscissa of the symmetrical profile. In these 17 40. points of the center line, on the normal to the center line, laid out in both 42. directions is the distance d_n (n = 0.1, ..., 16), which are the ordinates d_n^* of the 44. fundamental symmetric profile of thickness t_t , reduced to the required thickness t_{Ns}^* 45. so that $d_n = d_n^* t_N / t_t$.

By interpolation between the 17 points of each of the peripheries, always 50-110 points (x_i, y_i) are obtained for $x_i = 0.005$; 0.01; 0.015; ...; 0.095; 0.01; 52-0.02; ...; 0.98; 1.00; 0.02; ...; 0.98; 0.99; 1.00. Thus the first derivation 54- must be continuous and the second derivation must be nonoscillating. The required 56-

116

STAT

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0 Ø precision supposedly is 0.001 of the thickness of profile. 2 -After carrying out the reduction of the coordinates with respect to the re-4 duired thickness of profile c, the corresponding points of the equidistant curve ÷., 6 : laid out at a distance equal to the radius of the working tool on the normal to 8... the interpolation curve are calculated for 110 points of the periphery. Finally, 10 ... b) y1 12.a) 14 15 ... y. Y. - m 0 18_ X., 0 R₁₃ X, á 7 уĄ 20_ 22 _ Y' X1 - X8 (X. 24 -0 X, 26 28-30_ Fig.7.1 - Conter Line of the Profile and its First Derivation 32_ a) Left curve; b) Right curve 31 the transformation of the coordinates to equidistance in the coordinate system is 36 carried out. 38-40_ Solution 42___ First, we select a method suitable for the solution of the problem on the basis of our case, using the perforated-card processing machine. The individual 44_ operations are written on the instruction cards (see Fig.6.1). According to the 45. instruction cards, we prepare a legible operation table with indications and ex-48_ planations for serving the machine and indications for perforating the initial 50.... 5:--values, indices, and constants. 5₫ 56 117 60_ 166

7.3 Preparation for the Calculation of the Fundamental Values, the Center Lines For the calculation we start with the equation of the parabola 6 ... (7.3) $y = ax^2 + bx + c$ li and with its first derivation 10 12 ____ y'=2ax+b(7.4)14 First we calculate the y_n^* values corresponding to the abscissa $x_n (n = 0.1, ..., 16)$ $y'_{a} = 2ax_{a} + b$ 18___ (7.5)201 and integrate the corresponding yn values according to the relation 22 $y_{\mu} = y_{\mu} + \frac{1}{4}(y'_{\mu} + y'_{\mu})(x_{\mu} - x_{\mu})$ 24 --(7.6)The center line is composed of two parabolic curves (Fig.7.1): the left curve for $0 \le x \le p$, and the right curve for $p \le x \le 1$. By comparing eqs.(7.1) and (7.2) with eq.(7.3), we obtain for the coefficients of the left curve the values 32-1 $a_1 = -\frac{m}{p^2}; \quad b_1 = \frac{2m}{p};$ $c_1=0;$ 34_ 36_. Valid (see Fig.7.1) are additionally 38___ $x_0 = 0; \quad y_0 = 0; \quad y'_0 = b_1 = \frac{2m}{n}.$ 40 4 ? For the coefficients of the right curve we obtain the values 44___ $a_2 = -\frac{m}{(1-p)^2}; \quad b_2 = \frac{2pm}{(1-p)^2}; \quad \left(c_1 = \frac{(1-2p)m}{(1-p)^2}\right);$ 46..... 4 🦲 💷 $x_0 = p = x_p; \quad y_0 = m = y_p; \quad y'_0 = 0 = y'_p.$ • 50 For each profile N we perforate one main card H_1 with the values $2a_1$ and b_1 5 °..... 5% necessary for the calculation of the y' of the left curve, and the values y_n 5 (see Figs.6.6 and 6.7). Further we perforate for each profile another main card H2 5 🗐 STAT 118 6

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-0104

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009

0.

6

8....

12.

58

6⁽

with the values $2a_2$, b_2 , $y_0 = m = y_p$ and $by_0 = 0$ which are necessary for the calcu 2:---lation of the values of the right curve. At the same time we perforate into both main cards of each profile the value $s_N = t_N/t_t$ necessary for calculating the fundamental points of the periphery. In this way, we prepare 33 main cards H_1 for 33 profiles for calculating the left curve and 33 main cards H_2 for calculating the 10 right curve, which we then file as a set of cards S1. Always 17 cards are denoted with the same index N corresponding to the number of the profile (N = 1.2, ..., 33), 14 - and are always placed together in a set. For each profile 17 cards are perforated 16 __ with the value x_n as well as the ordinate d_n^* of the fundamental symmetrical profile 18_ necessary for calculating the fundamental points of the periphery (n = 0.1, ..., 16). 20 Simultaneously we prepare a set of cards 52, which is also composed of 33×17 per-22 forated cards. Perforated into these cards besides the number of the profile and 24 ... - the value x_n is the value $(x_n - x_o)$, in the cards with the value x_n is valid 26 __ $0 \le x_n \le p$, consequently, $x_n = 0$, and in the cards with the value x_n with $-p \le x_n \le 1$ we have $x_0 = p = x_0$. 301

The main card H₁ for the left curve is placed before the first card of the 32 individual profile S1 or S2. The main card H2 for the right curve is placed before 34 that card of the corresponding card into which is perforated the minimum value x_n 362 at $x_n \leq p$. The corresponding operating table 1 is shown in Fig.7.2. 38-

Explanations to Table 1: Into the first column, with the heading "Mathematical 40_] Statement", are entered the magnitudes perforated into the perforaated cards before 42 - the beginning of the operation, and the mathematical expressions of the operations. 44. Into the second column, entitled "Set", the sets are entered which participate in 45. the corresponding operations. H denotes a set of main cards (in our case 33 cards 48... H_1 for the left curve and 33 cards H_2 for the right curve), S1 set 1, S2 set 2, etc. 50_{-} In the third column, "Operation No.", is entered besides the serial number of the 52operation also the letter D, which means that the value present on this line of the 54 ._ first column is perforated into the perforated card of the corresponding set before 560

119

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

0 with the values $2a_2$, b_2 , $y_0 = m = y_p$ and $\frac{1}{2}y_0^* = 0$ which are necessary for the calcu-2 lation of the values of the right curve. At the same time we perforate into both 1. main cards of each profile the value $a_N = t_N/t_t$ necessary for calculating the fund-6 amental points of the periphery. In this way, we prepare 33 main cards H_1 for 8 -33 profiles for calculating the left curve and 33 main cards H_2 for calculating the 19-- right curve, which we then file as a set of cards S1. Always 17 cards are denoted 12_ with the same index N corresponding to the number of the profile (N = 1.2, ..., 33), 14 and are always placed together in a set. For each profile 17 cards are perforated 15 _ with the value x_n as well as the ordinate d_n^* of the fundamental symmetrical profile 18 _ _ necessary for calculating the fundamental points of the periphery (n = 0.1, ..., 16). 20____ $_$ Simultaneously we prepare a set of cards 52, which is also composed of 33 \times 17 per-22_ - forated cards. Perforated into these cards besides the number of the profile and 24 ----- the value x_n is the value $(x_n - x_o)$, in the cards with the value x_n is valid $0 \le x_n \le p_s$ consequently, $x_n = 0$, and in the cards with the value x_n with $-p \leq x_n \leq 1$ we have $x_0 = p = x_p$. 30_ The main card H₁ for the left curve is placed before the first card of the 32____ - individual profile S1 or S2. The main card H2 for the right curve is placed before 34_ - that card of the corresponding card into which is perforated the minimum value x_n 36___ at $x_n \leq p$. The corresponding operating table 1 is shown in Fig.7.2. 38----Explanations to Table 1: Into the first column, with the heading "Mathematical 40 - the beginning of the operation, and the mathematical expressions of the operations. 14 Into the second column, entitled "Set", the sets are entered which participate in 46_ --- the corresponding operations. H denotes a set of main cards (in our case 33 cards 48 H_1 for the left curve and 33 cards H_2 for the right curve), S1 set 1, S2 set 2, etc. In the third column, "Operation No.", is entered besides the serial number of the 52--

operation also the letter D, which means that the value present on this line of the 54 _ first column is perforated into the perforated card of the corresponding set before

56.

58

6ſ ..

Declassified in

119

1. Center Line	 			•
Mathematical Statement	Set	Op. No.	Operation Sy Operations	mbol where
2(4 b s 0,5)/ ₀	H	D D D D D		01 02 03 04 05
y_{\bullet} x_{π} d_{π}^{*}	<i>S</i> 1	D D D		
$2a \times x_n = 2ax_n$	H	1 2 3	$ \begin{array}{c} H \downarrow S1 \\ \hline \langle 01 \rangle \times \langle 15 \rangle \\ K(\langle 15 \rangle \times \langle 01 \rangle) \end{array} $	17 K 17
$b+2\iota x_n=y'_n$		4 5 6		18 19 <i>K</i> 18
$s \times d_n^* = d_n$		7	$ \begin{array}{c} \langle 03 \rangle \times \langle 16 \rangle \\ K(\langle 17 \rangle \times \langle 03 \rangle) \end{array} $	10 K 10
x_n $(x_n - x_0)$.52	9 D D		25 26
$0,5 \times y'_{n} = 0,5 y'_{n}$	S1		$S1 \downarrow S2$ $0,5 \times \langle 18 \rangle$	20
	· · · -	12 13 14	$ \begin{array}{c} K(\langle 18\rangle \times 0,5) \\ \hline S1 \uparrow \\ \hline H \downarrow S2 \end{array} $	K 20
$0.5y'_0 + 0.5y'_n = (0.5y'_0 + 0.5y'_n)$			$ \begin{array}{c} 11 \downarrow \downarrow \downarrow \downarrow 20 \\ \hline \langle 04 \rangle + \langle 20 \rangle \\ \hline \langle 04 \rangle - \langle 14 \rangle \\ K(\langle 21 \rangle, \langle 22 \rangle) \end{array} $	21 22 K 21
$y_0 \times 1 = y_0$		18 19	$\begin{array}{ c c c } \hline \langle 05 \rangle \times 1 \\ \hline K(1 \times \langle 05 \rangle) \end{array}$	23 K 23
$(0.5y'_0 + 0.5y'_n) \times (x_n - x_0) = ().()$		20 21 22	$ \begin{array}{c c} H \uparrow \\ \hline & \langle 21 \rangle \times \langle 26 \rangle \\ K(\langle 26 \rangle \times \langle 21 \rangle) \end{array} $	24 K 24
$(0.5y'_0 + 0.5y'_n)(x_n - x_0) + y_0 - y_n$		23 24 25	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27 28 K 27
Fig. 7.2 - Operating Table	for Cal	culat	ing the Center	! Line

,

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

١٢

the beginning of the operation. The next two columns, entitled "Operation Symbol", contain in the first part the symbolic expression of the corresponding operation. Δ. H | S1 means: "place main card (of set H) into set 11" H | means: "take out main 6 cards:" S1 | S2 means: "combine set 1 with set 2 in such a way that the nth cards of set 2 follow the nth cards of set 1" SI | means: "take out set 11" <01> × <15> 10. means: "multiply content of field Ol (on main card) by content of field 15 (on next 12... card) in K<15> × < 01> means: "verify the multiplication with the exchanged factors!" · · ...: < 02> + <17> means: "add the content of field 02 to the content of field 171" 15 - $_{-}$ < 02> - < 17> means: "add the contents with the opposite signs!" K<18>, <19> means: 18 ... "verify agreement of content of field 18 with content (having the opposite sign) of 20 _field 19!" In the second part of the column, entitled "where", is entered the num-29 -ber of the field in which the result of the operation is to be perforated. The sym-22 --bol K17 means that the result is not perforated but that only "perforation correct" 26 is perforated above field 17. 25-

46....

4.5 -----

5.....

5.' .

55

6.

Ô

30 7.4 Calculation of Fundamental Points of the Periphery

In 17 points (x_n, y_n) of the center the normals are erected. On these norm-32__ 34_sls, the distance d = d s is laid out, where d is the ordinate of the symmetrical 36 profile of tabulated thickness t_t and $s = t_M/t_t$. The coordinates of the symmetrical 35 profile x_n and d_n^* are given in the Table with the given tabulated thickness of the 40 profile t_t. The required thickness of the profile t_t is a particular datum for 42 such profile N. Figure 7.3b shows the symmetrical profile of reduced thickness t_{N^*} 4 From Fig. 7.3a it is known that

$$y'_n = tg \, \chi_{--} - \frac{\delta x_n}{\delta y_n} \tag{7.6}$$

50-and also that

$$(\delta x_n)^2 + (\delta y_n)^2 = d_n^2 \tag{7.8}$$

In eq.(7.8) we take for δx_n from eq.(7.7) $\delta x_n = -y_n^* \delta y_n$. Thus we get 56

121

STAT

STAT

e C

.

STAT

\$47

of iteration steps required for the calculation is determined in such a way that

$$x_{+1}z - x^{2} < t$$
where t is selected according to the desired precision of the calculation.
The coordinates of the points of the upper periphery of the profile are given
by the relations

$$X_{n}^{*} = x_{n} + \delta x_{n}, \quad Y_{n}^{*} = y_{n} + \delta y_{n}, \quad (n = 0, 1, ..., 10), \quad (7, 11)$$
and the coordinated of the points of the lower periphery of the profile by

$$X_{n}^{*} = x_{n} - \delta x_{n}, \quad Y_{n}^{*} = y_{n} - \delta y_{n}, \quad (n = 0, 1, ..., 10), \quad (7, 12)$$
consequently,

$$X_{n}^{*} = x_{n} - \delta x_{n}, \quad Y_{n}^{*} = y_{n} - \delta y_{n}, \quad (n = 0, 1, ..., 10), \quad (7, 12)$$
denotes a consequently,

$$X_{n}^{*} = x_{n} - \delta x_{n}, \quad Y_{n}^{*} = y_{n} - \delta y_{n}, \quad (n = 0, 1, ..., 10), \quad (7, 12)$$
denotes a consequently,

$$X_{n}^{*} = x_{n} - \delta x_{n}, \quad Y_{n}^{*} = y_{n} - \delta y_{n}, \quad (n = 0, 1, ..., 10), \quad (7, 12)$$
denotes a corresponding to Fages 1, 2, 3 of Table 2 are presented in
Figs. 7.4, 7.5, 7.6.
Explanations to Table 2: The calculation of $1 + y_{n}^{*2} = u_{n}$ is carried out with
deparations 26 to 33. The vorification of the results are as follows:

$$u_{n} = 1 + (y_{n}^{*} \times y_{n}^{*}): \quad u_{n} = (1 + y_{n}^{*}) \times (1 + y_{n}^{*}) = 2y_{n}^{*}.$$
In the calculation of $(1 + y_{n}^{*2})^{-1} = u^{-1} = z$ we take as the first approximation

$$\frac{1}{v_{n}} = 0.3u_{n} (\text{spannion 17, eq.74)}$$
Already after carrying out the second iteration step is carried out

$$\frac{1}{v_{n}} < 0.22$$
 a result accurate to 5 docimals. The third iteration step is carried out

$$\frac{1}{v_{n}} < 0.2^{2}$$
 a result accurate to 5 docimals. The third iteration step is carried out

$$\frac{1}{v_{n}} < 0.2^{2}$$
 a result accurate to 5 docimals. The third iteration step is carried out

$$\frac{1}{v_{n}} < 0.2^{2}$$
 a result accurate to 5 docimals. The third iteration step is carried out

$$\frac{1}{v_{n}} < 0.2^{2}$$
 a result accurate to 5 docimals. The third iteration step is carried out

$$\frac{1}{v_{n}} < 0.2^{2}$$
 a result accurate to 5 docimals. The third iteration step is carried out

$$\frac$$

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

 m: Calculation of Equidistant (of 33 Profiles 2. Calculation of Fundamental			Periphery	Page 1		
Mathematical Statement	Set	Op. No.	Operation Operations		Remar	
$1 g'_n (1 g'_n)$		26	1 15			
$y'_n y'_n y'_n y'^2_n$		27	18.718 μ	12		
$ \begin{array}{c} y'_{n} & y'_{n} & y'^{2}_{n} \\ (1 - y'_{n}) \neq (1 - y'_{n}) = (1 - y'_{n})^{2} \\ y'_{n} = y'_{n} = 2y'_{n} \end{array} $		28 27		13		
$\mathcal{H}_n = \mathcal{H}_n - 2\mathcal{H}_n$		27	18 18	1+	-	
ж _и	S3	$_{\pm}D$		3.5		
	<u>.</u>	30	81,83			
$rac{(1-y'_n)^2-2y'_n-u_n}{1-y'_n^{2-2}-u_n}$		1 31		30		
$1 - \mu_n^{\prime 2} - \mu_n$	1		1 - 12	31		
		33	K(-30, -31)	K 34		
		34	81.2			
$0.5 \leq u_n = 0.5u_n$		35	0.5×31	32		
			K(-31=-0.5)	K 32		
$1,5 - 0.5u_n - 1^2n$		37	1.5 32	33	1. Iteratio	
1,0 ····································		•	l			
$0.5u_n \times 1^{z_n} = 0.5u_n \cdot 1^{z_n}$			$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{34}{36}$		
$\begin{vmatrix} 0.5u_{n+1}z_{n} + z_{n} - 0.5u_{n+1}z_{n}^{2} \\ 1.5 - 0.5u_{n+1}z_{n}^{2} = (1, 5 - 0.5u_{n+1}z_{n}^{2}) \end{vmatrix}$:		- (36) ⊫1,5 - (36)	37	2. 1t. Step	
$\begin{vmatrix} 1.5 - 0.5u_n \cdot 1z_n \\ (1.5 - 0.5u_n \cdot 1z_n^2) \times 1z_n = 2z_n \end{vmatrix}$			$\langle 37 \rangle \times \langle 33 \rangle$	38		
		ł	· · · · · · · · · · · · · · · · · · ·	39	,	
$0.5u_n \times z_n = 0.5u_n \cdot z_n$		42	$\langle 32 angle imes \langle 38 angle$			
.r ₁₁	84	D	1	45		
		43	83 - 84	:		
$0.5u_n \times 1 = 0.5u_n$	1 18	3 44	$< 32 \times \times 1$	40		
	1	45	$K(1 \times 32 \rangle)$	K 40		
·	}	• (;	:38 ~ 1	41	It. Step	
$2^{\tilde{\nu}}n \cdot 1 2^{\tilde{\nu}}n$			[K(1 < 38])	K 41		
	,					
$0.5u_{n+2}z_{n} \otimes z_{n} = 0.5u_{n+2}z_{n}^{2}$		48	39~ imes 38	42 -		
	4		N3			
		- 1 1)	N 0			
$\left[1.5 + 0.5u_{n+2} z_n^2 - (1.5 + 0.5u_{n+2} z_n^2) \right]$		- 50	1.5 42	43		
$(1.5 - 0.5u_n + 2 \cdot \frac{2}{n}) + 2 \cdot u = -1 \cdot u$		51	43 - 44	-4-1		
$0.5u_n \le z_n = 0.5u_n + z_n = 0.5u_n + z_n^2$		52 53	-10 -1-1 -16 - 14	46		
$\begin{bmatrix} 0,0H_{n}+3^{2}h & 3^{2}h & 0,0H_{n}+3^{2}h \\ 1.5 & 0.5H & -2^{2} & (1.5 & 0.5H & -2^{2}h \end{bmatrix}$		54	1.5 17	48	4. It. Step	
$ \begin{array}{c} 0.5u_{n+3}z_{n-3}z_{n} & 0.5u_{n+3}z_{n}^{2} \\ 0.5u_{n+3}z_{n-3}z_{n} & 0.5u_{n+3}z_{n}^{2} \\ 1.5 & 0.5u_{n+3}z_{n}^{2} + (1.5 & 0.5u_{n+3}z_{n}^{2}) \\ (1.5 + 0.5u_{n+3}z_{n}^{2}) \times_{3}z_{n} & 4z_{n} \end{array} $	į	- 55	48 44	49		
1 X **** ******************************	,				1	

Fig. 7.4 - Operation Table for Calculating Fundamental Points of Periphery, p.1

124

STAT

CIA-RDP81-01043R001300040009-0 Declassified in Part ed for Release 2012/12/11

÷0.

0 _____

2....

Problem: Calculation of Coordinates of 33 Profiles 2. Calculation of Fundamental Points of Partskerr

Table 2

Page 2

			Operation Sym	1001	19
Mathematical Statement	Set	Op. No.	Operation	where	Remark
x _n	<i>S</i> 5	D 57	<i>S</i> 2↓ <i>S</i> 5	55	
$x \times 1 = y_n$		58 59	$\begin{array}{c} \langle 27 \rangle \times 1 \\ K(1 \times \langle 27 \rangle) \end{array}$	50 K 50	
		60	S2 1		
		61	$S1 \downarrow S5$		
$d_n \times 1 = d_n$	81	62 63	$\begin{array}{c} \langle 10 \rangle \times 1 \\ K(1 \times \langle 10 \rangle) \end{array}$	51 K 51	· · · ·
$d_n \times y'_n = d_n y'_n$		64 65	$\begin{array}{c} \langle 40 \rangle \times \langle 18 \rangle \\ K(\langle 18 \rangle \times \langle 10 \rangle) \end{array}$	52 K 52	
		66	SI †		
		67	S4 1 S5		
$\frac{1}{4}z_n \times 1 = \frac{1}{4}z_n$	SA	68 69	<49>×1 K(1×<49>)	53 K 53	
		70	S4 †		
$\overline{d_n \times_4 z_n = \delta y_n}$	-	71 72	$\langle 51 angle imes \langle 53 angle \ K(\langle 53 angle imes \langle 51 angle)$	54 K 54	
$\overline{d_n y'_n \times (-z_n) = \delta x_n}$		73 74	$\langle 52 angle imes -\langle 53 angle \ K(-\langle 53 angle imes \langle 52 angle \ K(53 angle \ K($	56) K 56	
x _n	56	D 75	55 \ 56	65	
$\overline{x_n + \delta x_n = X_n^h}$		5 78 77		61 62	
	-	78		K 61	
$\overline{x_n - \delta x_n = X_n^d}$		79 80	<55>+<56>	66 67 K 66	
		81		63	
$y_n + \delta y_n = Y_n^h$		83 84	~<50> ~<54,	64 K 63	
$y_n - \partial y_n = Y_n^d$		85 86 87	$\rightarrow \langle 50 \rangle + \langle 54 \rangle$	68 69 K 68	
			N5 1		

53

51 ___ 5

--ć: .

Declassified in Parl

Sanifized Conv

Fig. 7.5 - Operation Table for Calculating Fundamental Points of Periphery, Page 2

125

Approved for Release 2012/12/11

CIA-RDP81-01043R001300040009-0

STAT

0

б^с -

2

2. Calculation of Fundamental Points of Periphery

Table 2 Page 3

	1	Op.	Operation Sys	nbol
Mathematical Statement	Set	No.	Operation	where
	(S+7)	88	S6US+7	
7Å %+1		89	<61>×1	75
96+ L		90	$K(1\times\langle 61\rangle)$	K 75
74 *+1		91	<63>×1	76
***		92	$\left \begin{array}{c} K(1 \times \langle 63 \rangle) \end{array} \right $	K 76
		93	<i>S</i> 6 †	
	(S-7) 94	S6↓S—7	
x 8	se	95	<66>×1	75
X [#] *+1		96	$K(1 \times \langle 66 \rangle)$	K 75
Vě		97	$\langle 68 \rangle \times 1$	76
Y š n+1		98	$K(1 \times \langle 68 \rangle)$	K 76
		99	S6 †	
	S7		AND TRANSPORT OF THE OTHER PARTY OF	
v		10	0 <75>×1	77
X _n		10		K 77
Y _n		10	2 <76>×1	78
		10	3 K(1×<76>)	K 78
$X_{n+1} - X_n = \Delta X_n$		10	4 <75>	79
4 R + 1 4 M M M M M M M M M M M M M M M M M M		10		7(
		10	6 <i>K</i> (<79>, <70>)	K 71
$Y_{n+1} - Y_n = \Delta Y_n$		10		7
			$\begin{array}{c c} 08 & -\langle 76 \rangle + \langle 78 \rangle \\ 76 & 77 \rangle \\ 77 $	1
		<u> </u>	$)9 K(\langle 71 \rangle, \langle 72 \rangle)$	
$\Delta Y_n : \Delta X_n = Y'_{n,n+1}$		11	10 <71>: <79>	7
$Y_n: \Delta X_n = Y'_{n,n+1}$			10 <71> : <79> 11 K(<73>× <79	(K)

57 Fig. 7.6 - Operation Table for Calculating Fundamental Points of Periphery, Page 3

Declassified in Part - Sanitized Copy Approved for Relea

STAT

51

300040009-0

0 _____iteration step usually furnishes the accurate value.

The symbol S6 S + 7 means that set 6 is combined with set (+7), i.e., with set 7 for the upper (+) periphery, in such a way that the nth card of set 6 follows the (n - 1)th card of set (+7).

The symbol 77' in the column "where" means field No.77 on the next card of the same set.

The symbol T in the column "remarks" means: "print the result with the tabula-

18 7.5 Interpolation Method

2

£

£....

10 ----

1:.

15

54 ..

59

61

56 1.

Declassified in Part

Sanifized Conv

In the formulation of the interpolation method, the following was taken into consideration: a) The large number of interpolated values (7260 investigated points), b) The time required for carrying cut the interpolation, c) The required precision of 0.001 of the thickness of the profile c, d) The requirement that the interpolation curve must have a continuous first derivation, e) The requirement of a "nonundulating" interpolation curve.

With the formulated method, most of the operations are carried out for the preparatory calculation of the interpolation coefficients on 17 cards for each and periphery, and hence a total of $66 \times 17 = 1122$ cards for one set. The actual interpolation on $66 \times 110 = 7260$ cards contains a minimal number of operations. In this way not only a saving of cards, but especially a considerable saving in time is obtained.

The basis of the method is the interpolation of a parabolic curve. What is the here essentially concerned is linear interpolation of a "derivation line". The interpolation parabolic curve is calculated by integration of the "derivation line". With the 17 points of the periphery (X_n, Y_n) (see Fig.7.7a), we calculate their 16 first proportional differences

127

Approved for Release 2012/12/11

CIA-RDP81-01043R001300040009-0

STAT

Copy Approved for Release 2012/12/1

$$Y'_{n,n+1} = \frac{Y_{n+1} - Y_n}{X_{n+1} - X_n},$$

which we assign to the abscissa $X_{n-1,n+1} = \frac{1}{2} (X_{n,n+1})$ for $n = 0.1, \dots, 15$ (see Fig. 7.70). From these 16 first proportional differences we calculated 15 second proportional differences

$$Y''_{n-1,n+1} = \frac{Y'_{n,n+1} - Y'_{n-1,n}}{X_{n,n+1} - X_{n-1,n}},$$

1

2

25

41.

5.....

52 --

5

6

Declassified in Part

56

which we assign to the abscissas $X_{n-1,n+1} = \frac{1}{2} (X_{n,n+1} + X_{n,n+1})$ (see Fig.7.7c). From these second proportional differences we form the differences from which We select the minimal differences. In Fig.7.7c the minimal difference is $Y_{3.5}^{n} - Y_{2.4}^{n}$ We join these points of minimal difference and we follow a continuous line in both 212 directions in the "second derivation" (Fig.7.7c). This line comprises the abscissas which pass through the points of the second proportional differences X_{n-1} , n+1, $(n_{n-1,n+1})$ denoted by small circles.

With the individual abscissas we obtain by integration in the "first derivation" the parabolic curve (dashed curve in Fig. 7.7b), which we join together in the points $(X_{n,n+1}, Y_{n,n+1})$, and have in these points a common tangent. However, this --- parabolic curve, the "1st derivation", is not used for further calculation. Instead, - we use the above-mentioned common tangent, which intersects in the points of the abscissas X n-1,n+1. This segment of the tangent forms a continuous line. Then by 40.... integration we obtain the interpolation parabolic curve joined together in the 4 1 points (X_n, Y_n) (Fig. 7.7a).

In Fig. 7.7, for the sake of legibility, the points are denoted by their ordinates. The points belonging to the tangent are therefore denoted by their index.

5: * The precise calculation of the value Y3.4 is not presented, because it is unessential for this case and would make the explanation too complicated

128

STAT

- Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

Declassified in Par

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 :

0 ..

2

3:1

34_

3 💷

·* 10

50

The points denoted in Fig. 7.7c by small squares were calculated by starting with the least difference $Y_{3.5}^{n} - Y_{2.4}^{n}$. The point $Y_{3.4}^{n}$ denoted by solid square is given by the expression

 $Y''_{3,4} = \frac{1}{2}(Y''_{2,4} + Y''_{3,5})$.¹)

The points to the left of this point were calculated in succession according to the relations

> $Y_{2,3}'' = 2Y_{2,4}'' - Y_{3,4}'',$ $Y_{1,2}'' = 2Y_{1,3}'' - Y_{2,3}''$ $Y_{0,1}'' = 2Y_{0,2}'' - Y_{1,2}''$

the points to the right according to the relations

$$Y''_{4,5} = 2Y''_{3,5} - Y''_{3,4}$$
$$Y''_{5,6} = 2Y''_{4,6} - Y''_{4,5}$$

etc

The dashed line in Fig. 7.7c is the lat derivation of the parabolic curve, also 42 denoted by a dashed line in Fig. 7.7b. The solid abscissas in Fig. 7.7c are the 1st derivations of the tangent to the parabolic curve of Fig. 7.7b. This tangent is also a solid line, and is the 1st derivation of the parabolic curve, shown as a 50 solid line in Fig. 7.7a.

Figure 7.7c shows that the area $\delta Y_i^* = Y_{1,2}^{**} (X_i - X_{1,2})$ and Fig.7.7b shows that 54. the area $\Delta Y_1 = \frac{1}{2}(Y_1^* = Y_1) (X_1 - X_1)$. Also valid are

130

STAT

tized Copy Approved for Release 2012/12/11 ♥. 2- $Y'_{i} = Y'_{1,2} - \Delta Y'_{i} = Y'_{1,2} + Y''_{1,2}(X_{i} - X_{1,2})$ 4 $Y'_1 = Y'_{1,2} + Y''_{1,2}(X_1 - X_{1,2})$ $Y'_{1} + Y'_{i} = 2Y'_{1,2} + Y''_{1,3}(X_{1} + X_{i} - 2X_{1,2})$ б 8.... and since $\mathbf{I}_{1,2} = \frac{1}{2}(\mathbf{I}_1 + \mathbf{I}_2)$ Н 🛶 $Y'_1 + Y'_i = 2Y'_{1,2} - Y''_{1,2}(X_2 - X_i)$ 1. The interpolated value X_i for $X_1 \leq X_2$ is therefore given by the relation 15 -4 $Y_{i} = Y_{1} + \Delta Y_{i} = Y_{1} + \frac{1}{2} [2Y'_{1,2} - Y''_{1,2}(X_{2} - X_{i})] \cdot (X_{i} - X_{1}).$ (7.14)16 The operations corresponding to pages 1, 2, 3 of Table 3 are presented in 20___ 22 ... Figs. 7.8, 7.9, 7.10. 24 -Explanations to Operation Table 3 By transferring the value $Y_{n, n+1}^{e}$ from card n to the next card n + 1 (opera-23..... -- tion 118), we get the value $I_{n-1,n}^{\prime}$ i.e., with an index lower by unity. The result 30___ of operation 142 is perforated simultaneously into fields 96 and 97 (this value 3?.... corresponds to the point represented by a solid square in Fig. 7.7c. The value in 34 field 96 is used for carrying out the polygonal segment in the 2nd derivation 3(___ (dashed lines in Fig. 7.7c) and the value in field 97 serves for verifying the cal-3.-culation of the complementary number. The symbol S9m means: "Make up a set con-A.U._ sisting only of the cards containing the minimum value of 201" from each of the peripheries". The symbol < 90> - < 96*> means: "from the content of field 90 subtract the content of field 96 of the preceding (*) card of the same set!" The 24 symbol S10 makes reference to the set of main cards (.). This means that, before 4. beginning operation 179, the perforator must perforate into the cards of set 10, 50. which have so far been processed as ordinary cards, the perforation of the main This is the reason for entering on the last line of Table 3, Page 2 the cards. symbol D ... H, which means: "after carrying out operation No.178, perforate the STAT 131 6

Approved for Release 2012/12/11

Declassified in Part - Sanitized

394

CIA-RDP81-01043R001300040009-0

11 à . . . 1

5

5

ε'

Declassified in Part

Sanitized Copy

Approved for Release

Problem: Calculation of Equidistant Coordinates of 33 Profiles 3. Interpolation

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

Table 3 Page 1

and a second and a s			Operation Syn	mbol ,	0
Mathematical Statement	Set	Op. No.	Operation	Where	Remarks
an an ann an tha ann ann amrta 11 - 17 ann ann an Ann a Ann an Ann an A	58	112	57 1 58		
Y' _{n,n+1}	57	113 114	<73>×1 K(1×<75>)	80 K 80	
ΔX_{μ}		115 116	<79>×1 K(1×<79>)	81 K 85	
		117			
Y' _{@-1,@}	·	118	$\begin{array}{c} \langle 80 \rangle \times 1 \\ K(1 \times \langle 80 \rangle) \end{array}$	82' K 82'	operation with card on
ΔX_{n-3}		120 121	$\begin{array}{c} \langle 81 \rangle \times 1 \\ K(1 \times \langle 81 \rangle) \end{array}$	83' K 83'	fnest sard of same set
$Y'_{n,n+1} \cdot Y'_{n-1,n} = (Y'_{n,n+1} \cdot Y'_{n-1,n})$		122 123 124	<pre><80> -<82><80> +<82> K(<84>, <85>)</pre>	84 85 K 84	
$\Delta X_n + \Delta X_{n-1} = 2(X_{n,n+1} - X_{n-1,n})$		125 128 127	<81><83	86 87 K 86	1999-1997 - 1999 - 1997
$(Y'_{n,n+1} - Y'_{n-1,n}) : 2(X_{n,n+1} - X_{n-1,n}) = \\= 0.5Y'_{n-1,n+1}$	-	128 129		88 K 88	
	89	130	S3 \$ S9		
$0.5 \cdot Y''_{n-1,n+1} \times 4 = 2Y''_{n-1,n+1}$	8	8 131 132		90 K 90	
	-	133	S8 1		
2Y [#]		134		91' K 91'	ep. with card on Mext card of Same cat
$2Y_{n-1,n+1}'' - 2Y_{n-2,n}'' = 2\Delta Y''$		136 137 138	<90<+<91>	92 93 K 92	Pick out 2AY" = mir
$2Y''_{n-1,n+1} + 2Y''_{n-2,n} = 4Y''_{n-1,n}$	S9m	139 140 141)<90><91>	94 95 K 94	Operation on on carols containing
$4Y''_{n-1,n} \times 0.25 = Y''_{n-1,n}$	-	142		96.97 K 96, 97	2.11 # *)

* Set 9 is divided into two partial sets: Partial set 9 containing the cards 5 - with indices 0, 1, 2 ... to indices with less than the cards containing the value "" are arranged in descending order. Partial set 9 containing the remaining min ----51 ---cards with the cards containing the value $2\Delta Y^{m}$ are left in ascending order. Operations 139-143 are carried out only on the cards containing 24Ym (S9m). 54 .

Fig. 7.8 - Operation Table for Interpolation, Page 1

CIA-RDP81-01043R001300040009-0

Declassified in Part - S	Sanitized Copy	Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0	

0 Problem: Calculation of Equidistant Coordinates of 33 Profiles 3. Interpolation

ť

14.

;

÷

i ·

27

9

2

2.

3.7

14

30

40.....

4

J

ł

4

٢,

5. ...

55. 581

60

Table 3 Page 2 ~~; ;

			Operation Sym	bol	
Mathematica) Statement	Set	Op.No.	Operation	where	Remarks
	89	144	.S9m↓ S9		
$2Y_{n-1,n+1}$ $Y''_{n,n+1}$ $Y''_{n-n,1}$	S9m	145	<u> </u>	96	1
A A A A A A A A A A A A A A A A A A A		146	<90>+<97*>	97	Operation slong pack of card
		147	$K(\langle 96 angle, \langle 97 angle)$	K 96	, , , , , , , , , , , , , , , , , , ,
••• •• •• •• ••		148	89m †		· · · · · · · · · · · · · · · · · · ·
	89	149	S9m ↓ S9		
$2Y''_{n-2,n} - Y''_{n-2,n-1} - Y''_{n-1,n}$	S9m	150	<u><91></u> <96*>	96	
m ² n − 2, n ⁴ n − 2, n − 1 ⁶ n − 1, n		151	·<91>+<97*>	97	Operation
		152	$K(\langle 96 \rangle, \langle 97 \rangle)$	K 96	along pack of car
	.59	153	Rearrange cards acco	broling t	'o n
	S10	154	<i>S</i> 9↓ <i>S</i> 10		
				100	
$Y_{n,n+1}^{*}$		155 156	$\begin{array}{c} 1 \times \langle 96 \rangle \\ K(\langle 96 \rangle \times 1) \end{array}$	100 K100	
······································	-	157	<u>SB</u>	1	
		158	S8 1 S10	<u> </u>	
o r A V	88	159		101	
$0.5\Delta X_{n}$	68	160	$0,5 \times \langle 81 \rangle$ $K(\langle 81 \rangle \times 0,5)$	101 K101	
$Y'_{n,n+1}$		161	1× (80)	102	-
* n,n+1		162	$K(\langle 80 \rangle \times 1)$	K102	
		163	<i>S</i> 8 ↑	<u>-</u>	
$Y_{n,n+1}^* \times 0.5\Delta X_n = 0.5Y_{n,n+1}^* \cdot \Delta X_n$	-	164	<100>×<101>	103	-
* ************************************	i	165	$K(\langle 101 \langle \times \rangle 100 \rangle)$	1	l
$Y'_{n,n+1} - 0.5Y''_{n,n+1} \cdot \Delta X_n = Y'_n$		166	<10 2 ><103>	104	
		167	$-\langle 102 \rangle + \langle 103 \rangle$	106	,
		168	K(<104>, <108>)	K104	
	-	169	<i>S</i> 7 <i>↓ S</i> 10		
$\overline{X_n}$	57	170	1×<77>	105	
"		171	$K(\langle 77 \rangle \times 1)$	K105	
$\overline{X_{n+1}}$		172	1×<75>	107	
		173	$K(\langle 75 angle imes 1)$	K107	
Y _n		174	1×<78>	108	
		175	$K(\langle 78 angle imes 1)$	K108	
		176	S7 1		
$\overline{X_n}$		177	$1 \times \langle 105 \rangle$	109	
*		178	$K(\langle 105 \rangle \times 1)$	K109	1
 A second sec second second sec	-	D		H	

Fig.7.9 - Operation Table for Interpolation, Page 2

CIA-RDP81-01043R001300040009-0

133

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 :

STAT

. . -

.

Ċ

**

Table 3 Page 3

	Mathematical Statement	Set	Op.N	9 ,	Operation Symb Operation W	here	Remar
	τ . The second secon	su su	17!		$\sin \frac{1}{2} S11$		$X_{i} = 0.009 \\ 0.000 \\ 0.011 \\ 0.005 \\ 0.005 $
	$\overline{X_{n+1}} - \overline{X_i}$	SI	18	1	107>115> 	110	; 0,095 0,10; 0,11 ; 0,99;
	$Y''_{n,n+1} \times (X_{n+1} - X_i)$	•	18	3	100>×<111> K(<111>×<100_);	112 K112	÷
	$2.r \mathcal{Y}'_{n,n+1}$		18 18		$2 \times \langle 101 \rangle$ $(\langle 102 \rangle \times 2)$	113 K113	
	Y' ₁₀		18		$\frac{1 \times \langle 104 \rangle}{K(\langle 104 \rangle \times 1)}$	114 K114	
			82	9	\$10 1		
	$2Y'_{n,n+1} - Y''_{n,n+1} \cdot (X_{n+1} - X_i)$	•	19		<113><112><113>+<112>K(<116>.<117>)	116 117 K116	
	$\begin{bmatrix} 2Y'_{n,n+1} - Y''_{n,n+1} \cdot (X_{n+1} - X_i) \end{bmatrix} \\ Y'_{n} = Y'_{i}$. A)3)4)5	<pre>/116, <114; ~(116;+<114; K(<118;,<119;)</pre>	118 119 K118	1
	X _i)	- ⁻	125	ł
		. 1	1	66	MII (MI2		
	$[2Y'_{n,n+1} - Y''_{n,n+1} \cdot (X_{n+1} - X_i)]: 2$	1	11 1 1	97 98	0,5×<116> K(<116>×0.5)	120 K120	
		1	1	9H)	<u>811 (</u>		
		,	2	14)	NIO 1 512	مد	
	$X_i = X_n$		\$10 <u> </u> 2			12	
			•	202 203	-{125> -{109> K({121>, {122>}	K12	1
			-	204	1×<108	12	3
	Σ _n	• :	1	2()5	K(/104)×1)	K12	3
		· · · · · · · · · · · · · · · · · · ·	•.	206	N10 1		1
	$[Y'_{n,n+1} - \frac{1}{2}Y''_{n,n+1}(X_{n+1} - X_i)] \times$			207	<120>×<121>	12	
	$\frac{ Y_{n,n+1} - Y_{n,n+1} \Delta_{n+1} - \Delta_{n+1}}{\times (X_i - X_n)}$		1	2 08	$K(\langle 121 \rangle \times \langle 120 \rangle$); K12	24
	$[Y'_{n,n+1} - \frac{1}{2}Y''_{n,n+1}(X_{n+1} - X_{i})].$		•	209	<124><123>		26
	$\begin{cases} 1 & n + 1 & 2^{2} & n + 1 & - n + 1 \\ . & (X_{i} & X_{n}) + Y_{n} = Y_{i} \end{cases}$			210		/ 12 // K12	1
. 1		ł		211	K((120. (127))		

Fig.7.10 - Operation Table for Interpolation, Page 3

134

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

STAT ٠

Sanitized Copy Approved for Release 20

perforation of the main cards into the cards of set 10;"

7.6 Final Calculation

0.

49_

42.

perforated into N main cards. The next step is the reduction of the peripheral coordinates of the profile having the depth $c^* = 1$ to the required depth $c_{N^{\circ}}$ The plotting of the equidistant curve in the distance of the radius r of the working tool is carried out in the same way as the plotting of the profile on the center line. The transformation of the equidistant coordinates to the given coordinate system occurs with the help of the main cards, into which have already been perforated the values X_{o}^{N} , Y_{o}^{N} sin Y_{o}^{N} , $\cos \gamma$. (N is the number of profiles; X_0^N , Y_0^N are the coordinates of the entrance corner of the profile in the selected coordinate system, and γ is the angle between the joining line of the entrance

corner and the exit corner of the profile and the X axis of the selected coordinate 1: --- system).

Error of the Employed Interpolation Method 7.7

Sanitized Cor

Point (X_n, Y_n)

Declassified in Part

The errors occurring with this interpolation method are of two kinds. The one 511 kind is due to the fact that the abscissas X_n are not equidistant, which is due to the fact that X_{n-1} , $n+1 \neq X_n$. Figure 7.11 shows a segment of the interpolation

135

Approved for Release 2012/12/11

CIA-RDP81-01043R001300040009-0

STAT

line about the point (X_n, Y_n) and its first and second derivations. The two interpolation curves do not have a common tangent in the point (X_n, Y_n) . The directions \sum_{n} of the two tangents differ by δY_{n}^{*} . The tangent of the prolonged left parabolic curve in the point of the abscissa $X_{n-1,n+1}$ is parallel with the tangent of the right curve in the same abscissa. The absolute value of the difference between the ordinates of the two points is denoted δY_n , and we regard this error as due to the fact that $Xn \neq X_{n-1,b+1}$.

The Figure shows that

 $\delta Y'_n = |\delta X_n| \cdot |Y''_{n,n+1} - Y''_{n-1,n}| = |\delta Y_n| \cdot |\Delta Y''_{n-1,n}|$

20___ and that

Ē.

16

18____

· · · · · · · · ·

3. ____

332...

34___

36....

50.

58

Ċ,

Declassified in Pa

2

 $\delta Y_n = \frac{1}{2} \left| \delta Y'_n \right| \cdot \left| \delta X_n \right| = \frac{1}{2} \left(\delta X_n \right)^2 \cdot \left| \Delta Y''_{n-1,n} \right| \cdot$

With regard to the indexing of the coordinates and the difference

$$\delta X_n = X_{n-1,n+1} - X_n = \frac{AX_n - AX_{n-1}}{4}$$

we get the same values as listed in the Table of Fig. 7.12.

Figure 7.12 gives the fundamental values of the center line and the upper periphery of the profile N = 1. The columns 1 and 10 contain the indices of the fundamental points, columns 2 and 4 the coordinates of the center line, and col-umms 5 and 7 the coordinates of the upper periphery. Column 8 contains the first - proportional differences, column 9 the two-fold second proportional differences, and column 11 the calculated "second derivation" of the interpolation curve in 46..... the interval (X_n, X_{n+1}) . Column 12 contaains the differences $(\Delta Y_{n-1,n}^{n} = Y_{n,n+1}^{n}$ $\sum_{n=1,n}^{\infty}$, column 13 the second differences $(\Delta^2 x_{n-1} = \Delta x_{n-1})$, column 14 - the values $(\delta X_n)^2 \cdot 10^8 = \frac{1}{4} (\Delta^2 X_{n-1})^2 \cdot 10^8$ and column 15 the corresponding -derfors δΥ...

The greatest errors occur where the intervals between abscissas of the center

CIA-RDP81-01043R00

d for Release

6615

line about the point (X_n, Y_n) and its first and second derivations. The two interpolation curves do not have a common tangent in the point (X_n, Y_n) . The directions of the two tangents differ by δY_{n}^{i} . The tangent of the prolonged left parabolic 6 curve in the point of the abscissa $X_{n-1,n+1}$ is parallel with the tangent of the right curve in the same abscissa. The absolute value of the difference between the 13ordinates of the two points is denoted δY_n , and we regard this error as due to the 12... fact that $Xn \neq X_{n-1,b+1}$. 14 The Figure shows that 16 $\delta Y'_n = \left| \delta X_n \right| \cdot \left| Y''_{n,n+1} - Y''_{n-1,n} \right| = \left| \delta Y_n \right| \cdot \left| \Delta Y''_{n-1,n} \right|$ 18 ____ 20 _ and that 22 --- $\delta Y_n = \frac{1}{2} |\delta Y'_n| \cdot |\delta X_n| = \frac{1}{2} (\delta X_n)^2 \cdot |\Delta Y''_{n-1,n}|$ 24-26 _.: With regard to the indexing of the coordinates and the difference $\delta X_n = X_{n-1,n+1} - X_n = \frac{\Delta X_n - \Delta X_{n-1}}{4}$ 3/1..... 32___ we get the same values as listed in the Table of Fig. 7.12. 34___ Figure 7.12 gives the fundamental values of the center line and the upper 35_periphery of the profile N = 1. The columns 1 and 10 contain the indices of the 38--fundamental points, columns 2 and 4 the coordinates of the center line, and columins 5 and 7 the coordinates of the upper periphery. Column 8 contains the first 49___ ---- proportional differences, column 9 the two-fold second proportional differences, 4 and column 11 the calculated "second derivation" of the interpolation curve in 46. the interval (X_n, X_{n+1}) . Column 12 contains the differences $(\Delta Y^n = Y^n_{n-1,n} + n, n+1)$ 48.... $\sum_{n=1,n}^{\infty}$, column 13 the second differences $(\Delta^2 X_{n-1} = \Delta X_{n-1})$, column 14 the values $(\delta X_n)^2 \cdot 10^8 = \frac{1}{4} (\Delta^2 X_{n-1})^2 \cdot 10^8$ and column 15 the corresponding 5::--errors or. The greatest errors occur where the intervals between abscissas of the center 56 L 58 136 60 ...

Declassified in Part

STAT

	• do	ubled, i.	.e., ir	n points	2, 5, a	nd 7, or	halved,	i.e., i	n poi	nt 14.	Also
in_peir	nt_1_	occurs a	consid	ierable (error du	e to the	fact th	at AY!	. is	large.	Hene
		rror does							-	imal pe	rmis-
										F	
sible •	error	in this	proble	em is 1-	3 decima	15).					
	·	2	3	4	5	6		8		9	
			 w)				b)			. <u> </u>	
	n	<i>r</i> ₁₈	Ax_n	!!n	X _n	$1X_n$	Y _n	Y'n, n+1	28	n-1, n ·1	
- 404 -	0	0,000 000	0,012 5	0,000 000	0,000 000	0,008 131	0,000 000	2,265 52	1		
	1	1 * 1	0,012 5 0,025	0,003 785 0,007 464	0,008 131 0,018 909	0,010 778	0,018 421 0,028 470	0,932 30	1	2,015 96 1,255 52	
	3	1.1.1	0,025	0,014 502	0,041 981	0,023 866	0,043 879	0,544 74	- 1	0,49212	
	4		0,025	0,021 113	0,065 847		0,056 880			5,956 32 4,673 00	
	5 5	1 1	0,050 0,050	0,027 298		1	1	1	,	3,237 20	
	7		0,1	0,047 772	0,190 567		0,103 067	0,203 6:	1	2,643 36	
· · · · · ·	8 9	0,300 000 0,400 000	0,1	0,061422 0,068 246	f	1	0.000.000		,	$2,233.80 \pm 1,953.48$	
	10	0,400 000			0,501 444	0,102 541	0,131 801	0,094 4	0 [1,567 76	
	11				0,603 985		$\begin{array}{c} 0,122 \ 121 \\ 0,104 \ 323 \end{array}$	- 0,1750	1	$1,579.72 \\ 1,550.24$	
2 cm m	12 13	0,700 000	0,1	1	0,705 653	1		1		1,548 72	
a 1999. A	14		0,050		0,904 811	1	0,046 247	0,393 2		1,703 20	
	15	0,950 000	0,050			0,048 128	0,027118		,	1,621 52	1
4 A.	16	1,000 000		U.URD IMI	1,001 583	1	0,000.004	1			
				1			•				
							••••				I
an	10	11	12		3	14	1.5	16	17	18	1
	10	11				14				• •••••••	L 1 1
	10 	11 5 ^{""} _{µ, n+1}	12			$\frac{14}{(x_n)^2 \cdot 10^8}$			17	18	L 1 2
		Y", n - 1	.1Y [#] _B _			14 $(X_n)^2 \cdot 10^4$				• •••••••	
		1 ^{""} _{#, n+1}	2	-1, n .1 ² .)	(ð.	······································	8) n			• •••••••	
		Y", n - 1	2 4 234,	-1, n . 1 ² λ 65 0,0			8) [*] _n 0,000 052 0,000 076	$(.1X_n)^2/4$	1) "		
	, n , 0 , 1	Y", n+1 258,33: - 23,684 - 7,37 - 2,92	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} n-1 & (8. \\ 02 & 647 \\ 12 & 294 \\ 00 & 794 \end{array}$	44 945 4	8) _n 0,000 052 0,000 076 0,000 000	$(.1X_n)^2/4$	1) " 4,65	.4	
	1 2 3 4	Y", n-1 258,33; - 23,684 - 7,57 - 2,92 - 3,035	24 234, 1 16, 1 4, 50,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\binom{n-1}{2}$ (8) 02 647 12 294 00 794 00 462	44 945 4	δ) [*] π 0,000 052 0,000 076 0,000 000 0,000 000	$(.1X_n)^2/4$ 0,000 142 0,000 147	1) "	.4	;
	, n 1 2	$Y''_{\mu, n-1}$ 258,33: - 23,68 - 7,57 - 2,92 - 3,03: - 1,63: - 1,60	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 02 \ 647 \\ 12 \ 294 \\ 00 \ 794 \\ 00 \ 462 \\ 25 \ 410 \\ 00 \ 906 \end{array}$	44 945 4 1 4 036 5	8) ⁷ _n 0,000 052 0,000 076 0,000 000 0,000 000 0,000 000 0,000 000	$(.1X_n)^2/4$ $(.1X_n)^2/4$ 0,000142 0,000147 0,000618 0,000641	4,65 1,40 1,40 0,56	.4 0,000 33 0,000 10 0,000 43 0,000 18	
	n 1 2 3 4 5 6 7	$\begin{array}{c} Y''_{\mu, n-1} \\ -258,33; \\ -23,68; \\ -7,57 \\ -2,92; \\ -3,03; \\ -1,63; \\ -1,60; \\ -1,04 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 02 \ 647 \\ 12 \ 294 \\ 00 \ 794 \\ 00 \ 462 \\ 25 \ 410 \\ 00 \ 906 \\ 52 \ 379 \end{array}$	44 945 4 1 4 036 5 17 148	8) ⁷ _n 0,000 052 0,000 076 0,000 000 0,000 000 0,000 000 0,000 000 0,000 047	$(.1X_n)^2/4$ $(.1X_n)^2/4$ 0,000142 0,000147 0,000618 0,000641 0,002653	4.65 1,40 1,40 0,56 0,56	.4 0,000 33 0,000 10 0,000 43	
	n 1 2 3 4 5	$\begin{array}{c} Y''_{\mu, n-1} \\ -258,33: \\ -25,684 \\ -7,57 \\ -2,92 \\ -3,03i \\ -1,63i \\ -1,604 \\ -1,04i \\ -1,19i \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 02 \ 647 \\ 12 \ 294 \\ 00 \ 794 \\ 00 \ 462 \\ 25 \ 410 \\ 00 \ 906 \end{array}$	44 945 4 1 4 036 5	8) ² _n 0,000 052 0,000 076 0,000 000 0,000 000 0,000 000 0,000 047 0,000 000 0,000 000	$(.1X_n)^2/4$ $(.1X_n)^2/4$ $0,000\ 142$ $0,000\ 147$ $0,000\ 618$ $0,000\ 641$ $0,002\ 653$ $0,002\ 714$ $0,002\ 686$	4,65 1,40 1,40 0,56	.4 0,000 33 0,000 10 0,000 43 0,000 18 0,000 74 0,000 58 0,000 58	
	n 1 2 3 4 5 6 7 8	$\begin{array}{c} Y''_{\mu, n-1} \\ -258,333 \\ -25,684 \\ -7,57 \\ -2,92 \\ -3,033 \\ -1,663 \\ -1,664 \\ -1,044 \\ -1,19 \\ -0,76 \\ -0,80 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} n-1 & (82) \\ \hline 02 & 647 \\ 12 & 294 \\ 00 & 794 \\ 00 & 462 \\ 25 & 410 \\ 00 & 906 \\ 52 & 379 \\ 01 & 171 \\ 00 & 534 \\ 01 & 119 \end{array}$	44 945 4 1 4 036 5 17 148 9 2 8	8) ² _n 0,000 052 0,000 076 0,000 000 0,000 000 0,000 000 0,000 047 0,000 000 0,000 000 0,000 000 0,000 000	$(.1X_n)^2/4$ $0,000\ 142$ $0,000\ 147$ $0,000\ 618$ $0,000\ 641$ $0,002\ 653$ $0,002\ 714$ $0,002\ 686$ $0,002\ 629$	4.65 1,40 1,40 0,56 0,56 0,43 0,43 0,04	.4 0,000 33 0,000 10 0,000 43 0,000 18 0,000 74 0,000 58 0,000 58 0,000 05	
	<i>n</i> 1 2 3 4 5 6 7 7 8 9 9 10 13	$Y''_{\mu, n+1}$ 258,33: - 23,684 - 7,37 - 2,92 - 3,03: - 1,633 - 1,634 - 1,04 - 1,04 - 1,19 - 0,76 - 0,80 - 0,77	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} n_{n-1} \\ 02 \ 647 \\ 12 \ 294 \\ 00 \ 794 \\ 00 \ 462 \\ 25 \ 410 \\ 00 \ 906 \\ 52 \ 379 \\ 01 \ 171 \\ 00 \ 534 \\ 01 \ 119 \\ 00 \ 873 \end{array}$	44 945 4 1 4 036 5 17 148 9 2 8 5	8) 7 0,000 052 0,000 076 0,000 000 0,000 000 0,000 000 0,000 047 0,000 000 0,000 000 0,000 000 0,000 000 0,000 000 0,000 000	$(.1X_n)^2/4$ $0,000\ 142$ $0,000\ 147$ $0,000\ 618$ $0,000\ 641$ $0,002\ 653$ $0,002\ 714$ $0,002\ 686$ $0,002\ 629$ $0,002\ 584$	4.65 1,40 1,40 0,56 0,56 0,43 0,43	.4 0,000 33 0,000 10 0,000 43 0,000 18 0,000 74 0,000 58 0,000 58	
	<i>n</i> 1 2 3 4 5 6 7 7 8 9 9	$Y''_{\mu, n+1}$ 258,33: - 23,684 - 7,37 - 2,92 - 3,03: - 1,633 - 1,634 - 1,04 - 1,04 - 1,19 - 0,76 - 0,80 - 0,77 - 0,77	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} n-1 & (82) \\ \hline 02 & 647 \\ 12 & 294 \\ 00 & 794 \\ 00 & 462 \\ 25 & 410 \\ 00 & 906 \\ 52 & 379 \\ 01 & 171 \\ 00 & 534 \\ 01 & 119 \end{array}$	44 945 4 1 4 036 5 17 148 9 2 8 5 10 16	8) ⁷ π 0,000 052 0,000 076 0,000 000 0,000 000 0,000 000 0,000 047 0,000 000 0,000 000 0,000 000 0,000 000 0,000 000 0,000 000	$(.1X_n)^2/4$ $0,000\ 142$ $0,000\ 147$ $0,000\ 618$ $0,000\ 641$ $0,002\ 653$ $0,002\ 714$ $0,002\ 686$ $0,002\ 584$ $0,002\ 519$ $0,002\ 439$	4,65 1,40 1,40 0,56 0,56 0,43 0,04 0,03 0,00 0,16	.4 0,000 33 0,000 10 0,000 43 0,000 18 0,000 18 0,000 58 0,000 05 0,000 04 0,000 00 0,000 00 0,000 20	
	<i>n</i> 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14	$\begin{array}{c} \mathbf{Y}_{\mu,n+1}^{''}\\ -258,33;\\ -23,684\\ -7,57\\ -2,92\\ -3,03;\\ -1,63;\\ -1,63;\\ -1,604\\ -1,04\\ -$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & & & \\ 02 & 647 \\ 12 & 294 \\ 00 & 794 \\ 00 & 462 \\ 25 & 410 \\ 00 & 906 \\ 52 & 379 \\ 01 & 171 \\ 00 & 534 \\ 001 & 119 \\ 000 & 873 \\ 001 & 128 \\ 100 & 614 \\ 150 & 128 \\ \end{array}$	$ \begin{array}{r} 44 \\ 945 \\ 4 \\ 1 \\ 4 036 \\ 5 \\ 5 \\ 17 148 \\ 9 \\ 2 \\ 8 \\ 5 \\ 10 \\ 16 \\ 15 795 \\ \end{array} $	$\begin{array}{c} 8 \end{array}_{n}^{*} \\ 0,000 \ 0.52 \\ 0,000 \ 0.76 \\ 0,000 \ 0.00 \\ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000$	$(.1X_n)^2/4$ $0,000\ 142$ $0,000\ 147$ $0,000\ 618$ $0,000\ 641$ $0,002\ 653$ $0,002\ 714$ $0,002\ 686$ $0,002\ 584$ $0,002\ 519$ $0,002\ 592$	$\begin{array}{c} 4.65\\ 1.40\\ 1.40\\ 0.56\\ 0.56\\ 0.43\\ 0.04\\ 0.03\\ 0.00\\ 0.16\\ 0.24\end{array}$	$\begin{array}{c} .4\\ 0,000\ 33\\ 0,000\ 10\\ 0,000\ 43\\ 0,000\ 18\\ 0,000\ 58\\ 0,000\ 58\\ 0,000\ 05\\ 0,000\ 04\\ 0,000\ 04\\ 0,000\ 00\\ 0,000\ 20\\ 0,000\ 07\\ 0,000\ 00\ 07\\ 0,000\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ $	
	<i>n</i> 1 2 3 4 5 5 6 7 8 9 9 11 12 13 14 15	$\begin{array}{c} \mathbf{Y}_{\mu,n+1}^{''} \\ -258,33; \\ -25,684 \\ -7,57 \\ -2,92 \\ -3,034 \\ -1,633 \\ -1,633 \\ -1,664 \\ -1,044 \\ -1,196 \\ -0,766 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,92 \\ -0,699 \\ -0,69 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & & & \\ & & & \\ 02 & 647 \\ 12 & 294 \\ 00 & 794 \\ 00 & 462 \\ 25 & 410 \\ 00 & 906 \\ 52 & 379 \\ 01 & 171 \\ 00 & 634 \\ 001 & 119 \\ 000 & 873 \\ 001 & 282 \\ 001 & 644 \end{array}$	$ \begin{array}{r} 44 \\ 945 \\ 4 \\ 1 \\ 4 036 \\ 5 \\ 5 \\ 17 148 \\ 9 \\ 2 \\ 8 \\ 5 \\ 10 \\ 16 \\ 15 795 \\ \end{array} $	8) ⁷ π 0,000 052 0,000 076 0,000 000 0,000 000 0,000 000 0,000 047 0,000 000 0,000 000 0,000 000 0,000 000 0,000 000 0,000 000	$(.1X_n)^2/4$ $0,000\ 142$ $0,000\ 147$ $0,000\ 618$ $0,000\ 641$ $0,002\ 653$ $0,002\ 714$ $0,002\ 686$ $0,002\ 584$ $0,002\ 519$ $0,002\ 592$	4,65 1,40 1,40 0,56 0,56 0,43 0,04 0,03 0,00 0,16	.4 0,000 33 0,000 10 0,000 43 0,000 18 0,000 18 0,000 58 0,000 05 0,000 04 0,000 00 0,000 00 0,000 20	
	<i>n</i> 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14	$\begin{array}{c} \mathbf{Y}_{\mu,n+1}^{''} \\ -258,33; \\ -25,684 \\ -7,57 \\ -2,92 \\ -3,034 \\ -1,633 \\ -1,633 \\ -1,664 \\ -1,044 \\ -1,196 \\ -0,766 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,92 \\ -0,699 \\ -0,69 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & & & \\ 02 & 647 \\ 12 & 294 \\ 00 & 794 \\ 00 & 462 \\ 25 & 410 \\ 00 & 906 \\ 52 & 379 \\ 01 & 171 \\ 00 & 534 \\ 001 & 119 \\ 000 & 873 \\ 001 & 128 \\ 100 & 614 \\ 150 & 128 \\ \end{array}$	$ \begin{array}{r} 44 \\ 945 \\ 4 \\ 1 \\ 4 036 \\ 5 \\ 5 \\ 17 148 \\ 9 \\ 2 \\ 8 \\ 5 \\ 10 \\ 16 \\ 15 795 \\ \end{array} $	$\begin{array}{c} 8 \end{array}_{n}^{*} \\ 0,000 \ 0.52 \\ 0,000 \ 0.76 \\ 0,000 \ 0.00 \\ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000$	$(.1X_n)^2/4$ $0,000\ 142$ $0,000\ 147$ $0,000\ 618$ $0,000\ 641$ $0,002\ 653$ $0,002\ 714$ $0,002\ 686$ $0,002\ 584$ $0,002\ 519$ $0,002\ 592$	$\begin{array}{c} 4.65\\ 1.40\\ 1.40\\ 0.56\\ 0.56\\ 0.43\\ 0.04\\ 0.03\\ 0.00\\ 0.16\\ 0.24\end{array}$	$\begin{array}{c} .4\\ 0,000\ 33\\ 0,000\ 10\\ 0,000\ 43\\ 0,000\ 18\\ 0,000\ 58\\ 0,000\ 58\\ 0,000\ 05\\ 0,000\ 04\\ 0,000\ 04\\ 0,000\ 00\\ 0,000\ 20\\ 0,000\ 07\\ 0,000\ 00\ 07\\ 0,000\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ $	
	<i>n</i> 1 2 3 4 5 5 6 7 8 9 9 11 12 13 14 15	$\begin{array}{c} \mathbf{Y}_{\mu,n+1}^{''} \\ -258,33; \\ -25,684 \\ -7,57 \\ -2,92 \\ -3,034 \\ -1,633 \\ -1,633 \\ -1,664 \\ -1,044 \\ -1,196 \\ -0,766 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,92 \\ -0,699 \\ -0,69 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & & & \\ 02 & 647 \\ 12 & 294 \\ 00 & 794 \\ 00 & 462 \\ 25 & 410 \\ 00 & 906 \\ 52 & 379 \\ 01 & 171 \\ 00 & 534 \\ 001 & 119 \\ 000 & 873 \\ 001 & 128 \\ 100 & 614 \\ 150 & 128 \\ \end{array}$	$ \begin{array}{r} 44 \\ 945 \\ 4 \\ 1 \\ 4 036 \\ 5 \\ 5 \\ 17 148 \\ 9 \\ 2 \\ 8 \\ 5 \\ 10 \\ 16 \\ 15 795 \\ \end{array} $	$\begin{array}{c} 8 \end{array}_{n}^{*} \\ 0,000 \ 0.52 \\ 0,000 \ 0.76 \\ 0,000 \ 0.00 \\ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000 \\ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000 \ 0,000$	$(.1X_n)^2/4$ $0,000\ 142$ $0,000\ 147$ $0,000\ 618$ $0,000\ 641$ $0,002\ 653$ $0,002\ 714$ $0,002\ 686$ $0,002\ 584$ $0,002\ 519$ $0,002\ 592$	$\begin{array}{c} 4.65\\ 1.40\\ 1.40\\ 0.56\\ 0.56\\ 0.43\\ 0.04\\ 0.03\\ 0.00\\ 0.16\\ 0.24\end{array}$	$\begin{array}{c} .4\\ 0,000\ 33\\ 0,000\ 10\\ 0,000\ 43\\ 0,000\ 18\\ 0,000\ 58\\ 0,000\ 58\\ 0,000\ 05\\ 0,000\ 04\\ 0,000\ 04\\ 0,000\ 00\\ 0,000\ 20\\ 0,000\ 07\\ 0,000\ 00\ 07\\ 0,000\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ $	
	<i>n</i> 1 2 3 4 5 6 7 8 9 10 1 1 2 13 14 15 16	$\begin{array}{c} Y''_{\mu, n+1} \\ -258,333 \\ -23,684 \\ -7,57 \\ -2,92 \\ -3,033 \\ -1,633 \\ -1,634 \\ -1,044 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n_1, n $1^2 \lambda$ 65 $0, 0$ 11 $0, 0$ 65 $0, 0$ 11 $0, 0$ 40 $0, 0$ 04 $0, 0$ 55 $0, 0$ 15 $0, 0$ 04 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$	$\binom{n-1}{2294}$ $02 \ 647$ $12 \ 294$ $00 \ 794$ $00 \ 462$ $25 \ 410$ $00 \ 906$ $52 \ 379$ $01 \ 171$ $00 \ 534$ $001 \ 119$ $000 \ 873$ $001 \ 282$ $001 \ 614$ $050 \ 128$ $000 \ 516$	$ \begin{array}{r} $	8) 7 0,000 052 0,000 076 0,000 000 0,000 0000 0,000 0000 0,000 0000 0,000 000 0,000 000 0,	$(.1X_n)^2/4$ $0,000\ 142$ $0,000\ 147$ $0,000\ 618$ $0,000\ 641$ $0,002\ 653$ $0,002\ 714$ $0,002\ 656$ $0,002\ 629$ $0,002\ 584$ $0,002\ 519$ $0,002\ 519$ $0,000\ 579$	$\begin{array}{c} 1) \\ \begin{array}{c} 4.65 \\ 1.40 \\ 1.40 \\ 0.56 \\ 0.43 \\ 0.04 \\ 0.03 \\ 0.00 \\ 0.16 \\ 0.24 \\ 0.24 \end{array}$	$\begin{array}{c} .4\\ 0,000\ 33\\ 0,000\ 10\\ 0,000\ 43\\ 0,000\ 18\\ 0,000\ 78\\ 0,000\ 58\\ 0,000\ 58\\ 0,000\ 05\\ 0,000\ 04\\ 0,000\ 00\\ 0,000\ 00\\ 0,000\ 07\\ 0,000\ 07\\ 0,000\ 07\\ \end{array}$	
	<i>n</i> 1 2 3 4 5 6 7 8 9 10 1 1 2 13 14 15 16	$\begin{array}{c} \mathbf{Y}_{\mu,n+1}^{''} \\ -258,33; \\ -25,684 \\ -7,57 \\ -2,92 \\ -3,034 \\ -1,633 \\ -1,633 \\ -1,664 \\ -1,044 \\ -1,196 \\ -0,766 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,77 \\ -0,92 \\ -0,699 \\ -0,69 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n_1, n $1^2 \lambda$ 65 $0, 0$ 11 $0, 0$ 65 $0, 0$ 11 $0, 0$ 40 $0, 0$ 04 $0, 0$ 55 $0, 0$ 15 $0, 0$ 04 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ 00 $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$ $-0, 0$ $0, 0$	$\binom{n-1}{2294}$ $02 \ 647$ $12 \ 294$ $00 \ 794$ $00 \ 462$ $25 \ 410$ $00 \ 906$ $52 \ 379$ $01 \ 171$ $00 \ 534$ $001 \ 119$ $000 \ 873$ $001 \ 282$ $001 \ 614$ $050 \ 128$ $000 \ 516$	$ \begin{array}{r} $	8) 7 0,000 052 0,000 076 0,000 000 0,000 0000 0,000 0000 0,000 0000 0,000 000 0,000 000 0,	$(.1X_n)^2/4$ $0,000\ 142$ $0,000\ 147$ $0,000\ 618$ $0,000\ 641$ $0,002\ 653$ $0,002\ 714$ $0,002\ 656$ $0,002\ 629$ $0,002\ 584$ $0,002\ 519$ $0,002\ 519$ $0,000\ 579$	$\begin{array}{c} 1) \\ \begin{array}{c} 4.65 \\ 1.40 \\ 1.40 \\ 0.56 \\ 0.43 \\ 0.04 \\ 0.03 \\ 0.00 \\ 0.16 \\ 0.24 \\ 0.24 \end{array}$	$\begin{array}{c} .4\\ 0,000\ 33\\ 0,000\ 10\\ 0,000\ 43\\ 0,000\ 18\\ 0,000\ 78\\ 0,000\ 58\\ 0,000\ 58\\ 0,000\ 05\\ 0,000\ 04\\ 0,000\ 00\\ 0,000\ 00\\ 0,000\ 07\\ 0,000\ 07\\ 0,000\ 07\\ \end{array}$	
	<i>n</i> 1 2 3 4 5 6 7 8 9 10 1 1 2 13 14 15 16	$\begin{array}{c} Y''_{\mu, n+1} \\ -258,333 \\ -23,684 \\ -7,57 \\ -2,92 \\ -3,033 \\ -1,633 \\ -1,634 \\ -1,044 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{n-1} (8) 02 647 12 294 00 794 00 462 25 410 00 906 52 379 01 171 00 534 01 119 00 873 01 282 00 614 128 00 516 er Line	44 945 4 1 4 036 5 17 148 9 2 8 5 10 16 15 705 2 2 and Uppet	8) 7 0,000 052 0,000 076 0,000 000 0,000	$(.1X_n)^2/4$ $0,000\ 142$ $0,000\ 147$ $0,000\ 618$ $0,000\ 641$ $0,002\ 653$ $0,002\ 714$ $0,002\ 656$ $0,002\ 629$ $0,002\ 584$ $0,002\ 519$ $0,002\ 519$ $0,000\ 579$	$\begin{array}{c} 1) \\ \begin{array}{c} 4.65 \\ 1.40 \\ 1.40 \\ 0.56 \\ 0.43 \\ 0.04 \\ 0.03 \\ 0.00 \\ 0.16 \\ 0.24 \\ 0.24 \end{array}$	$\begin{array}{c} .4\\ 0,000\ 33\\ 0,000\ 10\\ 0,000\ 43\\ 0,000\ 18\\ 0,000\ 78\\ 0,000\ 58\\ 0,000\ 58\\ 0,000\ 05\\ 0,000\ 04\\ 0,000\ 00\\ 0,000\ 00\\ 0,000\ 07\\ 0,000\ 07\\ 0,000\ 07\\ \end{array}$	
	<i>n</i> 1 2 3 4 5 6 7 8 9 10 1 1 2 13 14 15 16	$\begin{array}{c} Y''_{\mu, n+1} \\ -258,333 \\ -23,684 \\ -7,57 \\ -2,92 \\ -3,033 \\ -1,633 \\ -1,634 \\ -1,044 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02 647 12 294 00 794 00 462 25 410 00 906 52 379 01 171 00 534 01 171 00 873 01 282 01 614 050 128 000 516	44 945 4 1 4 036 5 17 148 9 2 8 5 10 16 15 705 2 2 and Upper	δY_{π} 0,000 052 0,000 076 0,000 000 0,000 000	$(.1X_n)^2/4$ 0,000 142 0,000 147 0,000 618 0,000 641 0,002 653 0,002 714 0,002 686 0,002 629 0,002 584 0,002 519 0,002 439 0,000 592 0,000 579 ery of t	$\begin{array}{c} 1) \\ \begin{array}{c} 4.65 \\ 1.40 \\ 1.40 \\ 0.56 \\ 0.43 \\ 0.04 \\ 0.03 \\ 0.00 \\ 0.16 \\ 0.24 \\ 0.24 \end{array}$	$\begin{array}{c} .4\\ 0,000\ 33\\ 0,000\ 10\\ 0,000\ 43\\ 0,000\ 18\\ 0,000\ 78\\ 0,000\ 58\\ 0,000\ 58\\ 0,000\ 05\\ 0,000\ 04\\ 0,000\ 00\\ 0,000\ 00\\ 0,000\ 07\\ 0,000\ 07\\ 0,000\ 07\\ \end{array}$	
	<i>n</i> 1 2 3 4 5 6 7 8 9 10 1 1 2 13 14 15 16	$\begin{array}{c} Y''_{\mu, n+1} \\ -258,333 \\ -23,684 \\ -7,57 \\ -2,92 \\ -3,033 \\ -1,633 \\ -1,634 \\ -1,044 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02 647 12 294 00 794 00 462 25 410 00 906 52 379 01 171 00 534 01 171 00 873 01 282 01 614 050 128 000 516	44 945 4 1 4 036 5 17 148 9 2 8 5 10 16 15 705 2 2 and Uppet	δY_{π} 0,000 052 0,000 076 0,000 000 0,000 000	$(.1X_n)^2/4$ 0,000 142 0,000 147 0,000 618 0,000 641 0,002 653 0,002 714 0,002 686 0,002 629 0,002 584 0,002 519 0,002 439 0,000 592 0,000 579 ery of t	$\begin{array}{c} 1)^{\prime\prime\prime}\\ 4.65\\ 1,40\\ 1,40\\ 0,56\\ 0,43\\ 0,04\\ 0,03\\ 0,00\\ 0,16\\ 0,24\\ 0,24\\ 0,24\\ \end{array}$	$\begin{array}{c} .4\\ 0,000\ 33\\ 0,000\ 10\\ 0,000\ 43\\ 0,000\ 18\\ 0,000\ 78\\ 0,000\ 58\\ 0,000\ 58\\ 0,000\ 05\\ 0,000\ 04\\ 0,000\ 00\\ 0,000\ 00\\ 0,000\ 07\\ 0,000\ 07\\ 0,000\ 07\\ \end{array}$	
	<i>n</i> 1 2 3 4 5 6 7 8 9 10 1 1 2 13 14 15 16	$\begin{array}{c} Y''_{\mu, n+1} \\ -258,333 \\ -23,684 \\ -7,57 \\ -2,92 \\ -3,033 \\ -1,633 \\ -1,634 \\ -1,044 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(n-1) (8. 02.647 12.294 00.794 00.794 00.462 25.410 00.906 52.379 01.171 00.534 01.119 00.873 01.282 001.614 050.128 000.516 er Line (b)	44 945 4 1 4 036 5 17 148 9 2 8 5 10 16 15 705 2 2 and Upper ting the Upper p	δY_{π} 0,000 052 0,000 076 0,000 000 0,000 000	$(.1X_n)^2/4$ 0,000 142 0,000 147 0,000 618 0,000 641 0,002 653 0,002 714 0,002 686 0,002 629 0,002 584 0,002 519 0,002 439 0,000 592 0,000 579 ery of t	$\begin{array}{c} 1)^{\prime\prime\prime}\\ 4.65\\ 1,40\\ 1,40\\ 0,56\\ 0,43\\ 0,04\\ 0,03\\ 0,00\\ 0,16\\ 0,24\\ 0,24\\ 0,24\\ \end{array}$	$\begin{array}{c} .4\\ 0,000\ 33\\ 0,000\ 10\\ 0,000\ 43\\ 0,000\ 18\\ 0,000\ 78\\ 0,000\ 58\\ 0,000\ 58\\ 0,000\ 05\\ 0,000\ 04\\ 0,000\ 00\\ 0,000\ 00\\ 0,000\ 07\\ 0,000\ 07\\ 0,000\ 07\\ \end{array}$	-] .
	<i>n</i> 1 2 3 4 5 6 7 8 9 10 1 1 2 13 14 15 16	$\begin{array}{c} Y''_{\mu, n+1} \\ -258,333 \\ -23,684 \\ -7,57 \\ -2,92 \\ -3,033 \\ -1,633 \\ -1,634 \\ -1,044 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(n-1) (8. 02.647 12.294 00.794 00.794 00.462 25.410 00.906 52.379 01.171 00.534 01.119 00.873 01.282 001.614 050.128 000.516 er Line (b)	44 945 4 1 4 036 5 17 148 9 2 8 5 10 16 15 705 2 2 and Upper	δY_{π} 0,000 052 0,000 076 0,000 000 0,000 000	$(.1X_n)^2/4$ 0,000 142 0,000 147 0,000 618 0,000 641 0,002 653 0,002 714 0,002 686 0,002 629 0,002 584 0,002 519 0,002 439 0,000 592 0,000 579 ery of t	$\begin{array}{c} 1)^{\prime\prime\prime}\\ 4.65\\ 1,40\\ 1,40\\ 0,56\\ 0,43\\ 0,04\\ 0,03\\ 0,00\\ 0,16\\ 0,24\\ 0,24\\ 0,24\\ \end{array}$	$\begin{array}{c} .4\\ 0,000\ 33\\ 0,000\ 10\\ 0,000\ 43\\ 0,000\ 18\\ 0,000\ 78\\ 0,000\ 58\\ 0,000\ 58\\ 0,000\ 05\\ 0,000\ 04\\ 0,000\ 00\\ 0,000\ 00\\ 0,000\ 07\\ 0,000\ 07\\ 0,000\ 07\\ \end{array}$	

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

side:

The second source of error in the circumstance is that Y" oscillates moderately (see, for example, Fig. 7.12, columns 11 and 12). In this case the absolute value of the error may be determined by estimation. The formula for the interpolation of the ordinate Y_i according to eq.(7.14) is

$$Y_{i} = Y_{n} + \frac{1}{2} [2Y'_{n,n+1} - Y''_{n,n+1} (X_{n+1} - X_{i})] \cdot (X_{i} - X_{n}), \qquad (7.15)$$

where

St. -

30

341

46....

42.

4.

3 (____

51 ...

51000

54...

58.

5 .

б: ...

Declassifie

$$X_n \leq X_i \leq X_{n+1}.$$

The ordinates of the points Y_n and the directions of the joining lines be-20 _____ tween adjacent points $Y_{n,n+1}$ are given in advance (n = 0, 1, 2 ..., 16). The absolute error due to the oscillation of Y^{n} is denoted by $\delta * Y_{i}$. If $Y_{n,n+1}$ differs from the correct value by $\delta Y_{n,n+1}^n$, then it follows from eq.(7.15) that 2 \sim 1

$$\delta^* Y_i = \frac{1}{2} |\delta Y_{n,n+1}''(X_{n+1} - X_i) \cdot (X_i - X_n)|.$$

Putting $X_{n+1} = X_n + \Delta X_n$ and $X_1 - X_n = m \Delta X_n$ for $o \leq m \leq 1$ gives

$$\delta^* Y_i = \frac{1}{2} |\delta Y''_{n,n+1}| \cdot (1 - m) \cdot m \cdot (AX_n)^2$$

In the interval (X_n, X_{n+1}) it is obvious that $\delta * Y_1$ is the maximum 3 - for $m = \frac{1}{2}$. Therefore 3. --

$$\delta^* Y_{\max} = \frac{1}{2} |\delta Y'_{n,n+1}| \cdot (\Delta X_n)^2 / 4 . \qquad (7.16)$$

Assuming that the correct value of Y" lies somewhere between the calculated - values of $Y_{n,n+1}^n$ and the adjacent value, e.g., $Y_{n,n-1,n}^n$ or $Y_{n+1,n+2}^n$ Thus we have $\delta Y_{n,n+1}^{n} < \Delta Y_{n-n,n}^{n}$ or $\delta Y_{n,n+1}^{n} < \Delta Y_{n,n-1}^{n}$. From this it follows that $\delta^* Y_{\max} < \tfrac{1}{8} (\varDelta X_n)^2 \operatorname{Max} \left(|\varDelta Y_{n-1,n}''|; |\varDelta Y_{n,n+1}''| \right) = A .$

Tabulated in Fig. 7.12 are: in column 16 for individual points the corresponding values of $(\Delta X_n)^{2/4}$, in column 17 the larger of the two values $|\Delta Y_n|_{n-1,n}$

138

and $|\Delta Y_{n,n+1}^w|$ and in column 18 the values of A on the right side of the <u>inequali-</u> ties, which are smaller than the maximal permissible error 0.001c (c = 1). The main cause of the oscillating of the second derivation of the profile periphery is the circumstance that the symmetrical profile (which is plotted on the center line), on the basis of the tabulated data, already has oscillation of the second derivation of the second periphery in the interval of the required precision.

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

0___

----;

\$ 2.

1 ..

25.....

. . -

34

31-

đ. 13.......

5

6°

Declassified in Part -

Sanitized

٩.

The entire calculation is carried out on the full number of places (7 digits), because the operational speed of the machine is independent of the number of places of the processed numbers, and to prevent any influence of the error due to the accumulation of rounded errors on the result for the required number of places.

139

Approved for Release 2012/12/11

CIA-RDP81-01043R001300040009-0

LABORATORY OF MATHEMATICAL MACHINES, CZECHOSLOVAK ACADEMY OF SCIENCES

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

3-0

4.

6

Paul

10 ...

1:---

24 ...

15

5€_ 5⊝

60.

SYMPOSIUM I.

Mathematical Machines

The first part of the Symposium contains results of the research in numerical calculation methods suitable for solution of problems on the Czechoslovak automatic computer SAPO. Coding and a symbolism suitable to formulate instructions for the machine are explained.

Chapter I. describes the general character of a modern automatic computer. Classical methods of numerical calculus are compared with methods suitable for an automatic computer. The possibility of mathematical experiments is pointed out. Basic concepts of automatic computing, including terms as instruction, address, operation, word, flow sign, are described, and the concept of the instruction net as well. The suitability of symbolism introduced to simplify the development of instruction nets is illustrated by a simple example.

A simplified diagram of the Czechoslovak automatic computer is included, with 40 a description of its principal parts.

Chapter 2. In the first part of this Chapter the coding of data for the
Czechoslovak automatic computer is described first from a general point of view.
A detailed study of the coding follows, demonstrating the possibility to
express numbers given either in binary or in decimal form. The numerical capacity
of the machine is indicated.

5.- The part which follows deals with instruction coding, i.e., with the transla-5.- tion of orders into proper symbols. A complete list of the operational code is

140

Ö.

2 ---

4...

б.,

10

1 Same

16 __!

?

4

56 ...

52,

60_

Declassified in

---1.5

Individual operation symbols, their importance and mutual relations are included. discussed. Operations of a more complicated character are illustrated by examples. A list of basic operations which is attached should serve as a guide for the preparation of instruction nets.

Chapter 3. introduces a procedure in designing an instruction net: selecting a numerical method, designing the instruction net in a general form, finishing the instruction net in detail. It shows how to fill up blanks used to design the instruction net in its general form and blanks for its detailed form. The Chapter is concluded by a simple example illustrating the procedure described. -----

18 Chapter 4. presents an example of designing the instruction net for ray tracing 20____ through a centered optical system. The ray tracing represents the most important 22 __ and laborious part of computations required to reduce aberrations of an optical 24 --- system by means of variations of its parameters. The usual practice up to now con-26 --fined the computation to paraxial rays as the tracing of skew rays was too laborious even with a table calculator. An instruction net for the computation of 168 31-- rays has been designed, most of the rays being skew to the optical axis.

32.... First the geometrical analysis of the problem is carried out and the way is 34.... described how to choose the starting points of rays and directions of these at 36..... - the point of entry in the optical system. Remarks about some restraining physical 38----~ conditions are included together with explanations how to modify the usual numeri-40. -- cal calculating procedure to make it suitable for the automatic computer. The 42_ Chapter concludes with the detailed description of the instruction net and with 4. C. ---- explanation of the role of individual instruction blocks. The net is illustrated 45 by a flow diagram.

Chapter 5 is a demonstration of solving of differential equations with the 50.... - automatic computer. The purpose of the Chapter is to show special devices which 5:2may be used when planning instruction nets for an automatic computing machine. 54

As an illustration a very simple example has been chosen in order that the

141

CIA-RDP81-01043R001300040009-0

Sanitized Copy Approved for Release 2012/12/11

essential principles would not be hidden by the complexity of the problem. To solve it, however, a more complicated method is used on purpose, one that can be applied even to a very complex systems of differential equations.

The solution of the equation

0.

2 ----

0

Е.,

11 -

12

16

18

20__

22

2 : ...

ω.

<u>_</u>___

34

36

40.

4.7

41

4.5

4方...

50.

53--

56_

6*1*

Are: 3 8.....

 $y'' = P_2(x) + F(t)$

is worked out by the Runge-Kutta method ($P_3(x)$ is a polynom of third degree and F(t) is a rational function), the initial condition being $x = x_0, \frac{dx}{dt} = v_0$, for $t = t_0$. Such a method has been chosen because it is homogeneous (an example of a nonhomogeneous method is for instance, the Adams method, which requires quite a different kind of computation at the beginning than at the later stages of the process) and because the number of intermediate results is comparatively small; both these facts allow to get the solution of comparatively complex problems with a low storage requirement. Thanks to these circumstances the method can be considered as well-suited for an automatic computer.

Instruction nets for quite complex systems of differential equations can be 3.:___. prepared by a generalization of the procedure. The time needed to accomplish 50 Runge-Kutta steps is estimated for the problem under consideration.

The second part of the Symposium deals with the use of Czechoslovak punched card machines for numerical solutions of mathematical problems.

Chapter 6. The first paragraphs describe punched cards with the symbolism used to express instructions for the working procedure and explain manipulations with punched cards and operations with numbers that occur most frequently. In the remaining paragraphs some punched card machines are briefly described: the punch, the sorting machine, the tabulator, and the calculating punch which adds, subtracts, multiplies and divides with respect to signs.

Chapter 7. A practical engineering problem has been solved with punched card machinery. Coordinates of points outlining 33 cross sections of turbocompressor

142

Ó.

2 -

<u>....</u> ۲۰۰۰

1.5

۱<u>۲</u>...

16

13

20.___

22....

a.

17 S. - -

311___

32___

34___

36___

38___

40____

4.7

4 June

45..... 4 6 ____

50....

52---

54 ... -----54 ___

33

60 _

Declassified in Part

----16 -----

هبئ 4 ...

blades have been computed as well as coordinates of points belonging to curves aquidistant to those cross sections to facilitate the manufacture of blades on a milling machine. ____ 6.1

In this Chapter only a part of the whole problem is presented especially a suitable interpolation method giving the required accuracy. Operation tables are given expressing instructions for the procedure.

In the last paragraph some estimates of errors in computation are discussed.

143

01043R001300040009-0

STAT

ļ		
j	TABLE OF CONTENTS	
	Chapter 1 Introduction to Method of Operation at Automatic	Pag
	Calculation	1
	Automatic Calculation	1
	1.1 Survey	1
	Introduction to the Method of Operation	3
	1.2 Calculation by Formulas	
	1.3 Instructions	3
	1.4 Instruction Symbols	4
		5
	1.5 Example for an Instruction Network	11
	Automatic Calculation	12
	1.6 Simple Scheme	12
	1.7 Working Procedure	12
	Chapter 2 Codes of Automatic Calculator	16
	Words	16
	2.1 Words	16
	Codes of Numbers	16
	2.2 Code B	16
	2.3 Code D	
	2.4 Numerical Range of Machine	18
	Codes of Instructions	19
		19
		19
		21
	Mutual Relations between Operational Signs	22
	2.7 Principal Operational Signs	22
• • •	2.8 Supplementary Operational Symbols	25
-	2.9 General Survey of Fundamental Operations	34
		94

130

State.

•

; †

:

187

0		Page	
2	Chapter 3 The Preparation of an Instructional Network	35	. 4
4	Working Procedure	35	
f:	3.1 Selection of Numerical Method	35	- ·
	3.2 Mathematical Formulation and Preparation of a Network in General Form	35	
	3.3 Preparation of the Detailed Instruction Network	36	
4	3.4 Instructional Network for the Calculation of cos x	40	
16!	Selection of the Method of Calculation	40	
18	Chapter 4 Investigation of a Centered Optical System with the Automatic Calculator	50	
20 	Introduction	50	
22	4.1 Formulation	52	
21	4.2 Transition of a Ray through a Spherical Boundary	54	
9 k	4.3 Transition of Rays at a Plane Boundary	57	
من سایر آسان رسمی مرکز	4.4 Selection of the Place of Roigin	57	
32	4.5 Selection of Direction	58	
34	4.6 Impermissible Angle of Ray with Optical Axis	59	
36	4.7 Orientation of a Normal Vector	59	
38_	4.8 Imaginary Intersection	59	
4 0	4.9 Selection of One or Two Real Intersections	59	
<u>د د م</u>		60	
4 +	4.11 Total Reflex	60	
45_	4.12 Distinguishing between Spherical and Plane	60	
48-		60	
 5!]		61	
53	h.15 Characterization of Boundary Constants	61	
55	Description of Construction of Instructional Network	61	
57 ²	145	STA	٩T
ć			

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

2-		Pa	ge
4	4.16 Group Arrangement	••••••	1
5	4.17 Problem 1		1
الد ــــــــــــــــــــــــــــــــــــ	4.18 Problem II	••••• 6	5
ليمان ليسان ال	4.19 Problem III		7
ا ۔ ا	4.20 Problem IV		8
, , , , , , , , , , , , , , , , , , ,	4.21 Remarks on Instructions VA and VB	••••• 69)
· · · · · ·	4.22 Summary	••••• 70	c
3	Chapter 5 Solution of Conventional Differential Equations of the 2nd Order with the Automatic Calculator	****** 89	ð
) (Application of the Method	••••• 90)
)	5.1 Runge-Kutta's Method	••••• 90)
	5.2 Modification of the Runge-Kutta Method	••••• 91	-
· •	Mechanical Solution of Problems	• • • • • • 92	2
 	5.3 Draft of the Instructional Network in General Form .	••••• 92	2
	Chapter 6 Processing of Perforated Cards	•••••• 100	J
	Operation with Perforated Cards	100	1
	6.1 Perforated Cards	100	
ا سعد ا سعد ا سعد	6.2 Operation with Cards and Operation with Numbers	•••••• 103	
	6.3 Perforator	108	
	6.4 Classifier	110	
	6.5 Calculating Perforator	••••• 111	
 ,	6.6 Tabulator		
	Chapter 7 Example of Solving a Technical Problem by Machines for the Processing of Perforated Cards	····· 115	
	Problem and Given Values	••••• 115	
	7.1 Coordinate Table for the Production of Compressor Blades	••••• 115	
•••• •••• ••••• •••••	7.2 Bases for the Solution of the Problem		•
			ST
	146	an gan ar si	

0

2. · ···· <u>ю</u>и.

e . • • •

30¹¹ 32-4

3+___

36____ 3____ 4.0___ 4.1___ 4.1___ 4.1___

<u>.....</u> د د ا

53-

54.

55

58

61-2

,		Page
4		117
c	7.3 Preparation for the Calculation of the Fundamental Value, the Center Lines	118
(*		121
10	7.5 Interpolation Method	127
1	7.6 Final Calculation	135
	7.7 Error of the Employed Interpolation Method	135
15	Resume occorrectorec	140
10 20	Laboratory of Mathematical Machines, Czechoslovaak Academy of Sciences. Symposium I. Mathematical Machines	140
22		

147

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

STAT

(*

Operational Mark	Operational Symbol
N N D	$egin{aligned} &\langle i angle + \langle j angle ightarrow \langle k angle \ &\langle i angle \ . \ \langle j angle ightarrow \langle k angle \ &\langle i angle \ : \ \langle j angle ightarrow \langle k angle \ &T1\langle i angle ightarrow \langle k angle \end{aligned}$
T $\left\{ egin{array}{c} M & & \\ I & & & \\ \end{array} ight.$	$egin{array}{llllllllllllllllllllllllllllllllllll$
J K G [$ \langle j \rangle $ $ \dots \rightarrow \langle k \rangle$ $G \dots$ $H1 \dots$
II { ST NT DT	$\begin{array}{c} H2 \dots \\ \langle i \rangle \stackrel{+}{\longrightarrow} \langle j \rangle \rightarrow \langle k \rangle \\ \langle i \rangle \stackrel{\cdot}{\longrightarrow} \langle j \rangle \rightarrow \langle k \rangle \\ \langle i \rangle \stackrel{\cdot}{\longrightarrow} \langle j \rangle \rightarrow \langle k \rangle \end{array}$
SX WX SYZ	$egin{aligned} & \operatorname{Exp}\left\langle j ight angle +\left\langle i ight angle ightarrow\left\langle k ight angle \ & \left\langle i ight angle =\operatorname{Exp}\left\langle j ight angle ightarrow\left\langle k ight angle \ & \operatorname{Sgn}\left\langle j ight angle ightarrow\left\langle k ight angle \end{aligned}$
WYZ SXY SZ SY	$egin{aligned} &\langle i angle = \mathrm{Sgn}\langle j angle o \langle k angle \ &A!\langle j angle + \langle i angle o \langle k angle \ &B!\langle j angle + \langle i angle o \langle k angle \ &C!\langle j angle + \langle i angle o \langle k angle \end{aligned}$
SWXY SWZ SWY WXY	$egin{aligned} A!\langle j angle+\langle i angle ightarrow!\langle k angle\ B!\langle j angle+\langle i angle ightarrow!\langle k angle\ C!\langle j angle+\langle i angle ightarrow!\langle k angle\ \langle i angle=A!\langle j angle ightarrow!\langle k angle \end{aligned}$
WZ WY (Empty)	$\langle i \rangle = B! \langle j \rangle \rightarrow ! \langle k \rangle$ $\langle i \rangle = C! \langle j \rangle \rightarrow ! \langle k \rangle$ STOP

(

.

28....

49.....

5 :

5

t

2.9 - General Survey of Fundamental Operations

Declassified in Part - Sanitized Copy Approved for Release 2012/12/11 : CIA-RDP81-01043R001300040009-0

148

STAT

. Sugar