50X1-HUM

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

ĺ.	
	κ.
Le con	CONTENTS
	CONTENTS
Gine	Page
	Foreword
	I. General Information
	System of Symbols for Antifriction Bearings
	Principal Dimensions of Ball and Roller Bearings
	Characteristics of Main Types of Antifriction Bearings
	Standard Specifications for Ball and Roller Bearings
Ĩ.	Corner Chamfers of Ball and Roller Bearings
Ē.	Mounting Dimensions of Japer Roller Bearings
2	Instructions for Selecting Antifriction Bearings
Ř	Main Instructions for Selecting Fits for Antifriction Bearings
	Axial Clamping and Retaining Methods for Antifriction Bearings Mounted on Shafts
ġ.,	or in Housings
2	Seals and Closures
	Subrigation of Ball and Boller Bearings.
	Storage and Benewal of Packing and Corrosion Preventing of Bearings 10
ġ	Mounting and Dismantling of Ball and Roller Bearings
į,	,
産業	II. Bearing Dimensions and Capacities
	Single Row Ball Bearings
Š.	Double Row Self-aligning Ball Bearings
	Double Row Self-aligning Roller Bearings
3	Cylindrical Roller Bearings with Short Rollers
Ĵ.	Cylindrical Roller Bearings with Long Rollers
	Needle Roller Bearings
÷.	Self-aligning Bearings
羅	Flexible Roller Bearings
Å.	Angular-Contact Ball Bearings
8	Taper Roller Bearings
2	Ball Thrust Bearings
ž,	Roller Thrust Bearings
÷,	Roher Thrust Dearings
	III. Reference Data
	22
鴔	Assortment of Balls and Rollers
1	Metric Conversion Table - Inclies to Minimeters
	English Conversion Table — Millimeters to Incles.
18 1	List of Valid U.S.S.R. Standards Referring to Antifriction Bearings

ð,

FOREWORD

This catalogue contains data concerning all types and sizes of antifriction bearings designed to satisfy the requirements of all branches of the machine building industry.

The catalogue contains essential information pertaining to the selection, application, mounting and dismantling of antifriction bearings. This information comprises:

characteristics of the main types of antifriction bearings; standard specifications for ball and roller bearings;

mounting fits for antifriction bearings;

seals and closures;

axial clamping and retaining methods;

lubrication of ball and roller bearings;

mounting and dismantling of antifriction bearings;

system of symbols for ball and roller bearings;

dimensions and capacities of ball and roller bearings.

The tables of bearing dimensions and capacities included in this catalogue contain both standard and non-standard bearings manufactured at the present time.

All non-standard bearings are special.

S

Α Т

Additional information, which serves to facilitate the proper application of antifriction bearings, has been included as an appendix. This material comprises:

assortment of rolling elements such as balls, cylindrical and needle rollers with tables indicating the quantity per kilogram and weight per 1000 pieces;

index of bearings included in this catalogue;

list of valid U.S.S.R. Standards referring to antifriction bearings; table for converting previous (obsolete) bearing symbols to present system of symbols in accordance with U.S.S.R. Standards;

NKOIMPOR

tables for converting inches into millimeters and vice versa.

I. GENERAL INFORMATION

.

SYSTEM OF SYMBOLS FOR ANTIFRICTION BEARINGS*

GENERAL

1. The system of numbering bearings is designed for: a) marking bearings during their production, b) indicating requirements of drawings and specifications, c) use in documents concerning orders and shipments as well as for accounting and stock inventory and d) use as reference in technical literature.

2. The symbol identifies the principal characteristics of the bearing including:

- a) Bore of bearing or bushing,
- b) Series of bearing,
- c) Type of bearing,
- d) Design features of the bearing,
- e) Bearing accuracy.

S

oved for Release 2013/08/13

Т Α

All the digits of the bearing number, which identify the above characteristics are comprised of numerals except for the bearing accuracy. The latter is indicated by a letter arranged at the left of the numerical designation.

3. The characteristics indicated by the separate digits, in accordance with their order in the bearing number, are given in Table 1.

Digit place in bearing number (from right to left)	Key to digit
1 st and 2nd	Shaft diameter (bearing or bushin bore)
3rd and 7th	Series
4th	Туре
5th and 6th.	Design features

IMPORT

* For more detailed information see GOST 3189-46. N

ΚΟ

DESIGNATION OF THE BORE OF THE BEARINGS

4. The bore of the bearing (or shaft diameter), for dimensions less than 495 mm, is designated in the bearing number by the first two digits from the right which is the quotient obtained when the bearing bore is divided by 5. If the bore cannot be divided by 5 without a remainder, the whole number part of the quotient is indicated and the numeral "9" is placed in the third place.

This rule has the following exceptions:

a) For all bearings with bores from 10 to 20 mm, except magneto (separable) bearings, the bearing bore is designated in accordance with Table 2.

Nominal bore of bearing mm	Bore designation
10	00
12	01
15	02
17	03

Table 2

If the bearing bore does not coincide with the standard diameters indicated in Table 2, the bearing is designated in accordance with the nearest standard bore and the digit "9" is placed in the 3rd place.

b) For all bearings having a bore up to 9 mm inclusively, the first digit of the number indicates the actual bore in millimeters and the digit "0" is placed in the 3rd place. The second digit, in this case, indicates the series of the bearing (see lower, paragraph 6).

 $E \ge n ple: 1025$ indicates a double row self-aligning light series ball bearing with a bore of 5 mm; 25 indicates a single row light series ball bearing with a bore of 5 mm. If the bearing bore is not a whole number the bore designation is taken as the nearest whole number. In this case "0" is retained in the 3rd place and the digits "4" or "5" are placed in the 2rd place.

 $E \ge n p l e$: Single row ball bearings with bores of $1/4^{\prime\prime}$ (6.35 mm) and $5/16^{\prime\prime}$ (7.938 mm) may be designated as 46 and 58.

c) For magneto (separable) ball bearings (series 6000) the first two digits of the bearing number indicate the actual bore of the bearing.

 $E\,x\,a\,m\,p\,l\,e$: 6017 indicates a magneto ball bearing with a bore of 17 mm.

D O

R

Sanitized Copy Approved for Release 2013/08/13

KOI

10

5. Bearings having a bore of 495 mm or more are designated by a fraction. The denominator of this fraction indicates the actual bore while the numerator contains digits identifying the other characteristics of the bearing in accordance with Table 1 and in the order stipulated for all bearings.

DESIGNATION OF THE SERIES OF THE BEARINGS

6. The third digit, together with the 7th digit identifies the series of bearings of all bores, except small bores (up to 9 mm inclusively), in accordance with Table 3. Zeroes to the left of the last significant digit (reading from right to left) are omitted.

7. The series of bearings having bores up to 9 mm (inclusively) are designated by the digits "1", "2", "3", "6", "7", "8" or "9" in the second place corresponding to the designation of the series of bores in accordance with Table 3. In this case, the digit "6" as well as the digit "7" indicates an indefinite (non-standard) series.

E x a m ple: 37 indicates a single row medium series ball bearing with a bore of 7 mm; 68 indicates a single row non-standard series ball bearing with a bore of 8 mm.

																			Тa	b l	e 3
-		Series					S	ıpeı	-lig	ht						:	Exti	ra-li	ght		
Sectores to	Bore c	haracteristics			8						9							1	-		
	Width	characteristics	Narrow	Standard	Wide		aniw-ria	Narrow	Standard	Wide		Tentus mido	EXIL 8-WINE		Narrow	Standard	Wide		Tritus		
地では	Series designation	3rd digit from the right	8	8	8	8	8	9	9	9	9	9	9	9	1	1	1	1	1	1	1
	Series designati	7 th digit from the right	7	1.	2	3	4	7	1	2	3	4	5.	6	7	0	2	3	4	5	Ġ
の言語言		nple of series signations	7000800	1000800		3007800		7000000	1000000			4032900			7000100	100	2007100	3003100	4854100		

STANKOIMPORT

	Series	E	ctra	-ligl	nt		Lig	ht		N	ſed	ium		Hea	vy	Indefinite	(non-standard)	Non-standard bore	Small-sized
Bore cl	haracteristics		1	7			2 01	: 5*			3 01	: 6*		4		7	8	9	0
Width c	haracteristics	Narrow	Standard	Wide	Extra-Wide	Narrow	Standard	Wide	Extra-wide	Narrow	Standard	Wide	Extra-wide	Narrow	Wide		Indefinite		Various
les ation	3rd digit from the right	7	7	7	7	2	2	5	2	3	3	6	3	4	4	7	8	9	0
Series designation	7 th digit from the right	7	1	2	3	0	1	0	3	0	1	0	3	0	2	0	0	0	0
Exan de:	ple of series signations	7002700	1007700		3003700	200		3500	3056200	300		3600	3056300	400	2086400	700	800	906	1000

Notes

12 0

1. For thrust bearings, the digit "5" in the 3rd place and "0" in the 7th place indicates

an extra-heavy series. 2. Digits "5" and "6" marked with an asterisk (*), characterize the series in bore and width.

DESIGNATION OF TYPE OF BEARINGS

8. The type of the bearing is indicated by the fourth digit in the bearing! number and in accordance with Table 4. Table 4

4th digit from the right	Type of bearing
0 1 2 3 4 5 6 7 8 9	Single row (radial) ball Double row (radial) self-aligning ball Cylindrical (radial) roller with short rollers Double row (radial) self-aligning roller Cylindrical (radial) roller with long rollers or needles Flexible roller Angular-contact ball Taper roller Ball thrust Roller thrust

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13

DESIGNATION OF DESIGN FEATURES OF BEARINGS

9. Design features of the bearing are indicated in the bearing number by a digit in the 5th place or two digits in the 5th and 6th places.

 $\operatorname{Example}$: 50210 indicates a single row light series ball bearing with a fixing groove on the outer ring.

Due to the large variety of design features of bearings it is impossible to indicate their designations here.

DESIGNATION OF CLASS OF ACCURACY OF BEARINGS

10. The class of accuracy of bearings is indicated by one or two letters arranged before the bearing number in accordance with Table 5.

Table 5

0 13

Class of accuracy	Designation
Special	п
Special-intermediate	вп
High	в
High-intermediate	AB
Extra-high	A
Extra-high intermediate	ĊA
Super-high	С

Notes:

1. The designation of standard accuracy bearings is not marked on the bearings or indicated in documents concerning these bearings.

 ${\tt Example:}$ CA 36208 indicates a bearing No. 36208 with a class of accuracy CA. 2. The accuracy class designation of bearings with small bores is marked on the packing carton boxes.

-01043R002200240001-6

NKOIMPORT • S Т Α STANKOIMPORT 0

Approved for Release 2013/08/13

PRINCIPAL DIMENSIONS OF BALL AND ROLLER BEARINGS*

1. The Tables 7 to 10 given below contain standard principal dimensions of the following types of bearings:

a) Tables 7 and 8 for radial ball and roller bearings and also for angularcontact bearings in which the outer and inner ring faces are in one plane (Fig. 1);
b) Table 9 for single row taper roller bearings (Fig. 2);

c) Table 10 for ball and roller thrust bearings (Fig. 3 and 4). The minimum bore diameter d_1 of the stationary rings of thrust bearings, omitted in Table 10, is given in Table 6.

* For more detailed information see GOST 3478-54

Declas

14 • STANKOIMPORT

Sanitized Copy

2. The following dimensions are indicated for each dimensional series:

- a) Bores d;
- b) Outside diameter D;
- c) Width or height B, C, T, H and H₂;
- d) Dimensions of corner chamfer r.

3. The taper of taper bore bearings is 1 to 12 while the minimum bore diameter in the plane of the ring face is equal to the bore d of bearings with cylindrical bores (Fig. 5).

Table 6

Bore diameter mm	up to 120	above 120 to 300	above 300 to 400	above 400 to 500	above 500 to 630	above 630 to 800	above 800 to 1000	above 1000 to 1200
$d_1 \geqslant$	d +0.2	d +0.3	d +0.4	d +0.5	d +0.6	d +0.7	<i>d</i> +0.8	d +1.0

 The system of designating the dimensional series is explained in this catalogue on page 9.

STANKOLMPORT • 15

	 -		wi	re series dth serie	s		Cor chan dimen	ner ifer			Nar-	Stan-	Bore Width	series series series				Cor	ifer					Bo W	ra-ligth ore seri idth ser	és 1 les			cha	rner mfer
4	D	Nar- row 7	Stan- dard	Wide 2	Extra-	wide 4	for s	eries 1-4	d	D	row 7	dard 1	2	3	Extra 4	-wide	6	dimen for se 7	eries	đ	D	Nar- row 7	Stan- dard 0	Wide 2	3	Extra-	wide 5	6		nsions series
+			2	Width B		-	-	0.2	3 4	8	-	3	WidthB		_ 1	- 1		r	0.2				-		Width B					ŗ
$\begin{smallmatrix} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	9 9 11 13 14 14 19 22 14 23 22 42 42 42 42 42 42 42 42 42 42 42 42	+ 4 + 4 + 4 + 5 7 7 7 % 8 8 9 9 9 9 9 100 11 113 14 14 16 19 19 22 55 55 25 81 81 81 87 87 87 87 48 48 49 54 55 75 66 65 71 71 78	$\begin{array}{c} 2.5\\ 3.3.5\\ 1.4\\ 4\\ 5\\ 5\\ 5\\ 5\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$		6 6 6 6 7 7 7 7 100 10 10 12 13 14 15 15 15 19 19 19 19 19 12 23 26 26 20 30 34 34 37 75 34 35 26 26 30 30 34 34 37 75 35 36 36 36 36 36 36 36 36 36 36 36 36 36			$\begin{smallmatrix} 0.2 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.$	$\begin{smallmatrix}&5\\6&7&8\\&9\\110&225\\12&15\\12&12&25\\22&12&12&12\\12&12&12&12&12\\12&12&12&12&12&12\\1$	11 11 12 13 14 19 20 22 22 22 22 22 22 22 22 22		4 4 5 5 6 6 6 6 7 7 7 9 9 9 10 12 12 13 13 13 16 16 18 18 18 20 20 22 24 14 28 28 33 38 38 4 46 56 55 55 55 55 55 56 55 71 74 78 78 28 25 30 90 00 31 16 16 18 18 18 18 10 10 10 10 11 11 12 13 10 10 10 10 10 10 10 10 10 10 10 10 10	、 19月1日 - 19月1日 - 19月1日 1月月1日 - 19月1日 -		$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $				034455555555555555555555555555555555555				$- \begin{array}{ c c c c c c c c c c c c c c c c c c c$		900111112121314166000000000000000000000000000000000			22799290332040655555555555555555555555555555555555	0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	

The second sector

.....

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

d	D	⁻ Nar- row 7	Bor Width Stan- dard	-light se re series a series Wide 2 dth B	7 Extra- wide 3	- Co cha for - 7	orner amfer ensions series 13	a	D	Nar- row	Light Bore ser Width Stan- dard	series	Extra- wide	Corner chamfer dimen- r, 0,3	Bear	D		Medium s Bore series Widt Stan- dard 1	eries	Extra- wide	Corner chamfer dimen- sions	d	D	Narrow 0		- -
 340 360 380 380 380 400 420 440 460 800 440 800 500 330 500 330 500 1 570 1 570 1 800 1 800 1 850 1 850 1					$\begin{array}{c}$			=	215 230 230 270 229 310 320 320 340 400 440 440 440 450 450 650 650 650 650 650 780 950 1030 1150 1220 950 1150 1220 	4 5 5 5 6 7 7 8 9 10 11 12 14 15 16 17 18 19 20 12 12 12 12 12 12 12 12 12 12 12 12 12				лания и или или или или или или или или или	20 30 30 45 50 60 70 75 80 95 90 100 110 120 110 120 140 160 160 160 100 160 100 100 10	113 114 119 119 119 122 125 135 135 135 135 147 142 142 142 142 142 142 142 142	$\begin{smallmatrix}&5\\5&6&7\\9&9&9\\1&1&1&2\\1&1&1&1&2\\1&1&1&1&2&2&5\\2&2&7&2&9&2&2&2&2\\1&1&1&1&2&2&5&7\\2&2&2&2&2&2&2&2&2&2\\2&2&2&2&2&2&2&2&2$			$\begin{array}{c} 7\\ 10\\ 11\\ 13\\ 15\\ 15\\ 16\\ 9\\ 9\\ 9\\ 9\\ 9\\ 222 \\ 22\\ 23\\ 00 \\ 22\\ 22\\ 23\\ 00 \\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	0.5.5.5.5.0 0.0.0.0.0.1 1.5.5.5 0.0.0.0.0.1 1.5.5.5 0.0.0.0.0.0.1 1.5.5.5 0.0.0.0.0.0.0.0.0 1.5.5.5 0.0.0.0.0.0.0.0.0 1.5.5.5 0.0.0.0.0.0.0.0.0.0.0 1.5.5.5 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	$\begin{array}{c}8 \\8 \\8 \\8 \\8 \\8 \\8 \\8 \\8 \\$		$\begin{array}{c}\\\\\\ 16\\ 112\\ 123\\ 225\\ 229\\ 335\\ 357\\ 322\\ 229\\ 335\\ 357\\ 322\\ 229\\ 335\\ 357\\ 357\\ 357\\ 357\\ 358\\ 665\\ 788\\ 888\\ 998\\ 888\\ 1115\\ 1222\\ 2118\\ 1000\\ 2208\\ 2288\\ 2286\\ 115\\ 1222\\ 2288\\ 2286\\ 115\\ 1222\\ 2288\\ 2286\\ 2288\\ $	1+155 $1+155$ $1+155$ $1+155$ $1+155$ $1+155$ $1+155$ $1+1555$ $1+1555$ $$	

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Case 20 10/00/10 . CIA-RUF0 I-0 1043R00220024000 I-0

RDP81-01043R00220024000

							cipal	Din	nensio	ns o		igle			per l	Roll	er Be	arin	gs, 1	nm		*								т	a b l	e 9	
Super-light series				Bore se								Bore	series													fedium re serie							
Bore series 9	Corner	<u> </u>	·	sore se	ries i		orner	-			v	/idth	serie	2 (5)				-T	Corn		ŀ	-				Width s					Cor	ner	
Wide series 2	chamfer limensions		v	/ide ser	ries 2	ch	amfer	s d	D	Na	rrow 0		serie	-		Wid	e 0*		chami	fer		: E		Narro				Wide	• (0)*		chan dimen		
d D B C T Max. Min.	r r _t	d D	в	c _	T ax. M	r tin.	ŕ,	a	В	с	T Max.		d	D	в	с	T Max. N	Min.	r	r,	d	D -	в	c	T Max.		в	с	T Max.	Min.	r	rı	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			17 18 19 22 22 24 24 27 27 30 30 30 30 30 33	- - 14 17 15 18 16 19 16 20 19 22 19 2 20 24 23 29 24 23 25 32 26 32 26 32 26 32 28 34			0.5 0.5 0.5 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	35 40 45 50 55 60 65 70 70 75 80 85 80 85 90 90 95 100	140 26 150 28 160 31 170 34	10 11 12 13 14 15 16 16 16 16 17 18 19 20 21 22 22 22 22 22 24 26 27 29 30 32	12 13.5 15.5 16.5 17.5 18.5 20 21 22 23 24 25 26.5 27.5 28.5 31 33 35 37.5 39.5 41.5	11.5 13 15 16 17 18 19.5 20.5 21.5 22.5 22.5 24.5 22.5 24.5 26 27 28 30 32 34 36.5 38.5	15 17 20 25 30 35 40 45 50 55 50 60 65 70 90 95 90 95 100 110	170 180 190				 21 24 24.5 24.5	1 1.5 1.5 1.5 2 2 2 2 2 2 2 2 2 2 2 2 2	0.3 0.5 0.5 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	50 55 60	42 47 52 62 72 80 90 100 110 120 130 140 150 160 180 190 200 215 225 240	13 14 16 17 19 21 23 26 29 29 29 31 33 37 37 37 37 37 37 39 41 43 45 47 49 50	11 13 13 15 17 18 20 22 23 25 27 28 30 31 33 35 36 39 39 41 42	14.5 15.5 16.5 21 23 25.5 27.5 29.5 32 34 36.5 38.5 40.5 43 45 47 50 52 54 55		17 19 21 24 29 31 33 36 40 44.5 47.5 48 51 55 59.5 60 66.5 67 73 77 80	39 41 43 46,5 49 50,5	62 64 68 72 78	18 20 22 25 28,5 35 38 42 45 48 50.5 57.5 61 63 67 71 77 81 84	1.5 1.5 2 2 2.5 2.5 3 3.5 3.5 3.5 3.5 3.5 4 4 4 4 4 4 4 4	0.5 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1 1.2 1.2 1.2 1.2 1.2 1.5 1.5 1.5 1.5 1.5	•
110 150 24 20 25.4 24.6 120 165 27 32 24.4 23.6 130 180 30 26 32.5 31.5 140 190 30 26 32.5 31.5 150 210 36 31 38.5 37.5 160 220 36 31 38.5 37.5 180 260 42 36 45.5 44.5 200 260 42 36 45.5 44.5 200 260 48 41 51.5 50.5 203 204 48 41 51.5 50.5 203 204 48 41 51.5 50.5 203 204 48 41 51.5 50.5 203 204 48 41 51.5 50.5 204 204 84 151.5 50.5 20.6 202 203 65 7.6 7.6 7.6 203 <td< td=""><td>2 0.8 2.5 0.8 3 1 3 1 3 1 3.5 1.2 3.5 1.2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>120 180 130 200 140 210 150 225 160 240 170 260 180 280 200 310 220 340 260 400 280 426 300 466 320 488</td><td>36 42 45 48 54 60 60 66 72 72 82 82 82 95 95 95</td><td>31 33 36 41 38 41 41 5 52 6 52 6 56 7 62 7 71 8 82 10 S2 10 Series 5</td><td>8.4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5</td><td>37.6 3 44.5 3 44.5 3 44.5 3 47.5 3.5 50.5 3.5 56.5 3.6 63.5 3.6 75.5 4 75.5 4 86.3 5 99.3 5 e type</td><td>5 1.3 5 1.3 5 1.3 5 1.3 5 1.3 5 1.3 1.3 1.3 2 2 2 2 2 2 2 2 2 2 2 2</td><td>120 130 140 2 150 2 160 2 170 2 180 2 200 5 220 5 220 5 240 260 250 300 320 med</td><td>215 41 230 41 250 42 270 45 290 48 310 52 340 55 360 58 400 65 440 72 480 80 500 83 540 85 580 92 ium sen 92</td><td>34 34 36 38 40 43 43 46 48 54 60 67 67 71 75 71 75</td><td>44 44.5 50 53 58 61 65 71 80 90 90 90 97 105 wide</td><td>43 45 48 51 56 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 50 78 88 50 50 50 50 50 50 50 50 50 50 50 50 50</td><td>120 120 140 150 160 177 186 200 222 240 240 240 240 240 240 240 240</td><td>215 230 250 270 290 310 320 340 360 400 480 500 540</td><td>58 65 68 74 80 86 86 92 98 108 120 130 130 130 140 150</td><td>50 54 58 60 67 71 71 75 82 90 100 100 100 106 115 125</td><td>62 68.5 72.5 78 85 92 92 98 105 115 128 138 138 138 150</td><td>61 67 71 76 83 90 90 90 90 90 90 90 90 90 90 90 90 90</td><td>3.5 4 4 5 5 5 5 5 6 6 6 6 6</td><td>1.2 1.5 1.5 1.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>120 130 140 150 160 170 180 190 200 240 260 280 </td><td>260 280 300 320 340 360 380 400 420 500 540 580 </td><td>55 58 62 65 68 72 75 78 80 83 95 102 108 —</td><td>46 49 53 55 58 62 64 65 67 73 80 85 90 —</td><td>60 64.5 68.5 73 76 81 84 87 90 98 106 110 120 —</td><td>5 67 71 74 79 82 85 88 96 104 108 118 </td><td>175</td><td>70.5 78 85 90 95 100 106 109 115 122 132 136</td><td>9 91 99.5 108.5 115 122 128 135 141 147 155 166 177 188 —</td><td>90 98 107 113 120 126 133 139 145 153 164 175 186 </td><td></td><td>1.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td></td></td<>	2 0.8 2.5 0.8 3 1 3 1 3 1 3.5 1.2 3.5 1.2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	120 180 130 200 140 210 150 225 160 240 170 260 180 280 200 310 220 340 260 400 280 426 300 466 320 488	36 42 45 48 54 60 60 66 72 72 82 82 82 95 95 95	31 33 36 41 38 41 41 5 52 6 52 6 56 7 62 7 71 8 82 10 S2 10 Series 5	8.4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	37.6 3 44.5 3 44.5 3 44.5 3 47.5 3.5 50.5 3.5 56.5 3.6 63.5 3.6 75.5 4 75.5 4 86.3 5 99.3 5 e type	5 1.3 5 1.3 5 1.3 5 1.3 5 1.3 5 1.3 1.3 1.3 2 2 2 2 2 2 2 2 2 2 2 2	120 130 140 2 150 2 160 2 170 2 180 2 200 5 220 5 220 5 240 260 250 300 320 med	215 41 230 41 250 42 270 45 290 48 310 52 340 55 360 58 400 65 440 72 480 80 500 83 540 85 580 92 ium sen 92	34 34 36 38 40 43 43 46 48 54 60 67 67 71 75 71 75	44 44.5 50 53 58 61 65 71 80 90 90 90 97 105 wide	43 45 48 51 56 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 59 63 50 78 88 50 50 50 50 50 50 50 50 50 50 50 50 50	120 120 140 150 160 177 186 200 222 240 240 240 240 240 240 240 240	215 230 250 270 290 310 320 340 360 400 480 500 540	58 65 68 74 80 86 86 92 98 108 120 130 130 130 140 150	50 54 58 60 67 71 71 75 82 90 100 100 100 106 115 125	62 68.5 72.5 78 85 92 92 98 105 115 128 138 138 138 150	61 67 71 76 83 90 90 90 90 90 90 90 90 90 90 90 90 90	3.5 4 4 5 5 5 5 5 6 6 6 6 6	1.2 1.5 1.5 1.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	120 130 140 150 160 170 180 190 200 240 260 280 	260 280 300 320 340 360 380 400 420 500 540 580 	55 58 62 65 68 72 75 78 80 83 95 102 108 —	46 49 53 55 58 62 64 65 67 73 80 85 90 —	60 64.5 68.5 73 76 81 84 87 90 98 106 110 120 —	5 67 71 74 79 82 85 88 96 104 108 118 	175	70.5 78 85 90 95 100 106 109 115 122 132 136	9 91 99.5 108.5 115 122 128 135 141 147 155 166 177 188 —	90 98 107 113 120 126 133 139 145 153 164 175 186 		1.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

ALC: NO

CIA-RDP81-01043R002200240001-6

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

1

													Pri	ncip	al l	Dim			f Si	nglo	an	d 🕺	D	oub	le B	all a	nd R	lolle	r Tł	irus	t Be	ariı	ngs,	, mr	n							т	a b l	e 10
F					_	ra-lig	ht se	rles					-				ight s	_				- 3	1 _				lium s					, -			Hea	vy se	eries				Ext	ra-hea	vy se	ries
F			Bore	eries ght se		5		1		series	_	1 1		Т	T			t serie	s		٩.	「響	l –	<u> </u>	1		e seri eight	_		1						e seri					B	ore s	eries 5	
	d	D	- Extra-low	A Low	- Standard	Corner chamfe dimensions	a	D	-1 Extra-low	G Low	e Standard	Corner chamfer	d	D	- Extra-low	9	eight		ndard 0		Corner chamfer	- 遼	d	D	- Extra-low	co Low		Stand 0	lard		Corner chamfer dimensions	d	D	⁻¹ Extra-low	ص Low		_serie 	dard		Corner chamfer dimensions	d	D	ے Low-series	Corner chamfer dimensions
			ŀ	eight	н	r			1	leight	н	r	L		-	н		н,	a	d,		- 2	i			H	lght	H,	a	d,	r		·		<u>н</u>	eight	н,	a	d,	· r		F	leight H	ŗ
11111	180 280 I	126 126 126 126 120 120 120 120 120 120 120 120	$\begin{array}{c} 7\\ 7\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\$	-	(d), (of st	tatic	2 28 2 8 2	82. 90 100 	1		0.5.5.5. 0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	23334 3444 45556 667778899 991011121514 1566777889 999101112 1514718902224 2628332 33464 22444 688553 35006 7777 78085590 995910006 1006637 6.	=		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	180 190 195 205 212 220 236 250 265 	22 266 288 282 394 367 367 367 367 367 368 80 80 80 80 90 90 90 90 90 90 100 91 100 100 100 1			1 1 1 1.5 1.5 1.5 1.5 1.5 1.5 1	a series and a series of the series of th	5 200	$\begin{array}{c} 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 4 \\ 4 \\ 4 \\ 5 \\ 6 \\ 6 \\ 6 \\ 7 \\ 7 \\ 8 \\ 8 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$	$5_{1} 23$ $5_{2} 25$ $5_{2} 25$ $5_{2} 2777$ $5_{2} 25$ $25_{2} 2777$ $5_{2} 299$ $0_{1} 299$ $0_{2} 299$ $0_{1} 326$ $0_{1} 412$ 1290 $0_{1} 412$ $0_{2} 299$ $0_{1} 326$ $0_{1} 412$ $0_{2} 412$ $0_{1} 412$ $0_{2} 412$ $0_{1} 412$ $0_{2} 412$		$\begin{array}{c} 111\\ 12\\ 12\\ 14\\ 16\\ 8\\ 28\\ 33\\ 33\\ 60\\ 25\\ 68\\ 28\\ 33\\ 33\\ 60\\ 25\\ 68\\ 28\\ 28\\ 33\\ 33\\ 60\\ 25\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22$	$\begin{array}{c} - & - \\$	$\begin{array}{c} - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ 8 & 9 \\ 9 & 10 \\ 12 \\ 11 \\ 15 \\ 16 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18$	40 45 505 555 66 776 85 955. 100 110 120 130 160 160 160 170 1		55 60 65 60 65 70 75 80 80 90 100 110 1120 1120 1130 1140 1140 1120 1200 2200 2200 2240 2600 3300 3400 4420 4480 5300 5560 6600 6700	580 620 670 730 730 730 850 850 850 850 920 920 920 920 920 920 920 920 920 92		1212222503333	$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
2	2			Ç	5	T	A		Ν	K)		M		3 (0	R	T	•	(•			S	Т	Α	N	1	K	Ĉ			Μ	F) (0	R	2	Г		•	23
																				۰.											•						-						_	

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

CHARACTERISTICS OF MAIN TYPES OF ANTIFRICTION BEARINGS

1. SINGLE ROW BALL BEARINGS

Fig. 6

24

Single row ball bearings, due to their design features, are capable of carrying a thrust load, acting in either direction along the axis of the shaft, besides the usual radial load. This thrust load, however, should not exceed 70 per cent of the non-utilized permissible radial load at a given computed average life.

If the radial clearance between the balls and races of the bearing rings is increased, these bearings acquire the properties of radialthrust bearings and provide excellent performance in carrying pure thrust loads. In this capacity, they often are substituted for ball thrust bearings.

The capacity for carrying thrust loads in either direction allows this type of bearing to be used for fixing shafts or housings in an axial direction.

POR

proved for Release 2013

Single row ball bearings are capable of operating at higher speeds than other alternative designs of bearings of the corresponding size.

The maximum allowable operating speed of single row radial bearings may be increased if the bearings are more accurately manufactured as well as with the use of solid retainers of antifriction materials such as textolite, brass, duralumin, etc.

Single row ball bearings have the lowest friction losses in comparison with other types of bearings of the corresponding size. For this reason, this type of bearings should be given preference in designing machinery if its computed average life is within the limits which provide a normal working capacity of the machine.

Single row ball bearings provide satisfactory performance in cases in which the housings of all bearings, mounted on one shaft, are bored in a single set-up or measures are taken to ensure that the bores are in accurate alignment. It is necessary to remember that this design of bearings may operate only if the misalignment of the inner ring in reference to the outer ring does not exceed 15'. If this type of bearing is installed in a machine assembly with less accurate alignment, the

ΚΟ

IM

Ν

Α

expected life of the bearing will be sharply decreased and breakdowns due to the overheating of the bearing or breakage of the retainer may occur.

Alternative designs of the main type of single row ball bearings are:

a) Single row ball bearings with a filling slot or groove. Due to the increased number of balls these bearings are capable of carrying larger radial loads but the presence of the filling slot in the inner and outer rings does not allow the bearings to carry increased thrust loads. Consequently, these bearings are more restricted in their applications.

b) Bearings with a groove on the outside of the outer ring for a snap ring.

This design allows the bearing housing to be bored through without a shoulder.

c) Single and double shielded bearings as well as bearings with built-in felt or rubber seals. These bearings are to be used in bearing assemblies where a lack of space provides difficulties in installing separate sealing devices in the bearing housing or in cases where it is impossible to add lubricant to the bearings after installation.

Single row ball bearings find application in low power electric motors, gear boxes of automobiles, tractors and machine tools, axle boxes of intra-works transporting trucks, idle pulleys, conveyer rollers and other similar machine assemblies.

STANKOIMPORT • 25

pproved for Release 20

2. CYLINDRICAL ROLLER BEARINGS WITH SHORT ROLLERS

rollers a designs: 1. straight, separabl and reta type of assemblio outer ri

Fig. 7

26

Cylindrical roller bearings with short rollers are available in a number of alternative designs:

1. Bearings, type 2000. Outer ring straight, inner ring with two lips providing a separable type of bearings in which the rollers and retainer remain on the inner ring. This type of bearings is applicable in bearing assemblies that require a floating support (the outer ring may have axial movement along the rollers). This type of bearing is only capable of carrying a radial load; it cannot carry a thrust load.

2. Bearings, type 32000. Inner ring straight, outer ring with two lips providing a separable type of bearings in which the rollers and retainer remain in the outer ring when

the inner ring is disassembled. This type of bearings is applicable in bearing assemblies that require a floating support (the inner ring may have axial movement along the rollers). These bearings are also only capable of carrying a radial load, they cannot carry thrust loads.

3. Bearings, type 42000. Inner ring with one lip, outer ring with two lips providing a separable design in which the inner ring can be removed and the rollers and retainer remain in the outer ring. This type of bearings is applicable in bearing assemblies requiring location of the shaft in one direction. These bearings are capable of carrying radial loads.

4. Bearings, type 62000. Outer ring with two lips, inner ring with one lip and with separate, loose lip of profiled cross section to provide separable type of bearing in which loose lip is removed, inner ring is also removed and rollers and retainer remain in the outer ring. This type of bearings is used when it is necessary to locate the shaft in both directions. They can carry radial loads.

5. Bearings, type 92000. This type is similar to the preceeding type except that the loose lip has a rectangular cross-section. Bearings, type 92000, are also capable of carrying radial loads and of locating the shaft in both directions.

6. Bearings, type 102000. Inner ring with two lips, two retaining rings on outer ring, full of rollers and without a retainer. This bearing is non-separable. It carries only radial load; it does not carry thrust loads but outer ring is located axially in reference to the rollers by the retaining rings. For this reason, it is unnecessary to secure the outer ring in the housing.

ΤΑΝΚΟΙΜΡΟΓΤ

Cylindrical roller bearings with short rollers have larger radial load capacities than ball bearings of the same size.

The selection of one or another of the alternative designs of roller bearings depends on the special features of the given bearing assembly and demands stipulated by mounting requirements.

Due to their separable design, cylindrical roller bearings with short rollers are more convenient in mounting than ball bearings.

Cylindrical roller bearings with short rollers should be used in bearing assemblies having short, rigid shafts which are not distorted by external stresses. They should not be applied in assemblies in which misalignment of the inner and outer rings are possible.

In cases, when a roller bearing having one ring without lips is used for one support of a shaft; a bearing locating the shaft in reference to the housings should be used in the second support.

Cylindrical roller bearings with short rollers can be successfully applied in the following machine assemblies: medium and high powered electric motors, spindles of metalcutting machine tools, bearings of centrifugal pumps, axle boxes of underground railway trains, tramways, railway rolling stock, etc.

Cylindrical roller bearings with short rollers having a bore diameter up to 100 mm are available with a retainer stamped of sheet steel. However, in accordance with the size of the lot being produced, they are also available with a solid retainer of non-ferrous metals. In operation both of these alternative designs are equivalent in their capacities.

STANKOIMPORT • 27

3. DOUBLE ROW SELF-ALIGNING BALL BEARINGS

Double row self-aligning ball bearings type 1000, are designed in the main, for carrying radial loads but, at the same time, they can carry small thrust loads in bothdirections.

It is not advisable to use these bearings for pure thrust loads, as in this case only one row of balls will be under load.

The thrust load, acting simultaneously with the radial load should not exceed 20 per cent of the non-utilized permissible radial load at a given computed average life.

Type 1000 bearings, due to the features of their design, can operate with considerable misalignment (up to 3°) of the inner ring in reference to the outer ring. This misalignment may be due to the fact that the bearing seats

are not in line or that the shaft is distorted by the action of the load.

Fig. 8

As a consequence of their capacity for self-alignment, these bearings can be installed in machine assemblies with housings standing separately and with misalignment of the axes of the bearing seats.

An alternative design of the type 1000 bearings is the 11000 type with a tapered bore (taper 1 to 12) and installed on a clamping sleeve.

Bearings on clamping sleeves can be mounted on smooth shafts without, shoulders and the shaft diameters for seating the bearings may be less accurately machined. The use of clamping sleeves considerably simplifies assembly and disassembly of the bearings. Besides this, the clamping sleeve allows some adjustment of the radial clearance in the bearing by expanding the inner ring, slightly by means of the clamping sleeve.

Double row self-aligning ball bearings find wide application in agricultural machinery, fans, blowers, textile, knitting, paper-manufacturing and other machinery.

4. DOUBLE ROW SELF-ALIGNING ROLLER BEARINGS

Double row self-aligning roller bearings have a type designation of 3000. These bearings have the largest load capacities of any bearings of the same dimensions.

Self-aligning roller bearings can simultaneously carry a thrust load in either direction besides the radial load.

The thrust load, acting together with the radial load should not exceed 20 per cent of the non-utilized permissible radial load.

The self-alignment capacity of this bearing is the same as for double row selfaligning ball bearings.

An alternative design of this type of bearing is bearing type 13000 with a tapered bore (taper 1 to 12) which can be mounted either directly on a tapered seat of the shaft

N

Α

S

proved for Release 20

KOI

M

POR

29

or on a smooth cylindrical shaft by means of an intermediate clamping sleeve clamping-stripping sleeve or adapter.

Double row self-aligning roller bearings are used as supports for long multisupport shafts subject to considerable deflection under the action of external loads, as well as in machine assemblies where the bearing housings stand separately and it is not expedient to arrange the housings on a common baseplate.

This type of bearing can be successfully applied in assemblies of the following machines: coal-cutting combines and coal-cutters; centrifugal blowers, pumps and draught fans; rolling mills and medium and high power reducing gear units, log frames; travelling truck wheels and wire rope pulleys of port cranes; screens and rock crushers and many other types of machines in which the bearings are subject to heavy loads.

28 • STANKOIMPORT

5. ANGULAR-CONTACT BALL BEARINGS

(Types 6000, 36000, 46000 and 66000)

These bearings are designed to withstand combination loads acting in both the radial and axial directions.

A single row bearing of this type may resist pure thrust loads acting in one direction. To locate the shaft in both directions this type of bearing must be applied in pairs (duplex installation).

Installation of these bearings in pairs allows the unit to be preloaded.

For withstanding large thrust loads, a number of these bearings may be installed one after another (narrow face of the outer ring of one bearing against the wide face of the outer ring of the other bearing) in the socalled "tandem" arrangement.

When properly selected so as to ensure a

Sanitized Copy Approved for Release 2013/08/13

uniform distribution of the load between the separate bearings, such a set of bearings may withstand a very considerable load and each bearing carries that part of the load obtained by dividing the total load by the number of bearings in the set. The limiting speed of a group of bearings equals the maximum allowable speed of the component bearings.

Fig. 10

This type of bearing can be applied in assemblies having rigid two-support shaft with a comparatively small distance between the supports. They can also be used in assemblies that require adjustment of the internal clearance in the bearings during mounting and in operation.

The applications of angular-contact ball bearings include: spindles of machine tools and woodworking machinery, electric motors, centrifuges, worm gear reducing units, front wheels of automobiles, magnetos, etc.

6. NEEDLE ROLLER BEARINGS

(Type 74000)

Needle roller bearings are designed for resisting only radial loads. Due to the small diameter of the rollers (needles), these bearings have smaller outside diameters when compared with other bearings having the same bore diameters.

This type of bearing, in accordance with the features of design of the bearing assembly, may be used without either an inner or outer ring or even without any rings, merely using a set of needle rollers. In these cases the roller races in the housing or on the shaft should possess the same qualities as the bearing ring (as to hardness, accuracy and finish). This bearing does not locate the shaft or housing axially and is very sensitive to

misalignment of the seating surfaces. The bearing seats for two support needle roller bearing assemblies must be bored in a single set-up.

S

Needle roller bearings find application in machine assemblies, where space is limited, and are often used in oscillating machine members.

To provide reliable working capacity, bearings in oscillating assemblies should be lubricated with fluid mineral oil.

Machine assemblies in which needle roller bearings are widely used include: universal joints of automobiles, piston pins, connecting rod pins, engine camshafts, rocker arms of distributor mechanisms, supports of crank-arm mechanisms, etc.

ΤΑΝΚΟΙΜΡΟ

R

31

STANKOIMPORT

lassified in Part -

pproved for Release 2013/08/13

7. FLEXIBLE ROLLER BEARINGS

These bearings are designed for with standing only radial loads. They do not locate the shaft or housing axially. These bearings however, are capable of resisting impact loads

Flexible roller bearings are available in two types: Type 5000 having two solid rings and a set of rollers held in a retainer and type 45000 with a stamped split outer ring and a set of rollers held in a retainer.

Other modifications of the main type 5000 are available as a bearing with one solid outer, ring and a set of rollers in a retainer and known as type 35000 as well as a roller assembly in a retainer and without rings, type 65000.

Flexible roller bearings are used in machine assemblies where accurate rotation

is not essential, as for instance: intra-works transportation facilities, various assemblies of agricultural machinery, combines, ploughs, working and transporting rolls of roller tables for rolling mills, etc.

TANKOIMPOR

8. TAPER ROLLER BEARINGS

Taper roller bearings are, in fact, radialthrust bearings designed for withstanding combination loads (radial and thrust).

If two bearings are mounted adjacent to each other or at the opposite ends of a twosupport shaft, they can carry pure radial loads. Taper roller bearings are manufactured

with interchangeable outer rings or cups. As the outer ring (cup) is separable, these bearings are convenient for separate mounting the outer ring in the housing and the inner ring (cone) and rollers on the shaft.

Alternative designs of the single row taper roller bearing, type 7000, are:

Type 67000 with flange on outer ring (flanged-cup);

Type 27000 with large taper angle of outer ring (cup) in a range from 25° to 29°;

Types 37000, 97000 and 47000 are double row roller bearings, without and with axial clearance adjustment, respectively;

Type 77000 is a fourrow roller bearing.

Single row taper roller bearings are to be used in machine assemblies having rigid two-support shafts with a comparably short distance between the supports. The bearing allows for the adjustment of axial clearance during mounting, as well as in operation.

It must be stressed that these bearings react very sensitively to the working axial clearance. Excessive tightening will result in a sharp raise in temperature while on the other hand excessive axial clearance may bring about bearing failure. Consequently, during both initial mounting and subsequent operations, it is necessary to adjust the axial clearance with special care.

Double and fourrow taper roller bearings are manufactured with a certain amount of axial clearance incorporated in the bearing and are not to be adjusted during mounting operations.

The increase in axial clearance in these bearings due to wear in operation is compensated for by grinding down the spacer rings.

Taper roller bearings find application in the following assemblies of various machinery:

STANKOIMPORT • 33

. Fig. 12

S

Type 7000 — medium and high power worm gear reducing units, auto truck wheels, tractor crawler rollers, machine tool spindles;

Type 67000 — in machine tools or machine assemblies with limited space; Type 27000 — in rear axles of automobiles and machine assemblies subject

to large thrust loads; Types 37000, 97000 and 47000 — in reducing units transmitting very high power, in rolls of transporting and working roller tables of rolling mills, in

working rolls of rolling mills; Type 77000 - on supporting rolls of rolling mills for withstanding large

radial loads with comparatively small thrust loads.

9. BALL THRUST BEARINGS

Both single and double ball thrust

Fig. 14

34

ΤA

bearings are available. Single thrust bearings, type 8000, are

designed for carrying a thrust load in one direction.

Double thrust bearings, type 38000, are designed for carrying thrust loads in both directions.

The single thrust bearing consists of two rings and a set of balls in a retainer. The revolving or "tight" ring of the bearing is mounted directly on the shaft with a suitable fit while the second, stationary or "loose" ring, is mounted in the housing. The bore of the "loose" ring, as a rule, is larger than the bore of the "tight" ring by an amount approximately up to 1 mm.

PORT

As a lack of coincidence of the axes of the housing and shaft may result in premature bearing failure, it is advisable to provide self-alignment of the rings by mounting the "loose" ring in the housing with a clearance in the order of 0.4 to 0.6 mm on the diameter. This clearance will compensate for any misalignment between the axes of the housing and shaft.

To eliminate the effects of mounting misalignment of the bearing rings due to a lack of squareness of the housing shoulder to the shaft axis, it is advisable to arrange spacers of some plastic material under the "loose" ring. Such spacers may be made of linoleum, leather, oil-resistant rubber (sevanite), etc.

Μ

K \mathbf{O}

Double ball thrust bearings consist of one "tight" or rotating ring with two ball races, two "loose" or stationary rings and two sets of balls in retainers.

Ball thrust bearings with spherical seating rings, single, type 18000 and double, type 848000, are non-standard types and not advisable for application in newly designed assemblies. This is due to the excessive sliding friction between the spherical surfaces of the bearing and seating rings which sharply limit their self-aligning properties.

During operation, under the action of centrifugal forces, the unloaded row of balls, especially in double row bearings, has a tendency to run out of the races. This shifts the axes of rotation of the balls and causes sliding friction between the balls and races. This latter results in overheating and failure of the surfaces of the balls and races. To avoid this, it is advisable to provide a constant load on the unloaded balls and "loose" ring by means of continuously acting springs.

In many machine assemblies, to withstand thrust loads, it is possible to use single row ball bearings by selecting the bearing to suit the thrust load.

Ball thrust bearings are used in the assemblies of the following machines: vertical centrifuges, low-speed reducing gear units transmitting large torques, crane hooks, machine tool spindles, pivots of rotary cranes, live centers of machine tools, jacks and other machinery.

POR KOI Μ A Ν S

STANDARD SPECIFICATIONS FOR BALL AND ROLLER BEARINGS* CLASSIFICATION

. •

1. In accordance with their accuracy in dimensions and in running, standardized antifriction bearings are arranged in the following classes of accuracy:

•		Accuracy of manufac	ture of bearing rings
Class of accuracy	Designation	Inner	Outer
Main Classes Standard Special High Extra-high Super-high	H II B A C	H II B A C	H II B A C
Intermediate Classes Special-intermediate High-intermediate Extra-high-intermediate	ВП АВ СА	B A C	П В А

2. The classes of accuracy refer to the following types and series of bearings according to Table 11 given below:

STANKOIMPOR

Class of accuracy	Types and series of bearings
C and CA	 a) Single row ball bearings (GOST 4788-49, OST 6121-39, series 200 and 300) b) Angular-contact ball bearings (GOST 831-54, series and types 6000, 36100, 36200, 46100, 46200) c) Duplex angular-contact ball bearings (GOST 832-41, light series with 12° and 26° contact angle) d) Cylindrical roller bearings with short rollers (GOST 294-41, types 2000 and 32000 of light and medium series and GOST 4789-49, type 32000) e) Taper roller bearings (GOST 5379-50 and GOST 333-41)
A and AB	All the above-mentioned ball and roller bearings for C and CA classes of accuracy as well as: a) Single row ball bearings (OST 6121-39, series 400) b) Angular-contact ball bearings (GOST 831-54, series 36300, 66300, 64400, 66400 and 46300) c) Duplex angular-contact ball bearings (GOST 832-41, medium and heavy series) d) Cylindrical roller bearings with short rollers (GOST 294-41, type 2000 and 32000 theavy series and type 42000) e) Ball thrust bearings (GOST 6874-54, type 6000) f) Double row self-aligning ball bearings with a bore diameter up to 80 mm (GOST 3720-51)
B, II and BII	All the above-mentioned ball and roller bearings for C CA, A and AB classes of accuracy as well as: a) Double row angular-contact ball bearings (GOST 4252-48 b) Single row ball bearings with shields (GOST 7242-54) c) Double row self-aligning ball bearings (GOST 5720-51)
н	All the types of ball and roller bearings provided for in GOST 520-55

Note: For use in machine assemblies where operating conditions do not require accuracy in running (bearings for rolls of conveyers or roll tables, small trucks, timber hauling trucks, pulleys, winches, feeders) bearings with lower requirements of HO and O classes of accuracy may be manufactured as stipulated in GOST 4793-49.

 \ast Type 8000 ball thrust bearings (GOST 6874-54) of AB, BII and II classes of accuracy are not manufactured.

* For more detailed information see GOST 520-55

36

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R00220024000

Т

SPECIFICATIONS

3. The accuracy of the dimensions of bearings are determined by the tolerances of their chief dimensions such as the bore, outside diameter and width of rings.

The accuracy of running of bearings is determined by the following runout

a) radial runout of outer, inner and tight rings;

b) axial runout of faces of inner ring;

c) axial runout of raceways of inner and outer rings.

4. Tolerances for the bores and outside diameters, widths, parallelism of faces as well as for radial and axial runout of rings, for each class of accuracy, are given in Tables 12, 13, 14, 15 and 16.

5. As a result of out-of-roundness, taper and other deviations from an exact cylindrical surface, during measurement different values are obtained for the diameter in one or several sections.

The effective deviations of maximum $(d_{max} \text{ and } D_{max})$, minimum $(d_{min} \text{ and } D_{min})$ and mean $(d_m \text{ and } D_m)$ diameters in accordance with the accuracy classes must be within the limits indicated in Tables 12, 13, 14 and 15.

The mean diameter is defined as the arithmetical mean of the maximum and minimum diameter measurements:

 $d_{m} = \frac{d_{max} + d_{min}}{2} \text{ or}$ $D_{m} = \frac{D_{max} + D_{min}}{2}$

Example: For a nominal bore diameter d = 100 mm, the limits in accordance with Table 12 are:

high limit for mean diameter d_m — zero;

low limit for mean diameter d_m — minus 0.02 mm;

high limit for maximum diameter d_{max} — plus 0.005 mm; low limit for minimum diameter d_{min} — minus 0.025 mm.

consequently:

38

S

Δ

assified in Part -

NKOIMPOR

Sanitized Copy

Т

6

If during measurement, d_{max} turns out to be equal to 99.998 mm and $d_{min} =$ 99.976 mm, the bearing is considered as within the limits in reference to the bore, as:

 $d_m = \frac{99.998 + 99.976}{2} = 99.987$ mm is within the indicated limits (100.000 and

99.980 mm), d_{max} does not exceed 100.005 and d_{min} is over 99.975 mm. If, however, during inspection $d_{max} = 100.004$ mm and $d_{min} = 99.998$ mm the bearing is not within the bore limits, as:

 $d_m = \frac{100.004 + 99.998}{2} = 100.001$ mm. This exceeds the indicated limits (100.000 --

99.980 mm) even though d_{max} is less than 100.005 mm and d_{min} exceds 99.975 mm.
6. The mounting height dimensions of angular-contact ball bearings should not be beyond the limits stipulated in the standards.

MARKING AND LUBRICATING OF BEARINGS

7. Each manufactured bearing should have the trade mark of the manufacturing works as well as the bearing symbol (according to GOST 3189-46) indicating the type, size and class of accuracy of the bearing.

8. Separable ball and roller bearings are marked on both rings.

9. All supplied bearings are to be lubricated with a protective lubricant and should be carefully wrapped separately in moisture-proof paper.

The initial lubrication and packing of bearings, if they are subsequently properly storaged, will ensure protection from corrosion for a period of 12 months.

STANKOIMPORT

Table 12	Tolerances	Axial runout of raceways		II and BII		25588885555 25588885555 25588885555	les, tractors, agricultural and other machinery, d in the standard dates of accuracy but with the observation on the mean diameter. Such bearings telened as the minimum diameter of the taper. SIT, should not exceed 50 %, of the tolerance on SIT, should not exceed 50 %, of the tolerance on	ot outer muss a mandrel. rinning sleeves	These and outs have roller bearing designed to be mouthed on Campbia or uses given in this arrings of ball and roll roll roll of the damater "ar" - 300% of the values given in this likes given in Table 12 and the deviation of the bare should not exceed the foremark zone of all with a sign + ; the out-of-coundness of the bare should not exceed the constance zone of "" with a sign + ; the out-of-coundness of the bare should not exceed the constance zone of "" and ""	Classes 0			в, вп а	AL-THRUS and AB erances in			• •	ER BEA	ARINGS ter Rin	Tab 5 g Toler	
ц Ч	E E	Axial of rac	ŀ	=	-	9820660 9820 9820 9820 9820 9820 9820 9820 982	and other n accuracy bu ameter. Such diameter of % of the tol	a m	eran				Toleranc	es for outside	diameter. R	adial run	out		Axial run	out of ra	ceways
i	2 _		┝	n pla	H	33250554500	d otl cura ieter amet of th	width ed on a ted.	e tol	Nom	nal ide			D _{max} .	D _{min}	Class	es of acc	urácy			
	Inner	==			H	000000000000000000000000000000000000000	al an of ac diam im dia	bearings with tapeted bores, as vot as on the wi it of the ining width is the nominal value, e given for inspection with the bearing mounted at roller bearings is not checked.	n clamping of average a 200% of the values of exceed the values of exceed the values of the values of exceed the the values of the value of the	outs diamete	r (D),	Dm		Diametra extra-light (medium ar	l series : (1,7), light,	н	Π and BΠ	B and AB	н	Π and BΠ	B and AB
	-	Radial runout	acy		F	2248403340000000000000000000000000000000	ors, agricultural standard class of e on the mean di as the minimum ld not exceed 50	on the ie. mounte of checke	ctampu 0% of 1 exceed * *******	over		High limit I	.ow limit	High limit	Low limit			Not	over		
			acuracy	=	š –	62 62 62 62 62 62 62 62 62 62 62 62 62 6	gricultur rd class ie mean minimu exceed	as well as on ominal value. the bearing m bores is not c	on c - 300 not e		18	0	- 8	+ 2	10	15	. 12	7	40	32	20 20
BEARINGS		s	ss of	a and BII	not	582355555	s, ag andai on th on the not	inal inal e bea d.	a ld n	18	30	0	- 9	+ 2	11	15	12	7 10	40 40	32 32	20
AR1		Axial runout of faces	Class	Ħ	L	3322222266	oiles, tractors red in the sta the tolerance o is defined as is defined as	s, as nom h the ecke	ed to be mounted the diameter "d" - the bore should	30	50	0	-11	+ 3	14	20 25	16 20	10	40	32	20
t BE		Axio		=		888888844	, tra in th lerai efine , sho	ed bores, is the no on with t not check tapered	be m jamet	50	80	0	—13 —15	+ 4 + 5	17 20	35	28	17	45	36	22
TEF	ľ		1	a pua		5875555200	biles red j ne to is d I BIJ	h is tion ls no	to h e dia ie bi	80 120	120 150	0	-13	+ 6	24	40	32	20	50	40	25
ROLLER	Ê	surfaces parallel				332844520 332844520 332844520	como actu to tl neter	tape widt ngs ngs wit	Sned of th of th	120	180	0	-25	+ 7	-32	45	36	22	60	48	30
AND	(um 100.0	Face su not par		=			of automobi nanufacture equal to the diameter i	with or ir seari	designed to the set of	180	250	0	30	+ 8	38	50	40	25	70 80	56 64	35
	= 0.0	5.0		=		528288889 54 388888 56 56 56 56 56 56 56 56 56 56 56 56 56	the during repairs of automobiles, transformed in the during repairs of automobiles, transformed in the during may be manufactured in the relation by a value equal to the tolors fring tumber.	ngs ' the i the i ler t	and roller bearings designed to e 12 and the deviation of the di ; the out-of-roundness of the t	250	315	0	35	+ 9	-44	60 70	48	30	90	72	45
BAL	1/4		8	ngs -	mit		repairs i may be a value er. ninal bor	earit of 1 giv rol	eari f-rou	315	400	0	40	+10 +12	50 57	80		40	100	80	50
LS	in // (1 //		Inner rings	of single row taper roller bearings	==		ng r ngs r by a nber nomin	er b limit adial	er bea nd the ut-of-1	400	500 630	0	45 50	+12	64	100	1	50	120	96	60
HRT	es i	tolerances	lnn	roller	High	000000000	t during bearings ection by ig numbe the nom	and roller e upper lim accways at gs and radi	12 and the out-	500 500 51 630	800	0	_75	+20	95	120	95	60	140	112	70
antat.""HRUST BALL	Tolerances	toler	5-	s i a	1		ar bearings during re ting wear, bearings m minus direction by a the bearing number. reed bores, the nomin ball and roller bearin	e up race gs al	Table 1 Table 1 n + ; th	800	1000	0	-100	+30	130	140	115	70	160	130	8
	Tol	Width	d out	gular- scarir g tap earing	Low		bearings g wear, t inus dire ne bearin d bores, ll and ro	ball and and arin	ball a ball a ign +	1000	1250	0									
		12	er an	contact bearings excepting taper roller bearings	-		roller be nounting I the min efore the tapered s of ball	s of ba ed but ces and g bear	of ball in T a sign	1250	1600	0	-160				1				1
	AND		ul.		High	000000000000000000000000000000000000000	and roll ow moun ward the with tap	ring of fa gnin	give give	N	otes:1	. For rep	lacing b	oall and ro	ller beari	ngs du	ring re	pairs o	f autom	obiles,	tract ings 1
	F.			d _{min} .	Low		 Point Control Contrecont Control Control Control Control Control Control Control	retery. The work of inner rings of ball and roller bearings with tap retery. The width of inner rings of ball and roller bearings are and bearings are not standardized but the uppor limit of the ring wid rances for stand runnut of faces and raceways are given for inspe- rances for stand runnut of faces and raceways are given for inspe- nout of rings of self-aligning sam radia roller bearings root of rings of self-aligning radia radia roller bearings	of inner rings of b of inner rings of b t the values given in teter "dm" with a sig	agricu be ma outsid	itural al	nd other	e standa	oall and ro ery, if the ard class o d the plus og. Such b	of accurat	cy but	with t	he tole	rance 2	olerano	re on
		nces		d _{max} .	Hgh	1200805433 1200805433	M" I I I I I I I I I I I I I I I I I I I	lth o not ial r s of	f the f the eter		diameter	r or me o	uter m	of self-al	0						
	ц, в	Bore tolerances		ğ			plac he sl ter "	e wid s are or ax ring	1 rui out % of ame	2. check	Axial 1 ed.	runout o	f rings	or serr-a	ngning D	of hear	ings o	f B an	d AB a	accurac	y cla
	Н, І	Bore		ε	Low	1122 1122 1122 1122 1122 1122 1122 112	or re on t	r). rings fc es fc	axia run 150 t of th of th	3. is not				ylindrical olerance o							
	Accuracy H, II, B			, dm	High		800 1000 U V Comparing and a comparing ball a transfer and the base of the shaft show to be shaft show to be shifted town to be analysed with the letter "Mr" placed at and not other basings with a comparing show the prove of the base	 3. If the perturbation states are in the perturbation of the perturbation of the perturbation of the perturbation of a strain runout of a strain runout of the Axian runout of runout o	7. Permissible axial runout 8. The radial runout of 1 hould not exceed 150% of the able for the mean diameter able for the mean diameter "diarx" arguint	4. type high	The tol 102000 a	lerance ze ccording	one of t to GOS	olerance o all bearin T 294–41	igs accord may be e	ang to exanded	i by a	value	equal to	the p	ermis
	of Ac		ore	5		^{up} 0 30 30 500 500 500 500 500 500 500 500	tes tes sarin ked	ne p oler he to vial	erm inot and and			inn light i	cories (1	.) up to D-	.80 mm, fo	or extra	a-light	series	(7) up t	o D-25	0 mm
			inal b	of bearing (d)	1		0 I N O I	3. T 4. T 5. T 6. A 6. A		for li	ror ext ght serie	es up to l	D-315 m	not given	in this ta	ble are	specia	1.			
	Classes		Nom	5		over 30 315 500 500 500 500 500 500 500 500 500 5	If the toler	dm of t	7. 8. 8. should table table	0										_	_
											2	T	AN	١K	01	M	P		<u>R</u> 1		_
4	40	D		S 1	Γ.	ANKOI	MPC) R 1													
	1			وي المحمد المحمد الم				•	6).4-5 x 632												

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

							•										۰					Τa	ble 1
14	•	501	tout		C and CA		<i>∞</i> 0	0 0	10	12	Ì	}	1		RADIA	L AND R	DIAL-TI	IRUST B	ALL ANI	ROLLE	R BEAI	RINGS	
Table		TOICLAILCO	Axial runout of raceways		A and C	ł	13	r 8	18	0	20	23	27	Classes of	Accurac	y A, C and	CA Tolerance	es in μ (1	<i>u</i> = 0.001	mm)	Out	er Ring To	heranco
H		- Bui	4º	-		-							_			1	<u>·</u>	s for outside		Rad	ial out	Axial ru racev	nout of ays
	3	Inner King	Radial runout		C and CA		ŝ	τ Α Ο	<u>مر</u>	9	.	1	!	ou	ninal side neter D)		dia	meter				of accuracy	
	1	9	Rad	accuracy	A and AB	over	S	υ u		8	10	12	5	535	D) nm	1	Dm	D _{max} .	D _{min} .	A and CA	C .	A and CA	с
					C and, A CA	10 JON	4	4 v	<u>م</u> د	9	1	1	1	over	up to	High limit	1	High limit	1	1	3	13	8
	SDNI		Axial runout of faces	Classes										-	18 30	-2 -2	-6 -7	0	<u> </u>	5	3	13	8
	EAR		Axla		A and AB		7	Γ α	° °	9	10	12	13	18 30	50	- 2	- 8	0	-11	7	4	13	8
	ERB		aces		C and CA		4	4 u	ഹം	9	1	1	1	50	80	- 3	10	0	-13 -15	. 8 12	5	13 15	8
	ROLLER BEARINGS	(î	Face surfaces not parallel		AB C		7	°	 o oo	, <u>e</u>	0	12	13	80 120	120	- 4	-12	0	-18	13	8	18	10
	â	= 0.001 mm)	Fac		v									18 30 50 80 120 150	180	- 6	18	0	-25	15	9	20	12 14
	L AND	= 0.0(sou	ier rings	Low	-120	-150		300	360	-420	-480	180	250	- 7	22	0		17 20	10	23	14
	BALL	7		iner rh	or single row taper roller bearings									120 150 180 250 315 400 500	315	1	28 30	0	-40	23	-	30	-
		in µ	tolerances	Ē,	rollor	High	0	0 0	> c	0	0	0		400	500		35	0	45	27		33 40	-
	THR	nces	th tole	2-	lact Ing ngs	Low limit	60	72	- 1 06 [2]	-150	180	210	240	500	630		40	0	50	33			
	IAL	Tolerances in μ (1	Width	id out	ar-con except	33	1	1	1		1	Ĩ	1	No No	tes: 1. 7	Faper of ou out of ring	tside cylin	ndrical su	rface is ne	ot exceed d radial r	50% of oller be	the tolera arings is r	nce on ot chec
	AND RADIAL-THRUST	Г		Inner a	and angular-contact bearings excepting taper roller bearings	High	0	0	0 0			0	0		xial run	out or ring	S OF SCIE 4						
			-	<u> </u>	d _{min.}	Low	0	12	-15	07-52	3 6	-35	40			•							
	RADIAL	AB and CA	8			+		•]				1								• ,			
•	RA	VB an	tolerances		d _{max} .	High	0	•	0 0		, o	0	0		,								
		ů.	Bore to			Low	8	9 1	12	1 2	2 1 1	1 87	-35				• •						
		tcy À	_		ďm	High		r,	4, 1		2 1	• 00											
		cours	-	<u> </u>		_	· ·		 			1		unit									
		s of A		al bor earing		up to	30	. 20	8	120	250	315	400	Axia				.`					
		Classes of Accuracy À, C,		Nominal bore of bearing (d)	ν E	over	-1	30	50	80	120	250	315	C T T T T T T T T T T T T T T T T T T T	• •								
		0					1								-		NI	10	1.64	D		T	
4	2		S	Т	Α	Ν	K	G		N	1	Ρ	0		S	ΤA	N	<u>NU</u>	IIV				

			• •								ble 1	「山田」
										Та	ble 1	8 8
				BALL	rhrusi	BEAR	NGS		•			100N
			c	lasses o	f Accura	су Н, В	and A				. :	
		To	lerances	on Bore	s and O	utside D	iameters	, Runout	:			0,000.40
			Т	olerances	in μ (1	$\mu = 0.$	001 mm)					No.
Non diam d, d		Toler for t	ances pores	Toleran outs diam	side ieter	Raceways paralle stationa rotating" and dou	of opposit l (axial run ry "loose" light" ring ble thrust l	e faces not out) for flat and s of single ocarings	thee	l runout ccentrici ays of re tight" ri	(twice	
	m			_				Class of acc		r		
over		High limit	Low limit	High limit	Low limit	н	. В	A not ove	н	В	A	
												ĥ
_	30	0	10	0	- 30	15	10	5	40	30	15	
30	50	0	-12	0	- 36	15	10	6	40	30	18	
50	80	0	-15	0	- 45	20	10	7	50	40	22	ŀ
80	120	0	20	0	- 60	25	15	8	50	40	26	
120	180	0	25	0	75	30	15	10	60	50	30	
180	250	0		0	- 90	40	20	15	60	50	36	
250	315	0	-35	0	-105	50	25		70	60		
315	400	0	40	0	-120	60	30		80	60		
400	500	0	45	0	135	60	30		80	60		
500	630			0	—180		•					
630	800			0	225							

Note: Tolerances on diameters of "loose" rings of ball thrust bearings mounted with great clearances are tripled.

S

* The values of permissible out-of-parallelism and runout are fixed in accordance with the dimensions of the "loose" ring bore.

TANKOIMPORT

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13

CORNER CHAMFERS OF BALL AND ROLLER BEARINGS*

The mounting corner chamfers of bearings, which should clear the fillet radius in the housing or on the shaft, are made either symmetrical (Fig. 15) or with a step on the face surface (Fig. 16).

The maximum permissible fillet radius on the shaft and in the housing, the corner chamfer limits and the minimum shoulder heights on the shaft and in the housing are given in Table 17, below:

Dimensio	ns of bearing corner c	hamfers	Max. fillet radius on shaft or in housing	Shoulder height
rnominal	^r max.	r _{min} .	r ₁	^h min.
0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 5 6 8 10 12 12 15	0.4 0.5 0.7 0.8 1.5 2.1 2.7 3.3 4 4.5 5.2 6.3 7.5 10 12.5 15 19 23	0.1 0.2 0.2 0.3 0.7 1.1 1.3 1.8 2.3 2.5 3 3.7 4.7 6 7.5 9.5 12 14	0.1 0.2 0.3 0.6 1 1. 2 2.5 3 4 5 6 8 10 12	

TANKOIMPORT

45

* For more detailed information see GOST 4253-48

CIA-RDP81-01043R002200240001-6

S

•

0

	TIN	CD	IME	NSIO	NS C)F T	APER	ROLI	ER B	EAR	ING	S		s	eries 7	500	Тab	le 20			5	Series '	7600	Tab	ole 2
MOON		u p			-15	<u>"</u> -1†	, <u>a</u> 2	•				1	Dimensio	ns in m	m				Dim	ensions	in m	im 			
				T				-	-				Bearing number	Dı max.	d, min.	d, min.	a, min.	a, min.	Bea	ring nber	D, max.	dı min.	d _{s.} min.	a _l min.	a _s min.
					in the second		\square							37	52	58	3	4		504	27	43	47	· 3	4
				- d	<u>я</u>			5					7506 7507	43	61	67	4	5	70	305	33	53	57 66	3	5 5.5
				([7508 7509	48 53	68 73	75 80	4 4	5.5 5.5		506 507	38 43	61 68	74	5	7.5
			•		- 700	1000	<u></u>						7510	58	78	85	4	5.5	7	608	50 56	76 85	82 93	5 5	8
				1	4		<u>////</u> .	L .					7511 7512	63 69	87 95	94 102	5 5	5.5 5.5		609 610	50 62	94	102	5	9
				Tabl		Fig. 17					Тab	le 19	7513	75	105	112	6	5.5		611	67	103 112	111	5 5	10 11
imensions		ries 72	00	1 4 6 5		1	Dimensior		e ries 73 m	00			7514 7515	80 85	108 113	117	6 6	6		612 613	73 80	121	120	6	11.5
imensions		<u> </u>				Í					۹.		7516	90	122	132	6	7		614	.85	129	140 149	6	11.5
Bearing number	D _i max.	dı min.	d, min.	a _t min.	n, min.		Bearing number	D ₁ max.	dı min.	min.	min.	min.	7517	96 102	130 138	140 150	7	8		615 616	91 97	138 147	149	6	13
7002		33	36,5	3	2		7302	22	35	38	3	3	7518 7519	102	146	160	7	10		617	102	155	167	12	14
7203 7204	23 26	39	43	3	3		7303	25	39	42 47	3	3	7520	114	155	168 178	7	10 10		618 7619	108 113	163 171	177 186	12	14
7205 7206	31 37	43 52	48 58	3	3 3		7304 7305	27 33	43 53	57	3	3	7521	120	163	188	9	10		7620	121	183	200	12	16
7207	43	61	67	4	3		7306 7307	38 43	61 68	66 74	35	4.5	7524	135	184	203	10	11		7621 7622	127 135	193 205	209	12 14	17 17
7208 7209	48 53	68 73	75 80	4	3.5 4.5		7307	50	76	82	5	5	7526	145 157	199 215	218	10 10	11 12		7624	145	219	239	14	18
7210	58	78	85	4	4.5		7309	56	85 94	93 102	5 5	5	7520	168	233	255	10	13							
7211 7212	63 69	87 95	94 102	5 5	4.5		7310	62 67	103	111	5	6				L		<u> </u>	L						
7212	75	105	112	6	4.5		7312	73	112	120 130	5	7 7.5					<i>.</i> .								
7214 7215	80 85	108 113	117	6 6	5		7313 7314	80 85	1	140	6	7:5				• .									
7216	90	122	132	6	6		7315	91 97	138 147	149 159	· 6	8.5 9					•				•				
7217 7218	96 102	130	140 150	7	6		7316 7317	102		167	7	10													
7219	- 108	146	160	7	7	·	7318	108		177 186	7	10 11											•		
7220 7221	114 120	155 163	168 178				7319 7320	113		200	7	12													
7222	125	171	188	9	9		7321	127		209 222	12 14	12 12				. •						,			
7224 7226	135 145	1					7322 7324	135	1		14												•		•
7228	157	215	237	.12	. 10				· ·													,		-	
7230	168	233	3 255	12	10				1			Ļ	See.		Т										_

Declassified in Part

Sanitized Cop

Approved for

Release 201

/08/13

INSTRUCTIONS FOR SELECTING ANTIFRICTION BEARINGS

GENERAL INSTRUCTIONS

In the selection of the type and size of ball and roller bearings the following factors are to be considered:

a) The magnitude and the direction of the load (radial, thrust or combined see Fig. 18 a, b and c);

b) The nature of the load (constant, variable, or impact);

c) Speed of rotating ring of bearing (r. p. m.);

Desired life (expected term of service expressed in hours);

Declassified in Part

e) Surrounding atmosphere (temperature, humidity, acidity, etc.);

f) Requirements arising from the design of the machine assembly (necessity for self-alignment to compensate for shaft or housing misalignments, provision for axial movement of shaft, the desirability of mounting the bearing directly on the shaft or on either a clamping or a clamping-stripping sleeve; necessity for adjusting radial and axial clearance of bearing, available space for the assembly, rigidity, accuracy of running, etc.);

TANKOIMPORT

Sanitized Copy Approved for Release 2013/08/13

g) Cost of the bearing.

S

This last factor is very important in decreasing the cost of the machine as a whole. For this reason, it is inexpedient to use more expensive double row selfaligning roller bearings if it is possible to ensure normal operation with other types of bearings as for instance, self-aligning radial ball bearings or bearings with cylindrical rollers. With the same aim in view bearings of standard accuracy should be used when possible and for assemblies which do not require accurate running, bearings class "O" or "HO" should be used (see GOST 4793-49).

When selecting bearings, it is not advisable to fix an excessively large term of service (expected life) as this surplus capacity increases the size of the selected bearing and consequently will result in the development of a heavy and expensive machine.

The following sequence should be observed in selecting bearings:

a) The type of bearing is selected proceeding from the operating conditions and design of the given bearings assembly in accordance with the directions given in the section "Characteristics of the Main Types of Antifriction Bearings" of this catalogue;

b) The size of the bearing is determined in accordance with the acting loads, speed and required term of service;

c) The class of accuracy of the bearing is established taking into consideration the requirements for the accuracy of running of the assembly.

The required size of bearing is chosen by means of its capacity coefficient "C". This coefficient is the most essential rating basis of the bearing and depends upon the internal construction of the bearing, the material used in its manufacture and a number of other factors.

In order to insure uninterrupted function of the bearing unit at high speeds (in this case the acting loads should be of moderate rate) not only the correct design and type of bearing is to be considered but special attention must be paid to the bearing unit design, to the seating surfaces of the bearing and to the bearing lubrication which should correspond to the adequate operating conditions.

Mounting conditions for high speed units are of decided importance and in particular clearance adjustment of angular-contact bearings.

Therefore, if the machine designer has no sufficient experience in solving all these problems it is suggested that the Supplier be consulted.

COMPUTATION OF THE EXPECTED LIFE OF BEARINGS

The expected life of a bearing is understood to be that period of time, expressed in hours of operation, for which not less than 90 per cent of a lot of bearings should operate, at identical conditions, without showing any traces of fatigue of the metal. Typical signs of fatigue are traces of crumbling of metal on the working surfaces and apparent as pitting or scaling (flaking)*.

* See GOST 520-55, paragraph 19.

The expected life of any given bearing depends on the magnitude and direction of the loads, speed, capacity coefficient and a number of other factors, effect of which on the expected life will be taken up lower.

The relation between the computed life expectancy "h", equivalent load "Q", speed "n" and capacity coefficient "C" is expressed by the following empirical equation:

 $Q(n \cdot h)^{0.3} = C \tag{1}$

This formula is valid for speeds of n > 10 r.p.m. but not exceeding the limiting speed permissible for any given bearing. For speeds "n", from 1 to 10 r.p.m. "C" is calculated as for 10 r.p.m. For n < 1 r.p.m., the load is considered to be static and, in the selection of a bearing, is compared with the permissible static load of a given bearing.

The capacity coefficient, limiting speed and permissible static loading for standard bearings, excepting flexible roller bearings, are indicated in the bearing dimension tables of this catalogue.

Due to the special conditions met with the computations for flexible roller bearings, this catalogue indicates the permissible loads for such bearings.

The capacity coefficient for bearings without rings is indicated in the catalogue for conditions in which the surface hardness of the bearing race in the housing or on the shaft is not less than $R_c = 60$.

EQUIVALENT LOAD

The equivalent load Q takes into consideration the nature and direction of the load, as well as special features of the kinematic arrangement and temperature conditions of the assembly.

For radial bearings the equivalent load is defined as:

$Q = (R \cdot K_k + m \cdot A)$	к. к.	(2)
$Q = (R \cdot R_k + m \cdot R)$	17.9 . 17.6	(2)

for radial-thrust bearings as:

 $\mathbf{Q} = [\mathbf{R} \cdot \mathbf{K}_{k} + \mathbf{m} (\mathbf{A} - \mathbf{S})] \mathbf{K}_{b} \cdot \mathbf{K}_{t}$

(3)

(4)

Sanitized Copy Approved for Release 20

•

S

and for thrust bearings as:

The values included in the formulae (2, 3 and 4) are defined as follows:.

Declassified in Part

R — radial load in kg;

 $Q = A \cdot K_b \cdot K_t$

A — thrust load in kg;

S

 S — axial force (reaction) appearing in the bearing as a result of the radial load (existing only in the installation of radial-thrust bearings);

TANKOIMPORT

- m coefficient which takes into account the different effect of the radial and thrust load on the bearing term of service;
- $K_b coefficient$ which accounts for the effect of the nature of the load on the bearing term of service;
- K_t coefficient which takes into consideration the temperature conditions and its effect on the term of service;
- K_k coefficient which accounts for the effect of which of the bearing rings rotates in reference to the load vector upon the term of service.

The values of the coefficients $K_{\rm b},\,K_{\rm b},\,K_{\rm k}$ and m are indicated in Tables 22, 23, 24 and 25.

SELECTION OF RADIAL BALL AND ROLLER BEARINGS

These bearings are selected with the aid of the formula:

 $C = (R \cdot K_k + m \cdot A) K_b \cdot K_t (n \cdot h)^{0.3}.$

This formula is obtained by combining equation 1 and formula 2. To facilitate computations, the value $(n \cdot h)^{0.3}$ may be taken from Table 28.

(5)

An example of the selection of a radial ball bearing as follows:

Considering the operating conditions of the assembly, a single row ball bearing has been chosen. It is subject to the following loads: radial R = 550 kg and thrust A = 270 kg at a speed of the outer ring of n = 1250 r. p. m. The load vector is stationary in reference to the inner ring. During operation the bearing is subject to light shocks and small short-time overloads. The working temperature of the bearing does not exceed 100° C. The desirable expected life is 5000 hours.

It is necessary to determine the size of the bearing, suitable for the above conditions, if the shaft has a diameter of 95 mm.

The capacity coefficient is determined from formula: $C = (R \cdot K_k + m \cdot A) K_b \cdot K_t (n \cdot h)^{0.3}, \quad (5)$ where: $K_b = 1.2$ (see Table 22), $K_t = 1.0$ (see Table 23);

 $K_k = 1.4$ (see Table 24). Coefficient "m" is determined from Table 25 which indicates m = 1.5; however, since $\frac{R}{A} = \frac{550}{270} \approx 2$, "m" is to be increased by 15%. The final value

is m = 1.5 \cdot 1.15 = 1.725. Substituting these values of the coefficients in formula (5), the value of coef-

ficient "C" is determined: $C = (550 \cdot 1.4 + 1.725 \cdot 270) \ 1.2 \cdot 1.0 \ (1250 \cdot 5000)^{0.3}$

according to Table 28, $(1250 \cdot 5000)^{0.3} = 110$ and consequently C ≈ 180000 .

NKOIMPOR

the formula:

S

Δ

Therefore, the given working conditions require a bearing capacity of which coefficient "C" is not less in value than 180000. The single row ball bearing, number 319, fully satisfies this requirement.

On the selection of cylindrical roller bearings only the radial load is taken into consideration in accordance with the formula:

 $C = R \cdot K_k \cdot K_b \cdot K_t (n \cdot \dot{h})^{0.3}.$ (6)

As a rule, these bearings are to be used in machine assemblies where they are subject only to a radial load. Certain designs of cylindrical roller bearings can, if necessary, withstand small accidental thrust loads which can be neglected in expectant life computations.

SELECTION OF RADIAL-THRUST BEARINGS

The formula for the selection of radial-thrust bearings is: (7)

 $C = [R \cdot K_k + m (A-S)] K_b \cdot K_t (n \cdot h)^{0.3}.$ Due to the angular-contact between the balls or rollers and the rings, the action of the radial load in radial-thrust ball or roller bearings creates a force S directed along the shaft axis (Fig. 19). This force, to some extent, relieves the bearing of the acting thrust load.

In some cases, with a definite ratio of radial loads on two bearings installed with unlike faces (tandem arrangement) toward each other, these axial forces compensate each other and consequently need not be taken into consideration in the computations. The equivalent load Q is then determined from formula (2).

ANKOIM р OR 52 S

If the axial components do not compensate each other, the equivalent radial load is computed by one of the formulae of Table 26. These formulae have been compiled for various arrangements of radial-thrust bearings and various ratios of radial load R, thrust load A and axial component S. The value of the axial component S of the radial load R is computed from the formula:

$S \approx 1.3 \text{ R tg } \beta$

where β is the angle of contact between the balls or rollers and the race of the outer bearing ring.

Approximate values of the angle $\boldsymbol{\beta}$ are:

Angular-contact ball bearings, type 36000 — 12°, type 46000 — 26°, type 66000 - 36°.

Taper roller bearings, type 7000 — 11° to 15°, type 27000 — 25° to 29°.

The value of coefficient "m" for tentative computations can be taken from Table 25. For more exact computations, it can be determined from the formula:

$$m = \frac{1}{2.6 \text{ tg } \beta}$$

In selecting double row or fourrow taper roller bearings, in case of thrust loads the latter are considered to be carried by only one row of rollers.

The capacity coefficient of one row of rollers is determined by dividing the tabulated coefficient "C" by 1.70 for double row and by 3.0 for fourrow bearings. The equivalent load for double row taper roller bearings is computed from

$Q_1=0.5\,R\!+\!0.4\,A\,\cot\!g\,\beta.$

The following is an example of the selection of radial-thrust ball bearings: two angular-contact ball bearings are to be installed in the assembly in an arrangement illustrated by Fig. 20. The following loads act on the bearings: $R_1 = 100$ kg,

53

Declassified in Part ppy Approved for Release 2013/08/13

۲

6

Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R00220024000

 $R_2=210~{\rm kg}$ and $A=90~{\rm kg}$ at a shaft speed of $n=5000~{\rm r.\,p.\,m.}$ The load vector moves in relation to the inner ring. During operation, the bearing is subject to moderate shocks of a vibrating load. The working temperature does not exceed 60° C. The desirable expected life is 2000 hours. The shaft is 40 mm in diameter, It is necessary to determine the sizes of the bearings suitable for the given conditions.

In this case $R_1 < R_2, \, A \, > \, O$ and consequently the equivalent loads should be , determined in accordance with arrangement 15 of Table 26, which indicates: a) for bearing 1:

$$Q_{1} = \left\{ R_{1} \cdot K_{k} + m \left[A + (S_{2} - S_{1})\right] \right\} K_{b} \cdot K$$

For angular-contact ball bearings with a contact angle of 26°, $m\,=\,0.7$ (Table 25). The axial components S of the radial loads are determined from the formulae: $S_1\,{=}\,1.3~R_1$ tg β_1 and $S_2\,{=}\,1.3~R_2$ tg $\beta_2.$ For a contact angle of 26°, tg $\beta = 0.487$, then:

$$S_1 = 1.3 \cdot 100 \cdot 0.487 = 63$$
 kg
 $S_2 = 1.3 \cdot 210 \cdot 0.487 = 133$ kg

Under the given conditions the following coefficients are valid for both bearings:

$$K_b = 1.5$$
 (Table 22);
 $K_t = 1$ (Table 23);
 $K_k = 1$ (Table 24).

Therefore: $Q_1 = \left\{ 100 \cdot 1 + 0.7 \left[90 + (133 - 63) \right] \right\} \cdot 1.5 \cdot 1.0$

$Q_1 = 318 \text{ kg}$

The capacity coefficient of bearing 1 should equal: $C = Q_1 \; (n \cdot h)^{0.3}; C = 318 \; (5000 \cdot 2000) \; ^{0.3} \approx 40000.$

This capacity coefficient, for an angular-contact ball bearing with a bore of 40 mm, corresponds to bearing number 46208 with dimensions 40×80×18 mm. b) for bearing 2:

 $\textbf{Q}_{2} = \textbf{R}_{2} \cdot \textbf{K}_{k} \cdot \textbf{K}_{b} \cdot \textbf{K}_{i}$

and after substituting the numerical values:

 $Q_2 = 210 \cdot 1.0 \cdot 1.5 \cdot 1.0$

 $Q_2 = 315$ kg.

Declassified in Part

STANKOIMPORT

The required capacity coefficient is determined from the equation: $C = Q_2 \, (n \cdot h)^{0.3}$

 $C = 315 (5000 \cdot 2000)^{0.3} = 40000.$ This corresponds to the same bearing, number 46208, as for the first support.

An example of the selection of a double row taper roller bearing as follows:

a double row taper roller bearing with a bore not less than 120 mm is to be selected to suit the following operating conditions: R = 2400 kg, A = 350 kg, n = 250 r. p. m.; the shaft rotates (the inner ring moves in relation to the load vector). The load includes heavy shocks and short-time overloads up to 300%, the expected bearing temperature is 150° C and the desirable expected life is 5000 hours.

The capacity coefficient is determined by the formula:

$$\frac{C}{1.7} = (0.5 \, R \cdot K_k + 0.4 \, A \cot \beta) \, K_b \cdot K_t \, (n \cdot h)^{0.3}$$

where
$$K_b = 3$$
 (Table 22);

 $K_t = 1.1$ (Table 23);

 $K_k = 1$ (Table 24);

then: C = 1.70 (1200 + 0.4 \cdot 350 \cdot 5.67) \cdot 3 \cdot 1.1 (250 \cdot 5000)^{0.3} and C = 756,000.

This capacity coefficient corresponds to bearing, number 2097726, having a bore d = 130 mm.

SELECTION OF THRUST BEARINGS

The formula for the selection of thurst bearings is obtained by transforming the formula (5) in which R = O and m = 1 for thrust bearings.

Then:
$$C = A \cdot K_b \cdot K_t (n \cdot h)^{0.3}$$
. (8)

The procedure for selecting the bearings does not differ from that for radial and angular-contact bearings.

SELECTION OF BEARINGS OPERATING UNDER VARIABLE LOADS AND AT VARIABLE SPEEDS

Bearings for assemblies where the load and speed are variable (speed gear box shaft bearings, rope drums, etc.) are selected by means of the equivalent variable cycle load $Q_{E,V,C}$ and the equivalent speed n_{eq}

The alternating loads are taken to be: $Q_1, Q_2, Q_3, \ldots Q_n$ and the corresponding speeds: $n_1, n_2, n_3, \ldots n_n$.

The duration of bearing operation at each load condition in relation to the total term of service in fractions of unity are:

$\alpha_1, \alpha_2, \alpha_3, \cdots \alpha_n$.

Let the speed (r. p. m.) to be "n" (usually taken as the prevailing speed) so that:

$$\beta_1 = \frac{n_1}{n}; \ \beta_2 = \frac{n_2}{n}; \ \beta_3 = \frac{n_3}{n}; \ \ldots \ \beta_n = \frac{n_n}{n}$$

and the equivalent variable cycle load Q $_{\rm E,V,C.}$ is determined (for all bearings except flexible roller bearings) from the formula:

$$Q_{E.V.C.} = \sqrt[3,33]{a_1 \beta_1 Q_1 + a_2 \beta_2 Q_2 + a_3 \beta_3 Q_3^{3,33} + \dots + a_n \beta_n Q_n^{3,33}} (9)$$

In some cases the equivalent variable cycle load can be determined from simplified formulae. If, for instance, the load varies as a linear function from $Q_{\rm min.}$ to $Q_{\rm max.}$, the equivalent variable cycle $Q_{E.V\ C.}$ can be determined with sufficient accuracy from the formula:

$$Q_{E.V.C.} = \frac{Q_{\min.} + 2 Q_{\max.}}{3}.$$

The equivalent load, used when selecting the bearing, is defined as:

 $Q = Q_{E.V.C.} \cdot K_b \cdot K_t \cdot K_k.$

If a combined load is acting on the bearing, the equivalent load is first computed from formula 2 or the formulae given in Table 26.

An example of the computation of the equivalent variable cycle load as follows:

The bearing operates under the following variable conditions:

 $\begin{aligned} & Q_1 = 290 \; \text{kg} \, ; \quad n_1 = \; 640 \; \text{r. p. m.} \\ & Q_2 = 270 \; \text{kg} \, ; \quad n_2 = 1075 \; \text{r. p. m.} \\ & Q_3 = \; 70 \; \text{kg} \, ; \quad n_3 = 2000 \; \text{r. p. m.} \end{aligned}$

The durations of the load variations are, respectively:

56

$$\alpha_1 = 0.2, \ \alpha_2 = 0.3, \ \alpha_3 = 0.5$$

Declassified in Part

The conditional speed is taken as the speed of the third load variation as it is prevailing in the present case so that:

 $n = n_3 = 2000 \text{ r.p.m.}; \text{ then:}$

$$\beta_1 = \frac{n_1}{n} = \frac{040}{2000} = 0.32;$$

$$\beta_2 = \frac{n_2}{n} = \frac{1075}{2000} = 0.537;$$

$$\beta_3 = \frac{n_3}{100} = 1.$$

Substituting the values of α , β and Q in the formula (9) the equivalent variable cycle load is obtained as

$$Q_{\text{E,V.C.}} = \sqrt[3]{0.2 \cdot 0.32 \cdot 290^{3.33} + 0.3 \cdot 0.537 \cdot 270^{3.33} + 0.5 \cdot 170^{3.33}} = 177 \text{ kg}.$$

$$C = Q_{E,V,C_i} \cdot K_b \cdot K_t \cdot K_k (n \cdot h)^{0.3}$$

where: "n" the conditional speed used for computing $Q_{\text{E.v.c.}}$ (in this example $n=2000\ r.\ p.\ m.).$

As an approximate check for the proper selection of bearings operating under variable loads and at variable speeds the following formula can be used to simplify computations:

$$\frac{1}{h} = \frac{a_1}{h_1} + \frac{a_2}{h_2} + \frac{a_3}{h_3} + \dots + \frac{a_n}{h_n},$$
(10)

where $h_1, h_2, h_3, \ldots, h_n$ are terms of service for the bearing in houst at each load conditions and are determined from Table 28 from the equation:

$$(\mathbf{n}\cdot\mathbf{h})^{0.3}=\frac{C}{Q\cdot K_{b}\cdot K_{t}\cdot K_{k}}.$$

The following is an example of the checking of the selection of a bearing operating under variable load and at variable speeds:

Bearing, number 46 209 (C = 44 000), operates under the following conditions:

$$\begin{split} \mathbf{I} & -\mathbf{Q}_{1} = 530 \text{ kg}; \quad \mathbf{n}_{1} = `630 \text{ r. p. m.}; \quad a_{1} = 0.2 \\ \mathbf{II} & -\mathbf{Q}_{2} = 475 \text{ kg}; \quad \mathbf{n}_{2} = 1000 \text{ r. p. m.}; \quad a_{2} = 0.3 \\ ^{*} \text{ III} & -\mathbf{Q}_{3} = 200 \text{ kg}; \quad \mathbf{n}_{3} = 2000 \text{ r. p. m.}; \quad a_{3} = 0.5. \end{split}$$

01

ANK

CIA-RDP81-01043R00220024000

ST

Sanitized Copy Approved for Release 2013/08/13

Μ

PORT

57

 $K_b = 1, K_t = 1, K_k = 1$

then:

 $\begin{array}{lll} (h_1 & \ 630)^{0.3} &= \frac{44000}{530} &= \ 83.0 \mbox{ (Table 28); } & \ h_1 &= \ 4000 \mbox{ hours} \\ (h_2 & \ 1000)^{0.3} &= \frac{44000}{475} &= \ 92.6 \mbox{ (Table 28); } & \ h_2 &= \ 3500 \mbox{ hours} \\ (h_3 & \ 2000)^{0.3} &= \frac{44000}{200} &= 220 \mbox{ (Table 28); } & \ h_3 &= \ 32000 \mbox{ hours} \\ \end{array}$

according to formula (10)

$$\frac{1}{h} = \frac{0.2}{4000} + \frac{0.3}{3500} + \frac{0.5}{32000}$$

h \approx 7000 hours.

BEARING SELECTION FOR STATIC LOADS

If a bearing under load is stationary or rotates at a speed less than 1 r. p. m., it should be selected in accordance with its static load capacity.

The bearing data tables in this catalogue include values of the static load capacity of bearings or, as it may be called, the permissible static load Q_{ST} . Loads acting on the bearing should not exceed its static load capacity.

If a bearing operates under impact load or special accuracy of running is required, the permissible static load Q_{ST} of the selected bearing should be twice the acting load.

BEARING SELECTION BY MEANS OF THE EQUIVALENT LOAD TABLE

Besides the bearing data tables, which include the capacity coefficient "C", Table 29 indicates the permissible loads Q in accordance with the speed "n" and the value "C" for a computed expected life of h = 5000 hours.

If it is necessary to select a bearing for some other expected life, the correction factor Kg is added to the formula for computing the equivalent load Q. This factor depends on the value of the desirable expected life. Values of the correction factor Kg are given in Table 27.

The corresponding capacity coefficient is determined from Table 29 in accordance with the computed equivalent load Q and the given speed "n". Using this capacity coefficient and the tables of bearing data, the required size of bearing is selected.

Declassified in Par

Δ

58

NKOIMPORT

Sanitized Copy Approved for Release 2013/08/13

An example of the selection of a bearing using the equivalent load table as follows:

The operating conditions require a single ball thrust bearing, on a shaft 120 mm, subject to a thrust load of 1700 kg at a shaft speed of 500 r. p. m. The load acts with considerable shocks and vibration. The temperature is not over 50° C and the desirable expected life is 2000 hours.

It is necessary to determine the size of the bearing.

The equivalent load is determined from the formula:

$$Q = A \cdot K_b \cdot K_l \cdot K_g$$

where:
$$K_{b} = 2.0$$
 (Table 22);

 $K_t = 1$ (Table 23);

This load at a speed of 500 r.p.m. in Table 29 corresponds to a capacity coefficient of 220000.

Using this value, the bearing, number 8224, having dimensions of $120 \times 170 \times 39$ mm, is selected from the ball thrust bearing data table.

STANKOIMPORT •

CIA-RDP81-01043R0022

	•
	Table
APPROXIMATE VALUES OF COEFFICIENT K _b	
Nature of the bearing load	Kb
Steady load, no shocks	1
Light shocks. Short-time overloads up to 125% of normal (computed) load	1 to 1
Moderate shocks. Vibrating load. Short-time overloads up to 150% of normal (computed) load	. 1.3 to
Loads with considerable shocks and vibration. Short-time overloads up to 200 $\%$ of normal (computed) load	1.8 to
Loads with heavy shocks and short-time overloads up to 300% of normal (computed) load	. 2.5 t

Table 23

VALUE O	F TEMPE	RATURE	FACTO	R Kt		
Bearing working temperature, °C	125	150	175	200	225	250
Kı	1.05	1.1	1.15	1.25	1.35	1.4

Table 24

0

\$ Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

VALUES OF COEFFICIENT Kk

Which ring rotates in relation to the load vector	Kk
Inner ring	1
Outer ring: Self-aligning bearings	1.1 1.4

STANKOIMPORT

60 •

Table 25 VALUES OF COEFFICIENT m m Bearing bore, mm Type and series designation Type of bearing all bores 1.5 100, 200, 300, 400 Single row ball bearings 2.5 3.5 4.5 up to 17 20 to 40 45 and over 1200, 11200, 111200 Self-aligning ball bearings, light series 3 4 1300, 11300, 111300 up to 30 35 and over Ditto, medium series 2.5 1500, 1600, 11500, 11600, 111500, 111600 all bores Ditto, wide series 4.5 all bores 3500, 13500, 113500 Self-aligning roller bearings, light series 3600, 13600, 113600 3.5 all bores Ditto, medium series 1.5 0.7 0.5 all bores 36000 46000 66000 Single row angular-contact ball bearings 2 all bores 6000 Magneto ball bearings 7100 7200 7500 1.5 all bores Taper roller bearings, extra-light and light series 1.8 all bores 7300 7600 Ditto, medium series 0.7 27300 all bores Ditto with large taper angle (steep angle)

Note: Coefficient "m" depends on the ratio of the radial R and thrust A loads;

 $\frac{R}{A}$ > 2 the value is taken directly from the table; at ·

 \approx 2 the value "m" is increased by 15%; . R at

pprox 1 the value "m" is increased by 25%; for pure thrust loads the value "m" is increased A R at by 35 % (this does not concern bearings, types 46000, 66000 and 27300).

At $\frac{R}{N} > 5$, the thrust load on single row and angular-contact ball bearings, as well as

A taper roller bearings, may be neglected. The coefficient "m" depends on the angle of contact between the raceway and the balls or rollers.

STANKOIMPORT • . 61 0

		VALUES OF COEF	FICIENT R		Table 2'
Desirable xpected life, hours	Kg	Desirable expected life, hours	Kg	Desirable expected life, hours	Kg
500 750 1000 1500	0.50 0.56 0.62 0.70	2000 3000 5000 7500	0.78 0.83 1.00 1.12	10000 15000 25000 50000	. 1.24 1.40 1.65 2.00

STANKOIMPORT

ullet63

Formulae for De	termini	ng Equiva	lent R	adial Loads for	Radial-Thrust Bearings
Diagram of bearing arrangement and acting forces	Arrange- ment No.	1	Ratio of	forces	Formulae
acting torees	1	R ₁ = 0	$A \ge 0$	$A \leq S_2$	$Q_1 = m (S_2 - A)K_b \cdot K_t$ $Q_2 = R_2 K_K \cdot K_b \cdot K_t$
A. A.	2	$R_{\bullet} \pm 0$	A>0	$A \ge S_2$	$Q_1 = O$ $Q_2 = [R_2 \cdot K_K + m(A - S_2)] K_b \cdot K_t$
	3	$\begin{array}{c} R_1 \neq 0 \\ R_2 = 0 \end{array}$	A≥0	any ratio of A and S ₁	$Q_1 = R_1 \cdot K_K \cdot K_b \cdot K_t$ $Q_2 = m (A + S_1) K_b \cdot K_i$
	4	$R_1 = R_2$	$A \ge 0$	-	$Q_1 = R_1 \cdot K_K \cdot K_b \cdot K_t$ $Q_2 = (R_2 K_K + m A) K_b \cdot K_t$
	5	$R_1 > R_2$	<i>A</i> ≥0		$Q_1 = R_1 \cdot K_K \cdot K_b \cdot K_t ; Q_2 = \{R_2 \cdot K_K + m [A + (S_1 - S_2)]\} K_b \cdot K_t$
	6		$A \ge 0$	$A \leq (S_2 - S_1)$	$Q_1 = \langle R_1 \cdot K_K + m [(S_2 - S_1) - A] \rangle$ $K_b \cdot K_t; Q_2 = R_2 \cdot K_K \cdot K_b \cdot K_t$
	7	R ₁ <r<sub>2</r<sub>		$A > (S_2 - S_1)$	$\begin{array}{l} Q_1 = R_1 \cdot K_K \cdot K_b \cdot K_t \ ; Q_2 = \left\{ R_2 \\ K_K + m \left[A - (S_2 - S_1) \right] \right\} K_b \cdot K_t \end{array}$
A Rel Se Rel	. 8	any ratio of R ₂ and R	A>0	A > S,	$Q_1 = R_1 \cdot K_K \cdot K_b \cdot K_t$ $Q_2 = [R_2 \cdot K_K + m(A - S_2)]$ $K_b \cdot K_t$
bearing	1	$R_1 = 0$	1.	any ratio of	$Q_1 = m \left(A + S_2\right) K_b \cdot K_t$

any ratio of A and S₂

 $A \leq S_1$

 $A \ge S_1$

 $A < (S_1 - S_2)$

 $A > (S_1 - S_2)$

any ratio of A and $(S_2 - S_1)$

 $A > S_1$

 $\begin{array}{c} R_1 = 0 \\ R_2 \neq 0 \end{array}$ $A \ge 0$

 $\begin{array}{c} R_1 \neq 0 \\ R_2 = 0 \end{array}$

 $R_1 > R_2$

any ratio of R₁ and R₂

 $A \ge 0$

A > 0

 $\dot{A \geq 0}$

A > 0

9

10

11

12 $R_1 = R_2$ $A \ge 0$

13

14

-15 $R_1 < R_2$ $A \ge 0$

16

A R2 R1

•

Table 26

 $Q_1 = m (A + S_2) K_b \cdot K_t$ $Q_2 = R_2 \cdot K_K \cdot K_b \cdot K_t$

 $Q_1 = R_1 \cdot K_K \cdot K_b \cdot K_t$ $Q_2 = m (S_1 - A) K_b \cdot K_t$

 $\begin{aligned} Q_1 = [R_1 \cdot K_K + m(A - S_1)] \\ K_b \cdot K_t ; Q_2 = 0 \end{aligned}$

 $Q_1 = (R_1 \cdot K_K + m \cdot A) K_b \cdot K_t$ $Q_2 = R_2 \cdot K_K \cdot K_b \cdot K_t$

 $\begin{array}{l} Q_1 = R_1 \cdot K_K \cdot K_b \cdot K_t ; Q_2 = \left\{ R_2 \cdot K_K + m[(S_1 - S_2) - A] \right\} K_b \cdot K_t \end{array}$

 $\begin{array}{l} Q_1 = \left\{ R_1 \cdot K_K + m \left[A - (S_1 - S_2) \right] \right\} \\ K_b \cdot K_t \ ; \ Q_2 = R_2 \cdot K_k \cdot K_b \cdot K_t \end{array}$

 $Q_1 = \{R_1 \cdot K_K + m[A + (S_2 - S_1)]\}$ $K_b \cdot K_i ; Q_2 = R_2 \cdot K_K \cdot K_b \cdot K_i$

 $Q_1 = [R_1 \cdot K_K + m (\mathcal{A} - S_1)]$ $K_b \cdot K_t; Q_2 = R_2 \cdot K_K \cdot K_b \cdot K_t$

•

. •

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Desirable expected life, hours	Kg	expected life, hours	Kg	expected life, hours	
500 750 1000 1500	0.50 0.56 0.62 0.70	2000 3000 5000 7500	0.78 0.83 1.00 1.12	10000	

62	•	S	Т	Α	Ν	Κ	0	I	Μ	Ρ	0	R	Т

															•	感じます。																		
							- (-		0.3 _	c				,													•						Та	ble 28
						LUE		—		Q 100	125	160	200	250	320	400	Ī	500	630	800	1000	1250	1600	2000	2500	3200	4000	5000	6300	8000	10000	12500	16000	, r.p.m.
p. m.	10	16	20	25	32	40	50	63	80	100	120				-	-		-		00.5	20.0	24.0	26.2	20.0	41.7	44.7	48.0	51.3	55.0	59.0	63.0	67.6	72.5	100
00	8.0	9.2	9.8	10.5	11.2	12.0	13.0	13.8	14.8	1		18.2				24.0		1	- ·		32.0 34.0	34.0 36.3		41.7	41.7	44.0		•		63.0		1 1	77.7	125
25	8.5	9.8	10.5	11.2	12.0	13.0	13.8	14.8	16.0	17.0	18.2			22.4	24.0	25.7	11 1		29.5 32.0	32.0 34.0	36.3			44.7	48.0	51.3				67.6		1 1	83.2	160
60	9.2	10.5	11.2	12.0	13.0	13.8	14.8	3 16.0	17.0			21.0	22.4	24.0	25.7	27.5			32.0 34.0	36.3	39.0	1 1			51.3	55.0				72.5	77.7	83.2	89.0	200
200	9.8	11.2	12.0	13.0	13.8	14.8	16.0			1	21.0	22.4		25.7	27.5	!		32.0 34.0	34.0	39.0	41.7				55.0	59.0	1	67.6	72.5	77.7		89.0	95.5	250
250	10.5	12.0	13.0	13.8	14.8	16.0	17.0	1		1			25.7	27.5	29.5	1 1	1	34.0 36.3	39.0	41.7	44.7	1 1					1 1	72.5	77.7	83.2	89.0	95.5	102	320
320	11.2	13.0	13.8	14.8	16.0	17.0	18.2			1		1	27.5	29.5	32.0	34.0		30.3 39.0		44.7	48.0	1		59.0		1		77.7	83.2	89.0	95.5	102	110	400
400	12.0	13.8	14.8	1	17.0	1	1						1	32.0 34.0		1 1		41.7	44.7	48.0	1	1		63.0	1.			83.2	89.0	95.5	102	110	117	500
500	13.0	14.8	16.0	17.0	18.2	19.5	21.				1	1 .	1	36.3	1	1		44.7		1	1		1		72.5		83.2	89.0	95.5	102	110	117	126	630
630	13.8	16.0	17.0								1	1		39.0	1			48.0	1				67.6	72.5	77.7	83.2	89.0	95.5	102	110	117	126	135	800
800	14.8	17.0	18.2	19.5	21.0	1	1		1					1	44.7	1		51.3	1			67.6	72.5	77.7	83.2	89.0	95.5	102	110	117	126	135	145	1000
000	16.0	18.2	19.5	5 21.0	1				1				1	1		51.3		55.0	1	1	67.6	72.5	77.7	83.2	89.0	95.5	102	110	117	126	135	145	155	1250
250	17.0	19.5	1			1							1			3 55.0		59.0	1	67.6	72.5	5 77.7	83.2	89.0	95.5	5 102	110	117	126	135	145	155	166	1600
600	18.2		1						1	1		1	1		1	0 59.0		63.0	67.6	72.5	77.	7 83.2	89.0	95.5	5 102	110	117	126	135	145	155		1	2000
2000	19.5	1					1						1			0 63.0	1 11	67.6		77.5	83.	2 89.0	95.5	5 102	110	117	126	135	145	155		1	191	2500
2500	1	24.0	1							1	1					0 67.6	1 11	72.5	5 77.7	83.2	2 89.	0 95.5	102	110	117	126	135	145	155	1				3200
3200	22.4		1			1	1		9.0 41 1.7 44				1	1		6 72.	1 11	77.:	7 83.2	2 89.0	0 95.	5 102	110	117	126	6 135	145	155	166					4000
4000	1	27.		1			1			.0 51					1	1	1 11	83.	2 89.0	95.	5 102	2 110	117	126	135	5 145	155	166	178	191				5000
5000	25.7	1	1			1			B.0 51						1	.7 83.		89.	0 95.	5 102	2 110	117	126	3 135	5 145	5 155	5 166	178		1	1			6300
6300		32.						8.0 5				.0 67.				1		95.	5 102	110	111	7 126	135	5 145	5 15	5 16	5 178							8000
8000	29.				1		1		1		.0 67				1	.0 95.	5	102	2 110	117	7 12	6 135	14	5 155	5 16	5 17	3 191	1		. 1				10000
0000	1	0 36.		1					÷ .		1.6 72				1	5 10	:	110	0 117	12	3 13	5 145	15	5 160	3 17	B 19	1 204	1						12500
12500		0 39	1.	1			1					7.7. 83				11		11	7 120	3 13	5 14	5 155	16	6 178	B 19	1 20	4 219					-		16000
16000		3 41	.7 4	1		1					1	3.2 89				10 11	7	12	6 13	5 14	5 15	5 166	5 17	8 19	1 20	4 21	9 235							20000
20000	39			1		1			1	- 1		9.0 95	1		0 1	17 12	6	13	15 14	5 15	5 16	6 178	3 19	1 20	4 21	9 23					- 1			32000
25000	41	1	.0 5			1	· 1	- 1	1				02 11		17 1:	26 13	5	14	15 15	5 16	6 17	8 191	1 20	4 21	9 23	1					1	1.		1.
32000 40000	44	.0 5	1			7.6 7		· ·					10 11	17 13	26 1	35 14	5	15	55 16	6 17	8 19	1 204	4 21	9 23	5 25						1			
40000 50000		11	9.0 6		7.6 7		1		- 1			.	17 1:	26 1	35 1	45 15	5	16	56 17	8 19	1 20)4 219	9 23	85 25		1	1.			- 1		37 43 37 46	1	
63000			3.0 6							102 1	10 1	17 1	26 1	35 1	45 1	55 1	6	17	78 19	1 20)4 21	9 23	5. 25	1								69 50		
80000		1	1	- 1		33.2 8		- 1	102	110 1	17 1	26 1	35 1	45 1	55 1	66 1	78	19	91 20)4 21	9 23	35 25	1 26	59 28	39 30	33	31 35	5 38	su 4!	07 43	<i>³¹</i> ⁴	5 20		
																. 1														•				
. No	ote:	The '	value	es in f	this t	able ł	nave	been	comp	uted	under	the a	ssum	ption	that	100.0	= 2.													,				
			S						_					R					_			Т				-				. /		R	T	

CIA-RDP81-01043R002200240001-6

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13

1

/
•					CAP	ACITY C		N	AND TH									Capacity
apacity			50	100	250	·350	500 Bea	ing speed, 750	1000	1500	2500	3500	5000	7500	10000	12500	16000	Capacity coefficient (C) in thousands
fficient thousands	10	25	50 1				Equivale	nt load, kg,	at an expecte	ed life of 50						• ·	7	1.7
1.7 2 2.4 2.6	66 78 94 100 110	50 60 70 76 82	40 48 58 62 67	33 39 47 50 55	25 30 35 38 41	23 27 32 35 37	20 24 29 31 33	18 21 25 27 29	16 19 23 25 27	15 17 21 23 24	12 15 17 19 20	11 13 16 17 18	10 12 14 15 16	9 10 12 13 14	-8 9 11 12 13	8 9 11 12 13	8 10 11 12	2 2.4 2.6 2.8 2.9
2.8 2.9 3.1 3.4 3.7	114 120 132 144	86 92 100 110 120	70 75 80 • 90 98	57 60 66 72 80	43 46 50 55 60	39 42 46 50 56	35 38 40 45 49	31 33 36 40 44	29 31 33 36 40	25 27 30 32- 36	21 23 25 28 30	19 21 23 25 28	17 19 20 23 25	15 17 18 20 22	14 16 17 18 20	13 14 16 17 19	12 13 14 16 . 17	3.1 3.4 3.7 4.1
4.1 4.3 4.7 5.4 5.9	160 168 184 210 230	126 138 160 174 180	104 114 130 142 146	84 92 105 115 119	63 69 80 87 90	58 64 72 80 82	52 57 65 71 73	46 50 57 62 65	42 46 53 58 59	37 41 47 52 53	32 35 40 44 45	29 32 36 40 41	26 28 33 36 37	23 25 28 31 32	21 23 26 29 29,5	20 21 25 27 28	18 20 23 25 26	4.3 4.7 5.4 5.9 6.1
6.1 6.4 7.1 7.5 8	238 250 276 292 312	188 208 220 236	155 170 180 192	125 138 146 156	94 104 110 118 125	87 96 100 107 114	78 85 90 96 102	69 75 80 85 90	63 69 72 78 83	56 62 65 70 74	48 52 55 59 62	44 48 50 54 57	40 42 45 48 51	35 37 40 43 45	32 34 36 39 41	29 32 34 37 39	27 30 32 34 36	6.4 7.1 7.5 8 8.5
8.5 8.8 9.3 9.6 10	330 342 362 374 390	250 260 274 282 294	204 212 224 230 240	165 171 181 187 195	130 137 141 147	118 126 128 134 142	106 112 115 120 127	94 100 102 106 113	86 90 94 98 103	77 80 84 87 92	65 68 70 74 78	59 63 64 67 71	53 56 58 60 62	47 50 51 53 56	43 45 47 49 52	40 43 44 46 49	37 40 41 43 45	8.8 9.3 9.6 10 10.6
10.6 11 11.3 11.6 12.3	410 430 440 450 . 480	312 324 332 340 360	254 264 270 280 290	205 215 220 225 240	156 162 166 170 180	142 148 152 156 165 168	132 135 140 145 150	117 120 124 130 133	108 110 113 120 123	96 98 100 107 108	81 83 85 90 93	74 76 78 83 84	66 69 70 73 75	59 60 62 65 66	54 55 56 60 62	50 52 53 56 57	47 48 49 52 53	11 11.3 11.6 12.3 12.5
12.5 13 13.5 14 14.6	490 500 530 545 570	370 380 400 415 430	300 310 320 335 350	245 250 265 273 285	185 190 200 208 215 220	175 180 190 196 202	155 160 168 175 `180	. 138 145 150 156 . 160	125 - 132 135 142 146	113 115 120 127 130	95 100 104 107 110	88 90 95 98 101	78 80 84 87 90	69 73 75 78 80	63 66 68 71 72	60 62 64 67 69	55 57 60 62 64	13 13.5 14 14.6 15
15 15.5 16 16.7 17.1	585 600 620 660 670	440 460 475 490 500	360 360 380 400 410	292 300 310 330 335	230 235 245 250	202 210 215 225 230 245	180 190 200 205 215	170 172 180 185 192	150 155 165 170 175	135 140 145 150 160	115 118 123 125 135	105 108 112 115 123	90 95 100 103 107	85 86 90 93 96	75 78 83 85 88	71 73 76 78 82	66 68 71 73 77	15.5 16 16.7 17.1 18
18 20 21 22 24	700 740 780 840 870 940	530 560 590 635 - 660 710	430 455 490 520 540 580	350 370 390 420 435 470	265 280 295 315 330 355	245 265 285 300 325	215 225 245 260 270 290	205 215 230 240 265	185 195 210 212 235	165 175 180 195 210	140 148 155 165 178	128 132 143 150 163	115 123 130, 135 145	103 108 115 120 128	92 98 105 109 118	87 92 96 101 110	81 85 89 94 102	19 20 21 22 24

Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Declassified in Part -

1

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

							Beari	ng speed,	r. p. m. 1000	1500	2500	3500	5000	7500	10000	12500	16000	Capacity coefficient (C) in thousands
apacity licient (C)	10	25	50	100	250	350	500 Equivalent	750 :	at an expect	ted life of E	000 hrs.			I				
25 26 27 28	970 1010 1060	740 760 800	600 620 650	485 505 520 545	370 380 400 415	340 350 365 380	300 310 325 335	270 280 290 300	245 250 265 275 285	220 225 235 245 255	185 190 200 210 215	170 175 183 190 195	150 155 163 170 175	135 140 145 150 155	122 125 132 138 143	115 119 124 128 133	106 111 115 119 123	25 26 27 28 29
29 30 31	1090 1130 1180 1210	830 860 890 910 940	670 700 720 750 770	565 590 605 625	430 445 455 470	390 405 415 425	350 360 375 385	310 320 330 340 350	295 310 315 323 335	265 275 280 290 300	223 230 235 243 250	203 207 210 220 230	180 190 193 198 205	160 165 170 175 180	148 155 158 162. 168	137 142 147 151 156	128 132 136 140 145	30 31 32 33 34
32 33 34 35	1250 1290 1330 1360 1400	970- 1000 1030 1060	790 820 840 860	645 665 680 700	485 500 515 530	440 460 470 485 500	395 405 420 430 445	350 360 370 385 395	335 340 350 360 370	305 315 325 335	255 265 273 280	235 243 250 255	210 215 223 228	185 193 198 203	170 175 180 185	160 165 170 174	149 153 157 162 166	35 36 37 38 39
36 37 38 39 40	1440 1480 1540 1560	1090 1120 1160 1180	890 910 950 960	720 740 770 780 800	545 560 580 590 600	500 510 530 540 550	445 455 475 480 490	405 420 425 440	385 390 400 410	345 350 360 370	290 295 300 308	265 270 275 280	235 240 245 250 255	210 213 220 225 230	190 195 200 205 210	179 183 188 192 197	170 174 179 183	40 41 42 43
41 42 43 44	1600 1640 1680 1720	1200 1240 1270 1300	980 1010 1030 1060	820 840 860	620 635 650	565 575 590	505 515 530	450 460 470	420 430 440	375 385 395	315 325 335 340	288 295 305 310	265	235 235 240 245	215 220 223	202 205 211	187 191 196	44 45 46
45 46 47 48	1760 1790 1830 1870	1330 1350 1380 1410	1080 1100 1130 1150	880 895 915 935	665 675 690 705	610 620 630 650	540 550 565 575 585	480 490 500 510 520	445 455 470 475	400 410 420 425	340 345 355 360	315 325 330	275 283 290 295	250 255 260	228 235 238	215 220 225	200 204 208 213	47 48 49
48 49 50 52 54 57	1910 1950 2020 2100	1440 1470 1530 1590	1170 1200 1240 1300 1370	955 975 1010 1050 1110	720 735 765 795 840	660 670 700 730 770	600 620 650 685	530 550 570 600	485 505 525 555 585	430 450 470 500 520	370 385 400 420 445	335 350 365 385 405	300 310 325 340 360	265 275 285 300 320	243 250 260 280 290	229 238 248 261 275	221 230 242 255	50 52 54 57 60
57 60 62 64 66	2220 2340 2410 2490 2570	1680 1770 1830 1890 1940	1440 1500 1540 1580	1170 1200 1250 1280	885 915 945 970	810 830 860 890	720 750 770 790 815	640 660 680 700 720	600 625 640 660 680	540 560 580 595 610	455 475 485 500 515	415 430 445 455 470	375 385 395 405 420	330 340 350 . 360 370	300 310 320 330 340	284 293 302 312 321	264 272 281 289 298	62 64 66 - 68 70
68 70 72 74	2650 2700 2800 2880	2000 2060 2120 2180		1320 1360 1400 1440 1470	1000 1030 1060 1090 1120	910 940 970 990 1020	840 865 885 910	740 760 780 810	700 720 740 760	625 640 660 680	530 545 560 575	485 495 510 520	465	380 390 405 415 425	350 360 370 380 390	330 339 348 358 367	306 315 323 332 341	72 74 76 78 80
76 78 80 82	2950 3040 3110 3190	2300 2350	1870 1920	1520 1550	1150 1170 1200	1040 1070 1100	935 960 975	830 850 870	775 800 810	690 710 730	585 600 615	565	490	435 445	400 405 420	376 385 394	. 349 358 366	82 84 86 88
84 86 88 , 90	3270 3270 3350 3420 350) 2470) 2530) 2590	0 2020 0 2060 0 2110) 1630) 1670) 1710	1260 1290	1130 1150 1180 1210	1030	890 920 940 960	835 855 870	5 770	645	590) 525	470 480	428	403 412	375 383	90

Declassified in Part Release 2013/08/13

CIA

3R0022

Approved for

Sanitized C

							Bear	ing speed,	r. p. m.	1500	2500	3500	5000	7500	10000	12500	16000	Capacity coefficient (C) in thousands
Capacity	10	25	50	100	250	350	500	750	1000 at an expected		,0044					·		
92	3580	2700 2770	2200 2260	1790 1830	1350 1380	1230 1260 1290	Equivalen 1100 1130 1150	980 1000 1020	890 920 930 960	800 820 840 860	675 690 705 720	615 630 645 665	550 560 570 590	490 500 510 520	445 ' 460 465 480	422 431 440 449	392 400 409 417 426	92 94 96 98 100
94 96 98 100	3740 3860 3890	2820 2910 2940	2300 2380 2400	1870 1930 1940	1410 1450 1470	1330 1340	1190 1200	1050 1060	970 1010	870 900	730 760	670 700	600 620	- 530 550	485 500	458	420	104 108
104 108 112	4050 4200 4360 4520	3060 3180 3290 3410	2500 2590 2680 2780	2020 2100 2180 2260	1530 1590 1640 1700	1400 1450 1500 1560 1620	1250 1290 1340 1390 1440	1100 1150 1190 1240 1280	1050 1090 1130 1170	940 970 1010 1040	800 820 850 880	720 750 780 810	640 670 700 720	570 590 620 640	520 540 560 580 ·	. - -	=	112 116 120
116 120 124 128	4680 4680 4820 4980 5140	3530 3650 3770 3880	2880 2980 3070 3160	2340 2410 2490 2570	1760 1820 1880 1940	1670 1720 1770 1820	1490 1530 1580 1630	1320 1360 1400 1450	1200 1240 1280 1320 1360	1080 1110 1150 1180 1220	910 940 970 1000 1030	830 860 880 910 940	745 765 790 815 840	660 680 700 720 740	600 620 640 660 680			128 132 136 140
132 136 140 144 148	5300 5450 5600 5750	4000 4120 4240 4350	3260 3350 3450 3550	2650 2720 2800 2880	2000 2060 2120 2170 2240	1930 1990 2040	1680 1720 1770 1820	1490 1530 1580 1620	1400 1440 1480 1550	1260 1290 1320 1370	1060 1080 1120 1160	960 990 1020 1060	860 880 920 940	760 790 810 840	700 720 740 770			144 148 152 158 164
148 152 158 164	5910 6200 6380	4480 4640 4820	3640 3780 3930	2950 3100 3200	2320 2410	2120 2200	1890 1960 .	1680 1740	1600 1650	1430 1480	1200 1250	1100 1140	980 1020 1050	870 890 930	800 820 850	=	=	170 176
170 176 182 188	6620 6840 7080 7320	5000 5180 5360 5540	4080 4220 4360 4520	3310 3420 3540 3660 3780	2500 2590 2680 2770 2850	2280 2360 2450 2530 2600	2040 2110 2180 2260 2330	1810 1870 1940 2000 2060	1710 1770 1830 1890	1530 1580 1630 1690	1290 1340 1380 1420	1180 1220 1260 1300	1090 1130 1160	970 1000 1030	830 910 940 970			182 188 194 200
194 200 210 220	7560 7780 8170 8540	5700 5880 6170 6480	4660 4800 5040 5260	3890 4080 4270	2940 3080 3240 3380	2680 2820 2950 3090	2400 2520 2630 2750	2130 2230 2340 2450	1950 2040 2130 2240 2350	1740 1830 1910 2000 2090	1470 1540 1620 1690 1770	1340 1410 1470 1540 1610	1200 1260 1310 1380 1440	1070 1110 1170 1220 1280	1020 1070 1120 1170			210 220 230 240
230 240 250	8950 9400 9700	6750 7060 7350	5500 5760 6000	4480 4700 4850	3530 3670	3220 3350 3490	2880 3000 3110	2560 2660 2770	2430 2530	2170 2260 2340	1830 1910 1980	1670 1740 1810	1500 1550 1610	1330 1380 1430	1220 1260 1310			250 260 270 280
260 270 280	10100 10500 10900	7640 7940 8240	6220 6460 6700 6950	5050 5250 5450 5680	3820 3970 4120 4260	3620 3760 3900	3230 3350 3470	2870 2980 3090	2630 2720 - 2840	2440 2520	2050 2130	1880 1950	1670 1730 1800	1490 1540 1590	1360 1420 1460	-	-	. 290
290 300 310 320	11300 11700 12000 12500	9120 9410	7200 7440 7680 7900	5850 6000 6250 6400	4420 4560 4700 4850	4020 4160 4290 4430	3600 3720 3840 3950	3190 3300 3410 3510	2920 3000 3120 3200 3300). 2700 2780) 2870	2350 2420	2010 2080 2150 2220 2280	1860 1920 1970	1650 1700 1760	1500 1560 1600			330 340
330 340 350	12800 13200 13600) 10000) 10300	8150 8370	6600 6800 7000	5000 5150	4560 4700 4830	4070 4180 4310		3400 3500 3500 3600	0 3050 0 3120	2570 2650 2720	240) 2150) 2210	1910) 175) 180			360. 370 380
360 370 380 390	14000 14400 14800 1520	0 10900	8870 9100	7200	5450 5600	4970	4550	4040	370 380	0 3300 0 3390) 2800) 2870) 262	2330	207		ō		

Approved for Release 2013/08/13

Declassified in Part

Sanitized Co

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Declassified in Part - Sanitized Cop	Approved for Release 2013/08	3/13 : CIA-RDP81-01043R002200240001-6

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

	ing speed,								
	750	500	350	250	100	50	25		Capacity
	t load, kg,	Equivalen						10	n thousands
l	4260	4800	5360				1	· 1	
l	4470	5040	5640	5900 6200	7800	9600	11800 *	15600	400
l	4680	5250	5900	6500	8200	10060	12400	16400	400 420
1	4900	5500	6180	6750	8550	.10500	13000	17100	420
1	5120	5750	6440	7050	8950	11000	13500	17900	460
		1		1000	9350	11500	14100	18700	480
1	5320	6000	6700	7350	9750		1		400
i	5540	6200	6980	7650	10100	12000	14700	19500	500
	5750	6500	7250	-7950	10500	12400	15300	20200	520
	6070	6850	7650	8400	11100	13000 13700	15900	21000	540
	6490	7200	8180	9000	11850	14600	16600	22200	570
			1		11050	14000	18000	23700	600
	6700	7550	8450	9300	12200	15100		1 1	
	6920	7750	8720	9550	12600	15500	18600	24500	630
	7140	8000	9000	9900	13000	16000	19100	25300	650
	7760	8750	9800	10100	14200	17500	19800	26100	670
	8080	9100	10200	11200	14700	18200	21500 22400	28400	730
	8520				11100	10200	22400	29500	760
	9050	9600	10720	11700	15500	19200	23500	21100	
	9050	10200	11400	12500	16500	20400	23500	31100	800
	9800	10600	11900	13100	17300	21300	26250	33100	850
	10100	11000	12400	13500	17900	22000	27000	34600	890
	10100	11400	12800	14000	18400	22800	28000	35800 36900	920
	10400	11700	10100		1		20000	30900	950
	11300	12800	13100	14400	19000	23500	28800	38100	980
	13400	15100		15700	20800	25600	31400	41600	980
	14250	16000	16900	18500	24500	30200	37100	49000	1260
	15300	17200	17900	19700	26000	32100	39400	52000	1260
		11200	19300	21200	28000	34500	42400	56000	1340 .
	16000	18000	20100	00100				33000	1440
	17700	19900	20100	22100	29200	36000	44200	58400	1500
	20800	23500	22300	24400	32300	39800	48800	64600	1660
		2000	20300	28800	38100	47000	57600	76200	1960

									Continued
r. p. m. 1000	1500	2500	3500	5000	7500	10000	12500	10000	Capacity coefficient (C) in thousands
at an expec	ted life of 5	000 hrs.							
3900 4100 4270 4480 4670	3480 3650 3830 4000 4180	2950 3100 3250 3370 3520	2680 2820 2950 3090 3220	2400 2520 2620 2750 2870	2130 2230 2340 2450 2560	1950 2050 2130 2240 2330			400 420 440 460 480
4870 5050 5250 5550 5920	4350 4520 4700 4960 5300	3650 3820 3970 4200 4500	3350 3490 3620 3820 4090	3000 3100 3250 3420 3650	2660 2770 2870 3030 3240	2430 2520 2620 2770 2960			500 520 540 570 600
6110 6300 6500 7100 7350	5480 5650 5820 6340 6600	4650 4770 4950 5350 5600	4220 4360 4500 4900 5100	3770 3870 4000 4370 4550	3350 3460 3570 3880 4040	3050 3150 3250 3550 3670			630 650 670 730 760
7750 8250 8650 8950 9200	6960 7400 7750 8000 8260	5850 6250 6560 6750 7000	5360 5700 5950 6200 6400	4800 5100 5320 5500 5700	4260 4520 4750 4900 5050	3870 4120 4320 4470 4600	1.111		800 850 890 920 950
9500 10400 12200 13000 14000	8500 9300 10900 11600 12500	7200 7850 9300 9800 10600	6550 7150 8450 8900 9650	5850 6400 7550 8000 8600	5200 5650 6700 7100 7650	4750 5000 6160 6500 7000			980 1070 1260 1340 1440
14600 16100 19000	13000 14400 17000	11050 12200 14400	10100 11100 13100	9000 9950 11700	8000 8850 10400	7300 8050 9500			1500 1660 1960

exceed the maximum permissible speed indicated in this catalogue for a given bearing.

STANKOIMPORT

• 73

Note: These equivalent loads are valid for bearings operating at speeds that do not

72 • STANKOIMPORT •

MAIN INSTRUCTIONS FOR SELECTING FITS FOR ANTIFRICTION BEARINGS*

GENERAL PRINCIPLES

The selection of the nature of the fits between the bearing rings and the shaft or housing, that is, the selection of the shaft and housing fits, for the most part depends on the magnitude, direction and nature of the bearing loads; the type and size of the bearing and its mounting arrangement in the assembly, as well as the class of accuracy of the bearing.

class of accuracy of the bearing. The nature of the stress distribution inside the bearing differs for the inner and outer ring and consequently different fits are required, as a rule, in the housing and on the shaft.

and on the shaft. The working conditions of the inner and outer rings depend mainly on whether the given ring is stationary or rotates in relation to the radial load on the bearing. In this connection, the following types of ring loading are distinguished: local, circulatory and oscillatory.

Local loading is defined as an arrangement in which the load on the bearing. Is being constantly carried by a limited portion of the race and is transmitted to a limited section of the bearing seat on the shaft or in the housing. This type of loading occurs when the given ring does not rotate in reference to the load.

An example of local loading is the loading of the stationary outer ring at a load, constant in direction, and a rotating inner ring.

Circulatory loading is one in which the load on the bearing is consecutively carried by the whole circumference of the race and is transmitted consecutively to the whole circumference of the bearing seat on the shaft or in the housing.

This type of loading can be observed when a given ring rotates in reference to the constant direction of the load or when the direction of the load varies (rotating load) in reference to the stationary ring. An example of circulatory loading is the load on the rotating inner ring at a constant direction of the bearing load.

Oscillatory loading is one in which a load of constant direction acts together with a rotating load on the bearing and the resultant load does not make a full revolution but oscillates in a definite portion of the stationary ring. The bearing seat on the shaft or in the housing has the same type of loading.

The types of loading of rings in accordance with the operating conditions are indicated in Table 30.

ANKOIMPO

lassified in Part

R

opy Approved for Release 2013/08/13

BEARING FITS

The bearing fits on shafts are in the basic hole system of fits while in housings they are in the basic shaft system. It is necessary to point out that the bearing bore limits, as stipulated by GOST 520-55, are to the minus side of the nominal bore while the hole limits for the basic hole OST system are arranged to the plus side. Consequently, the class of fits obtained for the inner rings of bearings on shafts, machined to standard transition fit gauges (in accordance with OST NKM 1011 and OST 1012), differs from the standard fits of shafts in the basic hole system in that the former are more tight.

In accordance with the required class of fit of the bearing bore on the shaft. In accordance with the required class of fit of the bearing bore on the shaft, the shaft tolerances are selected from the following series of basic hole Γ_1 , T_1 , H_1 , the shaft tolerances are selected, drive, wringing and slide fits, respectively) in accordance with OST NKM 1011 (Table 36); Γ , T, H, Π , C, Π and X (fine heavy force, drive, wringing, push, slide, easy slide and normal running fits, respectively) in accordance with OST 1012 (Table 38).

Table 30

TYPES OF LOADING	OF	BEARING	RINGS	
------------------	----	---------	-------	--

Operating conditi	ions	Type of loa	ding
Nature of radial load	Which ring rotates	Inner ring	Outer ring
carried by the bearing	Inner	Circulatory	Local
Constant in direction	Outer	Local	Circulatory
A load, constant in direc-	Inner	Circulatory	Oscillatory
tion, combined with a rotating load, smaller in magnitude. (Resultant load oscillates)	Outer	Oscillatory	Circulatory
A load, constant in direc-	Inner	Local	- Circulatory
tion, combined with a rotating load, larger in magnitude. (Resultant load rotates)	Outer	Circulatory	Local
		Circulatory	Circulatory
Constant in direction Rotates together with	Both inner and outer rings in	Local	Circulatory
Rotates together with outer ring	the same or opposite directions	Circulatory	Local

* For more detailed information see GOST 3325-55

Т

If bearings are to be mounted on taper clamping or clamping-stripping sleeves, the shaft should be machined to the tolerances for the fit B_3 (plain basic shaft fit) in accordance with OST 1023. In assemblies, which do not require accurate running, the shaft may be machined to the tolerances for fit B_{3a} (extra-plain basic shaft fit) in accordance with OST NKM 1027 or B_4 (rough basic shaft fit) in accordance with OST 1024.

In accordance with the required class of fit of the bearing outside diameter in the housing, the housing bore tolerances are selected from the following series of basic shaft fits: Γ_1 , T_1 , H_1 , Π_1 and C_1 (extra fine force, drive, wringing, push and slide fits, respectively) in accordance with OST NKM 1021 (Table 37); Γ , T, H_1 , Γ_2 and \mathcal{I} (fine heavy force, force, drive, wringing, push, slide and easy slide fits) according to OST 1022, C_3 (plain slide fit) according to OST 1023 and P_7 according to ISA-3 (Table 39).

FITS FOR RADIAL BEARINGS

In accordance with the type of loading the following fits are recommended for mounting radial bearings on shafts or in housings.

Shaft Mounting Fits

Type of loading of inner ring	Fits
Local Circulatory Oscillatory	$ \begin{array}{l} \Pi_{n}, C_{n}, \Pi_{n}, X_{n}, \Pi_{1n}, C_{1n} \\ \Gamma_{n}, T_{n}, H_{n}, \Pi_{n}, \Gamma_{1n}, T_{1n}, H_{1n}, \Pi_{1n} \\ \Pi_{n}, \Pi_{1n} \end{array} $

Housing Mounting Fits

Type of loading of outer ring	Fits
Local Circulatory Oscillatory	$\begin{array}{c} C_{n}, \ C_{1n}, \ C_{3n}, \ \Pi_{n}, \ \Pi_{1n}, \ \Pi_{n} \\ P_{7n}, \ \Gamma_{n}, \ T_{n}, \ H_{n}, \ \Gamma_{1n}, \ T_{1n}, \ H_{1n} \\ \Pi_{n}, \ \Pi_{1n} \end{array}$

When mounting radial bearings having a class of accuracy A or C only extrafine tight or slide fits should be used.

At high speeds and local loading, the shaft or housing should be machined to the gauge for fits Π or Π_1

FITS FOR NEEDLE ROLLER BEARINGS

Declassified in Part -

Т

Needle roller bearings with solid rings are to be mounted on shafts and in housings with the same fits as radial bearings.

ANKOIMPORT

Sanitized Copy Approved for Release 2013/08/13

For needle roller bearings with thin, stamped (split) outer rings, it is advisable to machine the housing seats to the fine fit gauges Π for housings of steel or castiron or H for housings of aluminium or light alloys.

In some cases, when mounting needle roller bearings with thin, stamped outer rings, a selective assembly system is recommended according to which the bearings and housings are segregated into groups within the limits of the total tolerance on the diameters. The bearings are then assembled into the housings of the corresponding groups. This avoids excessive interferences or clearances.

The following tolerances are recommended for machining shafts (race surface for the needles):

For rotation of the bearing — fine basic shaft fit B; for small-amplitude oscillations and static loads — fine fit to gauge H (fits according to OST 1022).

Note: Heavily loaded needle roller bearings, as well as other types of bearings, should not be mounted directly in housings of light alloys. In such cases, the use of an intermediate steel sleeve is recommended.

Fits for Radial-Thrust Bearings

The following fits are recommended for radial-thrust bearings in accordance with the load and type of loading:

Ring and type of loading	Fits
Non-adjustable circulatory loaded rings of all classes of accuracy	Γ_n , T_n , H_n , Π_n for shaft and housing and P_7 for housing
Adjustable circulatory loaded rings (bearing assembly design not recommended)*	Π
Adjustable or non-adjustable locally loaded rings which do not move directly on the seating surface	Π_n , C_n for shaft and Π_n , H_n , C_n for housing
Adjustable locally loaded rings	C_n , \underline{A}_n , \underline{X}_n for shaft and C_n for housing

Note: The fits for the rings of paired (duplex) bearings, which have been preloaded during manufacture, should be specially stipulated.

* The material of the bearing seats should be of increased hardness; the bearing seats on the shaft should be hardened and special hardened sleeves should be inserted into the housing.

• 77

STANKOIMPORT

-RDP81-01043R00220024000

13

•

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R00220024000

ų,

FITSFOR THRUST BEARINGS

The required tight fit of the rotating rings of thrast bearings on their shaft is ensured by manufacturing the bearing sent to the tolerances corresponding to the Sale for fit II.

The loose or stationary ring of the thrust bearing should be mounted in the fousing with sufficient clearance to ensure self-alignment in a radial direction

EXAMPLES OF FUT SELECTIONS

Examples of the selection of fits for ball and coller bearings are indicated in Tables Hand H. They are given to facilitate the use of the bearing fit tables. The working conditions: indicated in these tables, are characterized by the following computed expected life:

STA

M

73

- essy conditions over 110000 hours
- normali conditions MAD to MAD hours heavy conditions 2500 to MAD hours
- special conditions agreed upon with the Supplier.

For imperand vibrating loads (as. for insume, callway and transvay arls baxes, engine crankshells, mer crushers, en:)) fils for bearings are selected as far iewy conditions without taking into consideration the computed expensed life.

KOIMPOR

SURFACE FINISH AND TOLERANCES FOR ERRORS IN THE GEOMETRICAL FORM OF THE BEARING SEATS

The quality of the surface finish of bearing seats should not be lower than the classes of finish in accordance with GOST 2789-51 indicated in Table 31.

•		Nominal c	liameters, mm	
Bearing seats	Bearing classes of accuracy	up to 80	above 80 to 500	
	•	. Class	of finish	
	H and II	7	6	
On shafts	B and A	8	7	
	с	9	8	
In housing bores	H and II	7	6	
III Housing boles	B, A and C	8	7	
Faces of shoulders on	H and II	6	6	
shafts and in housings	B, A and C	7	6	

The finish symbols have the following values expressed as the root meansquare of the surface irregularities in microns or micro-inches.

Finish class symbol	Root mean-square of surface irregularities				
Finish Class symbol	microns	micro-inches			
6	3.2 to 1.6	126 to 63			
7	1.6 to 0.8	63 to 32			
8	0.8 to 0.4	32 to 16			
9	0.4 to 0.2	16 to 8			

The surface finish of bearing seats on shafts or in housings for mounting ball and roller bearings classes HO and O (in accordance with GOST 4793-43) may be one class for HO and two classes for O lower than those indicated in Table 31 for bearings classes H and Π .

The errors in the geometrical form of bearing seats on shafts and in housings should be within the limits indicated in Tables 32, 33, 34 and 35.

т

	Table 32
OLERANCES FOR ERRORS IN GEOMETRICAL FORM	
OF SHAFTS AND HOUSINGS	

79

Class of accuracy of ball and roller bearings to be mounted		Oul-of-roundness	Taper (differences in diameters of extreme sections of bearing seat)		
H, II and B	1/2	of tolerance for diameter in any section of bearing	1/2	of tolerance of bearing	
A and C	1/4	seat	1/4	seat diameter	

TANKOIMPORT • S .

÷

Table 33

Table 34

Table 35

TOLERANCES FOR ERRORS IN GEOMETRICAL FORM OF SHAFT SEATS FOR MOUNTING BALL AND ROLLER BEARINGS ON CLAMPING OR CLAMPING-STRIPPING SLEEVES

.

Classes of fits of shaft seating for adapting sleeve		Out-of-roundness	Difference in diameters of extreme sections of seat for sleeve			
B ₃ , B ₃₈ , B ₄	1/4	of tolerance for diameter in any section of seat	1/4	of tolerance of sleeve seat diameter		

FACE RUNOUT OF SHAFT SHOULDERS

			nissible face runout of shaft shoulders, microns Class of accuracy of ball and roller bearings			
over	up to	H and Π	В	A	c	
-	50	20	10	7	4	
50	120	25	12	8	6	
120	250	30	15	10	8	
250	315	35	17	12	- 1	
315	400	40	20	13	- 1	

FACE RUNOUT OF HOUSING SHOULDERS

Nominal housing bores mm Permissible face runout of housing shoulders, microns Class of accuracy of ball and roller bearings over up to H and II В А с 80 40 20 13 8 . 80-120 45 50 22 25 15 9 120 150 18 10 180 250 150 60 70 80 90 100 30 35 20 23 12 180 14 250 315 40 45 50 27 30 16 315 400 400 500 33 _ STANKOIM 80 • POR

Table 36 SHAFT MOUNTING FITS FOR BALL AND ROLLER BEARINGS, CLASS OF ACCURACY A AND C Tolerances in microns Nominal diameter (d) mm Fits Bearing bore tolerances r., п н,, C_{1n} Shaft tolerance low limit high limit high limit low limit high limit low limit high low limit limit high low limit limit high limit low limit over up to -- 2 -- 2 -- 2 -- 2 -- 3 -- 8 -- 8 -- 8 -- 8 --10 +13 +16 +20 +24 +28 + 8 + 9 +11 +13 +16 +19 +10+12 +15 +17 +20 +24 + 5 + 6 + 7 + 8 + 9 + 10+ 6 + 8 +10 +12 +14 $\dot{+}$ 1 + 2 + 2 + 2 + 2 + 2 + 2 + 3 6 10 18 30 50 + 3 + 4 + 5 + 6 + 7 + 8-2-3 -3 -3 -4 -- 5 -- 6 -- 8 -- 9 --11 0 0 0.0 6 10 18 30 50 120 120 180 250 260 315 360 80 -12

				1,00	1.12	7 64	1 + 10	+10	+ 3.	1. + 8	- 5	1 0	-13
	120	- 5	-15	+38	+23	+28	+12	+19	+ 3	+ 9	- 6	0	15
	180	- 6	18	+45	+26	+32	+14	+22	+ 4	+10	- 7	0	-18
	250	- 7	-22	+52	+30	+36	+16	+25	+ 4	+11	- 8	0	-20
	260	- 8	28	+52	+30	+36	+16	+25	+ 4	+11	- 8	Ō	-20
	315	- 8	28	+58	+35	+40	+18	+28	+ 4	+13	- 9	ŏ	-22
	360	-10	35	+58	+35	+40	+18	+28	+4	+13	- 9	ō	22
	400	-10	35	+65	+40	+45	+20	+32	+ 5	+15	10	Ő	-25
-	·					-	L						

Table 37

81

•

HOUSING MOUNTING FITS FOR BALL AND ROLLER BEARINGS, CLASS OF ACCURACY A AND C

nal r (D)	-	1					Tolerances in microns									
	Bea	ring	Fits													
diameter		neter	r,	'n	г	'n	н	H _{in}		n	Cin					
	toler	inces				Hou	ising bor	e toleran	ces							
up to	high limit	low limit	low limit	high limít	low limit	high limit	iow limit	high limit	low limit	high limit	low limit	high limit				
18	- 2	- 6	-20	- 8	-15	- 4	10	+ 1	- 5	+ 7	0	+11				
30	2	- 7	24	-10	-17	- 4	12	+ 2	- 6	+ 8	0	+13				
50	- 2	- 8	28	-12	-20	- 5	-14	+ 2	- 7	+ 9	Ő	+15				
80	- 3	10	33		24	- 5	16	÷ 2	- 8	+10	0	+18				
ſ20	- 4	-12	38	17	-28	- 6	-19	+ 3	- 9	+12	0	+21				
150	5	15	45	20		- 7	2Ź	+ 3	-10	+14	0.	+24				
180	- 6	-18	-45	20		- 7	22	+ 3	-10	+14	0	+24				
250	- 7	22	52	23	36	8	25	·+ 3	-11	+16	0	+27				
260	<u> </u>	-28	-52	-23	36	8	25	+ 3	-11	+16	0	+27				
315	8		58	-27	40	- 9	28	+ 4	-13	+18	0.	+30				
360	10	30	58	-27	40	- 9	28	+ 4	-13	+18	0	+30				
400	-10	30	65	30	45	10	32	+ 5	-15	+20	0	+35				
500	-10	35	65	30	45	-10	32	+ 5	15	+20.	0	+35				
	up to 18 30 50 80 120 150 180 250 260 315 360 400	diam diam toter ister 18 -2 30 -2 50 -2 80 -3 120 -4 150 -5 150 -6 250 -7 260 -8 315 -8 360 -10	diameter toistrances toistrances ligh low 18 -2 -6 30 -2 -7 50 -2 -8 80 -3 -10 120 -4 -12 150 -5 -15 180 -6 -18 250 -7 -22 20 -8 -228 315 -8 -228 360 -10 -30	televances up to light low low 18 -2 -6 -20 30 -2 -7 -24 50 -2 -8 -28 80 -3 -10 -33 120 -4 -12 -38 150 -5 -15 -45 250 -7 -22 -52 260 -8 -28 -52 260 -8 -28 -52 315 -8 -28 -52 366 -10 -30 -58 400 -10 -30 -58	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				

KOIMPORT

T

•

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

S T Α Ν

in microns

п,

					SHAFT	MOUNT	ING FITS	FOR D	
				· · · · · ·				FOR B	Tolerances
Nom	inal								Fits
	diameter (d) Bearing bore mm , tolerance		g bore ance	Г	n	Т	'n	· 1	In
				Shaft tolerances					<u></u>
over	up to	High limit	Low limit	High limit	Low limit	High limit	Low limit	High limit	Low limit
-	6	0	-10	+16	+ 8	+13	+ 5	+ 9	+ 1
6	. 10	0	-10	+20	+10	+16	+ 6	+12	+ 2
' 10	18	0	10	+24	+12	+19	+ 7	+14	+ 2
18	30	0	-10	+30	+15	+23	+ 8	+17	+ 2
30	50	0	-12	+35	+18	+27	+ 9	+20	+ 3
50	80	0	-15	+40	+20	+30	+10	+23	+ 3
80	120	0	20	+45	+23	+35	+12	+26	+ 3
120	180	0	-25	+52	+25	+40	+13	+30	+ 4
180	250	0	—30	+60	+30	+45	+15	+35	+ 4
250	260	0	35	+60	+30	+45	+15	+35	+ 4
260	315	0	35	+70	+35	+50	+15	+40	+ 4
315	360	0	-40	+70	+35	+50	+15	+40	+ 4
360	400	0	40	+80	+40	+60	+20	+45	+ 5

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nominal				-		·····		Tolerances		
	diameter (D)	i día	meter	I	Fits						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		tolerance			n			<u>_</u>	n		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	over up t	o High limit	Low limit	Low limit	High limit						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 18	0	- 8								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 30	. 0			-		°,				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 50	0	-11								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 80	0	-13				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	80 . 120	0	15		-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	120 150	0					-		•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	150 180	· 0	25				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	180 250	•0									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	250 260	0	35				· ·				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	260 315	0	35 .			1	- 1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	315 360	0					-				
400 500 0 -45 +15	360 400	0	40				-				
	400 500	0					-				
					,-20		0	-45,	+15		

HOUSING	MOUNTING	FITS	FOR	BALL	AN

UNTING	FITS	FOR	BALL	AND	ROLLE

ROLLER BEARINGS,	CLASS	OF	ACCURACY	H, Π and B

Table 39

Table 38

--105 -105 -125 -125 -140

x_n

n	n	C	'n	c	*n	1	ι _n	1	P7
				Housing	tolerances				
Low limit	High limit	Low limit	High limit						
- 6	+13	0	+19	0	+35	+ 6	+25	-29	-11
- 7	+16	0	+23	0	+45	+ 8	+30	35	-14
- 8	+18	0	+27	0	+50	+10	+35	-42	-17
10	+20	0	+30	0	+60	+12	+42	51	21
-12	+23	0	+35	0	+70	+15	+50	59	24
14	+27	0	+40	0 '	+80	+18	+60	68	28
	+27	0	+40	0	+80	+,18	+60	68	28
16	+30	0	+45	0	+90 '	+22	+70	79	33
-16	+30	0 '	+45	0	+90	+22	+70		
18	+35.	0	+50	0	+100	+26	+80		36
18	+35	0	+50	0.	+100	+26	.+80	98	-41
20	+40	0	+60	.0	+120	+30	+90	98	-41
20	+40	0	·+60	0	+120	+30	+90	108	45

imit	High limit	Low limit						
1	+ 4	- 4	0	- 8	- 4 ·	-12	-10	- 22
2	+ 5	- 5	0	-10	- 5	-15	-13	- 27
2	+ 6	- 6	0	-12	- 6	18	-16	- 33
2	+ 7	- 7	0	-14	- 8	-22	-20	40
3	. + 8	- 8	0	-17	-10	27	25	50
3	+10	10	0	-20	-12			60
3	+12	-12	0	-23	-15	38	40	- 75
4 '	+14	-14	0	-27	18	-45	-50	90
4	+16	16 ··	0	—30	-22 .	52	60	105
1	+16	16	0	—30	22	52	60	-105
1	+18	—18	0	35	26	60	70	125
1	+18	-18	0	35	-26	-60	70	125
5	+20	-20	0	40	-30	70	80	_140

ROLLER BEARINGS, CLASS OF ACCURACY II, II and B

Cn

Дn

Shaft tolerances

MOUNTING	FITS	FOR	BALL AND
			Tolerances
			Eite

	M		S OF THE SELECTION			NGS	Та	ble	
Gener	ral conditions	determining	•	Bearing bores					
	1	· · · · · · · · · · · · · · · · · · ·	Names of machines	Rabea	dial	Radia	al-thrust arings]. F	
Rotating cr stationary shaft	Type of loading of inner ring	Operating conditions and other remarks	and bearing assemblies	Ball	Roller	Ball	Roller		
		Light or normal duty	Rollers of belt conveyers and cableways for light loads						
Statio- nary shaft	Local	Normal or heavy duty conditions (bearing clearance adjusted by means of inner ring)	Front and rear wheels of automobiles and tractors, wheels of trucks, aircraft, etc.						
		Normal or heavy duty	Idler rollers, pulleys, rollers for roller tables, rollers for aircraft controls	rollers for roller tables, rollers for aircraft					
		Light or	Centrifuges, turbo- compressors, centrifugal	up to 40	up to 40	up to 100	up to 40	H _n ,	
		normal duty	pumps, fans, electric motors, reducing gear	up to 100	up to 100	over 100	up to 100	H _n , H	
			units, machine tool speed gear boxes	up to 250	up to 250	up to 250	up to 250	r	
		Normal or	Electric motors, output up to 100 kW, machine	up to 100	up to 40	up to 100	up to 100	H _n , H	
		heavy duty	tools, turbines, crank gear, automobile or tractor transmissions,	over 100	up to 100	over 100	up to 180	T T	
			machine tool spindles, reducing gear units		up to 250		up to 250	Γ Γι	
Rotating shaft	Circulat- ory	Heavy duty or impact loads	Railway and tramway axle boxes, engine crankshafts, electric motors (output over 100 kW), trucks of tra- velling cranes, rollers for roller tables, large machine tools, crushers	Bearings of all sizes					
			Railway and tramway axle boxes, rolls of rolling mills	Bearings mounted on clamping-stripping sleeves, all diameters					
		Normal duty	Transmission shafting and assemblies not re- quiring accurate running	Bearings mounted on taper clamping sleeves, all diameters				E	

<u> </u>	gs of cast-iron or cast-steel)	ns determining	ral condition selection	Gene
Fits	Names of machines and bearing assemblies	Operating conditions and	Type of loading of outer ring	Rotating shaft or rotating housing
T _n , H _n	Rollers of belt conveyers, idle rollers	Normal duty		
· r _n	Rollers of roller tables, compressor crankshaft bearings, trucks of travelling cranes	Normal or heavy duty		
F _{1n} , T _{1n}	Spindle bearings of heavy duty machine tools (milling machines, horizontal boring, drilling and milling machines)	Normal or heavy duty (for accurate assemblies)	Circulat- ory	Rotating housing
P ₇	Plane wheels, front and rear automobile and tractor wheels	Heavy duty (for thinwall housings)		
Π _n , Π _{in}	Centrifugal pumps, fans, centrifuges. Machine tool spindle bearings	Normal duty		
T _n , Π _n , H _n	Taper-roller bearings of transmissions and rear axles of automobiles and tractors	Normal or heavy duty (movement along axis impossible)	Local	
C _n	Majority of bearings of general machine building, reducing gear units, railway and tramway axle boxes	Normal or heavy duty		Rotating shaft
C _{3n}	Transmission shafting and assemblies not requiring accurate running	Light or normal duty (split housing)	Local or	
Π _n ,Π _{in} , H _n , H _{in}	Spindle bearings of grinding machines, engine crankshaft main bearings	Normal or heavy dụty	oscillat- ory	

¢.

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

AXIAL CLAMPING AND RETAINING METHODS FOR ANTI-FRICTION BEARINGS MOUNTED ON SHAFTS OR IN HOUSINGS

Endwise movement of bearing rings along the bearing seats, under the action of a thrust load, can be prevented by employing shaft end or intermediate clamping members to retain the inner ring on the shaft.

The larger the magnitude of the thrust load and the higher the speed of one of the bearing rings, the more reliably should the bearing ring be clamped.

The most widely used methods for axially clamping the inner and outer rings of bearings in their assemblies are illustrated lower and accompanied by brief descriptions.

1. CLAMPING INNER RINGS

Clamping by means of a tongued lock washer and a locking nut in which the inner tongue of the washer enters a slot in the shaft and one of the external wings is bent into a slot of the nut (Dimensions of nuts and lock washers are in accordance with OST 26002) (Fig. 21).

Clamping by means of two nuts, one of which acts as a lock nut. A lock washer is installed between the nuts to avoid rotation of the main nut when the lock nut is being tightened (Fig. 22).

Retaining by means of a split ring (of 2 halves). After installation in a groove of the shaft, the halves are fastened together with wire (Fig. 23).

Retaining by means of a snap ring (round or rectangular cross section) fitted into a groove in the shaft (Fig. 24).

MPO

Clamping by means of a split nut locked by a screw (Fig. 25).

KOI

86

Clamping (on a smooth shaft) by means of a tapered clamping sleeve, locking nut and tongued lock washer. Used for self-aligning ball and roller bearings (clamping sleeve dimensions in accordance with GOST 5557-50) (Fig. 26).

Clamping by means of a stripping sleeve, nut and lock washer. Used for selfaligning roller bearings when the shaft extension is over 80 mm in diameter (Fig. 27).

Clamping by means of a form end washer, three bolts and a special lock washer. If there is no vibration, the bolts can be prevented from loosening by a wire passed through holes drilled in their heads and twisted (Fig. 28).

Clamping by means of a heavy end washer, three bolts with spring washers or wire (Fig. 29).

Т

R

0

Sanitized Copy Approved for Release 2013/08/13

.

the inner rings (Fig. 34).

Declassified in Part -

88

S Т Α

NKOIMPOR

2. CLAMPING OUTER RINGS

Clamping by means of stamped housing cover, a washer and bolts (Fig. 35). Retaining by means of a snap wire or ring (circular or rectangular cross section) inserted in a groove in the housing bore (Fig. 36).

Retaining by means of a snap ring inserted in a groove on the outside diameter of the bearing (Fig. 37)

Clamping by means of the flange on the outer ring of the bearing (for taper roller bearings) (Fig. 38).

Clamping by means of a housing cover with a narrow flange fitting into the housing bore (Fig. 39).

Clamping by means of a housing cover with external threads and a slot. The cover is locked by a screw. (Fig. 40).

OIMPOR • 89 Κ S Ν

SEALS AND CLOSURES

Seals and closures of bearing assemblies are designed to prevent the loss of lubricant from the bearing and to protect it from dust, dirt, moisture, acid fumes and other injurious matter which may enter the bearing.

Insufficient protection of the bearing from the surrounding atmosphere or adjacent machine parts may considerably shorten its term of service. Besides this, the leakage of lubricant is not only detrimental to normal operating conditions for bearings but soil the mechanism and often result in spoilage of the product manufactured on this machine.

The construction of a sealing device or closure should be as simple as possible but at the same time it should be sufficiently reliable for the given operating conditions

The more complex and expensive designs of seals and closures can be suitably applied only for heavy bearing duty when the use of the simpler types of closures will not ensure normal operation of the bearing.

The more widely used types of sealing devices and closures for bearings are:

- 1. Felt seals;
- 2. Annular clearances and grooves (grease grooves);
- 3. Protective washers or flanges;
- 4. Oil slinger rings and grooves;
- 5. Cup seals;

90

6. Labyrinths closures.

The selection of a proper type of bearing seal depends on:

- 1. The nature of the surrounding atmosphere;
- 2. Design features of the bearing assembly;
- 3. Speed of the bearing (peripheral speed on shaft);
- 4. Type of lubricant: fluid (mineral oil) or grease;
- 5. Operating temperature of bearing.

Fig. 41 a illustrates the most common designs of single and double ring felt seals for split housings while Fig. 41 b shows a felt seal arranged in the removable cover of the housing.

A seal design providing for periodical or constant compression of the felt ring to compensate for wear is shown in Fig. 42.

Felt seals are, for the most part, designed to protect bearings operating in not very dusty conditions and with grease for lubricant. They can, however, be used

eclassified in Part

TANKOIMPOR

Sanitized Copy Approved for Release 20

in a combination with other types of seals for fluid lubricant. Fig. 43 illustrates a combination system of sealing; an oil slinger flange has been added to the felt seal. This flange, during rotation, throws the oil into a recess in the housing cover

and so prevents leakage. The narrow annular clearance between the shaft and the housing cover is filled with grease. This increases the reliability of the seal in protecting the bearing from dirt from the outside.

The devices illustrated in Figs. 41 to 43 may be employed for mechanisms operating in a comparatively clean and dry surrounding atmosphere.

The closure illustrated in Fig. 44 is a combination of a felt seal and a labyrinth. The labyrinth clearance should in all cases be filled with grease without regard for the type of lubricant in the bearing (labyrinth closures are more fully illustrated below).

Felt seals may be employed if the peripheral speed of the shaft*, where it contacts the seal, does not exceed 4 to 5 m per sec for ground shafts and 7 to 8 m per sec for polished shafts and high quality felt. At higher speeds, the friction of the felt on the shaft causes a high temperature which hardens the felt and decreases the efficiency of the seal.

* In all the types of seals and closures described here, the shaft is considered as rotating in all ca

K O

Ν

MPOR

91

proved for Release 201

Fig. 45 illustrates the more widely employed designs of closures in which annular clearances and grooves are used as sealing member. This type of closure is based on the creation of a small annular clearance, between the housing cover and the shaft (Fig. 45a), filled with grease which prevents the entry of foreign matter into the bearing.

Grease grooves are provided in the housing cover (and often on the shaft also) to facilitate retaining the grease in the annular clearance (Figs. 45 b and 45 c). This type of closure can be used in all cases when the bearing is lubricated

with grease and operates in comparatively clean surroundings.

The peripheral speed of the shaft is not limited for this type of closure. The thinning-out temperature of the grease filling the annular clearances should be higher than the working temperature of the bearing assembly to prevent it from running out of the clearance.

Protective washers and flanges, most frequently met with in practice, are shown in Fig. 46. Protective washers may be stationary (stamped "a" and

turned "b") or rotary (stamped "c" and turned "d"). The sealing action of stationary washers is negligible. Due to the narrow annular clearance between the washer and the shaft, stationary washers mechanically prevent the lubricant from leaking out and the entry of foreign matter into the bearing.

> Μ P O

ΑΝΚΟ

Declassified in Par

Rotary washers or flanges, due to the centrifugal force, throw off the oil or foreign matter which gets on the washer. This type operates more efficiently than the stationary type.

Rotary flanges and washers are the more reliable, the higher their peripheral speed.

Stationary washers are employed, in the majority of cases, for bearings with grease lubrication while rotary washers are used for any type of lubrication.

Oil slinger rings and grooves on shafts have found wide application in preventing the leakage of oil from bearings (Fig. 47).

Oil, passing out of the bearing, runs on to the ring or into the groove and is thrown by centrifugal force into a recess of the housing cover from where it drains back into the bearing through a specially provided channel. Oil slinger rings can be made integral with the shaft (Fig. 47a) or installed in a groove on the shaft (Fig. 47 b). They may be of the single (Fig. 47 c) or double type (Fig. 47 d). These devices provide the highest efficiency at high peripheral speeds and only in assemblies lubricated with fluid lubricant (oil).

In cup seals, the sealing member is a cup of leather, rubber, plastics, etc. which may be enclosed in a metal holder. The contact of the seal on the shaft is provided either due to the elasticity of the cup (Fig. 48) or by the aid of an annular

coil spring (garter spring) (Fig. 49) which passes the cup to the rotating shaft. If the chief aim is the retention of the lubricant, the seal should be applied cupped inward toward the bearing. If it is necessary to protect bearing from external dirt, it should be cupped in the opposite direction. In cases, when both the above requirements are present, a double seal is employed with the separate seals cupped in both directions (Fig. 50).

For ordinary quality of finish of the friction surfaces of the shaft, the use of cup (leather) seals is permissible for peripheral speeds of the shaft not exceeding 6 to 7 m per sec. If the shaft has a fine finish, speeds up to 15 m per sec may be allowed.

This type of seal operates efficiently under the most difficult conditions with either grease or oil as the lubricant.

Labyrinth closures (Fig. 51) operate very reliably under comparatively difficult bearing operation conditions. The sealing action is based on the provision of a tortuous path of small clearance between the rotating and stationary members of the closure. This path is sealed by a film of grease. This type of closure has the following considerable advantages over felt and cup seals: low internal friction of the lubricant, absence of members subject to wear, simple maintenance and unlimited peripheral speeds of the shaft.

Labyrinth closures combined with other types of seals (felt seals, protective washers, grease grooves, oil slingers, etc.) are the most reliable and effective of all types of seals. In accordance with the design of the assembly, either axial (Fig. 52) or radial (Fig. 53) labyrinth closures may be applied. In cases where

temperature extensions of the shaft are possible, the use of axial labyrinth closures is excluded due to the possible contact between the rotary and stationary members of the closure.

Labyrinth closures operate equally effectively for both grease and oil lubricants. In either case, the labyrinth paths should be filled with grease.

TANKOIM

94

Not one of the above sealing devices or closures can be considered as a universal type. Consequently, in engineering practice and especially for difficult operating conditions, a combination arrangement is often employed comprising the above described main elements suitably selected to provide the highest efficiency in operation.

Recommended dimensions for some types of seals and closures, for normal operating conditions, are given in Table 42.

DIMENSIONS FOR FELT SEALS, CLEARANCE AND LABYRINTH CLOSURES, mm

Table 42

f=5e t=2,5 S Fig. 54 d, D 12 10 0.3 2 0.8 80 81.5 103 9 4.3 0.2 1.5 10 11 23 5 0.6 6 87 108 12 9 10 0.4 2 0.2 85 1.5 0.6 15 16 28 6 4.3 5 92 113 12 9 10 0.4 2 0.2 1.5 90 1 21 26 31 0.6 20 25 30 35 33 6 4.3 5 0.4 2 0.2 1.5 0.6 95 97 118 12 9 10 1 38 6 4.3 5 9 10 0.4 2 1.5 100 102 123 12 0.2 0.6 43 4.3 5 6 9 10 0.4 0.2 1.5 0.6 105 107 128 12 2 1 36 48 4.3 5 6 9 10 2 133 12 0.4 40 0.2 1.5 0.6 110 112 41 59 6.5 8 9 16 05 11.5 13 2.5 1.2 122 154 .45 46 64 6.5 8 0.2 1.5 0.6 120 9 165 16 11.5 13 0.5 2.5 1.2 133 50 51.5 6.5 \$ 0.3 2 0.8 130 69 9 14 0.5 1.2 178 19 16 2.5 143 0.3 2 0.8 140 55 56.5 6.5 8 74 9 14 16 0.5 2.5 153 188 . 19 1.2 60 61.5 0.3 2 l 0.8 150 79 6.5 8 9 19 14 16 0.5 2.5. 1.2 163 198 0.8 160 65 0.3 2 66.5 84 9 6.5 8 2.5 208 19 14 16 0.5 1.2 170 173 0.8 70 71.5 89 9 6.5 8 0.3 2 0.8 180 183 218 19 14 16 0.5 2.5 1.2 75 12 10 0.3 2 76.5 98 9 R 95 NKOIMPO 6 Α S

POR

.

LUBRICATION OF BALL AND ROLLER BEARINGS

1. FUNCTIONS OF A BEARING LUBRICANT

The chief duties of an antifriction bearing lubricant are:

 To decrease sliding friction between the balls or rollers and the retainer, as well as between the ring lips and the ends of the rollers;

 To decrease the sliding friction between the rolling members and the race, due to the elastic contact deformation in the bearing under load;

 To prevent corrosion of the high-quality finish of the rolling members and the bearing races;

4. To aid in sealing the bearing against the entry of abrasive dust or other Joreign matter;

5. To facilitate uniform distribution of heat caused by friction to all parts of the desaring and to dissipate heat from the bearing.

2.QUALITY OF LUBRICANTS SUITABLE FOR ANTIFEICTION BEARING LUBRICATION

Lubricants used for ball and roller bearings must samisfy the following requirements:

a) High stability, both chemical and physical:

996

3) They should not contain mechanical impurities or moisture in excess of the quantities supplated in the U.S.S. R. Standards or Specifications;

c) They should not cause corrosion and should protect the bearing from correspon The lubricant, consequently, should contain no free acids and other corresponse substances:

d) Greezes should possess good plastic properties which will facilitate in resisting the action of centrifugal forces that have a tendency to throw the hibricant out of the bearing during operation. The grease should not separate into its constituents nor should scap separation take place. Such separations would heave hard scap deposits which cause promature breakdown or even an accident. During operation, grease should maintain its initial consistency, glasticity and smooth, not fibrors, texture.

3. SELECTION OF LUBRICANTS FOR ANTIFRICTION BEARINGS

Either oil or grease may be used for antifriction bearing lubrication, the choice depending on the operating conditions and design of the equipment to which the bearings are applied.

Fluid lubricants — oils are the most efficient bearing lubricants but elaborate oiling devices and closures are frequently required to provide the necessary hermetic properties.

When selecting a grade of oil, it is necessary to take into consideration the load, speed and operating temperature of the bearing. The higher the load and temperature, the higher the viscosity of the oil should be. For small loads, low temperatures and high speeds low viscosity oils are used.

A list of mineral oils, which can be used for lubricating ball and roller bearings, are given below.

No.	. Grade of oil	GOST or Specification No.
1	Velosit	GOST 1840-42
2	Tsiatim-1M	Spec. 327-48
3	Vaseline oil-MBI	GOST 1805-42
4	Transformer oil	GOST 982-43
5	Spindle oil-2 and 3	GOST 1837-42
6	Spindle oil-AY	GOST 1642-50
7	Machine oil - J, C and CY	GOST 1707-42
8	Cylinder oil - 2	GOST 1841-42
9	Bright stock	Spec. 233-47
10	Aviation oil, MC-14, MC-20, MC-24, MK-22	GOST 1013-49
11	Motor oil 4, 6, 10, 18	GOST 1862-42
12	Turbine oil -J, YT and T	GOST 32-47

Animal and vegetable oils, in their pure form, are not recommended for lubricating ball and roller bearings as they contain a large amount of organic acids which may cause corrosion in the operation of the bearing. Besides this, such oils have a tendency to change their chemical and physical properties during operation and especially at the high temperatures and churning that take place in bearings.

4. METHODS FOR APPLYING OIL TO BEARINGS

Oil can be applied to ball and roller bearings in the following manner: 1) From drop feed oil cups when a definite supply of oil to the bearing is required (a few drops per minute); 2) By means of wick lubricators, when the bearings are mounted

CIA-RDP81-01043R002200240001-6

ΤA

NKOIMPORT

97

STANKOIMPORT

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 :

on vertical shafts; 3) By means of an oil reservoir with the balls or rollers dipping into the oil or by splash feed from other members dipping into a common reservoir with the bearings and 4) By a circulatory system.

When a bearing is lubricated by dipping into an oil reservoir, the oil level, should not exceed the axis of the lower ball or roller for speeds up to 3000 r. p. m. At speeds over 3000 r. p. m. the oil should just reach the lower ball or roller.

It is necessary to be very careful when designing a method for applying oil to bearings operating at high speeds. Such bearings require a constant supply of oil in small amounts for ordinary operating temperatures (70° — 80° C) and increased quantities (up to 3 litres per min) when it is necessary to dissipate heat from a bearing which overheats. In the latter case, it is better to feed the oil by means of pressure spraying or as an oil mist created by mixing the oil in a definite proportions with dry compressed air.

As oils are liquids, suitable seals must be provided to prevent their leakage from the housing. This matter must be given special attention. In cases where the operating conditions and the design allow the use of felt seals, the felt should be cleaned of dust, dirt and other abrasive substances before cutting out the rings. The edges of rings should be cut off evenly. Before installing the felt seals in the retaining grooves, they should be dehydrated and impregnated with mineral oil. The latter is accomplished by immersing them in an oil bath at a temperature of 105° —110° C for 25 to 30 min. The same oil is used for impregnating the rings as for lubricating the bearings during operation.

Recently, oil-resistant rubber (sevanit) seals have found wide application. They properly prevent oil leakage from the bearing housing and protect it from the entry of foreign matter, dust and dirt.

5. GREASE LUBRICATION

Greases are plastic colloidal systems which retain their form at normal temperatures (20° to 30° C) but easily change it by the action of small external forces. Greases form a plastic seal between the shafts and housings of bearings to prevent the entry of abrasives and dirt to the working surfaces of the bearing. This is of utmost importance when the bearing housing is surrounded by an atmosphere containing much dust and dirt.

In composition, greases are complex formations consisting chiefly of mineral oil and a thickener.

The most widely used greases have soaps, that is, the salts of natural or synthetic fatty acids, as thickeners.

Commercial greases are produced with either calcium, mixed calcium and sodium, sodium, aluminium, lithium, lead or other soap bases.

In accordance with the soap base of the grease, the latter possesses specific properties.

Calcium soap greases (fatty solid oil JI, M and T according to GOST 1033-41)

KOIM

PO

R

AN

98

have a melting point below 90° C. They are practically not water soluble and consequently moisture resistant. They can be used for excessive moisture conditions when the operating temperature of the bearing does not exceed 55° — 60° C. Calcium soap greases, which contain water as a necessary structural element, cannot operate for lengthy periods of time at temperatures of 55° — 60° C and especially above this temperature. At this temperature the structurally combined water is evaporated. In this case the grease separates into its constituents, the more liquid components leak out through the housing clearances and the soap densifies, often to a hard black deposit.

Sodium soap greases; Konstalin VT-1 (GOST 1957-53), Konstalin CK-V TC-1 (GOST 5703-51) and grease KB-VTM (GOST 2931-51) are produced, as a rule, of refined mineral oils and sodium soap. These greases are very sensitive to moisture. When mixed with water, they form an emulsion of the oil-water type that is washed off the working surfaces of the bearing. For this reason sodium soap greases should be used when the bearing operates in dry surroundings.

Sodium base greases have a higher melting point than calcium greases. The melting point of sodium base greases varies with the various grades, but may be as high as 175° C.

Sodium soap greases are very stable. They possess the property of being solidified again into grease upon being cooled after having been melted. At this, they do not lose their lubricating properties.

Mixed calcium and sodium soap greases, No. 1-13 YTB (GOST 1631-52) and MII 1 (GOST 3257-53), contain a predominant quantity of calcium soap. This renders them less sensitive to moisture than sodium base greases and they may be used in the presence of excessive moisture.

Grease No. 1-13 may be used at working temperatures up to 80° C and grease $\Pi\Pi$ 1 (for rolling mills) may be used at working temperatures up to 60° C.

The oil industry produces a number of greases for special purposes.

Grease Tsiatim 201 — YTBM-1 (Spec. 326-50) is used for lubricating small size bearings operating in a wide range of temperatures above and below 0° C. This grease is also used for completely sealed (double seal) bearings. These bearings are lubricated during assembly at the Works and the lubricant be changed or replenished during operation. Completely sealed bearings must not, under any circumstances, be washed in gasoline (petrol) or kerosene.

When greases are used as bearing lubricants, leakage can be prevented without the use of elaborate seals, the bearing will operate for considerable periods without changing the lubricant and the bearing is effectively protected against the entrance of foreign materials from the surroundings.

Greases are not recommended in cases where special requirements are made concerning minimum friction during operation.

KOI

т

MPORT

90

بة. Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043Ri

The amount of grease that should be applied into the housing must be determined from practical consideration in each actual case.

An excessive amount of grease in the bearing always causes a rise in working temperature. Therefore, if a suitable amount of grease is supplied to the bearing and one is certain of its proper quality, an additional amount of grease should not be added in the housing if a sharp rise in temperature is noted during operation. Instead of this, the reason for the high temperature must be found out and eliminated.

A slight rise in temperature may always be possible when beginning operation with a new bearing. Under normal operating conditions, however, the temperature should fall after a few hours and remain stable during subsequent operation.

TANKOIMPO

R

ized Copy Approved for Release

100

S

STORAGE AND RENEWAL OF PACKING AND CORROSION PREVENTING OF BEARINGS

The main cause of damages to bearings, before they are mounted, is corrosion.

Even the very slightest darkening or traces of corrosion on bearing races, balls or rollers will result in premature destruction of the bearing. The rules for handling bearings in storage must be strictly followed to maintain them in a proper condition.

As a protection against corrosion, the surfaces of the bearing are coated with an uninterrupted layer of anti-corrosive lubricant (slush).

Common grease VH3 (GOST 3005-51) or petrolatum VH (GOST 782-53) is used as this anti-corrosive lubricant. If bearings have been properly packed and stored, these lubricants can reliably protect bearings from corrosion for a period of 12 months. To maintain bearings in a proper condition, they must be inspected periodically and repacked after from 9 to 12 months of storage. Repacking of bearings provides for:

- cleaning of bearings to remove the old lubricant;
- coating of the bearings with a fresh layer of lubricant;
- packing of the lubricated bearings.

When washing the bearings before repacking, besides removing the old lubricant, all of the surfaces should be carefully cleaned of dirt which may have entered the bearing through damaged packing.

Depending on the quantity of bearings, undergoing repacking, and the available equipment; bearings may be washed in gasoline (petrol), hot mineral oil or emulsions (solvents).

1. WASHING OF BEARINGS IN GASOLINE (PETROL)

An adequate quantity of gasoline and 6 to 8% (by volume to gasoline) light mineral oil, as for instance industrial oil "12" or "20" (GOST 1707-51) are poured into a clean bucket or tank. To remove the old lubricant, the bearing (medium and small sizes) is immersed in the gasoline, the inner ring is held while the outer ring is slowly rotated until the retainer, races and rolling elements are cleaned of grease.

If the bearing is very dirty, it should be cleaned in gasoline, without rotation, until the most part of the dirt is removed. This prevents the hard particles of dirt from damaging the polished working surfaces of the bearing.

If a large number of bearings are to be cleaned at the same time, it is necessary to provide two baths, one for preliminary and the other for finish washing.

When the bearing is clean, it is removed from the tank, the gasoline is allowed to run off and it is placed to dry on a bench covered with clean paper.

2. WASHING IN HOT MINERAL OIL

This method of washing bearings has found wide application. It is especially convenient to wash large sized bearings with hot oil.

In this method, the bearings are washed in metal baths heated by electricity or steam. The dimensions of the bath depend on the quantities and sizes of bearings to be washed. A metal electrically-heated bath of welded design with a cover and thermometer is shown on Fig. 55.

A grating, on which the bearings are placed, is arranged at a distance of 50–70 mm above the bottom. This prevents the bearings from contacting the highly heated bottom and the settled dirt.

Fig. 55

Washing is carried out by lowering the bearings on metal hooks into the bath containing clean mineral oil (industrial oil "12" or "20"), heated to 95° —100° C for from 5 to 20 min. During immersion in the oil, the bearings are shaken a few times.

As the bearings become heated, their protective grease melts and mixes with the heating oil. After washing, the bearings are removed from the bath and placed on a clean pan to allow the oil to drain off.

Very dirty bearings should be cleaned in two baths providing a preliminary and finish wash.

For washing a large number of small bearings in hot oil, it is convenient to use special baskets made of wire screen. The basket containing the bearings is immersed into the hot oil bath and shaken to facilitate the washing.

3. WASHING IN A WATER SOAP SOLUTION

When repacking large lots of bearings, to economize oil and gasoline, they can be washed preliminarily in a 2-2.5% aqueous olein-potassium or oleinsodium soap solution at a temperature of 75° to 95° C followed by obligatory subsequent washing in hot oil.

Soaps made of vegetable oils or fatty acids may also be used.

During washing, the bearings are hung on hooks or arranged in baskets, immersed into the bath and shaken to speed up the washing.

The washed bearings are hung above the bath so that the excess soap solution drains off and then carried to the second bath.

In the second bath, the bearings are washed in "industrial oil 12 or 20" or "turbine oil 22" (GOST 32-53) at a temperature from 90° to 100° C.

If the bearings are to be inspected, they should be washed in gasoline after havir. J been washed in the second bath and cooled.

4. SLUSHING OF THE BEARINGS

Bearings, washed by means of one of the above methods, should be subsequently washed in a bath of cannon grease at a temperature from 110° to 120° C to completely remove all moisture.

After the grease has drained off and the bearings have cooled to some extent, they are carried to another bath containing cannon grease at a temperature from 60° to 70° C or petrolatum at a temperature from 55° to 60° C.

Immersion for a short time (20—30 sec) in this bath coats the bearings with a layer of anti-corrosive grease.

5. REPACKING OF THE BEARINGS

 After washing and slushing of the bearings they are placed on metal pans until the grease solidifies.

2. The cooled bearings are wrapped in moisture proof paper and placed in cartons, boxes or on the shelf.

3. During reslushing and packing, bearings should not be touched by bare hands as corrosion may appear at the places touched due to the perspiration on the hands. Bearings should be handled by means of oiled paper or metal hooks. The grease, paper and auxiliary tools should be clean.

6. STORAGE ROOMS

N

Rooms for the storage of bearings should be clean, dry and isolated from dust, acid fumes and other volatile matter which may cause corrosion. The storage room should be suitably equipped, have central heating and ventilation and be

KOIMPORT

103

Sanitized Copy Approved for Release

provided with the necessary fire prevention measures. The air temperature in the room should be constant and in the range from 5° to 25° C.

It is not advisable to store bearings at lower temperatures as the grease may crystallize and cracks may appear in the grease coating through which moisture might penetrate and cause corrosion.

On the other hand, the temperature should not be high enough to melt the grease and allow it to run off the bearing surfaces. The daily fluctuation in temperature should not exceed 5° C.

Sharp fluctuations in temperature in a short period of time are not permissible as the bearings may "sweat" and be subject to corrosion.

The relative humidity should not exceed 70%.

The conditions under which bearings are being stored should be systematically checked.

The area of the storage room depends upon the number and sizes of bearings in storage.

Centralized warehouses for the storage of large lots of bearings should satisfy the stipulations of fire prevention regulations and comprise:

a) a vestibule,

b) a separate room for the servicing personnel,

c) an isolated room for repacking of bearings,

d) a room for storing of bearings on shelves or in boxes.

MOUNTING AND DISMANTLING OF

BALL AND ROLLER BEARINGS

Years of experience in the application of antifriction bearings have shown that improper mounting is one of the main reasons for premature failure of bearings in operation. It is consequently imperious that each maintenance man should know and follow the chief mounting rules for ball and roller bearings indicated below.

1. PREPARING OF BEARING SEATS FOR MOUNTING

The bearing seats should have a carefully machined cylindrical surface with dimensions corresponding strictly to those indicated in the shop drawings.

The presence of dents, traces of corrosion, metal chips and abrasive particles on the bearing seats make bearing mounting very difficult and in some cases, impossible.

Before mounting, it is necessary to examine carefully the bearing seats on the shaft and in the housing, faces of the shoulders, fillet radii and machine parts associated with the bearings (flanges, spacers, sleeves, etc.).

a) Dents, burrs and corrosion spots discovered on the bearing seats should be carefully removed.

Dents and burrs are removed with a smooth file and then the file scratches are eliminated with fine emery cloth No. 000.

b) All lubricating channels in the shaft and housing should be checked, cleaned out and blown through with compressed air.

c) After eliminating the machining defects, the bearing seats and machine parts associated with the bearings should be cleaned of chips, sawdust and sand, washed with kerosene, wiped dry with clean rags and inspected to check whether the dimensions correspond to those on the shop drawings.

d) Bearing seats and associated machine parts that are incorrectly machined, that have taper and out-of-roundness exceeding the tolerances and a poor finish must not be accepted for mounting.

Inspection must be carried out with gauges and tools of the proper accuracy. e) Parts of bearing assemblies in which the noted defects have not been eliminated should not be accepted for mounting.

All properly machined bearing seats in the housings and on the shafts, as well as the parts associated with the bearings should be coated before assembly with a thin layer of oil and be protected from dirt.

Α

Approved for Release 20

NKOIMPORT

105

94 • STANKOIMPORT

2. HANDLING OF ANTIFRICTION BEARINGS BEFORE MOUNTING

a) The bearing should not be taken out of its packing nor should the protective grease be washed off until just before mounting. It should then be unpacked and washed in gasoline or hot mineral oil.

The washing of the bearings may be omitted if the packing is undamaged and the grease has not hardened.

b) To avoid dirt in the bearing, it should not be placed directly on the bench after unpacking. If necessary, it should be placed on a piece of clean paper.
c) To avoid corrosion, the washed bearing should not be held in the bare

hand. Clean paper or cloth should be used for this purpose.

The use of bearings as gauges for machining bearing seats is not recommended. Only universal measuring tools or gauges should be used.

3. MOUNTING OF BEARINGS

a) Bearings should be mounted on shafts by means of a mounting sleeve (soft metal tubing) and a hydraulic or screw press, a mounting sleeve and a hammer or by means of special mounting devices.

The use of a press in mounting antifriction bearings is strongly recommended, as its use ensures a smooth, shockless pressure on the mounted bearing and there is no danger of damaging associated parts (seals and oil catcher washers). For small sized shafts, mounting bearings with a press can be carried out by two methods: either the shaft is set up stationary and the bearing is pressed on it or the shaft is pressed into the stationary bearing.

Pressing a bearing on a shaft by means of a press and mounting tube is shown in Fig. 56.

If the shaft is pressed into the shaft, the inner ring of the bearing should be set up on a face block having a hole slightly larger than the bearing bore (Fig. 57).

Special care must be taken to align the shaft and bearing properly as otherwise the mounting will be difficult and the ground surface of the shaft will be burred or distorted. In some cases the inner ring of the bearing may be ruptured.

The pressing force should be applied only to the bearing ring that is being mounted with an interference fit. This force should not be transmitted through the balls or rollers.

If a press is not available or cannot be used, the most efficient method for mounting bearings is by means of a mounting tube with a plug (Fig. 58) and a hammer.

The spherical form of the plug ensures a more proper distribution of the pressing force on the face surface of the ring.

PO

R

ed for Release 2013/08

TANKOIM

106

S

A flange is welded to the mounting tube to protect the bearing from particles of metal and dirt which may fall on the bearing from the tube walls and plug during the hammer blows.

The inside diameter of the tube should be slightly larger than the seat on the shaft and the end should be carefully squared.

To facilitate mounting bearings on shafts it is advisable to heat them in hot mineral oil. The oil temperature should not exceed 100° C.

b) If the bearing is mounted with an interference fit in the housing (and a clearance fit on the shaft), the above mounting methods may be used. In most cases, special mounting tubes or arbors, similar to those used for mounting bearings on shafts but with suitable dimensions, are used for pressing bearings into housings.

c) When it is necessary to mount the bearing with an interference fit both on the shaft and in the housing, a flange is welded to the open end of the tube to apply the force simultaneously to both rings of the bearing (Fig. 59). In other cases, a special solid arbor is used.

To facilitate mounting and to prevent damage to bearing seats when the outer rings of bearings are mounted into housings with drive fits, the housings, in some cases, are heated to a temperature of 100° C in an oil bath or (for large sizes) in a muffle furnace.

d) When mounting the bearing, care must be taken to fit it tight against the shoulder face without any clearance. To ensure such a fit the bearing should be driven, with a hammer through the mounting tube, firmly against the shoulder while the bearing is cooling.

e) For proper operation of all bearings and especially those which are not self-aligning, the axes of the shaft and housing must coincide precisely. If the

axes do not coincide, the rolling elements may be overloaded due to their jamming (Fig. 60). This will cause premature failure of the bearing. For this reason, the bearing seats should be accurately aligned before mounting.

f) As a result of improper machining of the bearing seats in split housings, a clearance may appear between the halves of the housing when the bearing is installed (before tightening the housing cover bolts) as illustrated in Fig. 61. Upon tightening the bolts, the outside ring of the bearing will be distorted and the rolling elements (balls or rollers) will be clamped between the bearing rings in two opposite zones. Such a bearing is subject to premature failure in operation. Consequently, housings with this defect should be corrected.

g) It is very important in finishing the mounting of bearing assemblies in which adjustable (radial-thrust or thrust ball and roller) bearings are installed, to properly adjust the axial clearance of the bearings.

This axial clearance adjustment should be carried out with extreme care. Not only the bearing life and normal operation of the mechanism, but also the quality of the workpiece machined will depend on this adjustment if the bearings are installed in such assemblies as, for instance, machine tool spindles.

h) After mounting the shaft with bearings in the housing and assembly of parts associated with the bearings, it is necessary to check whether rotating parts clear stationary parts (washers, covers, spacers, lubricating devices, etc.) and whether oil is properly supplied to the bearings.

It is necessary to check carefully the assembly of sealing devices and especially the clearances in labyrinth closures.

i) Before the test run, the mechanism should be turned over by hand if possible. The bearings should run easily without jolts or jamming. If it is difficult to rotate the mounted bearings, the reason causing this abnormal condition should be ascertained and eliminated.

The temperature of the bearings and the running noise should be noted during the test run. A sounding tube or rod or even a screwdriver is held to the

ANKOIMP

108

0

R

nitized Copy Approved for Release

machine body and the ear is applied to the end of the tube or handle of the screwdriver to determine the running noise. A normally mounted bearing should operate without discernible noise or shocks. A toneless broken noise is an indication of dirt in the bearing. A whistling noise indicates that the bearing is insufficiently lubricated or that some parts of the bearing assembly are interfering with each other.

Improper mounting of bearings is, in most cases, accompanied with a rise in temperature. A normal working temperature of a bearing is one in which its temperature does not exceed the ambient temperature by more than 60° C and the actual temperature does not exceed 90° C. An excessive temperature may draw the temper of the bearing elements and sharply decrease its life.

In all cases, when defects are discovered, the tests should be interrupted and the reasons for the defects discovered and eliminated. Only after this may the assembly be considered as completed.

4. DISMANTLING OF BALL AND ROLLER BEARINGS

Bearings should be removed without damaging them or other associated parts of the assembly. The possibility of fulfilling this requirement depends a great deal on the designed form and dimensions of the bearing assembly parts. This should be taken into consideration when designing the assembly.

The removal of bearings, mounted on a shaft or in a housing with an interference fit, should, as a rule, be carried out by means of a press, and screw or hydraulic pulling tools.

STANKOIMPORT • 109

Approved for Release 20

An example of removing a bearing from a shaft by means of a vertical pressis illustrated in Fig. 62.

In this case, the two bearing rings are set up with their faces supported on two flat pads of the same thickness. The shaft is then pressed downward, out of the inner ring of the bearing.

Fig. 63 illustrates a screw-type pulling device with two tie rods.

The tie rods should not deform during operation.

An annular recess or slots are provided on the seating shoulder of the shaft to accommodate the lugs or claws of the pulling device.

In some cases bolts are used, instead of the tie rods with lugs, (Fig. 64) together with demounting rings or semi-rings.

A universal pulling device with three tie rods is shown in Fig. 65.

When bearings are removed from housings, a press or pulling device is also used but they are somewhat different in design.

Fig. 66 illustrates a method for pressing the outer ring of a taper roller bearing out of a housing by means of washers and a bolt with a nut.

To facilitate the removal of bearings, mounted on shafts with interference fits, and to avoid damaging the bearing seats, the bearings are heated by mineral oil at a temperature from 90° to 100° C.

When heating the bearing it is necessary to take care that the hot oil is applied to the inner ring of the bearing and not to the shaft. It is convenient to pour the oil on the bearing from some vessel having the form of a watering-pot.

The part of the shaft, on which the hot oil may accidentally be poured, should be covered with asbestos or cardboard. This measure will decrease the heating of the shaft and allow a larger temperature difference to be created between the bearing ring and shaft.

STANKOIMPORT

To detect the moment more certainly, when the bearing fit on the shaft has loosened to the maximum extent, it is advisable to apply the pulling device to the bearing with a preliminary load before beginning to pour the hot oil on the bearing. When the fit has loosened properly, the elastic forces of the stressed parts of the pulling device will begin to pull the bearing.

5. BEARING MAINTENANCE DURING OPERATION

Antifriction bearings demand proper care during the operation of the machines in which they are installed. Besides this, bearing assemblies of machines should be systematically inspected.

The assemblies are checked by an external examination and a sound inspection of the bearings in operation.

Defects, most frequently met with in bearing operation, include the following:

- a) Excessive temperature of the bearing assembly;
- b) Abnormal noise or shock during operation;
- c) Throwing of lubricant out of the housing.
- Bearing overheating may be caused by:

a) The presence in bearings of dirt or grit which has entered during mounting

or in operation; b) Either excess or lack of lubricant in bearing;

c) The friction of parts associated with the bearing (labyrinth closures, seals, washers, nuts, etc.);

d) Improper bearing mounting;

e) Improper application of the bearing;

f) Excessive wear or failure of the bearing elements.

Abnormal noise as well as overheating during bearing operation may be the result of dirt in the bearing, damage to the working surfaces or interference

between the retainer and parts associated with the bearing. Rhythmic knocks heard in a bearing may be the result of crumbling of raceways or bearing rolling elements. They may also be the result of defects in the meshing of gears or other assemblies of the machine.

Lubricant may be thrown out of the bearing as a result of wear, inefficient sealing devices or excess of lubricant. This is easily discerned by leaks and spots of lubricant on the housing.

. Besides the external inspection, attention must be paid to add and change the lubricant in the bearing systematically. In the absence of a centralized lubricating

system, lubricant should be added to and changed in the bearings in accordance with a schedule, compiled beforehand and taking into consideration the operating conditions and the type and grade of lubricant used. A timely addition of lubricant is especially important for bearings operating at high speed.

Detailed inspection is carried out as a measure of preventative maintenance, in definite periods of time, without regard for the actual condition of the bearing assembly.

During detailed inspection the bearing assembly must be opened to determine the condition of the bearing, the possibility of further operation, as well as the proper condition of the sealing and lubricating devices and the parts associated with the bearing. The periods between detailed inspection should be determined to suit the operating conditions, the intensity of operation of the bearing assembly and its degree of importance in the operation of the machine as a whole.

STANKOIMPORT

Sanitized Cor

lassified in Part -

112

II. BEARING DIMENSIONS AND CAPACITIES

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		SING		4	L BEARING	s	· ·						s	SINGLE RO	W BALL I			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bearing number		Dimensio	bearings (OST 6121-39)	Maximum speed, r. p. m.	load capacity				Dimensio	ons, mm		Standard be	earings (OST	6121-39)	Weight (approx.)	
244 220 400 65 5 340000 1000 25500 24 * Parmissible hearing loads at various speeds for an expected me of 5000 ms are	201 202 203 204 205 207 208 209 210 211 212 213 214 215 216 217 218 217 219 220 217 219 221 221 221 221 222 224 226 228 230 232 224 226 228 232 234 236 232 232 232 234 236 236 232 232 232 232 234 236 236 237 237 237 237 237 237 237 24 24 24 24 24 24 24 24 24 24 24 24 24	180 190 200	120 125 130 140 150 160 170 190 200 215 230 250 250 270 290 310 320	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 100 7 100 7 100 8 500 11 300 16 000 2 2000 3 0000 3 9 000 2 2000 3 9 000 2 2000 6 8 000 7 4 000 7 8 000 8 8 000 1 2 0000 2 0 00000 2 0 0000 2 0 0000 2 0 000	20000 20000 16000 16000 13000 13000 10000 8000 8000 8000 6300 6300 6300 6300	kg 250 260 340 420 600 950 1700 1700 1700 1700 2400 3000 3000 3000 3000 3000 3000 3000 5000 6700 6700 6700 9700 11000 100	0.03 0.045 0.045 0.12 0.12 0.12 0.27 0.37 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42	number 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 324 326 328 330	10 12 15 17 20 30 35 40 45 50 60 55 60 65 70 65 70 65 75 80 85 90 95 100 105 110 120 130 140	35 37 42 47 52 62 72 80 90 100 120 120 120 140 150 140 150 200 200 200 200 200 200 200 200 200 2	11 12 13 14 15 17 19 21 23 25 27 29 31 33 35 37 37 41 43 45 47 49 0 55 8 62 65	$\begin{array}{c} 1\\ 1.5\\ 1.5\\ 2\\ 2\\ 2.5\\ 3\\ 3.5\\ 3.5\\ 3.5\\ 3.5\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 5\\ 5\\ 5\end{array}$	C* 10000 12300 13500 17100 19000 27000 33000 48000 48000 48000 94000 19000 120000 120000 120000 120000 120000 120000 120000 210000 2000 20000 20000 20000 20000 20000 20000 20000 2	16000 16000 13000 13000 10000 8000 8000 6300 6300 5000 5000 4000 4000 4000 2200 2500 2500 2000 2000 2000	kg 370 450 520 650 750 1400 2100 2500 3500 4600 5400 6200 6200 6200 6200 6200 6200 10500 10500 12500 14000 12500 14000 12500 14000 12500 14000 12500 14000 12500 14000 12500 14000 12500 14000 12500 14000 12500 14000 12500 14000 12500 14000 14000 12500 14000 12500 14000 12500 14000 12500	kg 0.05 0.06 0.08 0.11 0.14 0.23 0.35 0.44 0.63 0.83 1.08 1.37 1.37 1.71 2.09 2.6 3.1 3.6 4.3 5.7 7.2 8.3 9.8 14 18 22 26	

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

SINGLE ROW BALL BEARINGS HEAVY SERIES Standard bearings (OST 6121-39)

Q

Bearing		Dimens	ions, mn	1	Capacity	. Maximum	Basic static	Weight
number	. d	D	в	r	coefficient C*	speed, r. p. m.	load capacity Qsr. kg	(approx.)
403	17	62	17	2	29 000	10 000	1100	0.27
404	20 '	72	19	2	39000	10 000	1 600	0.40
405	25	80	21	2.5	47 000	8000	2000	0.40
406	30	90	23	2.5	60 000	8000	2500	0.72
407	35	100	25	2.5	68 000	6300	3100	0.93
408	40	110	27	3	78 000	6300	3500	1.20
409	45	120	29	3	92 000	6300	4400	1.55
410	50	130	31	3.5	108 000	5000	5300	1.91
411	55	140	33	3.5	120 000	5000	6000	2.3
412	60	150	35	3.5	132000	4000	6700	2.8
413	65	160	37	3.5	144000	4000	7600	3.4
414	70	180	42	4	182000	4 000	10 000	5
415	75	190	45	4	194000	4000	11000	5.9
416	80	200	48	4	210 000	3200	12000	7
417	85	210	52	5	220 000	3200	13 000	8.5
418	90	225	54	5	250 000	2 500	15500	10

 * Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

Declassified in Part ·

120 🖨

Bearing		Dimensi	ions, mm		Capacity coefficient	Maximum speed,	Basic static load capacity	Weight (approx.)	
number	d	D	В	г	c**	r p.m.	Qsr. kg	kg	
	•	L		<u>. </u>			· · · · · · · · · · · · · · · · · · ·		
					Light series earings (GOS	T 7949-54)			
			Star						
60200	10	30	9	1 (0.5)*	7100	20000	250	0.03	
60201	12	32	10	1 (0.5)*	7100	20 000	260	0.038	
60202	15	35	11	1(0.5)*	8 5 0 0	16000	340	0.045	
60203	17	40	12	1.5	11300	16000	420	0.065	
60204	20	47	14	1.5	15000	16000	600	0.1	
60205	25	52	15	1.5	16000	13 000	700	0.12	
60206	30	62	16	1.5	22 000	13000	950	0.19	
60208	· 40	80	18	2	39 000	10000	1 700	0.36	
60214	70	125	24	2.5	74000	5000	3 600	1.04	
				I	Medium series				
			Sta	ndard	bearings (GO	ST 7242-54)			
60310	50	110	27	3	72 000	6300	3 500	1.1	
				Non	-standard bea	rings			
60902	16	35	11	1. 1	- 1		<u> </u>	0.044	
• The •• Perr dicated in	nissible	beari	enthese ng loa	s refer ds át v	to the corner arious speed	chamfer of t for an exp	the inner ring pected life of	5000 hrs	

121

SINGLE SHIELD SINGLE ROW BALL BEARINGS

TANKOIMPORT STANKOIMPOR S ø Т 6

Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

١

Ø

		· · ·	SINGLE ROW BALL BEAN SNAP RING GROOVE ON (GS	SLOT AND	LE ROW BALL TH FILLING SI	WITH		
	Basic static		Standard bearing - - Dimensions, mm	000	151 51 11 1 1 1 1 1 1 1 1 1 7 7 Type 50	Type 900000			WITHOUT RET.		Type 970000	
1 1 1 1 1 1 1 1 1	, QST. (app	Capacity Maximum coefficient speed, r. p. m.		d D	Bearing number		•				· · · · · · · · · · · · · · · · · · ·	Г
00 0.1 62082	600 0	0.5 15000 16000		20 47	50204	Weight (approx.) kg	, r	hs, mm	Dimensions, r	d D	Bearing number	
50 0.19 6206 z N	950 0	1 ' 1 1	59.6 16 3.25 1.9 1.5 0.5	25 52 30 62	50205 150206	0.008	0.5		21 5	10 21	970700	ſ
00 0.37 8 1	0 1700 C	0.8 39000 10000		35 72 40 80	50207 50208	0.049	1	-	37 9		970702	
00 0.47 62/021		0.8 39000 8000 0.8 42000 8000		45 85	50209	0.048	1	-	37 9		970902 970705	
00 0.98 62/3 ~				50 90 65 120	150210A 50213	0.088	1	-	52 9		970705	
	- 1 - 1	0.8 98000 4000	0 145.2 28 4.9 3.1 3 0.	85 150	50213	0.12	1.5	-	52 15 62 16		970205	
	- 1 - 1	0.8 27000 10000 0.8 33000 10000		25 62	50305	0.19	1.5	-	62 16 80 18		970208	
00 0.44 FM	-			30 72 35 80	50306 50307	0.4	2	_	90 10		970711	
	-		0 86.8 23 3.25 2.7 2.5 0.	40 90	50308	0.3	1			107 145	970921	
		5 0.8 57 000 6300 0.8 72 000 6300		45 100	50309	0.711	0.5	6		22 35	900904	
1		0.8 84000 6300		50 110 55 120	50310 50311	0.024	0.5	6		25 37	900805	
1 1 . 13	1 1	5 0.8 106000 5000	0 135.2 33 4.9 3.1 3.5 0	65 140	50311	0.022	0.5	6	42 7		900706	
1 1 4.1			0 50.0 20 0.00 0.0	35m 10	50407	0.025	0,5	6	45 7	34 45	900907	
		0.8 78000 6300		40 11	. 50408	0.028	0.5	6	52 7		900808	
000 2.3 ⁷ 7 <i>N</i>	00 6000		.0 113.21 25 1.00	45 12 55 14	50409	· 0.035 '	0.5	. 6	57 7		900809	
700 2.8 72.2	00 6700			60 15	50411	0.055	0.5	6	65 7		900810	
			bearing loads at various speeds			0.000	1 0.0	1 V .	1 1	1		

Sanitized Copy Approved for Release 2013/08/13 :

CIA-RDP81-01043R002200240001-6

Declassified in Part

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 ; CIA-RDP81-01043R002200240001-6

Bearing number		Dimensions, mm							Maximum speed,	Basic static load	Weight (approx.), ke		
Туре 1000	Туре 11600	a	d,	D	в	L	r	cient C*	r. p. m	capacity Qsr. kg	Туре 1000	Туре 110-0	
1300		10	_	35	11	-	1	7500	16000	190	0.06	-	
1301	-	12		37	12	- 1	1.5	9600	16000	250	0.07	-	
1302	_	15	-	42	13	-	1.5	10000	16000	280	0.09	_	
1303	_	17	-	47	14		1.5	14000	13 000	390	0.13	-	
1304	11303	20	17	52	15	32	2	15500	13000	430	0.16	0.23	
1305	11304	25	20	62	17	33	2	21 000	10000	640	0.26	0.36	
1306	11305	30	25	72	19	35	2	27000	10000	830	0.39	0.5	
1307	11306	35	30	80	21	39	2.5	32000	8000	1000	0.5	0.67	
1308	11307	40	35	90	23	39	2.5	40 000	8000	1300	0.7	0.91	
1309	11308	45	40	100	25	41	2.5	50 000	6300	1700	0.96	1.19	
1310	11309	50	45	110	27	46	3	57000	6300	1800	1.21	1.49	
1311	11310	55	50	120	29	48	3	68 000	5000	2400	1.58	1.91	
1312	11311	60	55	130	31	50	3.5	78000	5000	2800	1.96	2.3	
1313	11312	65	60	140	33	52	3.5	86000	5000	3100	2.5	2.9	
1314		70	_	150	35		3.5	100 000	4000	3700	3	-	
1315	11313	75	65	160	37	56	3.5	104000	4000	4000	3.6	4.4	
1316	11314	80	70	170	39	61	3.5	116000	4000	4500	4.3	5,2	
1317	11315	85	75	180	41	63	4	132000	4000	5200	5.1	6.2	
1318	11316	90	80	190	43	68	4	148000	3200	6000	5.7	7.1	
1319	11317	95	85	200	45	71	4	164000	3 200	6800	6.7	8.2	
1320	11318	100	90	215	47	74	4	182000	3 2 0 0	7600	8.3	10	

 * Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

STANKOIMPORT

Bearing number			Di	mensi	ons, m	m		Capacity Maximu coeffi- speed,		Basic static load	Weight (approx.), k		
Туре 1000	Туре 11000	d	d,	D	в	L	r	cient C*			Туре 1000	Туре 110-00	
1300		10	_	35	11	-	1	7500	16000	190	0.06	-	
1301	-	12		37	12	-	1.5	9 600	16000	250	0.07		
1302	-	15		42	13	_	1.5	10000	16000	280	0.09	-	
1303	_	17	-	47	14		1.5	14000	13000	390	0.13		
1304	11303	20	17	52	15	32	2	15500	13000	430	0.16	0.23	
1305	11304	25	20	62	17	33	2	21 000	10000	640	0.26	0.36	
1306	11305	30	25	72	19	35	2	27000	10000	830	0.39	0.5	
1307	11306	35	30	80	21	39	2.5	32000	8000	1000	0.5	0.67	
1308	11307	40	35	90	23	39	2.5	40 000	8000	1300	0.7	0.91	
1309	11308	45	40	100	25	41	2.5	50 000	6300	1700	0.96	1.19	
1310	11309	50	45	110	27	46	3	57000	6300	1800	1.21	1.49	
1311	11310	55	50	120	29	48	3	68 000	5000	2400	1.58	1.91	
1312	11311	60	55	130	31	50	3.5	78000	5000	2800	1.96	2.3	
1313	11312	65	60	140	33	52	3.5	86000	5000	3100	2.5	2.9	
1314		70	_	150	35	-	3.5	100 000	4000	3700	3	-	
1315	11313	75	65	160	37	56	3.5	104 000	4000	4000	3.6	4.4	
1316	11314	80	70	170	39	61	3.5	116000	4000	4500	4.3	5,2	
1317	11315	85	75	180	41	63	4	132000	4000	5200	5.1	6.2	
1318	11316	90	80	190	43	68	4	148000	3200	6000	5.7	7.1	
1319	11317	95	85	200	45	71	4	164000	3 2 0 0	6800	6.7	8.2	
1320	11318	100	90	215	47	74	4	182000	3 200	7600	8.3	10	

DOUBLE ROW SELF-ALIGNING

BALL BEARINGS

MEDIUM SERIES

Standard bearings

Type 1000 (GOST 5720-51)

Type 11000 (OST 7634-39)

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

5 35 1933 8

Type 11000

S

•

Т

DOUBLE ROW SELF-ALIGNING BALL BEARINGS LIGHT SERIES, WIDE TYPE Standard bearings

Type 1000 (GOST 5720-51) Type 11000 (GOST 7634-39)

Type 11000

Æ

• 131

Bearing r	Bearing number		Di	mensio	ons, m	m		Capacity	Maximum	Basic static load capacity	Weight (approx) kg	
Туре 1600	Туре 11000	d	d,	D	в	r	,	coefficient C*	speed, r.p.m.	Qst. kg	Type 10L0	Type 11600
1504	11503	20	17	47	18	32	1.5	14000	16000	420	0.14	0.2
1505	11504	25	20	52	18	33	1.5	15500	13000	450	0.16	0.27
1506	11505	30	25	62	20	35	1.5	20000	13000	600	0.26	0.38
1507	11506	35	30	72	23	39	2	28000	10000	850	0.4	0.56
1508	11507	40	35	80	23	39	2	31 000	10000	1000	0.51	0.69
1509	11508	45	40	85	23	41	2	34000	8000	1100	0.55	0.79
1510	11509	50	45	90	23	46	2	35000	8000	1200	0.59	0.87
1511	11510	55	50	100	25	48	2.5	40 000	6300	1400	0.81	1.2
1512	11511	60	55	110	28	50	2.5	50000	6300	1800	1.09	1.49
1513	, 1.1512	65	60	120	31	· 52	2.5	64 000	6300	2300	1.46	2
1514	1 T_	70	-	125	31	-	2.5	66000	5000	2400	1.52	-
1515	11513	75	65	130	31	56	2.5	68 000	5000	2500	1.62	2.5
1516	11514	80	70	140	33	61	3	76000	5000	2800	2	3.1
1517	11515	85	75	150	36	63	3	88 000	4000	3300	2.5	3.7
1518	11516	90	80	160	40	68	3	104000	4000	4000	3.4	4.7
1519	11517	95	85	170	43	71	3.5	120000	3200	4800	4.2	5.7
1520	11518	100	90	180	46	74	3.5	136000	3200	5700	5	6.7

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in 'Table 29.

ANKOIMPORT

Type 1000

130 🌑

		L			pe 1	1000	(OST	arings 7634-39) ? 5720-51)		D				No -	n-standard b	pearings	
Туре	21000							· · · · · · · · · · · · · · · · · · ·		Туре	11000						
Bearing	number		D	Imensi	ons, n	m		Capacity	Maximum	Basic static load	We (appr	eight iox.), kg		Dimensi	ons,.mm		Weight (approx.)
Туре 1000	Туре 11000	d	dı	D	в	L	f .	coefficient C*	speed, r. p. m.	capacity Qsr. kg	Туре 1000	Туре 11000	Bearing number d	D	в	r	(approx.) kg _
1604	11603	20	17	-52	21	35	2	19000	10000	570	0.21	0.29	1411 55	140	33	3.5	. 2.68
1605	11604	25	20	62	24	39	2	27000	10000	800	0.34	0.48	1412 60	150	35	3.5	3.72
1606	11605	30	25	72	27	42	2	35000	8000	1050	0.5	0.63	1730 150	235	36	4	6
1607	11606	35	30	80	31	47	2.5	44 000	8000	1400	0.68	0.86	1100		(39.93)*	ι ι	
1608	11607	40	35	90	33	49	2.5	52000	6300	1700	0.93	1.14				<u> </u>	
¥609	11608	45	40	100	36	52	2.5	62000	6300	2100	1.23	1.52	* Bearing width measured ov	er protrudi	ng balls.		
1610	11609	50	45	110	40	59	3	72000	5000	2500	1.61	2	Bearing width measure in	•	-		
1611	11610	55	50	120	43	62	3	84000	5000	2900	2.1	2.5					
1612	11611	60	55	130	46	•65	3.5	100000	4000	3500	2.6	3.1					
1613	11612	65	60	140	48	67	3.5	112000	4000	4200	3.2	3.8					
1614		70	_	150	51		3.5	124000	4000	4800	4.3	_					
1615	11613	75	65	160	55	74	3.5	136000	3200	5500	5.2	6.2					
1616	11614	80	70	170	58	80	3.5	152000	3200	6200	6.2	7.3					
1617	11615	85	75	180	60	84	4	164000	2500	6600	7.2	8.5					
1618	11616	90	80	190	64	89	4	182000	2500	7400	8.5	10,1					
* Per	missible	bear	ing	loads	s at	vari	ous s	speeds for a	in expecte	d life of	5000	hrs are					
indicated								· .									
															,		
												•			•		
													3				
									•	· ·							
														•			
							•										-
132	-		-	Λ	N 1	14	, ,				-		STAN	KΟ	IMI	7 0 R	T •
102)		A	IN	_ r		NIC		<u>U R</u>		•					
				•													
													· .				

2013/08/13

oved for Release

CIA-RDP81-01043R002200240001-6

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

DOUBLE ROW SELF-ALIGNING BALL BEARINGS

DOUBLE ROW SELF-ALIGNING BALL BEARINGS

MEDIUM SERIES, WIDE TYPE

Declassified in Part - Sanitized Copy

assified in Part -

Type 3000

Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

DOUBLE ROW SELF-ALIGNING ROLLER BEARINGS LIGHT SERIES, WIDE TYPE

> Standard bearings Type 3000 (GOST 5721-51)

Type 3000 (GOST 5721-51) Type 13000 (GOST 7634-39)

Type 13000

Bearing	number		Di	mensi	ons, m	m		Capacity	Maximum	Basic static load	Wei (appros	
Туре 3000	Туре 13000	d	d,	D	в	L	Ŧ	coefficient C*	speed, r.p.m.	capacity, Qsт. kg	Ту́ре 3000	Туре 13000
3516	13514	80	70	140	33	61	3	188 000	3000	11 500	2.2	3.2
3517	13515	85	75	150	36	63	3	200 000	2500	14000	2.8	4.1
3517	13516	90	80	160	40	68	3	240 000	2500	15000	3.6	4.9
3519	13517	95	85	170	43	71	3.5	310 000	2500	19000	4.2	5.8
3520	13518	100	90	180	46	74	3.5	340 000	2000	21 500	5.2	6.8
3522	13520	110	100	200	53	81	3.5	420 000	2000	27 000	7.4	9.5
3524	13522	120	110	215	58	91	3.5	520 000	2000	32500	9.2	11.7
3526	13523	130	115	230	64	100	4	630 000	1600	39 500	11.4	15
3528	13525	140	125	250	68	106	4	730 000	1600	44 000	14.5	18.9
3530	13527	150	135	270	73	113	4	800 000	1300	50 000	18.5	, 24
3532	13528	160	140	290	80	121	4	980 000	1300	60 000	23	30
3534	13530	170	150	310	86	128	5	1070 000	1300	68 000	29	37
3536	13532	180	160	320	86	129	5	1160 000	1000	72000	30	39
3538	13534	190	170	340	92	136	5	1260 000	1000	80000	37	47
3540	13536	200	180	360	98	144	5	1440 000	1000	89 000	45	56

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

• STANKOIMPORT • 135

DOUBLE ROW SELF-ALIGNING ROLLER BEARINGS Non-standard bearings

	Bearing		Dimensi	ons, mm		Weight (approx)
	number	d	D	В	r	kg
	3744	220	365	120	5	52.3
	3948	239.85	395	124	5	65
	3880	400	590	142	6	145
3144	3003744 ·	220	370	120	5	55
3048	3003148	240	360	92	4	35.5
3152	3003752	260	440	144	5	95

CIA-RDP81-01043F

0

Approved for Release 2013/08/13

TANKOIMPORT

Part

ed

Declassified in

138 🔴

S

CYLINDRICAI $\vdash^{B} \dashv \mathcal{Q},$	L ROLLER BEARINGS WITH S MEDIUM SERIES Standard bearings (GOST 294-41)	HORT ROLLERS	CYLINDRICAL	ROLLER BEARINGS WITH S HEAVY SERIES Standard bearings (GOST 294-41)	HORT ROLLERS	
Type 2000	Type 32000					
I		Type 42000	Type 2000	Туре 32000	Type 42000	
Bearing number Type Type Type d	Dimensions, mm C	apacity coeffi- cient rp.m. Basic speed, load (ap- capacity pror.) C* kg kg	Bearing number	Dimensions, mm	apacity Maximum Basic Weight static load (ap- capacity, prox.) Qsr.	
2305 32305 42305 25 2306 32306 42305 30 2307 32305 42306 30	62 17 2 2 53 35 39 72 19 2 2 62 42 46.2	35000 10000 1600 0.2	Type 2000 Type 32000 Type 42000 d	D B r and D ₁ d ₁ d ₂	C* kg kg	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	78000 8000 3500 0.73 96000 6300 4500 0.94 23000 6300 5600 1.25 94000 6300 5600 1.25 80000 5000 7900 2.3 80000 5000 8700 2.8 80000 5000 8700 2.8 80000 5000 8700 2.8 80000 5000 8700 4.4 94000 4000 11500 4 10000 2000 19000 8.3 60000 2000 22000 9.8 520000 25000 27000 11 60000 2000 30500 16 760000 2500 37500 22 880000 2000 30 30 840000 2000 330 46 440000 1600 68000 53	
	s design are also available with a sta	•		ng loads at various speeds for an	-	•
indicated in Table 29.	loads at various speeds for an exp	ected life of 5000 hrs are	indicated in Table 29.		•	
140 S T	ANKOIMF	ORT	• STA	NKOIMP	ORT 141	1.
				· · ·		•

Declassified in Part - Sanitized Copy Approved for Release	e 2013/08/13 : CIA-RDP81-01043R002200240001-6	_
CYLINDRICAL ROLLER BEARINGS WITH SHORT ROLLERS MEDIUM SERIES Standard bearings (GOST 294-41)	CYLINDRICAL ROLLER BEARINGS WITH SHORT ROLLERS HEAVY SERIES Standard bearings (GOST 294-41)	•
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	נות המאלה להיות בהולה המונה המונה המאנה המאנה להיות וביו היה היה היה היה היה היה היה היה היה ה
2336 32336 42336 180 380 75 5 130 230 249 1260000 1600 59000 42 Note: Bearings of this design are also available with a stamped steel retainer. * Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.	Note: Bearings of this design are also available with a stamped steel retainer. * Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29. • STANKOIMPORT • 141	

	B											¥′	·										
			м	WITH S IEDIUM	L ROLI SHORT SERIES, pearings (ROLLI WIDE	TYPE	S								WI TH ST	TH SHO RAIGHT	RT ROL	RING A				
	Туре	2 32000 WUM							₩√19 ₩19 Type 420	00	Bearing number	d	Di D B	imensions h	- 1	d <u>e</u> 7	Capacity coefficien C*	Maximu speed, r. p. m.	m static loa capacity Qsr. kg	ad /	Weight (approx.) kg		
	Bearing n Type 32000 32605 32606 32607 32611 32612 32613 32614 32615 32617 32618 32619 32618 32618 32620 32622 32622 32622 32622 32622 32622 32622 32622 32622 32622 32622 32622 32622 32622 32622 32622 32622 32622 32632 32633 32634 32635	Type 42605 42606 42607 42608 42608 42609 42610 42611 42614 42615 42615 42615 42615 42615 42615 42618 42619 1 42622 1 42622 1 42623 1 42633 1 42634 42	d D 25 62 30 72 35 80 40 90 50 120 55 120 60 130 65 140 70 150 75 160 80 170 80 170 90 190 90 90 90 200 00 215 20 260 30 280 30 280 30 280 30 280 30 280 30 280 30 280 30 280 30 280 30 280 30 280 30 280 30 280 30 280 30 29 30 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r, 4, 2 35 2 42 2 46.2 2 5 35.5 2.5 38.5 3.5 90 3.5 90 3.5 90 3.5 90 4 115 4 129.5 4 129.5 4 129.5 4 129.5 4 129.5 4 129.5 4 129.5 5 180 5 208 5 215 5 232	5 57.8 64 71 5 76 81.6 91 97 5 102.2 111 114.5 124 5 130.5	Capacity ceefficient C* 46000 54000 134000 137000 137000 135000 220000 25000 330000 330000 330000 330000 330000 540000 540000 540000 540000 540000 1070000 1260000 1340000 1360000 1370000 1370000 1370000 1370000 1370000 1370000 1370000 1370000 1370000 1370000 137000 100000 1000000	Maximum speed, r, p, m, 10000 10000 8000 8000 8000 8000 4000 40	Basic Stalle cloud csalle cloud g 2300 2800 2800 2800 1000 12000 12000 12000 12000 12000 12000 12000 12500 17500 19000 21500 26000 31000 42000 -55000 68000 -59000 13000	Welpht (ap- prox.) kg 0,4 0,6 0,6 0,6 0,6 0,6 0,6 1,1 1,5 1,85 1,85 2,4 3,6 4,4 4,4 6,4 6,4 6,4 6,4 6,4 1,7,4 1,7,5 1,7,5 2,4 3,6 4,5,4 6,4 6,6 6,6 1,1 1,5 1,5 1,85 2,4 3,6 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5		130 2 150 3 100 2 140 3 t e : Bea	260 80 280 93 320 108 215 43 300 62 arings c	4 12 6 14 3 14 8 15 7 13 2 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	115 1 154 1 167 1 193 2 N 129.5 1 180 1 design	24 4 67.5 4 80.8 5 210 5 Mon-stan 139 4 94.3 5 are also	40000 89000 107000 126000 dard bear — available	00 2500 00 2000 00 1600 rings e with a st	22 500 48 000 59 000	0 0			
		 missible be	earing loa				ith a stam or an expe			hrs are				-									
1	142	S	ΤA	N	KC		MP	OF	ΣT		0	S	Т	A	N	KC) N	ЛP	OR	<u>} T</u>) 143 -	3 .

CYLINDRICAL ROLLER BEARINGS WITH SHORT ROLLERS WITH ONE SHOULDER ON INNER RING AND ONE LOOSE FORM WASHER

Dimensions, mm

| 50 | 110 | 27 | 8 | 70.2 | 3

65 140 33 10 91

210 52 14

62719 95 220 65 19 137.3 3.5

65 140 48 10 91 3.5

h d,

37 11 102.2 3.5

125 5

r

3.5

4

4

Bearing number

62310

62313

62315

62318

62414

62415

62417

62612

62613

d D B

75 160

90 190 43 12 124

70 180 42 12 107.4 4

75 190 45 13 115

85

60

130 46 9.5 81.6 3.5

Weight (approx.)

kg

1.2

2.5

3.7

6.9

.5.9

7.1

9.8

3

3.6

10.2

NUPM

•

•

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

ROLLERS
WITH ONE SHOULDER ON INNER RING AND
ONE LOOSE FLAT WASHER

CYLINDRICAL ROLLER BEARINGS WITH SHORT

Bearing		Dimens	ions, m	.m		Capacity coefficient	Maximum speed,	Basic static load capacity Qsr.	Weight (approx.)
number	d	a	В	d2	r	c.	rp.m.	kg	kg
	·		Sta	ndard b	earin	gs (GOST 2	94-41)		
92314*	1 70	150	35	1971	3.5	200000	5000	10000	. 3.1
92412	60	150	35	91	3.5	220 000	4000	i0500	3.4
92412	130	340	78	201.6	6	1260000	2000	59000	40.7
92420	140	360	82	219	6	1340000	2000	63 000	44.8
	•			Non-	stand	ard bearing	s		
92718	1 90	1 180	1 30	1 -	13	I	I –	1 -	3.5
92718 92721	105.023	190	36		4			-	4.66

Note: Bearings of this design are also available with a stamped steel retainer.

STANKOIMPOR

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

Note: Bearings of this design are also available with a stamped steel retainer.

Non-standard bearings

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

Capacity

c٠

100000

170000

230000

320 000

310000

360 000

460 000

196000

220 000

Standard bearings (GOST 294-41)

Maximun speed, r. p. m.

6300

5000

4000

3200

4000

4000

3200

5000

4000

Basic static load capacity Qst.

kg

4900

8500

11500

16000

14500

17000

22000

11000

12000

S TAN KOIMPORT

Bearing			Dimer	nsions, mm				Bearing number	d	D	в	Di	r	. Ti	Weigh (appro: kg
number	đ	D	в	Dz	7	1	- Weight (approx.) kg c							0.8	0.0
12302	15	42	13	32.4		+	×g .	2902	16	40	12 18	33.9 45	1.5 1.5	0.8	0.
12204	20	47	14	32.4	1.5	0.8	0.104	2505 WL 2	F	52 ·	21	45 86	2.5	2.5	0.
12307	35	80	21	64.3	1.5	1	0.133	2710	50	100 85	16	76.5	1.5	1.5	0
12208	40	80	18	66.2	2.5	2	0.648	2910	52 60	85 140	51	122	3.5	3.5	3
12308	40	90	23	73.6	2.5	2	0.456	2712	82	140	19	111	2.5	2.5	0.
. 12309	45	100	25	81.4	2.5	2.5	0.786	2916 2519 4/L 9		170	43	151.5	3.5	3.5	4.
12310	50	110	27	91.2	2.5	2.5	1.053	2519 12 9	1	215	58	191.5	3.5	3.5	9.
12311	55	120	29	99.4	3	3	1.352	2626 WM	1.	280	93	243	5	5	29
12416	80	200	48	160	4	4	1.7	2020 1/7	160	215	30	198	4	4	3
12218	90	160	30	136.4	3	3	8.67	2740	200	340	50	303	5	3.5	19
12318	90	190	43	157	4.	4	2.748	2746*	230	370	80	334	5	5	37
12418	90	225	54	179	5	5	6.24	2768	340	530	133.25	476	6	6	112
22320	100	215	47	176.5	4	4	12.01 9.2	2961	304.8	469.9	98.5	421.35	5	5	6
22524	120	215	58	184	3.5	3.5	9.2 8.75		·	1		available w	ith a sta	mped ster	el retain
12526	130	230	64	195	4	4	11.86					aranaoro			
12728	140	215	50/45	189	3 .	3	6.9	* With a	n oil hole	in the oute	r ring.				
12228	140	250	42	211.5	4	4	9.66								
12736	180	280	55/50	245.5	3	3	12.8								
· 12746	230	350	70/65	306.4	3	3	26.6	•							•
Note:	Bearings of	his dosign		<u>'</u>							•		•		
	Bearings of	ucargi	i are aiso	available v	vith a sta	mped stee	el retainer.						,		
146	C 77	AN		NI C								M		D 7	-

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13

CYLINDRICAL ROLLER BEARINGS

WITH SHORT ROLLERS

Non-standard bearings

Type 12000

NFM

			•				
			Dimension	5, mm			Weight (approx.)
earing umber	d	D	в	Di	т.	rı	kg
2902	16	40	12	33.9	1.5	0.8	0.084
2505 W4 2		52	18	45	1.5	1	0.187
2710	50	100	21	86	2.5	2.5	0.85
2910	52	85	16	76.5	1.5	1.5	0.36
2712	60	140	51	122	3.5	3.5	3.75
2916	82	122	19	111	2.5	2.5	0.8
2519 #4.9.	-	170	43	151.5	3.5	3.5	4.52
2524 WL 7		215	58	191.5	3.5	3.5	9.52
		280	93	243	5	5	29.9
2626 WM77 2732	160	215	30	198	4	4	3.34
	200	340	50	303	5	3.5	19.25
2740	200	370	80	334	5	5	37.4

1

• 147

CYLINDRICAL ROLLER BEARINGS WITH SHORT ROLLERS WITH STRAIGHT OUTER RING Non-standard bearings

: CIA-RDP81-01043R002200240001-6

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Type 22000

			Declassified in F	art - Sanitized	Copy Approv	ved for Release	2013/08/1	3 : CIA-RE)P81-0104	3R00220	00240001-	6			
		WITH S WITH STRA	L ROLLER BEA HORT ROLLERS AIGHT INNER I andard bearings	5					YLINDRIC STRAIG	CAL ROL HT OUT	LER BEA ER RING	AND HO	OLE FOR)RT RO LOCKI	OLLERS ING
Ī	Bearing number		Dimensions,	mm	and .	Weight (approx.)	Bearin	g r d	D II	i b <u>i</u>	Dimensions, m d ₁ a	m D ₁	h r	r1 -	Weight (approx.). kg
	32719 32524 32544	95 120 220	220 65 215 58 400 108	125.5 143.5 268	3.5 3.5 5	kg 10.5 9.3 62	4023 4027 4023	5 75 8 90	110 2 160 3 190 4		10 13. 10 29 10 21.		$ \begin{array}{cccc} 3 & 3 \\ 3 & 3.5 \\ 3 & 4 \end{array} $	3 2 4	1.2 3.95 6.1
	Note:	Bearings of this	design are also av	ailable with a s	tamped steel 1	retainer.	N o	e : Bearin	gs of this d	esign are	also availat	ole with a	stamped st	éel retai	ner.
		WITH WITH ONE SI	CAL ROLLER B H SHORT ROLL HOULDER ON E on-standard bearing	ERS NNER RING					CYLINDR WIT	ICAL RO HOUT IN	NNER RIN	ARINGS NG, NON-	-SEPARA	IORT F	ROLLERS YPE
	Bearing number	a	Dimensions D B	mm	r and r1	Weight (approx.) kg	B	aring -			Dimensions, m	.m.		_	Weight (approx.)
	42717 42524 42526	85 120 130	125 20 215 58 230 64	100.5 153 165.5	1.5 3.5 4	0.9 9.3 12		2205 22906	d 25 31.793	D 52	15 27	14.6 26	3 1 1.5		kg 0.12 0.18

۲

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

WITHOUT INNER RING

CYLINDRICAL ROLLER BEARINGS

WITH SHORT ROLLERS

Bearing		Dim	ensions	, mm		Capacity	Maximum	Basic static	
number	d	D	в	ь			speed, r. p. m.	load capacity Qsr.	Weight (approx.)
						c٠		kg	kg .
			s	tanda	rd bea	arings (GOS)	5377-50)		
292202	20	35	11	9	11	8800	16000	430	0.038
292203	22.9	40	12	10	1.5	10000	16000	450	0.065
292204	27	47	14	10.7	1.5	16600	16000	700	0.005
292205	32	52	15	12	1.5	18000	13 000	850	0.106
292206	38.5	62	16	14	1.5	28000	13 000	1100	0.163
292207	43.8	72	17	15	2	37000	10000	1700	0.8
292308	53.5	90	23	18.3	2.5	60 000	8000	3000	0.59
292218.	107	160	30	25.4	3	188 000	40.00	9000	2.09
292122	125	170	28	26	3	136000	4000	7600	1.6
292220	120	180	34	32	3.5	188 000	3200	9800	2.65
				N	Ion-st	andard bearin	nde	1	
2927146 Б	82	110	18	15	2	—	-	- 1	0.48

Notes. 1. Bearings of this design are also available with a stamped steel retainer. 2. The capacity coefficient C and the static load capacity $Q_{sr.}$ are valid, if the roller race on the shaft has a surface hardness not less than $R_c=60$.

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

STANKOIMPORT

152 🔴

			Dimensions, m	.m.		Weight (approx.)
Bearing number	d	D	в	r	D ₁	kg
	50	80	23	1.5	72.5	0.428
3182110	55	90	26	2	81	0.63
3182111	60	95	26	2	86	0.69
3182112	65	100	26	2	91	0.73
3182113		110	30	2	100	1.075
3182114	. 70	115	30	2	105	1.135
3182115	75	125	34	2	113	1.5
3182116	80	125	34	2	118	1.58
3182117	85	140	37	2.5	127	2.12
3182118	90	140	37	2.5	132	2.2
3182119	95	145	37	2.5	137	2.22
3182120	100	160	41	3	146	2.84
3182121	105	170	45	3	155	3.74
3182122	110	180	45	3	165	3.86
3182124	120	200	52	3	182	5.36
3182126	130	200	53	3	192	6.05
3182128	140	210	56	3.5	206	7.5
3182130	150	225	60	3.5	219	8.387
3182132	160	240	67	3.5	236	12.9
3182134	170	260	74	3.5	255	16.9
3182136	180	280	75	3.5	265	17.9
3182138	190	310	82	3.5	282	22
3182140	200		90	4	310	29
3182144	220	340	92	4	330	32.7
3182148	240	. 360	104	5	364	47.5
3182152	260	400	104	5	384	49.2
3182156	280	420	100			1

DOUBLE ROW CYLINDRICAL ROLLER BEARINGS WITH SHORT ROLLERS WITH A TAPER BORE (Taper 1:12) EXTRA-LIGHT SERIES Non-standard bearings, adjustable type

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

į,

CYLINDRICAL ROLLER ASSEMBLIES WITH LONG ROLLERS WITHOUT RINGS

Non-standard bearings

							-9 <u>-</u>		
Bearing number	Din d	, D	mm B	Weight (approx.) kg	Bearing number	Din	nensions,	mm B	Weight (approx.)
64903 64904 64704 864904 64805 864705	19.05 19.051 20 20.612 25 25	28.588 28.588 30 33.325 38 33.05		0.07 0.08 0.04 0.12 0.09 0.1	64906 64706 864906 64907 64707 864911	27.71 29.975 31.65 32 35 52.412	46.814 52.012 48	44.1 44.1 49 69	kg 0.2 0.18 0.22 0.32 0.8 0.44
64905	25.4	41.288	60.2	0.28	864915	74	106	57.9	0.27

.

00240001-6

158 STANKOIMPORT Ø

Sanitized Copy Approved for Release

2013/08/13

Declassified in Part -

* Permissible bearing loads at indicated in Table 29.	4074918 4084918 90 125 35 2 4074919 4084919 95 130 35 2 4074919 4084920 4084920 100 140 40 4074922 4084922 110 150 40 2 4074924 4084924 120 150 40 2 4074924 4084924 120 155 45 2 4074926 4084926 130 180 50 2.5 4074928 4084928 140 190 50 2.5 4074928 4084928 140 190 50 2.5 4074928 4084928 140 190 50 2.5	Bearing number Dimensions, mm	
	b, c* 24.3 25.600 5000 28.7 38.500 5000 33.5 42.500 4000 40.1 55.000 3200 35.9 42.500 4000 40.1 55.000 3200 51.6 73000 2500 62.1 97.000 2000 62.1 97.000 2000 80.3 122.000 1300 100.3 178.000 1000 100.3 178.000 1000 110.8 152.000 1000 110.8 152.000 1000 110.8 152.000 1000 130.4 264000 800 131.5 320.000 630 161.7 335.000 630 161.7 335.000 630 161.7 345.000 500	Capacity Maximu coefficient speed, r p.m.	OLLER BEARING arings (GOST 4657-49)
	ioin kg . 800 1.260 0.1260 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.3800 0.4650 0.3500 0.4650 0.3500 0.4650 0.3500 0.4650 0.3500 0.7100 0.7100 0.7100 1.5 0.7500 1.6 0.10000 2.4 0.10000 0.13900 0.13900 0.13900 0.13900 0.18400 0.18400 0.18400 0.18400	load	
	No.065 75 0.118 01 0.134 11 0.202 15 0.268 95 0.311 7 0.402 9 0.439 965 0.62 97 0.718 90 0.439 95 0.701 97 0.718 90 1.001 97 0.718 90 1.034 91 1.344 15 1.466 172 2.07 15 1.466 172 2.07 16 2.74 16 2.97	eight (approx.) kg	-b

1

A DE MARTIN A DETERMINANT OF A DE MARTIN AND A DE MARTIN A DE M

1000

NEEDLE ROLLER BEARINGS Standard bearings (GOST 4657-49) Type 4084000

1

Â.

• 159

Т

Type 4074000

S

0

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Basic static load capacit Qsr. Weight (approx.) kg Dimensions, mm Bearing number Maximu speed, r.p.m. Capacity coefficien Type 4084000 Type 4074000 Туре 4074000 Туре 4081000 D ь r D₁ C+ kg 0.098 0.065 4084103 4084104 800 4074103 17 20 35 42 47 55 62 68 75 80 90 95 100 110 115 125 25600 5000 1 260 1 460 0.175 0.118 0.134 0.202 38 500 5000 4074104 4074105 4084105 4084106 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 110 120 42500 4000 55000 67500 3200 3200 2000 2500 0.311 4074106 0.268 0.415 4074107 4074108 4084107 4084108 73 000 87 000 2500 2500 2000 0.495 2800 3500 3800 0.637 0.69 0.402 0.439 4074109 4074110 4084109 4084110 97000 110000 115000 4650 5000 0.965 0.6 0.701 1600 4074111 4084111 4084112 4084113 1600 4074112 5400 6700 77100 122000 146000 1300 1300 1.197 0.718 4074113 1.702 1.001 1.065 4084114 4084115 4074114 152000 178000 1300 4074115 8500 8900 2.458 2.579 1.443 1.537 1000 4084116 4084117 4084918 4074116 4074117 120 130 125 130 140 183000 146000 1000 1000 1000 7100 7500 10000 1.562 1.634 2.29 2.45 3.47 4.6 4.9 7.7 0.93 4074918 0.933 1.34 4074919 4084919 152000 1000 1000 800 800 630 630 198000 4074920 4084920 10800 10800 13900 1.46 2.07 4084922 4084924 150 165 212000 4074922 264000 320000 4074924 17300 18400 2.74 2.9 4074926 4074928
 4034924
 120
 103

 4084926
 130
 180

 4084928
 140
 190

 4084930
 150
 210
 335000 405000 500 23 000 4.16 4074930

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

TANKOIMPOR

Declassified in Part -

A CONTRACTOR OF A

0

Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

SELF-ALIGNING BEARINGS FOR MOVABLE JOINTS Standard bearings (GOST 3635-54) ĺ.

• 167

Bearing	number		n	в	_			Allowable	Weight
Type . ILI	Туре IIIC	d	в	в	Bi	r,	r	load , kg	(approx.) kg
Ш5.		5	14	4	6	0.5	0.5	1 000	0.004
шіє	шСб	6	14	4	6	0.5	0.5	1 000	0.004
ш7	шс7	7	17	5	8	0.5	0.5	1 625	0.008
Ш 8	шС8	8	17	5	8	0.5	0.5	1 625	0.008
Ш9	шС9	9	20	6	9	0.5	0.5	2400	0.012
Ш 10	ШС 10	10	20	6	9	0.5	0.5	2400	0.012
Ш 12	ШC 12	12	22	7	10	0.5	1	3150	0.017
Ш 15	ШС 15	15	28	8	12	0.5	1	5175 .	0.032
Ш 17	ШС 17	17	32	10	14	0.5	1	6 5 0 0	0.048
LLI 20	ШC 20	20	35	12	16	0.5	1	8700	0.065
III 25	ШC 25	25	42	16	20	0.5	1	14000	0.115
111 30	ШС 30	30	47	18	22	0.5	1	18 000	0.158
III 40	_	40	62	22	28	0.5	1.5	29150	0.315
~~	2 ШС 10	10	30	10	14	0.5	1	5 500	0.052
	2 IIIC 12	12	32	12	16	0.5	1	7 500	0.064
_	2 IIIC 15	15	35	14	18	0.5	1	9450	0.081

Note. LUC 6, 7 and 8 bearings have a groove on the sphere only.

STANKOIMPORT

~		-			_							
· ·		A		20	\sim			_				
3	6		6	ĸ	()	F	Μ		\sim			
	-			•	\mathbf{v}	- R -	IVI		6 8	0	- T	
						_			<u> </u>	5		

haziti

assified in

•••							· [<i>8,</i>
Bearing number	d	D	в	Bı	r1	7	Allowable load	Weight (approx.)
		1	i	1	<u> </u>		kģ	kg
IIIM 5	5	14	4	6	0.5	0.5	2000	0.004
IIIM 6	6	14	4	6.	0.5	0.5	2000	
IIIM 7	7	17	5	8	0.5	0.5	3250	0.004
IIIM 8	s	17	5	8	0.5	0.5	3250	0.008
IIIM 9	9	20	6	9	0.5	0.5		0.008
IIIM 10	10	20	6	9	0.5		4800	0.012
IIIM 12	12	22	7	10		0.5	4800	0.012
IIIM 15	15	28	8		0.5	1	6300	0.017
IIIM 17	17	32	-	12	0.5	1	10350	0.032
111M 20			10	14	0.5	1	13000	0.048
	20	35	12	16	0.5	1	17400	0.065
11IM 25	25	42	16	20	0.5	1	28000	0.115
IIIM:30	30	47	18	22	0.5	1	36000	0.158
2111M 15	15	35	9	18	0.5	1	18900	
2111M 20	20	47	15	26	0.5	1		0.068
2111M 25	25	52	15	28	0.5	1.5	26250	0.191
9 IIIM 35	35	55	15	22			30000	0.262
				~	0.5	1	34500	0.190

SELF-ALIGNING BEARINGS FOR FIXED JOINTS Standard bearings (GOST 3635-54)

1.1.1

168 🌒

Release 2013/08/13

C

ed for

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

NUT DE LA

1

							6 ag 26 _					,		_	
۲	S	T	Α	N	Κ	0	I	Μ	Ρ	0	R	Τ	·	•	169

		-										
Bearing		Dim	ensions,	mm				Speed,	r. p. m.			Weight
number	d	D	в	i	r	25	50	100	300	500	1000	(approx.) kg
						Allowab	le radial	load, kg,	at expect	ed life of	5000 hrs	kg
5210	50	90	44	2	0.5	2000	1 600	1250	720	530	330	1.3
5212	60	110	49	2.5	0.5	2700	2200	1700	1000	750	450	1.941
5214	70	125	60	2.5	0.5	3800	3000	2300	1350	980	600	3.5
5215	75	130	67	2.5	0.5	4400	3500	2650	1500	1100	700	3.8
5216	80	140	67	3	0.5	5000	4000	3000	1700	. 1300	750	4.4
5217	85	150	70	3	0.5	5600	4500	3 5 0 0	1900	1400	850	5.2
5218	90	160	70	3	0.5	5800	4700	3700	2000	1500	900	7.3
5220	100	180	82	3.5	0.8	7500	6000	4600	2600	1900	1100	10.5
5222	110	200	89	3.5	0.8	9200	7400	5600	3100	2200	1300	14.1
5224	120	215	98	4	0.8	10500	8500	6500	3600	2600	1500	15.56
5228	140	250	120	4.5	1	13 500	11500	9600	5000	3800	2000	26
5230	150	270	120	4.5	1	14000	12500	10000	5400	4000	2000	27.8
5232	160	290	124	5	1	15000	12700	10500	5900	4100	2200	35.93
5236	180	320	149	5	1	16000	14000	11000	5500	4000	2400	46.1
5306	30	72	30	1.5	0.3 -	880	750	620	390	300	200	0.62
5307	35	80	35	1.5	0.3	1 200	1 0 0 0	800	500	370	250	0.9

Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

FLEXIBLE ROLLER BEARINGS Standard bearings (OST 26005)

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

0

Declassified in Part

Sanitized Copy

Declassified in Part - Sanitized Copy Approved for Release	2013/08/13 : CIA-RDP81-01043R002200240001-6
FLEXIBLE ROLLER BEARINGS	FLEXIBLE ROLLER BEARINGS
Speed, r. p. m Weight (approx.) Bearing number Dimensions, mm Speed, r. p. m Weight (approx.) d D B i - 25 60 100 300 500 1000 Allowable radial lead, kg, at expected life of 3000 hrs kg 5736 180 320 110 5 2 11500 9800 7300 4000 2000 2100 1500 0.2700 1500 0.2710 4000 700 3000 67.3 57.4 3005 3100 3500 4000 500 4000 700 500 700 500 700 500 730 4000 4000 1000 500 4000 730 4000 200 730 <th< td=""><td>Speed, r. p. m. Weight in the procession of theprocesint of the procession of the procession of theprocesion o</td></th<>	Speed, r. p. m. Weight in the procession of theprocesint of the procession of the procession of theprocesion o
FLEXIBLE ROLLER BEARINGS WITH SHOULDERS ON THE INNER RING Non-standard bearings	15933* 165.513 290 138.7 98 38.9 11.5 1.2 10000 9000 7600 4400 3000 1600 33.9 15736 180 320 215 150 45 10 2 16000 14000 1000 5500 4000 2400 57.16 15744 220 380 240 175 40 15 2 25000 23000 10000 1000 7200 — 96 3015220 100.013 180 92 60 25.8 9.5 0.8 4950 3000 1700 1200 750 7.76 * With oil groove in outer ring. **
Bearing number Dimensions, mm Speed, r. p. m. Weight (approx.) d D B b r r 25 f.0 100 300 500 100 kg 55709 45 100 46 44 2.5 2.5 1800 1550 1200 750 550 400 1.6 557720 100 165 46 44 5.5 5 3700 3000 2200 750 550 400 1.6 3.75 170 STANKOIMPORT 6 5 7 <td< td=""><td>STANKOIMPORT • 171</td></td<>	STANKOIMPORT • 171

		. Declassified in				2013/08/13 : CIA-RDF	01-01043100220				
no and a set of a set of the set	 FLEXIB	LE ROLLER BEARIN SPLIT OUTER RINC	IGS WITH								
Villen Children	Bearing number	• Din	iensions, mm	•	1						
-	number	· d D	в	b max.	Weight (approx.)						
Cautowego		Standard be	arings (OST 260		kg						
Charlen and Charle	45213 45511	65 120	100	98	3.37						
	40011	55 100	100	99.1	2.35	1					
	45904	Non-stan 19.05 36.51	dard bearings	36.5	0.12						
	45804	20 34	25	24	0.12						
	845904 45905	22 40	38	36.8	0.15						
	45905 845905	22.225 39.688	38	36.8	0.15						
	845806	25.4 49.214 30 56	50 76	49.3 73.4	0.4 0.57						
	Note. For been not be less than R_c	arings without inner rir =45.	gs the surface	hardness of							
					、 ・				`		
			•••								
	· · · · ·							~			-
											1
											· 1
		4 - si									
dimension of the second					•					•	a di setta di
	44794800						•			_	
						1				•	お影
	174 • S	ΤΑΝΚ	OIM	POI	RT .				. •		
				<u>. </u>							and the second se
- 11	10 .		•		- 1	1					
				\$						•	
之一		A			5-7-5-7-5-7-5-7-5-7-5-7-5-7-5-7-5-7-5-7	Į.		·			<u> </u>

Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Declassified in Part

		·	ANG	М	ONTACT E AGNETO 7 n-standard ba	TYPE	RINGS					
,	Bearing	Dimensions, mm Weight (approx.										
	Bearing number	d	D	в	r	* 1	kg					
-	6003	3 .	16	5	0.3	0.2	0.005					
	6004	4	16	5	0.3	0.2	0.005					
	6005	5	16	5	0.3	0.2	0.005					
	6006	6	21	7	0.5	0.3	0.011					
	6007	7	22	7	0.5	0.3	0.013					
	6008	8	24	7	0.5	0.3	0.015					
	6010	10	28	8	0.5	0.3	0.023					
	6012	12	32	7	0.5	0.3	0.029					
	6015	15	35	8	0.5	0.3	0.035					
1	6017	17	44	10	0.8	0.5	0.073					
	6020	20	47	12	1.5 (0.7)	1 (0.5)	0.095					
•	L	1										

Note. Bearings are available with non-standard corner chamfers indicated in parentheses.

• STANKOIMPORT • 175

禮

~	-	-										_	-
W	N	Т	Α	I.A	V	\mathbf{h}		A		\mathbf{a}		-	
STATISTICS.	~			1.4		U		M	μ.	U	ĸ		
							_						

Declassified in Part

ANGULAR-CONTACT BALL BEARINGS

EXTRA-LIGHT SERIES

Standard bearings (GOST 831-54)

Dimensions, mm

т

Max | Min.

20 19.7 2

34.5 3.5 2

23.5 2.5

r ۲,

1

1

1.2

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are

Angle β = 26°

Bearing number

46114

46115

46117

46118

46120

46122

46124

46126

46130

176

d D в

70 110 20 20 19.7 2 1

75 115 20

85 130 22 22 21.5 2

90 140 24 24

100 150 24 24 23.5 2.5 1.2 88000

110 170 28 28 27.5 3 1.5 116000

120 180 28 28 27.5 3 1.5 124000

130 200 33 33 32.5 3 1.5 152000

150 225 35 35

indicated in Table 29.

number									C		mum speed	Q: k		Weight (approx.)		
	Туре Туре 36000 46000		d	D	в	Max.	r Min.	r	r ₁	Туре 36000	Туре 46000	r. p. m.	Туре 36000	Туре 46000	kg	
	36200	46200	10	30	9	9	8.8	1	0.5	7500	7100	20000	300	270	0.03	
	36201	46201	12	32	10	10	9.8	1	0.5	8100	7 500	20000	340	310	0.037	
	36202	46202	15	35	11	11	10.8	1	0.5	9300	8100	16000	380	380	0.045	
	36203	46203	17	40	12	12	11.8	1.5	0.8	14000	12300	16000	600	500	0.06	
	36204	46204	20	47	14	14	13.8	1.5	0.8	18000	16700	16000	800	750	0.1	
	36205	46205	25	52	15	15	14.8	1.5	0.8	20000	18000	13000	900	800	0.12	
	36206	46206	30	62	16	16	15.8	1.5	0.8	27000	25000	13000	1 300	1 200	0.19	
	36207	46207	35	72	17	17	16.8	2	1	35000	33 000	10000	1 900	1 600	0.27	
	36208	46208	40	80	18	18	17.8	2	1	49000	42000	10000	2400	2100	0.37	
	36209	46209	45	85	19	19	18.8	2	1	52000	44 000	8000	2600	2200	0.42	
	36210	46210	50	90	20	20	19.8	2	1	54000	48000	8000	2800	2400	0.47	
	36211	46211	55	100	21	21	20.7	2.5	1.2	64000	57000	8000	3400	3100	0.58	
	36212	46212	60	110	22	22	21.7	2.5	1.2	76000	70000	6300	4100	3800	0.77	
	36213	46213	65	120	23	23	22.7	2.5	1.2	86000	80000	6300	4800	4500	0.98	
	36214	46214	70	125	24	24	23.7	2.5	1.2	96000	88 000	5000	5200	4900	1.04	
	36215	46215	75	130	25	25	24.7	2.5	1.2	100 000	92000	5000	5600	5200	1.13	
	36216	46216	80	140	26	26	25.7	3	1.5	108 000	104000	5000	6400	6300	1.38	
	36217	46217	85	150	28	28	27.5	3	1.5	120 000	112000	4000	7300	6800	1.75	
	36218	46218	90	160	30	30	29.5	3	1.5	140000	128000	4000	8600	7900	2.2	
	36219	46219	95	170	32	32	31.5	3.5	2	158000	148000	4000	9900	9200	2.6	
	36220	46220	100	180	34	34	33.5	3.5	2.	170000	164000	3200	11500	10500	3.2	
	36234		170	310	52.	52	51.5	5	2.5	400000	-	2000	32000	-	16.5	

STANKOIMPORT

ANGULAR-CONTACT BALL BEARINGS

LIGHT SERIES

Standard bearings (GOST 831-54)

Capacity coefficient

Type 46000; angle $\beta=26^\circ$

Weight

• 177

Type 36000; angle $\beta=12^\circ$

Dimensions.mm

capaci QST

Maxi

Bearing number

Approved for Release 2013/08/13 : CIA-RDP81-01043R0022002

Basic static load capacity, Qst.

kg

3100

3200

4100

4500

5400

7200

7900

9200

12000

Weight (approx.)

kg

0.717

0.777

1.038

1.43

1.56

2.37

2,378

4.138

4.98

Capacity coefficient

c.

57 000

57000

70000

78 000

170000

Maximur speed, r. p. m.

6300

6300

5000

5000

4000

4000

3200

3200

2500

Weight (approx.) Angle $\beta = 26^{\circ}$

								+		WAR -
Bearing		Din	nensions,	mm		Angle	Capacity coefficient	Maximum	Basic static load	
number	đ	D	в	r	r1	p°	Coefficient	speed, r.p.m.	capacity Qst. kn	

DUPLEX ANGULAR-CONTACT BALL BEARINGS

	d	D	В	•	5	۴°	c.	1. p. m.	kg	kg
			5	Standa	rd bear	ings (GO	ST 832-41)			
436205	25	52	30	1.5	0.8	12	32000	13000	1800	0.24
436206	30	62	32.	1.5	0.8	12	43000	13 000	2600	0.44
436208	40	80	36	2	1	12	78000	10 000	4800	0.74
446206	30	62	32	1.5	0.8	26	40000	13000	2400	0.44
446215	75	130	50	2.5	1.2	26	158000	5000	10500	2.87
446306	30	72	38	2	1	26	60000	10 000	3400	0.78
				N	on-star	dard bea	rings			
466322	110	240	100	4	2	36	-	-	I –	22.31

 $\ensuremath{^*}$ Permissible bearing loads at various speeds for an expected life of 5000 hrs. are indicated in Table 29.

178 🙆

Bearing			Dim	ensions,	, mm			Capacity	Maximum speed,	Basic static load capacity	Weigi (appro:
number	d	D	в	Max.	r Min.	r	r,	c•	r. p. m.	Qst. kg	kg
46303	17	47	14	14	13.8	1.5	0.5	19000	13 000	770	0.11
46304	20	52	15	15	14.8	2	1	21 000	13 000	900	0.14
46305	25	62	17	17	16.8	2	1	31 000	10000	1400	0.23
46306	30	72	19	19	18.8	2	1	38000	10000	1700	0.35
46307	35	80	21	21	20.8	2.5	1.2	46000	8000	2100	0.44
46308	40	90	23	23	22.8	2.5	1.2	57000	8000	2800	0.63
46309	45	100	25	25	24.8	2.5	1.2	70 000	6300	3 600	0.83
46310	50	110	27	27	26.8	3	1.5	80000	6300	4400	1.08
46311	55	120	29	29	28.7	3	1.5	100 000	6300	5 500	1.3
46312	60	130	31	31	30.7	3.5	2	112000	5000	6400	1.7
46313	65	140	33	33	32.7	3.5	2	124000	5000	7300	2.0
46314	70	150	35	35	34.7	3.5	2	140000	5000	8300	2.6
46315	75	160	37	37	36.7	3.5	2	158000	4000	9300	3.1
46316	80	170	39	39	38.7	3.5	2	170000	4 0 0 0	10500	3.6
46317	'85	180	41	41	40.5	4	2	182000	4000	11 500	4.3
46318	90	190	43	43	42.5	4	2	194000	3200	13000	5
46319	95	200	45	45	44.5	4	2-	220 000	3200	14000	5.7
46320	100	215	47	47	46.5	4	2	250 000	3200	17000	7.2
46330	150	320	65	65	64.5	5	2.5	440 000	2000	36000	26

ANGULAR-CONTACT BALL BEARINGS

MEDIUM SERIES Standard bearings (GOST 831-54)

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

1

STANKOIMPORT .

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

The second se	Contraction of the local division of the	COLUMN TWO IS	a contraction data			the second second						
	-		-			~	B /4		\sim		1 C C	• 179
A	~		· 🗛	A 1	14		RA					• 179
629			And	1.0	8.0		1	-	~	n		•
			*			-	 	-				

												Ya Ya	
	Bearing			Din	ension		r		Angle	Capacity	Maximum speed.	Basic static load capacity	Weight (approx.)
	number	a	D	в		г			•		r. p. m	Qsr.	(
		Ľ			Max.	Min.	Ľ	r1	β°	C.		kg	kg
	66406	30	90	23	23	22.6	2.5	1.2	36	54000	8000	2700	0.77
	66407	35	100	25	25	24.6	2.5	1.2	36	64 000	6300	3200	1.05
	36308	40	90	23	23	22.6	2.5	1.2	12	60,000	8000	2900	0.74
	66408	40	110	27	27	26.6	3	1.5	36	80 000	6300	4100	1.37
	66409	45	120	29	29	28.6	3	1.5	36	96000	6300	5100	1.75
	66410	50	130	31	31	30.6	3.5	2	36	108 000	5000	5900	2.17
	66412	60	150	35	35	34.4	3.5	2	36	132000	4000	7800	3.52
	46416	80	200	48	48	47.4	4	1.2	26	230 000	3200	15500	7
	36318	90	190	43	43	42.2	4	2	12	220 000	3200	14200	6.45
	46418	90	225	54	54	53.4	5	2.5	26	270 000	2500	20000	12
	66322	110	240	50	50	49.2	4	2	36	260 000	2500	18000	11.16
1			•				' Non-	ı .etanı	ı dard bear	l	I	1 1	
	66128	1140	1210	33	1 22			-stall		ings			
					33	32.5	-	1	36	-	-	-	4.8
	66432	160	400	88	- 88	87.5	16	3	40	I			0 13

STANKOIMPORT

180 🜑

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

20

•

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

6

STANKOIMPORT

• 181

			BALL VITH TWO	ANGULA BEARIN() INNER F ndard bearin	RINGS					В	ALL BEAF	LAR-CONTA INGS OST 4252-48)	ACT
Bearing number 286805	d 25	Dimensio D 62	ons, mm b 28	r 1.5	Weight (approx.) kg 0.5			-					
L L L L L L L L L L L L L L L L L L L		E ROW AN BALL BH FH TWO IN Non-standar	EARINGS		r	Angle β = 26 Bearing number 3056204 3056205 3056206* 3056207 3056208* 3056216*		52 62 72 80	b r 20.6 1 20.6 1 20.6 1 24 1 27 1.3 30 i 44.5 2	Capacity coefficient C** 25000 28000 38000 60000 60000 148000	Maximum speed, r, p, m. 10 000 8000 6300 6300 3200	Basic static load capacity gravity kg 980 1200 1700 2800 2800 8500	Weight (approx.) kg 0.17 0.19 0.32 0.48 0.65 2.65
Bearing number 3156205 3156307 3086304 3086309 3086313	d 25 35 20 45 65	Dimensio D 52 80 52 100 140	b 20.6 35 22.22 39.69 58.74	r 1.5 1.5 1 2.5 3.5	weight (approx.) kg 0.2 0.8 0.28 1.42 4.1	* Bearin ** Permis indicated in '	sible b	aring	l in width oads at v	arious speeds	for an exp	ected life of	5000 hrs are
· ····		and 3156307, ;			ther bearings, angle	• 5	T	A	N K	011	ИРС	RT	• 189

and south

۲

Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Declassified in Part -

TAPER ROLLER BEARINGS LIGHT SERIËS Standard bearings (GOST 333-55)

Angle $\beta=12^\circ$ to 16°

Bearing			D	imensio	ons, m	m	_		Capacity coefficient	Maximum speed,	Basic static load capacity	Weigi (appro:
number	d	D	Max.	r Min.	ъ	c	r	rı	C.	r. p. m.	Qst. kg	kg
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7217 7218 7217 7218 7219 7220 7221 7221 7222 7224 7226 7224 7226 7224 7230 7230 7230 7244	15 17 20 330 35 40 45 50 55 50 55 60 55 50 55 70 70 75 50 80 85 90 95 9100 105 1100 120 1300 220 230 25 25 25 25 25 25 25 25 25 25 25 25 25	35 40 47 52 62 80 85 100 110 1205 130 140 150 160 170 180 200 215 230 250 250 270 320	$\begin{array}{c} 12\\ 12\\ 15.5\\ 16.5\\ 27.5\\ 20\\ 21\\ 22\\ 24\\ 25.5\\ 27.5\\ 28.5\\ 31\\ 33\\ 35.5\\ 37.5\\ 41.5\\ 50\\ 58\\ 71\\ \end{array}$	$\begin{array}{c} 11.5\\ 13\\ 15\\ 16\\ 17\\ 18\\ 19.5\\ 20.5\\ 21.5\\ 22.5\\ 23.5\\ 24.5\\ 23.5\\ 24.5\\ 23.5\\ 30\\ 32\\ 34.5\\ 33.8\\ 5\\ 40.5\\ 43\\ 43\\ 43\\ 45\\ 48\\ 56\\ 69\end{array}$	$\begin{array}{c} 11\\ 12\\ 14\\ 15\\ 16\\ 17\\ 20\\ 21\\ 23\\ 23\\ 26\\ 26\\ 28\\ 31\\ 2\\ 34\\ 36\\ 38\\ 41\\ 40\\ 42\\ 52\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56$	9 11 12 13 14 15 16 16 16 17 18 19 20 21 22 22 24 26 27 29 30 32 34 4 36 38 34 33 8 35 2	$\begin{smallmatrix}1&1.5\\1.5&1.5\\1.2&2&2&2.5\\2&2.5&3&3&3&3&5\\2&2&2&2&2&3&3&3&3&5\\3&3&3&3&3&5&5&5\\3&3&3&3&3&4&4&4&5\\5&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5\\2&3&3&3&3&3&3&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&3&5&5&5\\2&3&3&3&3&3&5&5&5&5\\2&3&3&3&3&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5&5&5&5&5\\2&3&3&3&3&5&5&5&5&5&5&5&5&5&5\\2&3&3&3&3&3&5&5&5&5&5&5&5&5&5&5&5&5&5&5&$	0.3 0.5 0.5 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1 1 1.2 1.2 1.2 1.5 1.5 2 2	14 000 20 000 35 000 43 000 50 000 66 000 82 000 12 000 132 000 132 000 132 000 230 000 200 000 2000 200 000 200 000 200000000	6300 6300 5000 5000 5000 5000 5000 5000	700 1 000 1 300 2 100 2 500 3 300 4 500 4 500 7 800 9 100 1 500 1 2000 1 4 000 1 5000 1 2000 1 4 000 2 2 000 2 3000 2 3000 2 3000 2 3000 2 3000 2 4 000 2 3 000 2 4 000 2 5 000 3 4 000 3 4 000 3 5 7 000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

• 191

STANKOIMPORT

 TAPER ROLLER BEARINGS

 LIGHT SERIES, WIDE TYPE

 Standard bearings (GOST 333-55)

Angle $\beta = 12^{\circ}$ to 16°

Bearing				mensio	ns, mm				Capacity coefficient	Maximum speed	Basic static load capacity	Weight (approx.
number	a	р	Т		ь				coefficient	r. p. m.	Qst.	(approx.
	å	U	Max.	Min.	4	°	r	r1	C•		kg	kg
7506 K	30	62	21.5	21	20.5	17	1.5	0.5	57 000	5000	2800	0.28
7507	35	72	24.5	24	23	19	2	0.8	78000	5000	3700	0.42
7508	40	80	25	24.5	23.5	19	2	0.8	84000	4000	4300	0.51
7509 K	45	85	25	24.5	23.5	20	2	0.8	84000	4000	4300	0.56
7510	50	90	25	24.5	23.5	20	2	0.8	94000	4000	5000	0.59
7511	55	100	27	26.5	25	21	2.5	0.8	116000	3200	5700	0.82
7512 K	60	110	30	29.5	28	24	2.5	0.8	152000	3200	8100	1.1
7513	65	120	33	32.5	31	27	2.5	0.8	176000	3200	9100	1.4
7514	70	125	33.5	33	31	27	2.5	0.8	182000	3200	9700	1.5
7515	75	130	33.5	33	31	27	2.5	0.8	188000	2500	10000	1.6
7516	80	140	35.5	35	33	28	3	1	220 000	2500	12000	2
7517	85	150	39	38	36	30	3	1	260 000	2000	13 000	2.5
7518	90	160	43	42	40	34	3	1	310000	2000	16000	3.3
7519	95	170	46	45	45.5	37	3.5	1.2	380 000	2000	20000	4
7520	100	180	49.5	48.5	46	39	3.5	1.2	390000	1600	21 000	5
7521	105	190	53.5	52.5	50	43	3.5	1.2	460000	1600	24 000	5.9
7522	110	200	56.5	55.5	53.5	46	3.5	1.2	520000	1300	26 000	7.3
7524	120	215	62	61	58	50	3.5	1.2	600000	1300	33 000	9.6
7526	130	230	68.5	67	65	54	4	1.5	730000	1000	40 000	10.7
7528	140	250	72.5	71	68	58	4	1.5	890000	1000	47000	13.8
7530	150	270	78	76	74	60	4	1.5	980000	1000	53000	18
7536	180	320	91	90	86	70	5	2	1160000	800	59000	27.4

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

192 STANKOIMPORT Ø

TAPER ROLLER BEARINGS MEDIUM SERIES

Standard bearings (GOST 333-55)

Angle $\beta = .10^\circ_{\text{``}}$ to 14°

.

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Bearing				mensior	is, mn				Capacity coefficient	Maximum speed,	Basic static load capacity	Weigh (approx
number	d	D	Max.	Min.	ь	e	r	ri	с•	r. p. m.	Qst. kg	kg
	1.5	40	14.5	14	13	11.1	1.5	0.5	26000	5000	1 100	0.09
7302	15	42 47	14.5	15	14	12	1.5	0.5	28000	5000	1 300	0.13
7303	17	52	16.5	16	16	13	2	0.8	38000	5000	1 600	0.1
7304	20	62	18.5	18	17	15	2	0.8	45000	5000	2100	0.2
7305	30	72	21	20.5	19	17	2	0.8	60000	5000	2800	0.38
7306	35	80	23	22.5	21	18	2.5	0.8	74000	5000	3400	0.5
7307	40	90	25.5	25	23	20	2.5	0.8	92 000	4000	4300	0.7
7308	40	100	23.5	27	26	22	2.5	0.8	128000	4000	5800	0.9
7309 7310	50	110	29.5		29	23	3	1	152000	4000	7100	1.1
7310	55	120	32	31	29	25	3	i	164000	3200	7500	1.5
7312	60	130	34	33	31	27	3.5	1.2	194 000	3200	9200	1.9
7312	65	140	36.5			29	3.5	1.2	230,000	3200	11 000	2.3
7313	70	150	38.5		37	30	3.5	1.2	270000	3200	12500	3
7315	75	160	40.5		37	31	3.5	1.2	280,000	2500	13000	3.4
7315	80	170	43	42	39	33	3.5	1.2	310000	2500	15000	4
7310	85	180	45	44	41	35	4	1.5	350000	2000	17500	4.7
7318	90	190	47	46	43	36	4	1.5	380000	2000	17500	5.5
7319	95	200	50	49	45	39	4	1.5	440 000	1600	21 500	6.4
7320	100	215	52	51	47	39	4	1.5	500 000	1600	24000	7.9
· 7321	105	225	54	53	49	41	4	1.5	540000	1600	25 500	10.5
7322	1110	240	55	54	50	42	4	1.5	570000	1300	26500	12
7324	120	260	60	59	55	46	4	1.5	670000	1300	32000	15
7330	150	320	73	71	65	53	5	2	920000	800	44 000	29
7352	260	540	110	108.5	102	80	8	3.5	2500000	630	- 135 000	125

 \ast Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

STANKOIMPORT • 193

MEDIUM SERIES, WIDE TYPE Standard bearings (GOST 333-55)

TAPER ROLLER BEARINGS

Angle $\beta = 11^{\circ}$ to 15°

194 🚯

Bearing	Ŀ		-	imensio	ons, mn	1			Capacity coefficient	Maximum speed	Basic static load capacity	Weigh (approx
number	d	D	т 		ь	c	r	rı	C.	r. p. m.	Qr	
			Max.	Min.					c.		kg	kg
7604	20	52	22.5	22	21	18	2	0.8	46000	5000	2100	0.2
7605	25	62	22.5	25	24	21	2	0.8	70000	5000	3200	0.3
7606	30	72	29	28.5	29	23	2	0.8	100000	4000	4400	0.5
7607	35	80	33	32.5	31	27	2.5	0.8	116000	4000	5500	0.7
7608	40	90	35.5	35	33	28.5	2.5	0.8	140 000	4000	6600	0.9
7609	45	100	38,5	38	36	30	2.5	0.8	170 000	4000	8000	1.3
7610	50	110	42.5	42	40	34	3	1	210 000	3200	9900	1.7
7611	55	120	46	45	44.5	36.5	3	1	260 000	3200	13000	·2.2
7612	60	130	49	48	47.5	39	3.5	1.2	300,000	3200	15000	2.8
7613	65	140	51.5	50.5	48	41	3.5	1.2	320 000	3200	16000	3.4
7614	70	150	54.5	53.5	51	43	3.5	1.2	380 000	2500	18500	4.1
7615	75	160	58.5	57.5	55	46.5	3.5	1.2	440 000	2500	21000	5
7616	80	170	62	61	59.5	49	3.5	1.2	500 000	2000	25500	5.9
7617	85	180	64	63	60	50.5	4	1.5	540 000	2000	26500	6.9
7618	90	190	68	67	66.5	53.5	4	1.5	630000	1600	31 000	8.1
7619	95	200	72	71	67	57	4	1.5	670 000	1600	33000	9.5
7620	100	215	78	77	73	61.5	4	1.5	800 000	1600	39500	12
7621	105	225	82	81	77	64.5	4	1.5	890,000	1300	43000	Í3.8
7622	110	240	85	84	80	66	4	1.5	980 000	1300	47500	16.5
7624	120	260	91	.90	86	70.5	4	1.5	1070 000	1000	53000	21

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

Ή.	1 2 2 2 2 2 4 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1
	· .

1.5

195

				Dimens	ions, mr	n					Capacity	Max.	Basic static load	Weight
Bearing number	d	D	Di	ι	ь	c	н	h	r	r1		speed, r. p. m.	capa- city Qsr.	(ap- prox.)
				max.									kg	kg
			S	standar	d bea	rings (GOST	3169	9-46))				
67203	17]	40	43	13.5	12	11	5	2.5	1.5	0.5	20 000	6000	950	0.082
67204	20	47	51	15.5	14	12	6.5	3	1.5	0.5		5000	1300	0.131
67207	35	72	77	18.5	17	15	7.5	4	2	0.8	50000	5000	2500	0.343
67510	50	90	96	25	23.5	20	10	5	2	0.8	92000		4 5 0 0	0.8
67512	60	110	117	30	30	24 ·	12	6	2.5	0.8	152000	3200	7100	1.4
				N	Ion-sta	ndard	bearin	gs						
67714	70	120	125	45	42	37	14	6	3.5	1.2	-	-	-	1.95
67915	73.842	127.025	133.4	37	36	29	14.5	6	3	0.8		-	-	1.555
87518	90	160	168	43	40	34	16	7	з	1	—	-	-	3.5
67719	95	165	170	46	45.5	37	14	5	3.5	1.2	-		-	4
767920	95.275	152.425	158.75	39.688	36.322	30.163	15.875	6.35	2.5	0.8	-'	-	-	2.56
67922	107.975	165.125	171	39	37	30	15.8	6.8	3	1	-	-	-	3.068
67728	140	230	238	58	57.	45	23	10	4	1.5	-	-	-	9.3
679/622	622.3	725.487	734	46	46	34	20	8	6	2		-	- '	21.22

* Permissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29.

STANKOIMPORT . STANKOIMPORT

•	TAPER ROLLER	BEARINGS	STEEP AT	NGLE T	VPE					it wh		ŗ	TAPER	ROLL	ER BE	ARIN	GS		· .
								~ ¢ []d	1-6[7]				No.	n-standa	ard bear	ings	•		
	Bearing 1	Dimensions, m	n		Capacity	Bas Stat							Dimension	ıs, mm				27	·
	number d D b			r r	olour cient	nixel and and and and and and and and and	ca- (ap- ity prox.)		Bearing number		1			ı				Angle f ^o (approx.)	Weight (approx.)
		Max	. Min.		c-	- kg	g kg		number	d	D	ь	'n	Max.	Min.	r	r1	<3	kg
	07700 120 1 50 1 01		landard bear						7904	19.05	49.225	21	17.5	23.5	23	2	0.8	11	0.19
	27706 30 72 24.0 27908 38.1 88.505 23.3 27709 45 100 29 27911 53.975 123.825 32.7	0 17.6 24.5 5 17.5 25.5	24.3 2(+ 25 2.3	4) 1 5 0.8	21 -	= =	- 0.46		7905	22.225	56.896	20	16	20	19.5	1.5(2)	0.8	12	0.25
	27709 45 100 29 27911 53.975 123.825 32.1	20.5 32 79 25.4 37.0	31.5 2.5 36.013 3(5 0.8 3.5) 0.8	27 — 26 — 26 —		- 1.03 - 1.8		7906	30.213	63.502	20.5	17	20.5 38.5	20 38	1.5(3.5)	0.8	14 11	0.28 1.14
			earings (GOS		• •		1		7809 807709	45 45	90 100	40 43	32.5 37	38.5 43	42.5	2.5	0.5/1	11	1.5
	27317 85 180 41				*) 27 260000	0 2000 13	500 47		7907	38.1	76.203	25.5	19	24.5	24	1.5(4)	0.8	13	0.5
1	'l			l	121/20000	12000100			7908	41	90	33	28.5	35.5	35.3	2.5	0.8	11	0.9
	Note. Values in pare	entheses refer	to the inner	ring.					7709	45	100	30	22	27.5 43	27 42.5	2.5	0.8	12 12	0.994
	* Permissible bearing indicated in Table 29.	; loads at var	ious speeds	for an e	xpected lif	e of 5000	hrs are		7909 7712	47 60	100 120	43 44	37 37	45	42.5	3.5	1.2	13	2.24
	moleateu în Table 29.								7913	63.5	112.712	30	24	30.316	30.163	3.5(4)	0.5	15	1.23
									807813	65	110	30	24	30.5	30.35	1	0.8	15	1.0
			,						807713	65	150	54	44.5	54	53 44	3 3.5	0.6	14	4.2
									7714	70 75	120 135	42	37 35	45 44.5	44 43.5	3.5	1.2	15	2.4
	•								7815 7717	85	200	40	34.9	52.7	51.7	3.5	1.5	25	7.45
	-								-7718	90	160	46	40.5	50	49	. 4	1.5	15	
									7818	90 ·	170	58	50	62	61 38.88	3.5	1.2	15	1
•							•		707919	93.688		36.322					0.8	14	1
									707920 7821	95.275 105	152.425	46	30.103	49.5	48.5	3.5	i.	15	
									7721	105	215	73	61.5	78	77 .	4	1.5	12	
MIL .	· .								7723	115	190	49	35	49	48	3.5	1	16	. 5.2
								` [_]								- ski - se			
	196 ST	AN		NA I		RT	ß			SΤ	A	NK	0	IN	1 P	0	R ⁻	Г	• 19
		M IN	<u>n UI</u>	IVI	<u>r u</u>	<u>R I</u>													
							· .			•								•	
			· · ·	· •						•				•					
							•	:											•

Approved for Release 2013/08/13

0

CIA-RDP8

										1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
										$\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} $
										Continued
		······································								Continued,
1				Dimensi	ons; mm				10-	
Bearing number						τ	1	1	Angle (P	Weight, (approx.)
	ď	Ď	b4	đ	Màx.	Min.	1 -	n	173	Kup
7728	ſ40	225	34	30	38	36.5	25	1.Z.	27	1.9
7828	140	300	8Ż	60	90	89	5	1.5	25	27.5
7730	150	254	72.5	50	67	66	3(5)	1.5	15	64
7832	160	375	79.4	60.3	87.3	85.8	6	1.5	25	40.3
7933	165.1	288.925	63.5	47.6	63.5	62.5	3.5(7)	z	DE	UT.4
7736	180	290	63.5	48 [.]	65	64	3	r.5	16	19:8
7941	203.E	317.5	63.5	46.05	63.5	62.5	314	1.5	18	18.5
7841	205	485	95.2	73 .	117.47	116	б	1.5	30	90
7746	230	355.6	72,5	54	.72.5	71	4(6)	3	14.	23.5
7947	234.95	327.025	50	39	52.4	50.9	J(6)	2.5	177	123
7951	254	422.275	79:8	66.7	86.L	84.6	3.5(7)	2	64	40
7851	225	560	104.775	69:85	123.825	122.325	8	33	30	887
7860	300-	440	70	55	73-	7E.3	5(6)	2/1.5	16	31.46
7760	300	500	90	65	90	88.5	ro	t.J	ы	67.9
7772	360	530	TT.5	60	80	78.5	6	2.5/E.5	ĽŦ	55.3
7784	420	,620	95	70	95	9315	6	L.E	13	92
7998	489:03	643.87	81:	6 4	81	79:5	3(6)	2	E4	62.4
77/560	560	820	135	105	140	E38	10 [.]	3	Ľ4	232
7518	90 [,]	140	30	26	32.5	38.5	2.5	0.8	13	L6
712f	120	180	36	3T	38.5	37.5	3	E	£4	3.11
7128	140	210	42	36	45.5	41.5	3	6	Ľ4	5.078
7132	f60:	240	48	46	51.5	50:3	3.5	E.Z	64	7.23
7638	190	290	46	40	56	49:5	3.5	E.2	14	11.524
7144	220	340	72	62	76.5	75.5	4	E.5	13	30
7138	230	420.	82	71	87.5	86	5	1.5	14	39
Note	Waliyon i						l			

STANKOIMPORT

Sanitized Cop

Declassified in Part

Note. Values in parentheses refer to the inner ring.

198 🌑

TAPER ROLLER BEARINGS

Non-standard bearings

Bearing			Dimensi	ons, mm				Contact - angle	Weight (approx.
number	d	D	T max.	ь	c	r	r1	β	kg
877907*	33.02	58	_	_	17	_	_	20°	0.21
817907	34.925	76.2	29.37	29.85	23.813	3	0.8	13°	
807919K	95.25	161.925	41.5	36.5	35	3.5	1	16°40′	3.26
807920K	101.6	161.925	41.5	36.5	35	3.5	1	16°40'	2.94
807930	152.4	307.975	88.9	93.7	62	6/10	2.5	13°18′	20.2
817948K	241.122	368.3	76.5	72	62	4	1.5	11°55′	25
807948K	241.3	368.3	76.5	72	62	4	1.5	13°40′	25

STANKOIMPORT

-01043R002200240001-6

• 199

* Without inner ring.

<section-header> TAPER ROLLER BEARINGR Inscritting Inscritting</section-header>				Declass	sified ir	n Part -	Sanitiz	ed Cop	y Appro	ved for Release	2013	08/13 : CIA-RDP81-01043R002200240001-6	
$ \frac{1}{207736} \frac{1}{200} \frac{1}{200} \frac{1}{200} \frac{1}{400} \frac{1}{400} \frac{1}{4000} $		T					s						
$\frac{207738}{2007188} \frac{20}{440} \frac{530}{550} \frac{53.5}{96.4} \frac{42}{94} \frac{43}{95} \frac{3}{5.5} \frac{1}{12} \frac{1720}{17533} \frac{172}{17.7} \frac{172}{17.7} \frac{172}{31.4} \frac{1720}{31.7} \frac{63.5}{32} \frac{1}{17710} \frac{172}{31.4} \frac{1720}{31.4} \frac{63.5}{32} \frac{1}{17710} \frac{1}{31.7} $	number			T max.	ь	c		T1	β		STALLER BURNESS	Bearing number d D b c T r r r prox.) coefficient speed, capacity (approx.)	
$\frac{1}{10000000000000000000000000000000000$	2007948 2007952	240 260	320	43.3 51.5 64.5 96.4	48 60	36 41 52 67	3 3.5 3.5 6.8	1.2	16°35' 13°50'	10.9		Super-light scries 9 2097944 220 300 48 88 110 108 3.51.2 12 980000 630 66000 21.1 2097952 260 360 60 108 134 132 3.51.2 12 980000 630 97000 38.8 2097960 300 420 72 128 160 158 4 1.5 11 2400000 500 131000 62.9 10979050 1310000 150 14910000 151 10979961 480 650 78 130 180 178 6.2.5 16 2900000 250 191000 151 109797101 950 106 175 240 237 8 3.5 17 6000000 150 448000 415	
$\frac{1}{977906} = \frac{28.07}{33.02} = \frac{44.477}{49.225} = \frac{9.576}{13.3} = \frac{1.5}{12} = \frac{1.5}{21} $	TAPER	ROLL					INNE	R RIN(3			Extra-light series 1 Contrast prime Extra-light series 1 2097136 [180] 280 66 108 134 132, 53, 51, 2, 11 1160000 800 87000 33, 3 2097140 200 310 66 120 152 150 3,51, 1, 2 14 1500000 800 87000 39, 3 2097144 220 340 72 30 165 163 4 1, 51 13 1820000 800 87000 48, 66 2097152 260 400 72 30 165 163 44 15 12 12 500000 630 1120000 54, 5 2097152 260 400 602 91 50 206 204 6 2, 5 15 3800000 320 216000 180 ' 97184 420 650 9 150 206 204 6 2, 5 15 3800000 320 2230000 187 97184 420 650 9 152 212 210 8 3, 5 16 3800000 320 2230000 213 237000 233 2297000 233 227000 233 9711564 160 820 115 186 260 227 8 3, 5 12 45500000 250 267000 253 237000 233 223 223 223 9711564 160 820 115 186 260 278 8 3, 5 15 60000000 200 404000 410 404000 410	
Bestring number Lineptions.mm Angle fi ^o (approx.) Weight (approx.) Light series 2 Light series 2 977906 28.07 44.477 9.576 9.576 1.5 18 0.07 977906 33.02 49.225 12.4 11 1.5 20 0.03 977906 46.673 72 1.4 2 2.7 - - Premissible bearing loads at various speeds for an expected life of 5000 hrs are indicated in Table 29. - - - -										e e		Extra-light series 7	-
	977906 977907 977908	28.0	17 4	D 4.477 9.225	h 9.576 12.4	9.57	6 1.5		18	(approx.) kg 0.07		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	200	S	T	AN	K	0	M	Ρ		RT @			

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13

CIA-RDP81-01043R002200240001-6

la de la constante en la constante en la constante de la constante de la constante de la constante de la const La constante en la constante de la constante de La constante de la constante de		N0.	N-ADJ			RINGS		PER		C spine 1 (f summer				-6		N	ON-A)	RO	ABLE DI LLER BI	EARIN	IGS	W TAL	PER	
and a second	. : .	Bearing aum&er	8	D	⊅≞ ,	nensions, n		4	r	F.	Aarte B tap proz.)	Weight (approx.)		[Dimer	isions, mm				Angle β°	Weight	l
	-	37718	50	161.925	100	50	85	6	4	1.5	13	kg S.S	Bearing number		D	ь	c	Max.	T Min.	r	rı	(approx	.) (approx.) kg	
		37820 37925 37925 37927 37927 37927 37928 37830 37730 37730 37730 37735 37841 37741 37745	135 136.52 150 150 160 180 205 205 225	190 163.275 235 235 235 215.9 220 190.5 254 255 270 285 317.5 320 360	125 92 145 145 166.4 106.4 106.4 165.7 145 145 140 107.95 150 150 150 146.45	62.5 46 72.5 72.5 53.2 72.5 72.5 72.5 72.5 70 53.975 75 75 75 75 73.225	100 70 115 115 81 80,96 73 110 110 110 79,37 110 110 110 111,12	8 6 10 10 10 10 10 10 10 10 10 10	+ + + + + + + + + + + + + + + + + + +	2 1.2 2 2 1.5 1.5 2 2 1.5 3 2 2 5	10 16 14 13 18 18 12 15 15 14 13 19 19 13	14.6 8.5 27 24.8 13 13.5 7.4 26.6 26.7 32.7 25 40 41.1 46.5	57707* 97773 97798 977/520 977/720 979/610 * Thi is provide	35 365 490 520 720 609.6 s bearin	ng can l	be adjus	45 136 144 120 140 146 sted by	57 180 190 190 190.5 displace	56.75 178.5 178.5 189 189 187.5 ment of 1	2 5 10 3.5 3 8	6 3.5	11 14 5 15 13 5 13	1.22 116 180 237 286 257.4	g
	•	37748 . 37852 . 37752 . 37860 . 37760 . 37766 . 37768 . 37770 . 37772 .	240 260 260 300 300 330 340 350 350 360	355 370 400 430 440 500 560 500 590 530 590	145 120 150 180 140 180 180 155 200 155	72.5 60 75 90 70 90 90 90 77.5 100 77.5	110 86 110 130 100 125 150 110 140 110	10 10 12 12 12 12 12 12 12 12 12 12	6 6 10 6 10 10 6 12 6	3 1.5 1.5 3 1.5 1.5 3 1.5 2.5 1.5	14 13 13 16 10 11 14 15 15	44.2 37 67 87.2 60 131.8 176 95 180.3 107				•			• .		·		••••	•
	3	37784 77/540	420 540 560	590 620 790 820	185 190 190 270	92.5 95 95 135	125 120 130 190	12 12 12 12	6 6 8 10	1.5 1.5 1.5 3	12. 13 11 14 R	151 172 324 451.5	•	S '	ТА	N	K	01	MF	> C) R	2 T	• 20)3
	, , <i>//</i>	, ,													· ·								· · · ·	

η

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

<section-header><section-header></section-header></section-header>				·						d for Release						-								
$\frac{1}{4} p b c T Verify \\ \frac{1}{847792} 460 730 200 86 200 199 6 3 330 \\ \frac{3}{8477922} 460 730 200 86 200 199 6 3 3 330 \\ \frac{3}{8477922} 460 760 200 200 86 200 199 6 3 3 330 \\ \frac{1}{8477922} 460 760 200 200 86 200 199 6 3 3 300 \\ \frac{1}{8477922} 460 760 200 200 86 200 199 6 3 3 300 \\ \frac{1}{8477922} 460 760 200 200 86 200 199 6 3 3 300 \\ \frac{1}{8477922} 460 760 200 200 86 200 199 6 3 3 300 \\ \frac{1}{8477922} 460 760 200 200 86 200 199 6 3 3 300 \\ \frac{1}{8477922} 460 760 200 200 86 6 3 3 85 36 4 4 4 4 114 147 25 10 5 15 120.11 \\ \frac{1}{77748} 240 400 255 119 17 111 47 725 10 5 15 120.11 \\ 777780 300 100 1777752 200 400 255 119 17 111 47 75 5 3 16 133 \\ 3777756 300 50 350 165 20 148 64 37 6 6 25 220 205 148 64 37 6 6 17 400 205 180 80 405 6 3 25 180 133 11 120.6 54 25.7 5 3 16 133 133 11 120.6 54 25.7 5 3 16 133 133 11 120.6 54 25.7 5 3 16 133 133 133 133 11 120.6 54 25.7 5 3 16 133 133 133 133 133 11 120.6 54 25.7 5 5 16 133 133 133 133 133 11 120.6 54 25.7 5 5 16 133 133 133 133 133 133 11 120.6 54 25.7 5 5 16 133 1$			ROLLE	R BEAI	RINGS	DW TA	PER		2. <u> </u>				a, - c _a			FOUR						EAR	INGS	;
$\frac{1}{2} \frac{1}{2} \frac{1}$	Bearing			Di	imensions,	mm						Bearing				Di	mensions	. mm					Angle β	Weigt (appro:
$\frac{847792}{8479,610} = \frac{460}{606,6} = \frac{730}{241.3} = \frac{200}{165} = \frac{56}{41} = \frac{10}{155} = \frac{10}{8} = \frac{10}{3} = 10$	number	à	D	ь	e			,	11	(approx.)		number	d	α	ь	b1	a (ap- prox.	c	¢1	aı (ap- prox.)	r	r1	prox.)	kg
$ADJUSTABLE DOUBLE ROW TAPER ROLLER BEARING Non-standard bearings$ $Angle \beta = 12^{2}$ $Angle \beta = 12^{2}$ $\frac{12^{2}}{12^{2}} \frac{14}{460} \frac{1}{760} \frac{1}{200} \frac{1}{10} $	8479,610	609.6	812.8	190.5	62	200 190.5	199 187.5	8	3.5	330 271.5		77748 77752	240 260	410 400	270 255	128 119	14 17	114 111	50 47	28 25	10	5 5	11 15	145 120.1
$Angle \ \beta = 12^{\circ}$ $Angle \$	ADJUST	TABLE I				ROLL	ER BE.	ARIN	G		3	ю77256-р 77958 77760 77961	280 292.1 300 304.65	520 476.25 500 438.05	340 292 350 <u>279.4</u> 281	156 140 165 135	28 16 20 11	152 130 148 120.6	62 55 64 54	32 26 37 25.7	6 3 6 5	6 1.5 6 3	13 13 25 16	212 262 133
Bearing number Dimensions.mm 777/533 533 810 400 205 64 71 205 64 71 30.0 6 3 12 477 4 D t b .e r r, kg 777/650 650 1030 50 27.3 14 240 113 47.7 15 10 12 1760 47792 460 760 200 200 86 6 3 360 777/750 750 1130 690 303 30.5 200 10 10 12 226 47792 460 760 200 200 86 6 3 360 777/750 750 1130 690 330 30.5 20 10 10 12 224 47792 460 760 200 86	Angleβ = 12	2	Non-s	tandard t	bearings							777770 77779 77788 777792	350 395 440 460	590 545 650 730	420 288.7 355 440	200 122.9 172 210 260	20.5 23.4 11.5 20.5 24.5	180 113.9 145 180 224	80 55 67 80 100	40.5 33.2 38.5 50.5 60.5	6 10 6 10 10	3 5 6 5 10	25 16 17 26 17	475 188 407 608 1350
47792 460 760 200 200 86 6 3 360 777/750 750 1130 690 30.5 200 10 10 12 224 47792 460 760 200 86 6 3 360 777/750 750 1130 690 30.5 290 130 70.5 10 10 17 246	Bearing number	d	D	T	Т	1	1.			Weight {approx.}		777/620 777/650	620 650	800 1030	365 560	171.5 273	22.5 14	164 240	71 113	30.0 47	6 15	3 10	12 12	47. 176
	47792	460	760	200	200		6					777/660	660	1070	650	312	16.5	276			10	10	17	246
	· ·																20	170	75	34	6	6	16	46

No.

			EXTR	HRUST BE A-LIGHT S mearings (GO	ERIES DST 6874-54) d₁≥) d + 0.2 mm	
	Bearing number	Dimensions, mm d D II r	Capacity coefficient C*	Maximum l speed, r. p. m.	Basic static load capacity Qsr. kg	Weight (approx.) . kg	
	8100 8101 8102 8103 8105 8106 8107 8108 8109 8110 8112 8113 8113 8114 8115 8116 8117 8120 8124 8124 8124 8128 8124 8128 8132 8134 8135 8134 8135 8134 8135 8135 8136 8138 8136 8138 8132 8134 8136 8136 8138 8132 8134 8136 8136 8136 8138 8136 8138 8136 8138 8136 8138 8136 8138 8136 8138 8136 8138 8138	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	10000 10000 8000 6300 5000 5000 5000 2000 2200 2200 2200 2	1 000 1 100 1 200 2 000 2 400 2 400 3 700 3 700 3 700 3 700 9 600 9 600 1 500 1 500 1 500 1 500 2 000 2 000 2 000 2 000 3 000 2 000 2 000 3 500 2 000 2 000 2 000 3 500 1 500 2 000 2 000 2 000 3 500 2 000 2 000 2 000 2 000 3 500 1 500 2 000 2 000 1 500 1 500 1 500 2 000 2 000 2 000 1 500 1 500 1 500 2 000 2 000 1 500 1 500 1 500 2 000 2 000 1 500 1 500 1 500 1 500 1 500 1 500 1 500 2 000 2 000 3 500 1 500 1 500 1 500 1 500 1 500 1 500 2 000 2 000 1 500 1 500 1 500 1 500 1 500 2 000 2 000 3 500 1 500 1 500 1 500 2 000 1 500 1 500 1 500 1 500 1 500 1 2 500	$\begin{array}{c} 0.02\\ 0.024\\ 0.03\\ 0.04\\ 0.06\\ 0.07\\ 0.09\\ 0.07\\ 0.09\\ 0.12\\ 0.15\\ 0.16\\ 0.24\\ 0.29\\ 0.34\\ 0.43\\ 0.46\\ 0.43\\ 0.46\\ 0.43\\ 0.46\\ 0.43\\ 0.46\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.87\\ 2.1\\ 2.2\\ 2.3\\ 3.5\\ 4.1\\ 4.2\\ 4.6\\ 7.6, 8.1\\ 12.2\\ 17.5\\ 18.9\\ 20\\ 22\\ \end{array}$	
•	* Permis indicated in	sible bearing loads at Table 29.	various speeds i	or an expe	and the of	'	
	• S	TANK	0 I M	ΡO	RΤ	√″● 20	7
	11					0 -	

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

	Declass	ified in Part - Sani	tized Copy	Approved	for Release 2	2013/08/13	: CIA-RDP	81-0104	3R002200	240001-6				
<i>d</i> <i>d</i> <i>d</i> <i>d</i> <i>d</i> <i>d</i> <i>d</i> <i>d</i> <i>d</i> <i>d</i>		L THRUST BEA LIGHT SERIES Standard bearings Type 8000 (GOST 6874-54) Type 38000 (OST 7221-39)		d p d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_1 d_2 d_3 d_4 d_1 d_2 d_3 d_4 d_5 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_1 d_2 d_3 d_1 d_1 d_2 d_1 d_1 d_2 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_3 d_1 d_2 d_3 d_3 d_1 d_2 d_3 d_3 d_3 d_3 d_1 d_3 d_1 d_3 d_1 d_2 d_3 d_1 d_2 d_3 d_1 d_3 d_1 d_1 d_2 d_3 d_1 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_1 d_1 d_2 d_3 d_1 d_3 d_1 d_3 d_1 d_1 d_1 d_1 d_2		Type 8000 8256 8268 8272 8292	ermissible be	d d ₂ 280 — 340 — 360 — 460 —	Dimensions, mn D II II, 380 80	b r - 3.5 7 - 4 9 - 5 10 - 6 14 s speeds for a		d, capacity m. distribution of the second se	Continued Weight (approx.) Type Type 8000 38800 27.8 - 67.65 - 117.2 - are indicated	
d₁≥ d + 0.2 mm Bearing number Type Type Type S000	d d_ d_ D I 10 — 26 I <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>Image: Image: Image:</td> <td>i i = 0 + 44 + 17 n Res 0 1 300 0 1 300 0 1 100 0 1 800 0 1 800 0 2 800 0 3 800 0 4 400 0 4 500 1 7 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 2 7000 1 3 5000 1 3 5000 1 7 7000 1 7 7000 1 7 7000 1 7 7000 1 7 7000 1 7 7000</td> <td>Weight: tepper.1 bg Type 33000 Type 33000 Type 33000 O.034 </td> <td>888888888888888888888888888888888888888</td> <td>0 0 005 25 006 30 007 35 008 40 009 45 101 55 111 55 131 65 1313 65 1314 70 1315 77 1316 86 1317 82 1318 90 3320 100 322 110 322 12 226 130 330 154 3330 154 322 12 324 12 326 130 330 154 330 154 3330 154 3330 154 3330 154 3340 20</td> <td>85 95 105 110 115 125 135 140 150 155 170 190 2210 225 240 2250 240 250 300</td> <td>II r 11 r 11 1.5 121 1.5 121 1.5 224 1.5 235 2 340 2.5 555 2.5 633 3.5 70 3.5 80 3.5 80 3.5 95 4 100 5 1600 6</td> <td>Capacity coefficient c⁺ 330000 50000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1550000 2500000 2600000 250000 250000 250000 250000 250000 250000 250000 2500000 2500000 2500000000</td> <td>MEDI</td> <td>UST BEAR UM SERIES ings (GOST di Basic static load Gar. kg 4700 6400 10000 12500 12500 12500 12500 200000 20000 200000 20000 200000</td> <td></td> <td></td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Image:	i i = 0 + 44 + 17 n Res 0 1 300 0 1 300 0 1 100 0 1 800 0 1 800 0 2 800 0 3 800 0 4 400 0 4 500 1 7 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 2 7000 1 3 5000 1 3 5000 1 7 7000 1 7 7000 1 7 7000 1 7 7000 1 7 7000 1 7 7000	Weight: tepper.1 bg Type 33000 Type 33000 Type 33000 O.034	888888888888888888888888888888888888888	0 0 005 25 006 30 007 35 008 40 009 45 101 55 111 55 131 65 1313 65 1314 70 1315 77 1316 86 1317 82 1318 90 3320 100 322 110 322 12 226 130 330 154 3330 154 322 12 324 12 326 130 330 154 330 154 3330 154 3330 154 3330 154 3340 20	85 95 105 110 115 125 135 140 150 155 170 190 2210 225 240 2250 240 250 300	II r 11 r 11 1.5 121 1.5 121 1.5 224 1.5 235 2 340 2.5 555 2.5 633 3.5 70 3.5 80 3.5 80 3.5 95 4 100 5 1600 6	Capacity coefficient c ⁺ 330000 50000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1400000 1550000 2500000 2600000 250000 250000 250000 250000 250000 250000 250000 2500000 2500000 2500000000	MEDI	UST BEAR UM SERIES ings (GOST di Basic static load Gar. kg 4700 6400 10000 12500 12500 12500 12500 200000 20000 200000 20000 200000		
I	bearing loads a 29.	3 3 50 t various speeds fo NKOI		ted life of	5000 hrs are		Permissible ated in Table	bearing 29.	loads at v		· · .	pected life o	f 5000 hrs ard	

Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

đ

Declassified in Part

Sanitized Copy

	! mm	. ⊢ ⊶	d,		$d_1 \ge d + 0.2 \text{ mm}$		DA		T BEARI	NGS
[Dimensions, mm	Capacity Maximum					Dimension	5. mm		1 (a
Bearing number	d D II r	Capacity coefficient Speed, r. p. m.	Basic static load capacity Qsr.	Weight (approx.)	Bearing number	a	D	u .	r	(a
	Standard hear	rings (GOST 6874-54)	kg	kg	808100	10	26	12	0.5	
8420				.	808903	18	35	12	0.5	
1		500000 630	92000	14.9	808205	25	48	15.5	1	
8426	130 270 110 5	730000 500	153000	31.8	808106	30	50	14 ·	1	
	Non-star	ndard bearings			808107	35	55	16	1	
8413		220000 1300	1 25000		808108	40	60	16	1	
		220000 1300	37000	4.2	808208	40	64	18	1.5	
* Perm	issible bearing loads at variou	us speeds for an exp	ected life of t	5000 bra ana	8908	42	58	12	1.5	
indicated in	Table 29.	as species for all exp	ected me of a	bood nrs are	. 808209	45	73	22	1	
				•	808211	55	88	24.5	1.5	
					808212	60	90	24.5	1.5	
					808212	70	103	27	1.5	
					808216	80	115	29	1.5	
					8717	85	140	35	2	
					808220	100	150	32.5	1.5	
					808220	100	172	57	2.5	
					8760	300	435	104	5	
									1	
				ł			440	50	3	
					8768	340		50 60	3 3.5	
					8768 9008188	340 440	540		1	
					8768 9008188 8791	340 440 455	540 650	60	3.5	
	·				8768 9008188 8791 8948	340 440 455 238/242	540 650 340	60 120	3.5 6	
					8768 9008188 8791 8948 8974	340 440 455 238/242 368/370	540 650 340 529	60 120 70 131	3.5 6 3.5	
					8768 9008188 8791 8948 8974 81/670	340 440 455 238/242 368/370 670	540 650 340 529 800	60 120 70 131 105	3.5 6 3.5 6	
	- - -	· ·			8768 9008188 8791 8948 8974	340 440 455 238/242 368/370 670	540 650 340 529	60 120 70 131	3.5 6 3.5 6 5	

Approved for Release 2013/08/13

Sanitized Copy

Declassified in Part -

• 211

200240001-6

CIA-RDP81-01043R002

125.20

	BALL THRUST BEARINGS Non-standard bearings												SI			ARI	IGS	THRUST gs						
	Bearing			1	Durensions	. 11110				i	-	Bearing number		7		Din	inensions, m	.m				Weight (approx.)		
	Bearing number	4	d,	U	D,	D ₂	B			Weight (approx.) kg		number	d	D	ם,	н	н,	R	А	ь	,	kg	-	
	998911 998912 998914 998915 998915 998916 998920	53 57 71.5 80 78 101	53 57 71.5 76.3 78 101.2	72 74 93 96 98 122	72 74 93 95 95 96 122	75 75 97 100 102 127	15.5 17.5 21 21 15 16	0.5 0.5 0.5 0.5 0.5	0.5 3.5 0.5 5.25 0.5 0.5	0.17 0.23 0.24 0.23 0.3 0.43	and the second	18204 18205 18206 18207 18208 18209	20 25 30 35 40 45	40 47 53 62 68 73	42 50 55 65 72 78	17 19 20 22 23 24	14.7 16.7 17.8 19.9 20.3	36 40 45 50 56 56	18 19 22 24 28.5 26	5 5.5 5.5 7 7 7.5	1 1 1.5 1.5 1.5	0.11 0.16 0.21 0.29 0.35 0.4		
			BA	LL TH	IRUST	BEAR	INGS				And a second	18210 18211 18212 18213	50 55 60 65	78 90 95 100	82 95 100 105	26 30 31 32	28 28 28.7	64 72 72 80	32.5 35 32.5 40	7.5 9 9 9	1.5 1.5 1.5 1.5	0.5 0.62 0.7 0.97		
Г	······	D		Non-st	tandard	bearing:	s 4	0				18214 18217 18220	70 85 100	105 125 150	110 130 155	32 37 45	29 33.1 40.9	80 100 112 125	38 52 52 65	9 11 14 14	1.5 1.5 2 2	0.83 1.62 2.91 3.13		
									,			18222 18224 18226 18228 18312	110 120 130 140 60	160 170 190 200 110	165 175 195 210 115 140	45 46 53 55 42 52	40.2 40.8 47.9 48.6 38.3 47.993	125 125 140 160 90 100	61 67 87 41 37	16 17 17 11.5 15	2 2.5 2.5	3.5 5.36 5.9 1.8 2.9		
	Туре	d;	'ــاهــُ	. L	•		Тут	Д —— œ 95872	26	l .		18315 18320 18322 18324	75 100 110 120	135 170 190 210	175 195 220	64 72 80	59.2 67.2 74.1	125 140 160	46 51 63 .	18 20.5 22	3.5	6.1 9.1 12.5		
	Bearing pumber	d	dı		Dimensions	, mm D1	н	r		Weight (approx.) kg		18413 18426 18719	65 130 95	140 270 140	145 280 151	65 128 43.5	60.2 115.2 —	112 200 115 500	40 58 60 301.3	17.5 38 12.5	5	4.4 37 2.66		
	8708 958726 . 212 🝘	40 130	·130.	3	100 170	235	28 41	1.5 1.5		0.96 5.84		18786 18886	430 430	580 570	610 600	150 135	-	480	293		5	98 `		
	212 ()	<u> </u>	' A		<u>< 0</u>	<u> N</u>	<u>A</u> F	<u>0 °</u>	R	<u>T_</u>		<u> </u>	<u>5 T</u>	<u>A</u>	N	<u>K (</u>	DI			<u>, r</u>	<u>× 1</u>			A STATE AND

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

DOUBLE ROW ROLLER THRUST BEARINGS

Non-standard bearings

Bearing		D	mensions, mm	•		Weight (approx.) kg
umber	d	dı	D	н	, r	
59920	101.6	76.2	203.2	97	2	18.5
89739	195	155	280	105	2	26
89752	260	220	370	140	3	58
89764	323	270	430	165	3	83

III. REFERENCE DATA

.

RDP81-01043R002

220 STANKOIMPORT O

Sanitized Copy Approved for Release 2013/08/13

Declassified in Part ·

Declassified in Part -

Sanitized Copy Approved for Release 2013/08/13

ASSORTMENT OF BALLS AND ROLLERS

I. Balls in accordance with GOST 3722-54 manufactured of steel IIIX

Ball dias	meter	Weight per 1000 pieces,	Number of pieces in	Ball dian	neter -	Weight per 1000 pieces,	Number of pieces in
in inches	in mm	kg	1 kg	in inches	in mm	kg	1 kg
	1	0.004	250000	·	14	11.3	88.5
1/16	1.588	0.016	62500	9/16	14.288	12	83.3
1/10	2	0.0326	30303	-	15	13.9	71.8
3/32	2.381	0.055	18181	19/32	15.081	· 14.1	70.8
3/32	2.5	0.064	15625	· 5/8	15.875	16.5	60.6
-	3	0.110	9090	-	16	16.8	59.6
1/8	3.175	0.130	7692	21/32	16.669	19.1	52.3
1/0	3.5	0.174	5747.1	_ ·	17	20.034	49.9
5/32	3.969	0.250	4000	11/16	17.463	21.9	45.9
5,52	4	0.26	3846	23/32	18.256	25.0	40.0
_	4.5	0.371	2695.4	- 1	19	28.0	35.7
3/16	4.763	0.440	2272	3/4	19.05	28.4	35.6
3/10	1.705	0.51	1961	25/32	19.844	32.4	30.9
12/64	5.159	0.559	1788	13/16	20.638	36.2	27.6
13/64	5.5	0.676	1479.3	27/32	21.431	40.1	24.9
	5.556	0.700	1428	7/8	22.225	45.2	22.1
7/32	5.953	0.860	1162	29/32	23.019	50.0	20.0
15/64	6	0.88	1136	15/16	23.813	55.5	18.0
	6.350	1.03	970	1	25.4	67.4	14.8
1/4		1.116	896.1	1 1/16	26.988	80.8	12.37
-	6.5	1.395	716.8	1 1/8	28.576	95.5	10.45
-	1 .	1.50	666	- 1	30	110.426	9.1
9/32	7.144	2.05	487	1 3/16	30.163	112.8	8.86
5/16	7.938	2.03	480.3	1 1/4	31.750	131.9	7.58
_	8	2.68	373	1 13/32	35.720		5.38
11/32	8.731	2.964	337.4	1 1/2	38.100		4.40
-	9	3.55	281	-	40	263.0	3.30
3/8	9.525	3.98	251	- 1	. 50	、514.0	1.94
25/64	· 9.922	4.1	244	2	50.800		1.85
	10	4.43	. 225	- 1	60	883.0	1.16
13/32	10.319	4.43 5.412	184.8	21/2	63.50	1052	0.951
-	11	5.64	177	3	76.200		0.550
7/16	11.113		144	- 1	100	. 4108.2	0.245
15/32	11.906	6.93 7.1	140	4	101.6	4311	0.231
	12	1	118	6	152.4	14550 .	0.0687
1/2	12.7	8.42	. 99.0			1.	
17/32	13.494	10.1	<u> ·</u>	0			
			КO		50	DT	• 2

043R002200240001-6

CIA-RDP8

2. Balls manufactured to special Specifications of stainless steel, grade X18 (EN 229)

Ball dia	meter	Weight per 1000 pieces,	Number of pieces in	Bail die	meter	Weight per 1000 pieces,	Number of pieces in	
in inches	in mm	kg	1 kg	in inches	in mm	kg	1 kg	
1/8 3/16 1/4 5/16 1/2 9/16	3.175 4 4.763 5 6.350 7.938 10.0 12.7 14.288	0.130 0.260 0.440 0.510 1.03 2.05 4.1 8.42 12.0	7692 4000 2272 1961 970 487 244 118 83,3	11/16 3/4 7/8 1 1 1/4 1 1/2 2 3	17.463 19.05 22.225 25.4 31.75 38.1 50.80 76.20	21.9 28.4 45.2 67.4 131.9 227.3 538.8 1818	45.9 35.6 22.1 14.8 7.58 4.40 1.85 0.550	

3. Balls manufactured to special Specifications of silicomolybdenum steel, grade 55 CMA

Ball diameter		Weight per 1000 pieces.	Number of pleces in	Ball die	ameter	Weight per 1000 pieces,	Number of pieces in
n Inches	in mm	kg	1 kg	in inches	in mm	kg	1 kg
5/16 3/8 7/16 1/2	7.938 9.525 11.113 12.7	2.05 3.55 5.64 8.42	487 281 177 118	5/8 3/4 1	15.875 19.05 25.4	16.5 28.4 67.4	60.6 35.6 14.8

4. Cylindrical Roller manufactured to special Specifications of steel, grade IIIX

Rol dimen		Weight per 1000 pieces,	Number of pieces in	Notes	Ro dimer		Weight per 1000 pieces,	Number of pieces in	Notes
Δ	1	kg	1 kg	Hotes	Δ	1	kg	1 kg	
3 4 4.5 4.5 5	5 6 8 5.5 13 5	0.274 0.585 0.78 6.789 1.605 0.762	3649.6 1709.4 1282.1 147.3 623.1 1312.3		6 6 6.5 7 8	8 8.5 12 11 10 12	1.756 1.865 2.633 2.833 2.987 4.681	569.5 536.2 379.8 353 334.8 213.6	
5 5.5 5.5	8 9 16	1.219 1.66 2.95	820.3 602.4 339		10 12.5 15	20 22 25	12.191 20.953 34.389	82 47.73 29.1	Manufactured of steel, grade 50 XH

Declassified in Part -

5. Needle Rollers manufactured of steel IIIX in accordance with GOST 6870-54

							GUST 0870-54
Needle roller dimensions ∆×l	Weight per 1000 pieces, kg	Number of pieces in 1 kg	Notes	Needle roller dimensions ∆ × 1	Weight per 1000 pieces kg	Number of pieces in 1 kg	Notes
1.5×14	0.19	5263		2.5×16	0.63	1587	
1.6×9	0.14	7143	Manufactured of stainless steel X 18 (311 229)	2.5×18	0.69	1449	
1.6×9.35	0.14	7143		2.5×20	0.75	1333	
1.6×18	0.28	3571	Manufactured of stainless steel X18 (ЭН 229)	3×16	0.88	1136	
1.9×24.5	0.54	1852		3×18	1	1000	
2×8	0.19	5263		3×20	1.11	901	
2×10	0.24	4167		3×24	1.31	763	
2×24	0.58	1724		3.5×30	2.1	476	
2×14	0.34	2941		4×34	3.3	303	
2×20	0.48	2083		4×40	3.9	256	
2.5×10	0.37	2703		5×44	6.63	151	
2.5×14	0.52	1923		5×50	7.5	133	

S

Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

TANKOIMPOR **@** 225

				ME	TRIC CON	VERSION	TABLE - INC		7"	8"	9"	10"	11"
Inches	• 0"	1"	2"	3″	4"	5"	Inches	6"	<i>r</i>	Millim		10	
			Millim	eters			Fractional	150.405	177.806	203.207	228.608	254.009	279.410
ractional rts of inches		25.400	50.801	76.202	101.603	127.004	patisofinches	152.405	178.203	203.604	229.005	254.406	279.807
1/64'' 1/32'' 3/64''	0.396 0.793 1.190	25.797 26.194 26.591	51.198 51.595 51.992	76.599 76.996 77.393	102.000 102.397 102.794	127.401 127.798 128.195	1/64'' 1/32'' 3/64'' 1/16''	152.802 153.199 153.596 153.993	178.203 178.600 178.997 179.394	204.001 204.398 204.795	229.402 229.799 230.196	254.803 255.200 255.597	280.204 280.601 280.998
1/16" 5/64" 3/32" 7/64"	1.587 1.984 2.381 2.778	26.988 27.385 27.782 28.179	52.389 52.786 53.183 53.580	77.790 78.187 78.584 78.981	103.191 103.588 103.985 104.382	128.592 128.989 129.386 129.782	5/64'' 3/32'' 7/64'' 1/8''	154.390 154.787 155.183 155.580	179.791 180.187 180.584 180.981	205.192 205.588 205.985 206.382	230.593 230.989 231.386 231.783	255.993 256,390 256.787 257.184	281.394 281.791 282.188 282.585
1/8" 9/64" 5/32" · 11/64"	3.175 3.572 3.968 4.365	28.576 28.972 29.369 29.766	53.977 54.373 54.770 55.167	79.377 79.774 80.171 80.568	104.778 105.175 105.572 105.969	. 130.179 130.576 130.973 131.370	9/64'' 5/32'' 11/64''	155.977 156.374 156.771 157.168	181.378 181.775 182.172 182.569	206.779 207.176 207.573 207.970	232.180 232.577 232.974 233.371	257.581 257.978 258.375 258.772	282.982 283.379 283.776 284.173
13/64 3/16" 13/64" 7/32" 15/64"	4.762 5.159 5.556 5.953	30.163 30.560 30.957 31.354	55.564 55.961 56.358 56.755	80.965 81.362 81.759 82.156	106.366 106.763 107.160 107.557	131.767 132.164 132.561 132.958	3/16" 13/64" 7/32" 15/64" 1/4"	157.565 157.962 158.359 158:755	182.966 183.363 183.760 184.156	208.367 208.764 209.160 209.557	233.768 234.165 234.561 234.958	259.169 259.565 259.962 260.359	284.570 284.966 285.363 285.760
17/64" 9/32" 19/64"	6.350 6.747 7.144 7.540	31.751 32.148 32.544 32.941	57.152 57.549 57.945 58.342	82.553 82.949 83.346 83.743	107.954 108.350 108.747 109.144	133.354 133.751 134.148 134.545	1/4" 17/64" 9/32" 19/64" 5/16"	159.152 159.549 159.946 160.343	184.553 184.950 185.347 185.744	209.954 210.351 210.748 211.145	235.355 235.752 236.149 236.546	260.756 261.153 261.550 261.947	286.157 286.554 286.951 287.348
5/16" 21/64" 11/32" 23/64"	7.937 8.334 8.731 9.128	33.338 33.735 34.132 34.529	58.739 59.136 59.533 59.930	84.140 84.537 84.934 85.331	109.541 109.938 110.335 110.732	134.942 135.339 135.736 136.133	21/64'' 11/32'' 23/64'' 3/8''	160.740 161.137 161.534 161.931	186.141 186.538 186.935 187.332	211.542 211.939 212.336 212.732	236.943 237.340 237.737 238.133	262.344 262.741 263.137 263.534	287.74 288.14 288.53 288.93
3/8" 25/64" 13/32" 27/64"	9.525 9.922 10.319 10.716	34.926 35.323 35.720 36.116	60.327 60.724 61.121 61.517	85.728 86.125 86.521 86.918	111.129 111.526 111.922 112.319	136.530 136.927 137.323 137.720	25/64** 13/32** 27/64** 7/16**	162.327 162.724 163.121 163.518	187.728 188.125 188.522 188.919	213.129 213.526 213.923 214.320	238.530 238.927 239.324 239.721	263.931 264.328 264.725 265.122	289.33 289.72 290.12 290.52 290.92
7/16" 29/64" 15/32" 31/64"	11.112 11.509 11.906 12.303	36.513 36.910 37.307 37.704	61.914 62.311 62.708 63.105	87.315 87.712 88.109 88.506	112.716 113.113 113.510 113.907	138.117 138.514 138.911 139.308	29/64" 15/32" 31/64" 1/2"	163.915 164.312 164.709 165.106	189.316 189.713 190.110 190.507	214.717 215.114 215.511 215.908	240.118 240.515 240.912 241.309	265.519 265.916 266.313 266.709	290.52 291.31 291.7 292.1
1/2" 33/64" 17/32" 35/64"	12.700 13.097 13.494 13.891	38.101 38.498 38.895 39.292	63.502 63.899 64.296 64.693	88.903 89.300 89.697 90.093	114.304 114.701 115.098 115.494	139.705 140.102 140.499 140.895	33/64'' 17/32'' 35/64'' 9/16''	165.503 165.899 166.296 166.693	190.904 191.300 191.697 192.094	216.304 216.701 217.098 217.495	241.705 242.102 242.499 242.896	267.106 267.503 267.900 268.297	292.9 293.3 293.6
9/16" 37/64" 19/32" 39/64"	14.684 14.684 15.081 15.478	39.688 40.085 40.482 40.879	65.089 65.486 65.883 66.280	90.490 90.887 91.284 91.681	115.891 116.288 116.685 117.082	141.292 141.689 142.086 142.483	37/64" 19/32" 39/64"	167.090 167.487 167.884 168.281	192.491 192.888 193.285 193.682	217.892 218.289 218.686 219.083	243.293 243.690 244.087 244.484	268.694 269.091 269.488 269.885	294.0 294.4 294.8 295.2 295.0
5/8** 41/64** 21/32* 43/64*	15.875 16.272 16.669 17.066	41.276 41.673 42.070 42.467	66.677 67.074 67.471 67.868	92.078 92.475 92.872 93.269	117.479 117.876 118.273 118.670 119.066	142.880 143.277 143.674 144.071 144.467	5/8" 41/64" 21/32" 43/64" 11/16"	168.678 169.075 169.471 169.868	194.079 194.476 194.872 195.269	219,480 219,876 220,273 220,670	244.881 245.277 245.674 246.071	270.281 270.678 271.075 271.472	295.0 296.0 296.4 296.5
11/16"	17.463	42.864	68.265	93.666	119.000	144,407						DT	
226	ST	AN	KOI	MP	OR	T O	0 5	5 T A	NK	<u>U I N</u>	APC		

CIA-RDP81-01043R002200240001-6

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Declassified in Part - Sanitized Copy	Approved for Release 2013/08/13	: CIA-RDP81-01043R002200240001-6
	avia Tanto	

							Inches Practional parts of inches 43/64** 23/32** 3/4** 3/4** 3/4** 51/64** 27/32** 27/32** 27/32** 27/32** 27/32** 27/32** 27/32** 27/32** 27/32** 27/32** 27/32** 27/32** 27/32** 27/64** 27/32** 27/64** 27/32** 27/64** 27/32** 27/64** 27/32** 27/64** 27/32** 27/64** 27/32** 27/64** 27/32** 27/64** 27/32** 27/64** 27/32** 27/64** 27/64** 27/64** 27/64** 27/64** 27/64** 27/64** 27/64** 27/64** 27/64** 27/64** 27/64** 27/64** 27/64** 27/64** 27/64** 27/32** 27/64** 20/22** 20/22** 20/64** 20/22** 20/64** 20/22** 20/64** 20/64** 20/22** 20/64** 20/64** 20/22** 20/64**	
Excises ractional	*	1	r	r	"	244 247	Inches Fractional	_
ests of inches			Milli	zelen		- (parts of inches	-
45;64** 23 <u>/</u> 32** 47;64** 3:4**	17.860 18.255 18.653 19.050	43.260 43.657 44.654 44.451	68.661 69.058 69.455 69.852	94.062 94.459 94.856 95.253	119.463 119.860 120.257 120.654	144.864 145.261 145.658 146.055	45/64 ^{**} 23/32 ^{**} 47/64 ^{**} 3/4 ^{**}	1
49;64** 25;32** 51;64** 13;16**	19.447 19.844 20.241 20.638	44.848 45.245 45.642 46.039	70.249 70.646 71.043 71.440	95.650 96.047 96.444 96.841	121.051 121.448 121.845 122.242	146.452 146.849 147.246 147.613	49/64 ^{**} 25/32 ^{**} 51/64 ^{**} 13/16 ^{**}	1
53:64" 27:32" 55,64" 7:8"	21.035 21.432 21.823 22.225	46.436 46.833 47.229 47.626	71.837 72.233 72.630 73.027	97.238 97.634 98.031 98.428	122.638 123.035 123.432 123.829	148.039 148.436 148.833 149.230	53/64'' 27/32'' 55/64'' 7/8'' 57/64''	
57/64** 29/32** 59/64** 15/16**	22.622 23.019 23.416 23.813	48.023 48.420 48.817 49.214	73.424 73.821 74.218 74.615	98.825 98.222 99.619 100.016	124.226 124.623 125.020 125.417	149.627 150.024 150.421 150.818	57/04 29/32" 59/64" 15/16" 61/64"	
61/64** 31/32** 63/64**	24.210 24.607 25.004	49.611 50.008 50.405	75.012 75.409 75.805	100.413 100.810 101.206	125.81 4 126.210 126.607	151.215 151.611 152.008	31/32'' 63/64''	

STANKOI

Declassified in Par

228 🔴

						Continued
Inches	6**	7"	S "	9"	10"	11″
Fractional parts of inches			Millin	neters		
45/64''	170.265	195.666	221.067	246.468	271.869	297.270
23/32''	170.662	196.063	221.464	246.865	272.266	297.667
47/64''	171.059	196.460	221.861	247.262	272.663	298.C64
3/4''	171.456	196.857	222.258	247.659	273.060	298.461
49/64"	171.853	197.254	222.655	248.056	273.457	298.858
25/32"	172.250	197.651	223.052	248.453	273.853	299.254
51/64"	172.647	198.048	223.448	248.849	274.250	299.651
13/16"	173.043	198.444	223.845	249.246	274.647	300.048
53/64''	173.440	198.841	224.242	249.643	275.044	300.445
27/32''	173.837	199.238	224.639	250.040	275.441	300.842
55/64''	174.234	199.635	225.036	250.437	275.838	301.239
7/8''	174.631	200.032	225.433	250.834	276.235	301.636
57/64'' .	175.028	200.429	225.830	251.231	276.632	302.033
29/32''	175.425	200.826	226.227	251.628	277.029	302.430
59/64''	175.822	201.223	226.624	252.025	277.426	302.826
15/16''	176.219	201.620	227.020	252.421	277.822	303.223
61/64**	176.615	202.016	227.417	252.818	278.219	303.620
31/32**	177.012	202.413	227.814	253.215	278.616	304.017
63/64**	177.409	202.810	228.211	253.612	279.013	304.414

ANKOIMPORT

12" = 304.811 mm

• 229

•

Approved for Release 2013/08/13

.

ST

CIA-RDP81-01043R002200240001-6

MPORT

ENGLISH CONVERSION TABLE - MILLIMETERS TO INCHES (1 mm = 0.0393701")

			(1 mm =	0.0393701")				
Milli- meters	Inches	Milli- meters	Inches	Milli- meters	Inches	Milli- meters	Inches	Milli- meters	Inches	
				0.85	0.0335	28	1.1024	70	2.7559	
10.0	0.0004	0.43	0.0169	0.85	0.0333	23 29	1.1024	71	2.7359	
0.02	8000.0	0.44		0.86	0.0339	29 30	1.1811	72	2.1933	
0.03	0.0012	0.45	0.0177	0.87	0.0343	31	1.2205	73	2.8740	
0.04	0.0016	0.46	0.0181	0.85	0.0350	32	1.2598	74	2.9134	
0.05	0.0020	0.47	0.0185	0.89	0.0350	32	1.2398	74	2.9134	
0.06	0.0024	0.48	0.0189	0.90	0.0354	33	1,2992	75 76	2.9528	
0.07	0.0028	0.49	£610.0	0.91	0.0353	35	1.3380	77	3.0315	
0.68	0.0031	0.50	0.0197				1.4173	78	3.0315	
0.09	0.0035	0.51	0.0201	0.93	0.0366	36 37		79		
01.0	0.0039	0.52	0.0205	0.94	0.0370	. 38	1.4567	. 19	3.1102 3.1496	
0.11	0.0043	0.53	0.0209	0.95				50 S1		
0.12	0.0047	0.54	0.0213	0.96	0.0378	39	1.5354		3.1890	
0.13	0.0051	0.55	0.0217	0.97	0.0382	40	1.5748	82	3.2284	
0.14	0.0055	0.56	0.0220	0.98	0.0386	41	1.6142	83	3.2677	
0.15	0.0059	0.57	0.0224	0.99	0.0390	42	1.6535	84	3.3071	
0.16	0.0063	0.58	0.0228	1.00	0.0394	43	1.6929	85	3.3465	
0.17	0.0067	0.59	0.0232	2	0.0787	44	1.7323	86	3.3858	
0.18	0.0071	0.60	0.0236	3	0.1181	45	1.7717	87	3.4252	
0.19	0.0075	0.61	0.0240	4	0.1575	46	1.8110	88	3.4646	
0.20	0.0079	0.62	0.0244	5	0.1969	47	1.8504	89	3.5039	Į.
0.21	0.0083	0.63	0.0248	6	0.2362	48	1.8898	90	3.5433	ł
0.22	0.0087	0.64	0.0252	7	0.2756	49	1.9291	91	3.5827	
0.23	0.0091	0.65	0.0256	8	0.3150	50	1.9685	92	3.6221	
0.24	0.0094	0.66	0.0260	9	0.3543	51	2.0079	93	3.6614	
0.25	0.0098	0.67	0.0264	10	0.3937	52	2.0473	94	3.7008	
0.26	0.0102	0.68	0.0268	- 11	0.4331	53	2.0866	95	3.7402	
0.27	0.0106	0.69	0.0272	12	0.4724	54	2.1260	96	3.7795	
0.28	0.0110	0.70	0.0276	13	0.5118	55	2.1654	97	3.8189	
0.29	0.0114	0.71	0.0280	14	0.5512	56	2.2047	98	3.8583	
0.30	0.0118	0.72	0.0283	15	0.5906	57	2.2441	99	3.8976	
0.31	0.0122	0.73	0.0287	16	0.6299	58	2.2835	100	3.9370	
0.32	0.0126	0.74	0.0291	17	0.6693	59	2.3228	200	7.8740	
0.33	0.0130	0.75	0.0295	18	0.7087	60	2.3622	300	11.9110	
0.34	0.0134	0.76	0.0299	19	0.7480	61	2.4016	400	15.7480	Ι.
0.35	0.0138	0.77	0.0303	20	0.7874	62	2.4410	500	19.6850	1
0.36	0.0142	0.78	0.0307	21	0.8268	63	2.4803	600	-23.0220	
0.37	0.0146	0.79	0.0311	22	0.8661	64	2.5197	700	27.5591	
0.38	0.0150	0.80	0.0315	23	0.9055	65	2.5591	800	31.4961	
0.39	0.0154	0.81	0.0319	24	0.9449	66	2.5984	900	35.4331	
0.40	0.0157	0.82	0.0323	25	⁻ 0.9843	67	2.6378	1000	39.3701	
0.41	0.0161	0.83.	0.0327	26	1.0236	68	2.6772	1.		
0.42	0.0165	0.84	0.0331	27	1.0630	69	2.7165	1		1
							· ·	II.		
-										1
230		SΤ	AN	1 K	01	M	PO	RI		
										4

LIST OF VALID U.S.S.R.

STANDARDS REFERRING TO ANTIFRICTION BEARINGS

GOST 3189-46	Ball and roller bearings. System of notation.
GOST 3395-46	Ball and roller bearings. Classification.
GOST 520-55	Ball and roller bearings. Specifications.
GOST 3722-54	Ball bearings, Balls, Specifications.
GOST 3478-54	Ball and roller bearings. Standard chief dimensions.
GOST 3325-55	Ball and roller bearings. Standard ener dimensions. Ball and roller bearings. Fits.
GOST 4060-48	Needle roller bearings with only an outer stamped split ring.
GOST 26005	Flexible roller bearings.
GOST 4657-49	Needle roller bearings. Types. Chief dimensions.
	Taper roller bearings. Chief dimensions.
GOST 333-55	Taper roller bearings. Chief dimensions. Taper roller bearings with large taper angle (steep angle type).
GOST 7260-54 GOST 3169-46	Taper roller bearings with farge taper angle (steep angle (ypc). Taper roller bearings with flanged outer ring (flanged cup type).
GOST 3109-40	Dimensions.
000m 201 11	Cylindrical roller bearings with short rollers. Types and chief
GOST 294-41	dimensions.
GOST 5377-50	Cylindrical roller bearings with short rollers, without either inner
GOST 5377-50	or outer ring. Light series. Types and chief dimensions.
GOST 4789-49	Single row cylindrical roller bearings with short rollers. Extra-light
GOST 4789-49	series. Types. Chief dimensions.
GOST 5721-51	Double row self-aligning roller bearings. Types and chief dimensions.
GOST 5721-51 GOST 5380-50	Taper roller thrust bearings. Chief dimensions.
GOST 7634-39	Ball and roller bearings on clamping sleeves.
	Ball and roller bearings. Corner chamfers.
GOST 4253-48	Ball and roller bearings, class of accuracy HO and O for assem-
GOST 4793-49	blies that do not require accurate running. Specifications.
	Single row ball bearings.
OST 6121-39	Single row ball bearings. Extra-light series. Chief dimensions.
GOST 4788-49	Single row ball bearings. Groove and snap rings on outer ring.
GOST 2893-54	Dimensions.
GOST 7242-54	Shielded single row ball bearings.
GOST 4061-48	Sealed single row ball bearings.
GOST 4061-48 GOST 5720-51	Double row self-aligning ball bearings. Types and chief dimensions.
	Single row angular-contact ball bearings. Types and chief dimensions.
GOST 831-54	Shight ton angular commence
	ANKOIMPORT • 231
<u>) 31</u>	ANNVINFUNI

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

INDEX

Continued Title of standard U.S.S. R. Mandard GOST 4252-43 GOST 832-41 Single row ball thrust bearings. GOST 6374-54 OST 7221-39 Double row ball thrust bearings. OST 25003 Split housings for radial antifriction bearings. OST 20041 Specifications. GOST 5557-50 OST 2002 bearings. GOST 3535-54 Self-aligning bearings. GOST 800-55 Bearing ring blank tubing steel IIIX15. Specifications. GOST 4727-49 Round wire of chromium steel for bearing ball and roller blanks. GOST 6364-52 Double row taper roller bearings. GOST 801-47 Chromium steel for ball and roller bearings. Specifications. GOST 503-41 retainers). COST 6370-54 Needle roller bearings. Needle rollers.

Bearing number	Page	Bearing number	Page	Bearing number	Page	Bearing number	Page
4 5 6 7 8 9 9 17 23 24 25 66 89 B 104 112 20 203 205 207 200 201 200 201 200 201 200 200 201 200 200	115 115 115 115 115 115 115 115	303 304 305 306 307 308 307 310 311 312 313 313 314 315 316 316 317 318 319 320 321 324 326 328 320 321 322 324 326 328 320 321 322 324 403 405 406 407 405 406 407 406 407 406 407 406 407 406 407 407 406 407 407 407 407 407 407 407 407 407 407	119 120 115 116	1008 1009 1201 1202 1202 1202 1202 1204 1204 1204	129 129 129 129 129 129 129 129 129 129	1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1516 1517 1518 1516 1517 1600 1600 1601 1611 1612 1614 1615 1616 1617 1618 1619 1611 1612 2205 2206 2207 2208 2209 2211 2212 2213 2216 2217 2218 2219 22119 22121 2213 22241 2225 2226 22220 22210 22211 <td>131 132 132 132 132 132 132 132 132 132 132 132 132 132 132 133 139 139 139</td>	131 132 132 132 132 132 132 132 132 132 132 132 132 132 132 133 139 139 139

Double row angular-contact ball bearings. Types and chief dimensions. Duplex angular-contact ball bearings. Types and chief dimensions. Clamping sleeves, nuts and lock washers for ball and roller bearings. Clamping sleeves for ball and roller bearings. Types and dimensions. Nuts and lock washers for clamping sleeves for ball and roller Cold rolled low carbon strip steel (used for manufacturing bearing

STANKOIMPORT

232 🔵

•

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 CIA-RDP81-01043R00

. 0

Sanitized Copy Approved for Release 2013/08/13

U. S. S. R. Standard	Title of standard
GOST 4252-48	Double row angular-contact ball bearings. Types and chief dimensio
GOST 832-41	Duplex angular-contact ball bearings. Types and chief dimensions
GOST 6874-54	Single row ball thrust bearings.
OST 7221-39	Double row ball thrust bearings.
OST 26003	Split housings for radial antifriction bearings.
OST 26041	Clamping sleeves, nuts and lock washers for ball and roller bearin Specifications.
GOST 5557-50	Clamping sleeves for ball and roller bearings. Types and dimensio
OST 26002	Nuts and lock washers for clamping sleeves for ball and rol bearings.
GOST 3635-54	Self-aligning bearings.
GOST 800-55	Bearing ring blank tubing steel IIIX15. Specifications.
GOST 4727-49	Round wire of chromium steel for bearing ball and roller blanks.
GOST 6364-52	Double row taper roller bearings.
GOST 801-47	Chromium steel for ball and roller bearings. Specifications.
GOST 503-41	Cold rolled low carbon strip steel (used for manufacturing bear retainers).
GOST 6870-54	Needle roller bearings. Needle rollers.

Bearing number	Page	Bearing number	Page	Bearing number	Page	Bearing number	Page
4 5 6 7 8 9 17 23 24 25 6 89 17 23 24 25 6 89 17 23 24 25 6 89 104 112 134 2001 2002 2003 2004 2005 2003 2012 2020	$\begin{array}{c} 115\\ 115\\ 115\\ 115\\ 115\\ 115\\ 115\\ 115$	303 304 305 306 307 308 309 310 311 312 313 314 315 316 316 317 318 319 320 321 322 324 325 328 330 403 403 404 405 407 406 407 406 407 406 407 406 407 406 407 406 407 407 406 407 407 407 407 407 407 407 407 407 407	119 120 120	1008 1009 1200 1201 1202 1203 1204 1205 1206 1207 1212 1212 1213 1214 1212 1213 1214 1212 1213 1214 1215 1216 1217 1217 1218 1219 1220 1221 1222 1224 1300 1301 1302 1303 1304 1305 1306 1307 1311 1312 1313 1314 1315 1316 1317 1318 1318	129 129 129 129 129 129 129 129 129 129	1508 1509 1510 1511 1512 1513 1514 1515 1516 1516 1516 1516 1516 1516 1506 1607 1607 1608 1609 1601 1611 1613 1614 1614 1615 1616 1616 1616 1616 1616 1616 1616 1617 1618 16288 16288 16288 16288 162888 16288 16288 16288 1628888	131 131 131 131 131 131 131 131 131 131

STANKOIMPORT

Declassified in Part -

232 🕒

05 06 07 08 09 10	Page 140 140 140 140 140 140	Bearing number 3516 3517 3518 3519 3520 3522	Page 135 135 135 135 135 135 135	Bearing number 5306 5307 5736 5740 5744 5756	Page 169 169 170 170 170 170 170	Bearing number 7307 7308 7309 7310 7311 7312	Page 193 193 193 193 193 193	Bearing number 7620 7621 7622 7624 7624 7709	Page 194 194 194 194 197 197	Bearing number \$11S \$120 \$122 \$124 \$126 \$128	Page 207 207 207 207 207 207 207	Bearing number 8307 8308 8309 8310 8311 8312	Page 209 209 209 209 209 209 209	Bearing number 11309 11310 11311 11312 11313 11314	Fuge 130 130 130 130 130 130 130 130
2311 2312 2313 2314 2314 2315 2316 2317 2318 2319 320 321 322 324 326 3330 332 334 336	140 140 140 140 140 140 140 140 140 140	3524 3526 3528 3530 3532 3534 3536 3538 3540 3609 3610 3611 3612 3613 3614 3615 3616	135 135 135 135 135 135 135 135 135 136 136 136 136 136 136 136 136	5826 6003 6004 6005 6006 6007 6008 6010 6012 6015 6017 6020 7118 7124 7128 7132 7138 7144	170 175 175 175 175 175 175 175 175 175 175	7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7324 7320 7352 7326 K 7506 K 7507 7508 K 7509 K 7510	193 193 193 193 193 193 193 193 193 193	7712 7714 7717 7718 7723 7728 7730 7736 7746 7746 7746 7746 7746 77162 7784 7809 7815 7818 7815 7818 7821 7828 7828	197 197 197 197 197 197 198 198 198 198 198 198 198 198 197 197 197 197 197 193 198	\$130 \$132 \$134 \$136 \$140 \$148 \$148 \$152 \$156 \$160 \$164 \$168 \$172 \$200 \$201 \$202 \$203	207 207 207 207 207 207 207 207 207 207	8313 8314 8315 8316 8317 8318 8320 8322 8324 8326 8326 8330 8330 8330 8340 8340 8340 8340 8340	209 209 209 209 209 209 209 209 209 209	11315 11316 11317 11318 11503 11504 11505 11505 11505 11509 11510 11511 11512 11512 11514 11514 11515 11517	130 130 130 131 131 131 131 131 131 131
1406 1407 1408 1409 1409 1410 1411 1411 1411 1412 1413 1414 15 1415 1416 1417 1418 1419 122 1421 1422 1422 1422 1505 519 524 6266 710 7740 768 902 916	141 141 141 141 141 141 141 141 141 141	3618 3619 3620 3620 3624 3624 3626 3630 3632 3634 3633 3643 3634 3633 3644 3636 3632 3634 3632 3634 3634	136 136 136 136 136 136 136 136 136 136	7156 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7212 7212 7212 7214 7215 7216 7217 7216 7217 7218 7218 7218 7220 7221 7228 7220 7228 7220 7228 7228 7228 7228	198 191 191 191 191 191 191 191 191 191	7511 7512 kt 7513 7514 7515 7516 7517 7518 7520 7521 7522 7524 7526 7526 7526 7530 7605 7604 7605 7609 7609 7609 7609 7609 7609 7609 7609	192 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194	7841 7851 7860 7904 7905 7906 7907 7908 7909 7908 7909 7903 7913 7933 7933 7933 7941 7947 7947 7947 7947 7947 7947 7948 8100 8101 8102 8104 8104 8104 8104 8104 8105 8106 8107 8108 8104 8108 8108 8108 8108 8108 8114 8115 8115	198 198 197 197 197 197 197 197 197 197 197 198 198 198 198 198 198 198 207 207 207 207 207 207 207 207 207 207	8256 8268 8272 8292	208 208 208 208 208 208 208 208 208 208	8717 8760 8763 8945 8945 8944 1203 11204 11205 11207 11205 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11219 11219 11206 11217 11218 11206 11217 11206 11207 11207 11208 11307 11307 11307	211 211 211 211 211 211 211 211	12311 12318 12416 12418 12526 12728 12736	$\begin{array}{c} 131\\ 132\\ 132\\ 132\\ 132\\ 132\\ 132\\ 132\\$

ł

	18208 18209 18210 18211 18212 18213 236	axuabas 12314 12315 12315 12316 12317 12317 12323 12323 12324 12325 13227 13227 13227 13227 13232 13332 13332 13331 13200 13612 13613 13613 13614 13615 13617 13618 13617 13618 13617 13618 13617 13618 13618 13619 13620 13621 13618 13619 13619 13621 13612 13613 13613 13623 13623 13632 13633 13634	Beering nender	Costinued	
	213 213 213 213 213 213 213 213	135 135 135 135 135 135 135 135 135 135	Page		
	32216 32217 32218 32219 32220 32221 TAN	18214 18217 18217 18220 18221 18222 18222 18222 18222 18222 18221 18222 18312 18324 18322 18321 18322 18321 18322 18321 18322 18321 18322 18321 18322 18321 18322 18321 18322 18321 18322 18321 18322 18321 18322 20003 22004 26205 26903 2204 2205 32206 32207 32208 32209 32209 32211 32213 32213	Bearing mumber		
,	139 139 139 139 139 139	213 213 181 181 181 181 181 181 181 181 181 181 181 181 181 181 181 181 181 181 183 139 139	Pøge		
. •	32428 32430 32524 32544 32605 32606	Ennetr 32222 32224 32224 32225 32226 32230 32231 32306 32307 32308 32307 32311 32312 32311 32311 32312 32313 32314 32316 32317 32318 32311 32312 32313 32314 32315 32316 32317 32320 32321 32320 32321 32322 32320 32321 32322 32320 32321 32322 32322 32322 32322 32322 32322 32320 32310 32322 32322<	Bearing number		
·	141 141 148 148 142 142	139 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 141 141 141 141 141 141 141 141 141 141 141 141	Page		
	36318 37718 37720 37726 37726 37727 37730	Accesber 32607 32609 32610 32611 32612 326203 32632 326203 326204 36205 36204 36205 36206 36207 36208 36204 36205 36204 36205 36206 36207 36208 36209 36210 3	Bearing number		
	180 202 202 202 202 202	142 142	Page	•	
and the second se					
	42216 42217 42218 42219 42220	37732 37736 37741 37745 37745 37746 37746 37746 37746 37766 37766 37766 37776 37778 37778 37778 37778 37778 37778 37778 37778 37778 37778 37778 37778 37778 37778 37778 37778 37788 37778 37788 37788 37788 37788 37788 37880 37820 37880 37820 37820 37820 37820 37820 37820 37820 37820 37820 37820 37820 37820 37820 37820 37820 38200 38200 38200 38200 38200 38200 38200 38200 38200 38201 38211 38211 38211 38212 38211 38212 38211 38212 38220 38220 38200 38200 38200 38200 38200 38200 38200 38200 38211 38211 38212 38211 38212 38211 38212 38211 38212 38211 38212 38211 38212 38211 38212 38211 38211 38211 38212 38211 38212 38211 38211 38212 38211 38211 38212 38211 38212 38211 38211 38212 38211 38212 38211 38212 38211 38212 38211 38212 38211 38212 38211 38212 38211 38212 38211 38212 38211 38212 38211 38212 38211 38211 38211 38211 38211 38211 38211 38211 38211 38211 38211	Bearing number		
	139 139 139 139 139 139	202 202 202 202 202 202 202 202 202 202	Page		
-	42426 42428 42430 42524 42526	42221 42222 42224 42226 42226 42230 42305 42305 42305 42307 42306 42307 42309 42309 42310 42312 42313 42314 42315 42314 42315 42316 42317 42313 42314 42315 42317 42318 42319 42320 42321 42324 42324 42326 42328 42324 42326 42328 42324 42326 42328 42324 42326 42328 42326 42328 42326 42328 42326 42328 42326 42328 42326 42328 42326 42326 42328 42326 42328 42326 42326 42328 42326 42328 42326 42326 42328 42326 42328 42326 42326 42328 42326 42326 42326 42328 42326 42328 42326 42326 42328 42326 42328 42326 42326 42328 42326 42328 42336 42410 42411 42418 42410 42411 42412 42411 42412 42412 42412 42412 42412 42424 42412 424244 42424	Bearing number		
×	141 141 141 148 148 148	139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 140 141 141 141 141	Page		
	46213 46214 46215 46216 46217	42605 42607 42607 42607 42607 42609 42609 42611 42614 42612 42613 42614	Bearing number		
	177 177 177 177 177 177	142 142	Page		
	52626 52630 54707 54708	46218 46219 46220 46303 46305 46307 46308 46309 46311 46311 46314 46314 46314 46313 46313 46314 46315 46314 46315 46314 46316 46318 46319 46320 46330 46418 46792 50205 50205 50205 50207	Bearing number		
	143 143 163 163	177 177 177 179 179 179 179 179 179 179	Page	Continu	

67510 67512 238	54712 548103 557209 557209 557707 559200 600017 600024 600066 600209 60201 602021 602021 602020 602020 602020 602020 602020 602020 602020 602020 602020 602020 602020 602020 60214 602020 602020 60214 602020 60214 602020 60214 602020 60214 602020 60214 602020 60214 602020 60214 602020 60214 602020 60214 602020 60214 602020 60214 602020 60214 60214 602020 60214 60216 60216 60216 60214 60216
195 195	163 163 163 170 203 222 122 122 122 122 122 122 121 121 123 130 180 180 180 180 180 180 195 195
97188 97192	67714 67719 67719 67915 67922 77741 77748 77752 77760 777760 777760 77778 777951 77951 80009 80018 80024 80064 80064 80064 80064 80064 80064 80064 800201 80203 80
201 201	195 195 195 195 195 195 205 205 205 205 205 205 205 123 123 123 137 137 135
436208 446206 446215	97515 97520 97521 97523 97723 97728 98206 99905 108708 99905 108708 108904 108904 108904 108906 113544 113656 113732 116213 116213 116213 116213 116213 116222 128220 128222 128220 176134 1761
178 178 178	201 201 201 203 214 214 214 214 214 214 214 214 214 214
808211 808212 808214	446306 466322 502208 502218 502308 502310 502902 506057 516053 520055 530206 530209 530207 530207 530207 530207 530207 530207 530207 530207 530207 530207 730207 707910 707910 707920 707910 707920 807700 807700 807700 807700 807700 807700 807700 807700 807700 807700 807700 807700 807700 807700 807900 807700 807900 807700 807900 808000 808000 808000 808000 8080000 8080000 808000000
211 211 211	178 178 178 151 151 151 151 151 151 151 15
970700 970702	\$08216 \$08220 \$08220 \$08220 \$17978 \$17948 kt \$36906 \$453004 \$45904 \$45904 \$45904 \$45904 \$47792 \$47929 \$4795
124 124	211 211 211 211 219 199 185 174 204 214 214 214 214 214 214 214 214 214 21
3056204 3056205	970705 970711 970902 971067 971067 977906 977907 977906 977907 977908 977907 977908 981065 981065 981065 981065 981065 981070 981700 984705 981700 984705 985713 985713 985713 985713 998914 998915 998914 998915 998915 998915 998915 998915 998915 998916 998915 998916 998915 998915 998916 998915 998916 998915 998916 998915 998916 2007038 2007038 2007038 2007038 2007732 2097740 2097742 2097752 2097744 2097752 2097744 2097752 2097748 2007748 2007748 2007752 2097744 2097752 2097748 2007748 2007748 2007748 2007752 2097740 2097752 2097748 2007748 2007752 2097741 2007752 2007748 2007752 20075
189 189	124 124 124 124 124 124 124 124 124 124
4074919 4074920	3056206 3056207 3056208 3077256-p 3077256-p 3086309 3086309 3086309 3166205 3156205 3156307 3166118 3182110 3182111 3182112 3182111 3182112 3182113 3182115 3182113 3182114 3182115 3182117 3182118 3182121 3182121 3182121 3182121 3182121 3182122 3182124 3182132 3182140 3182132 3182140 3182148 3182148 3182148 3182148 3182148 3182149 3182148 3182149 31
159	$\begin{array}{c} 189\\ 189\\ 189\\ 205\\ 208\\ 188\\ 188\\ 188\\ 188\\ 188\\ 188\\ 188\\ 1$
9,41/12	4074922 4074924 4074926 4074928 4074928 4074928 4074930 4084103 4084103 4084104 4084105 4084107 4084107 408410 408410 4084117 4084117 4084117 4084113 4084114 4084114 4084114 4084114 4084918 4084920 4084920 4084928 7000108 7077500 7777500 7777650 7777750 7777650 7777750 7777750 7777750 7777750 7777750 7777750 7777750 7777750 7777750 77777750 77777750 7777750 7777750 7777750 7777750 7777750 7777750 777775
165	$\begin{array}{c} 159\\ 159\\ 159\\ 159\\ 159\\ 159\\ 159\\ 159\\$

							1
Continued				-	-	5	
Bearing number	Page	Bearing number	Page	Bearing number	Page	Bearing sumber	Page
944:15 942:23 943:25 943:40 943:45 943:45 977:520 977:520 977:720 977:610 1327:850 1327:850 1327:850 1327:850 1327:850 1327:970 1327:970 100 100 100 100 100 100 100 100 100 1	· 1655 · 1655 · 1655 · 203 203 203 203 203 150 150 150 204 211	30777 530-p 58681 720 1 58681 720 1 1115 1116 1117 1118 1119 119	255 2717 1677 1677 1677 1677 1677 1677 1677	ШС 6 ШС 7 ШС 8 ШС 9 2ШС 10 2ШС 12 2ШС 12 2ШС 12 2ШС 15 2ШС 15 2ШС 15 1ШС 20 ШС 20 Ш	167 167 167 167 167 167 167 167 167 167	ШМ 6 ШМ 7 ШМ 8 ШМ 9 ШМ 10 ШМ 15 2 ШМ 15 2 ШМ 25 2 ШМ 25 2 ШМ 25 2 ШМ 30 9 ШМ 30 9 ШМ 35 2 ШМ 25 2 ШМ 35 2 ШМ 25 2 ШМ 25 2 ШМ 25 2 ШМ 25 2 ШМ 25 2 ШМ 25 2 ШМ 25 2 ШМ 25 2 ШМ 35 2 ШМ 35 3 2 ШМ 35 3 2 ШМ 35 3 3 3 3 3 3 3 3 3 3 3 3 3	163 163 163 163 163 163 163 163 163 163

TABLE FOR CONVERTING PREVIOUS (OBSOLETE) BEARING SYMBOLS TO PRESENT

Obsolete number	Present number	Obsolete number	Present number	Obsolete number	Present number
86	66	514	3086313	537	7907
95	25	(86713)		538	7905
105-A	940705	515	985713	539	29905
106	7000106	516	7712	540	864904
500	925722	517	7721	541	64905
501-A	15707	518	958726	542	65915
.502	7709	519	7718	543	7913
503	7909	520	7818	544	27908
504	845904	521	45511	547	99905
505	916913	522	45213	548	986711
506	954708	525	7906	550	7714
507	8708	526	7904	551	996909
508	954712	528	977907	1-8009	950079
309	954709	529	65902	(980089)	000010
510	954912	532-A	64903	S00S4	\$0064
511	8717	533-A	64904	\$00\$6	80066
512	954720	534	65910	80098	\$000S
	1	· ·			

Obsolete number Present number Obsolete number Present number Obsolete number Present number 80101 80801 718 2712 1130 1730 2-80104 980704 719 45804 1-37714 37741 2-80105 980705 734 108905 5224 5736 1-80200 980800 734 crt 108905 5244 57746 1-80400 980700 740 49742 5265 5776 1-81105 981067 769 970053 8210-A 108710 (981087) (970015) 9205 970205 552 970711 (981088) 1-37148 37730 555 970711 (981088) 1-37148 37748 37748 556 845806 86704 3086304 1-37130 37720 557 970718 9408 942/8 56704 3056204 577 65911 1-92219 79219 56706 3056204 5						
number number number number number number 80101 80801 718 2712 1130 1730 2-80104 980704 719 45804 1-37714 37741 2-80105 980705 734 108905 1-5226 5526 1-80200 980800 734 crt 108905 1-5226 5756 1-81105 981065 768 970053 8210-A 108710 (981085) 981067 769 970055 8210-A 108710 (981087) (970015) 9205 970205 552 970711 9206 970205 553 64706 807 55055 1-2020 20703 37726 554 27709 1-81003 981068 1-37148 37749 556 843506 86704 3066304 1-3726 37726 570 70218 94088 942/8 56706 3056206 577 8726 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>Continued</td></td<>						Continued
2.80104 980704 719 45804 1.37714 37741 2.80105 980705 734 108905 1-5226 5526 1.80200 980800 734 cr 108906 1-5226 5526 1.80100 980700 740 49742 5256 5756 1.81105 981065 768 970053 7113 807813 (981085) (970013) 7706 7609 9205 970205 552 7809 779 947701 9206 970206 553 64706 807 526055 1-20203 20703 555 970711 (981088) 1-37130 37730 555 970711 (981088) 1-371320 377320 556 845806 86704 3086304 1-37320 37726 570 70218 94088 942/8 56706 3056206 574 8726 94701 941/12 56706 3056206 5779<			Obsolete number			
2-80105 980705 734 108905 1-5226 5826 1-80200 980800 734 cr 108905 5244 5744 1-80400 980700 740 49742 5256 5756 1-81105 981065 768 970033 7113 807813 (981085) (970013) 7706 7606 7606 1-81007 981067 769 970055 8210-A 108710 (981087) (970015) 9205 970205 552 7809 779 947701 9206 970205 553 64706 807 556055 1-20203 20703 37730 555 970711 (981089) 1-37130 37730 37726 556 843806 86704 3066304 1-37320 37726 557 65911 1-92219 792919 56704 3056204 37726 570 70218 94088 942/8 56704 3056204 3056204	80101	80801	718	2712	1130	1730
1-80200 980800 734 сп 1.80400 108906 5244 5744 1-80400 980700 740 49742 5256 5756 1-81105 981065 768 970053 7113 807813 (981085) 981067 769 970055 8210-A 108710 (970013) (970015) 9205 970205 552 970205 553 64706 807 556055 1-20203 20703 554 27709 1-81003 981068 1-37130 37730 555 970711 (981089) 1-37148 37748 556 843506 86704 3066304 1-37326 37726 557 70218 94088 942/8 56706 3056204 570 70218 94084 96706 3056206 574 8726 94701 941/12 56706 3056206 579 998916 94702 941/15 56805 3056206	2-80104	980704	719	45804	1-37714	37741
1-80400 980700 740 49742 5256 5756 1-81105 981065 768 970033 7113 807813 (981085) (970013) 7706 7606 7606 1-81007 981067 769 970055 8210-A 108710 (981087) (970015) 9205 970205 552 7809 779 947701 9206 970206 553 64706 807 526055 1-20203 20703 3554 555 970711 (981088) 1-371320 37730 37730 556 845806 86704 3086304 1-37320 37726 5570 70218 94088 9428 56704 3056204 5774 8726 94701 941/12 56707 3056207 5790 989816 94702 941/15 56707 3056207 5790 998916 94702 941/15 56706 3056206 590 547	2-80105	980705	734	108905	1-5226	5826
1-81105 981065 768 970053 7113 807813 (981085) (970013) 7706 7606 1-81007 981067 (769 970055 8210-A 108710 (981087) (970015) 9205 970205 552 970205 552 7809 779 9477701 9206 970205 553 64706 807 526055 1-20203 20703 555 970711 (981088) 1-37148 37748 556 845806 86704 3066304 1-37326 37720 558 977908 86709 3066309 1-37326 37720 567 65911 1-92219 79219 56706 3056204 572-8 912919 1-94204 94094 56706 3056206 574 8726 94702 941/15 56708 3056206 579 998916 94702 941/15 56708 3056205 615 <td< td=""><td>1-80200</td><td></td><td></td><td></td><td>5244</td><td></td></td<>	1-80200				5244	
(981085) (970013) 7706 7606 1-81007 981067 769 970055 8210-A 108710 (981087) (970013) 9205 8210-A 108710 (981087) (970015) 9205 970205 52003 970205 552 7809 779 947701 9206 970205 553 64706 807 526055 1-20203 20703 554 27709 1-81003 981068 1-37148 37748 556 845806 86704 3086304 1-37126 37726 570 70218 94083 942/8 56706 3056200 570 70218 94083 942/8 56706 3056206 5774 8726 94701 941/12 56707 3056207 5790 998916 94702 941/15 56805 3056208 599 54708 94705 943/25 58007 3056206 617 99	1-80400				5256	
Losso P381067 T68 P70055 8210-A 108710 (981087) (970015) 970055 8210-A 108710 552 7809 779 947701 9205 970205 553 64706 807 526055 1-20203 20703 554 27709 1-81008 981068 1-37130 37730 555 970711 (981088) 1-37148 37748 37720 556 845806 86704 3086304 1-37320 37720 558 977908 86709 3066309 1-37526 37726 567 65911 1-92219 3086304 1-37320 37720 570 70218 94088 9428 56704 3056204 572-19 1-9224 94904 56707 3056207 3056207 579 998916 94702 941/15 56706 3056205 3056205 617 9926 156705 3156205 1-80005	1-81105	981065		970053	/113	
(981087) (970015) 9205 970205 552 7809 779 947701 9206 970206 553 64706 807 526055 1-2020 20703 554 27709 1-81003 981068 1-37130 37730 555 970711 (981088) 1-37148 37748 37726 556 845806 86704 3066304 1-37265 37726 567 65911 1-92219 792919 56700 3056204 3056204 572.B 912919 1-94204 94094 56706 3056206 574 8726 94701 941/15 56708 3056206 574 8726 94704 924/20 56716 3056205 615 936700 94705 943/25 56805 3056205 617 9926 156705 3156205 1-80007 980087 621-3 64704 809 506057 2-8007 980075	(981085)		(970013)		7706	
(5) 7809 779 947701 9206 970206 552 7809 779 947701 9206 970206 553 64706 807 526055 1-20203 20703 554 27709 1-81003 981068 1-37130 37730 555 970711 (981088) 1-371320 377720 556 845806 86704 3086304 1-37320 37726 557 9707908 86709 3086304 1-37320 3056200 570 70218 94098 942/8 56706 3056206 577 998916 94702 941/12 56707 3056207 579 998916 94702 941/15 56707 3056207 579 998916 94702 941/15 56707 3056207 579 998916 94702 941/15 56707 3056207 579 998916 94705 943/25 58005 3056208 <tr< td=""><td>1-81007</td><td>981067</td><td></td><td>970055</td><td></td><td></td></tr<>	1-81007	981067		970055		
552 1252 12709 1.81003 920055 1.20203 20703 554 27709 1.81003 981068 1.37148 37748 555 970711 (981088) 1.37148 37748 37740 556 845806 86704 3086304 1.37320 37720 558 977908 86700 3066309 1.37526 37720 5567 65911 1.92219 792919 56700 3056204 570 70218 94088 942/8 56704 3056206 574 8726 94701 941/12 56706 3056206 579 998916 94702 941/15 56708 3056206 599 54708 94705 943/25 56805 3056205 615 936700 94705 943/25 56805 3056205 617 9926 156705 3156205 1.80007 980075 622 108904 (506016) 1.80007	(981087)					
5.53 0.7103 1.81003 981068 1.37130 37730 555 970711 (981088) 1.37130 37730 555 970711 (981088) 1.37130 37730 556 843506 86704 3086309 1.37526 37726 557 6571 65911 1.92219 792919 56700 3056200 570 70218 94088 942/8 56706 3056200 574 8726 94701 941/12 56706 3056206 579 998916 94702 941/15 56706 3056206 579 998916 94702 941/15 56706 3056206 579 998916 94705 943/25 56805 3056208 6102 54808 94705 943/25 56805 3056205 617 9926 156705 3156205 1.80007 980075 620-A 57707 (516013) 1.80005 980075	552	7809				
5.57 970711 (981088) 1-37148 37748 555 970711 (981088) 1-37148 37748 556 845806 86704 3066304 1-37320 37720 558 977908 86709 3066304 1-37320 37726 567 65911 1-92219 792919 56704 3056204 572. 912919 1-94204 94904 56706 3056204 574 8726 94701 941/12 56707 3056207 579 998916 94702 941/15 56706 3056207 599 54708 94704 924/20 56716 3056207 519 936700 94709 943/25 56805 3056205 617 9926 156705 3156053 1-80005 980087 622-A 57707 (516013) 1-80007 980077 622-B 108904 (50616) 400105 7000105 624 922205	553	64706				
53.3 510711 (201007) (20107) (554	27709		981068		
5.50 977908 86709 3086309 1-37526 37726 567 65911 1-92219 792919 56700 3056204 570 70218 94083 942/8 56706 3056204 572.B 912919 1-94204 94004 56706 3056206 574 8726 94701 941/15 56707 3056207 579 998916 94702 941/15 56708 3056208 599 54708 94704 924/20 56716 3056205 615 936700 94705 943/45 80004 80024 617 9926 156705 3156205 1.80005 980075 620A 57707 (516013) 1-80007 980067 622 108904 (506016) (980087) 624 922205 810 536057 156707 31502103 3502103 3502103 634 8008 (536016) 900087 1622 108904 500137	555	970711				
5.36 5175.05 65911 1.92219 792919 56700 3056200 570 70218 94088 942/8 56704 3056204 572.1 912919 1.94204 94904 56707 3056206 574 8726 94701 941/12 56707 3056207 579 998916 94702 941/15 56708 3056207 599 54708 94705 943/25 56805 3056205 615 936700 94709 943/25 56805 3056205 617 9926 156705 3156205 1.80005 980085 619 64906 808 516053 2.80007 980077 622.1 108904 (50616) 1.80007 980077 624 922205 810 536057 156707 3156307 634 8908 (536016) 400105 700208 970208 651 87518 817 67714 1.970208	556	845806				
507 70218 94088 942/8 56704 3056204 572.B 912919 1-94204 94094 56706 3056206 574 8726 94701 9411/2 56706 3056207 579 998916 94702 9411/15 56708 3056207 579 998916 94702 941/15 56708 3056207 599 54708 94704 924/20 56716 3056205 615 936700 94709 943/25 56805 3056205 617 9926 156705 3156205 1.80005 980087 619 64906 808 516053 2.80005 980077 621-3 64704 809 506057 2.80007 980067 622 106804 (506016) (980087) 156307 3156307 624 922205 810 536057 156707 3156307 634 8908 (536016) 400105 700105 <td>558</td> <td>977908</td> <td></td> <td></td> <td></td> <td></td>	558	977908				
570 10218 10219 1-94204 94904 56706 3056206 574 8726 94701 941/12 56707 3056207 579 998916 94702 941/12 56707 3056208 599 54708 94704 924/20 56716 3056208 602 54808 94704 943/45 80004 80024 617 9926 156705 3156205 1-80005 980085 619 64906 808 516053 2-80007 980067 622- 108904 (50616) (980087) 680067 622 618 64906 809 506057 2-80007 980067 622 108904 (50616) (980087) 63634 3502103 634 8908 (536016) 400105 7000105 700208 651 87518 817 67714 1-970208 977208 652 54707 820 900801 107773	567	65911				
512-15 512-15<	570	70218				
5/4 5/20 5/102 5/112 56708 3056208 579 998916 94702 941/15 56708 3056208 599 54708 94704 924/20 56716 3056208 602 54808 94704 924/20 56716 3056205 615 936700 94709 943/25 80004 80024 617 9926 156705 3156053 1-80005 980075 620-A 57707 (516013) 1-80007 980067 621-E 64704 809 506057 2-80007 980067 622 108904 (506016) (980087) 400105 7000105 634 8008 (536016) 400105 7000105 3502103 644 8008220 814 998920 502103 3502103 3502103 652 54707 820 900808 1077730 777/680 653 54810 821 900808 1077732	572-B	912919				
5/9 599910 57702 597110 52716 3056216 599 54708 94704 924/20 56716 3056216 602 54808 94705 943/25 56805 30562205 615 936700 94709 943/45 80004 80024 617 9926 156705 3156205 1.80005 980075 620 A 57707 (51613) 1.80007 980077 621-B 64704 809 506057 2.80007 980077 622 108904 (506016) 40015 7000105 700105 644 82020 814 998920 502103 3502103 3502103 651 87518 817 67714 1-970208 970208 970208 652 54707 820 900808 1077730 777/620 977/620 653 54810 821 900808 1077730 777/780 777/650 690 100752	574	8726				
599 54765 54765 54765 56805 3056205 602 54808 94705 943/25 56805 3056205 615 936700 94709 943/25 56805 3056205 617 9926 156705 3156205 1-80005 980085 619 64906 808 516053 2-80007 980075 620-A 57707 (516013) 1-80007 980067 621-B 64704 809 506057 2-80007 980067 624 922205 810 536057 156707 3156307 634 8908 (536016) (980987) 3052103 3502103 651 87518 817 67714 1-970208 970208 652 54707 820 900805 1077724 777/620 653 54810 823 900810 1077730 777/650 690 100752 825 971067 1077764 977/220	579 -	998916				
002 54805 54709 943,45 80004 80024 615 936700 94709 943,45 80004 80024 617 9926 156705 3156205 1.80005 980075 619 64006 808 516053 2.80005 980077 620-A 57707 (516013) 1.80007 980067 622 108904 (506016) (980087) 600067 622 108904 (506016) (980087) 3502103 634 8008 (536016) 400105 7000105 7000105 6448 80820 814 998920 502103 3502103 3502103 651 87518 817 67714 1-970208 970760 977/650 652 54707 820 900808 1077730 777/650 777/750 633 54810 821 900808 1077730 777/750 777/750 691 96704 (971087) 1097704 </td <td>599</td> <td>54708</td> <td></td> <td></td> <td></td> <td></td>	599	54708				
613 930700 15705 3156205 1.80005 980085 617 9926 156705 3156205 1.80005 980085 619 64906 808 516053 2.80005 980077 620-A 57707 (516013) 1.80007 980077 621-B 64704 809 506057 2.80007 980067 622 108904 (506016) (980087) 156707 3156307 634 8908 (536016) 400105 7000105 300103 648 808220 814 998920 502103 3350103 651 87518 817 67714 1.970208 970208 652 54707 820 900805 1077724 777/620 653 54810 823 900808 1077730 7771/50 690 100752 825 971067 107774 977/20 692 45905 856 922906 109774 977/20 <td>602</td> <td></td> <td></td> <td></td> <td></td> <td></td>	602					
617 3928 130.05 310.05 120.05 980075 619 64906 808 516033 2-80005 980077 620-A 57707 (516013) 1-80007 980077 621-E 64704 809 506057 2-80007 980087 622 108904 (506016) (980987) 3156307 3156307 634 8008 (536016) 400105 7000105 7000105 648 808220 814 998920 502103 3502103 651 87518 817 67714 1-970208 970208 652 54707 820 900805 1077724 777/620 653 54810 821 900808 1077730 777/650 650 96903 823 900810 1077750 777/750 691 96704 (971087) 1007704 977/220 692 45905 856 922906 132778 1327/840	615					
019 04906 05000 1.80007 980077 620-A 57707 (516013) 1.80007 980067 621-B 64704 809 506057 2.80007 980067 622 108904 (506016) (980087) 1 365037 1 624 922205 810 536057 156707 3156307 634 8008 (536016) 400105 7000105 644 808220 814 998920 502103 3502103 651 87518 817 67714 1-970208 970208 652 54707 820 900808 1077730 777/650 653 54810 821 900808 1077730 777/650 653 56603 823 900810 1077752 777/750 691 96704 (971087) 1097704 977/720 977/720 692 45905 856 922906 1007744 977/720 694 </td <td>617</td> <td>9926</td> <td></td> <td></td> <td></td> <td></td>	617	9926				
b00-A 57/07 (5/007) 2-80007 980067 621-B5 647/04 809 506057 2-80007 980067 622 108904 (506016) (980087) 156707 3156307 624 922205 810 536057 156707 3156307 634 8908 (536016) 400105 7000105 648 808220 814 998920 502103 350103 651 87518 817 67714 1-970208 970208 652 54707 820 900805 1077724 777/620 653 54810 821 900808 1077730 777/660 656 96903 823 900810 1077750 777/750 691 96704 (971087) 1097704 977/520 971/67 692 45905 860 36792 1132735 1327/675 695 845905 861 8649016 11327768 127/840	619			516053		
b21-15 b4704 303 130037 (980087) 622 108904 (506016) (506016) (980087) 3156307 624 922205 810 536057 156707 3156307 634 8908 (536016) 400105 7000105 648 808220 814 998920 502103 3502103 651 87518 817 67714 1-970208 9770208 652 54707 820 900805 1077732 777/650 653 54810 821 900808 1077732 777/650 650 96003 823 900810 1077732 777/650 691 96704 (971087) 1007750 9771/720 9771/20 692 45905 856 922906 1327735 1327/675 695 845904 860 36792 1132735 1327/675 695 845905 861 8649016 1327768 127/840	620-A					
022 100304 100304 1536057 1536707 3153307 624 922205 810 536057 400105 7000105 634 8908 (536016) 400105 7000105 648 808220 814 998920 502103 3502103 651 87518 817 67714 1-970208 970208 652 54707 820 900805 1077730 777/650 655 96903 823 900810 1077730 777/750 690 100752 825 971067 1007704 977/720 691 96704 (971087) 1007770 1007770 977/720 692 45005 856 922906 1007744 977/720 694 45004 860 36792 1132735 1327/675 695 845005 861 864906 1132778 1327/840 697-15 27911 881 864911 1327783 1327/853	621-E	64704		506057		980067
b24 922205 b16 b3607 q00105 q00105 634 8008 (53616) 99820 502103 3502103 651 87518 817 67714 1-970208 970208 652 54707 820 900805 1077724 777/620 653 54810 821 900808 1077730 777/650 656 96903 823 900810 1077750 777/750 691 96704 (971087) 1097704 977/201 692 45905 856 922906 1097744 977/201 692 45905 856 922906 1132735 1327/675 694 45904 860 36792 1132735 1327/840 697-5 27911 881 864911 11327768 127/840 697-5 27911 883 18719 77/533 777/533						2156207
634 3908 (33010) 998920 502103 3502103 648 808220 814 998920 502103 3502103 651 87518 817 67714 1-970208 970208 652 54707 820 900805 1077724 777/650 653 54810 821 900808 1077730 777/650 656 96903 823 900810 1077732 777/750 691 96704 (971087) 1097704 977/720 692 45905 856 922906 1097744 977/720 694 45904 860 36792 1132735 1327/675 695 845905 861 8649016 1132778 1327/840 697-15 27911 881 864911 11327783 777/533 708 7000108 883 18719 77/533 777/533	624			536057		
648 808220 614 930220 970208 651 87518 817 67714 1-970208 970208 652 54707 820 900805 1077724 7771/620 653 54810 821 900808 1077730 7771/650 656 96903 823 900810 1077750 7771/50 691 96704 (971087) 1097704 9771/50 692 45905 856 922906 1097744 9771/720 694 45904 860 36792 1132735 1327/675 695 845905 861 8649016 11327768 1327/681 697-5 27911 881 864911 1132778 1327/890 708 7000108 883 18719 771/533 777/533		1				
b51 57518 517 900805 1077724 777/620 652 54707 820 900805 1077724 777/620 653 54810 821 900808 1077730 777/1650 656 96903 823 900810 1077750 777/1650 690 100752 825 971067 1077704 971/320 691 96704 (971087) '1097704 977/320 692 45905 856 922906 10327764 977/120 694 45904 860 36792 1132735 1327/675 695 845905 861 864910 11327768 1327/840 697-52 27911 881 864911 11327783 777/533 708 7000108 883 18719 771/533 777/533	648	808220				
652 54/07 520 500508 1077730 777/650 653 54810 821 900808 1077730 777/650 656 96903 823 900810 1077732 777/660 690 100752 825 971067 1097704 977/720 691 96704 (971087) 922906 1097744 977/720 692 45905 856 922906 1097744 977/720 694 45904 860 36792 1132735 1327/675 695 845905 861 864906 1132778 1327/840 697-15 27911 881 864911 1327783 1327/833 708 7000108 883 18719 77/533 777/533	651					
b53 54510 521 5000 1077732 777/660 655 96903 823 900810 1077732 777/660 690 100752 825 971067 1077750 777/1750 691 96704 (971087) 1097744 977/520 692 45905 856 922906 1097744 977/720 694 45904 860 36792 1132768 1327/640 697.55 27911 881 864901 1132778 1327/840 697.55 27911 883 18719 77/533 777/533						
b5b 99903 223 971067 1077750 777/750 690 100752 825 971067 1097704 977/320 691 96704 (971087) 1097704 977/320 692 45905 856 922906 1097744 977/720 694 45904 860 36792 1132735 1327/675 695 845905 861 864906 11327768 1327/840 697-15 27911 881 864911 1132778 1327/840 708 7000108 883 18719 771/533 777/533	653					
690 100722 323 57101 1097704 977/520 691 96704 (971087) 92206 1097744 977/520 692 45905 856 92206 1097744 977/720 694 45904 860 36792 1132735 1327/875 695 845905 861 864906 1132768 1327/840 697-15 27911 881 864911 1132778 1327/890 708 7000108 883 18719 77/533 777/533	1					
691 90704 (971037) 1097744 977/720 692 45905 856 922906 1097744 977/720 694 45904 860 36792 1132735 1327/657 695 845905 861 864906 1132768 1327/840 697-5 27911 881 864911 1132778 1327/890 708 7000108 883 18719 77/533 777/533				9/100/		
692 45905 550 550 511 5127/675 694 45004 860 36792 1132735 1327/675 695 845905 861 864906 11327768 1327/840 697-E5 27911 881 864911 1132778 1327/830 708 7000108 883 18719 77/533 777/533				022006		
694 43504 600 601 1132768 1327/840 695 845905 861 864906 1132778 1327/840 697-15 27911 881 864911 1132778 1327/890 708 7000108 883 18719 77/533 777/533						
695 845905 601 64905 1132778 1327/890 697-15 27911 881 864911 1132778 1327/890 708 7000108 883 18719 77/533 777/533						
697-B 27911 661 61011 77/533 708 7000108 883 18719 77/533 777/533						
708 7000108 883 10710 11710						
709 112741			883	10/13	11,000	1
	709	112741				

STANKOIMPORT

241

Declassified in Part Sanitized C proved for Release 2013/08/13 CIA-RDP81-01043R002200240001-6

•

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6 VSESOJUZNOJE EXPORTNO-IMPORTNOJE OBJEDINENIJE "STANKOIMPORT" EXPORTS AND IMPORTS: Machine Tools Woodworking Machinery Metal Working Machinery (presses, hammers, shears, cold forming machines, punching machines) Rolling Mills (imports) Measuring Instruments and Apparatus (for metal industry) Testing Machines and Instruments (for metals) Optical Instruments and Equipment Portable Electric and Pneumatic Tools (for metal and woodworking) Metal and Wood Cutting Tools Mechanic's Tools and Chucks Sintered Carbide and Hard-Alloy Products Abrasive products Ball and Roller Bearings Microscopes of all types Motion Picture Equipment Photographic Cameras Binoculars Magnifiers Lenses Crude Optical Glass Blocks and Blanks, etc. All inquiries and correspondence to be forwarded to: VSESOJUZNOJE EXPORTNO-IMPORTNOJE **OBJEDINENIJE** "STANKOIMPORT" 32/34, Smolenskaja-Sennaja pl., Moscow, U. S. S. R. For cables: Stankoimport Moscow Design and specifications of ball and roller bearings illustrated herein are subject to change without notice. Vneshtorgizdat. Order No. 1224 B 83 4

STAT

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

RILLENKUGELLAGER DER REIHE 6200

STAT

ſ	······	1								··	1
	Kurzzei G.P.Z.			in D.	mm B.	Gewicht kg.	62 <u>0</u> 0	Pre 6200 Z	ise in 6200 -ZZ	6200 N	6200 . · ZN
	200 201 202	6200 6201 6202	10 12 15		9 10 11	0.037 0.037 0.045	14.30 14:30 14.30	15.60 15.60 15.60	16.30 16.30 16.30		
•	203 204 205	62o3 62o4 62o5	17 20 25		12 14 15	0.06 0.1 0.12	15.20 17.60 19.50	16.30 18.70 20.80	17.60 19.50 22.10	19 21	
	206 207 208	6206 6207 6203	30 35 40	62 72 - 80	17	0.11 0.27 0.37	24.80 29.90 36.50	25 31 37.10		31.80 38	27
,	209 210 211	6209 6210 6211	45 50 55	85 90 100	20	0.42 0.47 0.58	39.70 49.50 58	:		41.40 51.20	51.90
	212 213 214	6212 6213 6214	65	110 120 125	23	0.77 0.98 1.04	71.30 97.30 104.20	108		101	
	215 216 217	6215 6216 6217	80	130 140 150	26	1.13 1.38 1.75	111 130.20 155.60	-	118	158	
	218 219 220	6218 6219 6220	95	160 170 180	30 32 34	2.20 2.6 3.2	189.10 221.70 251.50		210	-	
	221 222 224	6221 6222 6224		190 200 215	36 38 40	3.8 4.4 6	294 330 380		-		
•	226 228 230	6226 6228 6230	130 140 150	250	40 42 45	7.5 9 11.3	530 720 935				
	232 234 236	6232 6234 6235	160 170 180	310	52	14 16.5 17.5					
	238 240 244	6238 6240 6244	190 200 220		58	20.6 24 36.5					
•		1	1	<u> ``</u>			·				1

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6			
	Declassified in Part - Sanitized Cop	Approved for Release 2013/08/13	: CIA-RDP81-01043R002200240001-6

RILLENKUGELLAGER	DER REIHE 6300_
------------------	-----------------

Kurzzei G.P.Z.		Maße d.	in D.	mm B•	Gewicht kg.	6300	Pr 6300 Z	eise 6300 ZZ	in ö.9 6300 N	5. 6300 ZN
300 301 302	6300 6301 6302	10 12 15	37	11 12 13	0.05 0.06 0.08	15 15.60 15.60			-	
303 304 305	6303 6304 6305	17 20 25			0.11 0.14 0.23	18.90 20.90 25.80	26.40		27.20	
306 307 308	6306 6307 6308	30 35 40	72 80 90	19 21 23	0.35 0.44 0.63	31.30 41.10 50.90			34 43.50 53.20 75	
309 310 311	6309 6310 6311	50	100 110 120	25 27 29		73.80 88.10 116.60	89.80		90 118	
312 313 314	6312 6313 6314	65	130 140 150	31 33 35	2.09	132.70 162.50 176.10			165	
315 316 317	6315 6316 6317	80	160 170 180	39	3.6	248 285.20				
318 319 320	6318 6319 6320	95		45	5 5.7	350.90 605.10 694.40				
321 322 324	6321 6322 6324	110	225 240 260	50	9.8	930 1074 1165				
326 328 330	6326 6328 6330	1.14c	280	oṕ₿;	2 22				-	

1.00

										· ·	
	RILLEN	IKUG	ELLA(GER	DER REIH	Æ 6400					
Kurzzei	chen	Maß	e in	mm	Gewicht		Preis	e in	ö.s.		
G.P.S.		d.	D.		kg.	6400	6400 N	6400 Z	6400 ZZ ::	6400 ZN	· *
403 404 405	6403 6404 6405	17 20 25	62 72 80	17 19 21	0.27 0.40 0.51	32.80 41.70 49.60			·		
406 407 408	6406 6407 6408		90 100 110	23 25 27	0.72 0.93 1.20	59.20 80.60 96.10	99				ALL REPORT
409 410 411	6409 6410 6411	50	120 130 140	29 31 33	1.55 1.91 2.3	117.20 143.20 176.10	143.20 184				
412 413 414	·6412 ·6413 ·6414	65	150 160 180	35 37 42	2.8 3.4 5	195.30 232 352					and the second
415 416 417 418	6415 6416 6417 6418	80 85	190 200 210 225	45 48 52 54	5.9 7 18.5 10.5-	411 638.60					
	· RIL	LENE	UGÈL	LAGI	ER UNTER						
23 24 25	EL 3 EL 4 EL 5	3 4 5	10. 13 16	4 5 5	0.0016 0.003 0.005	11.20 11.20					
6 17 8	·EL 6 ·EL 7 EL 8	6 7 8	19 19 22	6 6 7	0.008	11.80 11.80 12.60					
4 5 7 9	R 4 R 5 R 7 R 9	4 5 7 9	16 19 22 26	5678	0.005 0.008 0.013 0.019	11.80 11.80 12.60 13					
		SCI	•	RKU	GELLAGER						
6003 4 5 6006 7 8	E 3 E 4 E 5 E 7 E 8	3 4 5 6 7 8	16 16 21 22 24	5557777	0.005 0.005 0.011 0.013 0.015	13 14.30 15 15.60					
6010 12 15	E 10 E 12 E 15	10 12 15	28 32	8	0.023	18.20 19.50 21.80					
601.7 20	EA 17 E 20	17		10		20.20 34.50					

and it

5.

						•	•			-	2			•				7						S
									-		-	-									·			
			,																				-	1 - 1 - 1
				LKU N1200											ENDE GERREIHE						-			
Kurzzei G.P.Z. S		r. G.P.Z	. s.k	.F. d.	aße i di	. D.	в.	Ge	wicht kg.		in ö.S. m.Hülse	Kurzze G.P.S.	ichen S.K.F.	G.P.Z.	S.K.F.		aße i di	in mn D.	B. 1	Gewie kg		ceise 300	e in ö.S. 1300K+H].
1200 1201 1202	1200 1201 1202		•	1	.0 2 5	ever	50 9 52 10 55 11		0:033 0:04	16.50		1300 1301 1302	1300 1301 1302			10 12 15	7	35 37 42	11 12 13	0.0 0.0	7 20	0.60 4	ĩ	
1203 1204	1203 1204 :	11203	1204]	1	.7		12		0.05 0.02 0.12 0.14	17 21.20 25.20	43.80	1303 1304 1305	1303 1304 1305	11304	1304 K+H 1305 K+H	25		52 62	14 15 17	0.2	5 28 6 35	5 3.30 5	55.50	
1206 1207	1205 1206 1207	11205	1206 I 1207 I	К+Н 3 К+Н 3	io 2	5 6	2 16	31 33	0.22	27 32.60 37.20	45.60 54 61.30	1306 1307 1308	1306 1307 1308	11306 11307	1306 K+H 1307 K+H 1308 K+H	35 40	35	80 90	19 21 23	59 0.5 59 0.7	0 62	4 2.70 2.60	88.80	
1209 1210	1208 1 1209 1 1210 1	L1208	1209 H		0 3 5 4 0 5 5 5				0.42 0.47 0.53 0.71	46.50 49.80 55.30	71.10 76.90 88.10	1309 1310 1311	1309 1310 1311	11309 11310	13095K+H 1310 K+H 1311 K+H	50 55	1	100 110 120			1 92	2	106 126.50 161.80	
1212 1213	1211] 1212] 1213]	1211	1212 H	К+Н 6		0 10	0 21	40	o.71 o.88 1.15 1.26	71.30 84.30 111.60	111 127.80 159.40	1312 1313 1314	1312 1313 1314	11312	1312 K+H 1313 K+H 1314 K+H	65		130 140 150	35 -	3	170	8.10 0.40 7	203.90 230.70	
1214 1215 1216	1214 1215 1 1216 1	1213	1215 H	(+H 7) (+H 8)		1			1.26 1.36 1.67 2.1	124 133 138.90	188.90	1315 1316 1317	1315 1316 1317	11313 11314 11315	1315 K+H 1316 K+H 1317 K+H	75 80 85	65 70 75	160 170 180	37 39 41	56 3.6 51 4.3 53 5.1	36	1.50	302 345 398	
1217	1217 1	1215	1217 K	(+H 8	0 8	0 16	0 30	55	25	170.30	204.90 244.40 399.30	1318 1319 1320	1318 1319 1320	11317	1318 K+H 1319 K+H 1320 K+H	[95	80 85 90	190 200 215	43 45 47	58 5.7 71 6.7 74 8.3	60	6	464 709 796	
1		1		C+H 10 C+H 10 C+H 10 C+H 110 C+H 110	0 90		0 32 0 34			226 384.40	324 502.40	· · ·												

Carl Street Street

and the second second

Wiles			Declassified in P	art - Sanitized C	Copy Approved for Release	2013/08/13 : CIA-RE	0P81-01043R00	02200240001	-6	- 					
				· · ·	• • •										
															•
	PE	NDELKUGE	LLAGE	R				PEND	ELROI	LLEN	LAO	ER			
÷.	LAGER Kurzzeichen	REIHEN_2200,.22	Maße in		t Preise ö.S.	· · · ·			n 22200,	1					
	G.P.Z. S.K.F. G	.P.Z. S.K.F.	d di D.	B. 1 "g 18 32 0.14	2200 2200K+H		G.P.Z S.P	C.F G.P.			ße in di D			Preise 22200	in 85 22200 K+H
	1505 2205 1 1506 2206 1	1504 2205 K+H 1505 2206 K+H	25 20 52 30 25 62	18 33 0.16 20 35 0.26	5 36.40		3517 222	217 13515	22216 K+1 22217 K+1	H 85	70 140 75 150	36 6	3 2.8	472	480. 550.
	1508 2208 1	1506 2207 K+H 1507 2208 K+H 1508 2209 K+H	35 30 72 40 35 80 45 40 85	23 39 0.40 23 39 0.51 23 41 0.55	60.40 85.60		3519 222	219 13517	22218 K+1	H 95	80 160 85 170	43 7	1 4.2	602	613. 705.
	1510 2210 1 1511 2211 1	1509 2210 K+H 1510 2211 K+H	50 45 90 55 50 100	25 46 0.59 28 48 0.81	70.20 104.70		3522 222	222 13520	22220 К+1 22222 К+1	H 100 H 110 1	1	53 8	1	1	1018.
· · .	1513 2213 1	1511 2212 К+Ң 1512 2213 К+Н 1513	60 55 110 65 60 120 70 125	31 50 1.09 31 52 1.46 31 1.52	136 186.50		3524 222 3526 222 3528 222	224 13522 226 13523 228 13524	22224 K+1 22226 K+1 22228 K+1	H 120 1 H 130 1 H 140 1	10 21 15 230 25 250	58 9 64 10 68 10	1 9.2 0 11.4 6 14.5	1045 1240 1730	1250. 1490. 2014.
	1515 2215 1 1516 2216 1	1513 2215 К+Н 1514 2216 К+Н	75 65 130 80 70 140	33 56 1.62	2 169 231 185 254.50		3530 222	230 13527	22230 K+	H 15c 1 H 16c 1	35 270	73 11	3 18.5		1
	1518 2218 1 1519 2219 1	L515 2217 K+H L516 2218 K+H L517 2219 K+H	85 75 150 90 80 160 95 85 170		210 288 252 346 300 4C3		3534 222	234-13530	222'34 K+ 222'36 K+ 222'38 K+	H 170 1 H 180 1	50 31	86 12	8 29 9 30		
		EIHEN 2300, 23	100 90 180	46 74 5	345 460		3540 222	240 13536	22240 K+ 22240 K+	H 200 1	80 360	98 14	4 45	.	
	1604 2304 1	.603 2304 K+H .604 2305 K+H		21 35 0.21 24 39 0.34	39.70 49.60 72.80		3608 22 3609 22	308 11 3607	22308 K+ 22309 K+ 22310 K+	HI AOL	35 90 40 100	33 4	911.03	288	324.
	1606 2306 1 1607 2307 1	605 2306 К+Н 606 2307 К+Н	30 25 72	27 42 0.50	60.80 86.30		3611 223	311 13610	22311 K+ 22312 K+	H 55	45 110 50 120 55 130	43 6	9 1.9 2 2.4 5 3	335 375 450	375. 422. 502.
	1609 2309 11	.607 2308 К+Н .608 2309 К+Н .609 2310 К+Н	40 35 90 45 40 100	33 49 0,93 36 52 1.23	100 131		3613 22 3614 22	313 13612 314	22313 K+ 22315 K+	H 65 70	60 14	9486 951 -	7 3.6	512	569.
n de la composition de la comp	1611 2311 11 1612 2312 11	.610 2311 K+H .611 2312 K+H	50 45 110 55 50 120 60 55 130				3616 22	316 13614	22316 K+ 22316 K+ 22317 K+ 22318 K+	H 80	70 17	58 8	4 5.4 0 6.4 4 7.4 9 8.8	636 780 792	860
	1614 2314 1615 2315 11	.612 2313 K+H 	70 150	48 67 3.2 51 4.3 55 74 5.2	260.40 317.40 301.30 350 423		3619 22	319 13617	22318 K+ 22319 K+ 22320 K+	H 95		5 67 9	3110.	932 3 1260 - 1545	1385.
	1617 2317 11	614 2315 K+H 615 2316 K+H 616 2317 K+H	80 70 170 85 75 180 90 80 190	58 80 6.2 60 84 7.2	401.70 482 680 770		3622 22 3624 22	322 1362o 324 13622	22322 K+ 22324 K+	H 110 1 H 120 1	00 24	80 10	8 18	1909 12200	2119.
.]			30 00 H30	04 09 0.5.	782 890		3626 22 3628 22 3630 22	326 13623 328 13625 330 13627	22326 к+ 22328 К+ 22330 К+	H 130 1 H 140 1 H 150 1	15 28 25 30 35 32	0 93 12 0 10214 0 10814	9 29 0 36 8 43	- 2650 - 3020 - 3400	2938 3350 3875
							3632 22	332 1 3628	22332 К+ 22334 К+ 22336 К+	H116011	10 34	- lan ah s	5 51 .		
		· , ,				-	3638 22	338 13634 340 13636	22338 K+	H 190 1	70 40	5 13217	6 81.	-	7254:

L			.	•]			an an Chaol		-	1152. 14		A . –	•				•.			1			·			.s
										4		3 I.L 11		• `;										•					
									•																				-
			<i>6</i> 7	.									-					. 7	V T T	N 70 TA		т.т		- .					
			21		·DER Lei					ER								2		NDE Mit					σĽ	ĸ			
			N 20), NU 2					2200								N		300, N					=423	i05			
											-					1		Bez	eichnu	nø		Dim	ensi	on Ge			Preis ö		<u>.</u>
			Bezei	ichnun	ug		Dime	nsio	nen	Gewl	P	reis ö	n. S.			GPZ	SKF	GPZ	SKF		SKF	d					NU 30		300
	GPZ	SKF	GPZ .		GPZ	SKF		D				NU .500		00		2305 2306	NM305 306	32305 32306	NU305	42305 42306	NJ 305 306	30	62	170	.2	65.10	73.7	0 73	.90
	2264 2205 2205 2206	.205	32204 32205 32205 32206	NU204 205	42202 42204 42205 42205	NJ 202 204 205 206	15 20 25 30	47	11 0 14 0 15 0 16 0	.11	52.80 57.60 67	68.20	o 71	-		2307 2308 2309	307 308	32307 32308 32309	307 308	42307 42308 42309	307 308	35 40 45	80 90 100	21 0 23 0 25 0	.5 .7 1 .9 1	96.20 13.40 32	102.5 115.3 140.4	o 109 o 122 o 152	• 40 • 30 • 40
	2207 2208		32207 32208	207	42207 42208	207 208	35	72	17 o	.3	77.50		83	-		2310 2311 2312	31o 311	32310 32311 32312	311	4231o 42311	1 311	50 55	11o 12o	27 I 29 I	21	.58.40 .94.4c	159.6 195.6 223.2	o 168 o 21o	
	2209 2210 2211	209 210 211	322o9 3221o 32211	209 210 211	42209 42210 42211	209 210 211	50 55	85 90	19.0. 20.0.	5 1	88.60 98.40 10.40	98.60 113.40	119	50		2313 2314	313	32313 32314	313	42312 42313 42314	313	60 65 70	130 140 150	31 2 33 2 35 3	- 2 5 2 1 3	21 55.40 19.20	223.2 252 315.6	o 243 272 o 351	40
	2212 · 2213		32212 32213		42212 42213	212 213	60	110	22 0.	9 1	L42.80	146.40	154	30		2315 2316 2317	316	32315 32316	316	42315 42316	316	75 80	160 170	37 3. 39 4	.73	54 17.60	351.6	o 378 o 429	.60
	2214 2215 2216	214 215 216	32214 32215 32216	214 215 216	42214 42215 42216	214 215 216	70 75 80	125 130 140	24 1. 25 1. 26 1.	3 1	192 204 26.80	172.80 190.80 210 238.80	202	30		2318 2319	318	32317 32318 32319	318	42317 42318 42319	318	85 90 95	180 190 200	41 5 43 6 45 7	24 15 -6	74 50.80 20.40	398.4 458.4 542.4 620.4	o 499 o 572 o 696	• 20 • 40
	2217		32217		42217	217 218	851-	120	28 2.	TIS	272.40	279.60	289	20		2320 2321 2322	321	32320 32321 32322	321	42320	320 321	100 105	215 225	47 8. 49 9.	6 8	•	722.4	0 752	. 40
ALC: NOT THE REAL PROPERTY OF	2219 2220 2221	219 220 221	32219 322200 32221	219 220 221	42219 42220 42221	2191	95 1 100	170	30 2. 32 3. 34 3.	234	29.60	302.40 368.40 417.60 484.80 531.60	336 387 451	20		2324 2326	324	32324 32326	324	42322 42324 42326	324 326	120 130	240 260 280	50 11 55 14 58 18	4				
	2222	`222 _,	32222	222	42222							404.80 531.60	558			2328 2330	330	32328 32330	330	42328 42330	328 330	140 150	300 320	62 22					
	2224 2226 2228 223c 223c	226 228 230	32224 32226 32228 32230	226 4 228 4 230 4	42228	224 226 228 230	130 2 140 2 150 2	230 4 250 4 270 4	2 9.	3		603.60	645	io		2332 2334 2336	332 334	32332 32334 32336	332 334	42332 42334 42336	334	170	360	65 26 68 31 72 36 75 42	5				
		.234	32232 32234 32240	232 4 234 4 240 4	12234	232] 234]			1	i.					a for the second se											•			

1977 - S.		Declassified in Part - Sa	nitized Copy Appr	roved for Release 2013/08/	13 : CIA-RDP81-0	1043R00220	00240001-6						
										alar ay A			
			ا الله الارجود مرد								. ·		
		n na shekara na siya shekara T	55 T	AND									
				Tel						•			
	· · · · ·											•	·
	KEGELROLLEN LAGJRREIHE 30	LAGER 200				ΚEG		LLENL IHE 30300.		2			
	Kurzzeichen Maße G.P.Z. S.K.F. d D. Max.	Min. b c kg	ht Preise in ö.S.		Kurzze G.P.Z.	ichen S.K.F.	d D.	Maße _T in m Max. Mi	ım .n. b	c	Gewicht kg.	Preise in ö.S.	l
	1 1203 30203 117 40 13.5	11.5 11 9 0.05 13 12 11 0.08			. 7302	30302	15 42	14.5 14.	13	11.1	0.09	28.90	
	1204 20204 20 47 15.5	15 14/12 0.12	30 32.60 35.80		7303 7304	30303 30304	17 47 20 52	15.5 15. 16.5 16.	16	12 13	0.13 0.17	29.80 35.30	i
• ૣ •	7205 30205 25 52 16.5 7206 30206 30 62 17.5 7207 30207 35 72 18.5		37.20		7305 7306 7307	30305 30306 30307	25.62 30.72 35.80	18.5 18. 21 20. 23 22.	5 19	15 17 18	0.25 0.38	41 ·51.50	İ
	7208 30208 40 80 20 7209 30209 45 85 21 7210 30210 50 90 22	19.5 20 16 0.42 20.5 19 16 0.47	58 62		7308 7309	30308 30309	40 90 45 100	25.5 25.	23	20	0.52 0.7	58.60 74.40	
100	7211 30211 55 100 23 7212 30212 60 110 24 7213 30212 65 110 24	22.5 21 18 0.60	67.40		7310	30310 30311	50 110 55 120	29.5 29.	29	22 23 25	0.92	93 112.20	
* 	I . ICT DOCT 0011201251	24.5/23/20/ 1 1	92.40 102		7312 7313	30312 30313	60 130 65 140	34 33. 36.5 35.	31	27 27 29	1.53 1.90 2.3	136.40 158.10 184.80	
· · · · ·	7214 30214 70 125 26.5 7215 30215 75 130 27.5 7216 30216 80 140 28.5	26 26 21 1.22 27 26 22 1.34 28 26 22 1.59	130.20 143.20	-	7314 7315	30314 30315	70.150 75.160	38.5 37. 40.5 39.	5 37	30 31	3 3.4	223.20 315	
	7217 30217 85 150 31 7218 30218 90 160 33	30 28 24 2	165 181		7316	30316 30317	80 170 85 180	43 42.	- 39	33 35	4 4.7		ĺ
		341321271 2 0	262.60 271		7318 7319	30318 30319	90 190 95 200	47 46. 50 49.	- 43 - 45	37 39	5.5 6.4		
	7220 30220 100 180 37.5 7221 30221 105 190 39.5 7222 30222 110 200 41.5	36.5 34 29 3.7 38.5 36 30 4.5 40.5 38 32 5.6	337 430 510		7320 7321 7322	30321	100 215 105 225 110 240	52 51. 54 53.	- 49	39 41	7.9 10.5		
	7224 30224 120 215 44	43 41 34 6.6	684.50		7324 .	30324	120 260 150 520	5.5 5.4. 60 59. 73 71.	- 55	42 46	12 15		
		15 - 1 121261 0 -			7352	30352	260 520	110 108.	5 102	53 80	29 125		
	7230 30230 150 270 50 - 4 7236 30236 180 320 58 - 4 7244 30244 220 400 71 - 4	56 52 43 20 59 65 52 35.2			·		<u></u>		<u> </u>	į			
•	KEGELROLLENLAGE	_mit_BUND_											
· ·	G.P.S. S.K.F. d B. Dl c	- ic ng.	Preis	and the second									
	67203 17 40 43 13 67204 20 47 51 15 67207 35 72 77 18		1		· · .								ŀ
									·				
	67512 60 110 117 30	-23.5200.8 -30241.4	76										
	67815 75 135		385 189.lo									· .	·

ΔТ

			D	Declassifie	ed in Part	- Sanitize	ed Copy Appro	ved for Relea	se 2013/08/13 - CIA-RDP81-01043R002200240001-6	
	К Е	G E L R LAGEI			A G E	R			$\frac{S C H R \breve{a} G R O L L E N L A G E R}{LAGERREIHE 32300.}$ $\frac{Kurzeichen}{G.P.Z. S.K.P. (d) D Mas. Min.b (c)} Kg. in \breve{o.S.}}{76c4 22304 20 52 22.5 22 [21]18]0.27 46}$	STAT STAT
7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7516 7517 7518 7519	S.K.F. 32206 32207 32208 32209 32210 32212 32212 32213 32214 32215 32214 32215 32216 32218 32219	d D. 30 62 35 72 40 80 45 85 50 90 55 100 60 110 65 120 75 130 80 140 85 150 90 160 90 160	21.5 24.5 25 25 27 30 33.5 33.5 33.5 33.5 33.5 33.5 33.5	21 24 24.5 24.5 24.5 26.5 32.5 33 33 33 33 42 45	b 20.5 23 23.5 23.5 25 28 31 31 31 36 40 45.5	c 17 19 19 20 21 24 27 27 27 27 27 28 30 37	Gewicht kg. 0.28 0.42 0.51 0.56 0.59 0.82 1.1 1.48 1.56 1.62 2 2.5 3.3 4	in ö.S. 49 59.20 66.30 71.30 75.70 92.30 120.90 168 178 179.80 196 216 216 275	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
7520 7521 7522 7524 7526 7528 7530 7536	32221 32222 32224 32226 32228 32228 32230	100 180 105 190 110 200 120 215 130 230 140 250 150 270 180 320	53.5 56.5 62 68.5 72.5 78	48.5 52.5 55.5 61 67 71 76 90	46 50 53.5 58 65 68 74 86	39 46 50 58 58 60 70	5 5.9 7.3 9.6 10.7 13.8 18 27.4	435 536 575 806	$\frac{\text{SPEZIALKEGGELROLLENLAGER}}{\begin{array}{ c c c c c c c c c c c c c c c c c c $	•40
								· · · · · · · · · · · · · · · · · · ·	97518 Kez 90 97530 Kez 150 2097136 180 2097136 180 180 2097136 180 180 2097136 180 180 2097136 180 180 200 200 200 200 200 200 200 200 200 2	

		ĥ		Januard Copy Ap	pproved for Release 2013/08/1									
1						99933 (1999) (1999) (1999) 								i d'en s San a sin S
		-		τ ^η ΓΓ									2994 25	
				•	- 14002								1,21 FS 1,21 FS 1,25 FS	
-	лялт	A L RILLENKUGEI	LAGER				A S La	C I A L gerreihe	RILL n 510	ENL	À G E R		187	· · ·
	e	Inseitig wirkend				Kurzz	eichen	1						
	Kurzzeichen	Maße in mm	Gewicht	Preise i	: c.3.	G.P.Z 8200	. S.K.F.	G.P.Z.	S.K.F.	d di	aße in mm 2 D H H	1 51200		·
	G.P.Z. S.K.F 8100 51100	d D H 10 24 9	kg.	in ö.S. 12.90 13.60		8201 8202	51200 51201 51202	38202	52202	10 12 15 10	26 11 28 11 32 12 2	14.80 15.30 2 16.10	o	
	8101 51101 8102 51102 8103 51103	15 28 9	0.022 0.024 0.028	14.30 15.10		8203 8204 8205	51203. 51204 51205	38204 38205	52204 52205	17 20 15 25 20	35 12 - 40 14 2	17	34	
	8104 51104 8105 51105 8106 51106	. 20 35 10 25 42 11	0.04 0.06 0.07	16.30 18.20 19.60		8206 8207 8208	51206 51207		52206 52207	30 25 35 30	53 16 2	26.10	16 30	
	8107 51107 8108 51108	35 53 12 40 60 13	0.09 0.12	24.80 27.40		8209 8210	51208 51209	38208 38209	52208	40 30	68 19 3	5 37.20		
	8109 51109 8110 51110 8111 51111	50 70 14	0.15 0.16 0.24	30.70 32.60 38.40		8210 8211 8212	51210 51211	38210 38211	52210 52211	50 40 55 45	78 22 39 90 25 4	59.20	84	
	8112 51112 8113 51113 8114 51114	60 85 17 65 90 18	0.29 0.34 0.36	43.70 48.80 50.80	•	8212 8213 8214	51212 51213 51214	38212 38213 38214	52212 52213 52214	60 50 65 55 70 55	95 26 46 100 27 47 105 27 47	66.70 72.50 85.40	115.70 122 140	
	8115 51115 8116 51116	75 100 19 80 105 19	0.42	60.80 64.50		8215 8216 8217	51215 51216 51217	38215 38216			110 27 47 115 28 28 125 31 55		167	
	8117 51117 8118 51118 8120 51120	85 110 19 90 120 22	0.46 0.68 1	76.40 90 108		8218 8220	51217 51218 51220	38218			125 31 55 135 35 62 150 38 67		250	
	8122 51122 8124 51124	110 145 25 120 155 25	1.08	130		8222	51220	38220	- 1	10	160 38	236		
	8126 51126 8128 51128 8130 51130	140 180 31	1.87 2.1 2.2	230 270		8224 8226 8228	51226 51228	-	- 3	20 30 40	170 39 190 45 200 46	307		
	8132 51132 8134 51134	160 200 31 170 215 34	2.3			8230 8232 8234	51230 51232 51234	-	· - 1	60	215 50 225 51			
· · ·	8136 51136 8138 51138 8140 51140	190 240 37 .200 250 37	3.5 4.1 4.2			8236 8238	51236 51238		1	80	240 55 250 56	-		.
1) 	8144 51144 8148 51148 ·8152 51152	240 300 45	4.6 .7.6 8.1			8240	51240 51244	-	- 2	00	270 62 280 62 300 63			
	8156 51156 8160 51160	280 350 53	12.2 17.5 18.9			[<u>(</u>	- 12	20)				ļ

 $-\pi^{-1}$, π^{-1} , π^{-1} , π^{-1} , π^{-1} , μ^{-1}

ASCIALRILLENKUGELLAGER LAGERREIHE 51300

					•	· · · · ·
Kurzze G.P.Z.		Maße d	e in D	mm H	Preise in ö. S.	Gewicht jkg:.
8305 8306 8307	51305 51306 51307	25 30 35	52 60 68	18 21 24	28.20 35.30 32.40	0.18 0.27 0.39
8308 8309 8310	51308 51309 51310	40 45 50	78 85 95	26 28 31	51.50 60 77.50	0.55 0.69 1
8311 8312 8313	51311 51312 51313	55 60 65	105 110 115	35 35 36	92 202.10 215.10	1.34 1.43 1.57
8314 8315 8316	51314 51315 51316	70 75 80	125 135 140	40 44 44	260.40 352.10	2.1 2.7 2.8,
8317 8318 8320	51317 51318 51320	85 90 100	150 155 170	49 50 55	461.90 567.30	3.7 3.9 5.1
8322 8324 8326	51322 51324 51326	110 120 130	190 210 225	63 70 75	- , -	7.9 10.9 13.3
8328 8330 8336	51328 51330 51336	140 150 180	240 250 300	80		15.9 16.7 28.17
8340 8368	51340 51368	200 340			-	43.59 138

SPEZIAL LÄNGSLAGER M. KAPPE

986711 588911	D-38579 I-62235	55 52.39	90 85.3	23 20.64	95.50 84.20	0.38	
						,	

Declassified in Part - Sanitized Copy Approved for Release 2013/08/13 : CIA-RDP81-01043R002200240001-6