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member depends on the force of gravity g, the length of the wave ,k |

and the ratio lyél (the derth of the layer h to the length of the

vave /\ ). This term is called the "dynamic term";

C=—=—— %%-ﬁlﬁ \23)

The algebraic signs ahead of the adical indicate that the wave

can be rropagited in a positive

as well as a neg tive

Let us consider two ultimate cases, namely, when the waves are

propagated on the surface of a very deep liquid and on *he surface of

a

v very shallow liquid.

For very great values of x

e”-e"z,\/
<
A, x/j/

and for very small values of X

thy=Lre=(z-¢)
T ey,

Consequently for a very dee

fﬁ %_:::

P liquid

& \
2

PR

and for a very shallow Licuid

’
’

C ::'zggjz—

Thus, we derived the Eps, formula (24) for the velocity of wave

Wl

rropagation on the surface of ver

y deep water, and the Lagrange
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formula (25) for the propagation velocity of "long waves'" on

surface of shallow water.

Table 53 furnishes the propagation velocities for waves of
various lengths at a varied depth of the liquid layer, the computation

made in accordance with formula (23)

/See next page for Table 53/

Let us analyze in more detail as to what is the field of

aprlication of formulas (2,) and (25).

Tihen /L//(_ ==0.42, the value of th/z;?,é/,(): 0.99, i.e., only
by one percent less than 2 A//( , then, velocity c obtained as per
formula (2L) will be only by 0.5 percent greater than the propagation
velocity of the wave, as determined by formula (23). Consequently,
formala (2l)) is of adequate precision, if the depth of the liquid is
no less that o.L of the length of the wave ( A, > 04/!\ ). This shows
what is meant by the concept of a very deep liquid, which concept
without the above evaluation might have been misleading. If ﬁ/,( =0'02Z
the values 7A (ZF/L/}\) will differ from Zﬁ‘/b//{ only by one

percent. Therefore, velocity c, computed by the aprroximation formula
(25), will differ from the precise value of c, as determined by formula

(23), by less than 0.5 percent.

With relation to the atmosphere, we will frequently use the
Lagrange formula (25) for the approximate determination of the pro-
pagation velocity of a wave, since, due to the vast horizontal range of

the atmosphere as compared to the thickness of atmospheric layers, the

ratic /b//{ << 1




Wi Liguid at Rest
locity of Gravitational Waves on 2 Surface of a y

Propagation Ve!
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Ls an example, let us compute the propagation velocity of a

here. The height of the

wrface of a homogeneous atmosy

s //::,’Q"Z;/f . Therefore, for 76‘—:29‘3

wave on the st

homogeneous atmosphere i

=177,
L‘}'QC :PZ93'§?7—:: 2590 mu'em/se'tmd,

of long waves on the free

Thus, bthe propagation veloclity

ere is equal to the velocity of sound.

of a homogeneous atmospl

surface

Section 5. Ylat Waves on 3 Surface of Separation of Two Currents.

a wave motion, developing on a surface

of different densjties/qz J/OZ and

%e will now analyze

dividing two liquids, which are

have different velocities Lé and Lé of their basic motion.

espond to waves de-

In the atmosphere, such conditions corr

£ discontinuity.

veloping on a surface O

eclops on a surface of discontinuity

In order that a wave motion dev

it is necessary that below the surface be & colder air mass, and above

Designating, as in the previous section,

the surface - a warmer air mass.

elating to the warm air mass, and by

by index 1, the magnitudes r

elating to the cold air mass, we will a2ssume

index 2, the magnitudes T

and the cold alr mass is below. For

that the first air mass is above,

the time being, we will disregard the carth's rotation, so that the

-perturbed state wiil be horizental.

surface of discontinuity in a non

Let the surface of discontinuity be the plane Oxy, we place

ane, we direct the positive z-exis

the origin of coordinates on this pl

36/
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vertically up, and the x-axis in the direction of the motion of

both liguids. .

Assuming that the upper liquid is restricted from the top by

a rigid boundary - plane, the ecuation of which is Z:ﬁi , and that

the lower liquid is also restricted by a rigid plane, the equation of

which is [::——A .
pd

Assuming the motion to be flat, the velocity components of the

motion under study will be, for the upper liquid, U.Z %Zéj, wj B

and for the lower liquid [/Z #»Z(,é ) %y , the pressure in the uprer

liquid g-ﬁp! , the pressure in the lower liquid e * Psg T

Each one of the liquids is assumed to be non-compressible, so that

/01 =const. ’/ﬂz — const., with/ﬂz >/ﬂz . The ic/;uation of the

surface of separation with the small perturbations superposed on it will

Y

Now then, the ecuations of small perturbations wi'l assume

the form

Dug  ,, U 128 d%s,,, duz_ 1 dp |
% U T T h e e Y T 2’

'22017;_ dw,__ 1 2P, szJ__U dw,_ 12V

R/ e R M T

Dug , oW Jup  we
}quﬁ— 1—‘01 oK +’az, 9.

Boundary conditions will be: J

Wy =0, when z = by,

1
j=y

0, when z

Declassified and Approved For Release 2012/05/1 IA-RDPS: 039R000100230001-5
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/_01—_/0‘2:?50170&);;

ﬂ 2 7when z = 0 (3)

~ .3
In the same way as in the case of one layer of liquid, we will !

seek the solution in the form

4,058 = 8,0 ), g t)= Z, () F )
A
- / — (et-Tek) > ,;
i (ot - %K . ¢ . .
w, (b2 t)= B &',y (7 ¢)= a7 (e T
. (L)
— t_ ﬁ_
R kal=F () ™) g 2 t) 7 ) e o
f(l/é, é)..—:—/e[/a—é ~&x,) ‘
Repeating the argumentarlons of the preceding secticms, and
satisfying condition (2) at the rigid boundaries, and considering .
only the substantial part we derive:
u, :CI ch K(Zth,)cos /a'i‘—ky,)j' )
“2=C, ch X (2—h,)cos /f'f—ﬂ);
W =___ Gx
/”1 G—x1]) sh K(E+h ).507(0*( 7(\()
c
1241 _“.n~.§~_n_m~_ -

/%(cr—vc(/) 6&&—-/12)5/4 /a’t‘\k;()  "
FL=C b xlerh,) cos(ot —nn)
#,=C, CAK&_A ) cos /aé-—rq{,) _J ‘

f—f@s(&é ~ %),

Satlsfy1nv the boundary conditions (3), we

derive:

i .
ied and Approved For Release 2012/05/10 : CIA-RDP82-00039R000100230001-5
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'\

G o w4y =Gt A =576

R

G ® ,
/01(0-~7<(/) sh KA, __f (=), (6)
&Z;: -y 4 wh, =Y, (r—xrl},),

From the last two equations (6)

we determine the arbitrary

constants Cl and 02

— z
C; 52 K sh xh, (o— 7Vai)) (
v 7) :'.;

szf—L— (o — xU)

K 3h th,

Substituting the values for Cq and Cp into the first equation (6),

we derive an -equation which determines the wave frequency:

IQJ,(J“KUI)ZCfA YC/LJ 7‘702(27—761/2)2&&/) KA‘E _—_:fk%._ﬁ),

Assuming for the sake of brevity that

cth xh, = cthZTh Zir/u iy

}

___sz)

we formulate equation (8) like this:

Jgpdff o) — 2ol Y %t % b4 a,)+ "
9
+Kz{/ozqza:1 4, Yfa,— f?@—ﬂ)} =0

Solving the quadratic equation (9), we derive

o= K,‘%Uza: o 2, i

%z

iK]/[ Y b p U s L Lt
/ﬂja‘f 7‘-/d2 2 /01 1702.611 K&qgfﬁdz

- 3464 .

(10)
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‘Or, dividing both parts of the equality by k, after obvious trans-

positions, we derive a formula, determining the propagation velocity of

the waves c:
C‘:ﬂyf&i%yﬂz j:
FPrltp,a, (11)
-+ FL _Le—p —4 Yi=Us
Zﬁ/ﬂtaz"'/f’z‘zx /z 1 2/%41 gz

Formula (22) of the preceding seciion is a particular case of

formula (11). Indeed, assuming /9 = (@ , and omitting indexes 2,
1

we derive

c——//:l: f/, Aﬁ“

By analogy with (22) of Section li, the first item in formula
(11) we will callﬁhe convective velocity of wave propagation. Obvi-
ously, the convective velocity has some intermediate value: it is
greater than the minimum velocity of the currents and smaller than
their maximum velocity. When both layers have great thickness,
—-Kh

xh
e e
a — cth k?i TR ——— e f
e ’UL..- e -KA

Then, the convective velocity ¢ of the propagation of the wave will
equal the mean velocity of the current.
7
LY 75%
@ = (12)
/ﬁ*fz
The second term of formula (I1), in the case of layers of great

thickenss, can be written over as:

c’— A Pa—Pr Ur =l
:’:/277‘ A /O (ﬂ“./az (13)

348
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This velocity, by analogy with (23) of the preceding section, we will

cal%khe dynamic wave propagation velocity. As can be seen from (13),

the dynamic velocity is stipulated by 2 factors: the discontinuity in

density and the discentinuity in velocity. Io ascertain the part

played by individual factors, we shall analyze some individual cases,

Assuming that oscillations on a surface of separation occur

about a state of rest, so that up = up = O. Then:

A el
er /a.l ,4—/4‘)2‘

(1h)

This formula differ@s from the propagation velocity of the |

wave along a free surface by the presence of factor
-1 (2.“/53
it/

If we contemplate the waves on the surface of separation be-

/17——:0, 0073« Then:

tween water and air, it may be assumed that/%==1;

fz fa e ] é?l")‘l Yo =t ) A~ e~/
1242 (fzfﬂs)(/azw/oi) ~ V1

=71—0.0013,

There fore

A
C:L_Z—.OOZ
~ (1—~0.0013). ,
Consequently, disregarding the wave motions on the part of the :
air, in determining c, we are committing an error, hot exceeding 0.13

percent.

However, in the case of wave motions on a surface of separation

in the atmosphere, entirely different conditions prevail.

In order to evaluate the order of magnitude of this factor,

0039R000100230001-5
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it becomes convenient to convert from density F to temperature with the

aid of the Klapeyron equation 'Diz,@/?gﬁzg/,?g . Taking note of |
) 3

the fact that, on the surface of separation, pressure does not under-

go a discontinuity P!.x P‘& ; then we have

= 4= L= 7a (15)
Zr 7+

lhen Ty = 283, T, = 273, then

7 =Tz __5/_1_4,- e
V%7 =z =V270i50 ~ 013 j

Thus, under these conditions !

c=015)2 .

Now then, on surfaces of separation occurring in the atmosphere,
& nare slowly ,
waves of the same 1}ﬁgth are propagated muchw on a free

surface.
It is necessary to take note of one important circumstance:

Ir Ty <T2, i.e., if the upper layer is colder than the lower
one, the propagation velocity of the wave will be imazinary. This means

that frequency ¢ will be imaginary.

Therefore, assuming o‘:‘,{s , where s is a substantial magnitude,

we derive forf H

50:46 sza.s 4P

Consequently, the perturbation will increase indefinitely with

time. Therefore, the basic state is unstable and, consequently, a wave ]

- 347 -

\

N |
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motion is impossible under conditions of non-stable stratification.

If the depth of both layers of the liquid is small as compared

with the length of the wave, thenﬂ

— Zz
a,=cth %h,= k:/z a,=cth K&aj—;—é/—;—

and, consequently, the formula for the propagation velocity of a wave

on a surface of separation of two liguids at rest, will assume the form

of

-f_ L2 Tl f&"z /04-) Arhe
=Vt Ly, _z”_ )

ihy

or, by conversion from densjty to temperature:

FE T ) ha e 7= 72
A A Vor, ﬁ TetEr

As also in the case of the infinitely great thickness of the

liquid layers, the presence of the second layer leads to a decrease in

the propagation velocity of the wave; so that when hy = hy for the

same values of 11 and To we have:

C == CZ.Z:?};;n;L .

Finally, we assume that the lower layer has a small thickness as

compared with the length of the wave, and the upper layer extends up-

ward indefinitely. Then

dl :-_ZJ

and consequentlys

Declassified and Approved For Release 2012/05/1 039R00010023001-5
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Tor the same values of T, and T, we derive:

c:azaifz.

continuity in density, so

Assuming now that there is no dis

that £, = T L 0

Ul;léU27£" 0. Then, for infinitely ¥

while there is & discontinuity in velocity

hick layers we derive from (11):

c=1Y, HU, £ 0),

(16)

Since the dynamic term now depends only on the discontinuity
of velocity, such waves could be called ndisplacement waves™. These

waves can also be called inertia waves, since the wave motion in

p at the expense of the kinetic energy

this case could only develo
or the inertia

However, the displacement waves,

of the basic motion.

en from (16), are unstable.

waves, as can be Se

rn to the more general case, when, on the sur-

Let us now tu

face of separation, there is discontinulty of wind as well as of
density. Then, the dynamic propagation velocity will be determined

ecl ifi \
assified and Approved For Release 2012/05/10 : CIA-RDP82-00039R000100230001-5
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as follows:

¢ =] 1 _fale m&"z"(j"(ﬂ

= /%zda ff%‘xz

1f the subradical expression is positive, the basic motion

is stable;if the subradical expression is negative, the basic

motion is unstable. Now then, the condition of non-stability of

two currents, and, consequently, of the surface separating them,

can be written down as:

Mﬁ"—’—'/@/@dzdz Ve =Yz 2<0 (18)

277-/2“1_+/ﬂ1 d.’l- [pzqﬂ :/7010(1-

let the length of the wave and the densities of both liguids be
given: then, it is more convenient to solve the condition of

non-stability about the discontinuity of velocity:

A 1 1
(-4 >t )

wn that, given the length of

(19)

From this the conclusion can be dra

the wave and the discontinuity of density, the basic motion is

ity of the velocity, and stable

unstable with a strong discontinu

f the basic motion.

with a mild discontinuity of the velocity o

We shall now solve the condition of non-stability (19) with

relation to >\ , assuming th

ic motion will be unstable, i

e discontinuity of velocity as given.

Then, the bas £ the following inequality

D -
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is fulfilled:

2 (U, =Ue ) 7;01/01 Ay %a
Y o ‘
S e -

Now then, with a given discontinuity of velocity and a given

discontinuing of density, the basic motion is unstable with relation

to short waves, and stable with relation to long waves.

Let us also see what part with relation to the stability of
the motion is played Dby the depth of the Jiquid layers. For this
we interpolate into the condition of non-stability (20) the depth

of the layers hy and ho in their explicit form; then this con=-

dition will change as follows:

er () ,_
K<f§% /ﬁ) frth *A'z*/z'fb #h, (2)

Consequently, the basic motion is stable with relation to

deep layers of liquid, and unstable with relation to shallow

layers.
We note that for waves lying at the poundary of stability,

the dynanic propagation velocity of the wave becomes Zero.

Thus, the convective propagation velocity of the wave 1s

lying at the stability boundary.

Let us write the expression for the boundary value of wave

Declassified and Approved For Release 2012/05/10 : CIA-RDP82-00039R00100230001 5
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length )\<, assuming both layers as infinitely deep, and inter-

polating, in place of density f? , temperature T. Then we derive:

N 2 () 7 T
T

2

Table Sl contains the ultimate values for the length of the

wave under condition of instability, with T ==273°, The shorter

waves are unstable, the longer ones are stable,

Table 5l Ultimate values for the length of

wave in meters

Aw m/sec
L 8 12 16 20

a7zt

Gravitational waves are always stable with relation to the

basic motion, while displacement waves are always unstable. There~

fore, the gravitational force has a stabilizing effect upon the

basic motion, and displacement has a labilizing effect, When the

stabilizing effect of the gravitational force predominates over

Declassified and Approved For Release 2012/05/1 IA-RDPS: 039R000100230001-5
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the labilizing effect of displacement, the motion is stable; in

the opposite case, it becomes unstable.

Section 6, Small Oscillations of Surfaces of Separation.

The question of the stability of surfaces of separation is

most closely tied in with the question of the evolution of cyclones,

i As yet, there is no generally accepted theory of cyclogenesis. How~-

ever, out of the existing qualitative theories of cyclogenesis the

most popular is the fronto-logical, or the wave, theory. At the

basis of this theory is the widely known fact that almost all
cyclones of the temperate and polar latitudes evolve on the giant

waves generated on the surfaces of discontinuity, which separate

the almost steady and recti-linear air currents,

However, by far not all wave perturbations of steady fronts
are transformed into cyclones, In some cases, the wave pertur-
bation, in passing along the front, leaves it unchanged, in other
cases, the wave perturbation leads to a vortex-like motion about
the front, with the front not returning to its original position,

the wave becomes steeper and around its crest a field of closed

isobars and an area of lower pressure, i.e. a cyclone, is evolved.

In connection with this, the theoreticians are faced with

é the important problem of finding quantitative criterions, which
would furnish the answer, as to where and when the frontal wave
evolved subsequently develops into a cyclone., The Norwegian

school of meteorblogists identifies the moment of the evolution

of the cyclonic wave with the moment of loss of stability on the

part of the frontal surface., It is obvious that the loss of

{

)
Declassified and Approved For Release 2012/05/1 039R000100230001-5
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stability may be tied in with the presence of mechanical factors,

as well as with the presence of thermodynamic factors,

Tn the text immediately following only mechanical factors

will be analyzed.

Numerous attempts at the determination of criterions of

stability did not produce any substantial results for a long time.

The main difficulty consists in that the surfaces of discontinuity §

are sloping surfaces, which cross the rigid surface of the earth,

Hence, the problem of wave propagation on a frontal surface is a i

three-dimensional problem, and, therefore, a very complex one,

Some foreign theoreticians analyzed wave perturbations

either on horizontal or on vertical surfaces of discontinuity.
V. Bjerknes and his co-authors in his book *Physical Hydrodynamics®*
analyzed wave perturbations on a sloping frontal surface, separating

two vertical air masses extending into infinity. ALl this research

did not lead to any substantial results.

The first one to solve the problem of the stability of a

sloping surface of separation with relation to wave motions, was

¥. E. Kochin, who, thereby, furnished the theoretical foundation

for the wave theory of cyclogenesis.

- In solving this problem by the method of small oscillations,

N. E. Kochin made the allowance that, in equations of motion, the
vertical accelerations may be disregarded. With the aid of clever
transformations of coordinates, N. E. Kochin carried the entire

complexity of boundary conditions into the equations of motion,

/ .
Declassified and Approved For Release 2012/05/1 IA-RDPS: 039R000100230001-5
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Let us utilize the equations of small oscillations, derived

in Section 2, to the solution of the Kochin problem. As the basic

motions, we will accept the established rectilinear motions of 2

liquids parallel to a surface of separation. Assuming that the

densities of both liquids are constant and are, respectively, equal

to PL , and fﬂa ., We interpolate a right-handed helical system of

coordinates (Figure 151), directing axis Ox parallel to the di-

rection of the motion, axis 0z vertically up, and axis Oy perpendicu-

lar to the front, in the direction of the cold air mass.

Figure 151. Deriving formulas for small oscillations of a surface

of separation.

Under the assumptions made for the basic motions, we have:

(1)

In addition:

X=0 r=0Z="¢

Declassified and Approved For Release 20/05/10 : CIA-RDP82-00039R000100230001-5 \
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From equations (2) of Section 2, it follows that pressures
in the warm and the cold masses for the basic motions, will be

as follows:

where C is the value for pressure at the origin of the coordinates.
The equation of the surface of separation in the basic motion,

satisfying conditionally Pl=== P2, will be:

(/Q"/@) Z%Z@@Q%Q)Z_Zmz/(@q%ql)/::d/ (L)

or

=y tan o (5)

o — Zw,;@ "‘/ﬂux)
F oIt 20,004 -5, 4,)

Consequently, the surface of separation in the basic motion

‘ (6)

is a plane, sloping to the horizon at angle CXL, which is determined

by the Margules formula (6),

Assuming now that upon the basic motion small oscillations
are superposed, Let the resulting non-steady motion be very close

to the basic steady motion so that the velocity components and

Declassified and Approved For Release 2012/05/10 : CIA-RDP82-00039R000100230001-5
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pressure in the warm and cold masses will be, respectively

fr
and densities, as per condition above, will be constant:\\ﬁﬁ/;:const.,
Pz

= const. It being the case that u, v, w, p are infiniteséimally

small,

As per (13) and (1i) of Section 2, for the determination of
unknown functions u, v, w, p, we have equations: :
Du;
ot

ou/ 1 dp,
T T T e 2y,

Bézb 7;(%? QQ{ _ “”}f? 23/ é?éqz Zé/ T%ZQQ z%’/ (1) E

o TY S =8 T 2AYTEYY,

G=12)

Assuming further that both air masses are restricted from ;
the top and bottom by stationary horizontal planes, namely from the
bottom by plane z=0, and from the top by plane z == h, On these

stationary surfaces the fdllowing conditions must be fulfilled:
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1()12 O when Z:/z,/

8
w,=0 when z= 0. ©

The equation of the surface of discontinuity in the re-

sulting non-steady motion, we take in the form of

—y tana + (2, ) t)
= )/d}z_ﬁi Z(/ . (5)

where f is a very small magnitude, Then, for the perturbed

motion, in accordance with (20) of section 2, we will have:
A=A =
::[/02 —/@)jfz -:L-Z%z 4 Q)%z—-é@g%%)‘&,‘/ﬁm
— ()t 2l Yy )

or

2P =lppg 2y pl)u]E o
on the surface/

Z=y fd}z,ocﬂ"f/’é%f)'

In addition, on the same surface, as per condition (18) of

Section 2, there should be:

oL 2 —u.=0 [
3¢ T YTYIATY =0 getz)

12)

when z=y Fan A ff)
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d

which is the result derivé}f/if we assume that

F:/fzz,}z.c?(*‘z/’ f:‘f/z})/,é‘).

(13)

At this point, N. E. Kochin makes a substantial and daring

assumption, namely, the disregarding of the vertical accelerations

2w ) 2%
Dt /oK

in the equations of motion. The disregarding of vertical ac-

celerations is widely practiced in the study of long waves. Such
disregarding is equivalent to the assumption that the vertical
pressure distribution is subject to the barometric formula, Thus,
py and pp are independent of coordinate z, and are functions of
only x, y, and t. DBy analogy, we will assume that perturbations
uy, up, vy, vp are functions of y, ¥, t. The assumptions made are
justified by the fact that the vertical extent of surfaces of
discontinuation is many times smaller than their horizontal di-

mensions,

Let us find the values of wl and w2 irom the last equation

A
_ ([P P Do, , 2% |
wz—//a,L *3, )% ‘—'//L~Z/5f—‘ +§f‘)
z
Z

(1L)

s, 9% e , 20
W= — | (2He 22 e 2
2 A 7L9} 2z = Z/Z;Lz+2 1

0 | J
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Equations (1lL) show that the verbical velocities Wj (3=1, 2)

are small as compared to the horizontal velocities, since, by vir-

tue of the small angle of slope, the vertical range of the motion

is much smaller than the horizontal one, Therefore, in the first

two equations (7), terms containing wj may be eliminated, and, to=

Wy, Wy
and\w/will disappear from these equations.

gether with said terms,
w.ﬁ CU/V X
The terms containing\%/and\gjare eliminated by Kochin also from
wz:w

e

the third one of eguations (7). Assuming, for brevity, ’ohat‘m

we derive, on the basis of assumptions made, for the determination

of the seven functions uy, Vi, Up, Vo, P1s P2» ; , the following

seven equations:

gz 71_0;.5_.2 = —1, tan & )/fd/'LO{ 7__.!2‘ E;J/
J

(into the last two equations, in the place of Z was substituted

/‘fdn ® , and magnitudes f’wi and fﬁ)g were disregarded as

ini'imitesgimally small of the second order).
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i

rface of Separation.

Section 7. Zonal Oscillations of a Su

Let us first anslyze the oscillations of a surface of

separation in a direction perpendicular to a front, i.e., the so-

called zonal oscillations. Examples of zonal oscillations are

the oscillations of a surface of separation, which has the form

of a surface of rotation around the terrestrial axis, This sur-

face separates the polar cap of cold air from the warmer tropical

air, Such zonal oscillations of a surface of separation occur

in a meridional plane, and are independent of longitude. In the

contemplatved case, not one of the seven unknown functions depend

on the x-coordinate; the preceding

tnerefore, equations (15) of

section are simplified, and assume the form

2 .,
5—5—:_—.»01 fan & 7‘(4, —y fazn,o(). _g}f_’t,

23 27,
_~£i ——y Tand -y bndk =—= .
ot g &

Proceeding to the integration of the system (1) of
differential equations of the first order, we can, first of all,
py differentiation, reduce the number of equations and the number

of unknown functions, but at the expense of raising the order of

the equations. Differentiating the third equation by /V , and

rn o
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taking into account the second equation, we derive:

W_ W W dn_, 97
Php)s =y T3 s e ) 0

Thus, we eliminated the unknown functions p1 and p2,

We further

having reduced the number of equations to five.

eliminate two more unknown functions uj and up. Differentiating

equation (2) by t and taking into account the third of equations

ve of equations (1),

(1), we derive, in the place of the first fir

only one equation

Pv. 2V
PSSt gy ).

AN -
j% /ﬁ”{)?} ot f (3)

Finally, out of the last two of equations (1), after

eliminating f , we derive:

-y an n)'!/;]___: _ Q[T)L]fafmz
o 2y ()

(4 —y tand)v, +y tan nt,=#0¢)

Iet us determine the type of the function £(t). Assuming

y=0, we derive:

A, (o, f)=//f/.
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Thus, function f£(t) is determined by the boundary condition, namely

when £(t)=0,~For sim-

by the assignment of function vi (¥, ©),

plification purposes, it can be accepted that f(t)=0.

Kochin now interpolates a new auxiliary function V(y, ),

assuming that

V&/) zf)——:/,%-/#mx)yi:—-yz‘,mo(%« (6)

Whence

2, | GiE D _#t* (8)

21t h_.// fans / ?2“2 - J/fﬂ/’lo{

In addition, it follows from (6) and (1) that

oV _ 38 %)

S

B)/ Tt

Substituting (8) and (9) into (3), we derive:

279/__67 (10)

f(ﬂ/ﬂi V (/fmac /ﬂwd9

0039R000100230001-5




Declassified and Approved For Release 2012/05/10 : CIA-RDP82-00039R000100230001-5>

Thus, the system of equations (1) is reduced to one differen-

tial equation of the second order with relation to one unknown

function V(y, t).

We formulate the boundary conditions for this new unknown

function, The surface of discontinuity, =z :’J/ tan 0( crosses

the upper stationary boundary surface z=h along a straight line

r=1; z="h, where D=4 ot & (Figure 151), Therefore, we

will apply equation (10) only within the limits o <)/<_ /Z

At the ends of 'DhlS interval, according to (6), there must be:

V/Ql‘)sy/ﬁ{f/f’@ (1)

if only the natural assumption is made that vy and vy do not be-

‘f’ come infinity, with y=0 and y 5,?.

The initial conditions for V and —2—‘2— we derived from

(6) and (2):

d) (h—y tans) 7, () 0)

. ), W00 _
h—y tand ) tand %

?f&, 0)

—IR T e .0 0]

Tt is obvious that all initial perturbations of the first

Mmass Uy, Vi f, and also the initial values of the tangential
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component of velocity perturbation of the second mass u,, can be

considered arbitrary.

Now then, N. E. Kochin reduced the problem of zonal

oscillations of a surface of separation to the integration of an

equation in individual derivatives of the second order (10), with

boundary conditions as per equation (11) and initial conditions

as per equation (12).

Kochin then interpolates a new dimensionless variable 7] s

3

assuming that:

After obvious transpositions, eguation (10) assumes the form

of

'zﬂmm —_Fﬁafi. —321/ 2 (1h)
(1\“’7)?;72 Zf‘%—ﬂ){anﬂz bt /2 7 ?fz—/_4wV’0)

and boundary conditions (11) are easily reduced to:

V(r/, ¢)=0. (15)

let us now, together with Kochin, effect a subsequent sim-

plification, Within the square brackets, we disregard the fraction '

W't . .
/Z /9 , on account of its minuteness as compared to unity, and

L e
we interpolate mean densityﬁ:

-~
%—ﬁ-z. Then, the differential
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equation (14) will assume the form:

Lp
(7)'37 f/ /)fma(?f

+4* V| =0, 6)

Since we are analyzing small oscillations, it is natural
to seek the solution of equation (16) by the Fourier method, i.e.,

in the form of the product of some periodic function of time t by

o some function of 27. Now then, the individual solution (16)

sought in the form of
‘vt
Viyt)=e " Wey) )

The substitution of (17) into (16) resulis, for the de-
termination of the unknown function W()?), in a conventional
differential equation of the second order

(11"‘%7%) f}ﬂﬁl1f =0

(18)

in which, for the sake of brevity, it is assumed that:
dp(a™ du® (19)

’/41 57/41 gy ) tan &

The boundary condition for W, as it follows from equation

(15), has the form

W(t1t)=0.

(20)
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Equation (18) has two particular points 7 = 1"1
and 77 = - { . But, applying the theory of differential equa-

tions, it can be shown that the solution of equation (18), which

will satisfy the boundary condition (20), must be holomorphic

(i.e. it should be expandable into an exponential series) at par-

ticular points
we derive a

Differentiating equation (18) by 7? s

/
differential equation for function W (}7} as below:

g ﬂ_i‘{.;”;“ -
2 (1 77)4;7 +/MW-0. (21)

ution at points 77 ="'-'¢'~l

This equation has a holomorphic sol

only for definite values of /ﬁ , namely tfor

M= n(n+t)

where =0, 1, 2¢ee The solution thus obtained are well known

special functions, the so-called Legendre polynomials:

» 1 a™y=1)"
Wn (7)"'_":721 (7):‘2;:”! 6{77\. !

(22)

Integrating (22) by '}7 and taking into account conditions

(20), we derive:

1 ariyg)™
n 7):: ” Z-.t 4 (23)
Zn/ dy
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with the case of Z =0 now to be eliminated.

As the function /ﬁﬁ?&), any one of the polynomials below

can be taken:

Thus, we found a whole series of particular solutions for
equation (16), which satisfy the boundary conditions (15). These

particular solutions are:

(25)

n o

%4::/LZ;’/27)c195‘4§L1§; L/E: }¢;'(éz)5/f1 st

it being the case that ZEL must satisfy condition

2z [T

o= o 2p Tt 4 (nt2) 7 (nezz..). (27)

A %

Taking into account the Margules formula
Ca Y= 4 )

)
5{622 "}”9)

tan o =
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we derive:

0;1,= ]/_,T,a)z+ Ztu@yl‘fg Uz)(nu’}h,
4

The arrived at particular solutions of equation (16) ex~-
press simple periodic oscillations of a surface of discontinuity,
with period 7—: ’_2/71 . Assuming ? ':300 U == =10 seters .szc‘.{'
o5, J L z ’ P
/,{7‘ = 10 meters, we derive:

-5 -z ,
When n=1 &,=91X10 se L, 7=0.8 e?/'umac//pmmi (24 ks, )

9.85x 10 _iec et /=074

-5
von=8 g =MTEALO sec”h T=0. 62

~ /

@

O =14, /2110 e T=0.52

S

i.e. even the greatest period does not exceed 24 hours,

It must be emphasized that the frequency of oscillation Ny

turned out to be a substantial number. This means that the surface

of separation is stable with relation to all zonal perturbations,
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If the oscillation fregquency turned out to be an imaginary number,

we would have discovered non-stability of motions which would have

occurred in the case, when over the surface of discontinuity there

is a colder mass than under the surface.

After determining the particular solutions of equation (16)
by the Fourier method, it is simple to find the general solution
for this equation, which satisfies the boundary conditions (10):

oo

///7)f)=z(4hcagdht’- +.Z§’h5/ﬁa;15)%/n/7/l (29)
n=1

where An and Bn are arbitrary constants., Hence

5//7)0) 241 () §3 W, &)

aV( a‘
But functions kQEL Ca) and -—75322._z must satisfy the

initial conditions (12), which, in the new variables, have the

(30)

form

Vi, 0) =4 (1=7)-2,67,0);

2, o) S -p ) an« 2;%7,0) wh .
1-7* 2t Zz; 7 S UL RS

Let us also note that all polynomials %v; (%7) satisfy the
condition of orthogonality:

~N

f ch()“f’ dy=0 when % =& (32)

/ fc 2 Z
7 K (e 1)(2% #1)

-390 -
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By using the correlationships (30), (31), and (32), all co-
efficients of series (30) can be determined. For this, it is suf=-
ficient to multiply (30) by h{« /7) s and integrate the result
for 7 within the limits from —7 £, + 7.

Then, we derive:
+1

'“L——-——-M)ZO)%/ )507 :f4,< £ 5
-7 k/x»!)(g,c*j)
-1 (33)

#
Wy, 0
)
1= =2
% 7

Zﬂ”z )
K(rrz)2%¢7)

Correlationships (33) specifically determine all coefficients
RN
of Series (30), if only functions V/}{,ﬂ) andli%.__’i , which

are expressed by formulas (31), satisfy the condition of discontinuity,

With the aid of equation

20 2 2
Dt ““'97 7 (3l)

we find function f@/ z") i.e, we determine the type of the per-

turbed surface of discontinuity,

W _ 2] L2
7?{‘ 2 Z(@comf%s%f)@@) (9
n=y
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whence

f/y/f)——f!/% 0)7‘"22—2 [:4nsi/z gt #-8 (1-cos aﬂé]} /}'./7)'(36)

n=1

From equation (7) we find vy and vp:

q@,é —"——"—Z(/f 6050‘-67"35/40'() /7)

~

, (31

02/7,1‘ =

Functions u; and u, we find from equation (1):

Zéjf%f): u, @j g)—

<
&)
— —_%— 2 S [4 5 at+B (1-cosqt)] Wo »’7
= RED

Finally, functions py and p, are also determined from

equation (1) 7 ~N
/3/7,t):p!/0,z‘)f,e/’4w/q (9,0) dy —
Y
S ’ w, ()
_%z ;j—[,qnsfno;ff%(l—cwo;tz‘)] —1—:—&——47 _
-2\ < cosa,t ~ s o‘f 2}
w >l % 4, 7
o (39)
2 4Y)=p, t)%//w]'a o 0/4,7_
£ S L)
—'%)—2—[/4 sm,az‘fB ﬂ~coso*f)]/1+7’7 47._.
n=1
_ £ -_"; [ansa,jf —A 5/,”-57/ 2y
~ i 7+
hed -39z - 7 )
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N. E. Kochin illustrates these results by the following
example, Assuming that, at an initial moment t=0, the surface
of separation is a sloping plane, but its angle of slope does
not coincide with the angle determined by the Margules formula,
but differs from it by a small magnitude., Then f(?, 0)

will be a linear function of 7 5 and it can be assumed that
(0, 0)=ay

where 4. is a constant, In addition, we assume that no other

; perturbations of the steady motions of the two given currents

that

occur, i.e, W

w(7,0)= 26,00 =p 6,0 <0,

Then, by (31) we find:

Viz,0)=¢

U, O P, ) ban .
9{.7 - /02,/0 : ‘4(1-}7J= “%/@q—-ﬁzui)d"%/7),

and, taking into account (30), we derive:

,4/(:0 (K:_z;zj‘,.))
B.=0
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Repeating the computations, conducted above for the general

| case, we derive:
v ., |
Vi5,5)= 24 B i geley?,
2 /0!
Z’k@ﬁ):%ﬁ) a(1ty) m g1,
b4
1%3{%% ¢) — ___l?fié%:%;;ﬁ%f%t)£1 (2_,¢7) sin 4;21
gt
zz/y,—é)ﬁ 2 (‘? /z 2 ,ﬂﬂq)/_/_m.sqt),
-

“7){)___ 4&) /_{ Z /Z 2)61& 7)/] cos J?‘_‘)
/757

Pl )= — P, /zf/)(+j_){ /z st
s

Z

7%l m% . aY%—rb
/?92(7214): KUJ% @_—Tg—)‘hL /lw 50"

z

_ Tway A% 7%
£ 8= (17 85% s e)

The vertical velocity components can be determined by pro-

srom formula (1L) of the preceding Section

2hoz) Do, _ PGl 2% (1 2 )sngt,

ceeding

Declassified and Approved For Release 2012/05/10 : CIA-RDP82-00039R000100230001-5



: Déclaésifiéd and Approved For Release 2012/05/10 : CIA-RDP82-00039R000100230001-5

We also determine the acceleration components:

42 _ Zoo(pla i) 4/1/'7) cos o, ¢,
at /oA, ‘-

‘fﬂz —— 210(014‘_/202)4,[[‘7)(05 0}1{‘/
at /9/2

AUy — ¢¢;0252;£4 % é& )

d(ff-)?)f/ﬁ ﬂ_;z‘/

2 —
_dft__z;‘.: —_ M>d(]*7} sin, g;z‘
7t poh ’

aw, _ Tl 2 Y,

27 ) 4/1—7?- cos a;é/
dw Fa(p, ) ~o, U, ) .
Z_g.&_—:__ jﬁl Lz 2&%%—5/402{‘,

The analysis of the solution obtained makes it possible

to draw the following conclusions:

(1) The surface of discontinuity, the slope of which

does not conform to the Margules formula, does not remain steady,

It osci%gtes about some mean position, which is determined by

equality i

L=Tra

\
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This mean position does not coincide with the position of the steady
surface of separation, and is departed from the latter in the same

direction as during the initial moment.

(2) The tangential components of the perturbed velocities

oscilating in magnitude, retain at all times the same

u, and Us,
- A

1
algebraic sign. When a >0 , U, >0 , and Z[z<0. Conse~
quently, if the surface of discontinuity had a steeper slope
than the steady surface, the velocity of the first basic current
U; , will somewhat increase in its mean value, and the velocity of
the second basic current UZ will somewhat decrease in its mean
value., Consequently, the discontinuity in velocity at the surface
of discontinuity will somewhat increase in its mean value. This
increase in the discontinuity of the tangenti&l velocity component

will result, as per the Margules formula, in a higher value of the

angle O(, .

(3) The derived solution shows that in the same mamer as
the increase of discontinuity in velocity leads to the incresse in
the angle of slope, the increase of the angle of slope leads to an

increase in the discontinuity of velocity.

(4) Non-steady motions which are genersted at the surface
of separation end are close to the basic motion, turn out to be
very complex, and here are evolved additional velocities in all

% directions.

Let us clarify in more detail as to what will occur if at

o nore St ,ﬁ‘&-
the initial moment the surfece of separation was risingw
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than the steady surface so that & 0 , and there are no other

perturbations of the basic motion. The formulas derived in this

Section show that specifically then the underflow of the cold air

mass under the warm air mass begins. It is accompanied by a

descending motion of the cold air which motion is particularly
[

R
intensive in its upper part, and an asceﬁ’gonal motion of the

warm air. Thus, in the upper part the warm air will displace

the cold air, and the slope- of the surface of separation will

i beccme shallower.

As soon as velocities 4 end 12 appear, the Corioclis |

force tends to deflect them to the right, with relation to the

pressure gradients, which induced these additional velocities.

Therefore, horizontal velocity components %, and &, will appear.

However, such accretion of velocity components cannot be

unlimited. The moment arrives when the process is reversed. This

moment corresponds to the minimun slope of the discontinuity sur- ]

face,

The simplifications used Zfin the mathematical argumente-

tioné7%mde it possible for Kochin to intercept the basic confi-

gurations of the processes, which take place about a non-steady :

surface of separation in the case, when the latter becomes sub ject

to zonal oscillations. However, the factual processes are consi-

derably more complex than the diegram that was snalyzed. 3

Let us point to the two basic factors which compliocate the

zonal oscillations of the non-steady surface

of separation.
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Until now it was assumed that the oscillations of a

surface of separation are zonal, i.e. the motion of the air is

i perfectly the same in all planes, which are perpendicular to
the front. In reality, a surface of separation is subject to
non-zonel oscillations. In addition, it is subject to deforma-

tion. Such oscillations will be analyzed in the following section.

The second factor distorting the above picture of zonal os-
cillations is friction. The effect of friction is such that the

uncontaminated oscillation of the discontinuity surface becomes

impossible.

The periodic process becomes considerably less pronounced,

and; in its place, an aperiodic process sets in.

Section 8. Stability of a Surface of Seperation with Relgtion to

Non-Zonal Oscillations.

2 In the preceding Section, the problem of zonal oscillations
of & surface of separation waes enalyzed and it was shown that, in
the case of zonal oscillations, the surface of separation cannot

lose stability. We will now analyze a more general case of non-

zonal oscillations of & surface of separation, which case was also

analyzed by N. E. Kochin..

The initial equations can be taken in a form analogous to

the form of equations (1) of the preceding parsgraph:

0039R000100230001-5
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dzy 2 Z 9}04 .o
, 3¢ 7Y S =T p e TY g=12),
v ’
29 Ly 2 L2 o
¢ U o 2 3y —Raww, 9:(2), (1)

S =n~n"

’ Bu BU
;—i;_/'—y—iz_y z‘d;za‘_f(/L )/7‘4!11)( # — J

/ 2 o BZ[
;22’5;_,«_[/1545——— 2, " tfan a —y tand e +9/)

In the first equations it is assumed that /0% /az%/gz

¢) is the vertical compouent of the angular velocity of the

/
earth's rotation. TFunction fﬂ(/}/’ zl’) expregses the perturbe-

tion of the discontinuity surfece. The equation of the discomtin-

uity surfece in perturbed motion has the form of

z=y tan a + Lk pt), (2)

¥. E. Kochin considers the waves propagating along the
front of the discontinuity surface, i.e. along the 0/4 axis. In
conformence with this, it is natural to seek the solution of the

¢
system of 7 equations (1), containing 7 unlmown functions le)

in the form:

2/ Z) ,P;/Pz/f ’

W

/ N TATA D)

2 =e u ()

ez'(kp +o¢)

v/,

f’z et (ww/é)ﬁ’ 6).

- 399 -
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i /R lex.
In formulas (3) functions Z{/,‘ﬂ//ﬁ‘ / f are comple
we will take the

’ / ’
However, later on for Zc/'l y/-/ ﬂ_/‘ ; s

substantial part only.

We subsbtitute (3) into the first two equations ().

After obvious reductions, we derive:
LK )
il m’)uj'—zm == p
/ / p
(4)
/ .
; o B M w.&:“‘ —————— Soav—— )
[l +07) Y+ 20

whence , d/)' ~
,g/;e(é. O )}?,'—2&)27'/‘
Y= p 4= (%l ro)*] L o
o a5
zwxp —(%Y +0) 27
G ot 0]

/ / s -
3 tions (1), we derive

R . A . and 5 from egquations 3
Fliminating 2 , ’Z//

the following system of differential equations for two functions

/.7’, and /0& :

A0\ Soo , ZKBY )
fy'(/';/fg) ﬁ)/-f-fd/;*a’) Iz

_ ppe(xl w?ﬁ_},%,}%)) (6)

oy

] | ZRW _
}5’" Qﬂj)@— - 7{2-6/”/}1‘—%(4,40’ %

m____:fa[4wz~"("’”j"‘r//2] ' (ﬁz_fz,).
fgdj—/az)%am.(

- Aob -

S
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Points y = 0 end ¥ ® 1 are particular points for this
system of equations. We specify that at these points the solu-

tion is to remain finite. Thenﬂ and P? will be entire

functions of )/ s

Upon the solution of system (6), W. E. Kochin superposes

the following boundary conditions:

4z,

(7)

At = 8
_;5&___”—7(,% yz//wu/-—/. (8)

In so doing he proceeds from the following considerationse
The motion in the area)/ <0 is snalyzed. From the equation of

continuity it follows that

/o Qg_; 901/
i Y

3

since, when z=0a, %{{: @ . But in the area/( O with Z:—‘/L

/
alsc wj=0. Consequently, in general:

2l Pu
L ‘

Taking into sccount (3), we derive:

(KU, ;—3%— =0 when y< 0.
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Substituting into this equality the values of Z[1 dﬂdﬂl

from (5), we derive:

4 .
7{)—;}—-7«27:2,-—0.

The general integral of this differential egquation has the

form of

xy

2

/01::'4,6%/‘7" Cje—

it being necessary to assume that 4-70 since wi‘bh/-—)—oo, 7%

mst remain finite. Consequently,

@:C;exj 'W’”’”,/<6)/

whence

a
kil = X% when y< 0

)

Obviously, in passing from region [ to region E

nd 'U,_ must change continuously. Consequently,

(Figure 181), &, @
z
ith (5), also functions 7, end d_j/g_ must change

must be satisfied also with

in accordance W
continuously. Therefore, condition (9)
)/-:;:0 . Thus, vpon the solution of systen (6) is superposed &

boundary condition (7)s In the sanme menner, the second boundary

condition (&) is established.
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We again interpolate g dimensionless variable

-1, 17y
7-—‘:“'_ "“*‘*—// )J:_‘_/ Zf P

(10)

Then, the interval 0<

J/\<[ will be replaced by inter
1< rs .

val

Supposing that in addition,

2 (11)

In this case, the Margules formule can be teken in the fol.

lowing form

A

PR ) o)

Finelly, we interpolate, in place of f‘requency g a new
magnitude :

o ==O./+\—~W 7‘%)

It is obvious that

/
0.z+,<g=o-+r<q 0+7<”z=0"’<0/ (14)

and the system of equations (6) assumes the form of

230001-5
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! R

)t;:::

—| (27 7)6{’0‘—- ﬁ*)/'

_ A ——xl)?]
N Bwl/ {izé ‘jl}),

(18)
A am]| [x27,, Y,
dy [fz 7)517/ ralf 7)_0'7:5:26/ n=
/@w ——&rﬂd//ff(
B U /

and the boundary conditions will assume the form

> .{K{_: 'K:{“ﬂ when 7= -1,

5{7 Z (15)

_2[%_—_—_.. 'g_[”‘ﬂ% when 7.—: +7,

Into equations (15) enter three dimensionless parameters:

— @ __ . 9 __
——“(5/‘ ‘—““‘U ﬁO(/KU = 7. (17)

Interpolating these explicitly into equations (15), we will

finally derive the following equations:

az, .
Jteep L] ety 2

=%[1_ﬂsz—f)lj(ﬂz“/”z): > (18)

— (1 7)517 o«"B(1— )7/*(*_, n=

&

A 2 2
= [1-p (z+)°1(p,—1n,). }
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The boundary conditions in this case are to be taken in

the form of

ap — _
| | pe — b =0 when 7= Z
" ’ (19)

vz o =0 when 7= 71
d’y 7L—/g/%’ 7 )

Now then, N, E. quchin reduced the problem of non-zonal
perturbations ofia discontin;ity surface to the analysis of a
system of equations (18). The dimensionless parameters C*) fg
i and 7 entering. into these equations, have the following physical

meaning: Parameter

/d/ . Zhw cot «
- ; (20)
7N

o=

is determined by the given elements of the basic motion.

Parameter

___Z(_L/____ al/ z/f/&j, -4,)
ﬁ' Zw Aw 2w (21)

f characterizes the length of the waves running along the front.

i Finelly, parameter

, xllr )
+—_—-—_—v———

7 Z
=L = )

2

0039R000100230001-5
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characterizes the frequency of oscillations, which frequency is

unknown and is to be determined from the contemplated equations.,

Thus, with the given values of & and /6 it is requisite

to determine those values of 7 » &t which the solution of

system (18) satisfies the boundery conditions (19), it being the

case that fs.mctions/Z/p) and )g/ﬁy) mist be holomorphic at points

;"::_ »~Z end 7=-1 > and consequently must be entire functionse.
In connection with the problem of cyclogenesis, it is :

necessary to analyze the question about the loss of stability by

a surface of separstion with relation to very long waves, when the

value of /3 is very small, and consequently the length of the

waves /\ is great as compared to =——

°

N. E. Kochin underscores that at first it may seem that the

case of very long waves may be reduced to the case of infinitely

long waves that was analyzed in the preceding Section, when the

perturbations do not depend on coordinate X , and the Margules

i surface of separation undergoes zonal oscillations. But with such

perturbations, closely resembling the above analyzed zonal oscillae

tions, &  has a finite value, and consequently

o g

T=—r =2

X Zcuﬁ

hes, when the values of /3 are small, a very great value.

Kochin pointed out that in addition to perturbations closely

resembling the zonal oscillations there exists one more variety of

Declassified and Approved For Release 2012/05/10 : CIA-RDP82-00039R000100230001-5
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long wave perturbations for which the magnitudes of 7 retain

/
finite velues. Frequencies O (and, consequently, also 0;/of

: these perturbations are very small, and their periods are very

great.

Kochin enalyzed en ultimate case for these perturbations

gssuming for equations (18) and for boundery conditions (19),

that /5:0-

For this ultimate cese we derive:

aps .
(1) 2t |~ ToT =T R,

dﬂ_/_

— Ly
(477‘[ 27 | 7.7 P p=2(n-7)

4 E— = —7
—ﬁ—d;] O When 7 , )
__ﬁ.gza when 7=-+1',

27

Let us add up equatlcns (22), having preliminarily multi-

plied the first one tw-{?1~1) , and the second by'/ff-l) . The

derived equation, upon integration, assumes the form of

z’-—f)(1+77)—£—7"/?“f1)/1 77) D2 — st = 0, )

The selection of a constant in equation (24) is to be made in con-

formity with the boundary condition (23).
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Taking an euxiliary function

Ply)=(1- r)(zw;) 2 — (17Nt~ 7) 47

tial equation

1

- 4
QB#/W:? (7-1)(1+%) /mz)/z /)

95/7 ),

the function 25/37) has the form

SZS(fi-JK) — 57’
Equetion (26) can be reduced to

(7—

72) Plg)t(rrsy) Pl7)=0

where

1+75 . 24T
r=a T, $= T T,z

and, consequently,

S
r~

7= —

b

i Declassified and Approved For Release 2012/05/10 : CIA-RDP82-00039R000100230001-5

(25)

and interpolating it into equations (22), we derive the differen-

(26)

from which gb(?) can be determined. The boundery condition for

(27)

(28)

(30)
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it being the case that always
[ — )
rt—st=d (31)

BEquation (28) has the same form as equation (21) of the
preceding Section. Therefore, the solution of equation (28) is
sought in the form of an expansion into a polynomial }2; series

which is the integral of equation (21) of Section 7:
@@):Qz M{/7»)7/—azhé/7)+"') (32)

with the polynomials linked by the following recurrent formla:

(25 f)"}//";/z: (n=1) %-1 7‘—/;2*2)%;«] /71:1)2)"')‘(33)

Substituting (32) into eguation (28), and teking into account

(33) and (34),
174
g{[—-?’yh/n 7“21/)1/—!)%:0 _/n_:—j)z),,_)) (34)

we derive the following correlationships between the coefficients:

a,[r—12]+ —_,;_'7—5az=0)

£ 3
QZ[,_Z,gjf—?—jaj F S A=0 (55)

x wrl
-5 -+
2x +3 Leers Zx—1

a [r—xlrr1)] 7+

‘S‘Qf:_z presnnd O

(x=23..)

PR

- A9 -
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From this we derive

b

. x(xr2)
X (2x+1)(2%+3) (37)

s
2z
we derive the following correlationship between /° and §

By comparing the two expressions for from equation (36)

, ©X-
pressed by the nonterminating continued fraction:
Jj ‘g% P 02 L2
1:2—r f2.5% © (38)
3
34—p——L2:3"

FE—r—. ..
Correlationships (38) and (31) fully determine , and S
o end, therefore, according to (30), they also determine 7~

Vhen S=0 we derive from (38);

BEIZ =230 =nlnr),
and from (31):

a .
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Consequently, if O(::?I(?L%f), one of the solutions of

system (38) and (31) is:
=7Z[77_ !"j)j s =20, (39)
In the particular case, when O(=——Z
r=2 and s=20,

Kochin contemplates values for A, close to the value

of 2. If SR2Z end S0 , we derive from (38)

i JSZ'
,"%2_ £ >

4

and from (31)

2
Ittt =

or, since

z
4=7>

2
__6_52%_“':6{‘

g—2

Consequently,

s %/4—41).
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From (40) it follows thet if (X is somewhat greater than
2
2, § <f(? , and S is a purely imaginary number, and, conse-

quently, the motion will be an unstable one.

Now then, when a> 2 , the Margules motion is unstable
with reletion to waves of very grest length. Kochin also proved
that in the reverse case when.£9<fﬂ <2 , the Margules motion is

e steble one with relation to waves of very great length.

We now write down the condition of stability in its ex-

plicit form, substituting into it the derived values of x

Ja)___Z/za)cafo(
e/

; A ==

Taking into account (12) the condition of stebility of the
Margules surface of separation, with relation to waves of very

great length, can be presehited in the form of

U>- fA /fz—ej) )
5/ (41)
Now then, the Margules surface of separation is the more
steble with relation to waves of great length, the greater the

relative velocity of the basic currents and the smaller the depth

of these currents, and also the smaller the discontinuity of

density.

When h & 8 kilometers sz_::ﬁgi___._fi (i.e. with a discon-
’ o4 40

tinuity of temperature o 7’° ), the basic motion is stable,

with é/ :> 16 meters/second.
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A similar result was derived by Kochin for waves of
finite length. To each wvalue of /g corresponds its critical
value Ofo (/@) « With 0(0( <0<o (/B), the basic motion is stable
. , 7T
with relation to waves having a length /{ ==

stable with & > A, (/g). w/ﬁ

, and un-

Figure 152 shows a curve Ofo (/3) s Which separstes a
region of stability from a region of non-stability. From this
Figure it can be seen that frontal surfaces are unstable with rela-
tion to waves of small length (value of 15 is great). However,
with relation to waves of greater length, the frontal surfaces
turn out to be stable. But with relaetion to waves of very great
length (on the order of 500-1000 kilometers), frontal surfaces
again become unstable. Specifically, these waves of very great

length lead to the formation of cyclones.

t
!
!

Figure 152.

Dependence of the stability of & surface of separa=

tion on the length of wave.

Thus, by analyzing the schemetic case above, Kochin proved
the full possibility for the existence in the atmosphere of

conditions, under which the long wave perturbetions on a surface of
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separation sre unstable. The presence of such non=-stability

results in that the surface of separation undergoes deformation,

bulging, tapering, as & result of which there occurs the develop~

ment of vortices, which cen be identified with the cyclones ob-

served in the atmosphere.

Let us note thet the schematic features of Kochin's

approach to the problem led to some objections on the part of

ts Godske maintained that, in disre-

certain foreign meteorologists.

! * garding vertical sccelerations, Kochin Zfﬂnadvertently;7eliminated

o certain type of waves. However, when, in 1935, Blinova solved

the problem of zonal perturbations of a surface of separation,

without disregarding the vertical accelerations, the results ar-

rived at were very close to those derived by Kochin. This, best of

all, proves the rationality of the simplifications resorted to by

Kochin.

The work performed by Kochin gave impetus to a series of
: investigations of the same problem under more general conditions.

36) generalized upon Kochin's zonal oscillations

Dorodnitsin (18
with relation to a barotropic medium. Yudin (1937), and then, by

using another method, Blinova (1939) solved the problem of non-

zonel oscillations of e surface of separation for baroclinic

liquidse.
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