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[Text] Short Description

This book sets forth the general principles of constructing devices for
space-time processing of signals in digital information. transmission
channels. The model used permits description of a broad class of real
physical wave channels, including channels in the optical range. The
construction of processing devices is based on measuring channel char-
acteristics. The algorithms for processing space signals are oriented
to the aquipment of holographic (in the broad sense of the concept)
systems.

This book is intended for a broad range of specialists working on the
development and design of data processing systems and also for college
- students in the corresponding specilalizations.

Foreword

Equipment based on holographic techniques gives the engineer new means
for constructing devices for space-time signal processing.

Significant contributions to solving the problems of optimal space-
time processing have been made by P. A. Bakut, A. A.-Kuriksha, R.’
Kennedy, G. Van Tris, S. Ye. Fal'kovich, and certain other Soviet and

" foreign authors. However, publications dealing with this subject are
dispersed in many different periodicals and there are no books which
set these problems forth in a systematic manner. The present book
fills this gap.
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This work investigates the general principles of optimal and suboptimal
signal processing in time-space channels during the transmission of
dilscrete messages.

The book has four chapters. The first chapter is devoted to the search
for an acceptable statistical model to describe the signal and noise
field at the output of real space-time communications channels.

The second chapter reviews the algorithms for estimating the parameters
that define the model of a stochastic channel. Primary attention is de-
voted to optimal and suboptimal estimation of the coordinates of fac-
torization of the channel charucteristics on the basis selected. This
estimation determines the most noiseproof procedure for processing the
signal being analyzed. The special features of measuring the charac-
teristics of a space~time channel using Wiener or Kalmanov filtration
and the principles of comstructing adaptive compensators to realize
optimal filtration in channels with scattering are reviewed.

The third chapter of the book is devoted to a synthesis of the algo-
rithms of optimal and suboptimal processing of space-time signals con-
taining discrete messages, while the fourth chapter analyzes their noise
suppression.

The first, second, and fourth chapters were written by the authors to-
gether. V. A, Soyfer wrote the third chapter and the appendices. D, D.
Klovskiy performed the general editing.

The authors express their gratitude to doctor of technical sciences
N. P. Khvorostenko for reviewing the book and offering a series of re-
marks that helped to improve it.

We request that all comments be sent to Izdatel'stvo Svyaz' at 101000,
Moskva-Tsentr, Chistoprudnyy Bul'var, 2.

Basic Designations

A, B, C, D - parameters of a function of a generalized
Gaussian distribution of a modulus

Bx(t, t' ¥, ?') - correlation function of a random field x(t, T)

Bx(T, p) - correlation function of a stationary homogeneous
field x(t, r)

Dx’ Dy, Dz - geometric dimensions of the spatial domain of

field analysis
E1 - energy of the signal at position 1

F - width of the signal spectrum

2
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R (t, t', T, T)
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s, ()

- Tc [or Ts]
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interval of correlation by frequency
energy spectrum of a channel characteristic

pulse surge characteristic of a space-time
filter

transfer function of a channel
pulse surge characteristic of a channel
mean statistical signal/noise ratio

transfer function of a coordinated space-time
filter

number of orthogonal signals

function that determines a regularizing func-
tional '

mean values of coordinates of factorization of a
channel characteristic

number of coordinates of characteristic factori-
zation by ind<jendent variables of time, fre-
quency, and space

spéctral density of white noise field output
noise field

probability of erroneous solution

statistical parameter of a channel

normed correlation function of a field

gpatial variable of a fleld!

signal at input of a channel

signal of position 1 at input of a channel

length of an element of a signal in transmission

! The quantity r is always a vector quantity with the exception
of the particular cases specified in the text.

3
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T - interval of field analysis in time

Ul(t, ?) - field in the reception domain corresponding
to position 1 of the transmitted signal

wN(xl,..., xN) ~ multidimensional density of distribution of a
set of random quantities

x(t, &, ?), y(t, &, ?) - quadrature components of a pulse surge
characteristic of a channel

. z(t, T) - observed field
o - parameter of regularization
g2 . - statlstical parameter of a channel
Afmaxclor Afmax] - width of the energy spectrum of signal fade-
outs in time
. .
e(t, r) - measurement error
2 - mean quadratic value of measurement error

n(t, &, v) - pulse surge characteristic of a channel
in angle-place coordinates

n —:angle-place variable

Xy - eigen values of an integral equation

A - space-time domain of field analysis

.uT - parameter that characterizes rate of fade-
outs

vT, vT, vR -~ degree of selectivity of a channel accord-
ing to the variables of time, frequency,
and space

- channel memory .

p kop {or pcor] - interval of correlation by space

czw, 02 - dispersions of quadrature components of a
: y channel characteristic

Tro [ox Tcor] - interval of correlation of channel param-
P eters in time

¢k(t, £, ?) ~ eigen function of an integral equation

4
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¢p - statistical parameter of a channel
wk - functionals computed by an optimal field
processing device
- , - cyclical frequency
38 - frequency of a spatial spectrum

The designations for the special functions correspond to those
adopted in [29].

Symbols:

X - average value of random quantity x

s(t) - signal s(t) conjugate according to Hilbert
S(t, ?) - estimation of field u(t, ?)

h* - quantity complexly conjugate with h

S(w, 38) - spectrum of signal (field) s(t, )

CNn - number of combinations from N by n.
Introduction |

The problems of optimal processing of space-time signals in data trans-
mission channels are attracting ever-growing attention, and this is not
accidental. But what does optimal space-time processing offer in com- .
parison with techniques of spatial signal processing already known?

Above all it points out one of a number of methods of spatial process-
ing that provides the best quality characteristics of information
transmission. In the second place, if we know the algorithm of optimal
processing we can always suggest a large number of suboptimal algo-
rithms whose characteristics are close to potentially achievable ones.
In the third place, the system developer will be able to compare any
processing algorithm that is proposed against the best. Specifically,
the techniques of spatial scattering have become widespread in chan-
nels in the short-wave and ultrashort-wave ranges. The theory of
space-time processing gives sound criteria for choosing the number of
scattered antennas for such channels and the shape of their diagrams
(space patterns) in each particular case. In the stage of system
development and design such data are extremely valuable.

For channels in the optical range the theory of processing space-time
signals is the only and an objéctively necessary development of the
theory of processing time function-signals. The processing techniques
1 suggested by this theory pose new problems for holographic engineering
5
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and open up new opportunities for coherent optical data transmission
systems (transmission in-a turbulent atmosphere, transmission beyond
the 1limits of direct visibility, and others).

Most communications channels are classified as wave channels and to
one degree or another the spatial distribution of the transmitting and
receiving structures and the route of signal propagation must be taken
into account. ' '

Until recently the synthesis of receiving-transmitting antennas and
pure time processing devices in transmission and reception was done in-
dependently (separately) according to various specific requirements
(quality criteria). Most of the results in the theory of optimal
methods of transmitting discrete messages have come on the assumption
that the antennas are fixed in transmission and reception and the sys-
tem is optimized only with respect to time processing of the signal.

However, the limitations inherent in a system and its potential capa-~
bilities can only be identified if we make maximum use of information
on the properties of the medium of propagation and existing noise in
the channel and search for optimal solutions for the design of the
receiving-transmitting complex, not assuming a priori a separation of
the operations of time and space processing of the signal and not fix-
ing the type of spatial signal processing.

It may be expected that optimal space~time signal processing compared
to purely time-optimal processing will be more effective where the
quality of data transmission is more strongly influenced by external
noise than internal equipment noise. But the influence of external
noise on the quality of communications is becoming decisive as a re-
sult of advances in developing low-noise receiving-transmitting equip-
ment for space and ground channels.

Chapter 1. Model of a Space-Time Channel
1.1 Structure of Systems for Data Transmission by Space Channels

In any data transmission system it is posgible to identify, in addition
- - to the source and recipient of messages, the following basic blocks:

: transmitter, channel, and receiver [51, 104]. We will consider the
source of the messages and the transmitter, which includes the coding
device, modulator, and transmitting antenna, to be given and then we
will consider the last two blocks: the channel (medium of propaga-
tion) and receiver. We will assume here, however, that it is possible
to control the operation of the transmitter by selecting an appropri-
ate assemblage of signals used to transmit information.

lLet us consider the concept of a continuous channel in more detail,
because in this work it differs slightly from the traditional concept.
In consideration of the problems of optimal reception of messages in

6
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the most diverse wave ranges,"channel" ordinarily means the entire
transmission part of the system, from the input of the transmitter
antenna to the output of the receiving antenna [30, 51, 104) (see
Figure 1.la below). In this case all the variations of channel

Figure 1.1, Models of time and space-time channels: a) time;
b) space by input and output; e) space by output

R |
L)
a) (1) <2) T ef “Tmn m.r'lm 12("(6) a) {7)
; st[Teseders~ [T | Ny
T o Tl S 7 :g:zm' 1
Do en ranea(8) T j
o PG
b) ‘ S uef)| [1a0eh
i 8/)| Nepeda - [7 n |20t NoApvaniad
B e T e ] o i s P

EEYMMMW' o by

Key: (1) Source of Messages [blocks directly underneath identical in
meaning];
- (2) Transmitter;

(3) Transmitting Antenna;

(4) Medium of Propagation;

(5) Receiving Antenna;

(6) Receiver;

(7) Recipient of Messages;

(8) Channel.

models can be classified as space-concentrated models or time models.
They conmnect the time function-signals at input s(t) and the output
z(t) = u(t) + n(t) of the channel [u(t) is the usable signal at the
output, and n(t) is additive noise] by means of some operator, usually
linear [40, 44]. 1In data transmission systems signals s(t) and z(t)
very often ghould be considered vector processes of some particular di-
mensionality. An example is communications systems with parallel data
input to the channel and separate reception.

Use of the model in Figure 1.la makes it possible to formulate the
problem of searching for optimal (from the standpoint of system effec-
tiveness) methods of converting a message to signal s(t) in transmis-
sion and signal z(t) into the message on reception.

7
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At the present time, methods of optimal and suboptimal processing of
space~time field-signals in various channels are becoming widespread
(18, 46, 52, 82). 1In the optical range this kind of treatment and
processing of processes in space and in time is 'the only possible
one. The techniques of optimal and suboptimal signal processing in
other wave bands, for example short-wave, ultrashort-wave, and hydro=-
acoustic channels, are also space techniques, It is possible to
construct a spatially distributed model of a channel that connects
field s(t, r,) at the output of the transmitter antenna where

r, = (xl, Y45 2,) is the radius-vector of a field point in transmission,
aéd the fie}d ztt, r) = u(t, r) + n(t, r,) at the input of the receiv-
ing antenna where r = (x, y, 2z) is the radius vector of a field point
in reception, u(t, r) is the signal field at the channel output, and
n(t, r) is the noise field (see Figure 1l.1b ahove).

Representation of a continuous time-space channel in the form of the
model in Figure 1.1b requires significantly more a priori information
than representation of a time channel in the form of the model in
Figure 1.la. In thie case, however, it is possible to pose the prob-
lem of optimizing all devices for conversion of messages into a signal
in transmission and conversion back into messages in reception, in-
cluding the construction of optimal signal-field convertors in trans-
mission and field-signal convertors in reception (transmitting and re-
ceiving antennas).

In this work we consider the transmitting antenna to be given, and 8o
we will not investigate the model of a channel with space-time signals
at the input and output (see Figure 1.1b) further, but rather will con-
centrate attention on models of a channel (see Figure 1.1c¢) in which
the input signal is purely temporal (concentrated in space) but the
output signal is a space-time signal. For simplicity we will consider
the fields to be scalar. :

For vector fields such as electromagnetic fields the results obtained
by us can be applied to any of the scalar components. Where there is
a correlation among components of the vector field a rigorous solution
requires study of the total vector field (for example, by solving the
corresponding vector differential equations of the f1eld (43, 135)).
However, in many situations of practical interest this correlation can
be disregarded.

1.2 System Characteristics of a Space-Time Channel and Gontinuous
Models of It

If we consider the space-time channel under analysis to be a linear
system with variable parameters, it can be described by various sys-
tem characteristics [40, 47, 132] (see Figure 1.2 below). Among
them are the following:

h(t, &, ?) - surge characteristic of the channel,
that is, the reaction of the channel at moment in time t

8
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at point in space r to a Delta pulse fed to the input
at moment t-{. We consider that the intensity of
the field at point r can be measured by placing an
elementary antenna at this point;

H(e, £, i'-')-o-»h(t, £, ¥) = transfer function of
the channel, related to h(t, £, r) by a Fourier
transform by variable f;

U(v, E.*r)*-*h(t, £, ¥) —- spectrum of channel reac=-
tion at frequency v to a Delta pulse related to
h(t, €, r) by a Pourier transform by variable b;

T Ty
Nl & wg)ehit, &, 1)
't 2 ~ Fourier transform of the cor-

Rty 1S mm Bty 1, B responding fugctions according
Vv, &, gl U(v, B.7) to vagiablea T,

If we consider a receiving area sufficiently distant from the area
where the scattered field forms, when the signal received is concen-
trated within narrow spatial angles ¢, then n(t, &, w_) = n(t, £, ¢)
has meaning as an angle-space surge characteristic [47) and de-
fines the reaction in an antenna that performs selection of signals
with angle of arrival ¢ at moment in time t to a Delta pulse fed to
the channel input at moment t-f; H(t, £, w,) = H(t, £, ¢) has the
meaning of an angle-space ‘trarisfer functiom; V(v, E,. “ﬁ) = V(v, £, ¢)
defines at frequency v the spectrum of reaction of the channel in which
the output signal is selected by angle ¢, to a Delta pulse fed to the
input at moment in time t-g.

Figure 1.2. Description of a Space-Time Channel by System Character-
istics.

Key: (1) System characteristic.

.
o) Sactrnge qce
TN rnaerzms: ——-3-,1’-':'«')

In connection with advances in optical techniques of processing non-
1ight signals [56, 92] and with the use of coherent optical signals
to transmit information, there is one more group of system functions
of a channel that should be considered. They can be introduced by
using the Frenel transform for a space variable to describe the dif-
fraction of waves in the near zone. As an example of a system

9
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function in this group let us consider the Fremel transform of the
function h(t &, x), which depends on one spatial Cartesian coordinate x
that is defined by the relation . —
i )t '
1 by, E,. NE] -.m,jnu. 13 x“n\,lx Y dy, (.1

The function ﬂﬂi)u"iuﬁglﬁ” is called a Frenel function.

It can be seen from the definition of the Frenel transform (1.1l) that
it 18 a convolution of the initial funetion h(-, ', x) with the Frenel
function ¢ (x). To each reading of the function h(s, :, x) at point x
there corresponds a Frenel function with a weight equal to the value
of the initial function at a given point, the Frenel picture. The
Frenel image is the sum of concinuoualy displaced Frenel pictures.

The surge characteristic of a channel is related to the Frenel sys-
tem function by an inverse Ptenel :ransform

bt 8 0 Sp(c Eoxe i e dy. .9

For the functions f1(x) and f2(x), which have the Frenel images Pj(x)
and P2(x), the following relations are fulfilled

nmemnw—hm&w.
, .3)
h(r\el;(-—X)m;‘,TmeP;(—z)-

where ® 1s thu symbol of convolution of functions. It should be
noted that the Frenel transform is performed directly by spatial vari-
ables and the Frenel image is treated.in the same spatial coordinates
as the initial function. This is the basic difference between the
Frenel transform and the Fourier transform.,

Using the system characteristics given above it is easy to establish
the relationship between signal field u(t, r) oxr u(t, ¢) at the output
of the channel and the random 1npnt aignal s(t). For example,

- Tuly = js(b—-')h(l . nds., 0.4
u(t, @) n_fs(l-i)m‘f. $ 943, 0.3
[ ]
u(l, @)= '_[5(!.'”(1. . ret gy, (1.6)
10
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where S(f) is the Fourier spectrum of realization of S(t).
‘ u(t, @)uJ jsu-.g)V(,. v @ e=Im gy IR

—lmo (x=y)!

[ ]
e \ -} R, t ' (.
nt, x “’,15 )su heo tope didy (1.8)

These relationships make it possible to single out different models of
a continuous space-time channel which permit physical treatment., Thus,
according to (1.5) the channel can be viewed as a multipath medium of
propagation (delay line with even branches) with the paths differing
by both time shifts £ and angles of arrival ¢ at the receiving place.
In each path the signal is subjected to modification according to
weight n(t, &, ¢), which in the general case changes in time.

According to (1.7) the channel may be viewed as a multipath medium of
propagation with the paths differing by time shifts §, frequency
(Doppler) shifts v, and angles of arrival ¢. Each path is character-
ized by a complex coefficient (weight) V(E, v, ¢).

According to (1.8) the channel may be interpreted as a multipath

; medium of propagation in which the individual paths differ by time

‘ shifts §{ and Frenel displacements Xx. In each path the signal is modi-
fied in conformity with weight P(t, £, X).

With the limitations imposed on channel characteristics (finite memory,
limited space of analysis of the field being received, and the like),
we may move from continuous models to discrete models.

1.3 Different Mechanisms of Random Propagation of Waves in Real Space-
Time Channels

In order to use the system characteristics and models of a linear space-
time channel in the analysis and synthesis of communications systems
they should be refined considering the properties of real wave channels.
For brevity we will use this term to mean an arbitrary channel in which
messages are transmitted by means of a freely propagating wave.

As experience demonstrates, the large majority of real wave channels
that transmit information are random (stochastic), that is, they are
media with random inhomogeneities. Therefore, system functions that
describe such a channel should be viewed as random fields character-
ized by a particular Probah:ligtic model. The range of questions
connected with solving the problems of wave propagati.:. given statis-
tical inhomogeneities of the medium is a practically important branch
of the theory of wave propagation. This includes the scattering of
radio waves in the troposphereand ionosphere, the scattering of

11
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optical waves (body and surface), optical and radial flickering, super-
distant propagation of ultrashort waves, reflection of radio waves
from the surface of the sea and from irregular land surfaces (location
from flying craft and location of the moon), reflection of electro=-
magnetic and optical waves from manmade objects of complex form (flying
craft), scattering of acoustic waves in the sea, and so on. The theory
of propagation of waves in media with random inhomogeneities is quite
well developed today, and primary credit for this goes to Soviet scien-
tists [97, 116, 12), Most of the problems mentioned above can be

) formally divided into two classes [84].

1. Wave propagation occurs in homogeneous media, but the boundary be-
tween them has random properties. This means either random irregu-
larities of the actual boundary surface or randomly distributed sectors
with different reflection and pass coefficients on this surface. The
reflection of waves from the surface of the moon can be put in the first
category; the second, with certain assumptions, may include reflections
from flying craft. In all problems of this type one must deal with de-
terministic differential equations of the field and its probabilistic
structure is determined through stochastic boundary conditions.

2, Propagation occurs in a medium whose properties change randomly in
space. This situation occurs, for example, with long-range tropo-
spheric propagation of ultrashort waves., In this case the actual dif-
ferential equations that describe the process of wave propagation con-
tain random variable coefficients and the boundary conditions are usu-
ally deterministic.

Of course, mixed problems with both body and surface random inhomo-
geneities are also possible. In the general case, inhomogeneities can
change in time.

An example of the first type of problem is scattering on a statis~
tically uneven surface, for example on surface z = E(x, y, t) where
€ 1s a random two~dimensional variable field. The amplitude-phase
characteristic of the surface 18  A(x, y, 2 f)=A(x, y, 2, 1) o =IFL8 10 1),

If plane wave c/fwf+4) gtrikes a surface and the boundary is such
that ¢ = 0 at it, then for wave function ¢(x, y, z, t), which in semi-
space z>0 satisfies the detq;mip{g:@c equation

o8 . .
G- T =0 1.9

we have the boundary condition ¢[x, y, &(x, y, t)] = 0.

- An example of the second type of problem is an unlimited space (semi-
space or layer) in which this equation is correct

(e, ) g
SN UL S . 0
8 et on 0. (110

where n(r, £) is a random field, an index of refraction of the medium.
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The stochasticity of the differential equations given is determined by
the given random fields £ or n. Statistics on these physical fields
are accumulated by direct measurement and various types of modeling.

At the present time, a great deal of factual material has been accumu-
lated and processed concerning these characteristics for real types
of channels (for example, see [32]).

During the investigation of wave channels with random inhomogeneities
(with scattering), the phenomenological approach to the problem of
wave propagation has been widely used. It is based on beam representa-
tions [16, 49].

These representations are based on the experimentally established fact
that formation of the scattered field at the place of reception is ac~
complished chiefly by the so-called "luminescent" or "burning" spots
which occupy a relatively small part of the scattering surface (body)
of the scatterer (mee Figure 1.3 below). As this figure shows schemat-
ically, the field being received may be formed by two or more areas of
scattering that are dispersed in space.

Figure 1.3. Model of
the Formation of a Scat-
tered Field at the
Receiving Place

If the scattering surface or body alters its orientation and/or shape
slightly over time, the luminescent spots begin to be shifted and to
change their intensity. The origin of the luminescent spots conforms
with the concepts of the geometric optic according to which a wave
striking a body represents a bundle of beamg. Each of the beams is
reflected from a corresponding area, forming a reflected beam. If
each beam undergoes more than one reflection before striking the re=-
ceiving area, this is what is called multiple scattering. In many

13
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- cases Borne's firat approximation [80, 135] which disregards the effect
of multiple scattering may be considered correct. It can be said that
in the case of single scattering a model of parallel wave propagation
occurs, while in the case of multiple scattering it is a model of se-
quential parallel propagation., Let us consider more closely these
models of propagation gnd the probabilistic description of the field of
signals received u(t,"r) or, which is the same thing, the probabilistic
description of particular system characteristics of the channel with a
deterministic input action, resulting from each model.

The model of parallel propagation (single scattering). The number of
beams striking the receiving area, the number of "luminescent" spots,
will be greater where the area of scattering is larger and more com=
plex. If single scattering occurs, the beams reaching the reception
area can be considered independent of one another, and the field at

the input of the receiving antenna can be written in "adaptive" form

as follows e
Ko, - —
ulfy = Yyt 1y e (1.1

kel

where u, 1s the shape of the oscillation of random beam k and v, is
the vector of the random and deterministic parameters that characterize
random beam k.

Because communications signals are narrow-band processes (the frequency
band F_ that they occupy is much smaller than the average spectrum fre-
quency £ o)’ (1.11) can conveniently be written as follows

s Bt Deosuybob ylt, Asineyt= A, Peotloy =g (Al (1.12)
where

L koo
x(t,r)= 2:&(1. ry k),

Rzl
- Kt -
yitor) = zyn(l. . o)

k=1

A, 3=Vx' {(t, N+, /) - envelope of resultant field at point '{';

(1.14)

-~ quadrature components; (1.13)

-
¢ (t, 1) =arc lg—M -- phase of resultant field at point r; (1.15)
: x(t, r)

- s ——— =~ envelope of signal by beam k;
ann=V T m+Re. 7 o

- -
Tall, 1) - are tgl'—'("-"_.—'_‘-'_ﬂ ~- phase of signal by beam k.
Xt r, vg)
14

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP382-00850R000100060010-3

FOR OFFICIAL USE ONLY

It is often convenient to switch from writing the field in material
form (1.12) to a composite writing:

O R e T R R S 1 T R
where

Anr=ay ~ie e composite envelope;
l”:)’. { r)e pe; (1.17)
W, ) == fleld, conjugate according to
Hilbert, with u(t, ¥).

The number of "luminescent" points in the channels that are of great-
est practical interest 1s very large for the most diverse wave ranges.
For example, according to experimental data in [76], this number was

on the order of k = 10% for reflection from the moon. The contribution
of each of the components to the total process is always small, and
taken together with the assumption of the independence of the com-
ponents this makes it possible to use the central limiting theorem of
the theory of probability and consider the field at the channel output
to be Gaussian.

Statistical description of the channel in a Gaussian approximation is

- simplest and comes down to determining the first two statistical moments
of the field, the regular component u(t, r) and the correlation func-
tion B (t, t+At; r, r+ir), or determining the mathematical expectations
of quagrature components: the autocorrelation and mutual correlation
functions. There are many works [32, 33, 80, and others] that deal
with the determination of regular components and correlation functions
of fields at the output of channels that differ physically.

Many authors of theoretical and experimental investigations describe
the correlation of quadrature components of the field being received
in the most diverse wave bands as a Gaussian curve by both measure-
ments (time and space).

As we know [16, 104, 140], the random process with Gaussian correla-
tion is singular, and this means that its entire future can be pre-
dicted by known past and present methods of linear interpolation.

Therefore, the Gaussian approximation of the correlation function can-
not be considered acceptable for a fundamentally unpredictable process
such as the random field of a signal at the receiving point.

Very often [49, 104] the correlation coefficient of local-stationary

quadrature components of a field is approximated by the demonstra-
tive law (for each of the variables)

¢

. UM.:¢“1| - , -
Re(M) =g, W) =¢c 23>0, A=A444r, (1.18)
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Approximation (1.18) does not entaill singularity of the field and with

a Gaussian distribution signifies that the process is a one-dimensional

Markov process., A more universal function for approximation of the cor-

relation characteristics of a slowly changing stochastic field at the

output of a wave channel is the function which corresponds to a rational

(bilinear) energy spectrum of random order.. This spectrum may also be

found, specifically with a multidimensional Markov random process. In ;

subsequent analysis it will be necessary to have parameters that de- ¢
. termine the intervals of correlation of the stochastic field by time Teqys

by frequency Foo,., and by spatial coordinates § = (X.oe; Yeors Zcor):

For the sake o? Eefiniteness_we will consider that tﬁese parameters are
determined by the equivalent rectangle method '(energy criterion) [51, 64].
The question of the mutual dependence (correlation) of fluctuations of
the field in time, by spectrum, and by space will be taken up below dur-
ing the study of stochastic models of time-space channels based on cor-
relation properties. ,

A model of sequential-parallel propagation (multiple scattering). Things
are considerably more complex in the case of sequential parallel propa-
gation than with simple parallel propagation of waves. At the present
time, although there have been numerous theoretical investigations in
this field (45, 67, 97], they are far from complete and experimental
data are not extensive [67]). Special interest in this model of propa-
gation, which takes account of the multiple scattering of signals, has
arisen in recent years and is explained by the extensive use of such a
form of wave propagation for transmission of information along optical
channels both within and beyond the field of direct visibility. We

also encounter multiple scattering in the transmission of signals

along multistage short-wave routes. The field in the receiving area

can be formally represented in this case just as it is represented in
the case of single scattering, as the sum of a definite number K of com~
ponents (1.11). However, the differenceisthat the component no

longer can be considered independent. The reason is that the multiply
scattered components of the total field have been formed by common
"luminescent” spots (scattering points) located within the area of

space that forms the signal being received.

When considering multiple scattering, a rigorous solution of wave dif-
ferential equations of the field taking account of boundary effects and
the random properties of the medium is extremely difficult. In this
case it is simpler to obtain probabilistic characteristics of the field
being received on the basis of the pheonomenalogical approach by intro-
ducing the channel model shown in Figure 1.4 below. According to this
model the channel is treated as a countable (finite or infinite) set of
_space-time filters with characteristics £;, ‘{2, '“’{L' Each filter
participates in formation of the field in the reception area both di-
rectly and with the assistance of all or some of the other filters. In
the general case, the contribution to the field received at point r com-
ing from the output of filter k may be represented as follows.

16
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© ol
Ll y
gt 1) 2y (v)[w Vahwae B ...

pe=l re|
ch=
T |
o ;:: SR R FITA (1.19)
" R -
[ :
l 211¥, : Figure 1.4, Model of a
: ‘L47 ... Channel with Sequential
Lf:] 1 ui Parallel Propagation of
I Ll —  Transmitted Signals
] ' ! .
) +
L H~

The charactetistiia:(k are considered linear operators in the functional
~Hilbert space. "i is composition i of the number of possible, non-re-
peating compositions 1 of the partial operators without k(l=1, ...,
T-1); i=T, o7, 1‘1); CL-1 is the number of combinations from L-1 by
1; v is the set of parameters that determines the operator; I is the
symbol of the unitary operator; s(t, r) is the input signal which ex-.
cites the set of filters that contribute to the total field received
at point r,

For example, when M = 3 it follows from [1.19] that

U3 (L 1) =1Z3 )+ 2y @) Za(6) & T30 25 (0) 1 24 () Za(0) Zo )5ty 1), (1,20

The total field at point r with sequential parallel propagation is de-
ternined by summing the components uy(t, r):

X L= ;!
att )= e | 14+ X 20+ Y z@wi .. sw 00
R ksl ‘p=1 =]

If it is possible to disregard the contribution caused by the interac-
tion of operators (that is, if we can disregard multiple scattering),
then (1.21) gives a model of the field being ~eceived considering only
parallel propagation.

The effect of sequential parallel propagation in its particular mani-
festation apparently occurs only in channels with scattering. For
example, the propagation of light waves in a transparent atmosphere can
be described by a sequential mechanism (45, 67]. Fluctuations of ampli-
tude (intensity) and phase occur in a light wave after traveling a cer-

. 17
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certain distance in turbulent atmosphere. It may be assumed that the
turbulent atmosphere shows itself as a certain set of sequentially ar-
ranged lenses with randomly changing properties. Such a sequential
model 1s qualitatively corroborated by the fact that, according to ex=-
perimental findings, the logarithm of the amplitude (or intensity) of
a f%uctulating wave often has a Gaussian probability distribution [67, ;
111). :

Let us move on to a more detailed discussion of a probabilistic model
of a linear space-time channel with sequential parallel wave propaga-
tion, treating the channel as a set of linear space-time filters par-
ticipating together in shaping the field being received.

1.4, A dne-Dimensional Probabilistic Model of a Channel With Sequential
Parallel Propagation

The multidimensional distribution of a particular system function (or
field at the output) of a channel for all characterizing variables is

a complete description of a stochastic space-time channel. In practice,
however, the developer sometimes does not have such complete a priori
information. For the problems of optimal and suboptimal processing

of the field considered in this book it is entirely sufficient to des~
cribe a probabilistic model of the chanmnel with one-dimensional distri-
butions and correlation characteristics. The correlation functions
that correspond to the different models of space-time channels will be
considered below, but here we will focus attention on one-dimensional
distributions of the probabilities of sections of particular system
characteristics of a channel.

If the linear operatot'{k(v) (or the characteristics of the correspond-
ing space-time filters) introduced in subchapter 1.3, are equated with
the transfer functions H, (t, £, r), the summary operator (resulting
transfer function H(t, f, r)) corresponding to transform (1.21) can be
written as follows:

R A .
HE L) = Y H DAY Hy ) He ] 0
Ay=1 kOky= |
B T et
+...+ AY : Hk.(!v f» T)Hh(f,f, 7‘).-.
BSh>... k=

b 4 F ) A e Hot fr) H_ . F 1w H (G F . (1.22)

As can be seen from (1.22), the resulting transfer function of a channel
with sequential parallel propagation of waves is determined in the gen-
eral case through constituent system characteristics using a rather com-
plex expression. Instead of (1.22) it is possible to construct other
resulting system characteristics for a channel with sequential parallel

18
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propagation, For example, for the resulting transfer characteristic we
can write the relation

Wt R = Z By (8 7)
hyral

L

+ 2 ‘hk, (0 By, 1) by (8 B — B, YAy
h|>hn|0

L 0 © to
B [l b e Bt (5
RiDkyDh=10 0

0

: =t )dbidi o[ (L [hl(t B ) bbbt ryhy(t, By —
! 60

? =8 )k (0 E—8, . r)dEy d, (1.23)

This relation follows from (1,22) if we consider that the operations of

multiplying the system functions Hy(t, r, r) and Hy(t, f, r) are equiva-
lent to the operations of convoluting the corresponding transfer charac-
teristics.

Hy (t, f, r)Hz(t f r)-<—-> (hl(i E,,r)hz(t § bl!r)dgl (1-245

With purely parallel propagation (diaregarding multiple scattering)

Hit,fr) = ZH,,(t f, 7). (1.25)

kel

" In the case of sequential propagation only

ienn=H0menn. (1.26)

We shculd give special consideration to the particular situation of se-
quential parallel propagation, described by the ‘common term of the relation

(1.22) v
H N = znﬁu(f f, ). R

k=) [=2]

When substantiating the probabilistic model of fadeouts in a channel it
is usually supposed [49, 80, 104, 135, 137] that the number of scatterers
N forming the total signal at the point of reception is large. However,
for the general situation of sequential parallel propagation this as-
sumption is not adequate to find the limiting distribution (where N+)
of a random quantity (1.27). The point is that probability theory does
not yet have a limiting theorem for distributions of the sums of the

' products of random quantities. Therefore, at first we will consider the
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two theoretically extreme situations: purely additive (1.25) and purely
multiplicative (1.26). Then we will also discuss the intermediate addi-
a tive-multiplicative situation (1,27).

The purely additive situation in formation of a received field. Where
N- we may usually consider the conditions of the central limiting
theorem to be met. This allows us to view the.section (reading) of the
transfer function of the chamnel H(t, £, r) = x(t, £, r)+iy(t, £, r) as
a composite Gaussian random quantity., Its quadrature components
X(t, £, r) and y(t, £, r) are, in the general case, dependent and have
- arbitrary (unequal) mathematical expectations m, and and non-iden~
tical dispersions °x . The channel model we are’discussing is
called a four-parameter o¥ generalized Gaussian model [49, 89].

The conditions of physical feasibility of the channel impose definite
limitations on the relations between the quadrature components of the
transfer function x(w) and y(w). They can be obtained starting from the
condition h(§) = O where E:O or from the equivalent condition

1) =h@)1@) (1.98)
where 1(£) 1s a unitary function [92].

Now we will perform a Fourier transform on the right and left parts of
the last relation. This makes it possible to convert to the relation
for the transfer function of a physically feasible channel

H(to) = jli((o)U(m-—u))dm (1.29)

where U(w) = 78 (w)+1/iw is the spectrum of the unitary function.

From this integral it is easy to obtain the expressions that relate
the real x(w) and imaginary y(w) parts of the transfer function of a
physically feasible channel e e :
) T (@) ’
x) - f';”:u.—v“”'
- ' (1.30)
Y () = —--:!— j'f:'%%—dm'.

The integrals in (1 30) should be considered as

x () = — U lim y("') d(o

A Qepe o) O—

For a stochastic channel the convergence of the integrals cited must
be understood in the mean quadratic sense. The relations obtained
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allow us to state that the real and imaginary parts of the transfer
function of a real channel must be interlinked by a Hilbert transform,
For %in?ar deterministic filters this result is not new (for exampla,
see [92]),

Using the properties of the Hilbert transform it is not difficult to
show that the statistical characteristics of the functions x(w) and

y(w) must meet certain requirements. In particular, if it is assumed
that the channel is homogeneous for fraquency in the broad ocense,

then x(w) and y(w) are random processes with identical correlation func-
tions that are noncoherent on coinciding frequencies.

Within the framework of a Gaussian probabilistic model of a channel
these properties of %(w) and y(w) lead to the Rayleigh or Rice distri-
bution of the modulus of the transfer function (amplitudes of the sig-
nal received). In the case of a channel that is inhomogeneous in fre-
quency the correlation functions of the processes x(w) and y(w) have
the following relation

. e

P du dw,
B, (v, w,) -——- " fB,(w,. w))-—ﬂ—-—-—(-"-,— (1.3n
“n. _1. (0} "()I h ~‘..

and are, in the general case, nonidentical. The mutual correlation
functions Be (o off ‘
‘”((l).. (0.) L1 smm _.. 5.—‘——2—"— dm;.

n G0y = l
-]
B [
By, (), ©p) = L M du,
" - m’

are nonidentical and in the general case do not become zero on coincid-
ing frequencies; in other words, the processes x(w) and y(w) are not
noncoherent.

Within the framework of the Gaussian probabilistic model of a chamnel
these properties of processes lead to a generalized Gaussian four-
parameter [49) or Hoyt (sub-Rayleigh) [135] distribution of the modulus
of the transfer functisn,

It is also possible to make the opposite assertion, that the occurrence
of a four-parameter or sub-Rayleigh distribution of the modulus is in-
evitably linked to frequency nonhomogeneity of the channel. Because
many actual communications channels are inhomogeneous for frequency,

it may be expected that the generalized Gaussian or sub-Rayleigh model
of fluctuations will occur in many cases.

It is always possible to piss to x and y, the independent quadrature
components of transfer function H, by rotating the axes of the coordi-
nates (orthogonal transformation) [26, 49].
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Relying on these results, we will hereafter assume that the real and
imaginary components of a section of the transfer function are inde=-
pendent and have the parameters my, © xz and m! respactively.
Treating the pulse surge characteristic of th ch!nnel in the composite
form of representation H(t, &, r) = x(t, §, r)+iy(t, §, r), we will
make similar assumptions with respect to its real and imaginucy com=
ponents. Thus, tha quadrature components of the tranafer function
(or composite pulse surge characteristic) are independent and have a
normal distribution: e .

) | (r—nn)

@) (X) + 2 msmmme XY | ==
(4 l’?no’ ¢ 20}

1.32)
w, (y)'= e exp U """] (
2a0

In this case the one-dimensional distribution of the modulus Y=V x¥4 2
can be obtained in the form below [89]

R, AR
M f?m',' omf;

wy(y) =

a=0
x{.!..exp[.u.l'.‘_“_;"#ﬁ]( ‘/m!-l-m )} (1.93)
o o

where the following designations have been incroduced'

Y o,__o,
o IG .
my -4 my M-y . g Y.: R:.:~— “?—--:;-.

V_ ' m" w= Vi ’

There are also other forms for writing this distribution [49, 135].
Where certain conditions are met, a number of particular cases follow
from the generalized distribution (1.33):

1. The Beckman (or three-parameter [49])) distribution follows from
(1.33) with a certain ghaaing of the regular component =0,

my, ¥ 0, and 0 Let us stress that within the ramework of
the generalizes Gausa!an model the existence of a regular component of
the signal being received is not necessarily linked to the hypothesis
of the exiacence of a "regular" beam in the channel; the regular com-
ponent my? + myz ¥ 0 can also occur as a result of special character-
istics of wave scattering (49, 51, 104, 125}.

2. The Rice (or generalized Rayleigh) distribution is obtained from
(1.33) where there is channel symmetry by dispersions of quadrature
components 0y? = 0y? = 02.and R = 0.

3. The Hoyt (or sub-Rayleigh [49]) distribution follows from (1.33)
vhere oxz ¢ u and in the absence of a regular component my = my = 0.
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2 w 0 in this case, the distribution of amplitudes is determined
by tﬁe one-sided normal law [49] which corresponds to the deepast fade=
outs within the framework of the four=parameter model,

- 4. The Rayleigh distribution is obtainad from (1.33) in the absence of
both asymmetry uxz = c:y2 = 02 gnd a regular component my = m, = 0.

It is easy to trace the conditions under which the interference sum (1.25)
within independent components Hy(t, £, r) gives rise to one or another
field distribution H(t, £, r).

Assuming that the amplitudes and phases of the elementary components
e =Y witpe and 0, = arclg -L-
are independent, it is posaible to write
m, ﬁxazhcose,. my ey z\,slnﬁ,.

A=l
L

=V [ V] COS8,— (T1c03y)? J

e
“V [T [ SO, ~ (v, sin )’]-
My (1.34)
T ———————— , - N
B,y = (X = m,) (y ~—=m,) = {;- VSN2, .
=il
3, et 5
- Y Y1 $iNY, CO8Hy e, iy
med
If the elementary components have identical statistics, then
m,=LycosO, m, =LYy-5ino,
2 2
' —_—m m
. o= Ly cos9——%, o - LY SIn0— - (1.35)

B,,-.a—;-LFs—inﬂ-i-’-'-’.‘li".!.,

Analyzing (1.35), it is possible to draw certain general conclusions
about the possible model of the channel:

1. 1If the phases of the elementary components are distribucad evenly
in the range from -7 to +7, then my = my = 0, 0,2 = o,?, By, = 0 and
the scattered field is a Rayleigh vector.
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2, With fluctuations in the phases of the elementary components within
limite significantly exceeding m, the resulting field is also a Rayleigh
veetor. This conclusion fullows from the fact that for the periedic
functions sinO©and cos O, instead of the distribution function given
within large limits it is possible to use ancther, reduced to the inter=-
val of periodicity [64]. If only the initial distribution of the phases
of the elementary components is not a periodic function, then the con-
voluted distribution within the limits [~%, +#] will be closer to even
whare the 1imits of the fluctuations of the phase of the elementary com=
ponents are greater.

3, Where the fluctuations in phases of the elementary components are
symmetrical relative to their average value,equal to zero,and the dis~
persion of phase fluctuations is not too great, then owing to the parity
of the distribution functions from (1.35) it follows that my ¥ O, my = 0,
02 ¥ 042 and By, = 0, that is, the scattered field forms a three-
paramater vector” [49, 135],

4, With asymmetric fluctuations of phases of the elementary components
m ¥ O,m #0, 0 ¥0y? and Byy # 0, thac is, the scattered field is
a four-parameter vector.

Thus, with the assumptions made, the generalized Gaussian statistics of
a scattered field are a consequence of asymmetry, which can be explained
in the distribution of phases of elementary waves on the basis of the
physical processes related to the propagation of waves in random media,
1f there is a regular beam at the receiving point in addition to the
scattered field, it is natural that cases 1 and 4 lead to a resulting
field in the form of a Rice vector, whereas cases 2 and 4 yleld a re-
sulting field in the form of a four-parameter vector.

Experimental data show that the generalized Gaussian distribution and
its various particular cases cover a very large class of communica~
tions channels [49, 135]. Solving the stochastic wave equation of the
£leld for different mechanisms uf wave propagation also leads to a
generalized Gaussian model and a number of its particular cases (32,
33, 69é 50, 116, 80, 124-126, 135]. 1In addition to parameters my,
mﬁ. ox‘, and © 2, it is convenient to introduce four other parameters
vwhich have grap%ic physical meaning: .
‘ m - m
::_;_t_i’. (1.36)
ol o}
~ the ratio of the average powers of the regular and fluctuating parts
of the transfer function or surge characteristic of the channel;

'ps'g-_- o?/o? o (1.37)
— the coefficient that characterizes asymmetry by dispersions of quad-
rature components;
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®p = are tg (mm,) ' (1.38)
= the phase angle of the regular component}
yemltmltol ol (1.39)

= the mean square of the transfer function (surge characteristic).

For a full description of the channel it is sufficient to consider tha
following ranges of changerin ghg paramaters introduced:
0SPLDIS P 00, (7/2); 0K Ti< o,
A vhole series of useful formulas relating to the four-parameter distri-
ution of the modulus is contained in the literature [89), Let us ob-
serve that the two-paramater m~distribution of Nakagamt [137] satis-
factorily approximates the four-parameter distribution of amplitudes [49]},
The distribution of the independent variable of the surge function

¢ = arc tg (y/x) for a generalized Gaussian chaunel is contained in the
literature [49, 64].

The purely multiplicative situation in formation of the field being re~-
ceived. 1If we write the transfer function of partial filter k in (1.26)

in the form g}, =e™ ¢ , it 1s not difficult from (1.26) to obtain
the following e - .

H=e¥'®oyee (1.40)
For the quantities
o .
t=Fw ¢=\gq (r.41y
R} k=]

vhere l#», the conditions of the central limiting theorem are met, mak~-
ing it possible to consider them Gaussian random quantities.

With multiple scattering, in particular for a stochastic optical channel,
the modulus of the transfer function y = eX and its independent variable
¢ can be considered statistically independent (67, 111). The one-
dimensional distribution of modulus v is logarithmically normal

L o] (4

w; (y) == VE;;;?

Parameter 02 (dispersion of the logarithm of modulus Y) may be related
to Nakagami*a parameter m (57, 137)

m o (PP — (P, (1.43)
vhich, changing in the range from 0.5 to =, 18 a convenient measure of

the depth of signal fadeouts (the depth of fadeouts increases with a
decrease in m). The following relations are correct:
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e L L N L)
o} - : hl(l | ”'), mn = (1.44)

For small dispersions of the logarithm of amplitude (05 <05) , the
logarithmically normal distribution (1.42) is satisfactorily approxi-
mated by Nakagami's m-distribution where m>3 and therefore alsc by the
Rice distribution [49, 57).

For large dispersion values (03>05) the approximation shown above
is unsatisfactory because under these conditions the logarithmically
normal distribution, unlike the m=distribution, is characterized by a
very slow decrease in probability density in the domain of large values
of the independent variable.

Let us pass on to a consideration of the question of the distribution of
phases for the purely multiplicative situation of formation of the re-
ceived field. As can be seen from (1.41), the distribution of phases

¢ in an infinite interval is governed by the Gaussian distribution.

However, for the problem of optimal signal processing, the distribution
law of phases in the segment [~-m, +m), that is, the distribution reduced
to the interval of periodicity, is most interesting. Beginning from the
result in [64], it is not difficult to show that the distribution of the
random quantity ¢ in the interval of periodicity [-m, +r] has the form

w, () = -,}; [1 + 22]9, " Fmrq:], (1.45)
fe] ¢

where ©j(u) is the characteristic function of the quantity ¢.
In this case the quantity ¢ is normally distributed. We will suppose
that its average value is equal to zero, This can always be done, con-

sidering the distribution of the initial phases relative to the average
phase increment. Then, from (1.45) it is not difficult to obtain

. « 2,1
o) ~ —) "% | ~o2/2
uy(g) = -2—;-[1-{-22e cosr ¢ -=.E_;. 8, (_g., e ¥ ).(1.46).
r=}
where 93(z, g) is Jacoby's Theta function {29].

From a practical point of view the most interesting valuesto consider
are the values of the parameter 02>>1, 1In this case, it follows from

¢
(1.46) that wy (p) = 1/2a, (1.47)

in other words, there is an even distribution of the initial phase of
the transfer function of the channel in the segment [-m, + 7], The
even character of the distribution of the initial phase in channels
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with sequential wave propagation has been pointed out more than once in
theoretical and experimental works [67, 97, 111].

In order to compare the probabilistic models of the channels for the
purely additive and the purely multiplicative situations of formation
of the field received, it is relevant to consider the distributions of
the quadrature components of the transfer function in both cases. With
an independent logarithmically normally distributed modulus and a uni-
formly distributed independent variable the joint distribution of
quadrature components can be written in thebﬁpl;owing form

\ (InVTFg =m )t T
Ua {. y 15 pmesen | St Sesem—————— ex o A s Sv—— & ('.48)
L T Verr oy "[ . 20]

Beginning from (1.48), it ié easy to observe that the quadrature com-
ponents x and y have the same distribution laws with identical statis-
tical parameters, for example:

e - S (‘m"f’.\—““i.;”}_,,, )'."
) (X) t2t e e | e 0X —— R by, (1.49
) (0= n ]"'2nc;_£x‘+v'ep[ 20} ] b (1.49)

These distributions are symmetrical relative to the ordinate axis. This
means that the logarithmically normal distribution of amplitudes and a
uniform distribution of phases preclude the possibility of the appear-
ance of quadrature components with non-zero mathematical expectations.
For small values of the parameter 02, the distributions of the quadra-
ture components are bimodal and very far from the Gaussian law.

The additive-multiplicative situation of formation of the field being
received. We write expression (1.27) in the following form

Hithny= S =x+1y =ye'®, (1.50)
k=1

where

. Ly
Hy=we' % =1 8,01, . (1.51)
l2e]

If no constraints are imposed on the set of random components Hjy and the
quantities Ly and N, it is extremely difficult to find one~-dimensional
distributions of H. It may be asserted that, in principle, situations
are possible that yield the most diverse distributions for H, However,
it is worthwhile to undertake at least a qualitative treatment of the
relations which will enable us to emphasize the special importance of

the two limiting types of distributions: four-parameter and logarith-
mically normal. With this purpose in mind, let us consider first the
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case where the random composite quantities

" h : r

Hyp =2 Ny = 1y (1.62)
are mutually independent and the number of factors forming H does not
depend on k and is equal to Ly = Q. Figure 15 below shows the model

of saquential parallel propagation of waves being considered, includ-
ing QN linear filters with characteristics Hjy.

L | 1A Figure 1.5, Channel with Several
v o Independent paths of Sequential
' : z ' Propagation of Transmitted Signals.
I_”{LJ My | i Yo |1 ] Hoe
1 I ) —
{ + ]
uni) .

As a result of the independence of the parallel paths of the model (com-
ponents of Hy, see Figure 1.5 above), it is natural that where No+= the
distribution tends toward a generalized Gaussian distribution regardless
of the distribution of the components. Therefore, let us consider the
case of a limited number of components N.

As the results of digital modeling show, for the model in Figure 1.5
on the condition that the parameters of the filters are random but in-
variant in time s e e -

Hy e, |0 = Hy (1), (1.33)
the law of distribution of the modulus H(t, £, r) in (1.50) vhere 10
ig determined more by the multiplicative character of the relationship
among components than the additive aspect.

Apparently it can be expected that as the intensity of the relations
among the particular components Hy in(1.50), that is, of the signals
in the parallel paths of propagation, grows stromger, the dominating
role of the multiplicative aspect of the relationship will increase.
As for distribution ¢ with a limited number of components N in (1.50),
beginning from [67] a uniform distribution of phase may be considered
typical. '

When the parameters of the spatial filters of the model change randomly
in time in the interval of the analysis, a lessening of the impact of
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the multiplicative aspect of the relationship should be expected. In-
deed, if the width of the energy spectrum of time fadeouts Afpay = 1/Tcor
is considered limited (Tcor is the interval of time correlation), the
function Hjy (t, £, ) may be represented by a Kotel'nikov series with
uncorrelated references, which should lead to an increase in the number
of components in formation of the total transfer function.

These results can also be applied in looking for the distribution of
- more complex additive-multiplicative formation (1.25).

Thus, it may be stated that the generalized Gaussian probabilistic

model of a field is acceptable for describing a broad class of real
channels with both single and multiple scattering, but in the latter
case the sphere of application of this model is definitely narrower.

1.5. Statistical Models of Space~-Time Channels Based on Correlation
Properties

In solving the problems of optimal processing of flelds, as will be
demonstrated below, correlation characteristics are decisive for de-
scribing not only Gaussian but also stochastic fields of arbitrary
shape. .

In this connection, we should consider the classification of fields by
degree of correlation in time, by frequency, and space. To do so the

correlation function of any system characteristic of a channel may be

investigated [47]. .

An exceptionally important property of the correlation functions of
real space channels which makes it considerably easier to conmstruct
optimal processing diagrams is the fact that they are partially or com-
pletely factorable, that 1s, they are represented in the form of prod-
ucts of correlation functions by separate variables. In particular,

a review of the correlation functions computed for a whole series of
channels (32, 33, 40, 80) shows that in many cases they are spatially
distinct, that is, the space correlation coefficient is factorable.

As will be shown below, factorization by the space variable makes it
possible to greatly simplify the algorithms of optimal processing and
to separate space and time processing of fields received.

In engineering practice it is often convenient to characterize a par-
ticular space-time channel depending on the relations among the corre-
lation intervals of the field by frequency Foop, in time T,qp, and by
space pgoy, and among such important characteristics of a communications
system as length of signals Tg, width of the spectrum of channel signals
Fgq, and spatial extent of field R analyzed at the receiving place.

Let us observe that the signals used to transmit information are always
finite (Tg 1s limited). But this means, strictly speaking, that their

' spectrum is not limited. Nonetheless, when solving applied problems we
assume that Fg; is also limited.
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We determine duration T and spectrum width F of the signal at the out=
put of a channel bound to an input signal with parameters Tg and Fg by
the following relations [46]:

where Epape [Emax] = 1/F in the interval of signal scatter-

ing in time (channel memory) caused by the imperfectness of the frequency
characteristics or the lack of a transfer characteristic from the Delta
function (owing to multibeam wave propagation, nonlinearity of the phase-
frequency characteristic, and the like); Afy,.. = 1/7.,. i8 the interval
of signal scattering by frequency (or width of the energy spectrum of
time fadeouts) caused by change in channel parameters over time and mu-
tual displacement of the areas of signal formation and reception.

The channel memory Emax may sometimes exceed the duration of signals
transmitted Tg substantially, for example in high-speed sequential trans-
mission of messages in short samples. When there are no protective time
intervals and small-base signals (2F T, ® 2) are used, this gives rise to
intercharacter interference [49, 53].

For most radio communications channels, the interval of frequency scat-
tering Afpay <¢ Fg.  Where long-duration complex signals are used the

correlation time Toqy = 1/Afpay may be considerably less than signal
length Ty,

Let us introduce parameters that characterize the number of degrees of
freedom of the stochastic field received '

V= 0V = 10 {1 4 T/tyeph
vF::IHNF=|n[l +F/F|Gop'o (1'55)
W= InNR - In(l + R/Puopl'

and call them respectively the degree of channel selectivity in time,
by frequency, and by space.

The quantity NT = [14T/7,or] determines the approximate number of non-
correlated (and therefore, independent for Gaussian processes) time
readings of the signal in interval 'T; NF is the number of non-correlated
frequency components in the spectrum of the field received. The quan-
tity NR has an analogous meaning.

It is apparent that the larger the number of vI, vF, and vR, the greater
the set of possible realizations of the received field will be and the
more complex the model of the channel that gave rise to them will be.

We will call a channel nonselective for given parameter P if vP = 0.

But if vF > 0, then we will consider the channel selective by this
parameter, Thus, if vI = 0 (there is just one uncorrelated reading in
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interval T) or T & Tuop (1.56)

“we will call the channel nonselective in time. Such a channel is often
called a channel with slow fadeout, or fast fadeout where condition
(1.56) is not met.

Considering what has been sald above, it is possible to define eight
types of space-time channels by degree of selectivity (considering just
one space coordinate) and group them schematically as shown in Figure 1.6
below. The simplest one of them is the channel that is nonselective by
frequency, time, and space(vIx vF e yRw« 0) and the most complex is
selective for all these parameters (vI > 0, vF > 0, and vR > 0).

NC no wacmeme, npo-
“Yempanemdy v fo doswe-
v vV VIO

NEC no Opewents 1( NG no vacmome u K no tremene o
npormpasemey b) npocmpanemdy (4) . ‘otmoms
| V=0l viee vho; v v%#0 (Q) V0 V! Vet

X no fpemen ne no wacmoms 6 o npocmaantinly
Voot vt (§) (f) V™o V%0 vieo; v] V=0 (g
' Kecenenmulnsid
nanan
LAY

Figure 1.6. Classification of Space-Time Channels by
Selectivity. .

Key: a) Selective Channel by Frequency, Space, and Time;
b) Selective Channel by Time and Space;
c) Selective Channel by Frequency and Space;
d) Selective Channel by Time and Frequency;
e) Selective Channel by Time;
f) Selective Channel by Frequency;
g) Selective Channel by Space;
h) Nonselective Channel.

1.6. Model of Spatially Distributed Additive Noise

Spatially distributed additive noise n(t, r) added linearly with the sig-
nal field u(t, r), forms the following total field, accessible for analy-

sis e e e et e -

s, ) =ult, ) +nl,n, (1.57)

t and 18 generated by a set of factors such as thermal and cosmic noise,
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internal equipment noise recalculated for the input of the system, the
signals of interfering stations, and the like., Many works (121, 124,
135) investigate the physical and statistical properties of spatially
distributed noise.

Additive noise can be arbitrarily divided into two large classes ac-
cording to effect on the signal recelved:

1. Noise that affects the entire frequency-time
and space domain of signal existence;

2, Locally active noise pulsed in space and time,
focused by frequency.

Numerous statistical findings illustrate that additive noise that affects

the entire domain of existence of a signal field can usually be considered

Gaussian or close to Gaussian., The reason is that the noise field 1is, as

a rule, created by a large number of weakly interconnected spatially scat-
tered sources [103].

Locally active noise is often characterized by high probabilities of
large amplitudes and is not described well by the Gaussian law. It is
possible in principle, having devised a certain prqbabilistic model of
locally active noise [10], to solve the problem of synthesizing an op-
timal signal processing device against a background of varied additive
noise., However, this device proves quite complex. It should be kept in
mind that locally active noise is usually described by nonstationary
processes whose statistics change continuously and are often unknown.
Techniques of controlling such noise often amount to eliminating part
of the signal located in the frequency-space-time area of the noise.
The effectiveness of such techniques depends on the properties of the
space-time signals and increases with increase in the size of the fre-
quency-space~time domain occupied by the signal (using signals with a
large base [73, 76]).

Another way of controlling locally active noise is special coding or
using the ideas of adaptive compensation (133].

In this book we resolve the problem of synthesizing processing devices
that are optimal in relation to noise which operates in the entire do-
main of existence of the space-time signal, and this noise is not neces-
sarily treated as Gaussian. Locally active noise can be controlled by
using technical measures, which take the form of certain attachments to
the optimal receiving device or ‘the form of replaceable algorithms and
programs for processing signals in digital machines. In this case the
problem of analyzing such algorithms and devices in various noise set-
tings becomes timely. The present book, however, does not take up
these matters.
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We will assume that the noise field n(t, r) is stationary in time and
space with an average value n{t, r) = O, This model conforms to many
theoretical and experimental works.

" The appearance of the noise correlation function is determined by the
physics of the processes from which it formed and may differ greatly
in different channels. However, it can be saild with confidence that
a component of the white noise type, whose energy spectrum is uniform
in the pass band of the receiver, can always be provisionally identi-
fied from noise n(t, r). If this were not true we would have the well-
known paradox [140) which asserts the possibility of error-free recep~
tion in the presence of noise., Work [16] gives an explanation of this

. paradox. It shows that the degeneration of the solution (singularity)
owes its origin to failure to take account of white noise objectively
existing in the receiving units. The white noise component guarantees
the stability of the solution procedure.

The present book does not assume, in solving synthesis problems, that
additive n(t, r) is Gaussian. However, in solving problems of analysis
(evaluation of noise suppression capability), we will consider the
Gausgian white noise field with the correlation function

Bult t-1-08; 7, rt- AN = :Yg-a(a't)s(a ), (1.58)
where ny is the spectral density of noise output, to be additive noise.

This was done exclusively to achieve maximum clarity in presentation of
the material and to make the properties of the stochastic channel, not
additive noise, paramount. In all the material that 'follows additive
noise n(t, r) is considered to be independent of usable signal u(t, x).
This assumption is not always correct [16, 121]. However, for most
data transmission systems the dependence between the signal and addi-
tive noise is not great enough to make it advisable to take the noise
into account in constructing the optimal algorithm.

Let us now quickly touch on the characteristics of additive noise in
the optical wave range and the associated question of the applicability
of further results to processing optical fields.

We know that visible light has a dual quantum-wave nature, that is, a
quasiharmonic optical wave u(t, r) with central frequency f, can also
be treated as a stream of photons, quantums of energy of magnitude
hf, where h is the Planck constant.

The photon arriving at the photoelectric convertor (photo detector)
causes emission of an electron., This is the quantum transition. 1In
studying questions of the statistical reception of optical signals it
is customary [23, 78, 119] to consider that the fluctuation observed
is a sequence of quantum transitions taking place under the effect of
light, that is, that a signal at the output of the photo detector is
being considered.
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The basic statistical characteristic with this approach is the distri-
bution of probabilities of ‘the number of photoelectrons in a fixed
time interval, and the receiver is a photon counter with subsequent
logical processing. At the given level of technological development
with a large number of series-produced energy-sensitive elements, this
energy approach to the reception of optical signals is apparently
natural, because there is a critical practical need for its results.
However, from the standpoint of noise prouf reception, the approach
that considers both the amplitude and phase relations of the light
field being received using a classical description, on the assumption
that it is acceptable, is better in principle [45].

The vector of intensity of an electrical field, for example, contains
such relations.

Having posed the problem of optimal gelection of information from the
vector of intensity of an electrical field by some statistical cri-
terion, let us arrive at a definite algorithm for processing the optical
signal. The distinguishing feature of such algorithms is the fact that
signal processing in space, in time, and by amplitude and phase are, in
the general case, inseparable and demand a space-time filter for realiza-
tion.

The discovery of the holographic method of processing signals and realiza-
tion of coherent optical data processing systems [56, 74, 106) in com-
bination with the appearance of high-gpeed computers with elaborate
software [28] make the new algorithms of space-time processing of opti-
cal (and not only optical) signals highly practical. Nonetheless, many
of the algorithms for processing space-time signals in the following
chapters are marked for the future, not the present, level of develop-
ment of data transmission technology.

Additive noise in the optical range is subdivided into external and
internal. External noise is the natural background emission caused by
the chaotic emission of quantums by sources at heightened temperature
or reflecting emission from other sources. The sun, moon, stars, and
other planets make the primary contribution to the natural background
for ground receivers. With data transmission in space the Earth is
also a background source. The natural background emission is satis-
factorily described by a model of a Gaussian noise field in which the
spectral density of output may be considered uniform {78, 119] in the
pass band of the optical receiver.

The internal noise of a "wave" optical receiver, as is also true of a
radio wave receiver, is caused primarily by thermal noise and in re-
calculation for the input of the device is described by a model of a
Gaussian "white" noise field. In the "quantum" optical receiver
(especially the heterodyne type), which includes a photon counter,
quantum noise is usually paramount (119]. The spectral density of
Gaussian white noise at the output of the photo detector (it can be
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recalculated for the input also) in this case is formed of the spectral
density of the natural background emission N 4 and the spectral density
of quantum noise hfg/n, where n is quantum ef?iciency, the ratio of the
average number of electrons emitted or generated by the datactor to the
average number striking the photon datector. If Npy is large compared
to hfg/n, the "wave" and "quantum" approaches coincige fully, so addi-
tional "quantum noise" may be disregarded.

They can, with some precision, be neglected for even greater changes in hfoln.
This makes it possible to apply to quantum receivers the primary (at

least qualitative) conclusions on the influence of a stochastic channel

on the characteristics of data transmission systems which are drawn ba-

low in analyzing several wave receivers that do not use the phase re-

lations of space-time signals.

1.7. Linear Model of Signal and Noise Fields Obtained by the Method of
State Variables

The models of a space-time channel and additive noise which were dis-
cussed above were based on consideration of the properties of real phys-
ical channels. However, there is another, abstract mathematical ap-
proach to construction of a model of a gtochastic channel. It is sug-
gested by general systems theory [34, 42], and is based on the concept
of the space of states, which determine the behavior of ‘the system,

Let us consider the formal construction of a linear model of a channel
and noise on the basis of state equations. A linear model of an actual
vector stochastic continuous-time process y(t) [19] has the following
form

.

d;’ - —
— =l Gityvit
7 0 x+ mvnlen (159

v =HWx

where %(t) is the vector of state; F(t), G(t), and H(t) are matrices
which depend, in the general case, on time. They are related in a one~
to-one manner with the correlation function of the process y(t).

For a complete description of the model (1.59) it is also necessary to
assign the initial and boundary conditions for the state vector x(t).
It should be emphasized that this model of random functions (1.59)

may have nothing in common with the physics of the processes described
by these functions.

For example, suppose x(t) = h(t) is the pulse transfer characteristic
of a linear stochastic channel. Then from physical considerations,
x(t) is the response of a linear stochastic field, with constant
parameters that describe the channel,to a deterministic action in the
form of a Delta function.
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But when model (1.59) is used, x(t) ie the response of a linear deter-
ministic filser with variable parameters to a stochastic action in the
form of white noise v(t).

It is significant that model (1.59) permits a formal description of any
stationary random process with a rational (bilinear) enargy spectrum as
well as a broad class of nonstationary random processes. There 18 a
regular method of synthesizing a dynamic model according to the auto=
correlation function for stationary processes {94]). To do this the
energy spectrum of the process ig factored and then the task of syn-
thesizing the equivalent vector Markov process in form (1.59) is ac-
complished automatically.

For random functions of several variables (fields), there is at present
no such regular method of synthesizing dynamic systems with distributed
parameters [108]. The appearance of such a technique is being held
back, in the first place, by the absence of a theorem on factorization
of spectrums in the multidimensional case and, secondly, the lack of a
mathematical technique for constructing a vector Markov field from a
gcalar model of autoregression. As a result of this, there are dif-
ferent approaches to describing random fields by the method of state
variables. We will consider the two basic ones.

The state equation and observations corresponding to the function of
two variables (time and space) may be written in the form of a vector
differential equation in partial derivatives, including a spatial in-
tegral operator [4, 18, 19, 143]:

hgy)=Fm;Mﬂ+GVﬁ“JL

(3¢, 1) =20, T, reR, 1.60)

2 A=H(E Nxe A +alt, ),

F(r) and G(r) are linear spatial operators (integral, differential, or
integral-differential). The remaining designations are analogous to
those introduced above taking into account the appearance of new spatial
coordinate r. Field u(t, r) is considered to be S-correlated in time
and in space. For example, a stochastic system with distributed param-
eters may have an equation of state that appears as follows

or(t, r)"__ :‘.5"1(" n 4 < 7

o = g [ I J-bx (e, r)] L ui, ), 0<r<R,

att.n| _[otn .  (1.61)
ar ’-o“'[ a’ +x(‘l r)J,-R“oo, . .

2, ry=x(t, r)+nalt, ).
A specific feature of representation (1.60) is the division of operations

on the field into spatial and temporal. Projecting this fact to the
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algorithm of processing signals represented by model (1.60), it could be
expected that space and time processing in these algorithms would also
be separated. However, investigations show [19] that in the general
case this 18 not so. Extensive use of model (1.60) should be expectad
in later volumes of monographs [18].

The lack of mixed signal derivatives in mode1'(1.60) limits the class of
random fields which can be described exactly by this model. Specifi-
cally, this model does not cover fields with the correlation function

Bt —=t',r—r') = o2 exp (== |t —{'| ~a, [P ==r"])s (1.62)

which have the Markov property and are sometimes called Markov f£ields
(108). From the practical and theoretical standpoints Markov fields,
scalar and vector, are extremely interesting and merit further consider-
ation, . '

The primary equation of the states of a Markov vector field can be
written as follows
Or(t,r) , Ox(t, ) , OVx(t, 1)
, ot + or + otor

= F(, )% )+ G, )ult ). (1.63)

Matrices F(t, r) and G(t, r) in the general case depend on both space and
' ' time,

The description of signals by state variables methods is oriented to
further application of Kalman filters [18, 19, 42]}. Kalman filters are
most adaptable for realization on digital computing machines because
they make it possible to receive signal evaluations in recurrent form.
Orienting to digital processing, the state equation (1.63) should be
written in discrete time (t = kAt) and with a discrete space variable
(r = 1Ar). The discrete representation of the state equation for a
scalar Markov field is as follows

Ko 1 141) = pyx(&+ 1, D+ pyxlh, L 1)— pypy 2 (k, 1) +
+ Y (U=l (T—03) u (4, . (1.64)

hﬂ/ -

For a field that containg Nb x NT elements, k and 1 vary from 1 to Nb and
NT respectively. The following designations
Pr=exp(—a,Af), (1.65)
Py=exp(—a,Ar),

have been intrioduced in (1.64); they have the physical meaning of corre-
lation coefficients of neighboring field readings (corresponding to the

independent variables of time and space). Models (1.63) and (1.64) will
be used in the following chapter to construct estimates of the transfer

function of a stochastic channel.

Model (1.64) is a particular case of an autoregression model (108],
which has the following appearance for stationary uniform fields
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wlmy Lol ee VW (kAo L a)k B (b Du ey 1) (1.60)
W odm

In the continuous variation the differential equation in partial deriva-
tives of order (min) correspondsto equation (1.66).

In addition to the autoregression model, models of a sliding mean and
. autoregressions of a sliding mean may find broad use to describe a field
in given discrete readings.

The model of a channel that forms a space-time field in the reception
region is based on fepresentation of the channel by a space-time
stochastiec filter with variable parameters. Channels are classified as
salective and nonselective based on independent variables of time, fre=-
quency, and space according to effect on signals transmitted. Consider-
ation of the physical processes of wave propagation shows that in the
general case the observed field contains an additive-multiplicative mix-
ture of signals that have traveled different paths of propagation. The
system functions that describe the channel should be viewed as random
fields. In many cases of practical importance these fields have Gaus-
sian statistics, but the situations are common, in particular for an
optical channel, where the probabilistic model of the field is very far
from the Gaussian model (logarithmically normal amplitudes and uniform
phases).

The classical wave description of an optical channel and the noise cper-
ating in it is completely acceptable if the algorithms for processing
the fields are oriented to coherent optical systems and the number of
photons that define the signal is not too large.

The approach based on the method of state variables deserves attention
in the analysis of space-time channels.
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Chapter 2, Measurement of the Space-Time Characteristics of
a Stochastic Channel

2,1, Formulation of the Problem of Maasurement of the Space-Time
Characteristics of a Stochastic Channel

Numerous works by Soviet and foreign authors have been devoted to the
problem of measuring the characteristics of 1linear channels with ran-
domly changing parameters [46, 88, 90, 132, 139, 141]. In these works
primary attention has been devoted and primary results obtained appli~
cable to the measurement of the pulsed surge characteristic h(E) or
the transfer function h(f) of a time channel with constant parameters
using non-informational test signals. We should stress that in most
of the prominent works the problem of measurement is solved without
taking account of additive noise in the channel.

The algorithms of measurements obtained theoretically with this ap-
proach have, of course, a very particular form [139] and quantitative
conclusions concerning the quality of the practical heuristic algo-
rithms proposed have not been drawn [46]. The most basic published work
(139] 1s non-constructive in character. This work, which uses a de-
terministic approach to measurement, shows that it is theoretically pos-
sible to measure a channel characteristic as precisely as one wishes,
but it does not show how to realize this possibility in practice.

The results in works [146, 88, 132] are closer to practice, but they do
not give attention to the question of the influence of noise on mea-
surement, which changes the entire picture qualitatively. The work
closest to the formulation in our work is [141], in which the problem of
measuring a transfer function of a time channel is resolved by optimal
filtration.

We have obtained and investigated algorithms for measuring the charac-
teristics of the most general type of space-time channel in the presence
of additive noise of arbitrary intensity with the use of various a priori
information concerning the characteristics studied and noise in the
channel. We consider measurement of channel characteristics both where
special probe signals are used and with the help of informational sig-
nals. Primary attention is devoted to measuring the instantaneous val-
ues of channel characteristics.
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Let us formulate the problem of measuring the instantaneous space=
time characteristics of a channel. The total field at the output of
the channel can be written as follows

2, ) ultyr, )b nlt A,
0<tgT, réA, .0

where n(t, r) is spatially distributed additive noise; u(t, r, 2) is
the response of a linear channel to input signal a(t, 3):

ult 1, 3) = Re{ h{t, & 75— ab, @2
0

A linear space-time channel is fully described or, as they say, identi-
fied (88, 139] by any system function, in particular h(t, &, r), In
the general case of a stochastic channel with geattering, function

h(t, £, r) should be treated as the realization of a certain random
function, that is

Wt 8 Nmhl b r o) - @3)

where w is an element of probabilistic space fi.
In further consideration of particular realizations of the this random
function we will drop the probabilistic variable w.

For particular realizations of signals, noise, and system functions we
will assume, as follows from physical considerations, that the condi-
tions of squared integrability are met:

TT ‘ e e

j 2 dtdtd R
Mi"‘“' g P dtdidr<eo 24
T

T
{ {me nrdtdr < oo, §|s(t)l’dt < 0.
[/ Y .

For random functioms conditions (2.4) should be met with a probability
close to one.

Now let us formulate, in general form, the problem of measuring the
space-time characteristics of a channel. Realizations of the function
z(t, r) are accessible to observation. There is a relation that links
an observed fluctuation with the transmitted signal s(t) and channel
characteristics:

2(t, 1) = Re f R E, ri)é(l—g'-)dg-}-;x’(.t, r) 2.5)
0

The problem of measuring a space-time characteristic of a linear chan-
nel h(t, E, r) is reduced to solving a first-order Fredholm integral

equation (2.5). We know [98, 99] that the problem is incorrect in the
sense of golution stability, that is, large deviations in the solution
h(t, £, r) follow small deviations in the values of function z(t, r).
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Indeed, suppose the function h(t, £, r) is the solution to equation
(2.5). Then the function hy(t, £, r) = h(t, £, r)+sin pf will be the
solution to the same equation with an observed function

alt, =zt + js«—a smpgsdi. (25

Where p is quite large the values of the integral in the last equation
may become vanishingly small while the values of the function sin p&
are finite quantities. This means that large deviations in the solu-
tion to equation (2.5) may correspond to small deviations in the ob-
served function. In practice, the process of measuring channel char=-
acteristice inevitably involves the effect of noise, which makes a sig-
nificant contribution to fluctuation at the channel output and this
also makes the problem of measuring channel characteristics incorrect.

Several works by Soviet mathematicians have been devoted to the solu-
tion of incorrect problems [8, 9, 75, 85, 98, 99]. It has been
demonstrated that the problem under review may be considered correct
and its solution may be stable if we seek it in the group of smooth
functions., Academician A. N. Tikhonov introduced the concepts of

the class of regularizable - incorrect problems and developed a general
solution method called the regularization method, Works [98-100]
contain a detailed description of the regularization method.

[

It is easy to clarify the essential physical features of the regular-
ization method by considering the situation where the function h(t, £, r)
in segment of time [0, T] can be considered invariable (channel with
slow fadeouts in time). The use of the regularization method (8, 9, 99]
leads to the following regularized spectrum of solution (of the channel
transfer function):

] o S “l. A Z'((o, wg)
H* (o, 0p) = M@, 0g) 5 (0))"!_—. (.7
IS @)f*

where M(w, w_) 1is an even non-negative function and S(w) and Z(w, wg)
are the speé%ra of realizations of the input signal and observed fluc-
tuation.

It can be seen from (2.7) ‘that the regularized solution H*(w, w_)
differs from the "classical" H(w, wy) = 2(w, wp)/S(w) by the factor
(l + M(w, w‘_))—l

1S , whose values, as common sense suggests, must be
small at those frequencies where the intensity of usable signal S(w) is
low. This 1s achieved by appropriate selection of the type of func-
tion M(w, wg) and values of the regularization parameter a.

In development of A. N. Tikhonov's regularization method, stable solu-
tions to integral equation (2.5) considering the stochastic charac-
teristics of the studied functions, signals, and noise are sought in
the statistical set of smooth functions [75, 101]. A serious
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shortcoming of this method of searching for stable solutions to in-
tegral equation (2.5) is the lack of unambiguous recommendations on
choosing the optimal regularization functions M(w, wy) and regulariza-
tion parameters a in the particular situation. Therefore, in what fol-
lows we will use this method when, for one reason or another, it is
impossible to use other, more constructive optimal or quasioptimal
solutions,

Two different approaches to measuring the functions that describe a
channel characteristic are possible in the search for optimal solutions:

a. measuring the coordinates of factoring the func-
tion on the chosen basis;

b. measuring the ongoing values of the function ob-
tained by filtration.

The first approach is more convenient when measuring a channel char-
acteristic to organize some particular type of scattered reception as
a whole when engineering realization depends entirely on progress in
signal processing and memory device technology.

It 4s advisable to use the second approach in problems oriented to the
procedures of sequential (recurrent) processing of signals trans-
mitted by stochastic channels. We should observe that as a result of
the limited nature of the space from which the signal is extracted at
the receiving point, the first approach is preferable for space signal
processing. Let us consider the specific features of both approaches
to measurement.

Measuring the coordinates of factorization. We will consider that to
measure a certain function £(u) of one or several variables means to
measure the coordinates{fy} of expansion of this function into a series

on a certain basis { ¢x(u)}: flu) = z‘fk‘Pk(ul)ﬂ" u€A. (2.8)
k

This definition of measurement of a function is broad enough to cover
many practical process and field measurment situations. The coordinates
of expansion (2.8) fj are linear funggigpals

o= [ H e du, 2.9
A . .

Thus, the problem of measuring space-time characteristics of a channel
comes down to a problem of estimating parameters, the coordinates of
factorization of the measured characteristics on a certain basis. The
statistical theory of estimating parameters has now been quite exten-
sively developed [64, 102, 103]. There are effective methods that
enable one to obtain good estimates of parameters both where a large
amount of information on the parameters being estimated is available
and in a situation of a priori uncertainty. It is now pessible to
formulate the problem of measuring the characteristics of a channel
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with scattering as a classical problem of estimating parameters. This
is expansion of the function into a series on a certain basis.

8D = ot E . (2:10)
L]

Field z(t, r), which is defined by relation (2.5) and depends on set of
parameters { hy}, is accessible to observation. We must make the best es-
timate of parameters { hy }, in conformity with the criterion chosen,
using known values of realization of the function z(t, r) for this pur-
pose. Applying contemporary methods of parameter estimation to the model
being considered here, which 1s expressed by the relation (2.5), it is
possible to construct a large number of algorithms for estimating the
coordinates of factorization of the space-time characteristics of a
channel. We will require that the estimates of parameters hy be linear
functionals of the observed oscillation:
. r SO
By = A (20 Nt N dtdr + By, @.11)
A

1]
where A and B, are coefficients and wg(t, r) is a weighted function.
Such measurement of channel characteristics may be called linear [139].

We will give more good arguments in favor of linear measurement of
space-time characteristics of a linear channel with scattering below.
For now we will just observe that for the very important case of a
Gaussian field,linear estimates of coordinates of factorization are
optimal in the class of all possible estimations. Thus, with this ap=
proach the problem of measuring channel characteristics has two parts:
choosing the method of expanding the characteristic being measured into
a series and constructing algorithms for estimating the coordinates of
factorization. '

Measurement by filtration. The approach based on the techniques of
linear filtration is effective for solving the problems of measuring
random functions, in particular for solving the problems of identifi-
cation of linear stochastic filters. In the theory of linear filtra-
tion we should single out two branches that correspond to two dif-
ferent approaches to describing the measurement of functions and noise
in a channel. If the function being measured is defined by its corre-
lation characteristics, we arrive at a Wiener filter. 1In this case
the optimal, by the mean quadratic criterion, linear estimate h(E, r)
is the output magnitude of the linear system whose surge charac~
teristic g(t, u) is determined by the corresponding linear regression
equation (for a scalar spatial variable):

r t .
Ae 0= [ [2me—t r—wddp. @219

. 2 . .
Where processes are non-stationary and the area of field analysis (in
time and space) is greatly limited, it is extremely difficult or impos-
sible to solve the problem by the Wiener filtration technique.
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In this situation, another approach to linear (and also nonlinear)
filtration holds great practical interest. This approach is based on
descriptions of the fields of signals and noise received not through
their correlation functions but rather through equations of the state
of the system which generates them while excited by white noise. In
principle, it would be possible to assign the equation of state of a
gystem in the study of filelds by Maxwell equations or Langevin equa-
tions [135), and on this basis it would be possible to construct the
corresponding time-space Kalman type filters to estimate the param-
eters, and then on their basis construct corresponding devices for
optimal fields processing, However, at the present time it is diffi-
cult to see the paths leading to engineering realization of these space-
time devices for signal processing. A more practical way to construct
Kalman type filters will be considered below.

2,2, Expansion of Space-Time Characteristics of a Channel into Series
and Discrete Models of a Channel

Let us pass on to consideration of various methods of expanding space-
time characteristics into series on the given basis. Such factoriza-
tion makes it possible to single out a calcuable set of coordinates
[64, 139] that define the channel and also introduce various discrete
models of a random space-time channel.

Let us review the factorization using the example of system function
h(t, &, r).

We will represent the pulsed surge characteristic h(t, £, r) in the
form of an orthogonal factorization in a certain limited domain,

This is always possible because the signals being transmitted along a
communications channel may be considered, in approximate analysis,
finite in time [0, Tg] and in frequency [-Fg, Fg]. In practice the
channel causes limited scattering in time and frequency, but the area
of the field which is taken into account in signal processing is lim-
ited. Area A may be defined from the relation

A=10, T] X [0, T} X (0, R}, (2.17) i

where [0, T] is the interval of field analysis in the temporal domain,
with T3Tg*; [0, R] is the spatial interval of analysis of the field
being received (for the sake of compact notation, the scalar spatial
variable is considered here).

In principle it is possible to conduct an analysis of the signal
being received in time and frequency domains that are narrower

than the corresponding domains of the signals transmitted. We will
not analyze this situation, however, and will focus attention on
devices which extract all possible information from the field do-
main being analyzed.
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In general form, the factorization of the pulsed surge character-
istic of a channel is written as follows:

h.(l' §. ry ey (t, 5. f)’}"”(f' 1 ’)""Zxk‘?k(h §o f)‘l"!’kﬁ“k('t §t r). (2.18)
) k

The real and imaginary components of the coordinates of expansion of
(2.18) are linear functionals whose values are determined by the values
of the conecrete realization of function h(t, £, xr) and selection of the

base: ' .\'*qu(f. E Nou(t & r)did b dr,
A

. (2.19)
Uk=£u(f. B ATk & ) didE dr,

The choice of functions ¢ (t, £, r) may be dictated by various re-
quirements. Among them are the requirements for best approximation
of the function being expanded into a series with a minimum number of
series members (2.18); lack of correlation among coordinates of fac-
torization; convenience and simplicity in practical realization of
algorithms for factoring and regenerating functions, and the like.
The purpose of the factorization plays a large part in the choice.
This purpose is determined by the criterion of factorization quality.
We will observe that in problems of optimal processing of space-time

- signals the requirement of minimization of mean quadratic deviation
between the right and left parts of equation (2.18) is not mandatory
and practical considerations may dictate a choice of type of functions
91 and number of members in the expansion of (2.18) that is very far
from optimal from the standpoint of approximating function h(t, &, r).
Let us consider several concrete forms of factoring channel charac-
teristics which are of greatest theoretical and practical interest.

Factorization by the Karunen-Loew theorem. To shorten the notation,
we will assume here that the real and imaginary parts of the pulsed
surge characteristic of a channel are independent and have iden-
tical correlation functions

- Bl ', 8, By vy ) =Byl ', B, B, 1y P) = B(t 4 B0 B4 14 ). (2.20)

Application of the results to the case of non-identical correlation
functions of quadrature components is simple and will be done below
as necessary.

According to the Karunen-LoeW theorem [31] it is possible to receive
non-correlated coordinates of factorization (2.18), selecting as
ot & =0l & 1) eigen functions of the second-order Fredholm
integral equation whose nucleus is the correlation function

Bh(t, t', &, &', r, r'). The integral equation is written inthe

following form
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WPU. ED ’)"j Bh(ll l'o §o§'. r ">tp("o §'| ")df'dﬁ'd". (2.2“
A

where X is the eigen numbers of integral equation (2.21). :

Using the fact that s(t) = s(t:)+f§(t), the composite field at its out-
put is defined by the relation . _ N
Wt 1) = S0—Bke(h 8, Py |
and taking factorization [2,18] into account we receive this repre-
gsentation of the (observed) real part of the signal at the channel out-

put: i amteiiab b mmbas s ek & m_l.-, et e ——— ,.; e =
ult, r)a= ReZ(xg- Lyr)seits 1 mzxm (o Ak usetts 0. (2.22)
x x

The composite signal si(t D)=sa(t 045t 1) 4g defined by the convolu-
tion g

S‘k('o ')=I 5("‘&(&\‘« & f)d&. . (2.23) |
0

It is not difficult to show that if the transmitted signals are narrow-
band signals, then signals sy (t, ¥) and 8j(t, ¥) are interrelated by a

Hilbert transform by variable t.

— S5 ;

20449 ’
e R .
3“[[.'(.}-) —n— L
uter)

St + =5 Figure 2.1, Discrete Model of a
Space-Time Channel.

be == .-

) — &7
Judr) *

Formula (2.22) was received on the assumption that series (2.18) per-

mits term-by-term integration with weight s(t), which follows from

physical considerations. According to model (2.22), which is depicted

schematically in Figure 2.1 above, the signal at the place of reception
46
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may be treated as the sum of space-time signals that have traveled
over a set of non-correlated paths. In each of these paths the signal
undergoes regular distortions introduced by a space-time filter with
variable parameters and a (known) charactex}_g_g;_%(t £, r), and also
receives the random amplitude factor hy + y“, and the random
phase shift ¢ = arc tg(yy/hy), which are determined by composite coef-
ficient hy = hyeldk, The fadeouts described by model (2,22) are in
the general caae selected in space in time, and by frequency.

As was observed in Chapter 1, the situation of a spatially divisible
correlation function of a channel where

Bhtt, 8 EL h =Bt b B, £ Blltr, ). (2.24)
has become widespread in real communications channels and is thus sig-
nificant in the analysis of information transmission systems.
In this case integral equation (2.21) breaks into a ayst:em of two in-
tegral equations : -
¢u.a=.jmang§qmw.mmwy1
0¢ 2.25

R
M" (Pl z;) — g B'lll r, ) ¢|l (r' dr’,
0

where «ig!(t. §) and «igM(r) are the eigen functions and eigen numbers
respectively of integral equations (2.25). Under conditions of a spa-
tially divisible correlation function factorization (2.18) takes the
form

B8 =S v o (0l 1 ). (2.26
i m

Correspondingly, the signal at the receiving point

uft, r)=Re }(: 2 (tm = 1 Y1m) s (’)‘P("(’) = E 2 [ tmsml0)+ Yimsm()] B} (7). (2.27)
m T “m .

Signal sp(t) = sm(t)+ism(t‘.) is defined by the convolution
5 | sn.(n=j ie-Deht DdE. (2.98)

Model (2.27), which is depicted in Figure 2.2 below, makes it possible
to consider the space-time signal at the receiving point as a set of
I non-correlated signals transmitted by a group of "antennas" with di-
rectivity diagrams (patterns) ¢Ili(r), i = 1, 2, ..., with the signal
corresponding to each of the "antennas" undergoing regular frequency-
time distortions introduced in the channel by the assemblage of filters
with variable parameters with characteristics ¢y(t, £) and also ran-
\ dom amplitude and phase distortions defined by the composite coeffi-
clent hip = x4y + Liyinm.
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Figure 2.2, Discrete Model
of a Channel with Spatially
Divisible Correlation Func-
tion

In the case where just one "antenna" of the entire set of "antennas" re-
mains, fadeouts become nonselective by space. But if one filter remains
from the set of variable-parameter filters that form the signal at the
receiving point, the fadeouts should be treated as nonselective in time
and frequency. It is clear that the degree of selectivity of fadeouts
in the given channel (with assigned physical properties) 1is determined
both by correlation intervals wcor’ Fco » and p.oy and by the domain of
field analysis in time T, by frequency f, and in space R.

The model of a channel considered here, including a set of filters with
variable parameters and characteristics ¢Im(t. £), is inconvenient for
practical use. It is difficult to realize a set of filter with variable
parameters. Therefore, it is very attractive to substitute filters with
constant parameters for the variable-parameter filters. The characteris-
tic of a variable-parameter filter should be treated as a function of two
variables: t and . We know [129] that a function of many variables can
be appreximated as exactly as we like by a set of functions with separat-
ing variables, specifically e(, &)= Eq-,,a,(r) By (E).

P

This makes it possible to replace the variable-parameter filter with a set
of constant-parameter filters and multipliers. For modern information
tranemission technology, however, it is easiest and most convenient to re-
place the variable-parameter filter with a constant-parameter one whose
characteristic maximally approximates that of the filter being replaced.
If the criterion of closeness of the filter characteristics is taken to

: ’ : + .imum functional T
be the criterion of minimum functional o=” 160t E) =1 (E)[2dE s then the

00

pulsed surge characteristic of the physically feasible filter with con-
stand parameters should be determined from this relation [139]

. | :
‘P(§)=7'.—___§'5T(f' 8 dE. (2.29)

It is perfectly obvious that such an approximation is permissible only in
channels whose parameters do not change too fast in time, that is, in
channels with weak time selectivity.

Let us turn to the practically important channels with a divisible
(factorable) function for all variables:

Beth £, B ry=BL¢ ) BV E VBN (L ). 2.30)
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JIn this case a system of three integral equutions corresponds to
integral equation (2.22):

= W oot e B, )o@y,

c&_—\\.

K“ 'pll ) HJ BL‘ (E. av)q,ll (" de, (2.81)
0

R
n“'w"'(r)uj s e, ot () e,
0

In this case factorization [2,18] takes the form
W = XY N i L S 6 @b, 2.3
tm &

At the receiving point the signal corresponding to the channel model
(2.32) 1is written as follows:

utty 1y Re 33 30X (rums = 1 yamidim (1) () 91 1) =
I m a

=NV Lrumin ) + it (01 61" (1) a0, (2.33)
I ma

Signal sy (t) = sp(t) + 1?,',,(1:) is determined by the convolution

i) = {5t ol 1) dg. (2.34)
0

According to model (2.33) the space-time signal at the receiving point
1s formed by a group of non-correlated signals transmitted by a set of
antennas, subjected in the channel to frequency distortions in a filter
with constant parameters, with characteristic ¢Hm(£), modulated accord-

_ ing to the known law ¢Ik(t), and having received random amplitude multi-
pliers and phase shifts.

As already observed above, many real communications channels with scat-
tering may be considered uniform by frejuency and space, at least in

analysis. The correlation function of the pulsed surge characteristic,
which depends on the angular coordinate, for such channels has the fol-

lowing form . .- 88,8, )= Bh(t, ) 8E—E) S —D).

It must be considered that the linecar dimensions of any real antenna
are limited [70], which is what determines its discrimination 6¥. For
example, when a slot antenna of size R is used the discrimination
60 = 1/R. This means that the process h(t, £,0) accessible to ob-

- servation by a real antenna according to variable & (t, £ parameters)
may be considered the result of filtration of a Delta-correlated proc~-
ess by an ideal low-frequency filter with a pass band [-1/26 , 1/26 ].
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The normed correlation function of such a process is written as follows

- (64]. RN ()’ e Sin {1 == 0)8h), 2.30) i
=08 (2.36)

- The eigen functions and eigen numbers ¢11I(0) and x TIT corresponding
to (2.35) are determined from the equation

. : 0 wt
- : Q1 () == S P w.)sin([u\:—n'.u)l);:nl T 12.36)
=08

We know [70, 113] that the eigen functions of integral equations (2.36)

are extracted spheroidal functions which we will designate ¢p('). p=1,
2,... Analogously, assuming that the field of the signal is analyzed
after passing ideal low-frequency filter with boundary frequency F, it
is possible to write an integral equation that corresponds to factor-

ization of the channel characteristic by variable §(t and O parameters):

T : §

Wt by o (ot gy SIR2BFE=E)

X o't (B) gw R s (2.37) -

which defines the eigen numbers xn and eigen functions ¢n(£), which
are extracted spheroidal wave functions.

We know [113] that where the condition 8/ §9>> 1 4s met, an approxi-
mate solution of integral equation (2.36) is the aggregate of func~
tions o ’ sn(o/8 —in)

Y —1n yi=1,2, 0 0. (2.38)

o't (1) =

Accordingly, where conditior TF>>1 is met, an approximate solution to
integral equation (2.37) is the functions
s S ';'sln(mgF-—mn) - 2.39,
Pm (E) 2“5"‘—‘ m' ““_ o m 1,2, 0. ( )
For the antennas and signals with large bases used in practice in
channels with scattering, the conditions
01891, TED 1 (2.40)

can usually be considered to be met. This makes it possible to write
the factorization of the pulsed surge characteristic of a channel
with uniform fadeouts in space and by frequency in the following form

4 - SV, U7 s (st —im) _sin(@af Fe-ma)
1, &, U)=e D) 1
nits & ) Z%,,k_,(x,mwiym) Ty oy Sl U2

{2.41)
Correspondingly, the signal at the receiving point

{, )==Re Y i ‘(g._..'."i.' Ly SO —ia)
ut, ) .;J;.Z('lmh i Ymk) s Fc)q",() I

SN (t—-ﬂ-) ! ”(l—-ﬂ-) sin (/83 — i) o
.‘a m‘;_‘[xlmks Fe + Yemr s Fe o —in a0, 12.42)
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The difference between model (2,42) and model (2.33) is in establishing
the concrete type of "antenna" directivity diagram and replacement of
constant-parameter filters with a dalay line with uniformly distributed
(with an interval of 1/F) branches, Let us emphasize that the indi-
vidual paths by which the signal arrives in the reception area here con-
tinue to be non-correlated. We may note certain properties of expand-
ing the characteristics of a channel with scattering into series ac=-
cording to the Karunen-Loew theorem. Work [107] shows that this fac-
torization has the following two remarkable properties: 1) it minimizes
the mean quadratic error caused by retaining just a finite number of
terme in an infinite factorization series (2.18); 2) it gives a

larger amount of information than any other factorization concerning a
function represented by a truncated series, no matter how many members
of the series (2.18) are retained. '

These properties make the Karunen-loew factorization a powerful tool
for measuring the characteristics of channels with scattering. The
fact that the coordinates of expansion into a series in this case prove
non-correlated greatly simplifies further use and analysis of the re-
sults of measurement. This is why the Karunen-Loew factorization 1is
often called optimal. However, expanding into a series according to
the Karunen-Loew theorem also has two significant shortcomings:

1) it requires a large amount of a priori information (knowledge of
the correlation function of the measured characteristic) which is often
lacking or very unreliable; 2) the eigen functions of factorization of
channel characteristics sometimes have highly complex structures and
practical realization of them in the form of space-time filters with
variable parameters proves complicated.

In practice, non-optimal expansion into series has become widespread
in measuring realizations of random processes and fields. Let us look
at some of these non-optimal factorizations.

Some non-optimal expansions of channel characteristics into seriles.

A very large number of expansions of function h(t, £, r) into series
in solving the problem of measuring the function may be suggested. Ob-
viously, not all these factorizations will be close to the "optimal"
Karunen-Loew factorizations in terms of properties. The loss of op-
timality here results from the rejection of certain a priori informa-
tion on the channel, as a result of which the system of functions
selected as a basis may prove very far from the set of eigen functions
of integral equations (2.21). As an example of poor selection we may
refer to the attempt to expand the pulsed surge characteristic of
multibeam channel h(t, &, r) by variable & irnto a Taylor series. Be-
cause the eigen functions of expansion here are Delta functions, it

ig difficult to expect good convergence of the power series and high
information content in the coordinate of factorization of function
h(t, £, ). Analysis of signal processing schemes ghows that coatem-
porary practice has many examples of successful choice of a base for
measuring the characteristics of a channel with scattering, choice is
dictated by the intuition and experience of the developers.

51
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP382-00850R000100060010-3

~ FOR OFFICIAL USE ONLY

Factorization according to the V. A, Kotel'nikov theorem [60] is im=
portant for finite functions, which characteristics of a channel may
be considered during analysis, For example
‘ . a7 sin(0/80 ~=1in) sin(2nk F—mn)
‘1('-E-ME;%%(“M'I‘WIM) T STy e

sin(2n(F—hn)
X “ontF—kn ' @4

The quantities Xjp and ym are uniform readings of the function
h(t, £, 0) on the axes corresponding to the variables t, §,9.

According to (2.43) the signal at the reception place is written in
this form

R R S =) (- ) Aot
PR S L
X —L———)—“";;r__’::pggg [nms (l- -':—) + mmﬁ'(f - -'%)] X

ain(0/80 —1in) sin(2nFT—An)
MU —ia MM —hkn

(2.44)|

The physical interpretation of lﬂodel (2.44) 1is the same as that of
model (2.42),

Now let us consider some expansions into a series of function h(t, &, r)
that take account of the physics of change in the function according to
individual variables in real communications channels. Considering
function h(t, €, r) along one of the axes, for example along axis t,

we will designate it h(t, * ) and designate the coordinates of its ex-
pansion into a series xy(*) and y(+) respectively.

The finite function h(t, * ) can be expanded to a Fourier series in
the segment [0, T] using the periodic continuation procedure:

h (8 ) =2 (e () 1pa () exi:'(l 2::-5_’5- t) . (2.45y
0

.

This model interprets signal fadeouts in time as a consequence of
Doppler shifts in the frequency of the transmitted signal (times 1/T)
introduced by a channel with scattering.

The dynamic properties of a channel with scattering are characterized
by the behavior of function h(E,* ). We may identify at least three
categories of mathematical models used to approximate the pulsed surge
characteristic of a dynamic object with incomplete a priori informa-
tion (in the absence of complete data on the statistical character-
istics of the observed signals and functions under study):

1. Approximation of the function h(g, ¢+ ) by a series of orthogonal
functions in finite segment [0, 1] which, according to available

' 52

- .FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3

\,
\



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP382-00850R000100060010-3

,FOR OFFICIAL USE ONLY

a priori information, contuins the most significant part of the func=
tion being approximated. Chebyshev polynomials, power and trigono-
metric functions (77], and Delta functions may be used as orthogonal
functions here. The merit of this approach lies in the possibility of
gatting by with a comparatively small number of members of the series
when the type of factorization functions is correctly chosen. This
can only be done with a definite amount of a priori information.

2. Approximation of the function h(f,* ) in the segment [0, T] by a

power function using the Goodman-Reswick method [130}. In this case

the segment [0, T) 1s broken into a series of intervals of length A.

With this approach a large amount of a priori information is not re-

quired, but it is apparent that this involves a loss of optimality in
factorization compared with the first type of factorization and fac~

torization according to the Karunen-Loe theorem.

3. Representation of the pulsed surge characteristic using the "local
approximation method" which combines the advantages of the first two
forms and is a generalization of them, According to the local approx-
imation method the pulsed surge characteristic h(E,*) is written in

the form ‘ —
ﬁ(E. -)-2 thm( )wm(i). (2.46)
{ psl mumsl '
where for ApctgA(p~])),

Tom (E) = { % (6 (2.47)

for g<cap, txa(p—1),

p is a whole number determined by the magnitudes of segment [0, T] and
interval A T
p-[Z] -

¢m(5). m=1, 2, ,..are functions that are orthogonal on a segment
of magnitude A.

As can be seen from (2.46), segment [0, T] is uniformly filled by in-
tervals of magnitude A, in each of which the function h(f) is approx-
imated by the sum of orthogonal functions in the given interval.

- Where the channel model (2.46) is used, the signal at the place of
reception is written in this form

P M p oM
utty ) =Re X Dot im0 = X, P tom(ts spm () +

pmal mea] p=l m=a|

+ Yom (8 P Som (1), (2.49)

where frm(t)=Spm(t)+iSom(t) 1s defined by the relation

Ap
= | st—8 om E)dE. (2.50)
Alp-t)
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Where the Goodman-Raswigk method is used, modal (2.59) is simplified

P p :
ults ymRe Doty Aapt)m ot Asp ()44l T (251
pmi o=l

where, in conformity with (2.50)

0= se- |
!pf‘n s{t=2)dt.
A=) (2.52)

The local approximation method may also be used to represent function

h(t, * )'

Analogously to (2.46) and using the same designation, we obtain
. ._.--”R"“'P"""“" . . - . .
hit, ) =§| p}_]'m(-)w . (2.59)

Where the Goodman-Reswick method is used, wodel (2.53) changes into
X
Bt )= b () Lalh)s ' (2.54)
=l
where _
| for A(k—1)KtS A%,

- 2,
=1y eor 1<ah—1), t>Ak @59

Factorization (2.54) plays an important role in the construction of
contemporary signal processing deviceg in channels with scattering.

It is apparent that the magnitude of ii terval A is ultimately deter-
mined by the interval of correlation T.q, Of function h(t, * ). However,
it cannot be stated that the choice A=t ., 1s best; further, it is
possible to show [104] that this is not true and that quantity A should
be selected to be less than the interval of correlation Tq gy

By combining the various factorizations given in this section it is
possible to obtain a large number of notatiéns for the pulse surge
characteristic of a channel.

We will give just one of these representations, one that is very im-
portant in practice. By substituting a Kotel'nikov function (on the
time axis) for the power functions (2.55) in factorization (2.43),
we obtain

. X : -
Y sin(0/88 —in) sin(2n FE—mn)
hu.e.o)=2§§|(xw+_im) V8 —Tn 2FEemn O
(2.56

Correspondingly, the field at the place of reception is determined by
the relation

54
'FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP382-00850R000100060010-3

FOR OFFICIAL USE ONLY

u(t, b a‘zz Z(»"lmk“iwmk)i(f-- &)M—tﬂl Ly(l) e=
m u

. F) T 08 =in
. Y \“[ ( - _n_t,) ~ m\] sin (0/8) = | 1)
= 20 Slrme(t = )+ 3 (1 )] ST 1y 0, o

Model (2.57) assumes power (step-wise) changes in the parameters of a
channel in time.

The specific features of the objective of changing a channel charac-
teristic, constructing an optimal signal receiver that uses the data of
this measurement, may lead to representations (models) of the functions
under study that are unusual from the standpoint of traditional mea=-
surements,

A striking illustration of the preceding statement is the representa-
tion of the pulsed surge characteristic in this form

hits &0 D =ap0p(ty & N+ 1 alts B
vhera |¥pl= n}axlm; Iynl-unlaxly“ (2.581

and, correspondingly, reprasentation at the place of reception in the
form W)= s Uy 1) a8 0. 2.5

According to model (2.59), the channel is considered to have one path,

and this single path considered by the model has maximum values for the
quantities |x,| and |yp| among all the paths of propagation existing at
the given moment in time and in the given realm of space. Let us note

that in the general case this path can prove "hybrid" and contain coor-
dinate p of factorization of a real component of the pulsed surge char-
acteristic and coordinate n of an imaginary component.

Representation of a channel by two, thtée, and so on highly "weighted"
paths of propagation may be considered an elaboration of model (2.59),
which we will call adaptive because it changes in time and in space.

From the standpoint of traditional measurement, perhaps the most un-
usual looking channel model is the one that makes measurements them-
selves unnecessary. This' is the model that ignores fluctuations in
the channel characteristic and assumes that a stochastic channel is
fully described by its regular component, that.is, that factorization
of the characteristic has the following form

h, &, f)=§.;(mn+imw'r§(l; .E,, r. (2.60)
&

It will be shown in Chapter 4 that in many situations the use of an
approximation of a real stochastic channel as a model of an ideal
channel is fully justified and provides high noise suppression in re-
ceiving discrete messages, close to the highest possible.
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In concluding our consideration of discrete models of a channel, we
will touch on the question of the properties of mean statistical char-
acteristics of coordinates of factorization.

2,3, Second-Order Statistics of the Coordinates of Factorization of
Channel Characteristics

Let us suppose that (2,18) is a Karunen-Loew factorization of random
function h(t, £, r) which has an average value

Myhen &)} = Mu((n Be)) 4t Moyt & 1)) with the correlation functions of
components e :
Be (h O B 8 P b6 B AR L B B T ,
2.6
By(t, ', E &, ry ")EO?/(" E AR E B ")" @0
where  oten(h b P)uBeyn(h t, & L 1 1) is the dispersion of the quadra-
ture component,
In the case of a stationary homogeneous field,
\ . FERe R
Oy s & 1) =gy e ] (2.62)
Regylts B4 B0 B0 1y P =Ryt =1 E—'0 r=r).

In what follows we will chiefly be considering homogeneous stationary
fields. We will consider the quadrature components of channel char-
acteristics to be non-coherent in the generalized sense, that is, non-
correlated at coinciding moments in time, at identical frequencies,

and at the same points in space. This is not a severe limitation on
the statistical model being used because no assumption is made concern-
ing the equality of dispersions of quadrature components (we assume
asymmetry of dispersions o2y # ozy).

It is not difficult to compute the mathematical expectations of the
coordinates of factorization (2.18):
man = My (xx) = [ M (e, B dorits &, N ata B,
N - (2.63)
=My (i} = [ My (0t 8 Bt 8, N ataar.
A

For a stationary homggeneous field, owing to the orthonormality of
the functions ¢ and ¢, it follows from (2.63) t@a}

gk =, = . (%60

The dispersions of coordinates of factorization (2.18) are equal to
the eigen values of corresponding integral equations

where { Xk} and {}i} are sets of eigen values of the equations:
o3y =D{n) =, 0, =D {m} =%, (2.65)

56
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3

el

R .v
Prepgih oS
R Rty Yo



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP382-00850R000100060010-3

FOR OFFICIAL USE ONLY

nwéfaé);IERﬂYﬂEfé?ﬁ7ﬂwufaﬂrﬁbQé&m

~ o~ ' ~ (2-%)
wo(t, &, f)“SBU(" LR - AT r)di'd g’ dr’ '
A

respectively.

It is not difficult to show that the coordinates of the Karunen-Loew
factorization are mutually non-correlated, and in the case of Gaussian
fields they are statistically independent.

The Karunen-Loew factorization has been most fully studied for random
processes described by functions of one variable, time {18, 31, 44}.
However, the theory has been elaborated for the case of functions of
several variables [82, 83, 89]. It is relevant here to note several
properties of the eigen functions and eigen values of integral equa-
tions of type (2.66), which are characteristic for functions of several
variables.

The monotonicity of eigen numbers [82, 83]. We will number the eigen
numbers of equation (2.66) in order of descending size w2H>...30 .
Emphasizing the dependence of eigen numbers on area ), we will write
Xk (A). Then the eigen value Xi(A) is a monotonically increasing func-

tion of the dimensions of area A, that: is

‘Kk (A) < m. (A'). AcaA. (2.67)

greatest eigen number [18, 82]. Suppose %) 1s a homogeneous
stationary field with the following spectral denait:y [82]:

o0 Smwrm“m , (2.68)

The greatest eigen number xmax(A) satisfies the inequality

Huane (A) < m_ﬂj sx (-(;)- (2.69)
©

Asymptotic behavior with expansion of area A. We will consider a sta-
tionary homogeneous field in the infinite area

xo(f, &, r)=“ja,(c—t.§ E.r—r oW, . ) drdE &t (2.70)

The solution to the integral equation may be written in the form

@t & 1) =exp{iogt+ iay E+iwgr). (2.71)
where ~=00wt, O g, (g << 00,
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Thus, the composite exponential function is an eigen function of in-
tegral equations (2.70). Substituting (2.71) into (2.70), we calcu-
late the value of the eigen number

) S By zb) e"‘i”‘-q’?"’ daﬂ S‘x (3)» (2.72)

-t

that is, the eigen number for the given vector frequency is equal to
the value of the spectral density at this frequency. We see that the
set of eigen values and eigen functions have become uncountable, that
is, instead of expansion to a series (2.18) we are in fact dealing with
an integral. Considerations of convenience in using eigen functions
(2.71) and the simplicity of computing eigen numbers (2.72) compel us
to use them for approximate expansion to a series of the sample func-
tions of homogeneous stationary random fields given in limited area:
TR<<TIY ~THSEL 12 “Ri2<r <R2.
In this case, it is possible to select eigen functions from the rela-
tion et - I ; »
PN Y r)=exp‘|2n-7-,-f+i2n-1-:-§+l2n—k7r}, @.79)

and eigen numbers from the relation

n = S (-"- 2y —‘-). @

In formulas (2.73) and (2.74) the multi-index k corresponds to the
triple index mni. The intermediate case of limited areas for some vari-
ables and unlimited (in practice) for others, for example

—eoLIE 0 TSI T2 —REZI <R,
does not produce fundamentally new results: the factorizations of func-
tions are combined.

Factorization. To shorten the notation we will consider a random field
of two variables x(u, v) with correlation function .
1f the function of two variables By (%, p) may be written in the foxm of
the products of two functions of one variable (factored)

“Bex, )= BL( B (o), (2.75)

Then the eigen functions and eigen numbers are also factored:

where the eigen functions ¢I and the eigen numbers xI correspond to cor-
relation function BI;(t) and the functions ¢II and numbers X I correspond

to BIL (p).

oa e, 9 =gl () g (), %! = o (2.76)
The property of factorization has already been used above., It can be

demonstrated by substituting (2.76) into an integral equation of the
general type of (2.66). For illustration, let us consider an example
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with practical meaning. Suppose tha correlation function of a field
is described by the expression

Be(umu', 0—0") meo}exp (= |um—u'|=ay|o=0'|} 2.77)
Corresponding to the correlation function (2.77) is spectral density
2a, %,

§{ous ) mad (2.78)

The integral equation which determines the eigen function has the fol-
lowing form ¢ v . - . e
o exp{—aulu—u'| —aplo—o' D@y o Ydu'dy’ = wp (U, 0):

Sv =y . (2.70)

By direct substitution it 1s easy to check whether the eigen numbers
and eigen functions factor:

‘Oa (u, 0) = @} (W) @ (0), pme b aelled, " (2.80)
where [18])
L/ — {~ uwnavzn
e (l +s|n' blU)lln ’
. 2,V
@ (u) = '
U'/’(l _sinbU )m ! o
U
—U<ugU, (2.81)

where the values of by are determined from the transcendant equation

Sy RS o
(lgbUti-au)(!gbU.-— - )-o (2.82)

and determine the eigen numbers
wf 2y (ol b)) Eml, 200 2.83)

The eigen numbers xII and ‘the eigen functions ¢II(v) corresponding to
the second variable are computed analogously. We see that the eigen
functions are sinusoidal, given on part of the plane,and their fre-
quencies are not multiples of one another. The eigen number cor-
responding to eigen function k is equal to the value of the energy
spectrum at the frequency of sinusoid k.

2.4. Measurement of Channel Characteristics Using Test Signals
(Gaussian Field)

If during conventional measurement of processes all a priori informa-

tion is a multidimensional distribution of the probabilities of the

functions being measured or certain numerical characteristics of this
59

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP382-00850R000100060010-3

FOR OFFICIAL USE ONLY

distribution, such information will be inadequate for identification of
the channel. It is also necessary to have information on the input ac-
tion of the channel in order, by the response to it, to judge the
parameters of the channel. We should consider three different classes
of input actions, signals by which the channel is measured:

1. test signals (or probes);

2., information signals corresponding to trans-
mission of discrete messages;

3. information signals corresponding to the
transmission of continuous messages.

In the first case, a signal s(t) of known form is fed into the sequence
of information signals at definite periods. This test signal does not
carry information and is used to measure the parameters of a stochastic
channel and organize the work of the receiving unit (adaptation). In-
put to the channel is a deterministic process.

In the second case, a sequence of signals of known form sj(t), 1 = T
arrives at the input of the channel. Each member of the sequence
carries a coresponding discrete message and is used simultaneously to
extract information about the state of the channel. Input to the chan-
nel should be treated as a quasideterministic process of the type

T M e . - e
s(f)y= 2 s, 0<t<T, (2.84)
leal
where §; is a random quantity that assumes two possible values 8 = (1, 0),
P(By=1}=p ) ] (2.85)
POy =0)=1—pl)
where p(a;) is the a priori probability of message 1.

Finally, in the third case the process at the input of the channel is
stochastic, and in the general case non-stationary.

Because we are considering the transmission of discrete information,

we do not analyze the measurement of channel parameters for a stochastic
input signal. We will merely observe that the starting point for mea-
surement of the pulsed surge characteristic of the channel in this

case be the following relation [64]

Byl )= (K. DB DAL, (2.86):

where B, (t, t') is the correlation function of the input signal and
Bxy(t, p') is the mutual correlation function of the input and output
processes.
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In this section we will consider the measurement of channel charac-
teristics by test signals. We assume that we have available the full
complement of a priori information concerning the functions being mea-
sured., First of all let us consider the case of the Gaussian statistics
of a channel.

We will review the problem of measuring the coordinates of factorization
of channel characteristics from the standpoint of estimating parameters.
It is possible to observe the space-time field

- : mn=um0+nMﬁ.M . (2.87)
vhere n(t, r) is spatially digtribuced noise and
sn=Fnatrnatn . @
A=l

The Bayes estimate of the coordinates of expansion for a symmetrical
function of losses on the assumption of unimodality of the a posteriori
density of the parameter being estimated and its symmetry relative to
mode should, according to the general approach of [64], be computed
from the relation - - I

A © ‘w0 o
v, = f y v, W [¥ |2 (¢, 7)) dv. ‘ (2.89)
=

vhere ¥ = {vp) = { X, X,y «ves Xys Yqs Ya» «oes YN} 18 the vector of the
parameters being measured.

The a posteriori density Way [\I (¢, r)] o is _computed from the relation

SeoL T
wonlv2(, )] = — WO A (2.90)-

oo §wniiize, o |?1~d“5
—_ -

o : '

vhere w,y (¥) is the a ptiori density and 1[z(t, r)V] is the plausibility
relation.

Suppose that the parameters being estimated (coordinates of expansion)
together represent Gaussian quantities with multidimensional denéity

l .
w,"(y) = WGXP[ (V—V) Kv (V—V)] . (2.9])

If additive noise is also described by a model of a Gaussian random
field with a zero mean and a correlation function B,(t, t', r, r'), the
plausibility relation may be written in the following form

TRFN
12, r)lv]——exP{” [gxhuu(t.rwynvu(t.r)]x
A

00

=]

N
X[z(l. r)—E st )+ & s,(l r)}dtdr} (2.92)

=]
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In this vy (t, r) and $k(t, r) are determined from solving the spectral
equation which will be discussed below. Substituting (2.91) and (2.92)
into (2.90) and performing orthogonal transforms on the integration vari-
ables (rotating the axes of the coordinates in 2N-dimensional space),
it 1s not difficult following [64] to obtain an expression for the Bayes
estimate of the coordinate of expansion in the general case under con-

- sideration. This expression is not given here because of its cumber-
gomeness. We will only observe that the signal processing algorithm for
calculating the estimate is non-linear and the estimate of the coordinate
corresponding to path of propagation k is determined by solving a system
of 2N algebraic equations. Owing to its complexity the optimal Bayes
estimate can hardly be recommended for practical use in devices that mea-
sure a channel. To obtain a practically useful result it is advisable
to introduce a constraint oriented to simplification of the estimate
algorithm and to assume that the correlation properties of the test sig-
nal allow the paths to be separated at the receiving point

N N T R TR o~
Y S sl Do ndtdr+ vigw | [ St yontt rydedr +
iz2] ke=) (] 00

TR IR ~
+X yhj S 5, (1, N on (t, 1)t dr -+ by Xy f j si(t, O (¢, r)dtdr = 0. (2.93)
00 00

In addition, we will assume that under conditions of selective fadeouts
the orthogonality of the signal and its Hilbert conjugate is preserved
TR - TR :

f js,.(t. N, Fdtdr = Hs,.(t, Pog(t, rydtdr=0.  (2.94)
00 ' ]

It is advisable to replace conditions (2.93) and (2.94) with a more
rigid but also clearer constructive condition

TR TR - :
5‘ j si(t, up(t, P dtdr = S j 5 (¢, ) On(t, Pydtdr=0, (2.95)
00 , 00

which, for the sake of brevity, we will call the condition of complete
separation. It can be said that equation (2.95) defines the class of
signals that permit.optimal measurement of the characteristics of a
space-time stochastic channel. In fact, if the test signals used do
not make it possible to satisfy (2.95), the optimal estimate algorithm
is so complex that technical realization of the algorithms should be
placed in doubt. Even in the case of inexact satisfaction of condition
(2.95), it is advisable when constructing the estimate algorithm to
ignore incomplete separation of paths. Below we will compute and
analyze the characteristics of estimate algorithms where conditions
(2.95) are not met.

Assuming that the condition of full separation of paths (2.95) is

fulfilled, from (2.89) we receive an optimal Bayes estimate of the
coordinate of expansion:
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T R
A ohis’“» ryun(l, r)dlde e myp
Xp = ] .
h TR )
l+ﬂd§”“ﬂ“ﬂhﬂww
0
(2.96)
TR
A °3A5 S'“- r)en(ly ¢)dide < mp
) .
Y= ”r = .
"*'03.;5?'»('- r) i (¢, r) dt dr

We see that in the case of a separation of paths at the place or re-
ception the Bayes estimates of Gaussian coordinates in a setting of Gaus-
sian noise are -linear.

Let us go into somewhat more detail concerning the quantities and func-
tion included in optimal estimates (2.96). The functions v, (t, r) and
vk(t, r) are solutions to the integral equations:

PR e .
S jBn(’v tor e o, rydt' dr = s\ (8, 1),
0

TR : . (2.97)
5 S Bolt, ' 1, PO\, ) dl dr' =55 (8, 1)
0

4
ol

and are determined by the channel model chosen and the correlation func-
tion of noise. In the case of a "white" noise field when

B¢, b r r) = %au —)6(r—r"), (2.98).
from (2.97) we obtain
Un(ty 7) = —= splt, 7 Talty 1) = —=Sa (l, 7). (2.99)
¥ N

In general, the form of converted reference signals w.(t, r) is more com-
plex than the form of initial signals sy(t, r); this 1s also true for

Hillbert transforms. In fact, even if signal sy (t, r) allows separation
of space and time variables

s ) =sn)e () (2.100)

signal vy (t, r) may not permit such factorization. For reference signal
vi(t, r) to permit separation of space-time variables, in addition to
fulfilling condition (2.100) it is sufficieat that the correlation func-
tion of the noise field be spatially divisible Bn(t, t', r, r') =

BnI(t, t')BnII(r, r'). 1In this case, to each of the integral components
of (2.97 there are two corresponding integral equations
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T
§B{. (& o (e dE' = s (0
(2.101)
R
oy, dterar =o'
and correspondingly va (ty 1) = ta0) o/ (). (2.102)

The index k here corresponds to the double index ni. It is not diffi-
cult to show that for narrow-band transmitted signals

sh“- l‘) ﬁAk(‘t f)COS[(l)ol +(Ph(l, r)ll

where (t, r) and ¢p(t, r) are slowly changing functions and signals
v (t, r§ and ¥ (t, r), just like signals s (t, ) and 8y (t, r) are re-
lated by a Hillbert transform according to variable t. Therefore, in
particular, for the case of factorization of variables

BhN=50 0. (2.109

From the point of view of simplifying realization of estimate algorithms,
separating time and space variables is an exceptionally powerful factor
which makes it possible to separate space and time processing. The
questions of realizing algorithms for space-time processing are con-
sidered in greater detail in the next chapter.

A consideration of the case of small values of intervals of noise corre-
lation in time T, 4., and in space pgqr, in comparison with the interval
of analysis is of°Findamental practicaf Tnterest:

T/Teor.n>>ls RlPcor.n>>1: (2.104)

Fulfillment of conditions (2.104) makes it possible (22, 109] to change
in (2.96) to infinite boundaries of integration and to write

o o i \
A °ik_£ __i' (t, rYox (¢, r)dtdr 1k
xk= «w ©
1+ | fatt. noett. nater
Bl (2.105)
a:k S Sl(‘- £Yur(t, r)dtdr +myx
Yn= ==
1+a | [Be @ nae
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According to Parseval's theorem [92, 109], the conditions are met

j }s,.(:. Pon(t, Adtdr e ]’ 33?,(:, Ao, rldidr.  (2.106)

In what follows we will consider conditions (2.106) approximately ful=-
filled with a finite domain of integration as well. Let us introduce
the designation

dy = tf 'Ss,(f,r)u,.(t.r)dtdr. © o @107)

0 o
In the case of white noise field d,.uz;-’—j' js,’(l. r) didr
- (]
Mo J J
determines the ratio of signal energy in path“of propagation k to the
spectral density of noise output. It is useful to introduce the param-

eters o
2h2, = olydy, 2k = ol dy, (2.108)

which characterize the signal/noise ratio for orthogonal components.

It can be seen from (2.105) that the basic operation that must be per-

- formed to compute the estimates of the coordinate of expansion is com-
putation of the mutual correlation between the field accessible to ob-
servation and the reference field. This operation can be accomplished
by means of a coordinated space-time filter. Because such coordinated
filters are considered in detail in Chapter 3, here we will only observe
that if we are dealing with a filter that has characteristic

g, n=u~t, R—n), 2.109)
when fields z(t, r) are fed to its input, at the output at moment in

time T with spatial interval of observation R it is possible to obtain
the correlation function (see Figure 2.3 below)

T R= | [2¢,nu, nadr. (2.110)
e7) - 1078
) 4md = Figure 2.3. Space-Time Filter

This makes it possible to depict the estimator of the coordinate of ex-
pansion in the form shown in Figure 2.4 below
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Figure 2.4. Estimator of the Coordinate of Expansion, Constructed on
the Basis of a Coordinated Space-Time Filter

Yey: (a) Attenuator;
(b) Reading at Moment t = T,

Let us move on to a consideration of a more general approach to measur-
ing the coordinates of expansion of channel characteristics, setting
aside the rigid assumption of the Gaussian character of the functions
and noise being measuved.

2.5. Linear Measurement of the Coordinates of Expansion of Channel
Characteristics Using Test Signals

By assigning different laws of distribution of the coordinates of expan-
sion of channel characteristics it is possible to receive a series of
estimation algorithms from the class of Bayes algorithms. Each of them
will be optimal within the framework of the probabilistic model corre-
sponding to it. Practical use of Bayes algorithms for measurement of
channel characteristics is hardly possible, however, for a number of rea-
sons. In the first place, the probabilistic model of estimated functions
and noise is usually not known exactly. Under these conditions, inves-
tigation of the stability of the Bayes algorithm in relation to the de-
viations of real probability distributions from the model become very

- important. And it may occur that with small deviations from the model
the Bayes algorithm will have characteristics that are far from those
expected., In the second place, as some examples show that when non-
Gaussian parameters are being estimated, Bayes algorithms of estimation
are extremely complex and require large amounts of a priori data. These
causes make it necessary to base construction of estimation algorithms
on a principle that differs' from the one used with the Bayes approach.
Specifically, simplicity of realization of the algorithm should be used
as a quality criterion. Therefore, it is most sensible in this respect
to speak of linear estimation algorithms. Moreover, in the Gaussian
case Bayes estimations are linear. Inasmuch as many channels have prob-
abilistic models of components that are close to Gaussian, as was
demonstrated in the preceding chapter, it may be expected that linear es-
timation will prove close to optimal in a broad class of channels.

The linear method of estimation has received considerable attention
lately (64, 66, 100, 117] and the use of nonlinear estimations in the
tasks of processing space-time signals requires serious study, going be-
yond the framework of this book.
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We will look for linear estimations of the coordinates of expansion of
channel characteristics in the form

TR
- A”N'“’ Aalt, rydtdr + By,
@111

9.=7f.5 f 2{t, APt AN dtdr + By

To optimize estimations (2.111) we should find the optimal values of coef-
ficients Ay and By (or A, and By) and the type of functions y,(t, r)

- (or Jx (t, 1)), which furnish the extremum of the quality index. Under
the conditions of the problem being solved here it is advisable to use
the criterion of minimum average risk for a symmetrical loss function,
that 1s, to look for these quantities and functions from the condition

A N
1L (x, x) == F (x — x), (2.112)
vwhere F is an even function and I is the function of losses.

Appendix 1 shows that where there are imposed constraints (linear esti-
mates for a symmetrical function of losses), average risk does not de-
pend on the probabilistic laws of distribution of the estimated param-
eters and noise., The type of optimal linear estimate depends only on
the first two statistical moments of the measured function and noise and
is invariant with respect to their distribution laws. Therefore, the
Bayes (linear) estimates obtained above, which are optimal within the
framework of a Gaussian model, remain optimal in the class of linear es-
timates for any other probabilistic models of the estimated parameters
and noise.

This line of reasoning presupposes meeting the condition of full separ-
ation of paths at the point of reception, for only in this case are the
Bayes estimates of Gaussian coordinates linear. Using the methods of
functional analysis, it may also be shown [90] that estimates

TR \

o2, b“'z(c r)o,(t r) dt dr 4 mg
0
= 14242
= @.113)
T R
A O ,,”z(:. rfort, ydtdr - myy
- _ [
o 1+2h§,I

are optimal in the class of all possible linear estimates even where
the condition of full separation of paths (2.95) 1s not fulfilled.

Let us emphasize once again that the distinguishing feature of the es-
timates (2.113) is that they were obtained without any assumptions of

a certain concrete law of distribution of the parameters and additive
. noise. This means that for optimal linear measurement of the pulsed
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surge characteristic of a channel with scattering it is sufficient to
know its first two statistical moments and the correlation function of
noise. It is difficult to overestimate the importance of this fact
for the theory and practice of message transmission by channels with
scattering.

This section has discussed the measurement of channel characteristics in
isolation from the ultimate goal of measurement, which is to use esti-
mates of the coordinates to organize the work of the receiving unit.
However, the specific features of the ultimate goal have an inevitable
influence on measurement algorithms. This is linked first of all to the
rate of change of channel parameters in time., The estimate of charac-
teristics must be organized in such a way that it is possible to use the
information obtained by channel measurement during interval of time T,
which is allocated for transmission of at least one information signal.

In general, measurement of a channel by means of test signals trans-
mitted in series with information signals (parallel transmission of
probing signals is considered below) makes sense only in channels with
fadeouts that are nonselective (slow) in time when

Tcor>>T. (2.114)

For a channel with slow fadeouts it is convenient to use representa-~
tions based on the model of a delay line in time

BE ) = Zil(rwy(rns(;— 2) (2.115)

and a model of the "delay line by frequency" (in angle-place coordinates).
HEL O =x(f, 9)+iy(f, 9 =Y [x@) =i _n 5
(0 =x(, O+iy(f, 9 ;[\(ﬂ),ly(ﬁ)lé(f T). 2.116)

In the first case the pulsed surge characteristic is being measured; in
the second it is the transfer function.

Let us consider linear measurement in the channel described by model
(2.115), assuming that conditions (2.104) are met, making it possible
to treat the space-time domain of observation as infinite. The signal
in path of propagation k has the form

Sult, 1) = s (: — -’:-) ¢ (), 2.117)

The reference field may be written in the form
onlty ) =un () 41 (), (2.118)

and, in this way, Spatial processing is separated from temporal. The
reference signal v (t) is determined by solving the integral equation
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w

5‘ [ (t e ) U (£l a( : ';’) @2.119)

e tn

which can be solved succassfully in the frequency domain [22, 109], The
simplest way to realize the algorithm of processing in time is found in
using a whitening filter with characteristic G(f) determined from equa-

tion .
[GNEN () = Ny2, (2.120)

where N(f) 1s the energy spectrum of noise and N,/2 is the spectral
density of equivalent white noise output.,

A schematic diagram of the estimator is given in Figure 2.5 below.

ot r) R
x

Figure 2.5. Coordinate Esti-
mator Built on the Basis of
a Delay Line.

Key: (a) Delay Line

Let us look in more detail at measuring readings of the transfer func-
tion of a channel. The dispersions of the quadrature components of a
transfer function are determined by the expressions o

G, (0, 0) =M, {{x (@, 0)—x(w, oy w,)] }

Gy (w, o) =M, {ly (o, ) — e, ogl} . (2.121)

where x(w, “g) and y(w, wg) are average values of the quadrature components.

It is possible to obtain expressions for the optimal linear estimates
and readings of the transfer function by operating in the same way as
was done to obtain estimates (2.113). Adopting, for the sake of brevity,
the designations x(ug, Wg ) = x(w, w g) and y(wg, gp) = y(w, w g), we
write these estimates as gollows

RelS (o)l Re Z (0, wg)l -+ Im[$ ()] Im[ Z (0, wgl

, N(w, wg)
1S @'+ G oo

x )}
2o, 0= +

+ X (@, (g)

G, (0, wy) . '
R S @ P l

69 ,
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP382-00850R000100060010-3

FOR OFFICIAL USE ONLY

Refl $ ()] 1m [ £ (o, wg)l llnlé(é)lliclitm. )] + (212
1 Niw, g ’
Is((l))l + Gy((\)o u)g;
y(w, wy)

Gy (0, )
L4 g | §

o, 0

)

As was observed in the preceding chapter, the dispersions of quadrature
components of a transfer function in a homogeneous channel are identical:
Gy (w, wg) = Gy(w, © ) = G(uw, ws). In this case, combining the two equa-
tions included in (Z.122), we obtain an expression for the optimal
linear estimate of readings of the tramsfer function of a channel

A 1 Z (0, wg) iT(w, wg) '
H (o, = . » Og v Wg
(.09 SR O I ) 4 S we) | S’

G (w0, vg)|S ()| N (0, wp)
! Y
where H(w, w,) = x(wg) + iy(w, wg) is the average value of the transfer

function of %he channel.

1f the average value of the transfer function H(w, wg) = 0 1t follows
from (2.123) that B o

H(w, w)=

! Hz.‘mv ‘9&) DY
| N{v, (l)‘) S(m) ' (2'l24n
v 1
G (0, )| S (o)
Comparing (2.124) and (2.7) we see how the function and parameter of
regularization were chosen for a linear estimate of the transfer func-
tion of a channel. '

Expressions (2.123) and (2.124) permit a clear physical interpretation.
The optimal linear estimate of the reading of a transfer function in
each frequency of a time-space spectrum is the sum of the weighted a
priori average H(u, &y) and the weighted “classical" transfer function
computed by observed data Z(w, wg)/S(w). In those spectral components
where the average intemsity of noise compared to the average intensity
of the usable component of the observed field is large

N (0, 0)/[G (0, wg)|S (@ ]3>1 , its a priori average is adopted as the
estimate of the transfer function; in the opposite case where

N (o, 0 IG (0, ©,) ]S (@) ]9<«T  the "classical" solution computed for
the observed realization, the ratio of the spectra of the input and
output signals, is used as the estimate of the transfer function. If
the noise intensity is large and the average value of the transfer
function is small, one more, physical interpretation can be given to es-
timates (2.123) and (2.124). Assuming that N(o, og)/G(o, @) |S() |21
in (2.123) we obtain

G ((l), (Dg)
N (v, wg)

H (@, vp) = Z(0, 0g) $*(0) + H(w, 0. (2.125)
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Entry (2.125) allows us to say that an optimal estimate of the transfer
function can be obtained at the output of a linear space-time filter
coordinated with the signal being transmitted.

In conclusion, let us consider characteristice of the estimates ob-
tained.

Characteristics of optimal linear estimates. Unconditional average es=-
timates and estimate dispersions (2.113) can be obtained easily in the
form

. - N N

A 1 4

W} = i ot —me P 20, m,
h2nd, A

N ' n
D(.,\},.} =02, 203, +En¢k w ,
14 ‘2!1:‘;A N (l n 2}'302 '
N : {2.126)
A
M{n) = m 1 ok o
1{un} o+ ey g_! ok Myp,
N
D) = o | 2k 1 Yt a4 285)

In (2.126) the following designations are introduced.

2 2 9J2 sadi g?
2h? o = hp o2, 211'1“ =2 dyy a2,

TR 2.127
d“”=$js"(l’ r)U.,,(!, I')d’dr. ( )
0

0

Analysis (2.126) shows that where the condition of full separation of
paths at the receiving point is met, the optimal linear estimates are
unbiased; the dispersions of estimates tend asymptotically (where
h2yk, h2yp+) toward the dispersions of the estimated quantities. In
this case, if the result of [64] is used the conditional dispersions of
estimates : -

A A
D{xnlxn}  O{ynlyn}

tend to zero. Where the conditions of complete separation of paths are
not met, estimates (2.126) are biased and their dispersions do not tend
toward the dispersions of the estimated quantities independently of the
signal/noise ratio (the quantities h2yk and hzyk) and the conditional
dispersions of estimates do not tend to zero.

\
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As an example, let us consider the case k™ My’ 02 xk ® ozx k=1, N,
We dssume that the quantities dgp dimindish as members of a geometric equa-
tion with index q<l where dh - d' dep = dPs p = T, N

From (2.126) we obtain an expression for the blas (displacement)

2mydal  y . qN

- . A= 2 1 !
14-20%d ~~q
aos (2.128)
14-20%¢ 1=-¢
and dispersions of t:he eet:imat:e _ ‘
e R 22({ 202d ‘ l—.; N
D{an) = ot —= = o+
14202d (1 +202d)? 1—q
N 40t dt | —g
"1 -202dp 1= |
24 . . (2.129)
2 202d
. Disy}s= of| ——= e
14203d  (1+202d)* 1—¢
40t ot
+—L—;L , N = oo
(142022 1 — ¢

Where the signal/noise ratio increases (d+»), from (2.128) and (2.129)
we obtain (for N # «)

Ineres
M=7¥rm.mm—ﬁb¢—4—] (2.129) *

from which it can be seen that with poor separation of the paths at the
place of reception, where the quantity q differs substantially from
Zero, the bias of the estimates may reach large quantities and the
dispersion of estimates may be very far from the dispersion of the esti-
mated quantity. '

Characteristics of estimates of the transfer function. It is easy to see
that estimates of readings of the transfer functica (2.123) are unbiased.
The unconditional dispersion of the estimate of the transfer function at
a certain frequency w = 2vf is easily computed and has the form

D{H ((l) 0)[:)} =G ((D, (l)a) [G (w, wg) IS (u)) lil, W (0, ©g) i (2 130)
1--{G (0, wg) 1S () R/ N (@, )

Accordingly, the condit:ional dispersion is determined by the formula

V \ )
D{f (@ 0| H (o, mg)}lq——‘—(%—{%ﬁ,g—, 2.131)

"~ ' G (n, wp)

It can be seen from (2.131) that for those components of the space-time
spectrum where the average intensity of the usable signal significantly

* [The misnumbering — duplication of numbers —- is in the Russian text.]
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exceeds the average intensity of noise G(m.uw)]§(m)|VN(m.(M)§>L
the dispersions of estimates of readings of the transfer function are
close to the dispersions of the quantities being estimated.

Now let us look at the integral characteristic of estimate quality, the
mean quadratic error of estimation of the transfer function as a whole.
1f NF readings of the transfer function are taken on axis w and N8
are taken on axis w,, then (average error output) the measurements are
determined from the relation.

r 0

N .
- 2 2 N oy, wgp)/] S ()t )
NF N o VIV (o o) /1S (WK G (wk, wgo)]

ke n—_— pa—.—

(2.132)

The technique of "indirect" measurement of readings of the pulsed surge
characteristic, through readings of the transfer function using the
discrete Fourier transform, is very widespread. In recent times the
Cooley-Taki [93] algorithm, which has received the name quick Fourier
transform, has been used to compute the discrete Fourier transform.
Computing the estimates of N readings h(f,, w i) through estimates of
function readings H(uwy, “gi): using the dgscrete Fourier transform it
is possible to perform the computation according to the formula

-121—-x
hEp o) = E Aovoge ¥, (2.133)

k=-— —

]

It is assumed here that readings on the axis of frequencies are arranged
uniformly with interval Af = 1/2T, while on the time axis they have in-
terval At = 1/2F, in other words gp = pAt, p = -N/2, N/2; wgy = 27kAf,

k = =N/2, N/2.

With this method of measuring readings of the surge characteristic,
they all, as can be seen from (2. 133),have the same dispersions

D{h (§p' o)) = V D{H ((o,,, @)} (2.134)

k== \' 2

It follows from (2.134) that for the dispersion of estimates of read-
ings of the surge characteristic calculated from estimates of readings
of the trangfer function, the following relation is fulfilled.

it Dk, o> s Dtton oq). (2139

Inequality (2.135) says that computation of estimates of readings of
one system function of the channel through estimates of readings of
the other is far from the best way to construct estimates.
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In completing our consideration of linear estimates of coordinates by
means of test signals, let us briefly consider the questions of mea-

suring channel characteristics in conditions of a priori uncertainty

and the associated questions of measuring the mean statistical param-
aters of a channel.

2.6, Incomplete A Priori Information and Measurement of the Mean Sta-
tistical Parameters of a Channel

Widespread practical introduction of the results of information trans-
mission theory is greatly retarded by what is known as a priori uncer=-
tainty (64). It involves the lack of complete a priori information on
the processes and noise being estimated, In the case of linear mea-
surement of channel characteristics the a priori uncertainty finds ex-
pression in lack of full information on the first two statistical moments
of the functions and noise being measured, which is required to construct
optimal algorithms for linear estimation (2.113). The problem of de-
termining the average values and correlation functions of character-
istics is solved theoretically and experimentally for many real chan-
nels [32, 80, 135]. It is relevant here to consider certain aspects of
this problem that control the specific features of channel measurements.

Let us look first at estimates of mathematical expectation. For the
gake of determinacy we will speak of measuring the average value of the
transfer function. When oscillation el2mft {5 fed to the input of the
channel, we have at the output a usable signal in the form

Bt =R, t, et 2.136)

We will assume that the degree of coherence of the oscillation emitted
is high and that by synchronous heterodyning it is possible to isolate
the transfer function H(f, t, r) itself in the receiving end, with the
inevitable additive noise, of course, so that the observed field has

the form i, =i =il tn 2.137)

To estimate the average value of the transfer function it is necessary
to assume that in a certain limited domain of the space~-time plane it

is described by a model of a homogeneous stationary field, for example
in rectangle O0<!<T, 0<r<R" . The general expression for linear es-
timation of the mathematical expectation of a field is written in the

form RS ) _

it ,)=S \‘z‘u, t, r)att, r)dtdr, {2.138)

20

where the weight function satisfies the condition
TR
jgau.dﬂb=l. 2.139)
00
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Work {20] shows that in the presence of nolse it is advisable to choose
a weight function that differs from the constant, that is, mean
arithmetic estimates should be used

TR

L, ’)”_rvl:eu § b\ 2 1, 1) didr. (2.140)
0

Estimate (2.140) is unblased. The dispersion of the estimate is com~

puted from the relation L
o I 7‘“R‘°7°R" . s ) -

D (H)mmé § M [Bytt=t', r=r") B (t-= 1", r—r')]d!dl'dr.dr'.

(2.141)

Let us omit parameter f in formula (2.141). It is more convenlent to
calculate the dispersion in the frequency domain [20] from the relation

@

D(Fy= [ {{Gy(01, ug)+Gawr, 0] 10 (01, 0 Fdudwg, (2.142)
—0 =2
where
R
O (o, wg) = j j elort10g g1, (2.143)
00 '

As an example, let us consider a transfer function whose spectral density

is bilinear:
TR PATN

2 Lokt
"ar(d 4 o2) (0f+ad)

Gy (0, wg) =0 (2.144)

We assume white noise with a spectral density

‘ Gn, — Qg <y <Oy,
Gp (0f, Wg)={ —2tFSwrg2nF, (2.145)
0, = outside this domain

Let us observe that quantities G, and °2H are dimensionless. Substituting
(2.144) and (2.145) in (2.143), it is not difficult to obtain an expres-
sion for the dispersion of the estimate

' 40% LG 1 |
QtoagRY @+ T 2 RQy TOF '

D{fy= (2.146)
It can be seen from (2.146) that the dispersion of the estimate of

the average value of the field contains two components. One of them is
determined by the characteristics of the field for which the estimate
is constructed and the smaller it is, the more uncorrelated values of
the function being averaged will be contained in the domain of measure-
ment. The other component is determined by the noise statistics.
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For many channels the intervals of correlation of noise in time and in
space are considerably smaller than the corresponding intervals of the
usable signal »

0 Loy F&ay ' (2.147)

In this case, Lf the average nolse output is not excessively high com-
pared to the average output of usable signal, the dispersion of the
estimate of the average value of the transfer function will be de-
termined basically by the characteristics of the field that describes
the transfer functiom.

Let us observe that it is possible to construct an estimate of the
mathematical expectation of the field using only the spatial variable
or the time variable.
©qm | R .
— | ; —— ; ;
H(f, ¢ r).='-T—nI‘ S‘Z(f. t, r)dt, Hif, 1, f)=ﬁ' Sz(,n t, rdr. (2.148)
0 H

In order to maintain the quality of the estimate, it is necessary that
the number of uncorrelated values of the function contained in segment
[0, T9!] and {0, RO1] (2.148) is the same as in rectangle [O, 70] and
[0, RO] (2.140).

Now let us consider the characteristics of measuring the average
values of the coordinates of expansion of channel characteristics.
Beginning from the relation

TG r)=j'h(l. E st BdE (2.149)
0

and using factorization of channel characteristics we arrive at the equa-
tion that interrelates the average value of the observed signal with the
average values of the coordinates of expansion

N
z (¢, r)=zmsk(l, r). (2.150)
k==1

If the average value Z(t, r) is known, it is simplest to solve equation
(2.150) in the case where the signals in certain paths of propagation
(separation of paths) are orthogonal. In this case the estimate of the
average value of coordinate of expansion k can be computed from the
equation -

T

- 1 —_—

hk=?k-552({, r)se(t, r)didr. (2.151;
0
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it is simplest to obtain the estimate of the average value of the signal
being received by repeating transmission of the test signal P times dur-
ing an interval that does not exceed the interval of a stationary state

PT <o, (2,182)
from which we obtain the upper boupdary for the number of repetitions
P& T T4 1), (2,169)

The algorithm for obtaining the estimate of the average value of the
coordinate of expansion is written in the following form

L &R
T 2 j' 20, 7)salhs r) didr. (2.104)
Pl (P“) r

- A great advantage of algorithm (2.154) is that it is realized using a
space-time coordinated filter designed to obtain estimates of the co-
ordinates of expansion of channel characteristics., This means that no
additional apparatus is needed to study the average value of the chan-
nel. Furthermore, information on the average values of characteristics
can be refined in the process of data transmission, using test signals
designed for constructing ongoing estimates,

The problem of correlation analysis of random fields is very common in
many different applications [35]. There is a whole series of estima-
tion algorithms based primarily on spectral representations of observed
oscillations. Here we will deal with another approach to measuring
correlation characteristics, one that is more appropriate to the spe-
cific features of the problems under consideration. For convenience
we will not consider the average value of the signal, assuming it hypo-
thetically to be equal to 0. If we begin from the expansion

N
hity &0 1) = ¥ hgutt, §1), (2.155)
k=]

it is possible to approximate the estimate of the correlation function
with the expression

1/}.«—:'. E-8.r—r)=[h(t, § R, B, F)] =

N N
-_-?‘_lgl(in.ﬁ;)w«. B qelt, B (2.156)
=] ges

The mutual correlation of coordinates of expansion can be computed by
repeating transmission of the test signal just as is done during esti-
mation of the average values of coordinates. The algorithm for com-
puting correlation has this form
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- R P

2 sl ) dldr} X
b (p-y T

R Pr »
X L{ j L) dldr] . (2.157)
{(P=t) T

Desl

If function ¢p(t, £, r) is well chosen, then series (2.156) converges
uniformly to Bp(t, t', &, &', r, r') where M , Of course, the choice
will be more "successful" if the correlation function is known and func-
tion ¢y (t, §, r) is the eigen functions of the integral equation. In
this case, Mercer's theorem [18] guarantees uniform convergence, but

the measurements themselves make no sense. It is possible to suggest
sequential refinement of the estimates of the correlation function.
Initially choosing functions ¢'y(t, &, r) from some a priori assumptions,
we construct estimate B'y(t, t', &, &', r, r') in conformity with (2.155)
and (2.156)., Then we approximate the estimate of one of the typical
correlation functions, for which it is advisable to use functions to
which bilinear spectra correspond. After determining the eigen func=-
tions corresponding to the approximated correlation function, we use
them to refine the estimates (2.157). It is advisable here to use the
algorithm of stochastic approximation [64] and in step (n = 1) make an
egtimate of the coefficient of correlation Gﬂfl from the equation

A A N
ot =ik an [(hg)a— 03] « (2.168)

where (hygh*y) is determined by (2.157) with functions ¢Nk(t, £, ¥)
corresponding to step n.

Coefficients a, satisfy the conditions

. o
Y=o 3 al<w, (2.159)
ne=| Nex)

Use of this procedure guarantees éonvergence of the estimates, but
practical realization of the algorithm is complicated.

Linear estimates (2.113) have an unquestionable advantage with respect
to the required amount of a priori information on the correlation func-
tion. To construct linear estimates it is sufficient to know the

energy coefficients of tramnsmission of different paths of propagation
which, as follows from (2.157), can be computed from the relations
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L 2
j 200 1) selty P dde| 12.160)

o ()T

/\
Ohh s _F- S
D'l

Estimates of the dispersions of the quadrature components are determined

accordingly by expression 7
' R (PT kY
[Y S 2, st r)dldr] ,l

LTMIY

A ) P, R pr - ]

o},‘.a—;;\[‘{ [zt ety o) dtar ]
pe=l

' p
LTS
~

p P=)

(2.161)

O =y T

Estimates (2.157), (2.160), and (2.161), like the estimates of average
values of coordinates, can be computed and refined during the process
of information transmission without additional apparatus.

If the mathematical expectations and dispersions of transmission coef-
ficients are not known at the moment that data transmission begins,

it is advisable in constructing estimates to use the criterion of max-
imum plausibility. In this case it is not difficult to obtain esti-
mates of the coordinates in the form

A R
AN = Y:(I. ) te (t, r)didr,

&l-

Oy Oy

(2.162)

|-

H
R
jz(l. £ L, r)dide.
1]

In the case of slow fadeouts in time, the expression for the estimate
of coordinates of the transfer function corresponding to (2.162) is

itt foll ) -
WETEEEN a8 TOLI0US NN (0, wg) = Z (ks 0gfS (8 (2.169)

and coincides with the '"classical decision in 2 certain frequency
band of the space-time spectrum.
Estimates (2.162) and (2.163) are unbiased and asymptotically effective,
It is not difficult to show that their dispersions diminish in inverse
proportion to the signal/noise ratio, for example
| o

p{pn) - (2.164)

It can be seen from (2.164) that for small valu:s of dj the dispersion

of estimates increases without restriction. This is a serious short-
coming of maximum-plausibility estimates. If the statistical
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characteristics of the measured function and noise are not known, then
the statistical approach used here for obtaining estimates of coordi-
nates is not suitable. Under these conditions, it is possible to use

A. N. Tikhonov's regularization method, which guarantees the possi-
bility of receiving stable solutions in the absence of a priorl informa-
tion. From a statistical standpoint this method can be called non-
parametric,

For a rhannel with fadeouts that are slow in time the regularization
method (9, 85) leads to the following regularized solution for the
coordinates of expansion of the transfer function of a channel,

/s 1 p _
i (0, up) =~ (. og) (2.163)
0 et S (@)
IS

MtMsmeQmaywmewnmmﬁwfmuhn%hh“mmmutm
regular rising functional and satisfies the conditions: i

1) M(0, wg)30, Muw, 0)30; 2) M(w, w )>0 for v, mg# 0; 3) for suffi-
cilently large ]wl, |w8| M(uw, wg) 2C>0.

If the spatial variable is not considered (the signal is a function of
time), an analog of function (2.165) is

A .
B ) — W)

. 2,
L4-a M(@)/S (@ S (o) (2.166)

In such problems Tikhonov-type regularizers of - order p [9] are usu-
ally used, assigning a function of the type o
M (©) = o%, (2.167)

which determines the set of regularizing operators and, using a certain
algorithm, the value of regularization parameter a is found. In works
[98, 99] it is shown that use of regularizers of type (2.167) makes

it possible to obtain a stable solution to the problem.

In the situation of space-time signals under consideration, Tikhonov-
type regularizers should be used, choosing
Mo, o =w¥ o (2.163)

The other possibility, frequently employed in practice, is to choose
a function M(w, wg) that affords a truncation of the spectrum of the
space-time frequencies of the function under study.
N L. X 2. r 49;
Mo mg)={0' WMFLoLWF, — QKo ¢

o, 0, 0g == outside the indi-
cated domain

(2.169)

Selection of the optimal values of the regularization parameter a and
the orders p and 1 of the regularizers in (2.168) as well as choosing
the optimal values of F and 2, in (2.169) should be done using all
available a priori informatio.i about the functions and noise under
study.
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2.7. Measurement of the Space-~Time Characteristics of a Channel Using
Information Signals

In the preceding sections we have constructed algorithms for measuring
the space-time characteristics of a channel using special probing sig-
nals designed for precisely this purpose. A distinguishing feature of
the probe signal is that it does not contain information about the mes-
sage subject to transmission, but 1s only used to obtain estimates of a
channel parameter in order to organize the work (for adaptation or self-
adjustment) of the receiving units. In this case the necessary noise
suppression is achieved at the cost of an inevitable reduction in the
rate of data transmission along the communication channel. If the rate
of fadeouts of channel parameters in time 1s small compared to the rate
of data transmission, the relative decrease in rate of data transmis-
sion caused by the necessity of eending probing signals proves com-

- pletely acceptable (a large number of information signals is sent for
each probe) [49]. But if transmission is being done on a channel with
fadeouts that are selective in time, there is one probing signal for
each information signal and the rate of data transmission is cut in
half. The desire to maintain the rate of information transmission on
the condition of obtaining adequately high noise suppression forces us
to use information signals to study the channel. This possibility has
been discussed theoretically [58, 131] and realized in practice in the
Reich system [131]. If during the use of probing signals to measure
the channel we are always able, because we know the sign of the probing
signal, to state with a probability of one that a probing signal is
or is not contained in the observable oscillation (ideal classification),
then when measuring a channel with information signals a different situ-
ation occurs. In this case, it is never possible to know in advance
which transmitted signal (one of M possible signals) corresponds to
the oscillation received at the output of a channel with scattering.
All that can be said, with the a priori probability of transmitted sig-
nals P; | = T, M 1is that the oscillation received corresponds to a sig-
nal in position 1, that is, the sample at hand is unclassified [64].¢

The situation becomes even more complicated when intercharacter inter-
ference must be taken into account [63].

A significant number of works [see the survey in 64] has been devoted
to the problem of estimations of parameters by unclassifjed samples,
but at the present time “there is no one method of synthesizing estima-
tion algorithms. We will consider the heuristic approach to the prob-
lem. This approach allows construction of a fairly straight forward
algorithm for estimating parameters with an unclassified sample.

Thus, let us look at the situation when position 1 of a signal 81 (t)
being transmitted to a receiver is unknown, in other words, the channel
must be studied directly by a working information sample. We will show
that under these conditions measurement algorithms synthesized earlier
can be modified. Estimates constructed in the preceding sections can
be treated here as conditional estimates obtained on the assumption of

* [In cases of possible confusion letter "1" written as "l."]
81
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transmission of position 1 of the signal., Thus, the following condi=-
tional estimates will be modifications of estimates (2.96) for the use

of information signale:

TR \
A o | Sz(l. Ryonk (s r)dt de gy
'] b0
R xk = " )
L 2050
T R
\ o | [ 200, A0 (s e dtde
(I“—“ 00 ,
| 202,

(2.170)

where designations are introduced analogously to (2.94) for the signal
81k (t, ) = 8yf(t, ¥) + {Elk(t, r) in path of propagation k, corre-

sponding to position 1 of the transmitted signal

sulty )= [st =D& Nk
0

@ar

Correspondingly, functions vy (t, r) and vlk(t, r) are solutions to the

integral equations
T e -

R e e e
S j‘ Bn (tv t'y r, r') U (", I") dt' dr = Sin (t, ’).
0

{

O,
-]

Bolt, ', 1, ¥ o (', ') d' dr' =5 (¢, 7). J'

~q,

Parameters h?yq; and hzylk are determined from the relations

. - TR \
2’!3“” == Oyp prS S st r Ugp (A r) dt dr, i
00

r R . 5
2,15””:0;4): Oyp Y j‘ slh(’: I‘)ng(t, r) dtdr. ]
00 .

(2.179)

@.173)

For coinciding positions g = 1 in identical paths, these designations

are used to shorten the writing:

2 T2 .
Ky = W b

Yk

. Yy
hxlk'

1

2 -
xlkgp

As before, the conditions of complete separation of paths at the place

of reception are conuidered to be fulfilled for each posit

signal.

ion of the

Let us consider the properties of the conditional estimates (2.170).

We should distinguish two possible situations here: a)

the position

of the transmitted signal sj(t) has been "guessed" correctly; b) the
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position of the transmitted signal has been "guessed" incorrectly. The
mathematical expectation and dispersions of estimates for the first case
have been determined above, For the second case (a signal in position

r has in fact been transmitted, but the receiving end thinks that a
signal in 1 position was transmitted). the mathematical expectation and
dispersion of the conditional estimate have the following appearance:

l]?h

A N
My { xf) = rwk+ 1 2 o2
(] xh g My
14 lh'\.“‘ 14 gh}u N xdhgp Py

4n 4 202
! xlkg {1k
D{x } :kz:“———L——“LJ&

2 \2
a2 @179
A | -[4 Jl ] N &k
Ml yl o l/lk(n+ p ) My,
{98} = mp -2 1203, Eﬂ Ylhgo 0P

yk} 17 2 4h|l!hnn+2"ulklp
(1 + 205,)°

p=l

Analysis of (2.174) confirms the obvious fact that if position 1 of the
expected signal at the receiving end does not correspond to the posi-
tion of transmitted signal g, the conditional estimates (2.170) will
have very poor characteristics for generally accepted indexes of the
quality of estimates. They will be biased and their dispersions will
not approach the dispersions of th.: estimated quantities with growth

_ in the signal/noise ratio. However, if we recall that conditional esti-

" mates (2.170) were not designed to measure a channel characteristic as
accurately as possible, but only to organize the work of the receiving
unit, we will have to look differently at these estimations. We know
that a device to distinguish M signals shoull have M branches, in each
of which the oscillation being received is processed on the assumption
that it contains a signal corresponding to this branch (for example
branch [, ! = I, M) of ihe position. If conditional estimates (2. 170)
are constructed in each of the branches of the receiving unit, then
in the branch correspor:iing to the position of the transmitted signal
we will receive an estimate of the channel characteristic that possesses
optimal properties, with characteristics (2.126), while in [m-1] branches
that do not correspond to the position of the transmitted signal we will
receive an estimate with characteristics (2.174). As can be seen from
(2.174), where the condition of separation of paths is fulfilled, esti-
mates (2. 170) are agymptotically unbiased for small signal/noise ratios
(h2431+0, h2 yk1*0). Whereas with large signal/noise ratios their
mathematical” expectation and dispersion tend to zero. The latter means
that zero will be adopted as the estimate of the surge characteristic
in the branches not corresponding to the transmitted oscillation. - It
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1s apparent that this is not at all a bad estimate because in fact no
signal for that position was transmitted on the channel, We will re-
turn to a quantitative discussion of this question below during con-
sideration of algorithms for optimal signal discrimination.

Let us now consider certain possibilities of improving the quality of es-
timates during channel measurement using information signals. Suppose
that M conditional estimates (2.170) have been formed in M branches of
the receiver and, moreover, that the a priori probabilities of trans-
mitted signals py, Py, ««v» Py are known. By averaging expressions
£2.170) for optimal estimates of the coordinates of expansion x*) and
ylk, constructed on the assumption of transmigsion of position 1 of the
signal along 1 using the set of a priori probabilities py, 1 =1, M,

ve determine a certain unconditional estimate

A M A A. T A .
Xy = Z plx,in = E /)['!/L, (2.175)
™ =t ,

The average values and dispersions of unconditional estimations (2.175),
- on the assumption that the conditions of full separation of paths at
the place of reception are met, are written

S M
- E
A M My - Mok z e ‘Jhi,kgk
g=
Myfx) = Yo — .
I=1 1+ “hx“
M ‘
\ 4 o' !
A M ‘\_, Pe ey = gy
=1
Diw) =Y} plonist————e—.
(1+23, )
1= v xkl
y (2.176)
: ]
A Mo Mkt O P2
g=1
My{) = Y} o oL :
= . 12y
M
N 4 Lot
1 A M }_, PeMytegr = Py
2g2 g=i
D{y} = 2”!%" e
=] (l*' 'h;kl ).

If signals that are orthogonal in the amplified sense for each of the
paths of propagation are used to transmit informationm, and for them
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IR TR o 197
‘\' sulty Vo (b Pdtde = | Vol N (1 Ndtdr =0, Q77
§b

\

<
o

for any k, p with g # 1, then from (2.176) we obtain

M

A
M, {xn} - My, 8 1]
1221

Liondm

1]ondy,

M
A : M, 1 py
\ ; TR ik
D“ﬂ““ﬁgpﬁ*ﬁjjj“.
sl (l .i.."h‘ll')
" : (2.178)
A " 1420 p
M {.I/h} B '"Uh 2 I —_..[:LA._{
P 1 "?hfllk

M
A o2 -]-m-lh"
e n® o “Tulk ik
D} == o3, Y i Ty
W

l2:]

Analysis of (2.178) shows that where signals that are orthogonal in
the amplified sense are used the estimates (2.175) are unbiased for
small signal/noise ratios. As the signal/noise ratio grows, linear
bias also increases, and the higher it becomes the closer the trans-
mitted signals approach equiprobable signals. In the latter case the
bias is (M-1)/M of the average value of the quantities being estimated.

Using the method from [58], the linear bias of estimates (2.178) can
be eliminated by replacing estimate (2.175) with the following

M ’

A A

.. ! i

VED R -
Iy 1 Qll:,k m

op?
l-»{~.!hm_

Estimates (2.179) are unbiased, but their dispersions increase in com-
parison with the dispersions of the estimations (2.175). The greatest
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Increase in dispersion (M times) 1s observed for equiprobable signals,

Where non-equiprobable signals are used the dispersions of estimations

(2.179) may approach the dispersions (2.126) of the optimal estimations
constructed using probing. signals,

. The possibilities considered for improving the quality of estimations
of a channel characteristic based .on adding conditional estimations have
one significant shortcoming: their use significantly complicates the
procedure for forming estimations. The desire to formulate estimations
that resemble the conditional estimations (2.170) for simplicity of
construction and the optimal estimations (2.113) for quality leads to
construction of estimations using "decision feedback" [46, 49, 58].

The use of decision feedback is an effective means of improving the
noise suppression of discrete systems in channels with slowly changing
parameters [133] and makes it possible in practice to accomplish op-

timal processing of signals in channels with intercharacter interference
(49, 53, 133].

In this work we are oriented to the set of signals, promising for space-
time channels with scattering, that meets the condition of separation

of paths, so intercharacter interference can be disregarded. However,
decision feedback continues to be an effective means for insuring pre-
liminary classification of a sample of the field under analysis until
completion of the procedure for estimating the parameters of space-

time channel.

In channels with slow fadeouts and a sufficient signal/noise ratio,
when the receiving unit provides a low probability of erroneous recep-
tion of characters, decision feedback permits an almost ideal classi-~
fication of an delayed sample of the field under analysis (teaching
with an almost ideal teacher [64]).

In fact, if the decisions made by the receiver concerning characters
transmitted in the interval of study of channel parameters

Tgt = KT(k = 1, 2, 3, ...) are considered absolutely correct, this makes
it possible even without a special probing signal to classify field

z(t, ) delayed for time Tgr. On the other hand, if fadeouts in the
channel are slow the estimates of channel characteristics obtained per-
sist in the intervals of analysis of subsequent samples as well.

Because it is possible, in principle, to study channels by information
samples in the interval Ig.>>T, in the conditions stipulated above the
decisive feedback can provide a higher quality estimation of channel
parameters than when the channel is studied by special probing samples
only. With this in mind, we will hereafter ascribe estimates (2.96),
obtained on the assumption that special probing signals are transmitted,
to any method of studying a channel under conditions of ideal classi-
fications, in particular where decision feedback is used. We will ob-
serve, however, that because errors in registration of characters are
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inevitable (although with very low probability), classification of a
field before determining estimations is still not ideal when done with
decision feedback (teaching with a "real teacher' [64]).

Needless to say, the quality of estimation of channel parameters, which
depends on the correctness of classification by information samples,
will be better when decision feedback (teacher) is used than when it

is not (when there is no teacher and the sample received is not fully
classified). It is possible, in principle, to improve the quality of
estimations in a system with decision feedback (classify the input
field) if we use information on the a posteriori probability of trans-
mission of particular signal positions. In this case, however, the
procedure becomes much more complex [53, 58].

When speaking of the use of decision feedback to classify the field

under analysis and then estimate parameters, we should keep in mind
that to obtain good estimations certain limitations must be intro-

duced on the form of the signals transmitted or their probabilistic
?tructure. These matters are considered in greater detail in work
58].

2.8.. Measurement of the Characteristics of a Stochastic Channel from
) the Standpoint of the Theory of Linear Filtration

Here we will take up measurement of channel characteristics based on
the theory of linear Wiener and, to some degree, Kalman filtration.

Right at the start, let us state clearly the additional limitations

associated with the fact that the results of measuring a character-

istic of a channel must be used to organize the work of a processing
unit for the purpose of extracting usable information from the field
being received. :

Let us suppose that by measurement a certain estimate of a channel
characteristic has already been obtained, for example the transfer
function H(f, t, r) in restricted domain (-f, £), (0, T), (0, R)
and it must be used in the algorithm for processing the field under
analysis, which contains a usable message. This can be done in an
interval of analysis of length T immediately following the interval
of measurement [0, T] in two cases:

a) measurement and processing correspond to the
very same time interval, but these operations
are spread out for an interval of length T by
delay of the signal carrying information for
this time;

b) the parameters of the channel change so slowly
that the results of measurement at previous
moments of time can be used effectively at later
times (in one or several intervals of analysis
of information signals).
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1f during the coordinate measurement considered above both these cases
deserve attention and have a clear basis for realization, in the case
of measurement from filtration standpoint the second is of greater
practical interest today.

Having available the transfer function estimate H(f, t, r) obtained in
processing the channel response to the test signal, there are two ways,
in principle, to process the field u(t, r) being received against a

background of additive noise n(t) during transmission of discrete mess-

ages.
N, In the first place, it may be done by finding the estimates of all vari-
K ants of the blocks from k expected signals!
- ECENT .
N = § ST 1 7% eomaitd] e 1A
and compute their correlations [i= Sjsd’.r)x"zﬂ.rhﬂdr
oo

and compare the latter (with due regard for the energiles of the realiza-
tions), In the second place, it may be done by correcting the distor-
tions introduced in the signals tramsmitted by stochastic channel by con-
structing a filter which 1s an additive compensator (anglog or digital)
whose characteristics depend on the existing estimate H (f, t, r) and
makes it possible to perform compensation (or correction) according to
some particular criterion {36, 46, 79, 133]. Algorithms of optimal
processing will be analyzed in detail in Chapter 3.

Here we will only observe that in channels with selective fadeouts (by
frequency, in time, and py space), optimal processing comes down to
dispersed reception of some particular set of coordinates). Under these
conditions, optimal processing does not require measurement of charac-
teristics by filtration, but rather assumes estimates of thz coordinates
of expansion of the characteristic will be obtained on the chosen basis.

Considering what has been said, we will concentrate our attention on the
possibilities of measuring the characteristics of a stochastic channel
by filtration with subsequent use of the results to construct adaptive
compensators.

Construction of a filter with a given frequency characteristic in a
finite interval of time is a difficult problem, even if it is a filter
with constant parameters. The problem is even more complex for param-
eters that vary considerably. This is why we are devoting primary at-
tention here to the situation of slow changes in channel parameters
when transfer function H(f, t, r) and, correspondingly, its estimate
H(f, t, r) may be considered to be independent of time in the interval
of analysis, although they change slowly from interval to interval,

1 1f intercharacter noise can be disregarded, the code is primitive,
and the channel contains broad-band noise, then the by-element pro-
cedure of [53) is optimal and, therefore, we can speak of the ele-
ments, not the blocks, of the expected signals.
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which is what gives rise to adaptive compensation. We should stress that
the receiving of estimates of channel characteristics here is linked to
construction of an-adaptive compensator which can be used in transmission
of both digital and analog information in a channel.

Let us look, in order, at algorithms of measurement based on the Wiener
- and Kalman approaches to filtration of signals against a noilse back-
ground.

Wiener filtration of channel characteristics. Formalistically,'when solv=

ing the problem of measuring the characteristics of a linear channel we

are dealing with a convolution—type integral equation of the first kind
2(t, 1) = j’h(t g, )s(l-—g)d.,-}-n(t, . (2.180)

-0

The difference between equation (2,180) and the "classical" Fredholm
equation of the first kind [38] i1is that the observed function and mea-~
sured characteristic are functions of two variables (time and space)
while the input signal is the function of a single variable (time).
This feature 1s not limiting in the sense of using the results of the
theory of linear filtration, but it leaves an inevitable imprint on the
algorithms for computing estimates., Because we want to use the results
of the Wiener theory, we will assume that the observed oscillation

Z(t, r), measured characteristic h(£, r), and noise n(t, r) are realiza-
tions of stationary homogeneous fields and, moreover, that the measured
characteristic and noise are not correlated. We will designate the
spectral densities (Uk — densities [84]) of the processes h(g, r) and
n(t, r) with G(w, mg) and N(w wg) respectively.

A distinction should be made between two filtration regimes [16]:
filtration with delay (thecretically infinite) and filtration in real
time. In the former case we assume that realization of the function
z(t, r) can be entered and stored in the memory of a certain device for
a certain time (theoretically infinite) and then subjected to processing
by an optimal linear filtration algorithm. In the second case, the
processing is done in real time, at the rate of signal reception, by a
linear filter. Unlike the first, the second case demands fulfillment
of the condition of physical feasibility expressed in the requirement
that the response of the optimal filter must not outstrip actions at

its input. As we know [16], despite the apparent difference in char-
acteristics of filters working in both regimes, they are similar. Here
we will consider primarily filtration with delay. Mathematically speak-
ing, the problem is formulated as follows. Accessible for processing
we have a mixture of usable signal, the field u(t, r), and noise

2, ry=u{t, r)-Ln(, 1. (2.181)
This mixture is processed by a linear space-time filter with constant

parameters and characteristic g(£, r). At the output of the filter we
receive the result .
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e @

A ) h Ceemm—— L,
it = | fe® Mzt —tr—r)didr, (2.182)

—tm —0n

It is necessary to choose the characteristic of the linear optimal filter
in such a way that the mean quadratic error of estimation is the minimum

= A e
possible T MR A==k D)) min, (2.183)

Function h(t, r), according to (2,180) and (2,181), may be treated as a

linear transformation of usable signal u(t, r) by a linear filter whose
characteristic is inverse to the spectrum of the transmitted signal

k]

b, r)en b (U000 ety 2.18.
() ",2_“*5” e, (2.184)

where U(w, r) and S(w) are the spectra of realizations of u(t, r) and '
s(t) respectively.

Substituting (2.182) and (2.184) in (2.183), we obtain the equation for
finding the characteristic o»fr t:hg pptimal linear filter
|Mn?==nﬁnhh{ f fgg,rﬁzu-—F,r—-H)dgdH--

—t0 =00

---.___l__. S_QT(_MQ‘”' do}. (2.185)
Vin S

The minimum in (2.185) is sought for all possible characteristics of
linear filter g(f, r). This problem is solved by the standard procedure
and yields the following optimal estimate of the transfer function of a
stochastic channel:

A o tweed
_ 186
1 (@, o) M@0 S ] 159

+ G(w, wy)]S (]

where Z(w, mg) is the spectrum of realization of the observed field.

A
The estimate of the pulsed surge characteristic h(t, r) may be computed
through estimate (2.186)

;:(t, 9] =-—2‘: S 3»;18((;’; wy) e

—n ==

1 {w l-l-mg r) dwd @ (2 ]87)

Estimates (2.186) and (2.187) can be obtained at the output of a space-
time filter with the transfer function
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K(w, (0g) == —--—--———(-—S' (/‘\)')'('m TR
: |8 )l 4 =t
(w, wg)

(2.188),

The expression for the mean quadratic error of astimations (2.186) and
- (2,187) has this form
T oa e ‘-Lu'?l:'(m. wp) dmc;mc. E (0, wg):x——-—-'!-(‘-"—'x;‘-'(f‘l——&*)*. (2.189)
R |8 (@ 4 oot
G (o, wy)

t

.:’{

o=

where T {w, wg) is the energy spectrum of error of the Wiener estimation.

We will deal with questions of realizing algorithms of optimal filtra-
tion below.

The technique for solving a convolution-type integral equation of the
first kind (2.180) based on the approach from the standpoint of linear
filtration 1s very particular. The approach baged on the ideas of regu-
larization should be considered more common (8, 9, 85, 86].

Let us consider application of the method of regularization to a convo-

lution-type equation in the multidimensional (two~-dimensional) case,

writing an equation of a somewhat more general type than (2.180)
) [h(r, § F)s(—8 r—r)dEds g, »). {2.190)

—~py -

Equation (2.180) is a particular case of (2.190) where s(t, r) = s(t)é(r).
This .generalization will be useful below. Application of the method of
regularization leads to the following regularized solution relative to
the transfer function of a channel

N z (0, wg)
M(w, (o,;)é 3(,,,. wg)
IS0, o)

where a is the parameter of fegularization; M(u, w,) 1s an assigned,
even, non-negative function that meets the conditions: a) M(0, 0) > 03
b) M(w, wg) > 0 for w, wg #0; ¢) M(uw, wg) >C >0 for le-m,lwsl-m.

II}I"(m, 0)g) == , (2.191)

l4-a

It 1s demonstrated for the broadest class of fuactions that where
Tikhonov-type regularizers are used )

M@, 0 = o ! (2.192)

there exists (in some metric) the relationship between the error of the
regularized solutfon and the error of observation for which the sequence
of approximated regularized golutions converges toward the exact solu~
tion.
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In the particular case when the measured, observed functions and noise
are desecribed by models of stationary random processes and error is es=
timated in the mean quadratic metrie, the optimal regularizing function
that insures minimum error is determined by solving the problem of
optimal Wiener filtration and has the form

M, o) = N (0, 0l Glo, o). (2.193)

Computing the mean quadratic error of solution (estimation) (2,191) for
function M(w, wg) of arbitrary type, we obtain

A . | %% \
DI} = — \ |E% (0 ododog
00 (2.104)

E* (o, ) = 18w, w,,)l‘ Vo, o)1 o M v, W] w, ty)
' o ¥
¢ 810, -+ a Mo, vl

where E%(uw, mg) is the energy spectrum of error of a Tikhonov estimate.
Relating the results to equation (2.180),w replace S(u, wg) in formulas
(2.191) and (2.194) with S(w).

Let us see what kind of device there must be to compute the estimate of
the transfer function of a channel (2.191) using a Tikhonov-type regu-
larizer (2.192). The estimate may be written as follows

A .
H“ N 2= 1 S« v, @ Z W, W ). (2.'95
v IS, oy raw® w'é’ (w0, @) Z (o, ©, )}

The linear filter that computes the estimate may be represented as a
series of two filters: one coordinated with the transmitted signal,
with a frequency characteristic that is conjugate with the spectrum of
the transmitted signal

Ky (0, 0) = S* (w0, wp), ' ! (2.196)
and one that does not introduce phase distortions and has the charac-
teristic 1 ' .
Kz((,). m‘) .= T (2-197)

l S {w, u)z)',z - am""’ w;!

Assuming that the very widespread condition
S (0, 0= A = const, (2.198)
is met, we write the following

Ky (o, 0p) = _:__L——— (2.199)

a
g 2P U
14 r WP oy

It is simple to realize a filter with this characteristic as a system
with feedback (see Figure 2,6 below). It is stable where a > 0.
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Figure 2,6, Realization
of an Evaluation Filter

- Based on a Linear System
with Feedback.

Key: a) Attenuator.

Characteristic K (u, w,) is related to the characteristic of open system
L(w, wg) by the relatidn- . - i, wg) :

Ky (0, o) = TR (2.200)

Comparing (2.199) and (2.200) it is possible to write the characteristic
of a filter encompassed by the feedback circuit:
Lo, m,):-.g. - (2.201)

2p ot ¢
()
(I)‘

A filter with characteristic (2,200) performs 2p-multiple integration of
field Z(t, r) in time and 2l-multiple integration by space. The fact
that time processing and space processing can be separated here in filter
Ks (w, “8> is important. The possibility of partially separating time and
space processing is an advantage of regularized estimations (2.197) com-
pared to Wiener estimates (2.186).

One other advantage of estimations (2.197) is that they make it possible
to get by with less a priori information. To substantiate this statement
let us consider an example of practical interest, estimating the transfer
function of an isotropic channel.

We will consider only space filtration, assuming that time filtration is
done separately or that it is unnecessary, as is the case, for example,
in a channel with smooth fadeouts by frequency. On the basis of (2.195)
- assuming, in this case, that = 1/;3:1332. , We write

he (@) = ————re (2.202)

[S @l + a0l *

We will presuppose that the energy spectra of isotropic fields are
described by bilinear functions and have the asymptotics

N () =Nouy, G (wp) = Gyl (2.203)

Relative to the square of the modulus of the signal |S(w,)|2 we will
also suppose that its asymptotics are described by the power function
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?

|8 (0 Pra Sy, (2.204)

At first glance supposition (2,204) contradicts the model being used by
assuming that the probing signal does not at all depend on the spatial
coordinate. In fact, however, it is always necessary to consider that
real signals have a practically limited spatial spectrum. This circum-
stance is reflected by condition (2,204). There is no detailed informa-
tion about functions N(ug), G(ug), and [SCuwg) |2; the only things known
are the asymptotics (2.203) and®(2,204). This is a very common situa-
tion in practice. Under these conditions the problem of optimization of
regularizer order ] and regularization parameter a can be formulated and
solved analogously to the procedure employed in [8]. The optimal (in
the sense of minimum mean quadratic error) value of the parameter of
regularization aOPt is determined from the relation

opt _ No p(l=—p) sinay) 1 9.9z
a5 SoGy ty(l—=1) sinﬂu‘H-u' (2:205)
B where
B = w—l.‘ o<pu<l;
(s 1) _
” (2.206)-
Yy = .- O<Y-

(s 0) '

Investigating mean quadratic error (2.194) at the extremum, it may be
shown that it reaches its minimum where

l =2p - 2n, . (2.207)
The last deduction becomes clear after a comparison of (2.193) and
(2.203). The values of the parameter of regularization a®Pt calculated
according to formula (2.205) are shown in Figure 2.7 below.

[id ‘f_‘

a ' 0
57 2?
)
02 - r/
90 (// JZ:
A/ e
we— 5/' / ;/ Figure 2.7. Values of the Normed
4§4¢ N/, //Crﬂl Regularization Parameter.
N Y
R 77/
a0 f////l//
L2 o
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In completing our discussion of Wiener filtration, we should point cut
that questions of constructing filters that work in real time have been
taken up, for example, in works [16, 18]}.

A specific feature of the space-time filtration considered here is that
it may be necessary to reject a real-time regime (to Introduce delay),
primarily because of the need for space processing. This eliminates the
problem of using future (in time) values of the observed oscillation and
makes it possible to use the oscillation as a whole to carry out fil-
tration in time. The question of whether real time or introducing delay
is a better filtration procedure will be decided by progress in the
techniques of space-time filtration (holographic filters) and delay sys-
tems (delay lines).

Kalman filtration of channel characteristics. A generalization of the

Kalman theory of filtration for the case of systems with distributed

parameters may be used to solve the problem of estimating the space-

time characteristic h(f, r) [19, 143]. An analysis of the results of -
- these works shows that the optimal linear estimate fi{f, r) is the output

signal of a nonstationary dynamic system with distributed parameters en-
compassed by a feedback line. '

It is relevant here to ask what kind of processing device will realize
the idea of adaptive compensation and be synthesized from the standpoint
of Kalman filtration. It is obvious that it will contain a nonstationary
dynamic system with distributed parameters of variable (adaptive reor-
ganization depending on estimates h(t, r) received) structure. Reali-
zation of such a device in a continuous variation is hard to consider
feasible in the foreseeable future. The clear way to realizing Kalman
filtration algorithms lies in the digital variation. In its essence

the Kalman theory is most adapted to digital computer technology.

To clarify the essential features of processing the general type of spa-
tially distributed signals, let us consider an example based on the re-
sults of [108], We will suppose that the spatial transfer function
. (real) H(wy, my) of a channel is observed for realization Z(wy, wy),
observed in the plane of the spatial spectrum of the signal, so that
Z(oy, w,)=S(,, 0,)H (0, w)+n(w, o), (2.208) -
where S(wx, wy) 1s the spectrum of the probing signal and n(uy, wy) is
the spectrum of realization of white noise. Then, in addition to con-
tinuous recording of fields, we will use discrete recording, assuming
that discretization with a uniform interval Awy =¢uy has been carried
out along axes wy and wy. The discrete variation of entry (2.208) is
Z(h, y=S8(k, YH(E, ) 4-n(k, ). (2.209)
The meaning of the designations is obvious.

We will assume that the correlation function of the field being measured

1g bil-exponential : : - S .
Xp By (Q, Q) =o}exp{—a,|Q,|—a,|Q)). (2.210)
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In this case the discrete field is described by a model of a stationary
gource

: Hle A1, Lk 1) sy H kb 1, D)o poH ey Lo 1) =m
~eipH (b O+ V{T=p)(T=pntk b, (2211

where N(k, 1) are uncorrelated noise readings with dispersion 0243
py= expl—og | A, )i pa=exp(—ay]dw,l).

From (2.211) it can be seen that each element of the field is predict-
able using three neighboring elements. In the continuous variation a
second-order differentilal equation in partial derivatives corresponds
to entry (2.211).

The optimal Kalman estimate of the transfer function can be obtained in

recurrent form A A A
Hpol, Ty sep Ul 1, D depa b(Ry Lb 1)

A A
—pipaH R, DR P DIZ( D—=Sk DHGEDL (2.212)
Function P(k, 1) is computed through the correlation function of filtra-

tion error. In the continuous. variation the differential equation for
an optimal Kalman estimate of the transfer function may be obtained in

the form -
OII (e, 0y) il h' (0, 0 . 0° Hmh “\y) -
0y - Jdwy o amgduy
= —h H( 0y 0) -+ Po, 0)[Z(©, 0)—S(O, o) H(mx. o,)],
(‘? ")l’;)
where '
Ry = Qi oty — % Gy (2.2149)

Figure 2.8 shows a space-time filter that accomplishes the computation
of estimate (2.213). An operator to differentiate the function of two
variables is introduced in the figure:

d g (2.215):

I
¥

f(tun)

Figure 2.8, Space-Time
Dynamic System That Com-
putes the Kalman Estimate.
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The function P(uwy, w,) is determined after solving the second-order
differential equation in partial derivatives relative to the dispersion
Dff (we ) of the estimate (dispersion equation [18]). This equation
does not contain the observed signal, It is not possible to obtain an
exact analytic solution to it, but there are powerful numerical solu=-
tion techniques. The dispersion of a Kalman estimate, unlike the dis-
persion of the Wiener estimate (2.189), is a variable quantity that de-
pends generzlly on the time and space coordinates, but in the example
under consideration only on the space coordinates. When the intervals
of analysis tend to infinity, the dispersion of Kalman estimation
diminishes monotonically, tending to the dispersion of the Wiener esti-

Dy (e0, o)== L | - dydn, (2216
" b0 1S mk- 2
G W

where, for the example under consideration

Gl m= 22 B (2.217)

et
ey Nieay

To check the monotonicity of decrease in the dispersion of the Kalman
estimation depending on increase in the interval of analysis, algorithm
(2.212) was modeled on a computer for different values of the parameters
of the function being measured. The machine experiment confirmed that
the decrease of dispersion is monotonic and showed that a smooth regime
is achieved sooner (for smaller sizes of the analysis interval) when
the correlation between adjacent readings of the measured function is
less.

A very interesting and constructive approach to the filtration of space-
time fields 1s the approach based on the assumption of the parametric
dependence of equations of state on the spatial independent variable.
This approach is outlined in article [19] and will, it appears, receive
detailed treatment in later volumes of monograph [18].

A channel characteristic may be represented in the form of expansion
into a series with divided space and time variables,

B 0= ® 00 @218)
[

This representation makes it possible to separate time and space process-
ing. Assuming that space processing has been performed, let us consider
processing the signal that is a function of time.

The specific featuréfof sucﬁ consideration, in distinction from [18],
is that the signal we are seeking, the channel characteristic, is linked
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to the usable signal included in the observed oscillation by means of
a linear operation (filtration):

u(f)md{lz(a)s(t~§)f!§. (2.219)

We will drop the index of spatial path i. Formally speaking, to use the
elaborated theory of Kalman filtration we may consider that "signal
h(t) has been transmitted before passing through the "filter" with char-
acteristic s(E), as shown in Figure 2.9 below.

Figure 2,9, Model Yielding a
Modified Vector of State.

hit)

————t

Introducing a modified vector of state [18] and writing modified equa-
tions for it, we arrive at standard Kalman-Bussey equations of observa-
tion relative to the modified vector.

In concluding this part, let us observe that, of course, there is a
possibility of applying the results obtained above to the case of mea-
surement (filtration) of characteristics by means of information signals,
not test signals. In this case all the estimates constructed here should
contain a signal in position 1 and be treated as conditional. However,
such a generalization is hardly advisable. This is because, when we are
oriented to construction of an adaptive compensator, we usually use a

test signal or perform an ideal classification of the field under analysis
by means of decision feedback. This is precisely how existing systems of
adaptive compensation are built [36, 79, 133].

But if we are dealing with an optimal processing (reception) unit, it is
not wise to construct estimates from the filtration standpoint because
coordinate estimates are more convenient. We must note that estimates
obtained from a filtration standpoint have a major advantage over coor-
dinate estimates because simpler signals that do not necessarily meet
the conditions of path separatic: at the place of reception can be used
in their construction. In fact, the condition of path separation has
not figured in this section at all. This does not mean, however, that
any signal we like can be ugsed to obtain estimates of the transfer func-
tion of a channel from a filtration standpoint.

By analyzing estimation algorithms we can achieve perfectly clear formu-
lations of the requirements made of probing signals. First of all they
should have a sufficiently broad space-time spectrum that enables them
to encompass all the frequencies under consideration. In the second
place, they must have uniformity of the amplitude characteristic of sig-
nals in the assigned band:
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IS«m(%ﬂmcmmL =20l v we 2k o~y s (2.220)

The latter requirement makes it possible to greatly simplify filtration
algorithms and improve their characteristics.

2.9, Adaptive Compensators for a Space=-Time Channel

A rigorous theory of adaptive compensators (equalizers) of a channel must
be constructed from the standpoint of modern control theory [34}. In
this case the compensating linear filter should be treated as a dynamic
object of control to which the control action is fed from a block for es-
timation of the characteristics of the channel (see Figure 2,10 below).
Such consideration would make it possible to investigate the dynamic
regime of adaptive compensation,

HRsIamensiye
R

Figure 2.10. Adaptive Compen- ity

sator for a Space-Time Stochastic —]

Channel. l

Key: a) Test Signal; A St
b) Information Signals. Eég%ﬁﬁ: nfteiey) ::::::s

AP LHEMANE!

Let us consider a simplified analysis of adaptive compensation, breaking
the problem into two parts: measurement of the channel by means of a

test signal, and actual compensation of distortions introduced in informa-
tion signals by the channel, As estimates of a slowly changing channel
characteristic the adaptive compensatcr uses an estimate constructed from
the standpoint of the theory of linear filtration,

We will consider in order two types of compensators of a space-time
channel. The first type of compensator is designed to restore the trans-
mitted signal-time function and is a space-time filter at whose output an
estimate of the transmitted signal &;(t) is obtained. The second com-
pensator 1is a combined type in which space processing is performed separ-
ately from time processing. This compensator has spatial dispersion.
Time processing involves compensating for frequency distortions of the
signal in spatial path i of propagation 1 = I, NL. Because they have
been studied less, we will devote more attention to the first type of
compensators, even though from a practical standpoint compensators of

the second type are better understood and more convenient at the current
level of development of technology. The theory of compensators for
signal-time functions has been quite extensively developed [36, 48, 79].
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1f we have an estimate of the characteristic of a stochastic channel,
for example h(£, r), it is possible to use it to restore the shape of
the transmitted signal at position 1, beginning from the relation

24 1) e Re;‘ hE Ns(t-—EdE } n ‘(f. r’. (2.221)
0

Let us consider the solution to this problem from the standpoint of the
Wiener theory of filtration (assuming infinite delays). The difference
between this and the problem considered in the previous section is that
the nucleus of the equation whose solution we are seeking is not given
exactly, Let us suppose that the true channel characteristic h(f, r)
is composed of its inexact estimate h(f, r) and random error hO(E, r)
so that

Bt ) o g 1) 10, (2.222)

Let us assume that the error of estimate h®(f, r) is described by a
stationary homogeneous function with a zero average and energy spectrum
E(w, wg) (2.189), determined by the type of algorithm used to estimate
the channel characteristic. The inexactness of measurement of the chan-
nel characteristic can be réduced to the appearance of supplementary ad-
ditive noise .

g(t, r) - Re}h" t st —¥dt. (2.223)
0

We will employ the method of randomization of the signals being trans-
mitted [36], in other words we will consider the sequence of signals
transmitted to be a random stationary process with an energy spectrum

M
6. = - Yl Siw) (2.224)
f1

where p; 1s the probability of appearance of a signal at position 1.

The method of randomization makes it possible, in particular, to escape
the dependence of supplementary additive noise on the signal being trans-
mitted and to consider it an uncorrelated (with the signal) stationary
homogeneous random field with energy spectrum

Ne (o, wp) = E (0, u) G (). (2.225)
The summary (total) additive noise
v, ) =¢elt, NA-alt, ) (2.226)
thus has the energy spectrum
Ny (0, 0 = N (10, @) - Ve (@, ©p) (2.227)

and does not depend on the usable signal.
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Using the approach described in the preceding section, we arrive at the
following form of optimal Wiener estimation of the transfer function of
an adaptive compensator for a space-time channel :

A
A je e
- K((j), (1)8) - H* (1, wg) . (2.228)

A 2 N (w, wyg)
IH (0, (l)g)l +—i—;£—(l—;-)3!-~5(m. g)

The filter with characteristic (2.228) is a space~time filter. That is
- why the signal at the output of this filter, when field z(t, r) is fed
to its input, will be space-time

S(o, wgh=Z (0, ©,) K (0, w,) (2.229)
or o
o=t | {8 age™ 1% g
) 1) = 5 j , 0))e odw,
— -

Further processing in the transmission of digital information is usually
predetermined and involves computation of the correlation between the ex-
pected l-position s1(t) and the output signal of the compensating filter
(2.229). 1In this case we are interested only in the space-averaged
signal at the output of the compensator, which is obtained by integrat-
ing (2.229) by the spatial coordinate

A R/\‘ Tt e .
s(t) = { s, rydr. (2.230)
0

But the situation changes i1f the spatial independent variable of signals
s1(t, r), which carry information, is taken into account. In the gen~-
eral case, processing at the output of the compensator is space-time
processing and involves computing the correlations
A TRA T e -
F, =j s (¢, r)s{t, r)didr, =1, M. (2.231)
00 :

It is apparent that, in most cases, we can consider that the depéndence
on spatial coordinates is the same for all positions of the signals be-
ing tranemitted, in other words . .

sit, N=s:09(), (=21, M. (2.232)
Then processing at the output of the adaptive compensator is greatly
simplified and amounts to sequential operations of averaging with weight
in space A RA : 3

s@)= | st newd (2.233)
0
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and computing the correlation in time
T

. Ia — :
Fre= [s@sdl, =1, M, (2.234)
0 .

The mean quadratic error of the signal 8(t, r) restored by the compen-
sator with characteristic (2.228) is determined by the expression
I R ;
Mo, o)dodwog ,

P |

0

5o e

at

C%— 8

Vi, og) = N (@, oy

Ny v

5w, ©g) = .
I3 g !
|H ICH (l\g)\ ——0:—@,—- B, wg) ‘

The mean quadratic error (2.235) must be treated as conditional, for
fixed channel parameters, because it contains the random function

|H(w, wr)l. The numerator of estimate (2.228) also contains this random
function, which makes it move difficult to realize the estimate. For
practical considerations, we may suggest replacing estimate (2.228) with
the suboptimal T

A )
H* (w, 0z
- K ((l), (')I!) =2 e =

N(w, o) | o
’ ) ete el O, O )
G(o, 05 G \ W

. (.2%)

where instead of random function |f(w, wg)l2 we use its average value

TTAN L . > 07
il ol 1 = Glo, 0+ E 0. o, (2.237)

Suboptimal estimate (2.236) will be closer to optimal as the error of
measurement of the tramnsfer function is reduced and the amplitude fluc-
tuation in the channel weakens (the smaller the spread of lH(w, mg)

is relative to its average value).

Let us look further at the adaptive compensator whose characteristic
is chosen using the regularization method. It has the form

]ia ((l), (I]g) _ ~ il (;I)' mz\ . (2.238)
]I] (@, mu)‘ aM(o, ug)

The mean quadratic error of the signal restored by the compensator
with characteristic (2.238) is determined by the expression

.
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L]

D Il;\“ ; s —.:T-\I \ E* (0, w)dod oy,
R
I (. wal 13 (@ 0 - ¥
E% (0, 0,) = (ml-Awu g (;o- ) - '\E(m.;ou)l - (2.239)
. I‘I'I (0, (l)g)l +adw, (ﬂg)]
+ laM(w, 0g)) G ()
N 2 1’
”ll(a). ﬁ)g)l +aMo, wg)]

Another poséibility is computing the estimate from a simpler relation
than (2.38): R A )

o _ H* (0, og

K™ (0, o) = G0, 0+ E(0, wp)FaM(®, o

{2.240)

Considerations relative to selecting functions M(w, w,) and the values
of the regularization parameter o included in estimatés (2.238) and
(2.240) remain the same as in the preceding section.

Let us move on to the compensator which realizes the Kalman algorithm
. for filtration of a space signal (a continuation of the example in the
preceding section).

The model of the signal observed in the plane of the spatial spectrum
has this form

Z (0, 0)= ?{ (0 ©)S (é,, 0)) + ne (0, 0) +n(0, @), (2.24])
where

e (05, 0))= H (0, ©,)S (@, @) (2.242)

is noise related to inexactness in estimating the transfer function of
the channel. In discrete form the model of observation is written as
follows

Z =P DSE Dqnelk D4ne D (2243),

A special feature of this problem, as we see, is the presence of colored
noise ng(wx, wy) related to the inexactness of measurement. There is a
corresponding generalization of the Kalman theory of filtration [18].
Equation (2.242) may be written in the form

Z(o,, “’y)i'—' C(")x- "’y’ X(@, a)+n (“’;. o), (2.244)
- Z(k ) =C(k DXk D+ nk, D.

In equation (2.244) there is a vector function
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X (0, 0 = [.i((o,. o) 'l'

(] ((‘)m (1),,)

o[l

(2.245)

corresponding to the variables of state of the system that models the
field being measured and non-white noise. Matrix C(wy, my) is called

modulated A
C(“)x' (1)”) = [” (mp “)y): ”l } ‘2'246)
Clt, =1k D, 113

We assume that the correlation function of colored noise has the form
By (@, Q) = o2 eI WM I (2.247)
and we designate

— By |8 uy
1

= _ﬁy:.“"ul.

Bp= ¢ (2.218)
The estimate equation in continuous form is written as follows

A A IR Y
0 x (W, ©y) _l.o.r((o,‘-.mm o . Wy) __

0w omy ' U(l),rd(l)l,
A A
== F((l)p (o,)x(m,, “’y) 'I'P((Dxt (D”) [Z (0)‘, (‘Jy)—C((!)x, (l)y).\f ((0" m,)],
2.249
where these desginatilons are intr._'gcvh_z‘c_;g}_i L ( )
Flo, o) = 0 —k vk =gy — oy
kﬁ = ﬂx + ﬂy - 5: ﬁu' (2-250)

The vecvor equation (2.249) can be written in the form of a system of
two scalar equations that give estimates of the signal and colored noise.
C A o .
9 S (w0, ©y)
dwy

A A
9 'S (e, () P S (0. 0y
+ doy + Ju 0wy

. A
=—k Slo, o)+ Py (0, 0) [Z(0, ©)—

—S(@, o) H( )—A (0, 0y)]
S H(a,, © n (o, '
@ B € g (2.251)

A A A
an, (W, @y) dn, (0r, 0 , 91 (@x, @y
905 a0y T e dny

A
== ka n, (ﬁ)‘, “’y) = P2l (mx' (t)y) [Z ((01, my) -

A A A
—S (@, o) H(o, o) — e (0, 0]
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The space~time filter that computes estimate (2.251) is shown in
Figure 2,11 below,

2hagy)

Figure 2,11, Kalman
Compensator for a Space-
Time Channel.

The functions Pyj(uwy, wy) and Pyj(wy, wy) are determined by solving a
system of two second-order differential equations (dispersed equation)
that do not contain the observed signal. In the discrete variation, the
equations of estimate (2, 251) have the form

S, 10y n.sv'u Do l~1>~n.msw 0+ |
+ Py DA =Pk DS D= &, DI,
1y L 1) = g (6 D) o gt (1 5 1) (2.252)
gt U D+ Poy (8, D20, D— T8 DS, 0 —
e (k]
and may be realized easily on a digital computer.

Let us sum up certain results concerning the two methods of estimating
characteristics (by coordinate and filtration), which are projected
respectively to optimal processing (dispersion) and additive compensa-
tion. The algorithms for coordinate estimation are relatively simple
_ to accomplish and make it possible to obtain very high quality indexes
as long as the conditions of separation of paths at the place of re~-
ception are fulfilled and, as a result, there is no intercharacter
noise. The algorithms for estimates from the standpoint of filtration
are invariant with respect to fulfillment of the conditions of path

separation and, therefore, permit the use of a broader class of channel
signals.,

Optimal filtration algorithms are difficult to realize and demand com-
plex hardware (adaptive space-time filters). It is comparatively
simple to realize suboptimal algorithms for filtration of character-
istics, in particular algorithms with separate processing in space and
in time.
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The quality characteristics of these suboptimal algorithms which proceas
the field received in series may, however, be considerably worse than
quality characteristics for optimal processing of the field received ae

a whole (the coordinate method). In connection with these erircumstances,
one is led to the idea of combined processing of the field being re-
ceived using relatively simple signals in transmission: partially ad-
ditive compensation of channel distortions with subsequent processing
from the standpoint of dispersed reception (the coordinate method).

A corresponding structure of the processing system for a space-time

field is shown in Figure 2,12 below.

Figure 2,12. Two-Stage

Processing of a Space- Ca)ansutancrmmni_ moman
Time Signal. :““"""""“"",‘;ﬁm%}ﬁg;'l
i /Mm!»(b)"“.,_.) paniA , ):&,, (d)
Key!: :g ggUi\‘:iEnt Channel; % t) : Wt F) Matr) 3 ”{u‘, 7 l.’emme
annel; !
¢) Adaptive Channel T J
Compensator;

d) Solution.

In this case the adaptive compensator has a relatively simple problem:
eliminate intercharacter interference, in other words, somewhat im-
prove the channel and make subsequent processing by a multichannel dis-~
persed reception device easier.

It is obvious that the two-stage processing procedure is very promising
for stochastic channels with a high degree of selectivity.

The problem of measuring the space-time characteristics (identification)
of a stochastic channel has been considered in detail. Two approaches
to measurement were used: estimating the coordinates of expansion of

a characteristic in a selected system of coordinate functions and mea-
surements from the standpoint of linear filtration series.

It has been shown that linear estimates of the coordinates of expansion
are invariant with respect to the probabilistic distribution laws of
the functions and noise being measured and are determined by the aver-
age values and dispersions of the quantities estimated. The type of
linear estimates and feasibility of their practical realization are
determined by the choice of a discrete model of the channel (coordi-
nate functions). The Karunen-Loew expansion is optimal, but it leads
to complex discrete models of the channel and, accordingly, to estima-
tion algorithms that are difficult to realize. Realization of the algo-
rithms requires the presence of space-time filters with variable param-
eters. Simplifications of realization are possible where the variables
of the coordinate functions are factored. Linear estimates are un-
biased and effective whera the conditions of separation of paths at the
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place of reception are met. When this condition is not fulfilled the
characteristics of linear estimates are much worse,

It is advisable to use measurement by Wiener and Kalman filtration with
an orientation to further processing in the form of adaptive compensa=-
tion for channel distortions. During filtration of space-time flelds,
- it does not appear to be compulsory to receive estimates in real time.
The condition of separate processing in space and in time is more im=-
- portant, 1In the absence of a priori data on the statistical moments of
the characteristics being measured, it is advisable to use the method of
i regularization of uncorrected problems and Tikhonov regularizers, The
optimal characteristic of an equalizing space-time filter (adaptive
compensator) can also be synthesized from the standpoint of linear fil-
tration theory. This affords the best (in the mean quadratic sense)
restoration of the signal. It is advisable tg perform adaptive compen-
sation of channel distortions as the first stage ‘i processing a space-
time field, The second stage should be optim~i processing, which is
based on decision theory.
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Chapter 3. Processing Space-Time Signals Containing
Discrete Messages

3.1, Statement of the Problem of Optimal Reception of Messages in a
Stochastic Channel

The theory of optimal space-time processing of signals began its develop-
ment comparatively recently, even thcugh the techniques of space proc-
essing were widely used in practice long ago. This situation where prac-
tice 1s ahead of theory has been encountered numerous times in various

- fields of science and technology. Moreover, it is practice that must

. put the problems to theory. However, the engineer usually not just
raises a new (even for theory) problem, but also tries to solve it,
making use of his own experience, knowledge, and intuition. When these
three components are sufficient, the engineering solution that results
proves close to optimal. But where is the guarantee that the solution
proposed by the engineer is in fact best? Only a rigorous theory en-
ables us to identify the exact structure of the optimal system, evalu-
ate the potential of it or any other suboptimal system, and offer a
whole series of new solutions gsuitable in situations so complex that
finding them by the heuristic method, although possible, is highly un~-
likely.

In this bock we are considering only by-element methods of receiving
discrete messages because reception as a whole [53] 1s difficult to
realize for space~time channels today.

While investigating the algorithm of by-element reception with ar-
) bitrary channel memory, we will disregard intercharacter interference,
_ orienting ourselves to that set of signals which satisfactorily insures
separation of the paths in the field being received.

We will devote special attention to investigation of the algorithms
that perform independent processing of individual characters and do not
use channel parameter estimates obtained in earlier intervals of analy-
sis. However, to some degree the opposite situation is also investi-
gated (use of reliable estimates of channel parameters obtained in pre-
ceding intervals under conditions of ideal classification).
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Tt is advisable to base construction of algorithms for optimal signal
processing in a stochastic channel on the principle of statistical self-
adjustment (adaptation) [63]. The essential feature of the method of
statistical self-adjustment is replacement of unknown parameters that
determine the signal at the place of reception and are included in the
decision-making rule with certain estimates of these parameters. With=-
in the framework of a linear stochastic channel under consideration
here the coordinates of expansion of a channel characteristic are such
parameters. Thus, the method of statistical self-adjustment suggests
the following way to construct algorithms for optimal signal processing.
At first the channel is considered provisionally ideal, that is, its
characteristic 1s assumed to be known exactly at the receiving end.
Under these conditions, as we know from fundamental works [60, 68, 95],
linear correlation processing is optimal (in the cases of both Gaussian
and non-Caussian noise), Strictly sepaking, this result is correct for
the non-Caussian case with certain limitations [95). ‘Then, using the
principle of adaptation, the coordinates of expansion of the channel
characteristic which are included in the optimal processing algorithm
should be replaced by their estimates, The processing algorithm ob-
tained as a result of this operation can be nonlinear, as will be seen
below.

When organizing optimal space-time processing it is necessary to esti-
mate the coordinates of expansion of the channel characteristics for
those paths of propagation which are to be used for dispersed reception.
After estimating the amplitude multiplier and phase shift in path of
propagation k and knowing the regular signal distortions in this path,
which can be determined, for example, in (2.10) as a function of

wk(t, £, r), it is not difficult to construct an estimate of the signal
at the place of reception, which corresponds to any position 1of M
possible transmitted positions:

A= .
¢, N =Rens [s@anlt & NdE (3.1)
[}

Construction of an optimal receiver in channels with selective fade-
outs using a large number of branches for dispersion in space (con-
structing a multidimensional space-time filter) is not an easy job,
even though engineering practice today does have some experience in
the construction of devices for multiple dispersed reception (co-
herators [109]). The realization of a multidimensional space-time fi1l-
ter becomes more realistic if we move to the digital variation based
on a high-speed general purpose or specialized computer [28]. The
second possible way is to use coherent optical systems of signal proc-
essing [56]. The questions of realizing algorithms for space-time
signal processing will be discussed in greater detail below.

In conformity with the statement of the problem of channel measurements
in Chapter 2, we will consider devices for signal processing both using
probing messages and where channel characteristics are measured by in-
formation signals. Because, as observed above, use of the principle of
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statistical self-adjustment makes it possible to break the job of con=-
structing an optimal processing algorithm into stages, it is wise to
begin our consideration from the fixst stage, optimal reception of a
known signal against a background of spatially distributed noise.

3.2, Optimal Processing of Space-iime Signals in a Decerministic Channel.
The Coordinated Space-Time Filter

The space-time filter accessible to observation is the sum of usable sig-
nal and additive noise: 2(f, =gty N nl, . ' (89

In our case, space-time signals u,(t, x) are generated by trans-
mitted signals of known form st(t) 1=1, ..., M, in conformity with the
model of a, linear channel ,

u,(l r)_Re{s,(g)lx(l t, l)d‘ ’(3.3)

The channel characteristic h(t, £, r) is considered to be known exactly.
This allows us to consider signals ~ wu,(t, r), 1 =1, ..., ¥, cor-
responding to each of the M possible tranemitted signal positions, to
be known also.

If additive noise n(t, r) is a white Gaussian noise field with spectral
density Ny, then analogously to [62] it is not difficult to obtain the
optimal processing algorithm for space-time signals. The decision in
favor of l-position signal s (t) is made in the case where the following
system of inequalities is fulfilled

- F,-—B,>Inc,,-1- FC—B‘. (3.4)
Functional F determines the magnitude of the correlation between ex-

pected signal in 1 position ul(t, r) and the field accessible to obser-
vation TR

Fi= -3-[):(1 Auy(t, Hdtdr. @3.5)
00

l

The operation that defines the right part (3,5) should be performed on
the input oscillation at each of the space-time intervals of observa-
tion. Quantity By determines the ratio of the energy of the space-time
signal at the place of reception in the spectral density of noise output:
T R
By= —— ‘ W, r) dtdr. (3.6)

N,
R

Quantity gl is determined by the chosen reception criterion.

Where the criterion of an ideal observer is used in the case of equi-
probable transmitted signals cgy = 1.

Because signal ul(t, r) may be treated approximately as a function with
1imited duration in time (0, T) and in space (0, R), the algorithm may
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be realized on the basis of coordinated space-time filters with pulsed
surge characteristics
w(T--8 R—%) 0gba?, O<yghy 3.7
0 for £ and ¥ outside of [0, T] and
[0, R] respectively.

The output voltage of filter 1 at moment in time T at the point with
coordinate R is proportional to the quantity Fi. Figure 3.1 shows a
schematic diagram of a device built on the basis of coordinated filters.

g D=

' |
Sl
! b
] P.’.S{FZK
7 |
b) Solution (Decision); - iL__

¢) Comparison and Decision st Sweoenn
Circuit, (a)pemenu 7

Figure 3.1, Optimal Processing

in a Channel with Additive Noise 2000

£ s

Key: a) Reading at Moment in
Time T;

0
~

Let us stop in somewhat greater detail on the structure of the coordi-
nated space-time filter. Linear filters coordinated with pulsed signals
that are time functions have been studied carefully in the literature
{22, 65]. The discovery of the holographic method stimulated the devel-
opment of methods of coordinated filtration of space signals which are
immobile images [61, 71, 74, 96]. In principle, however, coordinated
spatial filtration is possible not only in the optical range but also

in the radio wave range. Specifically, an antenna with a synthesized
aperture [7, 70] may be considered a coordinated space filter. Let us
turn to a formal description of a coordinated space-time filter.

We will consider input signal Fi(t, r) of a linear filter with pulsed
surge characteristic g){§, x) when signal z(t, r) is fed to its input:

Fiey n= [ f20—8 r—na® Hdt dx 3.8)
In the case where .
' 216 D) = (T—3% R=-3. (3.9)
signal (3.8) assumes the form
Fito 0= | fele =8 r—pu(T—8 R—ndSdy.

At moment in time T at the point with coordinate R the output voltage
reaches magnitude
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v .
Fi(T, R) = f 2t Auglt, Nt dres I, (3.10)

3"—28

D

geginning from (3.10) the expression for Fy(T, R) may be written in the
orm . .

FUT, R) = T‘ T'Z(m, 0,) Ut (0, 0g) dud o, @10

[P Y

where 2(w, wg) and Uy (u, wg) are the spectra of realization of v(t, r)
and uj(t, r) respectively. Thus, quantity F1, determined by equation
(3.5), can be obtained with a precision to the level of the constant
multiplier at the output of the coordinated linear filter. The require-
ment of limited duration of function uj (e, r) in time is essential so
that the coordinated filter will be physically feasible. The limited
duration of analyzed signals in space is always insured by the finite
dimensions of the receiving antenna. Let us determine the transfer
function of the coordinated space-time filter:

didy =

TTWU—§ R—y)e

—_— 0

=eﬂmr—m‘R0,((o, Oeh (3.12)

D wielt,y,
Gilw, ©g) = ¢

where ﬁl(w, wg) is the conjugate space-time spectrum at the output of
the channel corresponding to position 1 of the transmitted signal,

and T and R determine the time delay and displacement in space respec-
tively. '

For the channel described by the model of a filter with constant param-
eters with characteristic H(w, r), the structure of an optimal space-
time processing device can be gteat;x_simplifﬁed. In‘this case an

analog of relatiot‘l (3.3) 1is U: (©, o) = 1 ©, io,) S’,((n). ’ (3.13)

The transfer function of a filter coordinated with space-time signal

uj(t, r) should now satisfy the relation
G, (0, (D,) = UI (o, ")3) e

= H*(0, 0) S} (w)e T TR, (3.14)

—lmr—lm‘,nﬂ

A filter with characteristic (3.14) can be represented as a series of
- : two filters. One of them is a spatial filter with a characteristic

that does not depend on transmitted signals [7*(w, wg)e " "T—luR :
the other does not contain a spatial variable and is determined by the
transfer function S*(w) e | and the relation Ty + T3 = T 1is met.
The space filter is the same for all M branches and may be conrected
in at the input of the optimal receiving unit. Figure 3.2 below shows
the schematic diagram of such a device. The role of integrator at the
output of the space filter is understandable from relation (3.11).
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Space~Time Filter for a 2
Channel with Smooth Fade-
outs in Time.
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An unquestionable advantage of this method of field processing is that
space processing and time processing are separated here, We should
note that, despite the apparent similarity, this method of reception
does not coincide with the method of adaptive compensation for distor-
tion in the channel which was considered above.

Relying on well-known results [41, 95] for time signals, it may be ob-
served that rule (3.4) preserves its optimal (or close to optimal)
properties even in the case of non-Gaussian Delta-correlated noise with
a zero mean and symmetrical distribution function.

It is not difficult to generalize the problem of optimal reception of a
precisely known signal and to solve it for what is called "colored"
{16, 109] noise with the correlation function B,(t, t', r, r'). There
are two ways to solve this problem: a 'whitening" filter added at
the input of the receiving device [22]; and forming a special reference
signal that takes account of the correlation properties of noise [64,
109]. The second method is more rigorous, although the results of both
cases are identical in all situations of practical interest.*

The rule of processing signals in colored noise is still determined by
the system of inequalities (3.4), but the quantities Fjand B; must be
determined from the relations

Fi= f fz (¢, N, ndtdr, ]
%oR

B,‘: S.\u
[]

(3.15)
wg(t, v, rdtdr, l

Function vi(t, r) is the solution of the integral equation

T R . \ . .
( f B,(t, &', r, £)vi (&', F)dt dr = at, 1) (3.16)
b0

* It should be remarked that the transfer process at the output of a
whitening filter can cause significant intercharacter interference
if no constraints are placed on the set of signals used.
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The solution to the problem can also be obtained by passing signals
z(t, r) and u (t, r) through "whitening" spatial filters with subsequent
correlation processing. If the colored noise has a spectral density of
N(w, w;) the square of the modulus of the frequency characteristic
K(w, mg‘ of the whitening filter must satisfy the relation

¢ L N R .

IK(Q’ u),,)l T2 Vi, e , ®.17
If colored noise n(t, r) is fed to the input of this filter, at its out-
put "white" noise with a spectral density of output of No is formed,
Figure 3.3 below depicts the schematic diagram of a correlation receiver
with filtration of input and reference signals.

Figure 3.3, Processing a

e
Fleld with Filtration of the ,,, ‘
Observed Reference Field. () #

wftr)
KWy ’,
Key: a) Solution KL | i, [b)
: (Decision); Ol *
b) —

Comparison and
Decision Ciraouit,

s

The second possible variation of construction of an optimal device for
processing space-time signals with colored noise is to build it on the
basis of coordinated filters.

As Figure 3.3 shows, the spectrum of the reference signal u®1(t, r) in
branch 1 is formed according to the relation

U, og) = U, (0, 0) K (©, ), (3.18)

where Uy (v, wy) 1s the spectrum of signal Uj(t, r). The transfer func-
tion of a fil%er coordinated with U°(t, r) should satisfy the relation

G (o, o) = [U?(m, wy)]'e—mr"“"xkz

=Ui (0, o) K*(o, a)eoT—10R (3.19)

It follows from (3.19) that each filter 1 of M coordinated filters is
a series combination of filter K*(f, wy)e ~'“7*'"s®  yhich does not
depend on the ordinal number of the branch to which it is connected
: - (on the position of the signal), and filter Uj(uw, uw,)e —luli=teyRy

which is coordinated with expected l-position signal Uj(t, r) where
T=T +Ty, R=Ry +Ry. The first filter is identical for all M
branches and it is advisable to make it general by connection at the
input of the receiving unit.

Series of two filters at the input of the receiving device, the
\ whitening filter depicted in Figure 3.3 and the coordinate filter de-
picted in Figure 3.3 and the coordinate filter mentioned above, define
the spatial filter with transfer function
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K (o 09 K*(o, o)™ "7 0 e

=_A'.°_ 1 .e""""““"a’*' (3 00)
2 N, wy ) =

Figure 3.4 below shows a schematic diagram of the optimal receiver built

with coordinated spatial filters.

Nt
7 Wiy e M )}

Figure 3.4, Optimal Signal —
Processing Against a Back- :-—‘—’L 1:5
ground of Colored Noise.
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Let us consider how rule (3.4) looks during the use of three concrete,
widespread systems of signals.

For a system of M equiprobable signals of equal energy (in particular
for a system of orthogonal signals in the amplified sense [104]), the
decision rule for the criterion of an ideal observer takes the form

Fl>Fi g-"_'lv A"; g?{;[. (3'2l)
Such a recelver 1is, evidently, most convenient for realization on the
basis of coordinated filters. If two opposite signals s;(t) and s,(t) =
~81(t) are used to transmit information the optimal processing device
must decide in favor of signal s;(t) where the inequality

Fr0 (3.22)

is met and in favor of signal s,(t) where the the opposite inequality
is fulfilled.

But if the problem being solved is the problem of optimal detection,
according to the Neuman-Pearson criterion, of signal s(t) with a known

arrival time, it is not difficult from (3.4) to receive the following
rule for choosing a decision: F>Q (3.23)

Threshold @ is determined by working characteristics with a given level
of probability of a false alarm,

In conclusion, let us observe that the algorithms for processing space-
" time signals in angular coordinates have an appearance entirely analo-
gous to those we have considered.
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For example, the quantities Fy and By in processing field z(t,¢) in
the distant zone at angles of approach V should be computed from rela-
tions that coincide with (3,8) by structure

T
Fl‘-‘-‘i.“

0—

s

By = é wr(t, 0)0,(¢, 0dtdd,

;]
[ 2¢, 0)Bu(t, Datav,

@-

(3.29)

i~

-

where functions By (t,J) are determined by solving the integral equa-~
tion. o . DO

r e . .
J‘ B,(, &', 0, ¢)0,(t', ¥)d'd O =u (¢, O). (3.25)

3.3, Recelving Messages under Conditions of an Ideally Classified
Sample by which the Channel Is Studied.

We observed in subchapter 2.7 that ideal classification of the field
being analyzed is a condition that guarantees optimal estimates of the
parameters of a stochastic channel. To insure this condition we may
use speclal tests (probing) signals or information signals may be used
with the traces of manipulation removed by decision feedback. The

SIIP [53], Adapticom [79], and others are examples of functioning modems
with test signals. In such communications systems the probing position
of signal s(t) does not carry information about the message being trans-
mitted, but is used only to measure the parameters of a stochastic chan-
nel and organize the work of the receiving unit , which is, therefore,
adaptive. Ongoing estimates of the unknown parameters of the channel
are computed and the receiver adapts itself primarily for those realiza-
tions of the input oscillation which are generated by the test signal,
even though, in principle, information signals can also be used to some
degree for this purpose. The form and duration of test signals may,

in principle, differ from the form and duration of information signals.

We must consider the two possible cases of using probing signals separ-
ately. These are nonselective arid selective change of channel param-
eters in time. The first is quite well treated in works [46, 49, 53].
If the parameters of a channel change slowly, that is, 1f condition
(1.73) is fulfilled so that they are practically invariant in a time
interval of duration KT, in order to measure the parameters of the
channel it is sufficient to transmit one test signal of duration T for
K information signals (see Figure 3.5 below).
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As the rate of change in channel parameters increases the number of
information packages K supported by one test pulse must be reduced.
There is a variation of the system in which test and information pack-
ages are alternated [59].

Despite the viewpoint found in [46], test signals can also be used in

the situation of fadeouts that are selective in time when the relation

Teor ¢ T is fulfilled. Under these conditions the probing signal

should be emitted continuously, parallel with emigsion of the informa~- !
tion signals. '

Parallel transmission of test signals is evidently most justified for
the use of parallel modems (multifrequency systems {531). Vv. I.
Siforov's scheme [87] designed for work in a channel with fadeouts that
are selective in time but nonselective by frequency realizes a particular
case of parallel transmission of a test signal. In this scheme the test
signal is a continuously emitted sinusoid of definite frequency. The
tract of processing information signals can be adjusted according to the
channel's reaction to this signal.

It should be emphasized that the use of test signals specially designed
for studying the parameters of a communication channel and carrying no
usable information has three disadvantages. 1In the first place, some

of the power of the transmitter is, from the point of view of the source
of messages and customer, wasted. In the second place, the potential
rate of information transmission is lessened because it is necessary to
send probing signals occasionally instead of information signals (this
consideration remains in force for parallel transmission of probing sig-
nals also). In the third place, 1f a system is oriented to estimation
of channel parameters by test signals only, the quality of estimations
will not be good enough in some channels and as a result the system will
not have the required noise suppression.

These shortcomings are particularly noticeable in channels with rela-
tively rapid changes in channel parameters in time. Thus, if one test
signal is sent in sequence with every two working signals for probing
purposes, the channel loses one~third of its information transmitting
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power. But the average energy of the transmitter should be distributed
between test and information signals in a ratio no smaller than Ll:l at
the least.

These difficulties may compel the system developer to reject the idea
of using only test signals to estimate channel parameters., However,
the developer of a contemporary data transmission system can no longer
completely discard study of communication channel parameters and adap-
tation because this contradicts the spirit of the times and the whole
accumulated experience of communications engineering.

The answer to this situation is to construct processing devices that
adapt themselves directly to the parameters of the communication channel
according to information packages of signals, using decision feedback if
possible [21, 53, 58]. If the probability of erroneous reception of
characters is very low and Tgoy >> T, such feedback can provide an ideal
classification of the sample by which channel parameters are studied;
in other words, it makes it possible to remove the traces of manipula-
tion in this sample. The quality of estimates of channel parameters
will be determined by the full energy of the demanipulated signal ER,
which participates in the measurement and may be higher than where
parameters are measured only by probing samples, where accumulation is

= limited.

In principle, it is possible to combine measurement of channel param-

eters by information samples using decision feedback (the primary ele-

ment) with measurement by infrequently transmitted test signals (the

emergency element which assumes the primary functions of measurement

Yhere waXes are carrying poorly) to improve the quality of estimates
53, 133].

Now let us turn directly to algorithms for optimal reception of discrete
messages under conditions of ideal classification of the field being
analyzed. Using the principle of statistical self-adjustment (adap~
tation) yilelds an algorithm of reception against a background of white
noise that coincides in form with algorithm (3.4) for reception in an

" ideal channel

A A A A
Fy—By>WCy + Fy— B, (3.26)
g=1M g#l.

Functionals ﬁl determine the magnitude of the correlation between the
estimate of the expected l-position signal ﬁl(t, r) and the field
accessible to observation rR -

A 2 b/\ -
Py -E-'['(z(l. nNut, rdtdr. T (3.27)
00

! The quantities ﬁ,, ! =1, M determine the ratio of the energy of esti-
mation of signal ! at the place of reception to the spectral density
of noise output 118
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R

"
A
By = - H Gt r)dt dr, (3.28)

No
® o0

Let us stress that in the case of reception with adaptation, quantities
fy and B7 should be computed by the input oscillation at each of the

space~time intervals of observation.
schematic diagram of an adaptive device that distinguishes M signals is

shown in Figure 3.6.

Figure 3.6. Adaptive Device that
Distinguishes M Signals.

_ Key: a)
b)

c)

d)

e)

£)

g)

Switch;

Channel Parameter Mea-
surement Block (IPK);
Device for Formation of
Signal Estimate [sub-
character indicates sig-
nal position];

Computer of Estimation
Energy [sub-character
indicates signal posi-
tion);

Correlator [sub-character
indicates signal position];
Comparison and Decision
Circuit;

Solution (Decision).

The general appearance of the

The device operates on the following algorithm.

204
o

—

In the channel parameter measurement (IPK) block the pulsed surge (or
some other) characteristic of the channel is measured by the algorithms

get forth in Chapter 2.

The estimate of the characteristic obtained in

this block, for example H(t, £, r) is used in the device for forming the
signal estimate (UFDS) at position 1 in conformity with the rule

f, N =[he & s @dE (3.29)

This estimate, in its turn, arrives at correlator Kj of the estimate of
the 1-position signal and input oscillation, which computes the quantities
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Fy, and at VEO;, the computer of the energy By of the estimate of the
signal in position 1, The output signal of each of :ge M branches of
the receiving unit, representing the difference F, = 1, 8oes to the
comparison and decision eircuit (S8V), The switch at the input of the
IPK is necessary with the sequential mathod of tranemitting test sig-
nals vhere the measurar of channel parameters must proce: the input
mixture only in the time intervals allocated for transmission of test
signals. The working cycle of the switch and of the comparison sampling
circuite is controlled by a synchronization unit which is not shown

in Figuré 3,6,

The receiver whose schematic diagram is shown in Figure 3.6 differs
from the receiver of space-time signale in an ideal channel shown in
Figure 3.1 primarily in having the channel parameter measurement block
(IPK) and the device for forming estimates of expected signals (Ur0s,),
1 =T, H, The block for measurement of the parameters of a stochastic
channel is described in detail in Chapter 2, At the output of this
block, in the general case, is a vector of estimates of the coordinates
of axpansion of the components of the channel characteristics, for ex=-
ample A AA AL AAA

7o (b B 5= (R Seuy)

The quantities that form this vector must be used in the UFO0S; to con=

struct an estimate of the l-position signal at the place of reception.

Taking account of relation (3.29) and the finite dimensionality of the

vector of coordinate estimates, this estimate may be written in the

form of a sum A ¥ A A~

A }_: asnlt, - msat,r) (3.30)
A=l

The regular signal sjy(t, r) in position 1 on path of propagation k
is defined by the relation

it N= (o, & Nal-3ds. (.31

Signals sq(t, r), k=1, 2, ..., N, 1 =1, 2, ..., Min two ways.

For one, it is possible to compute all (N x M) possible copies of the
signal in advance and construct the corresponding number of generators
of space-time oscillations that give the corresponding functions at
their outputs. Figure 3.7 shows a schematic diagram of a device that
forms an estimate of the 1-position signal using signal generators
corresponding to different paths of propagation. Generator Gik pro-
duces 85, (t, r) in position 1 of path of propagation k. At n/2 the
phase a%ifter performs a Hilbert transform on signal slk(t. r) and
the oscillation Blk(t, r) 18 received at its input. The reference
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Figure 3.7. Davice for Forming
. an Estimate of the L-Position
gg” Signal,

Key: a) Channel Parameter Mea-
surement Block;
b) Commutator;
+ ¢) Ganerator [sub-characters
designate signall;
d) Phase Shifter.

Xowmgnzmep QG

L -

signals 8y, (t, r) and 8y (t, r) are multiplied by the estimates of the
quadrar.ure components of :he channel characteristic in path of propa-
gation k, by quantities xk and yk respectively. Quantities "k and y
are distributed by the commutator. In this case the multipliers are
simply amplifiers with variable amplification factors. The sum of the
signals at the output of these two amplifiers represents an estimate
of the random (as a result of change in channel parameters) signal in
position 1 of path of propagation k

A A~ R 4
:‘\lh (A= xysn s N ssan ity 1) (3.32)

Next the output oscillations of all N branches corresponding to N paths
of propagation may be added in the summator to form the estimate of the
1-position signal at the receiving point i 1(t, r). However, this oper-
ation is not essential if further procesaing of signals is done ac-
cording to a circuit with N x M channels, not just M channels, in other
words, correlator 1 must consist of N correlators that realize the
operations reR

A 2 A s s

Fin = —- j f unlt. N2, Adidr, &= 17N, 13.33)

[}

»
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Accordingly, the VEO; device for computing an estimate of the energy
of signal 1 at the point of reception, shown in Figure 3.6, must con=-
sist of N subchannels, in each of which the quantity below is computed.

TR - -
Bt a( Ndidr, ke TR, 3.34)
0

This mathod for receiving signals s, (!, 1), k=T, ¥, =11 has
the following shortcomings.

1. The difficulty of generating oscillations of a given form. For
some types of functions ¢y (t, £, r) which determine the necessary form
of the signal (3,31) it may prove simply impossible to construct gener=
ators of signals sy (t, r) on the basis of known electrical or optical
elements and devices, This applies particularly to the case where the
eigen functions of integral equations of the (2,21) type are used as
function ¢y (t, £, r), k = T, N, In this case, the only thing possible
i3 to realize the algorithm for signal processing in a digital varia-
tion based on a general-purpose or speciaslized computer.

2. The impossibility of reorganizing the circuit with a transition to
a new system of signals or a new channel model. The digital variation,
of course, does not have this weakness. The second possible way of re-
ceiving signals 8,,(t, r), 1 = IT7H, k = IT;"N, vwhich do not require
construction of special generators, is partially or completely free of
these shortcomings. The reference signal in position 1 of path of prop-
agation k may be produced at the output of a filter with variadble
parameters and characteristics ¢, (t, £, r) in accordance with relation
(3.31)., Generally speaking, under this approach the number of filvers
N with variable parameters should correspond to each position of the
signal; in other words, the total number of filters is N x M and may
prove very large when multiposition systems are used in complex chan-
nels. Despitc the fect that each group of N different filters repeats
M times for different signal positions, in the general case it is im-
possible to get by with one set of % £fltcrs., Of course, the full po-
tential of the unit described containing N x M filters is not used here.
With an individual set of filters for each of the M signal positions it
is possible to construct a receiving device that takes account of the
specific features of distortion by the channel of each particular posi-
tion of the transmitted signals. For a certain position 1, for example,
not all N paths but only N, < N paths of propagation may be significant.
This must be taken into account in building the receiver.

o

In particular cases of great practical interest there is a possibility
of creating M x N reference oscillations on the basis of one set in-
cluding N different filters. This possibility exists, for example,

if the spectra of the signals of different positions at the output of
the communications channel (at a certain point R ) do not overlap (see
Figure 3.8 below). Then it is possible to feed the summary signal

M
‘“)=’:Sfﬂ') to the input of each of N filters ¢, (t, §, r), and at
N}
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the output separata the signals corrasponding to the different positions
by means of pass=band filters (see Figure 3.9 below).

10, tuyn)]

. ‘@@n; @m»i Nt i
U N

Figure 3.8, Signals with Spectra that Do Not Overlap
at the Output of the Channel.

n:—- ALY

Figure 3.9. Generator of
Reference Signals with Non-
Overlapping Spectra.

Key: a) Generator;
b) Filter;
e¢) Summator,

When complex (in particular composite (2, 73]) signals are used for data ;
transmission in actual communication channels, the necessary number of !
sets of N filters each can always be reduced. A complex signal s;(t)

of arbitrary position 1 may be represented by the known [22, 109] rela-

tion

o L .
50 =Ysye, O, 1=T,M, (3.35)
/=1

where ai(t) are elementary signals that form the orthogonal basis and
8)jare 2he coordinates of expansion of a complex l-position signal on
tée given base.
Elementary signals most often find application in the form of pulses
shifted in time ~ : , | E—

G =g(t—ijtg), i=11, (3.36)

where the pulse of unitary energy

T, 0O<t<ry
NF=V * * (3.37)
0, for other t.
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Uaing expansion (3.,35), it is possible to represent
the l-position signal in path of propagation k in the form

)
anlty 1) = N syt n), (3.38)
=

where the alementary signal at the channel output ujk(t, r) is de-
termined by the relation

anll e Jul=ual, & Ny (3.99)

and may be obtained at the output of a linear filter with characteristic
¢k(t, £, r). In general, it is necessary to have L sets of N filters to
obtain L elementary reference signals aj(t, r), as(t, r), «vey ag(t, 1)
Where L < M the gain in number of filters is obvious. It may prove advis-
able to compute elementary reference signals a (t, r) where L > M also,
if the properties of the elementary input aigna¥s uj(t) are taken into
account,

In the important case where the elementary input signals are functions
of type (3.36) and the channel memory £pay is less than the duration T
of the signal and exceeds the duration of the elementary signal by m

times e .
Byane =2 MTy M= 1, (L=T), (3.40)
the number of filters may be reduced to the quantity
Ly =m+4 1 (3.41)
In this case, each filter is used for a time interval Ty of duration
R = [LiLy ) (3.42)

times. For example, where m = 1 (channel memory is equal to the length
of the elementary signal) and L.= 11 (the ll-position Barker code) it
is possible to get by with just two sets of N filters apiece to com-
pute elementary reference signals a k(t, ) from (3.39). Each of these
filters will be switched on at leasé gix times in the interval T; (see
Figure 3,10 below). Computation of the input and output signals of the
filters should be accomplished by a special unit.

(0

-4

Figure 3.10. Computation of
Elementary Reference Signals.

|
|
|
|
|
|
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Let us observe also that it is by no means obligatory, after computing
LN elementary reference signals ajk(t, r), to construct from them MN
reference signals 8yp(t, r) corresponding to the transmitted positions.
The entire linear part of the receiver may be constructed in a calcula-
tion for elementary reference signals oy (t, r), and where L < M this
makes it possible to reduce the number of positions of the expected
signals (and the number of corresponding branches of the receiver).

The subsequent computation of the quantities of the correlation coeffi-
cient and energy estimates of the transmitted signals by the receiving
device is elementary and can be assigned to the comparison and decision
circuit,

In conclusion, let us note that the presence of colored Gaussian noise
does not introduce any specific differences in the algorithm for optimal
processing of signals in a stochastic chanpel when compared with recep-
tion in an ideal channel. The quantities F; and By should be computed
by the receiver from the relations .

A TR A !

P == Yz(t, W, r)dedr,
f'T"’ i (3.13)
T RA AL

?3‘ - Su(t, AV, Hdidr,
b

Function Gl in the general case is determined by solving the integral

equation 7

R , A )
YS&&;f,nrﬁwUﬂrﬁmﬂh“-mU,ﬂ. KA)]
6o

Just as in the ideal channel, it is advisable to use whitening filters.

1f noise in a channel is non-Gaussian, the integrals in (3.27), (3.33),
and (3.43) should be understood in the Ito sense in a number of cases
[19, 95]. From an engineering point of view it is significant that
integration in the Ito sense is done successfully on both a digital
basis and an analog basis.

3.4, Reception of Messages in Conditions of an Unclassified Sample by
which the Channel Is Studied and the Use of A Priori Data

Now let us consider the adaptive algorithm for receiving discrete mes-
sages using estimates of channel parameters based on information signals
under conditions of a completely unclassified sample.

Beginning from the fact that there is a certain estimate of the channel
characteristic and using the principle of adaptation, it is not diffi-
cult to write an algorithm for receiving M signals in a form coinciding
with (3.26):
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AR A b o ‘
=By >SIMCy e Py By, g 1,0 gl (3.15)

whare, as before, in the case of "white" nofse r = 1 M; r 4 1
TR
P2 TR
Py s o ”z(f. Auy(t, ) dtdr,

l'nb,

r
4l

[
Rowever, the estimates included in (3.46) for the M signals expected

at the place of reception are now conatructed on the basis of informa-
tion samples of signals.

(3.16)

A |
Bl TR

0ty Pt d
m J(q(, 1)t dr,

It turns out that, despite the external identicality of the approaches
and algorithms (3.26) and (3.45), the receivers that adapt themselves
on the basis of working (information) signal samples may have a struc-
ture that is completely different from the structure of receivers that
use test signals or other means that provide an ideal classification of
the sample by which the channel is studied. Let us look at specific
algorithms for constructing the estimates of channel characteristics on
the basis of information signals which were synthesized in subchapter
2.7 and see how they are used in a discrete message receiver.

The estimates of expected signals ﬁ,(t, r), ] =TI, ¥ included in (3.46)
are determined by estimates of the coordinates of expansion of the
channel characteristic. Let us assume at the start that to construct
an estimate of an l-position signal at the place of reception we use
conditional estimates (2.170) of the coordinates of expansion of channel
characteristics obtained on the agssumption of transmission of an 1-
position signal:

TR

2 v
M | 2 nane natrrm,
N ‘hb
) , IF '
v o= [ | syt narar
' 'u o . ..
T R (3.47)
2 | ~
op— | ) 26 S ndtdr 4 my,
A [
. 00
e , LR
144 0,’,.-7\,— H 2, N didr
0 (]
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Estimates (3.47) are obtained on the assumption that there is a priori
- information on the channel for the case of a "white" noise field.

The estimates §,(t, r), 1 = 1, N included in (3.46) may be written,
taking account of this »re_mark, :Ln“t:hg following form

N A~
Bt )= Y Kot )+ B SN C A. (3.18)
k=l

Figure 3.1l presents a schematic diagram of a receiver that realizes
algorithm (3.46) and uses conditional estimates (3.47).

Figure 3.11, Processing Device

i,
that Adapts on the Basis of =

Information Signals. - .‘,;,'fqg)
Key: a) Channel Parameter Mea- "
surement Block; . «
b) Device for Forming (£)
Signal Estimate;
c¢) Estimate Energy Computer; L——
d) Delay Line;
e) Commutator; ,
£) Comparison and Decision
Circuit; |.__
g) Decision (Solution).

The circuit represented in Figure 3,11 differs from that in Figure 3.6
because it has a channel parameter measurement block in each of M
branches corresponding to the transmitted signal positions and because
it has a delay line, which delays the input oscillation by T. The
functioning of the unit shown in Figure 3.11 does not require detailed
commentary. The input oscillation z(t, r) arrives simultaneously at

M channel parameter measurement block and at the input of the delay
line. In the measurement blocks the conditional coordinates of esti-
mate (3.47) are computed during time T. By moment in time T the device
for forming the estimate of the l-position signal forms estimate ul(t, r).
This estimate is fed to the correlator where, in the time interval

(T, 2T), the correlation of the resulting estimate and the copy of the
input signal delayed for time T is computed. The work of the estimate
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energy computation unit does not differ in principle from the analogous
device in Figure 3.6 described above. The synchronization block is not
shown in Figure 3.11.

A weakness of the algorithm which is realized by the circuit in
Figure 3.11 is the need to delay the input signal for a long time in-
terval, It is difficult to insure the necessary stability in a device
that contains a delay line.

There is a more convenient way to realize algorithm (3.46), using con=-
ditional estimates of expected signals (3.46). After substituting the
expressions for the estimates of coordinates (3.47) in (3.46), we can
write the estimate of position 1 of the expected signal in the form

N 8 . y
2N, g te my 2h%,, Dy m,k..
= Y ILEI ). T, ), 040
] l+2,x”, | hylk
where, analogously to Chapter 2, these designations are introduced
e ) TR ’
Y Evip ]
18y == 70_"- G Mu= ok Y= "ETY j 2, (t, r)dt dr, (3.50)
00

Using (3.49) in (3.46), we will write a modified algorithm for computa-
tion of the quantity:

Ikv

{‘bfh} _‘_'_ffz ¢ {s,,, ¢ r)) dt dr.
00

A 2_[5_,_ 2%3”, Vi O - ek vix Opi

No fed 14- 212,
oh2, v 2, - iy v ®, N
J- ol Yk Py mye v ix G . @3.51)
14200,

It is not difficult to exti‘act the expressions that determine the algo-
rithm for computing quantity Bl.

A 203, g - e \2 | (2031, Fip 4 e\ '
By = 2 + v (3.52)
Vo - 1k 262, L 202

Relation (3.51), which determines the magnitude of the correlation be-
tween the estimate of the l-position signal at the point of reception
and the input oscillation,can be written in a form that permits a more
graphic physical interpretation:
N o : TR
A 2F, 2/!3“ ik 2/1,“\7,, ~, —
B2y L[ 20 NRT Adar,
TN ,,2, 14202, Wi 4 L 22, i "8 b Gt e
(3.53)
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The quantities Y1k are the values of the correlations between signal
8 k<t'°r) at position 1 in path of propagation k and the centered input
field z(t, r) = z(t, r) - 81(t, 1), that is

Yin } ol i f; “ " {‘.L' ¢, :)) }dr dr. (3.54)
g

‘T"Ih Eviy ] Sk (I»
The average value of the expected l-position signal is represented in
the form - SN e o .
S (l, ") £ >-: My S (l, ") ‘I' Myy Sin (f. ")- (3-05)
: k=l

Analysis of (3.53) shows that to compute the quantity f; it is necessary
to have a device with a linear part and a nonlinear part. Linear proc~
essing of the input oscillation involves computation of the correlation
between the average value of the expected signal and the input mixture,
Nonlinear quadratic processing may be realized by an N-channel scheme.
The correlation between the centered input signal and the reference sig-
nal that is formed is computed in each channel. The reference signal
may be obtained at the output by any of the means described in the pre-
ceding section. In an ideal channel only the linear part should operate;
in the absence of a regular component, only the quadratic part should
work, '

Figure 3,12 gives a schematic diagram of a device that performs quad-
ratic processing. As follows from (3.52), quantity ﬁl determines the
"floating" threshold level in branch 1 of the recelver. Receivers with
adaptive thresholds have been treated in many works [63, 64]. We will
note just one circumstance, By joining (3.52) and (3.51) in algo-
rithm (3.45), it is possible to obtain an algorithm for the functioning
of a linear quadratic receiver with a constant threshold level in each
of M branches. In this case the linear part of the algorithm of such
a receiver coincides with the linear part of formula (3.53). The ex-
pressions (3.45) and (3.53) differ only by the valuves of coefficients
for the quantities wzlk and Wzlk' For most of the signal systems
used in practice and considered hereafter the algorithms of optimal
reception and decisions made do not depend on the energy magnitudes

By, 7 = T, m signals at the reception point. This situation, as was
demonstrated above, occurs for systems with orthogonal signals of equal
energy, for a system with opposite signals, and in the problem of de-
tection according to the Neuman-Pearson criterion. In view of this
circumstance, the questions of computing the magnitudes of the
thresholds B1 are not treated in detail here.

Let us now turn to the more widespread and practically important case
of a generalized Gaussian model of a channel and Gaussian noise, It
was observed in Chapter 2 that in the "Gaussian case" estimates (3.47)
are optimai Bayes estimates. It is natural to raise the question,
will this algorithm (3.45) with estimates (3.47) be an optimal Bayes
algorithm for reception in a generalized Gaussian channel in a setting
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Figure 3.12. Quadratic Proc-
essing of an Observed Fileld. _

Key: a) Correlator [throughout Z%4”

figure sub-characters
refer to signals];
b) Amplifier; .
c) GSZ [expansion unknown];
d) Filter;
e) Generator;
£f) NE [expansion unknown].

of Gaussian noise. It is not difficult to synthesize the optimal Bayes
algorithm in conditions of separation of paths:

H, — P> Hy— Py 4 Incy. (3.56)
The quantity P, determines the threshold level of branch 1 and is de-
termined from the relation

N
C Py = }: In(1--2h2,) (13- 202, (3.57)
k=1

The quantities H;, 1 = I, m are computed by the receiver in each space-
time interval of observation from the relation

- TR
N o . P,
- 5 1 Bt gg y Bt Gy g L ([0, NEE Adtdr.
H = N EI-Lth ! 1+2"2Ik tk No
0 =t xlk [ 00 (358)
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Another representation of quantity Hy is also possible and makes 1t pos-
sible to give it a more graphic physical interpretation:

TR 4 T
H,n-:-ty wit, Nadt, r)drdr-l--—-—j‘
) Vo |

=

R
f s, nalt, Ndtdr.  (3.59)

0

The conditional estimate of the fluctuating part of the input oscilla-
tion is determined here by the relation

'\Tn
e Dt e ST 00

A comparison of algorithms (3.45) and (3.56) shows that in the general
case they do not coincide. The fact that thresholds (3.52) and (3.57)
are completely different is not important for those systems of signals
discussed above. It is significant that, despite the great similarity,
épantities Fl and -Hj are also computed by different rules. The quantity .
1» as has been noted several times, is the correlation between the esti- :
mate of the input signal corresponding to position 1 and the observed
mixture. The quantity H,, as follows from (3.59), also contains corre~-
lations of the estimate of the fluctuating part of the expected signal
with the centered input field and the deterministic component of the
expected signal with the field at the input. However, the weights
with vhich these quantities are summed to form the quantity H; are dif-
ferent. The weight of the second function of the correlation that de-
pends on the average value of the-signal is chosen to be two times
larger. It is precisely the presence of this weighted coefficient that
constitutes the difference between the optimal Bayes receiver (3.45)
and estimates (3.47) in the generalized Gaussian channel with additive
Gaussian noise, It 1s clear that in a channel without a regular com-
ponent, for example in a sub-Rayleigh channel, the algorithms of both
receivers under consideration coincide. When opposite signals are used
both algorithms are also identical.

In a generalized CGaussiar channel with Gaussian noise, the noise sup-
pression of the Bayes receiver is unquestionably greater. However, as
will be shown in Chapter 4, even completely ignoring the linear part of
the Bayes receiver (assigning it a zero weight for noncoherent process-
ing) reduces the noise suppression of reception only slightly where
orthogonal signals are used. In a non-Gaussian channel with a regular
component and non-Gaussian noise it is generally impossible to say
which of the two algorithms will have better noise suppression. None-
theless, it may be expected that the difference in the noise suppression
of the algorithms will be insignificant and will decrease as the ratio
q2 of the average output of the regular component of the signal to the
fluctuating component decreases.
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In subchapter 2,7 methods of improving the properties of estimating
channel parameters under conditions of a completely unclassified
sample were considered., Specifically, there was a discussion of the
procedure (2,175) of weighted summation of conditional estimates of
parameters (3.47) and a modification of this technique that makes it
possible to eliminate the linear bilas of the estimates. The material
in this section forces us to take a critical approach to this procedure.
Thus, in a generalized Gaussian channel an optimal Bayes receiver
whose algorithm has been rigorously synthesized does not use "improved"
estimates; it uses conditional ones.’ The use of "improved" estimates
in this case inevitably worsens the characteristics of the receiver
(if only the algorithms of reception with "improved" and conditional

~ estimates do not prove identical, as occurs in the detection problem,
and correspondingly the characteristics remain unchanged). In the non-
Gaussian case it is difficult to present a rigorous substantiation of
such a strong statement, but qualitatively the picture is quite clear.
Where equiprobable signals are used the "improved" estimate of the ex-
pected l-position signal is written in the form

M .N A A~ )
Wt = Y Yl ) -F sl ) (360

rel ksl

Suppose that the transmitted signals have the same energy and form an
orthogonal system. Using (3.61) in algorithm (3.45), it is not diffi-
cult to show that "improving" the estimates in this case leads to an
equivalent problem of reception using a test signal, and the energies
of the test and information signals are equal while the intensity of
the equivalent additive noise 1s M times greater than.the intensity of
the noise actually existing in the channel. We will overlook the fact
that with equal energies for the test and information signals the in-
-exactness of estimates of channel parameters will inevitably influence
the noise suppression of reception. Let us assume that the channel is
measured perfectly and approximates ideal measurement in each interval
of analysis. The equivalent signal/noise ratio at the input of the
receiver under consideration is 10 lg M db less than the signal/noise
ratio actually occurring at the input of the receiver. Practice con-
vinces us that with such a large reserve it is always possible to pro-
pose a large number of suboptimal schemes, and among them the scheme
with "improved" estimates will almost certainly not be the best for
either noise suppression or convenience of practical realization.

It is not difficult to generalize the aléprithms obtained here for the
case of non-white noise. The quantities ?1 and ﬁl, which determine
(3.45), are computed for non-white noise from the relations

ATTTR N
Fi= § { z(t, Hyvitt, v dedr,
09 (3.62)

A 7.' R A
B‘=‘ YW“n”W“M?WW.
o 6 |
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Functions Gl(:, r) are, generally speaking, the solution to integral equa-

- tion
. TR

[ (Bt tu PyS s Py dr syt ) (13.63)
o

and in the given case should be computed from the raelations

N A~
Yo=Y xhont, 1)+, Tults 1 13.64)
A=l

where the conditional linear estimates of the coordinates against a
background of non-white noise, according to (2,113), have the appearance

S \
A 03* Y ji(l, Yo (8, r)dtde 3o mgp
x! .= § 0
{ T ". R '
I "f»g §m (¢ Pyealt, r) dide
L (3.65)
A u:ﬁs Sz (N ’)mk (8, r)dtdr 4 myy
. 0 0
b= T R
! +"2n§ | sttes o) Eiage, ) aer
0

Using (3.65) in (3.64), we receive

203, i+ mgr ~

N
A 202, O+ m 4
(. ,).,;2__1_1!___‘_"0,,‘(:, = onlt, 1), (3.66)
k=1 v

14 28y

where
T R

2h?, == o, Ens 203, =0l i En = b\ 6{ sty Popa(t, rydidr =

TR
= [ [Gtt. Nowte, r)de dr; (3.67)
[}

o,
~

(B"‘ } =rj‘ ?z(t. r) :‘.’.‘," ¢ } didr,
Ou) J ialk(lo r)

Substituting (3.66) in (3.62), we write the algorithm of linear quad-
ratic processing of the signals against a background of colored noise.
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.:J' 14 2h2, 1 203, !

It can be shown that, as in the case of white noise, the algorithm of
signal processing coincides with the algorithm of optimal Bayes process-
ing in a generalized Gaussian channel with a precision level to the
weighted coefficients for the linear and quadratic parte. In the optimal
Bayes algorithm, as in the case of white noise, this ratio is 2:l.

The algorithms written here for optimal processing of space-time signals
look good on paper, but the developers of an information transmission
system want to see behind them, above all to find the qualities that
make them easier to realize. The chief difficulty in realizing these
algorithms is implementing the operations of space-time filtration which
are included in the algorithms both explicitly and implicitly.

The characteristics of space~time filters are determined by the functiong
éy(t, &, r), which describe the channel. The appearance of these func-
tions which, generally speaking, may vary greatly, largely determines

the noise depression of the raeception algorithm containing these func-
tions. The optimal Bayes reception algorithm in a generalized Gaussian
channel imposes rigid limitations on the type of function ¢y (t, £, r).
They must be eigen functions of integral equation (2.21). Any deviations
in the form of functions ¢k(t, §, r) will cause algorithm (3.56) to
cease to be optimal and its noise suppression will be lowered owing

to the occurrence of correlations among particular brancies of disper-
sion. 1In a non-Gaussian channel the lack of correlation among paths,
which is insured by expansion of the characteristics according to the
Karunen-Loew theorem and a corresponding choice of functions ¢y(t, &, 1),
is no longer a sufficient, but merely a necessary condition for the
optimality of reception algorithm (3.45). However, this does not change
the essence of the matter: function ¢y (t, £, r) should be selected

from the solution to integral equatfon (2.21).

During the consideration of discrete models of channels in Chapter 2,
the important place occupied by the channel with spatially divisible
correlation functions was noted. The eigen function for such channels
can be represented in the form

ol &=k ¢, D))
(& 0) =kt B9} (D). (3.69)

The separation of time and space variables significantly simplifies
realization of processing algorithms. Indeed, the l-position

or
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signal in path of propagation k (the index k correaponds to the double
index im) ig written as follows

sty )=l () sim (0). (3.70)
vhere signal 8;,(t) may be obtained at the output of a filter that does
not include spatial variables
amt) = [ s ®)0h (1, )dE, (3.7
0

Correspondingly, the quantities %&k’ which are included in the procesa=
ing algorithm (3.45), are computed from the relation

T R
Dy 2 -E-—|— X 52(!, )t (r) 81 (1) ditdlr 13,79

it Nl
0
and may be obtained at the output of two elements connected in series:

a) an antenna that performs spatial filtration
described by the relation

R
2(f) = a{ 2(t, P! (r)dr

or
[:]
3,(f) == j 2(¢, 0)pl' (0) d 0;
Y]

b) a filter that performs time processing of signals,

T
1
[OT 0y dt.
D, Elel§zl(l)slM()‘

A channel that is homogeneous in space can be considered as an example.

It was shown in Chapter 2 that elongate spheroidal wave functions are
eigen functions that determine the directivity diagrams of receiving
antennas, and where the condition of a narrow spatial spectrum (for
example, performed in a short wave radio channel) 1s met, the eigen

functions are the functions " I (9,60 e § 1)
% 0) = W6 =i 2t

Narrowly directed antennas with similar directivity diagrams have been
extensively used in practice for a long time [7]). There are regular
methods of synthesizing such antennas [7, 70}, It is interesting that
the optimality of antennas with directivity diagrams in the form of
elongate spheroidal wave functions was substantiated from a deterministic
standpoint according to the criterion of minimum minor (side) lobes and
maximum concentration of energy [7]. Here too the much more powerful
statistical criterion of minimum probability of error in reception of
discrete messages was used. The fact that optimal space processing
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according to the Bayes criterion in this particular case coincides
with the widely usad and practically proven technique of signal proc-
essing with narrowly diracted antennas permits us to draw two basic
conclusions. In the first place, this indirectly confirms the mathe=-
matical model of a space-time channel forming the basis of the proc-
essing algorithms and, in the sacond place, it makes it possible to
recommend for practical use a whole series of optimal algorithms pro=-
posed theoretically here and still not realized for processing space-
time signals. Optimal time processing of signals at the output of
space filters (antenna) is greatly simplified in the case of factor=-
ization of functions ¢I;(t, £) which are included in (3.71):

oh 6 §) = ol (&) rlv (1),

Signal s, (t) may be treated as the result of filtration by a filter
with constant parameters and multiplication by the time function:

L]
s () =<0 0) [ B @ 0.
0

But _under these conditions the appearance of the eigen functions

¢I1I (£), which determine the characteristics of the filters, may be

80 complex that realization of these filters proves simply impossible
using known electrical elements. There are two realistic ways to
synthesize filters with the given characteristics: a switch to the opti-
cal domain using holographic methods; and digital methods. These mat-
ters are discussed below. The approximate filter realization method,
which is specified by the frequency characteristic, involves using
delay lines with regular amplification coefficients in different
branches. This method at present is finding its greatest practical ap-
plication in systems for processing signals at the output of a sto-
chastic channel. In the case of a channel that is homogeneous for fre-
quency the eigen functions ¢IIJ (£) are Delta functions and the delay
lines are a strictly optimal filter.

3.5. Suboptimal Processing of Signals in the Absence of A Priori
Data

The algorithms synthesized in the preceding section can be classed as
optimal because they use optimal estimates of channel parameters and
their structure is optimal in conformity with the principle of sta-
tistical self-adjustment. The algorithm of procedure (3.56) is the
optimal Bayes algorithm in a generalized Gaussian channel. Where
there is an optimal algorithm it is always possible tc propose a large
number of suboptimal (quasioptimal) algorithms that are similar to it
in both structure and characteristics. Here we will construct sub-
optimal algorithms for signal processing that differ from optimal ones
by selection of the functions ¢y (t, £, r), vhich determine the elements
of the receiver, and by the form of estimates of the coordinates of ex-
pansion of the channel characteristics. Functions ¢y (t, £, r) here
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are selaected not on the condition of insuring maximum noise suppression,
but from several less rigorous, closer-to-practice considerations that
take account of a very important factor: convenlence of realization

of filters whose characteristics are determined by the type of these
functions. The suboptimal linear estimates obtained in Chapter 2 which
require less a priori data than optimal linear estimates will be con-
sidered coordinate estimates.

The processing alogorithm continues to be defined generally by relation
(3.45), In our consideration of suboptimal processing algorithms we
will assume that space processing and time processing signals are
separate. Space processing is accomplished by a set of space filters
with assigned characteristics ¢21(r) (antennas with given directivity
diagrams). We will not concentrate attention here on questions of
substantiating a choice and realizing such filters., It i1s clear that
in order to insure maximum noise suppression the type of function
¢21(r) must approximate the eigen functions of the Karunen-Loew in-
tegral equation as closely as possible. Practical considerations may
make it necessary to select completely different values for these
characteristics. It is apparent that situations often occur where the
characteristics of space filters (antenna directivity diagrams) used
in practice and convenient in all respects coincide with or are close
to optimal ones. For example, the narrowly directed antennas with
directivity diagrams of the type sin 8/0,which are used in systems of
spatial dispersion in the shortwave and ultrashortwave bands, are
optimal in a broad class of homogeneous space channels. In the range
of optical waves,receivers with heterodyne photodetectors and direct
detection are widely used [78, 119]. The optical receiver with

direct detection is usually a lattice (set) of photodetectors at

whose output electrical signals, proportional outputs, are summed

with definite weights. Spatial processing here is reduced to a minimum
and involves selecting spatial sectors of the input field which are
assumed to be independent. Despite its simplicity, this algorithm

of space~time processing is good enough, as study of noise suppression
shows, and not just for the optical wave range. The explanation for
this is that the described algorithm is a space-time generalization
of J. Kostas' well-known idea [59] which permits the processing of
time signals with fadeouts that are selective in time. The space-
time variant of this idea goes 1ike this. A space-time signal of dur-
ation T occupying area of space R is broken into P X Q "subsignals".
Each subsignal has a duration T} = T/Q and occupies the domain in
space R; = R/P. The length T; of the subsignal and the quantity R}

of the subarea are chosen to be less than the interval of correlation
of channel parameters in time and in space respectively. This makes
it possible to achieve reception dispersed in time and in space on

P x Q branches with noncoherent addition (which is also accomplished
by the optical receiver with direct detection). The optical-range
heterodyne receiver usually contains a lattice of detectors also.
Linear space processing, which precedes detection, is done by means of
heterodyning, introducing a reference field from a coherent source
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with the composite envelope Up(t, r) = Uh(r)ei“kat. The usable signal
at the output of photo detector i (1 = 1, 2, ..,) of the heterodyne re=-
ceiver is the result of the spatial filtration of a certain part of the
spatially distributed optimal input signal

all) ~ Re \\ 24, WU, (M dr,

where 2(t, r) is the composite envelope of the input field and Ay is the
area of photo detector i. If the heterodyne field has been well chosen,
space processing of the field will be close to optimal. Space processing
of acoustic waves is accomplished by means of lattices consisting of ele-
mentary wave receivers [69], in other words, analogously to the processing
of optical waves in a receiver with direct detection., The use of hetero-
dyning appears promising, but practical difficulties may arise in connec=-
tion with the construction of generators of an assigned form of acoustic
waves. Detalled information on methods and devices for space processing
of signals in different wave ranges may be found in the literature (56,
62, 69, 74, 103, 110, 112, 120]. Certain particular questions are con=-
sidered in more detail below., We will stop for now on suboptimal methods
of time processing of signals in channels with fadeouts that are selec~
tive in time and frequency. We consider that space (optimal or suboptimal)
processing has already been performed and electrical signal v(t) is ob-
served at the output of space processing unit 1 (we will drop the index 1
to simplify the notation). At the present time, the problem of noise-
proof signal processing (time functions) in stochastic channels has been
largely worked out theoretically and to a lesser degree resolved in prac-
tice. Orienting ourselves to signal processing systems actually in oper~
ation, it may be observed that processing methods based on representation
of the channel by a model of a delay line with uniform or nonuniform
branches, in other words, on approximation of the characteristic of the
receiving filter by a lattice of Delta functions (or functions of read-
ings) has become most widespread. This makes it possible to avoid the
necessity of constructing generators of intricately formed reference sig-
nals and to use copies of transmitted signals sj(t, )y1 = 1, M, shifted
relative to the moment of transmission; in other words, signals

81p(t) = syt =€), L =1, my, m=1, N. As a rule, delay lines with
uniform branches when £y = m/Fq are considered. The use of delay lines
recommended itself as an effective means of controling signal fadeout by
frequency in actual communication channels. Moreover, in channels that
are homogeneous for frequency the delay line is also an optimal filter.
However, other methods of realizing the ideas of dispersed reception by
frequency based on representation of the channel by a model that differs
from the delay line model must not be discarded. In particular, when
using the method of local approximation of the surge characteristic or
the Goodman-Reswick technique, when the approximating functions dpm(E)
(2.46) and (2.47) are well chosen, it may prove convenient to use weighted
segments of the spectra of the transmitted signals as reference signals.
For example, an approximate realization of the Goodman-Reswick technique
will be forming reference signals sjk(t) by passing the transmitted sig-
nals through a set of filters whose transfer functions ¢4 (f) approximate
the functions sin Af/Af(at least the primary lobe) and are shifted in
frequency by a quantity that is a multiple of 2/ (see Figure 3.13 below).
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Figure 3.13. Possible Realization
of the Goodman-Reswick Technique
in the Frequency Domain.

The realization of such filters may prove no more complex than realiza-
tion of a delay line with good characteristics. The experience of auto-
matic control system developers, who use these methods extensively to
identify dynamic objects, is good evidence of this.

Examples of realization of frequency-dispersed reception by this tech-
nique can be found in data transmission engineering (6]. As has already
been observed, until recently the model of a channel with time-selective
fadeouts had limited application because of the short duration of trans-
mitted signals compared to the length of the interval of correlation of
channel parameters in time. However, the use of noise-like signals in

a channel such as an optical channel [119] or a space radio channel [76]
forces us to take account of random changes in channel parameters during
a time interval of length T. If the selectivity of the channel in time
is ignored, the channel (with a fixed frequency and spatial coordinate)
is represented as a model of an amplifier with a random amplification
factor vy which is constant for time interval [kT, (k+1)T]. The factor
may change quite abruptly from interval to interval, assuming independent
values, Figure 3.1l4a below gives an example of a true change in the
amplification function y(t) and its model. If we begin. from the propo-
sitions of the theory of function approximation, in this case we have an
approximation by a zero-order polynomial in segments of fixed length.

If the model of slow fadeouts in time reflectsthe properties of a real
channel, the error of this approximation may be kept small. But if the
function y(t) changes significantly during a time interval of length T
(the interval of approximation), error will, with a probability close to
one, take on greater values. The first thing that comes to mind is that
the interval of approximation can be reduced, that is, the interval of
length T can be broken intp Q subintervals of lemgth T; = T/Q (see
Figure 3.14b). The Kostas scheme described above may %e approached in
exactly this way. The idea of approximating functions with polynomials
in segments may be laid as the foundation for constructing a whole class
of algorithms for processing signals in channels with time-selective
fadeouts. For example, it is possible to use piecewise linear approxi-
mation of changes of channel parameters in time. The error of approxi-
mation in this case may be significantly less than in the case of
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Figure 3.14., Illustration of
Approximation of a Transmission q
Factor: a) for the Entire In- Ht
terval of Signal Activity;

b) 1in Part of the Interval of
Signal Length,

approximation by zero-order polynomials, but technical realization of de-
vices for signal processing is much more complex and requires construc-
tion of generators of linearly changing voltage (sawtooth) with a con-
trollable inclination factor. In the current stage of technological de-
velopment the Kostas' scheme seems most attractive with respect to sim-
plicity of realization. Using the results of Chapter 2, it is easy to
suggest the whole series of algorithms for suboptimal processing based
on different channel models. It makes sense to do this, with an eye to
a concrete communication channel and available equipment. However, let
us move on to a consideration of suboptimal estimates of the coordinates
of expansion of channel characteristics for a certain orthogonal system
of functions, assuming that this system has already been selected.
Analysis of current signal processing devices convinces that developers
usually base them on white noise as a model of fluctuation noise. This
is despite the large number of theoretical works which consider a model
of colored noise, despite the fact that it is fundamentally clear what
needs to be done in case the noise is not white, and even despite the
relative simplicity of building a circuit with a "whitening" filter.

It is not difficult to understand the principle of this disregard for
the true correlation properties of additive noise. The first reason 1is
that, as noted above, the white noise component is invariably present

in the observed mixture. The question concerns the ratio of intensities
of the "white" and "non-white" components. The second reason for fail-
ure to consider the coloration of additive noise is that, for various
ratios of the intensities of colored and white noise, a scheme figured
for white noise produces virtually the same noise suppression as an
optimal one for non-white noise. It must be remarked, however, that
this comparison is usually made within the framework of a Gaussian model
of additive noise. In the case of non-Gaussian noise these conclusions
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often prove incorrect and then it is unquestionably necessary to take )
account of the coloration of noise and use an optimal whitening filter. '

When a model of white noise is used the estimates of maximum plausi-
bility of the coordinates of expansion of the pulse surge characteristic
of the channel have this form

~
>
T

2{t, r)siut, r) didr

>
Oty
C I

| - i
W= TTR ' ;
6{ J sk (t, ) idr \
TR (3.73) . '
A (2t A% e, ) dear ;
gi= L2
TR, :
U s (t, r) dedr
.0
o If the space~time channel model described above which yilelds a Kostas'

space-time scheme is used, the estimates of the coordinates of expansion ;
of the channel characteristic (3.73) assume the form

A ) (&FUTy (DR, (407,
YA W \ \ 2{¢, ) sty dtdr / ‘ s3(1)dt,
Ky iRy i3 B I
A | DT R, _ whpT, (3.74)
UL=-\ Yzmnwmmm/\ S dt.
R, . . .
K iR, kT,

but if spatial processing has already been performed and signal Z(t),
the function of time in a certain spatial path 1 (we omit the index 1),
is being considered, these estimates assume the form

A 1 1:
[ (f) dt,
xf, Eu(} z() s (t) ¢
T (3.75)
A 1P ~
y‘= ﬁ_"_‘:.. z(!)s,k(l)dl.
L]
J
where r r
Ep== '\‘ s dt = "' 3 (0) dt. (3.76)
0 0

Function 87 (t) and its Hilbert conjugate §1k(t) is a regular l-position
signal | =1, M in frequency-time pach of propagation k. For the given
system of signals in transmission, the type of functions sy (t) and
81x(t) is determined by the choice of the channel model. For example,
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if the channel is described by a delay line model with uniform branches
for nonselective time fadeouts, the functions s1y(t) are determined from

the relation e
Su(f) -s,(t»-l/l‘ ), [N ]. IW, ko l,M. (3-77)

but 1f, in addition, selectivity of fadeout in time is present and ac~-
counted for, and the method of local approximation (which yields the
Kostas scheme) 18 used to measure the channel characteristic, then es-
timates (3.74) assume the form

A ImENT (mg By '
B | z)nlt— k/l‘ )dt / | S kiF) dt, I

mr,y T, -
A 41T, ~ (m-;-!;T‘~ (3"8)
Uima ‘ Z(I)S‘ (t"‘k/Fc)dt/ \ s’i‘(t"‘k”?c)dl' l

M'Tn m'r.

Let us determine concretely the structure of a receiver working accord-
ing to algorithm (3.45) in the case of using certain suboptimal estimates
considered in this section for the more widespread signal systems. As
already noted above, for a system of signals of equal energy (at the re-
ceiving end) and also in the detection problem by the Neuman-Pearson
criterion, there 1s no need to compute the quantities of the energy of
the signals being received B , U = I M; it is enough to determine only
the magnitudes of the correlations oE the oscillation received and esti-
mates of the expected signal, that is, the quantities F,. 1In the case of
"white" noise, these quantities have the form (3.46), while in the absence
of space processing

r, = e \ 2(f) a,(l)dt ‘1 =1, M, (3.79)

In this case the estimates of the estimated signals for all M positions
are constructed on the basis of suboptimal estimates of channel charac-
teristics, Let us note that the multiplier before the integral in (3.79)
and (3.46) has been kept only to preserve the dimensionality of quantity
F in different algorithms. A knowledge of the spectral denmsity of the
"white" noise output for the signal systems under consideration here is
in no way essential during construction of a processing algorithm be-
cause the quantities F; with different indexes are subsequently compared
among themselves. If the estimates of the coordinates of expansion of
the space-time characteristic of a chaiunel are constructed according to
algorithm (3.74) and the algorithm for processing signals is given in
general form by the relation (3.45), it is not difficult to establish
the final algorithm concretely, giving it the form

A 2 Q P ~
Fy= NIE Bm + W (3.80)

k=l i=]

where the following designations have been introduced.
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The signal processing algorithm (3.80) is fairly simple and does not need
explanation. The simplicity of performing processing operations in space
and time is an unquestioned advantage of it.

It is perfectly obvious that the cost of this simplicity is a lessening
of noise suppression in the reception of discrete messages., It is pos-
sible to diminish the loss of noise suppression by introducing more com-
plex spatial processing, but practical considerations always prompt us
to separate spatial from temporal processing, Let us consider a few
algorithms for suboptimal processing of time function-signals, assuming
that suboptimal spatial processing has already been accomplished.

If the delay line model is used to describe the filtering properties of
a channel and fadeouts in time are considered nonselective, then it is
not difficult, using (3.75) and (3.77) in (3.79), to write a suboptimal
algorithm for processing the signal received in a form that allows a
graphic physical interpretation. Correlation estimate Fj gshould be com-
puted according to the observed oscillation for different signal posi-
tions, ' = 1, 2, ..., M from the relation

. N ' -
A 2 ~
Fi= -;-V-; E 'q,?k 4 ‘p?k. (3.82)

k=1

vhere the following designations are introduced

dt. (3.83)

Vi ; lvzdnsib—é)
{\Tfu‘]‘ Ervy, ;;(,___’%)

Where broad-band signals are used, the quantities vj) may be congidered
identical for all values of k. Then, as follows from (3.82), correla-
tion F; can be treated as a quantity proportional to the sum of the
squares of the envelopes at the output of the filters, coordinated with
the copies of the transmitted l-position signal that are delayed for

a time interval that is a multiple of 1/Fg. A schematic diagram of
branch 1 of an optimal signal processing device is shown in Figure 3.15
below.

O,

Let us observe that the scheme depicted in Figure 3.15 can get by with
one squarer because it must be used for each of the channels at dif-
ferent moments in time which are multiples of 1/F . It is not diffi-
cult to see that (3.a2) ' realizes the algorithm of quadratic summation,
which is widespread in practice [49].
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A modification of algorithm (3., 2) can be obtained by setting up a delay
line with amplification factors that change stepwise in time in each
branch as a model of the channel, In this case the suboptimal estimates
of the coordinates of expansion of the pulse surge characteristic of the
channel will be estimates (3 77), and the aignal processing algorithm
assumes the form N Q-

A T
2 'I e ‘I tmk? (3'84)

Fi=
k R}

;:P°

in which these designations have been introduced

. (m4-n7T, § (’ “‘i‘)
lll:lmk el { , 0 Fe dt. 13.85)
‘P?mk

Ev A ,_- .
Vix mt, (t._,.;'_‘_
\ ¢

It should be remembered that the processing algorithm (3.84) will be
"good" as long as it is possible to separate all NQ paths at the place
of reception. But if the conditions of path separation are violated,
algorithm (3.84) loses its suboptimal qualities. This puts restric-
tions on the signals being transmitted. Analysis of (3.85) makes it
possible to formulate the qualitative requirements for these signals.
To insure fulfillment of the condition of separation of paths at the
receiving point, it is sufficient 1f the conditions of separation of
N paths caused by the filtering properties of the channel (passing
through a delay line with branches) are met for a segment (part) of
the signal with length T,. Detailed analysis shows that the complex
composite signals used today can, in principle. meet this requirement
approximately. However, this does not preclude searching for optimal
composite signals for a concrete channel with a given degree of fade-
out selectivity in time and frequency. This is a problem of great
practical interest, but beyond the scope of this book. It may be
solved by development and generalization of works [17, 46]. The main
thing is to use the modern systems approach based on the requirement
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of insuring maxsimum efficiency in the whole data transmission system
in solving the problem of signal synthesis.

From a practical point of view, the channel models and corresponding
estimates and algorithms of signal processing based on the adaptive,
single-path model of a multipath channel considered in Chapter 2 (2.58)
are interesting. In this case the path with the maximum transfer coef-
ficients is selected as the path for each space-time interval of analy-
sis. The corresponding signal processing algorithms will belong to the
class of algorithms with autoselection [6, 49, 104]., For discrete sig-
nal discrimination devices with automatic selection of the most powerful
path, the processing algorithm is given in general form by the relation

X -
?.I>Fg' &'=‘i-—M; g’?&ln (3'86)
where F) is the magnitude of the correlation between the observed oscil-
lation and the estimate of the l-position signal in the path of propa-
gation that has the greatestrintensity
A o R A A
Fi= —ATS "z(t. ) [Xesue (8, 1)+ Yoo (¢, 1)) dbdr. (3.87)
%% o )
It is assumed that xkﬁhas the greatest modulus of all N estimations §1,
Rys eoes %y and that y, is greatest among the estimates 91, Toy eees

yNe The structure of an optimal processing device with autoselection
is depicted in Figure 3.16 below.

w bCHY

Figure 3.16. Optimal Proc-
esging with Selection of the
Most Powerful Path.

Key: a) Channel Parameter

Measurement Block; (f)fgy
b) Estimate Modulus - ) ”?8)
Comparison Block; :

c) Signal Estimate
Forming Unit;

d) Delay Line;

e) Correlator;

£) Comparison and De-
cision Circuit;

g) Decision (Solution).
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[

The channel parameter measurement block should construct unconditional
estimates of the coordinates of expansion of the channel's pulsed
surge characteristic. It is obvious that this requires the use of a
test signal, a cdrcuit with declsion feedback, or one of the methods
of obtaining unconditional estimates from conditional estimates as
described in Chapter 2, The block for comparison of modules selects
the estimates of quadrature components of paths that have the greatest
intensity in the given interval of analysis %y and 9, (inthe partic-
ular case k = p), Then they are used to form eetimages of all signal
positions in the path of propagation with maximum intensity.. The
correlations of these M estimates with the input field are computed in
M space-time correlators and then compared among themselves in the
comparison and decision circuit., The delay lines,which delay the in-
put signal by T, are needed only when information signals are used to
form estimates of channel parameters. When a test signal is used the
need for delay lines disappears. A great shortcoming of this algo-
rithm is the fact that it assumes the use of unconditional estimates
of channel parameters. The simplest way to receive unconditional es-
timates is to use test signals, A modification of the SIIP system
that automatically selects the beam of maximum intensity in a short-
wave channel during channel measurement by test signal is described

in [53].

In the absence of test signals or decision feedback the idea of auto-
selection can be realized in a form that does not require the construc-
tion of unconditional estimates. In this case, the algorithm for com-
putation of the quantity Fl included in (3 86) has this form

Fy = N—} \z(t Ay, r) +50 5, i, @.88)

that is, the difference from (3.87) is that this expression uses con-
ditional estimates of channel characteristics instead of unconditional
ones. Then we may set aside autoselection "by quadrature" and use,
for signal reception, the one physical path of propagation which has

A )
the greatest modulus of surge characteristic Yk=-v/kﬁ-+J% of all

N moduli ¥ Y s ...,Y in the given interval of analysis, In this
case it foilows @a. 88) chat

?, 221?:5 j (¢, r)[x s,,,(t r)y-- J- Sty 7)) didr, (3.89)
Q0

If estimates of maximum plausibility are used for x and y , then,
substituting (3.73) in (3.89), it is not difficult to obtain the algo-
rithm for computing the quantity

‘Ll = max {‘Plp'l‘ q'lp} = 11 '7, (390)
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Quantity 91 can be obtained as the square of the envelope at the output
of the space-time filter that is coordinated with the l-position signal
in path k, the path of greatest intensity in the given interval of
analysis of the input oscillation.

The signal processing algorithms considered here are suboptimal for a
system of signals that are orthogonal in the amplified sense. These
algorithms may be used in the detection problem or to distinguish sig-
nals of arbitrary form, but they are completely unsuitable for a system
of opposite signals. In fact, analysis of all the algorithms in this
section indicates that they assume quadratic processing of the oscilla-
tions received, It is plain that information contained in the sign
(phase) of the signal transmitted in a communication channel is lost
with this kind of processing. Linear processing of the input oscilla-
tion must be present in the algorithm for receiving opposite signals.
It is natural for receiving opposite signals to use a model of a chan-
nel that takes account of regular phase distortions of transmitted
signals, In this case suboptimal algorithms may completely ignore
chaotic changes in a stochastic channel, which leads to the determin-
istic model of a stochastic channel described in Chapter 2, formula
(2.60). The quantity F; is now a correlation between the average value
of expected l-position signal and the input oscillation and is computed
from the relation
, A ) v TR T R -
Fi e sz,,,; [ 2, Psu s r)dtdr+m,,,[ f 2(t, 1) Sp(t,r)de dr.
N, J o J o
kel 0 0 0 0 (390

In the absence of fluctuations in channel parameters, the suboptimal
algorithm (3.91) becomes optimal.

Let us note that the linear reception algorithm (2.91) is, of course,
suitable for complex siguals as well as simple opposite signals [76].
It is possible to modify algorithm (3,91) if the output of the regular
component of some path, for example, path k, greatly surpasses the
others. In this case it is advisable to use precisely this path and
construct a correlation between the observed oscillation and expected
signals pagsing along this path, that is, compute the quantity ﬁl from
the relation .
| A amg (B IR T I
Fr= lf.f [z, Aoutt. parar+ _"!j fz(t. Pt r)dtdr. (3.92)
No o NO .
00 090
Processing can be even further simplified by completely rejecting in-
formation about the channel (or where no such information is available)
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and using the reception algorithm where the quantities are computed
from the relation

)

T
2(t, s, n dide, 13.93)

e Y

The advisability of using suboptimal algorithms in a particular channel
can only ba clarified after comparison of their noise suppression.

3,6, Some Ways to Realize Algorithms for Space~Time Signal Processing

It can be seen from all the material in chapters 2 and 3 that optimal
space~-time signal processing, both for estimating parameters and re-

- ceiving discrete messages as the key operation, includes linear space-
time filtration of the input field. Certain random one-dimensional
quantities are ‘computed as a result of this filtration, and then they
are processed according to definite rules. The processing uf one=-
dimensional quantities, no matter how many of them there may be, is
comparatively simple. In fact, general-purpose or specialized com-
puters built with integrated circuitry are capable of processing large
arrays of data by fairly complex algorithms at high speed.

Let us look now at ways to realize devices for filtration of space-
time signals. We will consider methods afforded by contemporary tech-
nology for computing the quantities ) which are included in all algo-
rithms of optimal signal processing
Y 7
e = | (2 ysalts r)de dr. (3.94)
06

As already observed above, owing to the finitenvss of the signals
transmitted and organization of the dimensione oi receiving antennas,
operations of the (3.94) type can be accomplished on the basis of a
space-time coordinated filter.

The problem of constructing a space-time filter with a given pulsed
surge characteristic of arbitrary type

- ; T
alr—g R—y), 0SEST
ot 1) = 0<A<R; (3.95)
on 0, t outside of [0, T)

4, outside of [0, R]

cannot be classified as simple at the current level of technological
development, but it is soluble. Because the form of function sy (t, r),
and thereiore also of g(t, r), is determined by the choice of a chan-
nel model through the relation

Selfor) = [ s(t=3 e (6, & ML, (3.96)

0
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it may be stated that the characteristic of a cnordinated filter is
determined by the type of functions ¢y (t, £, r). First let us con=-
sider the case of the spatially divisible functions

tall & ) s (D al § W397)

Whare this condition is met, quantities wk are computed from the rela-
tion

o z
Yy e ‘ d(é a(f, ), (r) dr \ s(t-=8) e, (1, B E, {3.08)
] b

with space and time processing done separately., It is interesting here
to look at space processing becuuse methods of realizing time signal
processing in stochastic channels have been covered quite thoroughly in
the literature [46, 55, 65].

The operation of spatial filtration, that is, the computation

n
o= {26, nuindr (3.99)

.

0

(here and in what follows we omit the index i) using current signal proc-
essing equipment is accomplished by various methods. Among them are

the following*: a) synthesis of antennas; b) use of coherent optical
systems (optical holography); c) use of digital computers (digital
holography).

Despite the fact that the three methods have much in common (they are
all sometimes called holographic), there are unquestionably differ-
ences resulting from the physics of the processes. Let us consider
these three methods of spatial signal filtration in order.

Synthesis of antennas. Function £(t) (3.99) may be obtained at the
output of antenna with directivity diagram ¢(r). For determinacy

we will consider a one-dimensional antenna with a linear aperture of
magnitude R located in a distant zone so that the spatial coordinate
is a generalized angular coordinate

r- 'ﬂiﬁ sin 0, (:5.100)

where O 1is the elevation angle and A is the wavelength. Synthesis of
an antenna [7, 70] means selecting the amplitude-phase distribution of
current P(E) in the aperture to insure receiving directivity diagram ¢
¢(r) with the assigned properties.

Calculation of the parameters of a design that makes it possible to
regenerate amplitude-phase distribution T() is an independent problem.

In the formulation of this work, the optimal diagram ¢(r) should be an
eigen function of the second-order Fredholm integral equation

* The techniques of non-coherent signal processing using photodetectors
are not considered here. They ‘are studied in detail in (78, 110, 119].
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f (') By try PV e =g () (3.101)

whara % are eigen numbers, The form of eigen functions ¢(r) may be
quite complex, but [70] demonstrates that for any given continuous
function ¢(r) and arbitrarily small ¢ > 0, there is a directivity
diagram ¢(r) for an antenna with aperture R of any length, even the
smallest, that differs from ¢(r) by not more than ¢

[0 (r) =1, ()| e (3.102)
Thus, the problem of synthesizing an optimal antenna may be solved for
any stochastic channel. Let us look at the most common method of syn-
thesizing the antenna directivity diagram, the partial diagrams method.
This method assumes approximation of an intricate diagram by the sum of
simple diagrams corresponding to the simplest emitters. We will show
how the partial diagrams, which are most widely used in practice, can
be applied to synthesize optimal antennas in a stochastic channel,
Introducing the normed variable v, we pass to an aperture of magnitude
21, We will represent the current of linear antenna I(f) in the inter-
val —A<E<n with a Fourier series

To= Nadn. @109

A=sean

This makes it possible to write the directivity diagram in the form
. n o T w
l J t .-
'p(u)-;z,;jl(&)e”‘dg-_-: E an.il.".ﬂf.’._.'l).' (3.104)
-t Py .

(v =n)

LT

We will show that the partial diagram corresponding to the harmonic dis-
tribution of current in the antenna
@ (0) == sinct (v —n)fa (v~ 1), (3.105)

is optimal in a broad class of spatially homogeneous channels. Indeed,
a channel which is homogeneous for the spatial variable is Delta corre-
lated for the angular variable, that is, the normed correlation func~
tion of its characteristic has the form )

By(v, v) =sinzt (v —v")a (v —v'). (3.100)
It is not difficult to show that when the condition 2R/A >> 1 is met
(which always occurs in practice), functions (3.105) are eigen func-
tions of integral equations (3.101) with nucleus (3.106). 1In the
general case of a spatially non-homogeneous channel the derivative
function ¢(v) may be approximated by a truncated series (3.104) con-
taining 2N partial Kotel'nikov functions.

Let us consider one more example., We will assume that the normed cor-
relation function of the characteristic for the generalized angular
coordinate is approximated by the expression .

By (v, U) = e=W =01 3.107)
We know from [81] that the eigen functions of integral equation (3.101)
with nucleus (3.107) have the form

b
: Ta(t) = V—,.,—_t—i—y—"- sin (m,,u-!- '-'3‘) . (3.108)
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where X, = 20/ (a2 + w? wrand w , w .., are the positive roots of equa-
tion tg 2ﬂw w ~200/(a? = w2), For determinacy we will consider the
case of uneven values of n, when it follows from (3.,108) that

P (6) = V2277375, cos wpp. 3.109)
It is not difficult to note that the optimal antenna (3,109) belongs to
the series of Dol'f-Chebyshav optimal antennas which are widely used in
practica. Indeed, the directivity diagram of a Dol'f-Chebyshev antenna
lattice of 2N equidistant diracted emitters has the form (7]

- Fan (8) =2 Typ..y (a cos ";'- sind ) , (3.110)

where T,(x) is a Chebyshev polynomial, a is a scalar multiplier, and R
is the Riatance between emitters.

The directivity diagram (3.109) follows from (3.110) as a particular
case where 2N = 2, a = v2/(27 + X,). The emitters should be placed at
a distance . .

R == ho/a, ‘ @110

from one another.

Physical holography. The discovery of holography and the appearance of

holographic methods of processing wave fields offer an opportunity to

realize space filters with practically arbitrary characteristics i
{56, 74, 92). The holographic method is most effectively used in the ;
optical wave range, in laser communication channels [78], and for

processing acoustic fields in acoustics [69, 123]. The many advantages

of coherent optical and acoustic systems of data processing make it

necessary in many cases to convert radio waves to light or sound waves

for further processing. For the sake of determinacy, we will speak in

what follows of optical holography, which has received the widest dis-

tribution. However, it is relevant to note that acoustic holography

with its extremely accessible wave sources is becoming very popular.

Let us consider a coherent optical system of spatial processing of an
optical signal based on the use of the Fourier transform. If we have
a hologram (Fourier image) of the function $(¥) = ¢(x, y), which is
iacluded in equation (3.99), that is, the function

-] ]
Do, 0) = | | ¢l e " dxy, @3.112)

-0 -

- then the input field z(x, y) (we will omit the independent variable t) »
can be processed by the classical scheme shown in Figure 3.17 below. '
Physically speaking, the spectrum analyzers are lenses with identical
focus distances. A transparency with function (3.112) entered on it
should be placed in the focal plane before the two lenses. It is not
difficult to show [56] that at the output of the second spectrum ana-
lyzer in the focal plane of the second lens, at the point with the
coordinate R(x', y'), at moment in time t we obtain quantity £, which
is defined by relacion (3.99).

151
\
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3

FOR OFFICIAL USE ONLY

2000 | awnnauwsmnny | Pprcaspramen o) N Figure 3,17, Optimal.Space
prypir ey Do gy i [<"  Processing by Holographic
System '

Key: (a) Spectrum Analyzer; (b) Spatial Filter.

New prospects for application of holographic techniques for processing
space~time signals in stochastic channals appear with the use of an
ultrasonic field excited by a piezoelectric element in a transparent
medium as the hologram [56]. By applying an electric oscillation to
the piezo element it is possible to obtain a hologram that varies in
time and to perform both spatial and temporal filtration, Let us look
- at this in slightly more detail. Suppose we use as a modulating screen
(hologram) a flat layer of liquid in which a generator (plezoelectric
convertor) excites mobile ultrasonic waves. Acted upon by this gener-
ator, the index of refraction of the liquid changes according to the

law n(t, ) =ny+Anf, o). (3.113)

It is clear that the equivalent transfer function corresponding to the
index of refraction (3.113) changes in time and in space in a definite
manner. Where the layer of liquid is fairly thin

n(t, ) =ny+Aus(x, b, 0), (3.114)
where A, is the index of modulation and s(x, y, t) is the generator sig-
nal (input signal of the convertor).

Under these conditions, the transfer function proveg to be a purely
phase function [56] and has the form

H(, %y, ) = exp[—ias(x, g, ), (3.115)
where a 1s the index of phase modulation determined by the wave length

(frequency) of ultrasonic oscillations of the generator and the prop=-
erties of the piezoelectric transducer.

It is perfectly clear that in the general case we cannot obtain a
space~time filter with the assigned transfer function using just one
source of ultrasound. However, this problem can be approximately
solved by using several (P) sources that realize filters with the trans-

“rﬂm“mmlﬂm&%0=mm—mmkdhm’P=LP' (3.116)

Connecting these filters in parallel with corresponding selection of
their characteristics can give us an equivalent filter with the re-
quired transfer function .

I %y, )= i exb —ias s Ol @117
p=l *

Unfortunately, the question of investigating the features of construct-
ing and using non-stationary space-time optical filters has not yet
received sufficient elaboration. Therefore, the corresponding dis-
cussion in this section is not so much a description of the procedure
for realizing non-stationary filters as it is suggestions for formu-
lation of this complex problem.
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Digital holography, It is commonly known that digital holography

means analysis and synthesis of wave fields using computers, From ;
the standpoint of the problems solved here, there are two ways to use

the methods of digital holography:

1. synthesis of artificial holograms [37, 61, 66,
134];

2, sapatial digital filtration of signals [28).

The artificial hologram is the result of a graphic computer-written
representation of a certain analytic or tabular relationship that
describes a hologram, For example, suppose the hologram to be synthe~
sized is described by the function & (wy, w,), which is a Fourier
transform of the function ¢(x, y). The problem is to obtain a plate
with the representation ¢ (uw,, wy,). The arsenal of peripheral units
for contemporary computers includes highly precise plotters with high
resolution. The procedure for making an artificial Fourier hologram
by computer is as follows. The function (x, y) is fed to the com-
puter. Its finite length |Xpa.| = R,/2; TYma = Ry/2 (with Ry =

= R) and its finite resolution Ax = Ay = 17Nmax are taken into ac-
count here. Using the Kotel'nikov theorem for the function o(x, v),
given in the square R X R, we represent its Fourier transform as a

series M 0,) = ‘:,1 sv-‘ BfL. s'"‘iR“"“‘;.'.) sin (R oy 2 (3.118)
(0 oy "-L teud (R ! R) Rwg-~n  Ruy—m o

nalome]

The number of N2 readings of function @(mx, w,) can be obtained from N2
equidimensional readings of function ¢(x, y) gaken with an interval
2n/wpay, that is, from a matrix with dimensions N x N

M == {1 (A 0yaper p:.“’\m:c),,v,. N (3.119)

where Ve [RId % 1], (3.120)
by means of the algorithm for a quick Fouriler transform [93]. The use
of this algorithm to compute the Fourier image of the function of one
variable requires [N/2 log N] times less machine time than the conven-
tional discrete Fourier transform; for the function of two variables
the corresponding multiple is [N2/4 log NJ.

The set of N2 spectrum readings of ¢(n/R, m/R) included in (3.118)
fully defines the artificial hologram, which thus consists of N2 cells.
‘The most difficult thing in making artificial holograms is to obtain
semitones. This can be done by using special representation units
[61]. Artificial hologram methods based on the transition from semi-
tone representation to black-white (binary) have also become wide-
spread [37, 66, 134]. Binary artificial holograms are synthesized at
high speed, but they are infarior to semitone artificial holograms.
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Figure 3.18 (next page) gives two examples of fragments of binary pro=-
grams synthesized with a BESM-4 computer interlinked to a Vektor graphic
plotter,

It is quite simple to transfer the artificial hologram to photographic
film or a photographic plate with the current level of development of
photography. The use of artificial holograms offers new ways to
realize optimal signal processing algorithms in stochastic channels.
In the future one may imagine a device for processing space signals
that has a broad set of presynthesized holograms corresponding to dif-
ferent types of correlation functions of the stochastic channel which
make it possible to perform optimal filtration of fields. The
"library" of artificial holograms can be supplemented as different
communication channels are studied and mastered. The reorganization of
the processing device necessary with the transition to a new type of
channel or change in the properties of the channmel being used can be
accomplished easily when it is organized by such "modules,"

The idea of using general-purpose computers to build signal processing
units arose immediately after the appearance of the first computers,
This is a tempting path which just a short time ago seemed unacceptable
for most data transmission channels because of the limited capacities
of computers [48], but today it no longer seems so unrealistic. Third-
generation electronic machines built with integrated circuitry have
high speeds (on the order of 108-107 operations a second), large memory
volume (millions of bits), and well-developed systems of external units.
The availability among these external units of a range of analog-
digital convertors brings computers closer to the problems of signal
processing in real time. The great capacities.of modern computers for
signal processing are also largely a result of their high degree of
software development. The BPF algorithms mentioned above are unques-
tionably among the most effective signal processing algorithms. There
is now available a description of the functional systems for data
transmission whose recelving parts are specialized computers that per-
form quick Fourier transforms [28].

Contemporary surveys of computer development note that there is a
trend toward increase in the relative cost of software compared to the
cost of hardware; the ratio of these costs at the present time is
roughly 6:4,

It is apparent that something similar should be expected in signal
processing technology. The hardware should become increasingly compact,
inexpensive, and universal, while its software will be refined and

play an ever-growing part.

It 1s advisable to base the construction of processing algorithms on
the principle of adaptation, according to which unknown functions are
replaced by estimates of them. Use of this principle and estimates of
channel characteristics obtained in Chapter 2 made it possible to
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synthesize a range of fleld processing algorithms, With a test signal
or ideal decision feedback, field processing is done by a canonical
adaptive scheme that contains a channel parameter estimate block and
linear correlators (the number of them is determined by the informa-
tion format of the signals), With an unclassified sample it is possible
to consider two different structures of the processing device. The
first is adaptive and differs from the one just described in that an
estimate block is installed in each branch corresponding to a position
of the transmitted signals (in this case conditional estimates of the
coordinates are computed). The second structure is non-adaptive and
is realized by a linear quadratic scheme in which estimates of channel
parameters are present inplicitly.

It was demonstrated that field processing algorithms built with a
statistical substructure and using linear channel estimates coincide,
in many interesting practical situations, with Bayes algorithms for
processing Gaussian fields in a setting of Gaussian noise.

_ A number of suboptimal processing algorithms based on different dis-
crete models of channels were proposed, It was shown that suboptimal
algorithms coincide with certain algorithms already implemented in
practice. There are three ways to realize space-time filters, which
constitute the foundation of all processing algorithms: antenna syn-
thesis, optical and acoustic holography, and digital holography. A
consideration of practically interesting examples shows that optimal
algorithms of space processing have in many cases an absolutely clear
basis for realization supported by the modern arsenal of available
analog and digital signal processing equipment.
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Chapter 4. Aunalysis of Algorithms for Space~Time
Signal Processing

4.1. Quality Characteristics of Data Transmission Systems and Their
Determination

The preceding chapters have dealt with the problem of modeling and syn-
thesizing systems that transmit information on a space-time channel.

In this chapter we consider the problem of analysis, which is equiva-
lent to the problem of evaluating the characteristics of synthesized
algorithms for a given assemblage of signals and fixed channel prop-
erties.

If we take a systems approach to the problem of determining the charac-
teristics of alogirithms and signal processing devices, the criterion for
comparing different systems should be the value of some (usually quite
complex) target function that is determined by a large number of vari-
ables,

With all the diversity of types of target functions used for problems of
transmitting discrete messages, they are united by the fact that every
one includes the characteristic of noise suppression, which is deter-
mined above all by the probability of erroneous reception of the trans-
mitted signal.

For channels with memory, needless to say, this characteristic must be
supplemented by a characteristic that takes account of the grouping of
errors, and when considering the non-stationary state of a channel in
prolonged intervals of time, frequency, and space, a communications re-
liability characteristic is also needed (an integral function of the
distribution of the probability of error).

The problem of computing the probability of error and communications re-
liability is often the stumbling block during engineering analysis of
functioning systems or systems being designed. And this is not just a
matter of computational difficulties, although even today with the fairly
high level of development of computer means it is not possible to solve
every problem of computing the probability of error, grouping of error,
and communications reliability in acceptable time periods with an
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assigned level of precision if we try to solve them by a "frontal at-
tack." The chief difficulty is that while a system developer solving
the problem of synthesis can, by using various clever tricks, bypass the
question of the probabilistic laws of distribution of signals and noise
(see the articles on non-parametric statistics in problems of signal
processing (64]), when solving the problem of analysis this issue cannot
be avoided. It is essential to adopt some particular probabilistic model
of the channel and additive noise. In Chapter 2 we constructed algo-
rithms for linear measurement of a channel characteristic that were in-
variant to the probabilistic laws of signals and nolse. In Chapter 3
use of the principle of adaptation made it possible to apply these esti-
mates to synthesize algorithms for processing, at the output of a sto-
chastic channel, signals containing discrete messages. It is posaible
to broaden the results to the case of processing signals containing ana-
log information. All of these algorithms are invariant to probabilistic
laws, although it is perfectly clear that no probabilistic model can be
used in analysis of their characteristics. In Chapter 1 we presented
a fairly detailed consideration of probabilistic models of a linear sto-
chastic channel with series-parallel signal passage. These models are
capable of describing a very broad class of communication channels.

In this chapter attention will be focused on a generalized Gaussian (four-
parameter) probabilistic model of a channel and its particular cases (the
Beckman, Rice, Rayleigh, and sub-Rayleigh models). The primary role is
not given to the generalized Gaussian model by accident. 1In the first
place, it is apparent that it is the most acceptable model for a broad
class of linear channels; the boundary theorems of probability theory

give the grounds for this conclusion. In the second place, even in those
channels whose physics do not correspond to the conditions of the central
boundary theorem, the generalized Gaussian model may prove a good approxi-
mation of the one-dimensional distribution of the amplitudes and phases

of the signal at the receiving point (it is precisely one-dimensional
distributions that will be required to analyze the probability of error).
Good approximation features can be expected from the generalized Gaussian
law because it is a four-parameter law, that is, it depends explicitly

on four parameters. The presence of four independent parameters makes it
possible to approximate practically any distribution function of the given
class successfully with a given degree of precision. An example might be
the function of distributions of amplitudes or vector phases on a plane.

In the third place, as any investigator dealing with probabilistic calcu-
lations knows very well, it is the Gaussian assumption that usually makes
it possible to carry a problem through to the end, or in any case until
engineering recommendations and conclusions gre received. However, it
would be incorrect to recommend use of the generalized Gaussian model in
situations when the Gaussian assumption contradicts the loglc of things,
for example, in an optical channel with a clearly marked sequential dis-
tribution of signals. Therefore, in what follows we will also consider
probabilistic models of a channel thut correspond to the essentially non-
additive character of formation of a dispersed signal (logarithmically
normal distribution of amplitudes, uniform distribution of phases).
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Under these conditions it is not always possible to treat the problem
of computing the probability of error without introducing additional
constraints on the model of the channel.

' In addition, it is not always possible to obtain a convenient calcula=
tion formula and we must simply point out numerical results obtained by
calculations using complex formulas or the Monte Carlo method [l4, 15,
271,

White Gaussian noise is treated as a model of additive noise throughout
this chapter. A generalization to the case of "colored" noise could be
made without too much effort, but it would require sacrificing the clar-
ity of final results from the standpoint of studying the effect of a
stochastic channel on the probability of error. Evaluating the noise
suppression of a system given non-Gaussian local noise, for example with
pulsed and focused noise, is beyond the framework of this work.

In view of the complexity of the space-time stochastic channels under
consideration, we will restrict our evaluation of the quality of algo-
rithms synthesized to finding analytic relations only for the probability
of erroneous reception of the transmitted signal.

The probability of error in optimal and suboptimal algorithms will be
determined in what follows, unless stipulated otherwise, on the assump-
tion that the individual paths along which the signal travels to the
reception point are statistically independent. Within the framework of
the generalized Gaussian model this means that we are using a channel
model based on a Karunen-Loew expansion. In this case the final expres-
gions for the probability of error include the eigen numbers azxk and
02 kof integral equation (2.21). The formulas for probability of error
do not change in the case of correlated paths of propagation, only the
quantities azxkanduzyk. This question is considered in more detail

in  work [46].

The quality of optimal and suboptimal algorithms is analyzed for the use
of a test signal and without a test signal in both Gaussian and (to a
lesser extent) non-Gaussian channels, transmitting information by vari-
ous signal systems that meet the requirement of separation of paths at
the receiving point.

We should observe that engineering practice is increasingly calling for
the development of a device (or program) that might be called a digital
analyzer of the quality of data transmission systems. This analyzer is
a general-purpose or special computer whose memory contains all possible
operators for converting a signal in transmission, models of space-time
channels and additive noise, and operators for processing received sig-
nals. The speed of the analyzer should allow operational production of
graphic output data, for example curves of the dependence of communica-
tions reliability on permissible probability of error, which determine
the quality characteristics of the systems being analyzed with the given
conversions of signals in transmission and reception, in the channel,
and in the given noise sources.
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Discussion of the foundation for building this device (or program)
beyond the framework of the present book.

4.2, The Probability of Error Under Conditions of an Ideal Classifica-
tion.

First let us compute the lower boundary of probability of error in data
transmission systems by binary signals s;(t) and sy(t) on the assump-
tion that the sample used to study the channel is ideally classified.
When an ideal estimation of the parameters of a stochastic channel in
the interval of decision-making is done and the estimates obtailned are
stored without change, then the estimates {i,(t, r) and up(t, r) in-
cluded in the linear algorithms (3.45) are exactly equal to the corre-
sponding signals at the output of the channel. The conditional proba-
bility of error for fixed values of the parameters of stochastic channel
h is determined then from the relation

]. (+. 0

’ [ TR
“/7\7{ “ [“1 TR T ,)] dtdr
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where D () == Vo SG-“”d‘ is the Kramp function. The unconditional
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probability of error is determined by averaging (4.1) by the set of
random parameters®
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First let us consider a channel with generalized Gaussian statistics on
the assumption that the conditions of beam separation are met. In this
case h represents a 2N-dimensional Gaussian vector with independent com-
ponents. The integration is performed by the procedure described in
[89] and yields the expression
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* This formula is also correct when considering intercharacter interfer-
ence.
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Let us recall the designations introduced earlier
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Tt was assumed in obtaining (4.3) that the signals have identical energy

Ey = E;, = E and, moreover, dig = dg, 1 = 1, 2. The parameteri;, is de-

termined by the mutual correlation properties of signals s;(t) and 8o(t)!
T .

|
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For the opposite signals Ay = -1; for orthogonal signals Ajp = 0,
Formula (4.3) may be used for calculations of the lower boundary of prob-
ability of error in the case of transmission by a system with a "passive
pause" also, where 8)(t) = 0. In this case A1z = 1/2 should be put in
(4.3).

Analysis of formula (4.3) shows that, where other conditions are equal,
the use of opposite signals provides the lowest probability of error in
data transmission. This result seems entirely natural because the de-
vice under consideration in fact works by the V. A. Kotel'nikov algo-
rithm in an ideal channel for which the optimality of opposite signals
has long been known. It should not be forgotten, however, that (4.3)
is only the lower boundary of probability of error in a system with a
test signal and minimizing the lower boundary (where Aj2 = -1) does not,
' in general, signify minimization of the actual probability of error.
This important issue needs further investigation.

Expression (4.3) is very convenient for numerical calculations on the
computer and makes it possible to receive a large number of particular
results. We will cite a few of them that hold practical interest.

For example, for a Rayleigh channel the formula for the lower boundary
of probability of error, as follows from (4.3), takes the form
- N

v .
LA 1 nik |
P '“2 =T =, (4.5)
- et / 1 n
V-t -2
_ Laz hy K
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while for a channel with discrete multiple beams (homogenaous by frequency)
and smooth fadeouts in time, following (4.3)

dt W
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Boundary (4.6) corresponds to the case of identical spatial correlation
functions in each of NF beams. If NF peams are "identical on the aver-

age," that is 7-2; = v%4 q2, = q2; B2, = BZ; Ppm = Pp» M= 1, NF, 1t follows
from (4.6) that
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Figure 4.1 below shows a set of graphs of the lower boundary of proba-
bility of error computed according to formula (4.7) for a system with
a test signal.
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It is interesting to consider the domain of high signal/noise ratios.
In this domain the lower boundaries approach the true values of proba-
bility of error. Assuming in (4.3) that E’k, sz;ik >> 1, we obtain
as a result of integration

Gy !

Py C (1.8

g R P j
= ——exp - COy, . o iy sind
D (14-83) (14 43) [ W heate)

Analysis of the resulting formula and Figure 4.1 allows us to draw conclu-
slons concerning the effect of the mean statistical parameters of the
channel on noise suppression. Specifically, it follows from (4.8) that
in the absence of a regular comgonent in the channel (q2k =0, k=1,

N) the presence of asymmetry (B% # 1, k = T; W) always leads to an in-
crease in the probability of error, in other words, the sub-Rayleigh
channel is always worse than the Rayleigh channel. If there is a regu-
lar component things are different. The channel with asymmetry for dis-
persions of quadrature components can provide lower probability of error
than a symmetrical (Rice) channel in the case where a weakly fluctuating
component (sz'<< 1, k = T;N) has a powerful regular constituent part
(¢pk =0, k = T, N). Under these conditions dispersed reception is in-
sured on N branches of dispersion with an asymptotic decrease in the
probability of error (where E/N,+») inversely proportional to the N-th
degree of the signal/noise ratio independent of the values of the mean
statistical parameters of fadeouts.

Appendix 2 shows that such an asymptotic dependence of the lower bound-
ary of probability of error on the signal/noise ratio (where E/Ng+=)
does not depend on the probability model of fadeouts. It follows from
formulae (4.1) and N.2.5) that, for any probabilistic law of fluctua-
tions of channel parameters that meets definite constraints for the
lower boundary of probability of error under conditions of an ideal
classification of the input field, this relation is correct.
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Thus, the dependence of the probability of error on the signal/noise
ratio in asymptotics (where E/Ny+) of the type
p = WNENYY + (BF-0) TR

is stable relative to the probabilistic model of fadeouts., It will be
shown later that the dependence (4.10) is also correct wheu studying a
channel according to information signals with a non-ideal classification.

As shovm in Appendix 2, for a non-Gaussian (logarithmically normal by
amplitudes, uniform by phases) channel, from (4.9)

N
2Nl | 1 202
p>C- ] e o,

vt 402 1N

where 0y = (ﬁ;;.“']ﬁ,: X

The parameters Wk and ozxk ghould be fixed for mutual comparison of re-
sults related to Gaussian and logarithmically normal models.

It can be seen from (4.11) that as 02,y increases (with an increase in
the depth of fadeouts), the probability of error grows. Comparing (4.11)
with the corresponding formula for a Rayleigh channel, which follows from

(4.8), we conclude that for values o§,<-§—ln-m the channel with log-
arithmically normal amplitued is better than the Rayleigh channel. 1In
the domain o§.>—%— In4n  the opposite is true.

Let us move on to a consideration of the upper boundary of probability
of error. To determine the upper boundary it is convenient to write an
algorithm to distinguish two signals in the form

TR A TR A
" f [2(ts ) =1y (2, £)]* dtdr <S f(z(t, )= uglt, A dldr.  (4.12)
00 00

It is not difficult to show that on the assumption that the l-position
signal s (t), 1 = 1, 2 is transmitted, the probability of an erroneous

decision is determined by the probability of fulfillment of the in-
equality
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where e,(t, r) expresses the error of estimation of the l-position signal
caused by inaccuracy in measuring the channel characteristic:

K A
oy f)“chI/l(f. B =it &, s (d)dé.
0

Entry (4.13) enables us to draw qualitative conclusions on the effect of
inaccuracy in measuring a channel characteristic for noise suppression.
It 18 not difficult to note that the effect of inaccurate measurement on
the characteristics of an algorithm finds expression in the appearance
of additional additive noise correlated with the signal.

The linear, unbiased estimates synthesized in Chapter 2 are used to mea-
sure channel characteristics. Then, for Gaussian additive noise n(t, r)
the additional noise e;(t, r) is also Gauseian with a zero mean and cor-
relation function Bay(t, t', r, "),

It 1s perfectly obvious that the probability of fulfillment of inequality
(4.13), which is the probability of error, will be greater if additional
noise e (t, r) is white noise, which statistically does not depend on the
usable signal, and has a spectral density of output of:
2 (0.0 + By (0,0)

2RO,

Dyt (4.14

This circumstance makes it possible to write the upper boundary of the
probability of error in the form

- 1
Py {one| i} L -7,—{ | —

. .
»-w[‘/ —-——L—Fo-os f[f}lu. r)—--:’/\,(l. r,l]’rlhlr“' | (4.15)

If optimal linear estimates are computed to study a channel, then (see
Chapter 2) the mathematical expectations and dispersions of estimates
coincide with the mathematical expectations and dispersions of the quan-
tities being estimated

w
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It is clear from this that the upper boundaries of probability of error
are determined by the same expressions as the lower boundaries, which
were obtained above, except that instead of parameter Ny, the parameter
(Ng + Dg) 1s involved, which leads to a decrease in the signal/noise
ratio of (lg+ do/n ) times. For the good linear estimates constructed
in Chapter 2 in the domain of large signal/noise ratios, the following
relation is correct

Dy = »'!,f Er, (4.16)
where E* [E1] 1s the energy of the signal being used to study the channel.

Assuming that signals of equal energy are used (E; = E, l=1,2), ve
conclude that the inaccuracy of optimal linear estimates leads to a de-
crease of (1 = E/E ) times in the signal/noise ratio hZ. This fact en-
ables us to conclude that the effect of the inaccuracy of measuring
characteristics of a stochastic channel on noise suppression and recep-
tion of discrete messages can be eliminated in practice by studying the
channel with a signal whose energy is 10 times greater than the energy
of the information samples, Let us note that a completely analogous
conclusion concerning the ratio of energles gl and E was drawn by [46]
for a Rayleigh channel as a result of finding exact formulas for the
probability of error. The exact values of the quantity Dy for different
correlation functions of the channel should be computed from the rela-
tions in Chapter 2. Their use makes it possible to construct graphs of
the probability of error for a broad class of channels with an arbitrary
probabilistic model of fluctuations of parameters.

In concluding this section we will show graphically what gives optimal
spatial processing the advantage over non-optimal (primitive) processing.

AY
Let us consider a channel with smooth fadeouts in time and frequency
but selective (homogeneous) fadeouts in space. The transfer function of
such a channel depends entirely on the spatial frequency H(w, t, wy) =
H(w,) .

Let us make a comparative analysis of the two schemes. The first com-
putes and employs MR readings of the tranmsfer function (2.124). The
second performs primitive spatial processing of signals and is constructed
on the assumption that the channel is described by a model of an ampli-
fier with a random amplification factor H(w, t, wy) = H.

Tn the first case, the estimate of the signal in position 1 is computed

in the form
\.R

A v A v
syt r) == Re ls, 0 }_‘ Ttpe VT
Pl

where ﬁp is the estimate of reading p of the transfer function and Aw,
is the distance between readings on the axis of spatial frequencies.

166

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3

FOR OFFICIAL USE ONLY

The expression of the lower boundary of probability of error for this
example follows from (4.3): substituting N = NR in (4.3) for optimal
processing and N = 1 for primitive processing., It is clear from this
that the superiority of optimal spatial processing to non-optimal
iprimitive) increases as the degree of selectivity of spatial fadeouts
ncreases,

Now let us evaluate the effect of inaccurate measurement on the proba-
bility of error in optimal and primitive space processing. First we
will make a general remark. It follows from (4.14) that the intensity
of additional additive noilse caused by the inaccuracy of measurement is
equal to the mean square of error of measurement eZ., The optimal
linear estimates minimize this quantity. Any other estimates give
larger values of ET, and therefore there is additional noise of great
intensity. Thus, the effect of inaccuracy of measurement on the prob-
ability of error will be greater in non-optimal processing than in
optimal. Of course, it should not be forgotten that this conclusion is
drawn for the upper boundary of probability of error, not for probability
itself. The question of how close probability of error is to its upper
boundary demands additional investigation in each particular case.

Let us return to the example under consideration. With optimal proc-
essing the mean square of the error of measurement of the l-position
signal on the basis of (2.123) 1is written in the form

| oaF ) .\’R.'z ,
- _ 1 . N (w, tep)
e, = a Is‘ (um’z -—,-R— 2 ‘ - rp. d O}y
. b N R W Q v (., h),p‘
pr &Rz [8Y () [P o = mties
G (u). (n),p)

where S"(w) is the spectrum of the sigﬁal by which a channel lying in
band [-F, F] is measured.

For primitive spatial processing on the basis of (2.164) we have
o
- 1 . y
of = -y Jlsl (ﬁ))’n‘ﬂ‘u’T")- dw,
P 1" @]
In writing the last formula we assumed, for the sake of determinacy,
that the primitive scheme estimates the transfer function at 0 spatial
frequency. Let us make a comparison of the two schemes in the case,

most advantageous for the optimal scheme, of equidimensional energy and

amplitude spectra V{0, o) =N G(w, o) =Gy [$" ) ['= E*: | S ()P =E, 1=1, 2.

Under these conditions, the intensity of supplementary additive noise

in primitive processing is (lJuE#z—) times greater than in optimal
processing. °
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The expression of the lower boundary of probability of error for this
example follows from (4.3): substituting N = NR in (4.3) for optimal
processing and N = 1 for primitive processing. It is clear from this
that the superiority of optimal spatial processing to non-optimal
iprimitive) increases as the degree of selectivity of spatial fadeouts
ncreases,

Now let us evaluate the effect of inaccurate measurement on the proba-
bility of error in optimal and primitive space processing. First we
will make a general remark. It follows from (4.14) that the intemsity
of additional additive noise caused by the inaccuracy of measurement is
equal to the mean square of error of measurement eZ, The optimal
linear estimates minimize this quantity. Any other estimates give
larger values of 37, and therefore there is additional noise of great
intensity. Thus, the effect of inaccuracy of measurement on the prob-
ability of error will be greater in non-optimal processing than in
optimal., Of course, it should not be forgotten that this conclusion is
drawn for the upper boundary of probability of error, not for probability
itself. The question of how close probability of error is to its upper
boundary demands additional investigation in each particular case.

Let us return to the example under consideration. With optimal proc=-
essing the mean square of the error of measurement of the l-position
signal on the basis of (2.123) is written in the form

\ aap y .\’R /2 .
- e A N{w, v.p)
= ‘ ISt <7 2 ¢ - du,
T A vR g st r)lﬂ.x._-—‘v“"‘ o)
pr =N 2 (o [ (@, mll‘)

where S"(w) is the spectrum of the sighal by which a channel lying in
band (-F, F] is measured.

For primitive spatial processing on the basis of (2.164) we have
MmF
T : N (0, ©,)
¢ == IISMwH°-——L—ﬂL-d
a F ,sll(m)lﬂ

In writing the last formula we assumed, for the sake of determinacy,
that the primitive scheme estimates the transfer function at 0 spatial
frequency. Let us make a comparison of the two schemes in the case,
most advantageous for the optimal scheme, of equidimensional energy and

amplitude spectra N, @) =Ny G(w, o) =Gy |$" (0)P=E*; [§j()P=E, =1, 2.

Under these conditions, the intensity of supplementary additive noise

in primitive processing is (14~E$%—) times greater than in optimal
processing. 0
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4,3 Characteristics of Devices for Processing Space~Time Signals in a
Generalized Gaussian Channel (Smooth Fadeouts)

To bring the results of calculating noise suppression more closely in

line with the physics of real channels it is advisable to consider
separately the particular case of smooth fadeouts. In this case the chan-
nel is represented by a model of a series combination of a deterministic
space=-filter and an amplifier with a random, complex amplification factor.

Correspondingly, the optimal processing device for signals in each trans-
mitted position 1s a one-channel device. The processing a.gorithm for
space~time signals in a channel with smooth fadeouts follows as a par-
ticular case from the general algorithms of Chapter 3 where N = 1.

Here we will consider the characteristics of space~time processing
devices in a channel with generalized Gaussian statistics.

Because we are investigating a generalized Gaussian model of a channel,
it is advisable to compute the noise suppression of the optimal algo-
rithm in this channel (3.56). The probability of error computed in
this case should be treated as the lower boundary of probability of
error for the given channel. Algorithm (3.45) is invariant to the sta-
tistics of fadeouts in a generalized Gaussian channel with a regular
signal component; of course, it is inferior to the optimal Bayes algo-
rithm (3.56). However, the corresponding energy loss is a fraction of
a decibel and in practice both algorithms provide the same probability
of error. We will make our comparison of optimal algorithms against
the non-coherent processing algorithms which have become widespread and
follow from the formula (3.82) where N = 1 for the problem of detection
and discrimination of M-orthogonal signals and against linear algorithm
(3.91) in considering the problem of distinguishing two opposite signals.

We witi consider three types of message-carrying signals separately:
signals corresponding to the detection problem (dual signals); signals
in a group of number M which are orthogonal in the amplified sense
{104]; opposite signals.

In addition, we will solve the problem of computing noise suppression
for dual signals of arbitrary form and on this basis find the optimal
dual system of signals in a generalized Gaussian channel.

The working characteristics of an optimal detector. Two types of errors

are possible in a detector that works according to algorithm (3.45):

the false alarm and missing a signal. To determine the probabilities of

these errors it is convenient to convert expression (3.12) to the form
Vg Vi 4.17)

The quantities V and V are normal and independent. When the incoming

oscillation has a usable signal these quantities have the following

parameters

2E  |-+2K 9E 1+ 2]
wV=mvﬂ—-—an=' _—
M =me |/ g m@=my % "} iuas)
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In the absence of a usable signal

w1 - R
M (V) ""l*l/ ‘lh’(l ,-2“) My (P} = My NA Wm‘“,ﬂ‘,)
DY = by .
Lo vy l+2h’ '

The probabilities of a false alarm and missing a signal should be calcu-
lated according to the formulas [89] for integral function F(A, B, C, D).
In the general case we may write

Ormesl—F(A, B, c=), pt=i Pup = F (4, g, ), D(H), (4.20)

The parameters present in formulas (4.20) are written as follows

53 \
21
[B(“l'- M iﬂiﬂ_ﬂ
) opr

H TFETF A
(1 %) (1 BY) o+ 26 B m]

¢ 4“”(‘*37)[@""” (1 ¢t (14 §7) 4 I
1 u+q')(l+5‘)+2"""]
B ¢ (1 +pY 1 28

[cp =

i)ﬁ[x 4.
2 e paha 5

D(—)ual‘é lg 'g ¢,ﬂ ('l_.t'qM' »
I+ ‘u'+'q’>‘u' )

Ot
2B2 ki

- (l +q2)(‘ + ﬂl) .*.Z}F sin"? ]} ’

u o+ @) (1 4 BY + 2R

(A epr, [ Hl’=q’{l-i~ lcos‘%+

/ b2 of
TP (1
D(+)=arctg lg Tf '/ ¢ +2h)'(ﬂ’+ 7

TN ST i

(4.21)
Parameter hZ is expressed by the formula

- E
"’=ﬁ;‘("‘3+f'lf,+0§+0,’,). (4.22)

As follows from formula (4.21), where hy >> 1 the following inequalities
are fulfilled: B(-) =1 and C(~) = 0. The probability of a false alarm
in this case is determined by the relation

Pm=exp(—w), TR )
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from which it is not difficult to compute the threshold
i) a0 e 01 Pare (4 -24)
Using results from [89], the expression for the probability of missing
a signal can be obtained in the form
I {Hpag) (1 B2 -+ 6)
- “ - '
21T exp [9-%-5—1-—9:) (cos? qpp -1 B2 sin? q*,.)]

Pup =

14.25)

We will analyze the characteristics after consideration of the quality
indexes of a non-coherent detector.

The working characteristics of a non~coherent detector. We will determine
the probabilities of errors in a detector working according to algorithm
(3.82). In the absence of a usable signal V and { are distributed nor-
mally with a zero mean and dispersions equal to ENOIZ. Therefore, the
modulus ¢ | Vi 18 distributed according to the Rayleigh law. The
probability of exceeding the threshold in the absence of a signal (the
probability of a false alarm) is determined as follows

Par = exp (— w), (4.26)

from which it is possible to find threshold level w which insures that
the given probability of a false alarm will not be exceeded:

- “wes = Inpag. (4.27)

In the presence of a usable signal at the input of the receiver V and V
will be distributed normally as before with parameters M{ V} = MyE, M{V} =
MyE:

Y

-~

D{V) mé‘%“-(n-wzhi); D{T}es F’—’;’i(|+n§).

In this case the modulus has a four-parameter distribution. The proba-
bility of correct detection (or missing the target) is determined by
« means of the integral function

B Pur=F(A, B, C, D). (4.28)
In the case under consideration A, B, C, and D are determined by the
formulas:
L+ dEp
A= 20Wpay g TOEPIUEA
oI . ) ot
l TN TR R TEN: ST e

fitg
C'=T'_F7; D = @,.

In calculations of noise suppression the formulas in [89] may be very
useful.
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Analogously to (4,25) for the domain of small errors and small q2 we may
use the approximate notation

pup e 10 (1) (Lo B (1 o+ g1 ‘ .29)
20% pexp lﬂ%w— (<08 qpy - B2 sinit rp,.)]

It is easy to observe that expression (4.25) and (4.29) coincide. We
will analyze the effect of channel parameters on the working charac-
teristics of a non-coherent detector and then optimal detector in the
stipulated conditions. It is apparent from (4.15) and (4.24) that the
pgobability of missing a signal decreases exponentially with growth in

Where the channel transfer coefficient does not have a regular part a
deepening of asymmetry by orthogonal component (decrease in B2) in-
creases the probability of a miss. The existence of asymmetry can pro-
vide a gain in the probability of a miss if a weakly fluctuating com-
ponent of the transfer coefficient (B2 << l)has an essential average
(q® > 0, ¢p = 0). The working characteristics of detectors figured by
the formulas and tables in [11, 49, and 89] are represented in Figure
4.2 below (the dotted lines show the curves of optimal detection and
the solid lines are non-coherent detection). A comparison shows that

n

Figure 4.2. Working e
Characteristics of a Non-
Coherent Detector and an
Optimal Detector in a
Channel with Smooth Fade- .7°
outs., (Solid line is
non-coherent processing;
broken line is optimal
processing.)

“1p ’ ’ BRI ENX
. J / f:‘ l, &,‘I" !

P%,
s
%

the loss of information on phase does not reduce the quality of signal
detection significantly. The energy loss is zero decibels for a Ray-
leigh distribution of amplitudes because the true distribution of phases
is uniform and reaches a maximum (about 1.4 decibels) for the ideal
channel (phase distribution is a Delta function). In the intermediate
domain of change in parameters, the energy loss is almost intangible
(fractions of a decibel), but it increases slightly with greater asym-~
metry in good channels (q2 >> 0 ¢p = 0). .
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The slight decrease in noise suppression combined with simplification

of practical realization and the receiver's invariance in relation to
channel parameters makes the non-coherent method of simple detection in
a channel with smooth fadeouts preferable to the strictly optimal method.

The probability of error in a system of M-orthogonal signals with optimal
processing. To calculate the probabilities of errors it is convenlent to
convert algorithm (3.56) to the form '

G1>Gg g=1, Mj gl {4.30) S
where Co
0 = V34V

The quantities vj and \71 are distributed normally. They are mutually in-
dependent owing to the orthogonality of the signals in the amplified
sense, and have these parameters

//gg 1 21 ~ y/ 2 1+
T Mx(‘l)“”'y" T
Ny 20 Ny 2

D (Vi) =202, DV} =205 .

3E T
My (Vi) »= i ‘/No () (1.31)

o e 2 2 e

~ 2
M AF) =m vy ey el
1{ l.) y 1/ No th (l KN M:J )
— md
i D{Vg) = —E
14202 ¢ 1

My (V1) = mx ‘

un?

D {Vg)e=

[
Py

h

The probability of error is found from the relation

p=af, (1=l =F@GI"' ). .3
In this formula the quantity F(Gj) is the probability that the random
quantity G’5 will exceed a certain random level G;. The averaging in
(4.32) is done according to Gj.

Observing that in the general case the distribution of moduli of G, and
Gg is a generalized Gaussian distribution, we may, following [89], write
the formula for the probability of error in a binary system (M = 2) as
follows o - /.___
ey RPOREO° o s b
a = DR e S eV S

nl &l gatopt 2ol bk

n:=0k--0
/WT';’J-_-M’)] ! [ “”"j
-" T4 72 TTFASP T (-~ 7 .
x 1, T . 4.33)
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where
,1u|,‘(l+2ll_7\.); . .
w2y S MU O () T
L S WX (/% WA VF (V9 SO 2R (7%}
D {Vp} = D (V)

Rp bl ~
D{Vp}4- D{V0)

VP2,

Familiar [49] particular cases follow from formula (4.33). Analyzing
parameters (4.31), of the quantity G which is in the right part of
formula (4.30), it is not difficult to observe that the distribution of
the right part becomes an x? distribution with two degrees of freedom
when the condition h2,, h2x >> 1 is met, This makes it possible to ob-
tain [89] an approximate formula for the probability of error

i - ik
ool _k0Ep | TR
- P 2f o X
Vet gt TR OED
p=Y) (=1 cii- q
= 2kt 20 p? ]
. l/[‘+"(l+ﬁ=m+q*)“‘+” TFPoFal
L+ op i
T B (1 < g%)
e x Bsine g — 0 p;}‘(?lﬁ: o °°s=¢’]l
AU E P

(4.34)
Calculations show that for small values of q2(q? & 3), it is possible to
use formula (4.34) for practically any n? 2 5. The explanation for this
is that the true distribution of the right part of (4.30) (Gg) in this
case is very close to the approximating x? distribution.

For the most interesting domain of small errors it is not difficult from
(4.34) to obtain
‘ _t(l +ﬁ"’)(l—i—>;’)w '2(| _;: " M 1
p= 2B exp[__' q szﬁ) (costgpp+pzsin2«pp)] 2 —;: . (4.35)
kel

It is interesting to observe that an expression analogous to (4.35) can

be obtained for the domain of small errors in a non-coherent recelver

of signals of the type under consideration. It follows easily from the
! general expression obtained in [49]
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This confirms once again the fact observed in [42] that optimal and sub-
optimal (non-coherent)receivers for a system of orthogonal signals of
equal energy may provide similar nolse suppression, It follows from
(4.36) where M = 2 and the values of the parameter q2 are limitqg% that
the nature of decrease in the probability of error depending on he is
approximated by a power function of the type

1\¢
p= (“h-‘;‘) i g> 0.5, (4.37)

where g = 0.5 for B2 = q2 = 0 (truncated normal fadeouts), 0.5< g< 1
for 0< b2 < 1, q2 = O (sub-Rayleigh fadeouts), g = 1 for B? = 1,

q* = 0 (Rayleigh fadeouts), and g > 1 for q2 > 0 (four-parameter fade-
out).

For large values of M it is convenient to use the asymptotic (M+=)
formula [16] that reduces the discrimination problem formally to a prob-
lem of detection 0. Gy <Gy

I __F(G‘)].\I-—l Ve Ue

B 1, Gl>0°-

The level G, for an optimal system may be determined from the condition
F(G,, B, ¢, D)) = =M=}, (4.38)
parameters B(‘), CK‘), p{(-) are determined by formula (4.21). For a
non-coherent processing system the level Go is given by the relation
e=Or= | _2—]/(M—l). (4.33)
Correspondingly, the expression for the probabilities of errors in an
optimal system takes the form
p = F(Gy B ¢t=Y D) 1.40)
[the parameters 3(40’ C(+), ™) are given by formula (4.21)] and the ex-
pression for the probability of error in non-coherent processing is

M= Y "R

2t 2 P
R VA Mg T
20 ' 2j '

Ty ERRTE ST
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In the domain of small errors formula (4.35) can be used to calculate
the noise suppression of both systems.

Figures 4.3 and 4.4 below show curves of the probability of error con-
structed from the formulas obtained above. From the figures and formulas
it can be seen that the probability of error depends significantly on

the statistical parameters of the channel. The energy loss of the worst
channel considered, the sub-Rayleigh channel where B? = 0.1,is about

30 decibels compared to the ideal channel where M = 2 and r = 10-%, The
magnitude of M has little effect on this relation. Where the channel is

10! 10 ¢ 104 2
o

Figure 4.3. Probability of Error

for Optimal and Non-Coherent Dig- !
crimination (M = 2). (Solid line

is non-coherent processing and

broken line is optimal processing.) u"

+ asymmetrical for orthogonal components, there may be an energy gain com-
pared to the case where asymmetry is absent if the weakly fluctuating
component (B2 << 1) has a clearly expressed regular part (q2 >> 0,
¢p = 0). The sum included in formula (4.35) where M >> 1 may be approx-
imated by the simple expression

M—

!
!
2 T:lﬂM. (4.42)

Al

This allows us to state that growth in the position format of M leads
to a decrease of 1n M times in the equivalent signal/noise ratio com-
pared to a binary system and In M/1n M' times in comparison with the
positional M'.
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Figure 4.4. The Probability ™"
of Error with Non-Coherent

Discrimination of Orthogonal |
Signals. -

7

Optimal binary system of signals in a channel with smooth fadeouts. In
the preceding sections the nolse suppression of algorithms for concrete
signal systems has been determined.

Another formulation of the problem is also interesting for data trans-
mission [60]: find the system of signals which, with the imposed con-
straints, affordsminimum probability of error. We will call this signal
system optimal., In our search for the optimal signal system we will
impose the constraints dictated by considerations of convenience in
realization and economy of input. Specifically, we will require that
the system be binary and that signals s,(t) and s (t) be equiprobable
and have identical energies E) = E; = E. In this case the mutual corre-
lation coefficients of the signals will also be the parameters that
should be used to find the optimum (minimum probability of error):

1 { 1 7
7‘-'—'—E—bf si(f)sa(f)dt = ?(j S50 dt,

T T
~ 1 ~ - (4.43)
A= ?(5 st {f) s2 (1) ‘"=7l?§“ () s () dt,

=R,

To calculate noise suppression under the stipulated conditions, it is
convenient to put algorithm (3.45) in this form

D>0; D=V} +V3—Vi— Vi (4.44)

where B is the quadratic form of Gaussian variables.

The characteristic function of the quadratic form of Gaussian variables
is known [114].
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exp [ . —.lé- Ng=1 {1 =\l - F2uKQM A1)
Ap ) 22 mmesd — (4.19)

TS

In this case M= (V } is the matrix-column of average values of vari-
ables; K is the matrix of covariations of quantities Vi; I is the unitary
matrix of the same order as K; Q is the matrix in quadratic form.

The statistical parameters of the variables Vj can be computed easily
(89].

. In the general case it is more convenient to calculate the probability
of error using characteristic function (4.45) following the technique
described in [89]. The calculated curves are shown in Figure 4.5 below.

1M
b
1
1=t
= \ im".':./;?.lﬁl. ,?a—‘m o
Figure 4.5. The Probability S 9500 e i
of Error in a Binary System SN0 R S

of Non-Orthogonal Signals.

A
(TS A AT, $e 0

If there 1s no asymmetry by orthogonal components (B2 = 1) , we arrive at
the known [142] result

a'c? L p3gt

p1=Q(ac, bc)-—%bcxp(— 2

) 1,(abey), (1.46)
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To find the optimal form of the aggnals we will investigate (4.46) to
the extremum according to A and A<, The necessary conditions for the
existence of the minimum can be written as follows:

dp dae op duc

E’? (-’—f’—e.n ;-3;:‘- -5-}‘—.-:1 . (4.48)

Having observed that

aZe? - bt 1 6Q(ae, be):
S St Attt ) =2 e T, “ I
exp( 2 )Io(ubc) " e , (4.49)
we will write the necessary conditions of the extremum as
Op b 3Qac, be) J_( b )do(nc. be) -0
dnc 2c  d(acpp 2a'c? dac o
14.50)
doc o dac o
or ok

The differential equation standing first in (4.50) is solved in an ele-
mentary manner, but it ‘yields values of ac and bc which can never be
achieved because they are outside the domain of definition of these
quantities. By studying (4.50), it is not difficult to show that the
coefficient of mutual correlation of A takes two optimal values with the
existence of a regular component in the channel A = =1 and A = 0 '
(A2 = 0) and one value A = 0 (AZ = 0) in

the absence of a regular component. Calculations show that this situ-
ation persists in a channel with asymmetry by orthogonal components
also.

The investigation we have made allows us to state that in a channel
with smooth fadeouts and a regular component, the system with opposite
signals 1s optimal up to certain threshold values of the signal/rnoise
ration h4,, , but for larger values the system with orthogonal signals
is optimal.

The threshold value hZ“,, can be determined from the condition of
equality of probabilities of error in these two systems.

pPA=—1=p(=0), (4.51)

The expression for the probability of error in a system with opposite
signals has this form [49].
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The probability of error in a system of orthogenal signals was determined
above (4.33). A comparative analysis of formulas (4.33) and (4.52) shows
that in good channels a system with opposite signals remains optimal
throughout the domain of error that is of practical interest. A signifi-
cant feature of the system with opposite signals is that it has an irre-
ducible (as hZ increases) probability of error whose value is determined
by the channel parameters [49]. This makes it possible to determine the
threshold value hznor in channels that are far from ideal but have a
regular component, using the relation
: 2 2
- (1B + gM exp [ - -L“_,-;#— (cos? - B sin? q‘x-\]

hop =*

TRt 14.53)
B{ 1 —0[ l//q’ LE,P— (cos? qp + ﬁ’siN’frp)“

The range of variation in threshold value hZqe, 18 very great. For ex-
‘ample, in a Rice channel (B2 =1, EZ'= 2) hé,, = 10, and in a gener-
alized channel with good statistics (a2 = 2, ¢p = 0, B2 = 0.1) hzﬂbp =
5.103. A rationally designed communications system should change the
appearance of the signals used depending on the state of mean statis-
tical parameters of the channel.

4.4. Characteristics of Detection of Space-Time Signals (Generalized
Gaussian Statistics)

Let us determine the probability of a false alarm and missed signal for
the algorithms of optimal and suboptimal space-time signal processing.

Optimal processing. To calculate the working characteristics, we will
represenc algorithm (3.45) in the form

N .
G= E VT o (4.54)

The quantities Vk, Vib k=1, N have Gaussian distributions and are sta-
tistically independent. When there is a usable signal in the observed
oscillations these quantities have the parameters:

— [ Lon? )
M =ma V) — |
Wy ’
o Y Arpear s (4.55)
My (V) = myp V2, “/ - wk ,
'I'Lk

DV} =20 D(Va) =23,
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In the absence of a usable signal the parameters will be

— 1 T
My (V) =g V'Idp, -“-,;-.)—- l/-i-—‘-;_;.‘.. ,
ek L

M (Vk) smy ¥V -——‘ ‘/__:M;i_k 4.5
1 & 5 PRA Sy, \
WPV T .59

2,

op?
i+2h“

DR 2?, @
8} = 2 D)=
202, "

In the general case, it is convenient to calculate the probability of a
false alarm and missed signal using a characteristic function which is
easy to compute for both the presence of a usable signal GG(*s (1w

and for the absence of a usable signal ©g(=) (1 u). These characteristic
functions are determined by the identical expressions:

. [ HuMy vy L tudty (V)
NP TN (Vi) - 1 — 1 20D (Ve
agtin=[1 LEYL D wen

pmt VU —12aD{Vi)) [t = 120D {Vi}]
in which the value of parameters from (4.55) should be substituted to
compute Og +) (4 u) and the parameters from (4.56) to compute g 77/ (i u).

The probabilities are expressed through the corresponding characteristic
functions e : Co

1 e
Pae=1l—c— | —

21 fu

clm.) du,

It is convenient to make the numerical calculations for formulas (4.58)
using the methodology and algorithms of [89].

Let us consider the domain of small errors. Analyzing the expressions
included in (4.56), we observe that where szk» h2yk >>1 the mathe-
matical expectations of quantities V. and V) become close to 0 and their
dispersions tend toward 1. Thus, the distribution of the random quantity
G in the absence of a usable signal contracts toward an xz-distribution
with 2N degrees of freedem. This makes it possible to express the proba-
bility of a false alarm by a known [109] relation

Nl

p -'=—l'l’ 0, N1z wf )
TN - { ' DR E o 4.0
£=0
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The threshold level wp that is optimal according to the Neuman-Pearson
criterion should be computed from equation (4.59), Looking at expres-
slons (4.55), we may observe that in the domain hzx, h2,>> 1 the dis~-
persions of quantities Vi and V) assume larger values. ~This makes it
possible [89] to obtain simple expressions for the probability of missing

a signal N -
v nt ' . C) 9
o (e ta) [ (R
pm,ln—AT - = -~ QN - o2 = N
hee) 2hi; Br . 'ﬂk
X (cost qy 4+ Py sint g, k)] . 14.60)

A vhole serles of particular results can be obtained from formulas (4.59)
and (4,60) with different assumptions about the model of fluctuations of
channel parameters.

As a numerical example let us consider a spatial model of a channel with
fadeouts that are non-selective in time and frequency. The number N in
formulas (4.59) and (4.60) is determined from the relation N = NR =
[R/Peor + 1] (one spatial coordinate r is being considered). The surge
characteristic in this case is represented in the form

h(t & =g 8(§), (4.61)
where g(r) is a random complex-valued function of the spatial coordinate.

We assume that the real and imaginary parts of function g(r) have normed
correlation functions of the type

Ry(r—r') =exp(-—- l:—LL) . (4.62)
Prop

The results of calculations of the probability of error using formulas
(4.58)-(4.60) for the channel model under consideration are shown in
Figure 4.6 below.

NR

Figure 4.6, Working Charac-
teristics of Optimal Detection
in a Channel With Space-
Selective Fadeouts.
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Let us consider one more spatial model, a homogeneous channel in terms

of space with smooth fadeouts by frequency and selective fadeouts in time,
In this case, as was shown in Chapter 3, optimal spatial processing is
accomplished by narrowly directed antennas with directivity diagrams of
the type sin /9. The number of such antennas is NR, Optimal time proc-
essing is accomplished by a multichannel scheme with NT channels. Thus,
in this case N = N NR in formulas (4.58)-(4.60).

It follows from formulas (4.59) and (4.60) that
) ) £ R | .
Par =2 m Plw, NTAR) caemw }J R

di '
2=0 &
R T
TR NTN
N o
Prp o N (1= B3 (2 vfy) < ! 14,03
Wwr k)l iral kanl ‘JI;',;'; B
2 2
_ g (VR .
X exp [_ “—:‘;gu(cos- Gp iy -4 B sint uir) | -
“Pik

Simple reasoning allows us to reach the conclusion that identical expres-
sions for probability of error may correspond to mathematical channel
models that differ from a physical point of view. This occurs when the
values of parameters of processes of fluctuation that differ from a physi-
cal point of view coincide in the models (for example, the nature of sig-
nal fadeouts in time for onme channel model may be identical to the nature
of fadeouts in space for another model). In particular, formulas (4.63)
will describe the probability of error for a channel that is homogeneous
bK frequency with smooth spatial fadeouts (in this case the parameter

NR x NS should be used in these formulas). This feature, which may be
called the reversibility feature, is typical not only of detection

units but of all other units for processing space~time signals in chan-
nels with selective fadeout.

Suboptimal processing. Generally speaking, it is more complex to inves-
tigate suboptimal algorithms in a stochastic channel than optimal ones.
The chief reason is the possible appearance of a statistical relation-
ship between particular paths. The second difficulty is that there is
just one optimal algorithm, but a set of suboptimal algorithms may be
proposed and this gives the investigator of suboptimal algorithms the
difficult job of selecting the object of investigation. Here we will
consider several algorithms for processing space signals that have worked
well in practice or show definite promise. The analysis of suboptimal
schemes is done in thgse channels where they actually provide processing
that is close to optimal according to definite variables (space, frequency,
or time). If a unit realizes spatial scattering, for example, by means
of narrowly directed antennas, the spatial paths are considered inde-
pendent in analysis if the opposite is not stipulated. This does not

at all mean that the general formulas for error probability obtained in
this section cannot be used in the case of statistically dependent

paths. In fact, when investigating the probability of error (during
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both detection and discrimination of signals), we are always dealing
with the quadratic form of random quantities

J Q= E appVaitp, (4.64)
ke p

where akp are coefficients.

We know [5] that there is alwayc a possibility of reducing the quadratic
form to a canonical type

Q= D eV} -+ M3, (4.65)
&

where aj and By are coefficients corresponding to a new system of coordi-
nate and U and V are variables corresponding to the transformed system of
coordinates,

Lack of correlation among the variables of the transforms in form (4.65)
is achieved by an appropriate choice of conversion from (4.64) to (4.65).
In the Gaussian case, lack of correlation is identical to statistical in-
dependence. Therefore, in the particular case, the probability of quad-
ratic form (4.64) exceeding a certain level through which the probability
of error is calculated in any system may be computed through the corre-
sponding probability for form (4.65) after substituting the concrete
parameter values. Applied to correlated paths of propagation, some com-
putations of probability of error are contained in works [6, 46, 1041].

Let us pass on to a consideration of specific algorithms. We will con-
sider a detector that contains a set of narrowly directed antennas
(spatial processing), a delay line (processing by frequency), and a
filter coordinated with the transmitted signal (processing in time) and
working on the algorithm

nF N
) A ~0 >
o=‘\_’ N V4T s 0, (4.66)
k=] i=2]
where %
[ ) T s f-—-;—)
0 /8D — A
{V“' }= Lin?/0) —im) d!)Sz(!, ) dt.
N\ Ve W6 —in . - k
- 0 ‘_.T

The varlables Vy) and vik are Gaussian independent quantities. When
the oscillation being analyzed contains a usable signal these quantities
have the parameters

My (Vie) =my V 20 M Py = myix V 3dn, }

. ~ (4.67)
D{Vie} =1 202, 075 DV} == 1= 23, 0T,
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If there is no usable signal
My Van Yo My (Vi) 203 D {Via) = D7) = 1. (4.08)

Parameter uT in formula (4.67) is determined from the relation (105]

T
|LT ha%j(l—j;‘—) Byrydr, (4.69)
0

where Bh(r)
ie a normed correlation function of the channel characteristic according
to the time variable.

From (4.69) it is not difficult to show that 0 < uT< 1. Parameter uT
characterizes the rate of fadeout. The greater this rate is, the
smaller quantit uT will be. For the exponential correlation function
Ry (1) = exp (~| TT/ Ty) the expression for uT takes the form

2 oo T -
_ W o e it = 1 ¢ 0], (1.70)
top

It can be seen from (4.68) that in the absence of a usable signal the
quantity G has an x2- distribution with 2NFA © degrees of freedom.
This makes it possible to write the expression for the probability of
a false alarm as v » NG

[2)

1 . ARV - S
e o) NN = 1) £ R
Par (Nl. VO 1)1 ) (() NON l) ¢ o { )
£=0

The numerical calculations of the probability of missing a signal
should be done in the same way as done in the case of the optimal scheme
for formula (4.58), using the parameters (4.67).

Let us consider the case of identic:zl, on the average, paths of propa-

ation -
& Mggh == My, Hlgig==my, Q= 1, 8O,

. 2. 42 A
Og,lk:—.-('ll‘, om-kz—.oi , k=2l NT'

In the presence of a usable signal the random quantity G has a non-
central semisymmetrical X° ~distribution with 2NFN@ degrees of freedom
[89]. The probability of a miss for even values of NFN© 1g determined
from the relation '

al  ca"db”

V2 Y SR g
Pnp == Flu |+Ba:B; 3 ;arctgq'p)—g— —
n==0
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ING

w? Bt |
b2 2—-—-- ] -
A+ | o 13 w2 4
X lexp\ - --*‘--;- E e | X
2 & VR B

o P aT TR
’\:] —— -
u( Y ). (4.72)

where a series of parameters depending on quantities (4.67) has been in-
troduced: L Diie D
B DYDYy Row —2 2l 20N

b Loy
V VR0 - ) NN
== 7 = i
¥V bWy

|/ NN MT () | NE N

b= .
P — . 4,73
V owytom 7

It is convenient to use formula (4.72) for calculations where R << 1.

Let us consider the domain of small errors. Using the same methodology
as used for the optimal scheme, we obtain the expression for the proba-
bility of a miss in the form

NP Ny ~® 1+ 1
: +
Qup == [0] 8 I_l I_l ( Blk) qlk) exp X
(AFwe-—lﬂ(pT) k=l faa) Qm*'
i (1 By 0
—"‘,(B——'L (cos* qpx -+ Brsin?qps) | - 4.79)

A comparison of formulas (4.74) and (4.60) shows that the superiority of
the optimal scheme to the suboptimal one we have considered begins to
tell at a high rate of fadeouts T/tcor >> 1.

Under conditiona of a high rate of fadeouts, the optimal detector pro-
vides NT times greater multiplicity of scattering than the suboptimal one.
But 1f the rate of fadeouts is low T/rcor = 1, the optimal detector

has no apparent advantages in noise suppression over the suboptimal one,
but it is much more complex to realize and demand a much greater volume
of a prior data for construction. When developing systems for detection
of sgpatial signals (in particular in radio astronomy), it would be very
useful to use data on the rate of fluctuations of reflected signals to
substantiate the choice of the particular method of space-time proc-
essing.
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It can be seen from expression (4.74) that in the absence of a regular
component (qzik =0, {=1, N® k=1, NT) the selectivity of fadeouts
in time leads to an increase in the probability of a miss in the sub-
optimal detector. The loss in error probability caused by channel selec-
tivity in time in the domain of small errors is 10NFNO 1g 1/uT decibels
and increases as the number of branches of dispersion by frequency and

in space increases. Let us recall that in the optimal detector channel
selectivity in time always improves the quality of the detector regard-
less of the statistics of fluctuatilons.

In channels with a regular component time selectivity may result in an
improvement in the working characteristics of a suboptimal detector. It
is not difficult to show from (4.74) that the gain from time selectivity
with respect to probability of a miss appears when the condition

¥ N, 9 :
El".(_l."l:_ﬁ"‘_) (cos®py  + By sin*rpr) > __m;r_ In (__lr_) (4.79)
(22 k) Bn b= #
is met, and amounts to

N® NF

2 ONFAe T
3N 8 (TP (g, sint g a) + 10 AL g .70
‘ 2“ 27y -y Wt

it k=l
decibels; in good channels it may reach considerable magnitude,
Let us consider one more algorithm of suboptimal detection that realizes

partial dispersion and ignores selectivity in time and in space, In ex-
plicit form the algorithm is written as follows

NF
- 6= V2L
G= LVi+Ti>o, .7
k=1
where
(-%)
RT s{l——
Vi Fe
{ }::5 2(t, r) dtdr

Vi . ~ k
00 S — =
Fe

It is not difficult to show that in this case the probability of a false

alarm, which defines threshold w, is written with the formula
¥

Par = (‘m Mo, M —-1)=e® 2 -—= (1.78)
e

The expression for the probability of a miss for the domain of small
errors has the form .
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NF

.o N N 0
- q3) i (L M)
Fup == —emeer ﬂ R0 T L l — e
F Rr
N lle )pk "k Qfﬁ "Rr

3 (cost gp & +- BEsint o a) | 4 (4.79)

where the Parameter
T

w22
0

T

( )( 7%') Bt pasdo. (4.80)

The normed correlation function of the channel by the time and space vari-
able By (1, p) may be spatially divisible. Then the parameter

Rr___pR' Ul (4.81)

The parameter uT was defined above (4.69); uR is determined in similar
fashion.

In conclusion, let us consider an algorithm that 1s a spatial analog of
time processing by the Kostas scheme. To make it more graphic we will
consider a channel with fadeouts that are non-selective in frequency and
time but selective in space. The processing algorithm is determined by
the expression I .

AR
~ 6= X VitV > o, S 4.82)
kaz]
Vk } (k1) Ar1.' s(t)
= t, H R
where {Vi Ry gz( ')[s(t)}d'd' Ar=RIN.

Where there is a usable signal in the input oscillation the parameters
of quantities Vi and Vk will be:

—3E T2E
M \’k}——-m ‘/ , My = V H
1 { ¢ NRN, { NRW,

2 T o2 (4.89)
. D{Ve) l_*‘20,,[:' D) 1.1.20"5
k = _———-'. = 1 ", 1]
NRN, T UM T Ry,
where . )
R _ R P
K =_RT_$‘ ('-A—;)Bh(p)dp- (4.84)
0
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In the absence of a usable signal the quantity G has an x2-distribution
with 2NR degrees of freedom,

Considering the terms in (4.82) to be independent (this is approximately
fulfilled where AT 3 pgop), We come to the conclusion that the probability
of a miss is determined by an expression analogous to (4.7Z). For calcu=
lations it is essential to substitute the parameter NR in (4.72) instead
of the product NFN €, and use parameter (4.83) in (4.73).

Analogously to (4.74), for the domain of small errors we obtain

R
N7 201 5. fe
Pup == ---L«---——k- -——~—1-»‘.k ml‘[ -9'.(4;,;;«”*] (cos? ¢, - B sin? q,,)] , (4.80)
(WR =)W 2y \N
(3
- E
where ' Ny (m3 408 a2 402 ),

In an analogous way it is possible [110] to formulate the optimal problem
and determine the value of NR which insures minimum probability of error,
but with a rigorous approach this investigation encounters serious diffi-
culties. For this reason, it is wise to choose NR according to the ob-
vious considerations adopted above NR = [R/pgor + 1).

Formula (4.85), in particular, corresponds to a device for spatial proc-
essing of optical signals built in the form of a lattice of N™ photo de-
tectors.

4.5. The Probability of Error in Discrimination of Orthogonal Signals
(Generalized Gaussian Statistics)

We will consider data transmission using M signals which are orthogonal
in the amplified sense under conditions of selective fadeouts. For such
signals these relations must be fulfilled:

7R 7R

) fs,,,(t. r)sqelt, r)dtdr = “;..(f. NGk, N dide =0;  (3.56)

00 96

k=1, Mg, =1, M g+l
Let us look in turn at optimal and suboptimal processing algorithms.

Optimal processing. To calculate the probability of error we will write
algorithm (3.56) in the form

Gt1>Gg, g=1, M, g #1, (1.87)
where
“
Gy = 2. Vi+ 72, (4.88)
k=)
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The random quantities g,, l = 1, =M are the quadratic forms of Gaussian
variables. The components of the quadratic form are statistically inde-
pendent. Assuming that the oscillation under analysis contains an 1=
position signal, it is not difficult to compute the mathematical expec-
tations and dispersions c¢f quadratic~form variables

T £ T
A”“'M}""’kk’”-’ﬂh‘/ + 113 ,

Wi

> g/ 1,
My (Vi) = mye V Tdpy ‘ u
. 2"1 ’
yir

DAViY - s DI =202,

h T
M{Vgi) e mogn I'-QTM“';“" ‘ Lo M ;hm . 4.59)
2",“. 2’1‘“
__ T o
’"l (Vu-) =t Mygey '/24:5 —-l-—- /—L&
212 ond
vek “Ter
' a2 o
DV} ee =L s Dy = — T
Mgk T2y

In the general case, the probability of error should be calculated by
numerical methods using a characteristic function of the quadratic form
of Gaussian variables.

To simplify the formulas, we will assume in what follows that_the energies
of different signals in identical paths are identical_ﬁzgk '_Flk = héy,
g, 1 =1, M. For a binary system of signals (M = 2) in a Rayleigh channel
it is not difficult to obtain °

(n2 1)

p=1~
(4.90)

b=l ﬁmu 5T
(n+ 2) (hi--12)

Mot

The graphs of probability of error calculated in formula (4.90) for a
channel with smooth fadeouts in time and by frequency and selective fade-
outs in space, described by a process with exponential correlation, are
shown in Figure 4.7 below.
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w!

1w

Figure 4.7. The Probability

of Error in Discrimination of
Orthogonal Signals (M = 2) 107
in a Channel with Space~
Selective Fadeouts.
Optimal Processing; — -
Non-Coherent Processing

NR = 2,

Analyzing (4.89), we see that when the signal/noise ratio grows hzxk,
h2 x * @, the average values of the quadratic-form components disappear
and the dispersions are evened out, that is, the distribution of quan-
tity G becomes an x2-distribution with 2N degrees of freedom. Using
the result from [89], we will write the formula for the probability of
error in the indicated domain of values of the signal/noise ratio as

follows v
1 (e (e G148
P=n ‘_'.2.( ) exp| — k(” i) (cost gpa+Bsingea) | %
oy 2 Ba *
M-t a(N-})
M=l N (gt W2 — 1N
",g,‘ 1+ ¢} ‘2_; en T

where the coefficients cg are determined in [132].

A number of interesting formulas for calculating the probability of

error in particular cases follow from formula (4.91). For example, for
2 binary system (M = 2) the expression ior the probability of error has
the form

A2IN=)
Cy

p=— . (4.92)

20 B , (1+B) .
.':.I (1+8) (1 +4) “”[‘n 5 (cos* qp 4 -+ B2 sint Gpe)

A simple comparison of the formulas obtained in this section for proba-
bility of error during signal discrimination and the characteristics of
the optimal detector shows that the structure of the formulas 1is the
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same. Therefore, all qualitative conclusions drawn above concerning the
effect of a stochastic channel on the characteristics of optimal detec-
tion also apply to the case of discriminating M signals. The formulas
for the probability of error in discriminating M signals for particular
channel models may be written just as those for the problem of detection.

Suboptimal processing during signal discrimination. Let us consider the
characteristics of a unit for processing during signal discrimination.
The unit is composed of a set of narrowly directed antennas, a delay line,
and a set of filters coordinated with the transmitted signals, working on
algorithm (4.87), and computing the quantities

NF a0 '
Gtﬂz 3 Vi -+ Ve .99
where =k
n(f—-T
{gn}ujz':m_:m “5 ) d.  (4.99)
Vo 000 —in . bk
) sl (l—- —

The variables of quadratic forms G; and Gg are mutually independent
Gaussian random quantities with the parameters

E
M V1w =man M T e T
D(vm~1+~h‘,,»’ D (Thux) = 14+ 247, ] (1-99)
My Vo) = My (Teny =0, B {Verd = D (Vga) == 1.

Noting that the quantity G, is distributed according to the x2 law, we
will use the result from [59] and obtain an expression for the probability
of error in discrimination of M signals in the following form

Mt i n(.v ¥ -)
: p= V (-t W —ntahx
A
“"P"l . h? €08* Gp i
exp F dim —
24, 51 P ]
3 F () 1 im Pim
1 o |”—”'i| +""[ (B + )
O et 4/ 2 B2
=l f== im :ml‘
Vhnp|t4 g |1 X~
V{ ”"[ HET AT ]l
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where the quantity u¥ is determined by formula (4.96). If there is no
aametry by orthogonal components in any of the paths (Bzm =], 1=
1, NY; m=1, NF) and the paths are identical on the average (which is,
of course, an idealization), it is not difficult from formula (4.96) to
obtain

M| - ¢ 8\
P=2(“‘ “n-}-l C;:f—l[ ! ]N N X

N niyl
et e e
CN i
xupl NP NO it ]"(" \ ')“ r(VF N+ 8) !
W+m+@+ary’ | s r (¥ #°)
Bt
14—
X ____‘.:“,:;"_r_ .F,[—;a. NEae,
AR T
— NF N® gthd N
(14 g ep (4 (1 +a';+nh"u’1J '

where 1F1(a, B, ¥) is a degenerated hypergeometric function.

For large M calculations formulas (4.96) and (4.97) become complicated.
In this case it is advisable to use asymptotic formula (4.37), which
makes it possible to reduce the problem of discrimination formally to a
detection problem, In this case the probability of error should be cal-
culated by the formulas given in the preceding section for probability of
a missed signal. The threshold w included in (4.37) for calculating the
probability of error in a system of M orthogonal signals should be de-
termined from the equation
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=

Where the number of paths is sufficiently large it is advisable to use
Graham-Charlier series to compute the probability of error [64, 109].

For large signal/noise ratios, it follows from formula 4.96 that

pe I—I n (l -+ ﬂrm) (l -+ QIm) oxp [_. 'ﬁm ( Blm)

Meal (=) 2hrm p[ml‘ ')pl ll
M-—1 n (N I‘V -I) (k NF VT)
% (cos* @p my + B sint oy 1,,.)] 3 (= gt Y an N T
nal - k220
FNO )
VN = DL (4.99)
(VF e

Expression (4.99) is very close in structure to the formula for the
probability of error in optimal processing (4.92) and for the proba-
bility of a miss in the optimal (4.60) and suboptimal (4.74) detectors.
Everything that has been said about the effect of channel parameters on
the probabilities can be repeated for the probability of error under
consideration here with optimal discrimination of M signals. Speci-
fically, the algorithm (4.93) under consideration affords an energy
gain resulting from time-selective fadeouts where the channel has a
regular component and condition (4.75) is met. The values of the energy
gain are determined by formula (4.76).

For small signal/noise ratios the selectivity of fadeouts in time leads
to an energy loss, as-can be seen from (4.96), but its values are low
in channels with a regular component. A comparison of the formulas for
the probability of error shows that in channels with time selectivity
optimal processing has a great advantage over the processing we are now
considering, which does not take account of the selective nature of
fadeouts in time. This advantage increases as the probability of error
decreases and depends on the gtatistical properties of the channel,
reaching its maximum value in channels that are close to Rayleigh
channels. Thus, in a Rayleigh channel with fadeouts that are non-
selective in apace and frequency, the corresponding energy gain where
Pp™ 10 , M= 2, NT = 3 (the exponential correlation function By (t)) is
15 decibels; in a Rice channel where q? = 2 it is six decibels, and in
a sub-Rayleigh channel where B2 = 0,1 it is just five decibels. The
physical explanation is that selectivity of fadeouts in time plays a
very small role in good chanmels (q% >> 1). Optimal processing ap-
proaches linear, whose superiority to non-coherent (suboptimal)
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processing in an ideal channel q2 = o for the signal system under con-
sideration is on the order of three decibels, In poor channels 2 =0
and b2 << 1 an optimal processing device, as follows from algorithm
(3.45), actually processes one quadrature component of the signal be-
cause the second almost always takes a zero value. But the component
which is being processed also has a high probability of assuming zero
values during an interval of analysis of length T. In this case it be-
comes ineffective to "grab" and sum noncorrelated segments of the ob-
served field, as is done in the optimal processing device, for virtually
all segments will caxry close to zero energy. It is sufficient to proc-
- ess the signal through an entire interval of analysis of duration T.
Some curves of the probability of error in optimal and suboptimal proc-
essing are given in Figure 4.7 above.

As already noted above, space, time, and frequency variables are equiva-
lent within the framework of the approach adopted here to conmstructing
field processing algorithms., Therefore, it is possible to suggest a
number of algorithms for suboptimal processing of fields that are close
to the one under consideration and constructed by ignoring fadeout se-
lectivity for one of the variables (time in the algorithm under con-
sideration) and considering selectivity of fadeouts in the others (for
example, space and frequency).

The analysis of characteristics conducted above can easily be trans-
ferred from the suboptimal algorithm considered to other algorithms of
the same class.

A conclusion common to all suboptimal algorithms of this class is that
as the power of the selectivity considered (number of branches of dis-
persion) increases the energy gain of the optimal algorithm over the
suboptimal ones decreases in the domain of iarge error %) and in-
creases inthe domain of small errors (large hz).

Let us go on to consider a suboptimal processing algorithm that
realizes the Kostas idea. For a channel that is non-selective by fre-
quency and time but has fadeouts that are selective in space, the random
quantities Viy = ﬁlk’ which are included in processing algorithm (4.87),
have the parameters: o .
My Vi) == me ¥ SEINE NG, M, (Vi) =y V 2ENR Ny
2 puR 20? EnR (4.100)
e DT =1 ol
vy Ny

where uR is determined by formula (4.84).

D{Vu}=1+

The quadratic form Gg included in (4.87) has an x2-distribution. The
expression for the probability of error is written by a formula analogous
to (4.96) where uT is replaced by uR and N© by NR in this formula and

NF = 1, h2y = hZ{NR. For the domain of small errors it is not difficult
to obtain %M =2
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Let us look further at the probability of error in a signal processing
device whose working algorithm 1s based on an adaptive single-path
model of a multibeam channel (selection of the maximum transfer coeffi-
cient).

For a device to discriminate M signals that realizes algorithm (3.86),
we will determine the probability of error by averaging the expression
for the probability of error in a channel without fadeouts by the maxi-
mum quadrature components of the transfer coefficient x and y,. This
can be done by disregarding the inexactness of estimates of the maximum
values of the quadrature components of channel characteristics. Assum-
ing all N paths to be identical on the average, we write the densities
of distributions of probabilities of maximum values of quadrature com-
ponents as follows

x . N—|
wy (™) = (.\‘.)[ j' w, (¢)) d.r,} R

—x3

¥, Ne
& (-'/:au) =w; (p) [ Sy &y () d!lr] .

—Vp

(4.102)

The quantities x and Yp included in (4.102) where k= 1, Nand p= 1, N
included in (4.102) are distributed normally with parameters ( zx)
and (i y)respectively. The expression for the probability o error
is wr tten in the form

p=2 et - o IP{ GCwhit il

1+¢ (l-i-g)N

X wy { 1g€) wy ((E™C) dep™e dyye. (4.103)
In the general case, the probability of error should be calculated ac-
cording to formula (4.103) using computer computation methods. For an

example let us consider a channel without a regular component m, = m, = 0,
N = 2. From (4.103) it is not difficult to obtain

- 2 2%k B2
Mt (— SH cM=1 1 L 2, -
2 =0 G -[l are 'gl/ TR S ] ,

& ki P2
. ‘/ QT P

[P —

L L B7) (1 -~ g*
§ - u 'f’“ LU= T 0y
i3
l,/ 14 2kh‘
(80 +p) (1 +¢Y)

px:
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For the binary system M = 2 we have, from (4,104)
2 L R T ‘/ e
l—nnmmv/1+l+m 1 nmdg |'b+& )

Okt po 2/
l/’+1+§' 1/’+|+la'

To investigate the domain of small errors we will use the expansion
from [29] in (4.104)

p=

1

L
2
1= =—arctglUem -2—2(_. ) ——
n # (26 + 1) Uk

k=20

' (4.106)

keeping only its first member. From (4.104), the following asymptotic

formula follows (where h? -w)
A | )

M-t

- 1!_‘*“__3% (= 1)EH E.:?Lcit—l, (4.107)
pr(2ne)r Al

8-l

Comparing expression (4.107) with the expression for probability of error
in the optimal processing device (4.91), it is not difficult to observe
that the nature of decrease in the probability of error depending on the
signal/noise ratio in both cases is the same: the probability of error
decreases in inverse proportion to the N degree of the signal/noise ratio.
Tt can be shown that the energy loss of the suboptimal scheme under con-
sideration compared to the optimal scheme is not great (no more than
three decibels) and decreases as the number of paths N increases and

the intensity of the regular components is reduced.

4.6. Noise Suppression of a Binary System of Opposite Signals (General-
ized Gaussian Statistics)

Data transmission by broad-band opposite signals has become widespread
in ground and space channels [76]. Here let us consider the potential
of this system of signals in space-time processing and compare it with
the potential of linear suboptimal schemes used in practice.

Optimal processing. To compute the probability of error it is convenient
to convert algorithm (3.56) to the form
N

1=\ fi>0 (4.108)
k=l
. The Gaussian random quantities Vi, ﬁk' k = 1, N are mutually independent
and have the parameters .
oy Dy e 2 T
My (Vi) = DV} = = Trom
\ ,_’_,' DV __QE\) mik
M Vi) = {k)———N° ———-‘.5.2’1}:,’».
AY
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In this case the Gaussian quantity I has the paramaters

. u QE\'I.‘ fllr':,h m?,*
Mty b (1) Y] 2 L C 09

“ Lieakdy L2,

The expression for the probability of error in a processing device
working on algorithm (4.108) is described quite simply as the function
of distribution of the linear form of the independent Gaussian variables
and has the form

y =
i €os* Qp

1 —
Pz l"':(D - 2%2 +_~
? fre f g By
(1 -} 'h) ( i pk)
sind g al
- "
T . 110y
(11 B) (1 4)

It can be seen from formula (4. 110) that 1f the regular component is
missing from the fileld received q = 0, k = 1, N, the system with op-
posite signals becomes unworkable because the probability of error is
1/2 for any signal/noise ratio. Where there are paths of propagation
with asymmetry in dispersions of quadrature components B% # 1, the

- probability of error depends strongly on the phases ¢, of the regular
components in these paths. If there is no asymmetry %Rice fadeouts),
the phases of the regular components do not affect the probability of
error. Analysis of expression (4.110) shows that a typical feature of
the system with opposite signals is a minimum probability of error
that cannot be reduced with growth in the signal/noise ratio. Assum-
ing h? k = @ in (4.110) we obtain this value for the irreducible proba-
bility of error:

]. (t.111)

__--—'{]- I];I:‘E/ 2 qk(l+ﬂk) (C(S"Frk“' ‘]zsi"‘! Tok)

Calculations show that the values of p® in channels with selective
fadeouts and fairly good statistics (high values q2 k> k=1, 1, N) may
be very, very small. For example, in the channel described by the
delay line model with two branches NS = 2 with smooth fadeouts in time

= 1 and selective fadeouts in epace NR = 2 (exponential correlation
function) with Rice statistics q2, = 2, k = 1.2, the limiting proba-
bility of error is of the order 1% This level of noilse suppression
can already be reached approximately where hZ = 10 where it is possible
to switch approximately to (4.111) to calculate the probability of
error from 4.110). As the degree of channel selectivity increases the
values of the limiting probability of error dropped sharply and may
reach vanishing small values even for a weakly expressed regular
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component of the transfer function of a stochastic channel. These proper-
ties of a system with opposite signals leave no doubt of -the advisabllity
of transmitting information by opposite signals in stochastic channels.

It is a major advantage that optimal processing of opposite signals is
linear. Certain curves of probability of error calculated from formula
(4.110) are shown in Figure 8 below. The dot-dash line shows the char-
acteristics of a system with a test pulse (lower boundary) calculated
according to formula (4.3).

7° 10! n¢ 107 1ot 103 4 w0’

ghai plwtnnty
10! -

\ .
\

Figure 8. Probability of #° \\. = T
Error in Discrimination \ N=1
of Two Cpposite Signals Y N
in a Channel with Smooth \ \\
Fadeouts: Without \l :
a Test Signal; — — s I\ N
with a Test Signal; ----—- He + \\
Ideal Channel. \&7,”“2 .
1 .\\ BN
P L \ N - AN —l

‘

Suboptimal processing. Let us determine the probability of error when
opposite signals are processed by algorithm (3.91). The probability
of error is determined by the probability of fulfillment of the in-

equality y H TR _
”—0,2,0””" ) [marsik (8, 1)+ mysye (f, 7] didr >0 (4.112)

on the assumption that signal s,(t) is contained in the observed oscil-
lation. This probability is easily found in the form

7/ N

2 1
p=tli—0 2 oni—k — ] .
2 =S } 20 ( B2 cos* @p & - Sin* T 1) l
(1+82) (1 -+ a3)

(4.113)
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Comparing (4.113) and (4.110), we see that the errors coilncide in a
channel without asymmetry of expressions for probabilities of error.
This 18 natural because algorithm (3.91) is optimal in the given case.

If there is asymmetry, of course, the optimal algorithm is superior to
the suboptimal one and this superiority increases as the asymmetry
grows. The value of the limiting probability of error obtained from
(4.113) where hZk -~ has the form

B - , .
1 Cd

PPl —0 2 @ (142 RN
2 [ ]/\Fl k( k) ﬂ,”:cos'vpk'i‘““’%h

The independent variable of limiting probability of error in the optimal
- processing device exceeds the corresponding value of the independent
variable in (4.114) by the quantity
— N

2(1 2
2 _."."..(_Lp") (cosi Pok - ﬁzsinl Q‘vk)

2
"pes101g At * . (4.115)

- |
2 2
§ k ( ll) bz coS? Py k- {+ SING P

The degree of superiority of the optimal algorithm to suboptimal ones
can be seen most graphically by considering a channel with identical
average paths of propagation. For such a channel it follows from (4.115)
that -
n== 10lg ‘%‘ (cos? @y, -} B2sin? qp) (P2 cos®p, - sintqy). 4 116)

Analysis of formula (4.116) shows that optimal processing permits a
sharp improvement in noise suppression in channels with non-zero regu-
lar parts of both quadrature components (¢p #0, p # 1/2).

To complete our consideration of the characteristics of optimal and sub-
optimal algorithms for processing space-time signals in channels with
generalized Gaussian statistics, let us review the advantages afforded
by optimal processing. The benefits of such processing compared to sub-
optimal processing come chiefly from the fact that it makes it possible
to organize N-multiple accumulation in a channel with selectivity of
degree N. .

The non-correlated nature of all N branches which give rise to statis-
tical independence in the Gaussian case under consideration is achieved
by selecting a channel model based on the Karunen-Loew expansion. Using
any other coordinate functions of a discrete channel model leads to the
appearance of dependence among the N branches of the receiving device
and the efficiency of accumulation will be lower. An alternative in sub-
optimal processing is to choose the number of independent branches

N' < N, which is often done in practice.
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A second advantage of optimal processing is the fact that it permits the
best processing of signals in each of the N branches (this question was
investigated in adequate detail during consideration of a channel with
smooth fadeouts).

Speaking only of spatial prbceasing, we may say that the optimal algorithm
points oyt the forms of antenna directivity diagrams that allow organiza-
tion of accumulation for N independent branches.

Let us use examples to estimate the effect of non-optimality of antenna
- directivity diagrams on noise suppression for a channel with smooth fade-
outs in time and frequency, but selective in space.

Suppose the discrete model of the channel has the form
R o S
N
i)=Y, hpw (1), @.un
p=|

where the functions { ¢_.(r)} form an orthonormalized system but are not
Karunen-Loew functions.

The magnitudes of covariance of expansion coordinates (separately for
each quadrature component) are detgrmi.ne«_i by the relations

pie
By, = [ Be(r—1r')qgp (r) gy (7") drdr’
o
R

vy Oty i

\

} (4.118)
By, = f _s Bytr=r')qu(rtgq\r'ydede’; |
§d J

k=1, NR; p=-1, NR,

We assume the quadrature components are non-coherent: Bﬁ =0, k, p,
1, NR,

Suppose, for example, that coordinates hp in expansion (4.117) are equi-
distant (distance of A r) readings for the space variable r (which cor-
responds to reception at narrowly directed antennas with a diagram of
the type sin ©¥/8). Then the magnitudes of covariation of the coordi-
nates with different indexes are determined, on the basis of (4.118),
by the relations:

Bio == Bultk —p) Srls BY, == By [k =-p) Ar]. 4.119)
Thus, for the exponential correlation functions:
Ar N
Ii;n-: ﬂifxp("‘—'lk*Pl): Iii’pr.n;,cxp(——-

Pitop

Ar

-|k—p|). (4.120)

Rop

The existence of a correlation among individual branches affects the
probability of error differently depending on the system of signals and
statistics of fadeout in the channel [6, 46].
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Let us review some examples of practical interest.

1. Tor a Rayleigh channel with two identical, on the average, paths
(N = 2) where orthogonal signals are used (M = 2), we write, on the
basis of [6],the following

p:

2
ST —TRE AR

@

where

1R 1= [/ (B )+ (BE, BE) Coda

It can be seen from (4.,121) that the correlations of signals in the
branches are reflected in the domain of large signal/noise ratios. If
the correlated coefficients are described by expression (4.120),

when Ar/peor = 0.5, from (4.122) we will receive |Rl=l 0.85. Under
these conditions the energy loss owing tc non-optimal special processing
where hZ >> 1 will be about 2.5 decibels.

2. Let us consider a system of opposite signals working on algorithm
(4.108). Where there is a correlation among particular components, in
addition to parameters (4.109) the covariation quantities below will
also characterize the linear form (4.108):

E ,— 1
2 Vo B,
N,

B{VaVp} = ~————
/(U4 202 (1 + 283
} ( i o) ( ) (4.129)
Q;V_'VWBI':;:
B{(VyVp)= e . kep,

AT

The probability of error will still be determined by the probability of
fulfillment of inequality (4.108). Quantity I is Gaussian with an
average value and dispersion equal to, respectively:

N

2 2
2E vy Mp Mk
M (1;:2 (-—4——-—-' '
1 N\ 1+ 2% 1 4-om2,

i aR 2 2 —
oF + My, ms, BV
D(,)ﬁE}&(—"++)+22:r€_‘A_’_‘ux (4.124)
k=1 p<k °

No \ 14202, 14 2";1:

Bl tukiiep By, myemyp )
x| - .
(y (1--205,) (10 202) ]/(1+2/:§k)(1~1- M2,)

The quadratic form in (4.124) is negatively determinate, which follows
from the property of the correlation function [64}. Therefore, dis-
persion (4.124) is always at least as great as dispersion (4.109).

201

‘FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3

FOR OFFICIAL USE ONLY

From this it 1s clear that the probability of error in the case under
consideration is always greater than it is in optimal spatial proc-

- essing. ‘'The general expression for the probability of error with non=
optimal processing is written in the form

L Mg 4,125
REVRNEY
where Mi{ I} and D{I;are determined by formulas (4.124).

1t is easy to determine the limiting probability of error in the form

R . "
N3 (1 0) (costup a1 BYsintga)

».Llice ! B?,
T ) W 2
L
l l/ s (1) (costmy & 1- BISINBQy ) -
At 2
5 kst (i
R 2f. + Qa2 1T 42 2
N - 2 (14-p
ex2 ¥ B:p‘/ "—““““q*(l 2 i) “0"%1:”--"‘**—'-( > ’l:os’%n] -
et . e _.ﬂ"

-

(4.120)

w82, )/ T (1B 5" 07 4 [ 43 (1 + B3 ) 500y o]

It can be seen from (4.126) that the value of the limiting probabilities
of error in the case we are considering, of non-optimal forms of antenna
directivity diagrams, increases compared to the case considered earlier
of optimal diagrams. For example, in a Rice channel with two identical,
on the average, paths with correlation coefficients (4.120) where
Ar/peor = 0.5, the independent variable of the Kramp function (4.126)
is 1.85 times less than in (4.111). 1In this case the limiting proba-
bility of error where q2 = 4 is not 105 as the case in optimal proc-
essing, but rather 10~%, thus increasing 100 times.

4.,7. Characteristics of Devices for Processing Signals in Channels
with Non~-Gaussian Statistics under Conditions of a Non-Classified
Sample Used to Study the Channel

During analysis of signal processing devices, and this is also true for
synthesis, departing from the Gaussian model of fadeouts makes con-
sieration much more complicated. In particular, it is necessary to
assume statistically independent individual paths to obtain visible
results. Whereas it was possible, as noted above, in the case of
Gaussian statistics to remove the assumption of non-correlatedness
(independence) and the formulas for probability of error obtained on
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The assumption of independent paths would keep their form in the case
of dependent paths (only the parameters were changed), in the non-
Gaussian case matters are different, Therefore, the formulas in this
section are more specific than in the preceding section.

As a one-dimensional probabilistic model of a channel here we consider
the logarithmically normal distribution of amplitudes and uniform dis-
tribution of phases that yield bimodal distributions of quadrature com=
ponents. Let us recall that the distributions of quadrature components
are, in the given case, identical with zero mathematical expectations
Myk = Mﬁk = 0, k = 1, N and identical dispersions c2yx = ozyk = ozk,

k - ’ .

We will be interested in characteristics of the processing algorithms
synthesized in Chapter 3 in channels with such statistics. We must ob=-
serve first of all that the "spectrum of algorithms" is narrower in this
case., Specifically, we must eliminate from consideration the linear
processing algorithms that use average values of transfer coefficients
because they are not workable in the channel under consideration, that
is, for a channel with logarithmically normal-uniform statistics it is
impossible to transmit information by opposite signals with independent
reception of individual signals,

The optimal processing algorithm (3.45) is a purely quadrature algo-
rithm (it does not have a linear part). According to (3.53), the quan-
tity F1 should be computed from the relation

N

A 2 'E;m ~n
Fr= Tl' E — (¥, + ) (4.127)
=R IR
where, in the given case R
e ”‘ ‘ {m (t, n) }dld/ '
~f e 2(¢, - N 128
{wu ﬂkbo then sie(fy 1) ( )

We will consider here only discrimination of M signals of identical
energy (the characteristics of detection have similar analytic expres-
sions to those found in the case of Gaussian statistics).

To calculate the probability of error algorithm (3.45) is transformed
to

Gr> Gy, g;:l. ;\’,g.—ﬁ[. (4.129)

where 2, =
G"’z Vie =Ty
L2

The dispersions of variables of the quadrature form G; and Gg have the
form
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D (Vin) = DAThY =y

(4.130)

F]

[}
D{Ver) = D{Tpr) = ——E=
i h‘.

Noting that where h? ke >, 8= 1, N the quadrature form @, is distri=-
buted according to tﬁe law %2 and 2N degreegof freedom ang using the
result of [89], we write an asymptotic expression for the probability

of error .
N 2 Mt 2IN--1)
2
ty N g~ I}
Pus n._.!::.e 2 (— nb.“ ct!-l E en™ (chV)Lg..rg__.—u RETHET}
R by -0 W

For the binary system M = 2 it follows from (4.131) that

lv "
" 30
pocy ] - ENERY

K3

21 A2

Assuming ., .-l ,L1™ it ie possible to investigate the degree
g 4 my

of increase in the probability of error depending on the increase in
the depth of fadeout (decrease of Ny, k = 1, N). Comparing expressions
(4.131) and (4.92), we come to the conclusion that logarithmically nor-
mal statistics yield higher probabilities of error than Rayleigh sta-

1
tistics where the conditions > - Inda.  ere fulfilled.

Let us go on with our consideration of suboptimal processing that does
not take account of the mean statistical parameters of channel fluctu-
ations, assuming that the quantities F; included in (3.45) are de-
termined from the relation

)
v 2
= 2 LR 4.133)
LAk

The algorithm for discrimination of M signals may be written in the
form (4.119), and the dispersions of the variables of the quadrature
forms G; and Gg are determined by the formulas

DV} =D (Vi) =1 + 203 D (V) == DV} = 1. (4.134)

It 4s not difficult to show that in the domain of high signal/noise
ratios hZ +=, the expression for the probability of error in the sub-
optimal device under consideration coincides with the corresponding
expression for an optimal device (4.131). This makes it possible to
apply the conclusion that the characteristics of coherent and non-
coherent discrimination of signals are identical for large signal/noise
ratios to a non-Gaussian channel.
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For arbitrary signal/noise ratios the probabilities of error should be
determined by computer calculation. We will give the formula for prob=-
ability of error for a single-path channel .

M-l(_‘ T c.:l 1 e
pes 2 LI j exp
et 14k l; 2.10: J

Figure 4.9 shows a graph calculated according to formula (4.135) where
M = 2. The dotted line shows the corresponding curve for a channel with
Gaussian statistics (a Rayleigh channel), and the dot-dash line is for
a channel without fadeouts. Comparing them allows us to estimate how
much the characteristics of discrimination change with the change from
Gaussian to non-Caussian statistics.
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The analysir we nave made shows that where the values of the parameter
Oxz change, logarithmically normal fadeouts cover a broad class of
channels from channels close to the ideal (where ¢x® + 0) to channels
of the sub-Rayleigh type (Q: >_;_ m.,,).

For small values of 0::2- expanding the function exp[—-’g-l':] in (4.135)
into a Taylor series relative to point (-¢x2), it is possible to re-

ceive a convenient calculation formula for the probability of error
M= 2)

1 B wze?
p..-:l—eap(-—.z-e 01). (14,136

It can be seen from (4.126) that the nature of decrease in the proba-
bility of error relative to the signal/noise ratio is exponential,
which means that the channel is close to ideal.
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In conclusion, let us consider suboptimal processing based on replace-
ment of the model of a multipass channel by a single~pass adaptive model
(autoselection)., We will assume that the quantity F; included in the
processing algorithm is computed from the relation

A 4y . ,
5 .nmnx(\l';’. \ q'“) . 4. 137
1]

that is, the path with maximum power of the transfer coefficient |hy|2
is selected as the working path. The distribution of the modulus o%
the transfer coefficient fhkl we assume to be logarithmically normal,
and the paths are taken to be identical on the average. Neglecting the
inexactnens of estimates of the power of the transfer coefficients of
particular paths, we will determine the probability of errors from the

relation ot .
a (=, [ 7 ’]
”*2 1k & S“P“ﬁrﬁ w(dy,  (4.138)
k=1 . 0
Lo 24 4 N}
e xp[- (l""_"")] [m(-—-a—hh""“" )] . 39)
- Y 2o}y 202 e,

Calculations by formula (4.138) show that the scheme with autoselection
in a channel with non-Gaussian statistics, just as with the optimal
scheme, fnaures a decrease in the probability of error inversely
proportional to the N degree of this ratio for large signal/noise ratios

l\. l
and large ¢x2. For small values of the parameter u;[ni«'?;ann]
the curves of probability of error are exponential (the channel is close
to ideal) and the effectiveness of autoselection is low.

* *® ]

We have analyzed the quality of optimal and suboptimal algorithms for
processing fields carrying digital information. The generalized
Gaussian probabilistic model of a channel, as the most widespread in
practice and, moreover, the one with the best approximating capabilities
in highly diverse situations, was used most.

We investigated different channels with non-gelective and selective
fadeouts. The problems of detection and discrimination of signals
were considered separately. It was demonstrated that the probability
of error depends significantly on the statistics of fadeouts in the
channel. The best channel will be the one in which weakly fluctuating
quadrature components have clearly expressed regular components (an
asymmetric channel close to ideal).

206

-POR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100060010-3

FOR OFFICIAL USE ONLY

A typical feature of the binary system with opposite signals during inde~-
pendent reception of characters is the existence of a limiting proba-
bility of error that is irreducible with growth in the signal/noise
ratio, However, the values of this limiting probability are very small
in good channels. For example, in a non-selective channel where

qy = 2, B2 = 0, and ¢p = 0 we hava p® = 106, An optimal binary system
of signals was constructed in a channel with non-selective fadeouts and
we determined the threshold signal/noise ratio at which the system of
opposite signals loses its optimal features and the system of orthogonal
signals acquires them,

It was shown with concrete examples that the use of optimal directivity
diagrams makes it possible to greatly improve noise suppression in com-
parigon with the methods of spatial processing of signals used exten-
sively in practice at the present time,

The use of suboptimal algorithms shows that where the model of the chan-
nel is intelligently chosen, they insure error probability values that
are almost as good as those of optimal algorithms and they are much
simpler to realize. The system with test signals is more effective in
a channel with fadeouts that are smooth in time where it is capable of
insuring an energy gain of up to three decibels compared to a system
without test signals.

We reviewed certain modifications of the ideas of autoselection with
application to space-time signals and demonstrated that the use of this
procedure for suboptimal processing is justified in many cases (both
for Gaussian and non-~Gaussian fadeout statistics).

Our investigation of the asymptotic behavior of error probabilities
(where E/N° +=) ghowed that independently of channel statistics, con-
sideration and use of channel selectivity in time, space, and frequency
makes it possible to achieve an accumulation effect. In this case, the
probability of error diminishes as a quantity inverse to the aiﬁnall
noise ratio to the extent of the selectivity in question (E/Ng)™.

Conclusion

This book reviewed the general principles of constructing optimal and
suboptimal signal processing devices in stochastic space-time communi-
cation channels.

Optimal processing in this case was based primarily on obtaining renew-
able estimates of the coordinates of channel characteristics and was
oriented in its realization part to the technology of space-~time filtra-
tion accomplished by both the classical techniques of dispersed recep-
tion and by techniques based on holographic principles.

It should be kept in mind that practical realization of many of the
processing algorithms investigated in this book depends greatly on the
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- progress of integrated technology that characterizes the development
of electronics in our day.

In concluding this book the authors acknowledge that many questions of
interest in constructing effective digital information transmission sys-
tems in stochastic space-time channels proved to be outside our frame-
work. Among them are optimization of the communications system as a
whole by finding optimal space-time processing operators not only in re=-
ception but also in transmission; the effectiveness of use of a feedback
channel in space~time channels; selecting codes with due regard for the
specific features of the space~time channel; assessing the difficulties
of realization and noise suppression of systems for transmission of
discrete messages by means of simple signals that do not satisfy the
conditions of separation of paths; application of decision feedback in
constructing optimal and suboptimal signal processing devices in a space-
time channel; investigation of the prospects for non-linear filtration
in processing space-time signals; processing for specific distributions
of noise fields, and others.

The authors hope that their book will stimulate the interest of a broad
range of specialists in the problems of space-time signal processing,
including interest in solving the problems we have formulatad here.
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Appendix 1
The linear estimate of coordinate x is sought in the form (2.11)

A IR -
xmAqu. Py ) dide 4 B a1
06
or in symbolic (operator) form

?::A(Z. R - (.1.2)

All further reasoning relies on the results of work [75]. The expres-
sion for the conditional risk function with a fixed state of the esti-
mated (centered) parameter in operator form is written as follows

0 .. L . .
rix, P =R, P+ (@-—-5"P, 2. 11.1.3)
Operator Ry is determined by the correlation function of noise

B, (t, t', r, r'): “ TR : - A )
R == SB,.(z. O, e, PR, P e (M.1.4)
00

Operator S and, correspondingly, its conjugate operator S* are determined
by the spectrum of the transmitted signal. The expression for average
risk can be written, averaging (.1.3) the parameter being estimated by
the distribution of probabilities wj(x):

0 0 0
r{) = S r(x, ¥y (x)dx. (11.1.5)

Substituting (M.1.3) in (I.1.5) we obtain

rf) = (RY, ) - 0D (=S {), (p—S' V), {1.1.6)
where is a self-conjugated, negatively determinate linear operator
defined™by the correlation function B,(t, t', r, r', &, £'):
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. 0 0 0 o . r e B "
(e ) = S(q,. Pty (1) dx o= | ‘.p((, 8RB PV E R
A M
Xdidt'dEdg’ dedr’, (1.7
It can be shown that the minimum average risk is achieved where )
Wex (R4 Sy $9=' Shyp, M8

Using (N1.1.8) in (M.1.1) and adding the known mean m, we obtain the
optimal linear estimate in the form

P ((R+ SS9 Sy, 2) - Ry R+ SDLSI™ . (.1.9)

Moving from the operator form of writing to conventional form it is not :
difficult to see that the optimal linear estimate coincides with the

Bayes estimate of a Gaussian coordinate in a setting of Gaussian noise

(2.96).

The linear estimate (II.1.9) was obtained without constraints on the
form of signals transmitted.
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Appendix 2

We will find the average value of the function

. N °
Fx)==exp [——Ed},xi] , dy >0, (.2.1)
keal

Suppose quantities %, k = 1, N in (Il.2.1) are distributed by arbitrary
laws and are statistically independent. The average value we are seek-
ing is written in the form

N T S
F-T1 Ik, (TRN)]
where

%
Ipy== |e &y (vg) diey., (11.2.3)»

We will consider the domain dy >> 1. Using the asymptotic formula from
(17] to estimate an integral of type (I.2.3), assuming that the neces-
sary conditions are fulfilled, we obtain

~

.— :‘ : - ‘
Iy = V:l—:: Wy (ve == 0) ((1.2.4)
and correspondingly

dy

b
F=[1Y Zarim=o. (M.2.5)
k=1

We will consider two examples.

1. The quantities xx, k = 1, N are Gaussian with parameters My and ozk.
Then o .

2 4,2
1 e—-mk 20,

)
V-:m,,

wy (wp=0) = 1[1.2.6)
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and
1 ﬁ | 2 203
" 1 -—/u;‘.‘ b [.2.7)
F e = m— e N \
NV dd
2, The quantities xy, k = 1, N are distributed according to bimodal
- laws (1.49) with parameters u, o‘xzk. Then
P T 9
- i Xk
e u:O)i:E}‘-e et 2, (1.2.8)
and
N o2
- 1 T gk 2
Fello Vg, (n.2.9)
. Re=|
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