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THEORY OF NOISE IN A MULTIDIMENSIONAL SEMICONDUCTOR
WITH A P-N JUNCTION

ABSTRACT: This thesis discusses the fluctuations of noise
in a two and three dimensional semiconductor containing a
p-n junction., We consider a rectangular parallelepiped
single crystal. It is bisected in the longest dimension by
a p-n junction. Since this dimension is several diffusion
lengths it can be considered infinite. In the transverse
plane we investigate the case where both dimensions are
finite, and then the case where one is finite and the other
infinite. In the p-n junction the noise is the result of
fluctuations in the minority carrier density. In a p-n
junction there are two classes of minority carriers: 1.
holes in the n-type material, 2. electrons in the p-type
material. Since both hole and electron density fluctuations
are similar, we discuss only the former in detail. We
investigate the differential equations for a two and three
dimensional semiconductor with a p-n Jjunction and find the
inhomogeneous form of these equations. These equations are
solved with the help of the scalar and tensor Green's
function. The noise problem is solved by using these
equations as Langevin equations and interpreting the dis-
tributed sources as random forces. Then the noise current
spectrum is determined with stochastic process theory after
deriving the sources from basic physical models and the
theory of stationary, ergodic, Markovian processes, We
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consider two cases of surface recombination velocity on the
transverse surfaces: infinite s and finite s, For the
infinite case, we get the exact solution which provides an
upper bound for the noise spectrum for large s. For an
arbitrary s we get a solution but have confidence in the
solution for only small s.

Therefore we have obtained a complete solution for the two
cases of practical interest: large and small surface
recombination velocity. These cases should prove of interest
in the analysis of noise phenomena in semiconductors.
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CHAPTER I
INTRODUCTION

Semiconductor noise studies give useful
information about the basic pnhysical micros-
copic processes in semiconductors and in the
solid state. Furthermore, noise becomes very
inportant when a semiconductor device such as
a transistor is used with signal levels com-
parable to the noise.

A semiconductor crystal which is p-type
at one end and n-type at the other has a
transitioT zone which is called a p-n junction
(Shockley+, Kittel?). Current is carried
across the Junction by minority carriers; that
is, electrons in the p-type region and holes
in the n-type rﬁgion.

Petritz>s% has shown that noise in a
p-n junction arises from fluctuations in the
concentration of minority carriers. Consid-
ering a p-n junction as an ideal one dimen-
sional structure, he has deriged expressions
for this noise. Van der Ziel” has extended
the solution to the one-dimensional p-n-p
transistor structure. In both studies the
effécts of surfaces were considered in an ap-
proximate manner.

However, surface conditions have been
found to influence markedly the performance °£
p-n Junction diodes and transistors (Kingston ).
Considerable theoretical work has been done to
understand the signal properties (voltage, cur-

. rent, -frequency relationsg of p-n junction
devices, considered as three—digensional struct-
ures (Shockley!, Van Roosbroeck®). It is the
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purpose of this thesis to develop a theory of
noise which considers the p-n junction as a
three dimensional system, and which treats the
effects of surfaces in an exact manner.

A second objective of the thesls 1s to
test and extend a powerful method developed by
Petritz3,4 for studying complicated random
processes. This aspect of the work is of inter-
kst in the general theory of random processes.

NAVORD Report 5762

CHAPTER II
PROBLEM AND METHOD OF SOLUTION

2.1 Introduction

We assume that semiconductor noise is a
stationary, ergodic and Markovian random process.”
Considering the local hole density, pt(x,y,z,t),
as a random variable, this is a three-fold infin-
ite random process., In order to solve such a
complicated problem, we have generalized a method
used originally by Petritz.? This method employs
the Kolmogorov--Fokker-Planck (KFP) and the
Langevin techniques_to describe the noise (Fei—
ler?, Chandrasekhaflo, Uhlenbeck and Ornsteinll,
Wang and Uhlenbeckl2),

2.2 The Kolmogorov-Fokker-Planck Equation Approach

The KFP equationsl2 for the three dimensional
semiconductor are given by
TEMENTENL) = Pl (ol mir,t) D, Qante k)
XKéEm

+2 Plmeifken) Qx| ) .

P( /m,t) is the conditional probability of
finding the random variable with a value m after
the time t, if at zero time the random variable
had a value mg. The random variable is the hole
density in the n-type semiconductor. The symbol
r represents r(x,y,z), a function of the three
rectangular coordinates. is a transition
probability and is defined” by the equation,

P(klwm,at)= Qkim)at + order(dt)®. (2)
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Q describes how the system changes in an infin-
itesimal interval of time, At, and characterizes
the stochastic process. For the semiconductor
problem, Q is independent of time and the pro-
cess is stationary. Q is non-zero and less than
unity and the process is ergodic.

4 The integpretation of equation (1) is that
the rate at which the conditional probability
P(my/m,t) changes with time results from transi-
tions away from and to the desired state. Equa-
tion (1) is subject to the boundary condition

Pmm,0)= umm > ()

where §,,_.1s the Kronecker delta.
Sinde a random process is characterized by
transition probabilities, we list them for the

p-n junction:

Q(mlr)\wd—\) = m(r)/f( N bulk recombination; (4)

q"(;;n‘r)\m(r)-ko:(mlr))/'ﬁ , bulk emission; (5)
iffusi 6

Q,('“(")“m(")"\)= e /s, puk gecrg:sg? ©

Qe+ =(mledfcp,  Pulk diffusion  (7)

At the transverse surfaces, the surface transi-
tion probabilities are

QmiMD-N= Mo /T, , surface recombin-  (8)
* ation;

Q(m(r,\\m(r,\-r\):(m(g\)/:cs, surface emission.  (9)
B '

r. denotes that the random variable is evaluated
only at the surface; T 1s the bulk recombination
lifetime of a hole in an excited state; Tp and
15 designate the lifetime of bulk diffusion

and surface recombination respectively;
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and () designates ensemble average. For a
statlionary random process, time and ensemble -
averages are equal.

The KFP equations with the set of transi-
tion probabilities given in equations (1) and
(4) to (9) comprise a three fold infinity of
differential equations, since p@t) depends
continuously on x, y and z. We have not solved
this complete set of equations, but we later use
some KFP equations to solve the noise in an
infinitesimal region of the semiconductor.

2.3 The Langevin Equation Approach

The Langevin equation is a deterministic
equation_of a system excited by random noise
sources.12 For a particle&n a viscous medium
it is

%‘g“rﬁll:A(t), (10)

where U is the velocity of the particle, f 1is
the viscosity, and A(t) is the random force.
The two assumptions made are that A(t) is inde-
pendent of u and that A(t) varies extremely
rapidly compared to the variation of u.

By generalizing the above concept we have
a sultable method for solving the p-n Jjunction
noise problem. The deterministic equations for
minority carrier flow are:*»

AR, (REH-PY , L Fi@b=0 ,
ot ‘”(E%C_B‘)“LQV}( (12)

Jen= gupen E@b - Do t=-DFpit. 1)

The subscript t denotes the_total hole density,
3 1is the current density,E 1is the electric
field intensity, p.,t) is the hole concentration
at T(Xy2) at time t, 4 1s the hole mobility, P
is the hole concentration at thermal equilibrium,
T is the mean lifetime of a hole in bulk n-type

5
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semiconductors,D 1s the diffusion constant, and
q 1s the electronic charge. We assume that the
diffusion current is much greater than the con-
duction current. By introducing appropriate
noise sources into the above equations we have
the three dimensional generalization of the
simple Langevin equation (10):

spint) 4 oD 4 17JED =S,
a2t S 1 (

13)
Jer,t) +<1D$p=S,(P,t) . (14)

S.,, and §b are noise sources. The variable p is
tﬁe deviation of the hole density from its equil-
ibrium value, like Eq. (Bl). (A letter preceding
an equation number indicates the appendix in
which the equation is found.)

It is important to note that there exists
no a priori knowledge of the nolse sources;
their solution is a key part of this work.
After finding expressions for these noise
sources, we solve the deterministic Egs. (13) and
(14) and find the noise spectrum of the p-n junc-
tion. The latter step involves the use of scalar
and tensor Green's functions.

NAVORD Report 5762

CHAPTER III

THREE-DIMENSIONAL NOISE SOURCES
FOR A p-n JUNCTION

3.1 Introduction

It 1s necessary to derive explicit
expressions for the noilse sources appearing in
equations (13) and (14). We consider the anal-
ogous but conslderably simpler problem of a
one-dimensional transmission line.

3.2 The Inhomogeneous Tfansmission
Line Equationsl3

The homogeneous differential equations
for a one-dimensional transmission line with no
series inductance are

t) _ aVix,t) _
g_li(x, =-CH GVxd , (15)

%%S*_’Q = -RIxby. (16)

I i1s the current flowing in the line; V is the
voltage across the line; C, G and R are the
capacitance, shunt conductance and resistance
per unit length of line respectively. An infin-
itesimal section of line is shown in f&gure 1,
page 8. Taking the Fourier transform~ of the
voltage and current (either represented by F) we
have

Fo= [ F@ explet)af. 07
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31 . _(1wC+QV=-1V
3%
aV/ax=—RT

o
¥

YziWC+G s
w=21f .

I and V are functions of frequency, f, and
position, x.

We now consider voltage and current
sources (generators) in the line; the total
source in the series arm is AVo(gﬁVAx,while
in parallel with the admittance Y is a current
source Alg(xf)/Ax. In the 1limit as Ax ap-
proaches zero, we have

aEef) — 3EX.D)
AX Ix

is zero.

3in
where Fo(x,f) represents either Vo(x,f) or
Io(x,f). The resulting inhomogeneous trans-
mission line equations are

(22)

stributed sources, and the voltage and

The series inductance

- _ 91,
A yw=-3x - (23)

W +RI=—%Y° : (24)

Infinitesimal section of a transmission line showing the

lements, the di

3.3 Analogy between the Transmission Line
and the One Dimensional p-n Junction

1.
circuit e

The three dimensional p-n Junction, Egs.
(13) and (14), reduce to one dimension when the
functions considered are constant in the y and
z directions, Using Fourier transforms,Egs.
(13) and (14) become .

current distributions.

Fig.
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. 2 i
%}x.uiDKP :_:—§c , (25)

BrHT e 0 e
Kzi(1+iw<ybi . (e7)

Here j and p are functions of freguency and Xx.

The quantities in Egs. (25)and (26) analogous
to those in Egs. (23)and (24) are

I~j 5 V7p (28)
Y qliw+<; R~ V9D (29)
al.fax~ 3% (30)

oV, /0% ~ 3P.[O%X . (31)

3.4 The Three Dimensional Inhomogeneous
Differential Equations for a
Semiconductor with
a p-n Junction

Since‘the current density is a vector and
the excess hole density is a scalar, there are
four more equations like (25) and (26) for the
¥y and z directions. These six equations can be
written as

- 2 '3'?

3+ PKp=-Vie (32)
- T/ D=-v
Ip+ /P =Ip (33)

10
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When the variables are separated, we get
2 - (34)

v P-
S=5,+3 3 (35)

(36)

(37)

3.5 Discussion of the Random Noise Sources

In the first order differential equations
L}g) and (33) there are two sources of nolse:
v} and Vp,. The first is the divergence of
the hole current and is a scalar source. This
1s due to hole recombination with electrons.

The second noise source is the gradient of the
hole density, Vp. , and is a vector source. The
diffusion current density is proportional to V.,
and is in the direction from greater to lesser
hole density.

In addition to the above noise sources
there are sources which result from the recom-
bination or emission of holes in surface states.
This noise is related to the flow of holes into
the surface and is directed normal to the sur-
face.

The modified noise sources, Sp and Sy ,
Egs. (35) and (37), are not new sources but
result from mathematical operations on the physi-
cal sources.

3.6 Method of Deriving the Noise Sources
We derive explicit expressions for the
noise sogrges following the method first used by
’

Petritz. This method uses the KFP equation to
solve for the spectrum of the noise in an

11
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infinitesimal region of the semiconductor.

Then an appropriate deterministic equation
with unknown noise sources 1s set up for the
same infinitesimal region (1ocal Langevin
equation). Knowing the spectrum from the KFP
solution, one is able to derive expressions for
the noise sources appearing in the local Lange-
vin equations. These sources turn out to be
appropriate for use in the Langevin equations
of the whole semiconductor, Egqs. (34) to (37).

3.7 Models Used for Determination
of Noise Sources

The determination of the nolse sources
is simplified because of the assumption of
statistical independence of the various elemen-
tary processes. To set up a model which Isolates
each source, we cut the three dimensional semi-
conductor into infinitesimal cubes without
changing their hole density, and apply the appro-
priate boundary conditions. For recombination
the cube is an interior one with perfectly
reflecting boundaries. The charge density
remains uniform throughout; the only decay is
due to the bulk recombination time constant
since diffusion currents require gradients.

For the bulk diffusion sources the cube
is an interior one with perfectly absorbing
boundaries on two opposite faces and perfectly
reflecting boundaries on the other faces. The
volume is so small that the concentration grad-
ients cause large diffusion currents while
relatively few holes are lost by recombination.

For the surface recombination noise source,
the cube is at the surface of the semiconductor.
Its dimension perpendicular to the surface is
very small compared to the others and the bound-
aries are perfectly reflecting except for the
original semiconductor boundary. In this sur-
face element the dominant process is recombina-
tion and emission from the surface states.

12
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Because of the thinness of the element, bulk
recombination and diffusion are relatively
unimportant.

3.8 The Bulk Recombination Noise Source

The excess hole density Langevin equation
for bulk recombination and emission is obtailned
from the model in Section 3.7 and from Egs. (10)
and (13),

2 +p=i. (38)

The random force is Eﬁiﬁl . The time constant
for bulk recombination T determines the transi-
tion probabilities,

Q,(NlN‘D=N/'C . bulk hole-electron (39)
recombination;

Q,.(NlN"']):(N)/’ﬁ , excitation of a (40)

hole.

Here N and (N} are the total and the average
number of holes in the cube respectively. The
minority charge density is assumed uniform over
the volume v of the cube, thus

N=V pg - (41)
Substituting these transition probabilities into

the KFP equation (1), we get for the small vol-
ume under consideration,

PR = - PO W W] pOUNLY Wt (u2)
+P(NINHY) ] .

Multiplying equation (42) by N, the number of

holes at time t i1f N, existed at the initial

time, and summing over the ensemble, there
results

13
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3Ny, fot=-M)/t , (43)
N=N-{0 , (44)

and where the conditional average for N is
defined as

(N,=ZP(NINY N. (45)
The solution of equation (43) is

M =N, exP(‘t/‘C) R (46)
where Ny, is definéd with the aid of Eq. (3) as

(N),=N,, , t=0. (47)

This conditional average is transformed
into the correlation function using

pO=NE=0 K=t); (48)

with equation (45) this expression becomes

pr=ENe W) <MD, (49)

X
W(N1p) is the probability of Njg. When Eq. (46)
is substituted into (49), the correlation func-
tion becomes

)= LY CXP("t/f) . (50)

The Wiener-Khintchine Theorem3 transforms
the correlation function into the spectrum

14
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w(ﬂ=4£a‘p(ﬂ coy wt At . (51)

When equation (50) is substituted into equation
(51) and the result integrated, there results

w N = & N /<KD" (52)

K2 is defined by Eq. (27) and the symbol || means
absolute value.

Equation (52) is the spectrum of the total
hole variation. However, we desire an expres-
sion for the noise source which appears in the
Langevin frequency equation (34). We can solve
for the spectrum of the source now that we have
determined the spectrum of the total hole varia-
tion. This is the inverse of what is normally
done with the Langevin equation. The normal
procedure is to postulate a white noise source
and to solve for the fluctuations in the total
hole density. The magnitude of the white noilse
source is determined by considerations of statis-
tical mechanics and thermal equilibrium. Since
we are interested in non-equilibrium as well as
thermal equilibrium noise sources, we cannot
use this normal procedure. Instead the local
KFP equation is used to determine the thermal
equilibrium and nonequilibrium spectrum of the
total hole variation, and the nolse scurces
derived have general validity. This combined
use of the KFP and the Langevin methods locally
was first done by Petritz® and appears to be a
powerful technique for solving complicated ran-
dom processes.

We use this technique to transform the
spectrum of the total hole variation, Eq. (52),
into the noise source associated with the recom-
bination dissipative process. This 1is done by
integrating equation (38) over the volume of the
cube; inserting
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N,=Jpav » (53)
where p;(r) is like pl(O), Eq. (B3); using
L=f @) av 5 (54)
and using Eq. (17). This ylelds
1,.= qI)KLNl .
The spectrum of Ir is
(T = TR wlNe). (56)
Equation (52) substituted into Eq. (56) obtains
will )= A D/ (57)

This is the noise source associated with the
recombination dissipative process. It is inde-
pendent of frequency and therefore is a white
noise source.

Equation (57) is not the recombination
noise source in equation (35). This source is

w(is V)= w,(\g—é\") . (58)

A relation-between Egs. (57) and (58) 1s
determined with the equation
o Lo T

Limg = V3

(59)

and the generalized impedance theorem.

16
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The impedance theorem (Lawson and Uhlen-
beckl5) states that by multiplying the current
noise spectrum wy in a linear system by the
absolute value sguared of its impedance function,
Z(£)Z*(f), wy is transformed into the voltage
spectrum wg. In symbols

wW_= W, 2Z%, (60)
o i

We generalize this impedance theorem by
letting wy and Wo be any two spectra in a linear
system which are related by a factor of propor-
tionality Z(f)Z*(f).

The explicit expression for the recombin-
ation source spectrum is

WS, = & ANDY/wD* avt. (61)

To express the recombination source, Eq.
(61), in known parameters, (N®» 1s evaluated
by multiplying Eq. (42) by N* and summing; the
result is

2. - Ny — 24N, + <N/
2 00 = (z 0 G0, + () = 2 Ve.. )

.

When the time of observation of N goes to infin-
ity,

= (ND- Y= QY (63)

(N, =N, (64)

Py

With Egs. (63) and (41) Eq. (61) becomes

w1819 = 4 <pe /D &), (65)

17
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where {py(r)) is given by Eq. (Bll). This 18
the desired noise source for bulk recombination.

. 3.9 The Diffusion Noise Source

Solving Eqs. (13) and (14) for p,
letting S, be zera and using the model for the
diffusion noise source, Section (3.7), we get

3 p _
F-D)5R=5% (66)

where x3 i1s X, y, or z. We assume that diffusion
in the three directions is statistically inde-
pendent. Equation (66) becomes a set of three:

2
e} k) —_
E-05R=5s, (67)

where u stands for x, y or z.

To write equation (66) in the Langevin
form, the spacial term is transformed to contain
a time constant. We write the second derivative
for the finite but small cube and use the densi-
ties

PO=0 4 pOW=0,pEB=p, (6g)

In this differentiation the diffusing ‘direction
is u and the length of the cube in this direction
is Au. Thé second derivative is

Ip - Zp, (69)

. aur~ AW
‘and ‘equation (67) becomes

5 .
2%+ %, 50 . (10)

18
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Tpy= AUYRD | (71)

With these time constants the transition
probabilities for the u direction are

Qou(No\Wg))=No/tpy |,  loss by diffusion; (72)
Qo (YN, +1) =Np/Tpu , gain by diffusion. (73)

Here Np is the total number of holes 1in the cube
with dImensions Ax, Ay, Az and with the diffu-
sion boundary conditions:

N»:jp av = AX Ay AZ P/Z. (74)

Using the techniques of the previous sec-
tion, the noise source for diffusion in the u
direction is

W(15al) = 1R 4 g DepuD/ax ay az . (75)

3.10 The Surface Recombination Noise Source
With the model for the surface recombina-
tion noise source, Section 3.7, the Langevin
equation (10) becomes
2Pis | Pis - V- Jis (76)
3t Tk, g

The Pis is evaluated at the semiconductor
boundary and the ji; 1is the current flowing in

19
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the direction normal to the surface i. These

surface recombination time constants define the
transition probabilities:

Qs(“s\“s"n = Ns/‘fd (77
by recombination at the surface

Qs (WeANg*D)= N/ ts
by emission at the surface .

(78)

Ng is the total number of minority carriers
eValuated at the surface if the surface layer

were Axj thick:

stjpis' avg= OXi 8%§ 80Xy Pis - (79)

Using the techniques demonstrated in Sec-
tion 3.7, the surface recombination nolse source
is

w5 (125)) = 4 <Pesd s/p ax a¥x, (80)

where i and k are either the palr y, z or 2z, ¥;
s is the surface recombination velocity and is
assumed to be the same on the y and z surfaces.
The relation for the surfaig recombination vel-
ocity is given by Rittner,

. si=’Cs/L\xi . (81)
The rate of surface recombination acts as if a
current of holes were drifting into the surfaie
with an average velocity s and being removed.
3.11 Noise Source ahd p-n Junction Equations

The two bulk sources in equations (65) and

20
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(75) are expressed per unit volume. Since the
differential equations are for a small volume

of the three dimensional semiconductor, the noise
sources are in the correct form. That these
sources correspond to physical processes was also
shown by analogy with the transmission line,
Section 3.3.

When the variables are separated in the two
first order semiconductor equations, spacial
differential operations are performed on some
of the noise sources. This changes their nature
from those calculated in Sections 3.8 and 3.9.

In the equations for excess hole density (34)
and (35) the nature of the recombination source
S., is not changed and these equations can be
solved for the recombination noise spectrum.
However, the diffusion source S, ha; been dif-
ferentiated spacially and becomes Sn. By using
the vector analogue of integration Ey parts, the
diffusion noise source transforms to the correct
form. This technique is used in Chapter vil.

In the diffusion current density equations
(36) and (37) the diffusion source 1s still Sp.
These equations can be solved for the diffusion
noise spectrum with the tensor Green's function.
This approach is followed in Chapter VI.
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CHAPTER IV

SCALAR INHOMOGENEOUS SEMICONDUCTOR EQUATION
AND GREEN'S FUNCTION

4,1 Formal Solution of the Scalar
Inhomogeneous Equation

Having derived explicit expressions for
the noise sources, we consider the inhomogeneous
differential equations for the semiconductor with
a p-n junction, Egs. (34) to (37). Green's func-
tions are useful for solving inhomogeneous partial
differential equations. In our problem we use
both scalar and tensor Green's functions, the
latter because of the vector nature of the
sources in Eq. (36). A summary of the proper-
ties of scalar and tensor Green's functions is
given in Appendix A.

The formal solution of Eq. &34) in terms
of a scalar Green's function is,°

o= J[GRpe - powdl- b+ fSey Gan. (82

Throughout the paper the zero subscript denotes
the source coordinates, while the coordinates
without subscripts are the opservation ones.
The surface integral gives the contribution for
noise sources at the surfaces, while the volume
integral is for the volume sources.

NAVORD Report 5762

4,2 General Discussion of
Scalar Eigenfunctions

We construct an explicit expression for
the scalar Green's function in terms of a series
of scalar eigenfunctions. An eigenfunction 1is
the solution of an ordinary homogeneous differ-
ential equation contailning a separation constant
which satisfies simple boundary conditions. The
values of the separation constants which allow
the eigenfunction to fit the conditions are
called eigenvalues. In physics it 1is assumed
that the Dirac-delta function related to our
Green's function can be expanded in terms of a
complete, orthogonal set of eigenfunctions.

The orthogonality condition for a set of
eigenfunctions is

_f'F,LmnFA'-m‘n' = &,.\,, ,A‘m‘n'L;“ . (83)

Here 8ypn,m« 1S the Kronecker delta and Ly,

is the normalization constant. The dirferenggal
equation the eigenfunctions of this problem must
satisfy is

2 -
7 Fant Koran B = 0 - (8)
Kimn is the separation constant and specific

values of the separation constant for which the
above equation can be solved are the eigenvalues.

4,3 The Eigenfunction Expansion of the Scalar
Green's Function for Arbitrary Surface
Recombination Velocity

The scalar Green's function is now expanded
in a series of scalar eigenfunctions:

R NP S (85) -

23
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This series is substituted into equation (Al}),
noting that the coefficients are not functions
of r. Multiplying by Frwn() integrating over
the volume, and using Eqgs. (é}) and (84), we find

= B @ Kl (86)

g

3
and G= g\;\ﬁnn(’rﬁ E‘,\“ﬁﬂ L,h-w\K Kmn ) (87)

w2l R = A+ " iw
where Kipme= K 1 Kimn™ D2 BmntS © (g8)

This Green's function satisfies the reciprocity
condition since it 1s symmetrical in the source
and observation coordinates.

The semiconductor geometry is shown in
Figure 2. The p-n junction is located at the
x=0 plane and the origin of coordinates lies
at the center of this face. The rectangular
parallelepiped 1s bounded by the planes x=0,
x=a, y=b, y=-b, z=c, 2z=-C.

The three dimensional rectangular coordin-
ate system is a separable system and the eigen-
function can be written as the product of three
factors:

(89) Fig. 2. The geometry and coordinate system for
Fh““=Tﬁme; . : the three dimensional semiconductor with finite

surface recombination velocity on the transverse
Each factor is the eigenfunction which satisfies - . - -
the boundary condition in one coordinate. Fur- surfaces y=b, y=-b, z=¢c, z=-c. The p-n junction

R is at the x=0 boundary and an ohmic contact is
thermore Eq. (84) separates into three equations: 2t the x-a boundary.

1
PP L KIESO (90)

where r is any index, 1, m or n.

The boundary conditions in the x-direction
are that p=o at x=o and x=a. This implies an
ohmic contact at x=a and short-circuited condi-
tions at the x=0 and x=a planes. The eigenfunction

2k
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which satisfies these conditions is

= sin 2iX/a . (91)

On the y and z boundaries curre

nt mo
into the surffce is proportional to the excztgg
hole density.l The constant of proportionality
is the surface recombination velocity s:

du/q= tep, =2 (92)
The coordinate u stands for eithe:

r ¥y or z and &
stands for the y or z boundary surfaces. Using

the homogeneous form
The hom of Eq. (14), Eq. (92)

=t

ap/ou=Fsp/D, W= (93)

Equations (90) and (93) have the f
solutions: In the y-direction th e following
sine eigenfunctions are e cosine and

Ep= cos By ;3§ = sin Buy. (o4)

In the z-direction the
e yigaire cosine and sine eigen-

F.= cos Buz JFy= sin fy2. (95)

The boundary condition, E
for the cosine eigenfunctioné: 3. (93), becomes

Bt pr= P (e6)

and for sine eigenfunctions:

26

e —

Declassified in Part - Sanitized Co

1
|
i
|
|

py Approved for Release @ 50-Yr 2014/01/16 : CIA-RDP81-01043R002800140012-9

NAVORD Report 5762

ﬁj’ﬂ( cot fx =7 5~/D ° (97)

The subscript r stands for either m or n, the
subscript p stands for either 4 or ¥ , and
stands for either:b or zc, respectively. (The
word 'respectively" in this expression means
that only the values (m, & , £b) or(m,V +c)
can occur together in the above equations) We
assume that the surface recombination veloclity
is the same for an opposite pair of surfaces.

Combining Eqs. (91), (94), and (95) the
eigenfunctions for the rectangular parallelepiped
semiconductor are .

Fux= s sfe R (8a¥) SER (BaBY 5 (98)

where all possible sine and cosine combinations
are taken. The symbols M and N stand for a y
or z index respectively. These eigenfunctions
are complete since they satisfy Eq. 4) and
the homogeneous boundary conditions. The
scalar Green's function Eq. (87) satisfies the
same boundary conditions as the eigenfunctions.
The eigenfunctions are orthogonal; from Egs.
(83) and (98) we find

SFlmnF).',.cn' av = Ligen San pimind (99)
and
jFXAvF,‘l'/L'o" av =L‘}“’ §/"’/‘/"‘"'y (100) '

while any mixing of the mu and n,» gilve a
null integral. .Since the eigenfunctions are
separable we can integrate the various coor-
dinate integrals separately:

ij“=L,;L,.3-qx. . T (101)

2T
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i sin GE ax=38=lile . (102)

(Y

J: cot fru cos et du = "("%\ﬁ:‘) sr,r'= I:r 5;-,:-’,(103)
an 26, % =7
[ain gu sinpd au = *(‘J‘—Kfé”—)%( L Sp. (104)

[eospn sfu =0 (o5)

The r stands for m or n while p stands for y
or Y .
Substituting Eq. (98) into (84), the
eigenvalues are

P
K KK K= @ petfe - (206)

If we let a, the x-dimension of the para-
llelepiped, go to infinity, the discrete sum
goes over to an integral and can be integrated.
To carry out this limit operation, Green's func-
tion is written as

« (107)

-y

L
B, +Rrvax

o o
Z;F“-(r_) Fea® Y 2 sin B2 sinTgks
G= ) ten ) Beocd E 3 X
L
P N X
The variables ¥ and A¥ take on the values “3/'1) 14

and 13, respectively, and are put into Eq. (107
When a goes to infinity, Eq. (107) becomes

- (108)

Q- S Z Fuan ) Frex @) fﬂ.\ ¥X_sin 3%, 4%
b L % 32+ Kyaw

28
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. When we integrate equation (108), Green's
function becomes

‘ _ e @ Forac () 1_5"? CE sy exp(-wi".mq
c‘_%,;f Limx me(] o (109)

cof cod
F,(u(r)=FnFs = (*i‘ ﬁ"‘y) (’m "Z) ? (110)

NRTRIC - Vo T

2 gt iw
A +Brt .
K; K——D",é'*ﬁ)( bl D (112)

Ly is defined by Egs, (101), (103) and (104)
all Kkmy by Eqs. (106) and (88). The plus signs
belong to the m,n indices, while the minus signs
to the y4,» indices. This is the desired form
for thé scalar Green's function for a rectangular
parallelepiped semiconductor when the x-dimension
goes to infinity. The assumption that a goes to
infinity means physically that the diffusion
length of the minority carriers is much less than
a. Therefore minority carriers injected at x=o
will recombine before they reach the contact at
x=a. This assumption is valid for p-n Junction
diodes. In the case of transistors, a second
p-n Junction is at the distance a, and in this
case, the diffusion length 1s much greater than
a.

Our solution is therefore directly appli-
cable to p-n Junction diodes; transistors can be

29
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handled in the same -general way, but a is kept
finite and the boundary condition at a is
changed. For simplicity we confine this work
to the p-n junction diode and assume a 1s
infinite.

4.4 The Eigenfunction Expansion for the
Scalar Green's Function for Infinite
Surface Recombination Velocity

Green's function for the case of infinite
surface recombination velocity on the transverse
surfaces and zero hole density on the longitud-
inal surfaces is called the infinite s case. It
is convenient to change the coordinate system
from that of Figure 2 to that of Figure 3, in
which the origin is at one corner of the p-n
junction fape rather than at its center. To
designate that a symbol pertains to the case of
infinite s, we affix the superscript es to the
symbol.

On the lmgitudinal surfaces the boundary
conditions are not changed. On the transverse
surfaces s is infinite. From Eq. (93), we get

u=%*o¢o

o[~

= in (113)

Here ¢ is the u-boundary surface: O, B for y
or 0, C for z. With s=o , elther p is zero
or 2p/2u 1is infinite. The last relation
requires an infinite surface current and is
physically impossible. Therefore p 1s zero on
the surfaces which have infinite surface recom-
bination velocity. Thus the excess hole density
is zero on all surfaces.

Following the same procedure as for the
case of arbitrary s, we find

L T\ | e

T KR

mn
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‘n
f—o

Fig. 3. The geometry and coordinate system for
the three dimensional semiconductor with infin-
ite surface recombination velocity on the trans-
verse surfaces y=0, y=B, 2=0, z=C. The p-n
junction is on the x=0 boundary and an ohmie
contact is on the x=a boundary.

i



Frren = Sin “—“T—,— sin “Tlh N (115)
L= =2 % , (116)

z d A
Kot = vkt =) () O ). @)

Equation (114) is the scalar Green's function
for infinite surface recombination veloclty on
the transverse surfaces.

32
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CHAPTER V

TENSOR GREEN'S FUNCTION FOR THE SEMICONDUCTOR
WITH A p=-n JUNCTION

5.1 Formal Solution of the Diffusion Current
Density with the Tensor Green'!s Function

In deriving the noise from a p-n Junction
the vector inhomogeneous differential equation,
Eq. (36), must be solved; one method of solution
is with a tensor Green's function. The general
properties of tensor Green's fupctions are
reviewed in Appendix A.

We solve the inhomogeneous current density
equations (36) and (37) formally with the tensor
Green's function, [, defined by Eq. (Al4). Equa-
tion (36) is postmultiplied with [ while equation
(Al4) is premultiplied with 7 and the two result-
ing expresslons are subtracted. The following
tensor identities are used:

FEDM=EEN+EFDr @8
and 7 EM=EFE0FEED. (19)

The resulting equation is integrated over the
volume using

J.F:E‘J‘=F (120)
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for any vector function F and for the idem-
factor <, Eq. (Al0). The symbols r and r, are
interchanged and the reciprocity condition, Eq.
(A22) 1is used. The current density is

Jo= T F-T@E - ok + 130T . (121)

' 5.2 Formal Vector Eigenfunction Expansion
of the Tensor Green's Function

In order to use Eq. (121) we must find an
explicit expression for the tensor Green'!s func-
tion. This is accomplished formally with a
complete, orthogonal series of vector eigen-
functions, ), . . These vector eigenfunctions
must satisfy the equation

> 2 2 - —
T Jama T Kimn Jwn= 0 > (122)
and the orthogonality condition

f* k4 = & e
Joomw Jwiw AV ST NI ORI (123)

We expand the tensor Green's function in
a serles of these vector eigenfunctions,

r=7 Rionn 3l - (124)

This serieS is put into Eq. (Al4) and both sides
Qf the resulting expression are multiplied by
igmm-and integrated over the volume., Using Egs.
123),(120), and (88) the vector coefficients
are

Kb_“z ‘J.:..m\“)/l\—jw“ Ktwn - (125)
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Substituting Eq. (125) into (124) the tensor
Green's function becomes

- - 2
AL T @ Tl A Mt - (226)

This is the formal expression for Green's ten-
sor in terms of a complete orthogonal set of
vector eigenfunctions.

5.3 Vector Eigenfunctionslu

The vector eigenfunction solutions of the
vector equation (36) are obtained from scalar
eigenfunction solutions of the corresponding
scalar eigenfunction equation (84)., These vec-
tor eigenfunctions are written as

_j',,.“'—_f,x +TY +Lz=’\i+ﬁ*N ) (127)

- > T 2z >
where T_=€Q ;M:VX(;‘V‘ V»);N«V‘Vx(a'wi)/nl_“ (128)

and X, ¥, Zor ¥, @, % are eigenfunction solu-
tions of equation (éu); @, 1s the vector normal
to the surface and w 1s a function of the coor-
dinate in the direction &, . The eigenvalues,
Kimn, and the relative magnitudes of X, ¥, Z or
¢,% ,2 are adjusted to satisfy the boundary
conditions.

In the p-n Junction the diffusion current
is proportional to the gradient of the hole
density. Therefore a vector eigenfunction 1s
the gradient of a scalar eigenfunction. The
curl of these vector eigenfunctions is zero, and
M and N, Egs. (127) and (128), are zero.

For an arbitrary surface recombination
velocity the vector elgenfunctions are

35
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Fn=-Dq Y emn (129)

Yt =

where Fin, are defired by Eq..(98) K2, by (106
and the boundary conditions by (965 a%x (9%).( )
These eigenfunctions satisfy the differential
equation (84).

5.4 Non-orthogonality of the Vector
Eigenfunctions for Finite s

X To investigate the orthogonality of the
vector eigenfunctions we write one of them
in component form:

- - -
3 =} sx 3 3 =
Jamn 't‘]wn +'t1]u4n ¥ tz]}m« = (130)
T ‘] ©5 Pwa "
tx x ccs«-a.‘" :\:\J,Ss,,: :::f,,:

Dq [+F, p P
== * gt )5in Py Cos P2
9 y P “sin Shy smfon

>
ia ML cos By sinfnZ
Tt'Z. Bu sin A sinfuy cosf T

s
a

where M refers tom oru and N to n or v . All
possible combinations of the cosine and.sine

. factors are implied in each term. A component

of Jjimp. 1s denoted by the coordinate written as
a superscript.

The orthogonality of the set of vector
elgenfunctions is determined from Eq. (123):

+> = _ey = > =
f]u\i')}'ﬁ‘ﬂ' av _ﬁ:'ﬂ");“"" LR jjxsnn]:'u'w L tﬁ:’w"j;uw &.(131)
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To evaluate these integrals, Eqs. (102) to (105)
and the following expressions are used:

Ei“ fou 5o prat du =23 sinl(g g sinl(p183%) (132)

DifiBe) Sin ot sin for¥
- L+rv~‘ ., e
A . -
]sin L sinfou du = *E—( )]: Ly

sin 28,
Zh

sin[( é[éz)a sin‘ﬁ*&)‘] (134)

[ -
f”ﬁf’u cosfu ““‘D(ﬁ,‘~};‘-) Coshx cosfys
= ppf

« . + ;
[Sm)s,u cofu du= ¥ (‘* S",:—ﬁift) =L, PP (135)

o
(hsm u cosfu=0 (136)

The superscript plus is not written unless
there is a chance of ambiguity. Here r stands
for m or n, A stands for x« or Vv, and u for y
or z, respectively.

The components of Eq. (131) are now

RL
Ij:vm ];'n'w av =(D—$ai_) %: Lt;"\i“ S’"‘“"‘“‘n' ) (137)
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The y component has two cases: Green's function from these vector eigenfunc-

tions.
- case 1: A=%', M#M!, N=N! i

2 jrmw E | 5.5 Vector Eigenfunctions for Infinite
[ii.... Vo A= a4 °—£L L‘n&"‘:’:"' . (138) Surface Recombination Velocity

In the special case of infinite surface
recombination velocity a complete set of ortho-
. ' i gonal vector eigenfunctions can be derived for’
Case 2: #=%', M=M', NN { the three dimensional p-n junction. These’ eigen-
functiong are found from thé products of Eqs. {15)
. 2 £t (139) j and (91) and the gradient operation of Eq. (129?:
lj:nu 33‘-\"" N —‘(D‘\ﬁ-«) 0__?: L" L" S—‘""-“"’"’ * 39 :

To. = -Daf (2 et B 4Ty P cor it AP (142)

The z-component also has two cases:

Case 1: £=£1, M=M!, NFN! The orthogonality relation is proved from Egs.

- ' (142) and (123):
.

2 . .
j]‘f‘wm j:u\'ﬂ' dv = (Dq F") % Lr‘\ \' 5;1-&.1"‘\' * (140) M

12 e dv = 09K Y 2808, =i By (143
Case 2: A=4', M=M!', N=N'

+ Here a, B, C are shown in Figure 3 and K"' is
2 4. F . Lt 1mn
[ A - .

jll"\" Jnmne dv = (Dq ﬁn) —Oi \-\*\—n Slu\ﬂ,ﬁ'w\'va'-(lul) given by

iE @ awd s K = AW\ (T, W
i K;\fKM'VK“ \—]+(—5—§+(—-“C) o (1u4)
M refers to either m or « and N refers to n or

v . The 81, j are Kronecker deltas., When 5.6 Eigenfunction Expansion of the Tensor

two symbols are written in a column, the upper Green's Function for Infinite °

symbol refers to elther m or n and the lower one Surface Recombination

to or ¥ . The integrals in Egs. (138) and . Velocity

(140) do not vanish even when M#M! or N#N'; the

set of vector eigenfunctions is not orthogonal. . .

Therefore we are not able to construct a tensor Having found a complete set of orthogonal
- vector eigenfunctions for the infinite surface

38 39
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pecombination velocity case, we construct a
tensor Green's function. Affixing the super- 4
~cript oo onto the parameters in Eq. 126), E cos (TTFU/@)=Cp 5  sin (rruse)=5y ; (149)
p i
Green's tensor is i

(145) ; cos(Tru,/a)=Croi  Sin(TrU./8)=5r0,

- oo N X ad oo - *
v '%H"J P tma @)/ Ngmn Kermn -

Kl-(-lsm is derived from Eqs. (144), (88), and (27):

2 2 2 " 57, / ( 16) E where the subscript r stands for 1, m, or n
< * _(Dr) + (L +hrm/B) (TN, +tw/D. 1 3 while u stands for x, y, or z respectively,
Kumn ( (ML/fa) + 4 m/B)" +(TRL Green's tensor function’for the infinite sur-
face recoxz:bin%tion velogi’cy case is given as
4 Equation (150) on page 42.
The tensor product of a vector eigenfunction pair : When the x dimension of the rectangular
is B paralfepiped goes to infinity, a technique sim-
et e e ilar to that used in Section 4.3 transforms
J% Jxe J3dve  Jxdze (147) i r l(;;/ro) into Eq. (151) which is given on
. page .
] i = 1 [ 3 . In Eq. (151) there are two classes of
Ty fty = [ J7 % Jr ¥y Wiz ] components: one contains K, obtained from
, . .. i k Eq. (144) with £ equal to zeTo, while the other
i Iz 3535 Sz - ; contains Kin, Eq. (117). To understand the
2 ko . E meaning of e two classes of terms, let us
review the physical significance of the Green's
tensor function. Each tensor is composed of
3 nine components. When the three diagonal terms
where the subscripts in the vector eigenfunc- E are excited with Dirac delta functions, the
tions are not shown. The denominator of Eq. 4 Green's tensor describes the state of the sys-
(145) can be written as tem. This state depends on the properties and
B the geometry of the medium and the sources.
| 2 24" E For the semiconductor the properties appear as
(AL K L)l= (?/aA?‘Kzi)‘)[(Ka VoS Y1, (148) ’ the diffusion constant D and the time constant
AmnTKlmn Lin Ktmn =2 k %. One of the properties of the source is its
frequency.

- 2 -2 - b The components containing Kigmn depend on
where A" 1mn, KK1; K%, Kipgs and A~ are iven B the properties of the medium and the frequency
by Egs. (143), &ﬂgi, (27)5"T144), and (BBL% of the sources as well as on the geometry.
respectively. 3 However, the terms contain;ng K‘r’n"n depend’ only

Using the abbreviations on the geometry of the medium and therefore can
contribute only an additive constant to our
final result. We have examined this constant
and found it without physical meaning.

L5
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x and the upper
he tensor Green's

© is given by Eq. (152)
Equation (152) is the required
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mm 1in our further analysis:

In the subsequent work x,»
the three dimensional p-n junction with infinite

Therefore to save s
depending on

signs are used in Eq. (151).
function for s=o and a

on page 45.

s on the transverse faces.
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CHAPTER VI

NOISE CURRENT SPECTRUM IN THE p-Xi JUNCTION
WITH INFINITE SURFACE RECOMBINATION
VELOCITY

6.1 Introduction

We have derived explicit expressions for
the noise generators appearing in the Langevin
equations of the semiconductor, and for the
scalar and tensor Green's functions. We now
use Green's functions to sum the contributions
from the infinitesimal noise sources and derive
expressions for the total noilse spectrum of the
p-n Jjunction. The recombination noise spectrum
is derived from the scalar hole density, Eq.
(82), and the scalar Green's function, Eq. (114).
The diffusion noise spectrum 1s found from the
vector diffusion current density, Eq. (121),
and the tensor Green's function, Eq. (152).

Since the recombination and diffusion
‘noise spectra are the result of independent
elementary processes, they are derived separ-
ately. These noise spectra are added together
to obtain the total noise spectrum.

We consider first the case of infinite
surface recombination velocity because we have
been able to derive both the scalar and tensor
Green's functions for this case.

6.2 Recombination Noise Current Spectrum
Let us examine the surface integrals in

the expression for the hole density, Eq. 82):

46
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Pl ~[167%, pt - po) % 671-dA,.  (153)

The subscript s denotes the contribution from
the surface integrals, and the superscript oo
indicates that we are considering the case of
infinite surface recombination velocity. Since
the excess hole density p®°(r,) on all the sur-
faces equals zero for the boundary conditions
discussed in Section 4.4, the second term on the
right hand side of Eq. (153) is zero. Further-
more an examination of Eqs. (114) and (115)
shows that G vanishes at the boundaries since

{exp(-K:mnlx—xJ) -exp(-K;;"[x+Xam!EO(154)
- - A
and an‘"”l“:. zos Foo(r) _ =07 (15)
¥.=8 ::;g,

In each of these expressions there are two
evaluation surfaces; each expression is to be

‘evaluated separately at each surface. There-

fore, the first term on the right hand side of
Eq. (153) is zero and there is no contribution
from the surfaces, Thus the excess hole den-

sity equation (82) becomes

e =[G7Sdv.. (156)

The excess hole density is transformed to
current density at the x=0 plane with the
homogeneous form of Eq. (14), and the current
density is integrated over the x=0 plane. The

47
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result is
» 8

B C
I,L"jf[&'(r.)dx.dy.d“-,//BG%X{ dydzDq.  (357)

oo

Since S(r,) 1is not a function of the observa-
tion coorginates, we get

Placyor| dyde =te/mBlexptshl TR (150)

where G*° 1s given by Egqs, (114), (115), and
(116). Substituting Eq. (158) into (157) the
current at the x=0 plane is

I, () = (159)

e (2 8¢ -
-Dq(/b/rr‘)gn mﬁ! d(fS,tr.)e«luv(-’{-K,(,,\,,)dv.-
odd o

From now on the fact that the current is in the
x-direction and is evaluated at the x=0 plane
will not be shown. The subscript r designates
the recombination process.

A noise process is characterized by its
spectrum, To derive the recombination current
spectrum, w(iZ, ($)1* ), we use the relation
between the spectrum andl§he Fourier frequency
components given by Rice™': )

wllL® =Lim L DI /T,  (160)
T

where' T is the time interval. Substituting Eq.
(159) into (160), using the relatlon for the
recombination source spectrum,
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Lim S0, S, ) fr = wr (]S, re)l) 8(o=K)dVos(161)

and employing {,(;)5(,(-\(0)'.‘1)( =fx.) , (162)
the recombination spectrum becomes
2
w(lr ) = (163)
2 ® 8 .C 2
16. E% ur(1Sel) @ o 2
[ [z } L L J. mm'nn' Sm.smb‘s:" S0P {:x'(ﬁm: ﬁ-'-'jdv"'

mn
nta'

edd

The symbols w(zs \2), s, and Ky, are given
by Egs. (65), 189), " an8°{117). ¥BR2 Dirac delta
function in Eq. (161) expresses the fact that
at each point of the semiconductor it is as-
sumed that the noise source is uncorrelated
with the noise sources at all other points.

The recombination source function, Eq.
(65), contains <{py(ry)Y . This quantity is
defined by Egs. (Blli to (B13) and is made up
of two parts, the thermal equilibrium hole den-
sity <pg(ro)7N.and the average excess hole
density (pt(r°)>E. Integrating the part of Eq.
(163) which contains the thermal equilibrium
hole density, the Nyquist current spectrum is
obtained:

wiz) =G g/ A S, Lt et a0

where A® and Ky
(117) respectiveiy?
The excess recombination noise spectrum
is derived by integrating the part of Eq. (163)
which contains the average excess hole density,

are given by Egs. (B34) and

49
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Eq. (B2l). Before integration this equation is
' 2

v fglne e

_ .
T [mtbintin exponli, “C K] dt-
Shlogto e mmim® na'n” e

nn,n"
oM .

. Integrating Eq. (165) yields
9. Z A Vad
(I"' = _.ﬁz w
ur( r)s [-n— ] T (166)

{ Lot e P = e 0PI,

- Kmm, me'n’ ‘Kx'm"n"
gy
'o"d‘

where the symbols A™, pp),8n0; Kiwns and Kg
(3, ©5) ™ (1487 ; an

aré given by Egs.
(B22) respectively. In deriving Eq.
following integral has been used:

166

£117 the

ot

(SsvuSoredu, = ~dorrrfrlrr ey flf qen)

where only those values of.r, r!, r" appear for
which the value of |rtr'tr"|is odd. The symbol
r- stands for m or n; 6 for B or C; and u for y
or z, respectively. - Therefore in Eq. (166
there appear only those values of m, m", m and
n, n!, n" for which the expressions \memitm') and
\nar'an”| are odd. . - -
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6.3 Diffusion Noise Current Spectrum for
Infinite Surface Recombination Velocity

The expression for the diffusion current
density is given by Eq. (121) with o> super-
scripts. Since ¥-3*and ¥:-f*go to zero at the
boundary, there is no contribution from the
boundaries. For the x component of the current
density, Eq. (121) becomes

579 [(SouTin + S0y, Tz +Sp, Fi dv, - (268)

To get the total diffusion current I (f) in the
x direction at the x=0 plane, Eq. (18 ) is
integrated over this plane. The result is

1= {620 a0, Joswtio)

Performing the integration at the x=0 plane,
using Eq. (152), the diffusion current becomes

(170)

BC
..}s:w;.

In(s):\%(_t f (S]),‘_S...S“.K:‘.“ - 1\‘3»;,('.‘.5‘,— “'SD-.._SW C“.)e .dv,
i mn B wC /

¢\

where Spo and Cpo aré given by Eq. (149) and Sp,
are the u components of the diffusion sources.
The diffusion current spectrum is
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w(Iz)= (R“;—«\*
o B
{expx(Ki. vhgn Y vz
WUSDLE) S S Senc KK
[0 W0S03.1) e Sy Sua] /B
+ [0 W(150,1) 35 Coelma)fmw C7) .

Here we have used an equation similar to (160)
and the diffusion source spectrum given by

. *
"\:-—me .5.”“1:& = w(\SDu_\x)S(v,—r;) dve . (172)

At an arbitrary point the diffusion sources in
the three orthogonal directions are independent.
Furthermore, the diffusion sources at an arbit-
rary point are assumed to be independent of all
other points.

In Eq. (171) the noise sources, Eq. (75),
contain the average hole density <pe?. As in
Section 6.2 the part of Eq. (171) which contains
the thermal equilibrium hole density gives the
Nyquist noise while the part which contains the
excess hole density gives the excess noise.

Integrating the Nyquist part of Eq. (171),
the Nyquist diffusion noise is

WiLB), = A2 p2) (\K:w\l‘* Ko (173)
DT Tar (K T K=" ?
K

Kww

where A™ and Kymp are from Eqs. (B34) and (117)

52
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respectively, and K.,:n is from Eq. (144) with £
equal to zero.
The excess noise part of Eq. (171) is

W), = (& 2% 4D py/ %) (174)
C
{eur[j %o (Koomn K::.“. + K:._u“u] dvu}

/ *
SmeSews Smvg SneSwa Suwve Kiyrn K:..«“'
m M‘N" "“n n"

+T *CamaCiun's Swto SnaSwe Swre
m* an “,-BL
+ T Svne Sena Suto Cma Caro Svo
. “ kS
wwwe ' C

600

e
mwn
oad
Here Eq. (B21) 1s substituted for <p.mMin (75),
which in turn is put into (171).

Integrating Eq. (174) shows the excess dif-
fusion current spectrum to be

WLl = (A" 2" Dp @ ®) (175)

8
z Ko K25 1560 (o 4w v®) + T (o o)

(KRt KR e K e )= e = (e A [ e v oo ]

' m!
namt

where A, pp),Kgmn, and Kgip, are given by Egs.
B}l\l;, @50 (119 ana (B22). Here we used Eq.
167) and the integral

53
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s

e -\
J. CroCono 8y s = (Zl"e/ﬁ)(r’* e v"")[(r’:r"i \""x)’.‘('ir'r"ﬂ s (176)

where r is either m or n. In Egs. §l67) and
(176) only those values of T, rt?, r" appear for
which the expréession \rtr'tr'lis odd.

6.4 Total Nyquist Noise: Stochastic Theory
. and Nyquist Law

The total noise spectrum calculated from
stochastic theory 1s composed of two parts:
the recombination current spectrum and the dif-
fusion current spectrum. Since the recombina-
tion and diffusion processes are independent
statistically, we add the spectral densities.
For the total Nyquist noise current spectrum
Egs. (164) and (173) are summed to get

yy = A2 paD T WAL (177)
wir, = KL S | el i 7
mn

oe

odd
The symbol R (Ky,,) means the real part of Kgn..
From equations fg 0), B22) and (117) we get

R =7 Lt v kals . an)
With Eq; (178), Eq. (177) becomes

8w ©
Wi, = 2D YRR (a7
- . o
As a check on the above method, the Nyquist
-noilse current spectrum is calculated from the
conggctapce at the x=0 plane, From the Nyquist
law° the noise spectrum is

54
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wlit) = 4KTG, (180)

where G 1s the real part of the thermal equilib-
rium admittance of the p-n junction. At thermal
equilibrium V, is zero in the expression for the
admittance, Eg. (B33), and Eq. (180) is identi-
cal with Eq. ?179). Thus the result of the
stochastic analysis is correct, giving us con-
fidence in the method of tensor Green's func-
tions. We shall see in Chapter VII, on the
other hand, that the stochastic result obtained
by the use of scalar Green's functions does not
check the result obtained from the Nyquist law.

6.5 Total Excess Current Spectrum with
Infinite Surface Recombination
Velocity

Adding the' excess recombination and the
excess diffusion current spectra, Egs. (165) and
(175), the total noise spectrum is found to be

w(r = [2°¢ Dp, 0 A7/A%] Z{(_K‘ILJ K

Pt
TR

X (Bt Ko Wit B e e+ 2 awin]
X Lm= m"‘-wv\‘“\l—gm'm")a] [(ﬁ-h“—h""\z‘ (w'w ’)1] },
(181)

where A®, pp, Kgmn> and Ky are given by Egs.
(B34), (B5§, (1%??, and (Eeg?. Here r represents
elther m or n and only those values of r, rt, p"
appear for which |rir'sr"|is odd.

It 1s interesting to see if the excess
spectrum is proportional to the steady current
flowing at x=0. The dc current density is

55
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derived from Egs. (12) and (B21). Integrating
over the x=0 plane gives for total current

1% [2%D p,ON/T*] T Ky /i (182)

Comparing the dc curr'é‘nt with the excess
current spectrum, Eq. (181), the two relations
can be related. However, the factor of pro-
portionality is a complicated function of
frequency, semiconductor parameters, and geometry.

6.6 Divergence of the Expression
for the Nyquist Noise

Let us examine the noise spectra for con-
vergence at each frequency. The Nyquist current
spectrum, Eq. (177), is converted into a double
integral and integrated. All terms in Eq. (179)
are positive, and we investigate the range for
large m and n. Making the transformations

Twm

5% 0 ax=F =T, 4=, (183)

and neglecting 1/Dt and w/D with respect to m
and n, the series in Eq. (179) becomes when Ax
and Ay go to zero - e "
R L (9™ an ¢
=R e (8w)
L3240 k2dd

With the transformations

X=§ cos @ 5 y=p sind, andy=pdpad, (185)
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Eq. (184) becomes
3 ® T

® wt (dp [%7C_d0
ZR—(K“Q_>E [_ﬁf A2 5o, (186)
) LR
Cp

m* P*

Therefore w( lIzl)N becomes infinite.

To determine the physical significance of
this divergence we investigate the admittance
with Vo=0 at the x=0 plane, since the Nyquist
curreng spectrum is proportional to its real
part. For arbitrary surface recombination vel-
ocity the admittance at the x=0 plane is given
by Eq. (B28). The factors in the denominator
of the infinite series are each bounded and are
neglected for discussions of convergence. Fur-
thermore, from the boundary conditions Egs. (96)
and (97)

Bo = ¥l (287)

where r stands for m, n; « for b, ¢ respectively.
Only for infinite surface recombination velocity
does A6, always remain /2 independent of r.
Otherwise A6, approaches zero as r goes to
infinity.

If we take r finite but so large that
86y is small, (4,%+4,'] (D)™ +i w, % , and
the identity for large positive integers m and
n

%
[ L G (188)
the series in Eq. (B28) becomes

* 2 Z
L, (g (s ) we0od - (asg)
- n — TOmm

o
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As m and n individually go to %nfinitytthe
terms go to zero because (a6.)'or (4@.)" goes

to zero. The value of the input admittance is
finite except when A6, is /2, when it is
dnfinite. When s=w ghe surface of the semi-
conductor seems to be covered with a perfectly
conducting layer which short-circuits the semi-
conductor. Therefore the Nyquist noise current
spectrum becomes infinite when the surface
recombination velocity is infinite.

A convergent expression for the case of
arbitrary s can be written down directly from
the Nyquist Law, Eq. (180) and the real part of
the admittance, Eq. (B3l). This is discussed
further in Chapter VII for the case of arbitrary
s. Now we examine this expression for the case
of large but finite s.

From the boundary conditions, Egs. (96)

and (97),

¥ =5a/D =ga tanga, (190)
When ¥ is large we can write A« as T
rwo_rw o, (191)

LT
pA=z “zy Tz "Crs.

where r 1s odd. Substituting Eq. (B31) into
(180), letting ¢ be large and the dc voltage at
x=0 be zero, we get for the range of small €, ,

w(ir), = 97ZADg p

X Z cos (mmD/258) cos (nrDZsc) ]1 (192)
M (Mmm/zX1-D/sBXnm/2)(1-D/5¢),
\n

-1 -1
sin (mmD/s &) Si s¢
X {' Y ma(1+0/ &)] [' + Iﬁf‘élﬂ)/sc)}

x{{ Lo+ UUmm/zX1-Ds5 )4 lnm/2)(1-D/s ) T w‘/o‘}"L

+ 00 +[(mm/e8Ni-DIsE +[ (n72e)1-D/s)T* B,
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If we let sb/D and sc/D become very large
while Es and &, remain small, Eq. (192) becomes
identical with the Nyguist current spectrum with
s=zw, Eq. (179); to make the two equations agree
the conversion factors between Figures 2 and 3
are used:

B=2b; C=2c. (193)

6.7 Convergence of the Series for the
Excess Noise Spectrum

To discuss the convergence of the excess
noise spectrum, we investigate Eq. (181). 1In
the denominator of this equation there are two
factors which contain minus signs, one in m and
one in n. Taking the factor in m (identical
results are obtalned with n) the indices m, m!
and m" are related so that \msmtsm"| must be odd.
For the whole factor to be zero

(o) = wint ) (194)
Solving we get
mim'sm"=o. (195)

Since zero is an even number, the factors cannot
vanish. Furthermore the factor in m is nega-
tive whenever m<m'+m".

The question of convergence of the excess
noise spectrum is a very difficult one to
answer. Converting the sum to an integral is
not permissible since some of the values of
r, r' and r" are not present. Furthermore only
conditional convergence and not absolute conver-
gence 1s required. Putting test values into the
series the denominator increases very much .
faster than the numerator. It appears that the
sum converges rapldly, but a rigorous proof
would require numerical evaluation of the excess
noise spectrum. .
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Equation (181) can be used to caleulate
the excess current spectrum for infinite sur-
face recombination velocity. From the above
discussion of the Nyquist noise, we can expect
that Eq. (181) provides an upper bound for the
excess noise spectrum when the surface recom-
bination velocity is large but not infinite.

6.8 Contribution of Electron Density Fluctuation
' in the p-Type Material

Our analysis has only considered hole
conduction in the n-region. Shockley! has
shown that electron conduction in the p-region
is simply an additive effeét to the hole cur-
rent. The noise resulting from the concentra-
tion fluctuations of electrons is statistically
independent of the hole fluctuations and the
analysis is similar to that made above. When
the p and n symbols in the expressions for the
hole fluctuations are interchanged and when the
values of D and T for electrons in p-type
material are used, the derived spectra pertain
to electron fluctuations in the p-type material.

The total current spectrum is the sum of
the hole current spectrum and the electron cur-
rent spectrum.

6.9 Summary of Chapter VI

Using tensor and scalar Green's functions,
we have derived explicit expressions for the
thermal equilibrium noise spectrum, Eq. (179),
and the excess nolse spectrum, Eq. (lgl), of the
p-n Junction when the transverse surface recom-
bination velocity approaches infinity. In
actual. practice the surface recombination
velocity-1is never infinite, but may be very
large. Since Eq. (180) is convergent, it
should be used %o calculate ‘the thermal noise
when the surface recombination velocity 1s large,

60
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- but finite. The excess noise spectrum can be
evaluated from Eq. (181) and should give a
good upper bound for the noise when the sur-

. gicgtrecombination velocity is large, but

nite.

61

@ 50-Yr 2014/01/16 : CIA-RDP81-01043R002800140012-9




Declassified in Part - Sanitized Co

NAVORD Report 5762

CHAPTER VII

NOISE IN A p-n JUNCTION WITH ARBITRARY
SURFACE RECOMBINATION VELOCITY

7.1 Introduction

In the discussion of the noise current
spectrum with an infinite surface recombination
velocity, we had a very important check on our
work. We derived the Nyquist noise current
spectrum by two independent methods: the Nyquist
law using the input conductance and the stochas-
tic process theory using basic physical prin-
ciples. These spectra are jdentical. In this
chapter we get the current spectrum for the case 'of
finite surface recombinatlon velocity. When we
compare the current spectrum of the Nyquist
noise derived from the Nyquist law and from
stochastic theory, we find that only for small
values of surface recombination velocity do
the two methods agree. Since the stochastic
process method uses basic physical principles
and rigorous methods, we present it, but we do
not resolve the question of which result is
correct.

' For the case of arbitrary surface recom-
pination velocity we use the rectangular coor-
dinate system shown 1in Figure 2 with the p-n
junction at the x=0 plane. The origin is-at
the center of the p-n Junction.

To find the current spectrum for the
three dimensional p-n junction, the excess
hole density p is derived with the aid of the

i T

roved for Release @ 50-Yr 2014/01/16 : CIA-RDP81-01043R002800140012-9

NAVORD Report 5762

scalar Green's function. This densit;

. p is
obtained from Eq. (82). Since the Grgen's func-
tion satisfies the same homogeneous boundary
conditions as the unknown function, Eqs. (96)
and (97), the surface integrals in Eq. (82) are
zero.d Fighthe surfaces xo=0 and x,=oeo this is
proved w. a technique similar to t
Section 6.2. ¢ . © that used in

The vanishing of the remaining surface
integrals is proved in the following manner.
They can be written as

o). = [[62 ptr) - pd @Gl A, ,
P L f[ P P 1-dA, (196)

and the mixed bounda conditions, Eq.

can be written as i » Ea. (93),
wp =3 (f+L)sp/D, (297)

where the symbol % is defined by

V:IL+I) - (198)

d Y 3Ys : 33,

Green's function satisfies Eg. (197). To
prove this, Green's function, Eq. (109), is
written as

G* MZ ['::;:TI.] R 2 (199)

and 1s differentiated to get

36§ ~f’r='"f‘<“-] .

Yl ; {f;, cosfytie] R 2 . (200)
where r denotes m or n, p denotes/u or v , and
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u, denotes y, or z, respectively. Egs, (199)

and (200) are evaluated at the boundaries with

the aid of the eigenfunction form of the mixed

boundary conditions, Egs. (96) and (97). When

we compare the resulting equations, we see that

Green's function satisfies Eq. (197).
Substituting Eq. (197) for ¥ip and a simi-

lar expression for % G into Eq. (196), p(r)|s is

found to be identically zero and Eq. (82) becomes

p( = [S(rIG(rIn) dv, (201)

Here Swpand G are given by Egs. (35) and (109)
respectively.

7.2 Bulk Recombination Current Spectrum
for Finite Surface Recombination
Velocity

The recombination current spectrum deriv-
ation is exactly the same as that for the
infinite surface recombination velocity. The
Nyquist current spectrum is

w(IL1®), =44A P..fz Yol KEL) (202)

where A, ¥ L and K are given by Egs.
(820, (B197™’ (118} ana (¥IB); and the symbols
q and T are defined after equation (12).

The excess current spectrum is

w(l],\’)‘ = ( |
203
4%”"?.(0) fl}: Voo Yot ot B B (K KiK.

-,y
new
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where

+ F

“ f
E:(;) =/‘ Cro Cra &y, du, @ (204)

]
(R*44.142) - 488}

EPL L) §.f f 1 5 f [ 4
X [(Fv *fe "ﬂ.,-) ({Sr""n"-vh'-.-" * B oS uin “PCilin 3.-.‘)
- fsfct £ o t ¢ f
B Ao ra stk va ko))

K k] £ £
Cros, Sros Crqs and Spy are defined by

4 5 f g
o % cosfu, S, = sndu,,

(205)
c:‘ : cosfd shs sngd,
where r stands for m or n; « for b or c; and u,
for yo or zo respectively. p,(0) is given by Eq.
(B5). The symbol Kyipmn is given by Eq. (B18)
?nd ?he other symbols are identified after Eq.
202).

7.3 The Diffusion Current Spectrum for Finite
Surface Recombination Velocity

The diffusion current spectrum for the
finite transverse surface recomblnation velocity
requires a new approach. We reexamine the solu-
tion for the excess hole density, Eq. (201).

By transforming this equation the diffusion
noise source takes on the same form as that
derived in Chapter III. Gradients of the
scalar Green's function result from this trans-
formation. .

We start the derivation of the diffusion
current spectrum with the solution for excess
hole density. The source function S is now.Sﬁ,
Eq. (35), and Eq. (201) becomes

Rt = /1% p (] G v, (206)
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The appearance of the Laplacian in the source
function makes it impossible to use the physical
source function, Eq. (75). We transform Eq.
(206) into

pW) = [[e9.p)-dA, ~[[v p) -(w6) dv, (207)
with the vector identity
6lwpl = % [e%p) - [ pl- [w.6] (208)

and Gauss' theorem,l4

The surface integrals in Eq. (207) result
from the diffusion current to the transverse
surfaces of the semiconductor. This current is
caused by the surface recombination and is
related to the surface recombination velocity.
It is important to note that the surface sources
did not enter prior to the transformation of Eq.
(207). The three volume integrals are due to
the volume diffusion.

In order to derive the diffusion current
spectrum, we solve for the total diffusion cur-
rent, Isz), in the x direction at the x=0 plane.
When Eq. (207) is written in component form and
integrated over the x=0 plane, the diffusion
current becomes

1,0-ADq > T/ erp K ) at, (209]

o X [ e e (8l e eh (B e fel 2 (22 iy,

"f;

Yfomen ol Dy, ] T2, ol A @ik s.‘.}dv.dz-].

0
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Here p, is substituted for p(r,). The symbols
A, ¥, Ko, and B, are given by Egs. (B20),
(319)™{21%2 and (967 respectively, The sym-
bols D and q are defined after Eq. (12). In
deriving Eq. (209) the following facts and equa-
tions are used: the scalar Green's function is
zero at the planes x=0 and x=oe; Eq. (14); in
Eq. (207) only Green's function depends on the
observation coordinates.

The diffusion current spectrum is derived
by substituting the diffusion current, Eq. (209),
into an equation similar to (160) and is

(1) = 4DgA"L ¥ [apllc v, (220)
e b
X { L[ <pey chu e el el dn [ Cpen el sicicdn]
b e
3 [ <P KK oty + Bttt
bte

4-/5’“/1"- c.:c:-.s:.s:..] dy,dz.}n )

where the symbols cfo, st » Cpg » and s:q are
defined by Eq. (2055, while thé other symbols
are identified after Eq. (209). The factor two
in the surface integrals comes from the alge-
braic addition of the two equal uncorrelated
noise spectra produced by currents to opposite
trangverse surfaces. In the derivation of Eq.
(210) the relation characterizing the surface
sources is

TL;:4[_@55)(%3)7;:w,aiﬂ:)s«.-ms(r.-z‘w.u., (e11)

67

Declassified in Part - Sanitized Copy Approvd for Release @ 50-Yr 2014/01/16 : CIA-RDP81-01043R002800140012-9



Declassified in Part - Sanitized Co roved for Release @ 50-Yr 2014/01/16 : CIA-RDP81-01043R002800140012-9

NAVORD Report 5762

while the relatiou characterizing the bulk
diffusion sources 1s

L H[GREET] - (B smdan - (a1z)

In Eq. (211) uy stands for yo or zo while in
Eq. ?212) u, stands for Xo, Yo, OF Zg; %, denotes
any coordinate excepb Uy In Eq. ?1 the
symbol wg (|2%)s) is given by Eq. 80) while in
Eq. (212? the symbol wp(|3%]*) is derived from
Eqs. (79 60), and the homogeneous form of (14).
10 evaluate the diffusion current spectrum
it is divided into Nyquist noise and excess
noise. For the Nyquist noise p, is substituted
for {pg(r)> in Eq. (210) and Bhe equation
integrated, (213)

a ap? ¥pn Yo' . -
w (L), =45 A Dry e i ["é”ﬂ-bm YarasdL)

Kw\n

el e oAR o

mon'

where the integrals T , Lp, and L are given
by Egs. (132), (103), and (133) respectively,
when r=r', L™ is replaced by L s 1s the
surface recombination velocity. The other
symbols are identified after Eq. (209).

For the excess noise spectrum, p, (r), Eq.
(B17), is substituted forp,()?in Eq. (210)
Integrating the resulting equation, the excess
diffusion current spectrum is

NAVORD Report 5762

W(IToP), = 462 ApOD
(m) (n)
XZ i{mn xmn‘x_;n' Ecce Eece ]
,, ,,. ,,u Kkmn * Km’n' * Kiimery®.
m) E(n}
[K‘(Mn ka'ln (3 g'" E""l +é' ?"' E:‘Z:

+ b(cosp 4 cosBy 4 cosf,. ¢ casﬁ;cosgccus_(i )]}
D

E:.cc

The symbols E and p (O)a e given by Egs.
(204)" and (}35?‘“’5:,:;:11:01b ES F is given by

Eqen =_f sing, u, “"Py u cosp.u, du,= (215)
= z[zpp,.(ﬁ, o ,\.C-,I P Cn&facm @ - ra 1)
~(@g - (8 ,‘S,,C,.q, 8., ,.Cru w R ‘msrk a)]
XLl -6 -2 1

P
where C o nd Sru are defined by equation
((ezost);i hfgggher symbols are identiried after
quation

7.4 Total Nyquist Noise for Finite Surface
Recombination Velocity: Stochastic
Process Method and.Nyquist
Law Method

The total Nyquist current spectrum deter-
mined by the stochastic process method equals
the algebraic sum of recombination current
spectrum, Eq. '2023’ and the diffusion nodise
spectrum, Eq. (213), and is
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3
¥mn
+

wazly = ag' A D) [

K'

Kmn

] (216)

XLL. € O 4K, [) 425D (L cofm bl o oL L
[ mn Kmn ) g m

2 Vi Yoy L N N o
A Lt Jeortondengent]

!
Y . L nn'
o3 Pprlte oo losgeopoe 217}
mnn' KKmn+Kkmq’ 2sD (cosp"cxc g') 9'13
"™ The Nyquist current spectrum for the p-n
Junction is now derived from the Nyquist law,
Eq. (180), and the input conductance, Eq. (B31);

t is 2
wlif, =2ZADgpS iy L, /
% "
X[l oH T K-

Comparing Eqs. (216) and (217) we see

that the two current spectra are not the same.
The former has a triple infinite series while
the latter has a double infinite series. When
the parameters sb/D and sc/D become very small,
agreement is attained between the two expres-
sions for the Nyquist current spectrum. In this
case the ¥ factors_converge very rapidly, as
shown by Shockley,7 and the first terms of the
series represent the Nyquist spectrum adequately.
For the usual p-n material 1/Dt 1s large with
respect to the By values in the Ky,  factor,
Eq. (112). .

4 ( Fol small sd/ﬁ values the current spect-
rum by both the stochastic process and the
Nyquist law methods is

w(iz), =W, =46°ADR (K, .] (218)

(217)
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where

ﬁ [Kw] =2"/"{ﬂ: [(:/D‘l’) + sD-l([lc")]L (219)
"z ’ ot by
+ w0V " [ (Do) "+sD (6 +¢ )1?}

Concerning the difference between the
stochastic process spectrum and the Nyquist
law spectrum for large values of sa/D, we note
that the transformation giving Eq. (207),
which was made in order to use the physical
diffusion noise source, results in the gradient
operation on the scalar Green's function.

While this seems correct formally, it may be
that i1t throws the problem into the domain of
the tensor Green's function. The original
reason for investigating the tensor Green's
function was to use the diffusion noise sources
without an additional transformation. Unfor-
tunately an explicit expression for the tensor
Green's function for the case of arbitrary
surface recombination velocity has not been
found. Therefore, we are not able to determine
whether the scalar method for the diffusion
spectrum is in error or whether the Nyquist
theorem is not general enough to handle noise
in a p-n Junction with mixed boundary condi-
tions.

7.5 Total Excess Current Spectrum for
Finite Surface Recombination
Velocity

The total excess current spectrum for
arbltrary surface recombination velocity is
obtained by adding the excess current spectrum
for bulk recombination and for diffusion, Egs.
(203) and (214) respectively. These two sta-
tistically independent spectra add algebraically,
and the total excess current spectrum is .

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/01/16 : CIA-RDP81-01043R002800140012-9



Declassified in Part - Sanitized Copy Approved for Release

NAVORD Report 5762

w(T'l), = 4 4* A poD (220)
. . B
X Z .Exnm 2rm'n' lm'n" Ec(cr:) E::c) (KKmn +KKrn'n' *Kc'm‘ ’)
mmm

nn'n"

X {(Dr)d‘ KKmn K:m'n' *Pm Pm' E_s“snc) (E:::, )

+a B, Eqor (E;‘:’c 7'+ 2 5D leosp #)(cosp, Beos fubfE
n W

SSc

+(cosg feosg,. JecasB ) Ec:.’y I]m

Let us relate the dc current in the x
direction at the x=0 plane to the excess cur-
rent spectrum. The diffusion current density
in the x direction is derived from Eq. (B17)
and the homogeneous Eq. (14). Integrating
this current density over the x=0 plane, the
total dc current, Idc: is .

Idc =P941D8§nr:l n KK;mn L‘mn" (221)

where the symbols A, ¥ mn, Kyspn, Bp, Py and
Lom are given by Eqs. (B30),%(BRS),%(m18),
(92), (B5), and (111) respectively; the sym-
bols D and q are defined after ‘Eq. (12).
Comparing this de¢ current with the
excess current spectrum, Eq. (220), we find a
relation between the quantities, but the factpr
of ' proportionality is a complicated function of
frequency, geometry, and semiconductor constants.
When s is small the excess noise spectrum, Eq.
(220), becomes

oy
wlirfe =4 g A pODIKy,, *(K""",*' 70%)7]  (222)

2 -+
X {,[Z.k( K:’oo /D) ,_KZ'W] +KK,_¢}

. T2

SN
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and the dc current, Eq. (221), becomes

L,.~AOA*Dg K., (223)
Kino = (DT)" + s (474e7)/D. (224)

w/BK K

K'oo ?

wlTg =(3/3) g Iy . (225)

This has the familiar form of the shot-efffgt
phenomenon in a temperature-limited diode,
except that the constant for the diode is two, -
while Eq. (225) gives 8/3.

7.6 Spectrum of Electron Density Fluctuations
in p-Type Material

As in Section 6.8 the noise current
spectrum of the electron density fluctuations
in a p-type material is similar to the spectrum
of the hole density fluctuations in n-type
material. The derivation of the electron dens-
ity fluctuation spectrum is the same as that
described in Section 6.8. The total current
spectrum is again equal to the sum of the hole
and electron current spectra.

7.7 Summary of Chapter VII

Using scalar Green's functions we have
derived explicit éxpressions for the Nyquist
noise, Eq. (216), and the excess noise, Eq. (220),
for the case of arbitrary surface recombination.
This would appear to constitute a complete B
solution to the three-dimensional p-n junction
noise problem. However, because of the lack of
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agreement between our result for the thermal
equilibrium noise, Eq. (216), and the result
obtained from the Nyquist theorem, Eq. (217),
it is recommended that further study be made
before complete reliance is placed on the
stochastic results.

NAVORD Report 5762

CHAPTER VIII

CURRENT SPECTRUM IN A TWO-DIMENSIONAL
SEMICONDUCTOR WITH A p-n JUNCTION

8.1 Introduction

In many noise experiments the semicon-
ductor sample has a two-dimensional nature.
The sample is several diffusion lengths in the
longitudinal or x dimension and for all practi-
cal purposes may be considered infinite in
this direction. 1In one of the transverse
directions, say the y direction, the filament
is narrow and the surface recombination velocity
is important. In the other transverse direction,
the filament is so wide that the effect of sur-
face recombination velocity is negligible. A
bias voltage across the p-n junction causes a
current to flow in the x direction.

Since there is no varlation in the z
direction, the del-operator in Egs. (34) to
(37) becomes

Vv = I,%; + I,%; (226)

Except for this change the current spectrum is
derived with the technique used to determine
the spectrum of the three dimensional semicon-
ductor containing a p-n Jjunction.

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/01/16 CIA-RDP81-01043R002800140012-9



Declassified in Part - Sanitized Co

NAVORD Report 5762

8.2 Two Dimensional Current Spectrum for
Infinite Surface Recombination Velocity

The Nyquist noise current spectrum is

w(IT?), = A4 g P, D 2’?('(:'")/"‘" (227)

where (228)

/?(K:m) = 2'5'[[( (w m/ﬁ]‘i I/th)lf [w/D) I]‘&-t- ([n’m/b]’-'c— I/DT.:)}&

The Nyquist noise spectrum derived with the
Nyquist law and the conductance of the two
zzimer)lsional p-n junction 1is the same as Eq.
227).

The excess noise spectrum is

ur(lll): = 1"1;'n“26",_<o) o

X ? (I/az)+ K:..- K:: + rr’(m‘nn‘a— m"z)/zﬁ"

(229)

- T 7
TR T (R ey
mm,m"
where the only values of m, m', m" appearing
are those for which |m*m'*m"| is odd. The
symbols py(0) and A~ are given by Egs. (BS)
and (BBLS, respectively; the symbols D, q and
T are defined after Eq. (12). The symbols Ky,
and Ky, are defined as

K:"" : [(wm/8) +(cw/p)+ l/or]i (230)
4

Kg, = [(mm/8)* +1/pr]? (231)

In two and three dimensions the current

spectra behave the same (see Section 6.6); the
Nyquist current spectrum diverges, but the
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excess current spectrum appears to converge
rapldly. The excess current spectrum can be
used as an upper bound for large values of
surface recombination velocity. As in the
three dimensional case, the proportionality
between the excess noise spectrum, Eq. (229),
and the dc current at the x=0 plane

o  2°D mn'z v
I‘c -2 WS. K /"‘17 (232)
m

is very complicated.

8.3 Two Dimensional Current Spectrum with
Finite Surface Recombination Velocity
The Nyquist current spectrum obtained by
the stochastic process method is
0\S _ 22 2
w(lr I)n = 4% A F"D (233)
X zZﬁ[L, (1!(.(’“\"4»!/01:)+,9,:,L',w +asD”'(\m=-slﬁ.b)]
SRS '

+ 3 (a0 e bemf A ) (K K:.')},

The Nyquist current spectrum obtained by the
Nyquist law and the input conductance method is

- 2 ) . 234
wlizl, = 2V2ADg% X ¥, me,,'R(me) (234)
The symbols A, L+, L, L' , and P are given
vy Eanr (B20), (163)" (133); (132)" ana (96)
respectively; and the following expressions
define the remaining parameters:

Yo = (sing $Y/(B L)) (235)

7
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Ke=ax A s (236)

PR .
Kkm—KK"“+% ’ (237)

. . y
A= [IEaB0E+ Kel®, (238)
When sb/D becomes small, the Nyquist

sgectrum derived by the Nyquist law .and by the
stochastic process method is

W)= Wl v A DR (KD, (239)

: kE %. Y
where  R(Kgo)= J?{E-‘ﬁ *‘%BT* ’g:.]+ sy . (240)

In two dimensions as in three dimensions the
Nyquist current spectra obtained by the sto-
chastic processes method and by the Nyquist law
method become the same only when sb/D is small.

The excess current spectrum with finite
surface recombination velocity is

W= 4 R )l vvo £ (K KT 1) (242)
X[ K K A B ESLY
25 (DETR) cos fub cos pub <.s,s_.|,]} .

™) (m)
The symbols piff)Eqpe and E are given by Egs.
(B5), (204), and (815) respeotively; the sym-
bols D, q, and T are defined after equation (12);
and the rest of the symbols are defined after
Eq. (234).
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The dc current is

2 2

1 = BOA" Dg X o) Ko Ly (242)
As in three dimensions, Section 7.5, a

complicated proportionality factor relates the

excess current spectrum and the dé current for

arbitrary surface recombination velocity. For

small sb/D the excess current spectrum is

W) =22 %"A B)IOD{ (04 s(08)”" i
+ LD +s(Db)')* + (wD)] }
x{ {IL(pv" s(er"1* @D P T

(243)

. 12 iz
+ (P sD)'} 4 [ones DY T
When sb/D is small and when (w /D)< K1y, the
excess nolse spectrum becomes
wlTH), =GB g*ApD K. . (2u4)

For small sb/D the dc current, Eq. (242),
becomes

I,.=pWDg Ko - (245)
Thus the relation between the excess current
spectrum and the dc current is

2 -
wart), = @) g I, (246)
The contribution from the electron den-

sity fluctuations in p-type material is similar
to the three dimensional case, Section 6.8.
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8.4 Comparison with Experiment

Experiments designed to study surface
phenomena are generally performed with thin
slices of germanium or silicon and fit the two
dimensional geometry quite accurately. Experi-
mental methods are available to vary the sur-
face recombination veloclity. Certain gaseous
ambients, such as water vapor, have been found6
to increase the surface recombination velocity
greatly. Our results can be used to predict
the effect of such surface treatment on the
minority carrier noise of a p-n Jjunction. For
the case of arbitrary surface recombination
velocity, the Nyquist contribution to the nolse
can be calculated from equation (234).

An accurate approximation to the excess noise
contribution can be calculated from Egs. (243)
and (229) for the limiting cases of small and
large values of s, respectively. For large
surface recombination velocity a triple infin-
ite sum is involved and the sum appears to
converge rapldly. For the case of small surface
pecombination velocity the single term given in
Eq. (243) should be a good approximation. The
two dimensional solution should be useful for
comparing our theoretical results with experi-
ment.
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CHAPTER IX
SUMMARY AND CONCLUSIONS

9.1 Summary of Procedure

The noise in a semiconductor.having a
p-n junction results from the fluctuations of
the minority carrier density. In the p-n
junction there are two different types of
minority carriers: holes in n-type material
and electrons in p-type material. The two
types of minority carriers behave similarly
and their current spectra are independent so
we discuss only the spectrum of the hole
density fluctuations.

The solution of the noise current
spectrum in a p-n junction is complicated if
only the Kolmogorov-Fokker-Planck (KFP) equa-
tions are considered. However, with the mod-
ified Langevin approach due to Petritz3 the
problem is tractable. This method uses the
KFP equations locally to derive the noise
sources and then uses the generalized Lange-
vin equation to transfer this noise to the
p-n junction terminal. In order to apply
this method, the inhomogeneous semiconductor
equations are determined using the transmis-
sion line-semiconductor analogy. From these
inhomogeneous equations the scalar differen-
tial equation for the hole density and ‘its
associated scalar Green's function are found.
The bulk recombination current spectrum can
now be solved sinece the recombination
process has only a scalar source, :

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/01/16 : CIA-RDP81-01043R002800140012-9



i
|
|
E.
4
|
i

NAVORD Report 5762

The diffusion noise source has the
characteristics of a vector source and the
scalar Green's function is not directly applic-
able. In solving the two first order semlcon-
ductor equations for the hole density, the
diffusion source is changed and cannot be
determined from stochastic process theory. We
use two methods to remove this difficulty. 1.
The vector current density equation and its
associated tensor Green's function are investi-
gated. 2. The scalar hole density equation is
transformed so that the diffusion sources can
be calculated from stochastic process theory.

To carry out the first approach, an
explicit expression for the tensor Green's
function is required. A complete set of ortho-
gonal vector eigenfunctions is necessary, but
is not found for an arbitrary surface recombin-
ation velocity on the transverse surfaces. The
desired set is found for the special case of
infinite surface recombination velocity on the
transverse surfaces. The tensor Green's func-
tion is determined explicitly and the diffusion
current spectrum is derived. Adding the recom-
bination and diffusion noise spectra, the total
current spectrum for infinite surface recombina-
tion velocity is determined. This spectrum
consists of two parts: the thermal equilibrium
Nyquist nolse and the excess noise. Comparing
the Nyquist nolse spectrum with that derived
with the Nyquist law, we find that both spectra
are the same and are infinite. The excess
noise spectrum appears to be finite and 1s an
upper bound for the excess noise spectrum for
semiconductors with large surface recombination
velocity on the transverse surfaces.

Then to investigate the second method of
deriving the diffusion noise spectrum, the
scalar hole density equation is transformed by
means of the vector integration by parts and
the diffusion source takes the proper form. A
gradient of the scalar Green's function appears
which gives the Green's function a tensor char-
acteristic. The diffusion noise spectrum is

82
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found for arbitrary surface recombination
velocity on the transverse surfaces. Adding
the recombination and diffusion noise spectra,
the total noise spectrum is derived. The
Nyquist part of this pectrum is compared with
the Nyquist noise derived with the Nyquist law.
Agreement is found only for small surface
recombination velocity. The excess noise
spectrum appears to be finite.

9.2 Discussion of the Noise Current Spectra

The noise current spectrum depends on the
area transverse to the infinite direction; it
depends on the characteristics of the semicon-
ductor through the diffusion constants, the
time constants and the surface recombination
velocity; it depends on the geometric shape of
the semiconductor through the spacial harmonles.
The spectrum is flat at low frequencies. Only
for small surface recombination velocity and
low frequencies is there a simple proportional-
ity between the excess spectrum and the de
longitudinal current at the p-n junction.

If the noise spectrum 1is integrated over
the whole frequency range, an infinite noise
current results. This is equivalent to the
infinite energy from a black body which was
eliminated by Planck's quantum hypothesis.

This shows that our equations do not pertain to
very high frequencies where quantum conditions
become important.

It should be possible to compare our
results with experiment for the limiting cases
of large and small values of surface recom-
bination velocity. For three dimensions Eq.
(217) can be used to calculate the Nyquist
noise for large s, and Eq. (181) the excess
noise. For two dimensions the corresponding
equations are (234) and (229). For small s
Egqs. (218) and (222) and Egs. (239) and (243)
are the Nyquist and excess noise contributions
for three and two dimensions respectively.
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9.3 Conclusions

In this thesis we have contributed to the
development of the solution of a clags of noise
problems. The method due to Petritz’s* has
been generalized; using Langevin's determinis-
tic equations, noise sources from stochastic
process theory, and scalar and tensor Green's
functions we have solved the p-n junction noise
problem. This method can be applied to other
three dimensional noise problems. Furthermore,
the Green's functions derived can be used to
solve deterministic semiconductor problems.

It would be desirable in the future to
extend the solution obtained with the tensor
Green's function to the case of arbitrary sur-
face recombination velocity. A set of orthogonal
vector eigenfunctions is required for this.
Since we have a complete set of independent,
non-degenerate eigenfunctions, it may be possible
to construct a set of orthogonal vector eigen-
functions by Tgans of Schmidt!s orthogonaliza-
tion process. With a set of orthogonal vector
eigenfunctions it may be possible to construct
a tensor Green's function and carry out the
solution of the problem.

Such a solution, in addition to being of
interest in semiconductor noise theory, would
also shed some light on the disagreement between
our stochastic result obtained by scalar Green's
function and the result obtained by Nyquist's
law.
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APPENDIX A
DISCUSSION OF GREEN'S FUNCTIONS

A.l Forward and Backward Equations

The semiconductor equations as functions of
time are affected by the direction of time. When
time increases, these equatlons are called the for-
ward equations; Egs. (13) and (14) with variables
separated are

Ul PR Pt oy (453 T hlet) (A1)

= =z - -3 -
[ - 1D =TT w0 + 9 I +3Tp led) - (a2)

Fien -5 3¢

When time reverses, the semiconductor equations are
called the backward equations and are written as

Voalet) +‘5§_§t('v‘“ - Btz e+ Q—ﬁ{(r.—t) s (a3)

o — Y
TET (4 5 340 - 10D =Tt B 43Tl (a4)

85

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/01/16 : CIA-RDP81-01043R002800140012-9



Declassified in Part - Sanitized Copy Approved for Releas

NAVORD Report 5762

A.2 Equations for the Green's Functlons
and Causality

Each inhomogeneous semiconductor equation, (A1)
to (A4), defines an equation which must be satisfied
by its associated Green's furctlon. The scalar for-

ward equation (Al) defines the equation for the
scalar forward Green's function:

T6(r 8 ) - FEOHT - JRHRE) < - BBt . (85)

The scalar backward equation (A3) defines the equation
for the scalar backward Green's function:

TGl tin ) + 55 206 et - Sloteitd =—g(r-r) St-t). (A6)

The vector forward equation (A2) defines the equation
for the tensor forward Green's function:

33kl )3 etk — ‘,{é'\f\“-#-\ =~ Q8 Sk-t). (A7)

The vector backward equation (Al4) defines the
equation for the vector backward Green's function:

39 Mtln ) + %%%(r,—tm;th ~Clntlertd = 4 8- 3le-t). (a8)
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Here S -0 = S(-x) 8-y 8G-2) (a9)

and §(t-ty,) are the Dirac.gelta functions.lu The
symbol & is the idemfactor and in dyadic notation is

-

<-Q=‘E§ﬁ+—f-:ts+i-z§z N (#10)

where 3 is the unit vector in the u-direction.

A Greent's function is interpreted as the
response at the point r and time t to a unit impulse
source placed at r, and t,. Therefore the forward
Green'!s functions gatisfy the causality conditlon:

P (etletd=0 , if r<t,, (a11)

while the backward or adjoint Green's functions satis-
fy the different causality condition:

w(retle,-t)=0 , it t>t., (A12)

¥ denotes either the scalar or tensor Green's
functions.

A.3 The Frequency Domain

When the semiconductor equations and their asso-
ciated Green's functions are transformed to the
frequency domain, the forward and backward equations
become the same. Using the technique of Section 3.2,
the scalar equations (Al) and (A3) become Egs. (34)
and 35;, while the vector equations become Egs. (36)
and (37). Equations (A5) and (A6), which the scalar
Greent's functions satisfy, transform to

v G-K*G=-8(r-v) , (a13)

while Eqns. (A7) and (A8) which the tensor Green's
functions satisfy transform to
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VIO-K == 8c-e) . (A14)

The physical concept involved in the frequency
domain is that the sources vary with a steady-state
sinusoisal frequency. A steady-state source is iso-
tropic in time and the forward and backward equations
are the same. In the frequency domain for a linear
medium the causality condition for the forward Green's
functions 1is

—~ol (i, Pl , —wstto (a15)

and likewise for the backward Green's functions

—woti(r, fin, e ~ws&tsoo | (A16)

A.4 Reciprocity Relations

Green's functions satisfy a reciprocal relation.
The scalar Green's function for a single frequency
satisfies the relation

G(“.\f‘.\ =Q (T‘.\r.\ . (Al7)

This equation states that with a given harmonic
excitation, interchanging the’ source and the observa-
tion point does not affect the behavior of the system.

The tensor Green's function satisfiles a recipro-
city relaiﬁon which is now derived (see Morse and
Feshbach,++ pp. 877-883). Equation (Al4) can be
written as the operator equation

QM =-2 8- (n18)

where the differential operator (LD is defined as
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Op= VW =K* . (a19)

This differential operator can be represented as the
continuous matrix Q (riry). With this matrix, Eq.
(418) vecomes

OLtelr)- Tl =~ 86-v) . (A20)

Interchanging rows and columns and reversing the
positions of the factors of the product gives the
adjoint of Eq. (A20):

Tleln) AAny=-d §¢-r) . (A21)

The tensor Green'!s function for the adjoint operator
iz’the adjoint of the tensor Green's function
for :

Flein =l - (az2)

This is the reciprocity condition which the tensor
Green's function must obey.
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APPENDIX B

EXCESS CHARGE DENSITY AND p-n JUNCTION
INPUT ADMITTANCE

B.l Definition of Terms

We use the scalar Green's function, Chapter IV,
to solve two problems: the excess hole density
resulting from a dc voltage applied to the plane x=0;
and the input admittance of the p-n junction to an
alternating voltage applied at x=0.

In the excess hole density problem we investi-
gate the hole density at the x=0 plane. When no
voltage is applied at the x=0 plane, the thermal
equilibrium hole density pn exists throughout the
semiconductor. After applying the voltage V(0) at
the x=9 plane, the hole density at x=0 increases to

p(0):

pe=p+pe=p+ /Q,[ex,o(gV(OJ/kT)"‘] (1)

where g is the electronic charge, k 1s Boltzmann's
constant, and T is the absolute temperature. The
symbol p denotes the excess hole density.

Putting V(0) equal to the sum of a large dc
componenb VO and a very small ac component vl; .

V(0) =V + vy » (B2)
‘the exponential in equation (Bl) is expanded in a

power series in vj. Keeping the first two terms, the
hole density is

p© ~prPiO+ fr (@) ,
t =+ plexp (g U, /£ T)=1R 1 g7 e ey )
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The excess hole density is made up of two parts:
pp(0) , the excess hole density from the dc voltage,
Vo; and pJﬂQ, the excess hole density from the ac
voltage Vvj. Therefore,

p (@) =p,@)+p @ (B4)
B =k lexp (gl /T)-11, ' (85)
p (o) = B gn /AT, (B6)
where  p, = p [exp (g Ve/£T)- (87)

The average value of the total hole density at
the x=0 plane,<pe0)>, is found by taking the ensemble
average of pg(0) . Since the average value of the
alternating component pl(w is zero, we get

{p©)= p+ RO (z8)
and define A (B9)
and {p ) =), (B10)

where the subscripts N and E denote the thermal equil-
ibrium and the excess part of the average hole density,
respectively.

When a voltage is applied at the x=0 plane, an
excess hole density also appears throughout the whole
semiconductor and Egs. (B8§ to (B10) become

CprN =Py th ) (B11)
(RN =h (B12)
P = B(r). (B13)
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These equations refer to finite surface recombination
velocity s on the transverse surfaces. For the case
of infinite s we put o= superscripts on the variables.

.B.E Excess. Hole Density and Input- Admittance

Let us evaluate the excess hole density in the
semiconductor with the p-n junction. Assuming that
all sources are zero except on the xa0 plane, Eq. (82)
reduces to

+
pr) =f_,f= p(r) (36/2%) dydze (B14)
c ®
P“’mz‘};s‘( p ) (36/9%)ely.clz. (B15)

where no superscript and the o° superscript stand for
finite and infinite s cases respectively.

For the finite s case (3 G/3dx,) is calculated
from Eq. (109). When x, goes to zero, we get

e M,N

Since p(r,) is constant over the x=0 plane, and Eq.
(B5) defines pp(0), the excess dc hole density is

9-9‘1‘ =3 FmN(Yo) Fun (r) L:N "—XP['XKKMN]- (B16)
©

b, = A lbb(o)%"n $on (cos@m\)(ws@n%) exp(-¥ Kyt ), (BLT)

where K:’mn = (/pT) +B:l +§f‘ (B18)
an= (sinﬁm#)(ﬂ'"ﬁfy(ﬁ,,,&é\ ebmn) (B19)
A=4éc, (B20)

and Ly, is given by Eq. (111). This value of the
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excess hoJ{e density agrees with that given by
Shockley.

The infinite s case is similar to the finite s
case, and we get

B = 16 rr"'/g (o)::z: (mn) (sin 7m Bl'j)(s inn C“'j) e XP(.K/:II’]”X) (B21)

K= =W inB F +(nnCY (22)
K'mn :

The input admittance to the p-n junction is
calculated by finding the total current in the x-
direction at the x=0 plane and dividing by the ac
voltage vy applied at this plane. The current density
results from the homogeneous form of Eq. (14) and from
Eqs. (Bl4) and (Bl15). To get the total current we
integrate over the observation coordinates at the x=0
plane. With a constant source function p,(0), Eq.
(B6), at the x=0 plane, the current in the x direction
is

ol gpung L Boeon), dedadydse o2
X=o0 Hresble ;o:;

B,CB~C
mr - , 2 00 ) d ., " 1
T ;[;::, 28 wp%”ﬁ(a G7/ox X 1{;‘;‘\ gy d? (B24)
where u is the mobility»

= Dg/kT, (B25)

and the symbols pé, Vis G, and G are given by Egs.
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(87), (B2), (109) and (114) respectively; the symbols
q, k, and T are defined after Eq. (Bl1); and D is
defined after Eq. (12).

For finite s the expression for a*:/am. |~:_.'=: is

6 - -l

325V, oo ‘%an‘m"—m(") Ky Lo (B26)
Yzo

Putting it into Eq. (B23) and defining the input

admittance at the x=0 plane as

-t
Yo = IV feo (B27)
we get Y = A 5 CoKo L (B28)
& \x:o /‘?ﬁl'ﬂ.ﬂ mn "Kmn ~mn >
where A, ¥ L Kifmm » , and py/ are defined by
Boare (B20),™A10T2” (145) (115); (828) and (BT)
respectively.

To separate Y into its real and imaglnary parts,
Kumn is so separated. Let
ca
Ky = (Hr+ i H) (829)
where H 1s any complex guantity and the subscripts r

and 1 stand for real and imaginary parts respectively;
then

0 2 . , v
K ‘Z:k{[(H:*Hi)L+HYJIL+2[(Hf+Hf)h'_Hr]/}. (830)

‘"Kmn
Using Eq. (B30),. Eq. (B28) becomes

4 4 2. 1%
Ylm =2 A?‘Z/E’ %ﬂr;,, Lmn {[(KKan'wlD )+ K:/,_,, ) (B31)

+L'[(Ka' 1-1«)"1)%)‘/1—!(7~ ]‘IL%

K'mn K'mn

9k
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where Ky, 1s defined by Eq. (B18) and the other
symbols are defined after Eq. (B28). This is the
expressio? for admittance which was derived by
Shockley.

In thé infinite s case the input admittance 1s

Y"’\M =64 ﬂ_4A7"$ﬂ' )&2 Kimn /0. (B32)
od

With the real and imaginary parts shown explicitly,
Eq. (B32) becomes

o -4,k o 2(r =t it 2 B
Y L=°—641T z ‘u%A Pb'é‘n(mn) {[(Kk'mnw ) , (833)
ok At r et PN PP L
+KK'"",] + ([( KK'mn +fD ) - KK'mn] } )
where 4 , Koo, and K¢im, are given by Egs. (B25),
(28]

(117) "and respectTeely and

A" = 8C. (B34)
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