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ANNOTATION

[Text] This book discusses the problems of the penetration of liquid ard soils

by solid states and also penetration by solid states having high relative veloci-
ties on ifmpact. The penetrating bodies are assumed to be absolutely solid, elas-
tic and in the form of elastic shells containing a liquid. When investigating the
problems of the penetration of soils by solid states, a model plastic compressible
continuous medium is introduced, on the basis of which detailed solutions of urgent
modern problems defining all of the dynamic parameters of the movement of the soil
and the penetrating body are presented. In addition, the solutions of penetration
problems on impact of a solid deformable body of small dimensions with a deform-
able body of large dimensions are discussed. Various models for analytical investi-
tation of the penetration problem are investigated as a function of the magnitude of
the relative velocity at which the bodies meet.
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INTRODUCTION

In this book the results are presented from studies of the modern problems of pene-
tration of allquid, soils and metallic obstacles by a solid state. The study of the
problems connected with the penetration of various continuous.media by solid

states began long ago. However, until recently these studies pertaimed to a limited
group of problems and basically were of an empirical nature. They led to several
useful formulas which, however, did not give a represeantation of the dynamics of the
penetration process itseif. This is explained by the fact that for a long time the
penetration problem was of interest for a narrow group of researchers, and, above
all, there were significant mathematical difficulties in the theoretical study of
the subject, indeterminacy of the mechanical properties of the media, and absence of
reliable measuring devices in the experiments.

In connection with the occurence of new technical problems in various branches of
modern practice in recent years the interest of a broad group of scientists and
engineers in the problems comnected with the penetration of various media by
solid states has increased significantly. In addition, new possibilities have
come up which are promoting progress in the study of the penetration problem. These
include the following: the availability of high-speed computers which shorten the
numerical calculation procedure, achievements in the development of the general
methods of studying the motion of continuous media promoting the analytical investi-
- gation of the problem, achievements in improving the measuring equipment permitting
the reliability of the experimental results to be increased.

This book takes up the analytical solution of penetration problems. It consists of
three chapters. The first chapter is primarily on the study of the problems of the
penetration of a compressible liquid by solid states. Among the results of the

- solutions of the problems of penetration of bodies into an incompressible 1liquid
presented in this chapter which are of independent interest, many are used for
logical relations and comparison with the results of the solutions of these problems
considering the compressibility of the liquid. If the penetration rate is high
or the penetration of a sufficiently blunt body is considered, then the compressi-
bility of the liquid must be considered to obtain reliable results. These problems
are of interest for entry of rockets and missiles into water, landing of spacecraft
and seaplanes and other practical problems. It appears to us that this chapter con-
tains analytical solutions of the most interesting problems of the penetration of

o a compressible liquid by solid states .at the pregent time.

On the basis of the plastic compressible continuous medium simulating many types of
s0ils, a method has been developed to study the penetration of #oils by solid
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states permitting substantial expansion of the class of solved problems. The
studies of the problems of pznetration of solls by solid states are made in the
second chapter. The soluticns obtained here make it poseible to determine all of
the dynamic parameters of movement during the process of penetration of the body
into the soil. 1In addition to scientific interests, the results of the studies in
this chapter will be useful to engineers involved with the problems of impact and
penetration of bodies into soils.

In the last, third, chapter of the book the phenomenon of penetration is considered
as the result of collision of a metal hammerhead with a metal obstacle under super-
sonic relative velocity conditions. The urgency of the problem of the interaction
of sclid states meeting at very high relative velocities is obvious. In this chap-
ter a discussion is presented of the existing approximate analytical methods of
solution. As a rule, they are contained in journal articles. In all of the
chapters where it is possible, the results of the theoretical studies are compared
with the results of experimental measurements.

The first chapter of the book was prepared jointly with I. P. Khiyzov, the second
chapter, jointly with M. L. Gartsshteyn and V. I. Noskov. V. I. Noskov found the
solutions to the problems of items 7, 9, 10 and 11 in Chapter 2. Besides these
comrades, the following people assisted in preparing the manuscript: O. N. Goman,
V. A. Yeroshin, A. N. Mar'yamov, V. V. Paruchikov. I should like to express my
appreciation and gratitude to all of the mentioned comrades. The author will be
grateful to everyone who wigches to send comments and suggestions.
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CHAPTER 1. PENETRATION OF AN I EAL LIQUID BY SOLID STATES

This chapter takes up the problems of the penetration of solid states into an ideal
liquid. These problems are of interest with regard to the entry of missiles and
rockets into water, watzar landings of spacecraft, seaplanes, and so on. Until com-
paratively recently the study of the penetration phenomenon was carried out on a
model of an incompressible ideal liquid. It is possible to familiarize oneself with
the basic results of these studies in the monographs [1, 2, 3].

If the speed of the penetrating body is high or the head of the body is sufficiently
blunt, then in order to obtain reliable results it is necessary to consider the
compressibility and wave nature of movement of a liquid.

In this chapter basically the results are presented from studies of the problems of
penetration of solid states into initially still compressible ideal liquid occupying
the lower halfspace. The studies are made considering the effect of the movement

of air over the surface of the liquid during the processes of apprcaching the water
and penetration of the body. In all problems the initial period of penetration pre-
ceding the appearauce of acavity is considered, where the penetrating body has
been incompletely submerged in the liquid. During this time period, the pressures
acting on the penetrating body reach maximum values by which the dynamic strength
calculation is made.

Many items in this chapter are devoted to the study of self-similar problems of
penetration in the linear and nonlinear statement. Therefore at the beginning of the
chapter the derivation of the basic equationsof self-gimilar motion of a compree-
sible liquid and the characteristics of these equations are presented. Then comes

a section on the problems of penetration of an incompressible liquid by solid

states. Many of the solutions of the problems of this section which have independent
significance are compared with the solutions of analogous problems of penetrationof a
-compressible liquid by solid states. Th@ section contains-an original solution to the prob-
lement of ricochet of a plate from the surface of an incompressible liquid and in-
vestigation of the motion of a thin body from depth in the direction of the free
surface. The last probleu does not directly pertain to the class of penetration
problems, but it is close to them with respect to mathematical statement and method
of solution.

The problems of penetration of solid states into a compressible liquid are
the subjects of two sections of the first chapter. In the first of them the prob-

of the penetration of thin axisymmetric and flat bodies are investigated.
Subsonic and supersonic penetration and also penetration at a rate equal to the
gpeed of sound in the liquid are investigated.

4
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The studies of this section demonstrate that up to high subsonic penetration
velocities of thin sharp bodies, the effect of compressibility on the resistance 1s
insignificant. In the next section on penetration of a compressible liquid, blunt
solid states are considered. The correct determination of the resistance to pene-
tration of blunt bodies, as a rule, requires consideration of the compressibility
of the liquid. For example, when a cylindrical body with a flat front tip hits the
surface of an inconpressible liquid with any initial velocity, an instantaneous
change in momentum of the liquid by a finite amount takes place. The force acting
on the body at the time of impact is of a pulse nature in this case.

In reality, the disturbances in a medium are propagated with finite velocity, as a
result of which the change in momentum of the liquid and velocity of the penetrat-
ing body is continuous, and the force acting on the body at the time of beginning of
penetration is finite. When the disturbance waves travel far from the body, the
disturbances in the medium asymptotically approach the disturbances at the corre~
sponding point in time arising after impact on the surface of an incompressible
liquid. Thus, the theory of an incompressible liquid replaces the effect of the
finite force in the initial period of penetration by a pulse force which can be
determined by the integral characteristic -- the loss of momentum at the time of
impact. Consideration of the compressibility of the liquid permits determination of
the finite pressures and force acting on the body in the initial penetration period.

On impact penetration of a compressible liquid by blunt bodies with arbitrary sub-
sonic velocity, the displacement rate of the generatrix of the body with respect to
the free surface can turn out to be close to and greater than the speed of sound in a
liquid. In this case it is necessary to consider the compressibility of the medium.
The terms used above "impact against the surface of the liquid” and "impact entry"
are also encountered when discussing the solution of various problems in the first
chapter. They are frequently used by many authors obviously to emphasize the sharp
nature of the change in the parameters of motion during the initial penetration
period. However, these terms do not introduce any vaguenesec into the definition of
penetration as the process of submersion of the body in the liquid through its free
surface.

All of the cases of penetration of a liquid by solid states investigated in this
chapter are formulated as mathematical problems with specific initial and boundary
conditions. In view of the extraordinary complexity of the analytical investigation
of the essentially nonstationary problem of penetration into a compressible liquid,
the penetrating bodies investigated in this chapter have a simple geometric shape.
This explains the small number of penetration problems in which deformation of the
penetrating body and the wave nature of its stressed state are considered.

In the required cases, the study is performed considering the effect of the 1lift of
the free surface of the compressible liquid on the dynamic penetration process.

The studies of the penetration into a compressible liquid in the first chapter, as
a rule, are performed on the basis of the linearized equations of motion.

For a weakly compressible 1liquid such as water, when investigating a broad class of
penetration problems, this approximation is entirely justified. lowever, in modern
practice there are cases where a blunt solid state meets a free liquid surface with
high relative velocity. In such problems, during the initial period of penetration,
a shock wave will be propagated from the point of impact into the depths of the

5
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1




APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1

R R PV D v VN PV VIR FUPS

liquid after which the movement will be described by nonlinear equations. This
difficult problem has not as yet been investigated.

In this chapter the problems of penetration of a compressible 1liquid by a blunt
wedge and a blunt cone are investigated in the nonlinear statement. It is proposed
that thne edge of the wedge (and the generatrix of the cone, respectively) is
shifted along the free surface of the liquid at supersonic velocity. The study of
these problems is based on the analytical apparatus presented in the first item.

The results obtained here are of definite practical interest, and the statement of
the problems themselves can attract the attention of researchers to this difficult,
but prospective modern problem. This chapter also contains a section on the study
of the effect of viscosity on the penetration process.

§ 1. Equations of Self-Similar Motion of a Liquid

Let the adiabatic motion of a nonviscous compressible liquid with axial symmetry be
considered in the absence of mass forces. Let us direct the Ox axis of the station-
ary orthogonal coordinates along the axis of symmetry, and let us place the Oy axis
in the plane of the meridian. In these coordinates the equations of motion, con-

- tinuity and conservation of entropy of a particle are written as follows:

due duy du, 1 adp
3 dx ay p oy
s ovy v .a_u—”- = 1 o
- e ' fax TV ooy Py
Lo (va i&)+vx.€9_4_v”£&+u;go,
ut dx dy Ox oy y
as as as
—_— v, — T U =0, .
1 x ox T Yy ay (l 1)

where vx, vy are the velocity components of the particles, p is the density of the
iiquid, p is the pressure, S is the entropy, t is time. Hereafter it is proposed
- that the speed, pressure and all other parameters of motion are uniform O-order
functions with respect to X, y and the time t. This means that the indicated pa-
rameters will be functions of the ratios

b | E=ux/t, n=yt.

The currents having this property will be called self-similar. Usually by self-
similar we mean the motion of a 1liquid, the parameters of which are functions of
the ratios

X/,  y/t,

where 0 18 a constant.

Let us transform the equation (1.1), proceeding to the new coordinates &, n. Using
the obvious expressions
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it is easy to find the form of the equations (1.1) in the new variables:

_ Goe o ur 1 9
O e e e 3
0, —8) S s (o — )= L O
( 3] = (v,—n) ™ e

’

SO TSR N (TSR TR
O e o b Rl

as as
(Ux—E)E‘*(Up—TI)—a;I—=O. (1.2)

In the investigated case the vorticity G(x, ¥, t) can be represented in the form

@(x, ¥, l)=-:— o, M), (1.3)
where
- oE 1= C;E —%:’- 1.4)

For convenience of further calculations let us introduce the notation:

Usv,—8 Ve=y,—1, W=Ur42,

In this notation equations (1.2) and (1.4) are written as follows:

LU v %
Ul +r % p
oV v 1 dap
Py Ly L e
v+U & | om pdn
- Sy V) L oV g, 0,
[543 dn n 15)
as as
U= V—:=0
at an
H—=aG W,

Let us introduce the expression for the "vorticity" w(&, n) in the plane (£, n) with
respect to formula (1.4) into the first two equations of system (1.5). As a result,
we obtain

v-vo+ S ()=

9 A\
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V + U Y LA N A
thet dn(z) PO’

Multiplying the first of these relations by the differential dE, the second by dn
and adding the expressions obtained, we have

@(Udn—VdE>+Uct§+Vdn+d%+ﬂ_=o.
p

(1.6)
This relation along the "current line" defined by the equation
& dy (1.7)
v v’
assumes the form
w3 dp_ __
d¥2 L ydt 4+ Vdy + — =0.
7 T P (18)

The next to the last equation of system (1.5) indicates that along the line {1.7)
the entropy S is constant, and the pressure dif ferential is represented by the
formula

dp = a‘dp,

where a is the speed of sound in the liquid.

It is easy to check that the 'current line" (1.7) is a characteristic of the system
of equations (1.5) with the relation (1.8) along it. The other characteristics of
the system (1.5) can be obtained, for example, from investigating the Cauchy prob-
lem. By excluding the pressure, demsity and entropy from the first four equations
of system (1.5) and the obvious relations

b _pe . % . 9 gl % 3
123 3 ¢S on én as dn

we come to the following system of two equations:

e Uy (LY (g2 -y LA
(@ =% = (dn IRk ey
+3a*—Ww?=0,
YN e
t m
(1.9)
This system can be reduced to one equation of the type
(@ — 1)L oy Y g (@ — vy L = otV — L W —3at.
123 on én n
(1.10)
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In the Cauchy problem along the line L in the plane (£, n) values of the desired

functions of the system of equations are given. Then in our case for determination

of the derivativea of U and V with respect to £ and n along the line L, in addition
- to the system (1.9) we shall have two expressions

U = ;—Zdé - -‘5% dn,
) (1.11)
av =--§%d§+ Y om.
) (2]

Let us multiply the first of these expressions by the factor A and add it to the
second. As a result, by using the second equation of the system (1.9) we obtain

q "" 1 oV )
- Mg%".‘(wﬂﬂ"d;);—nl—dn—%l-=dVTMU—“‘ﬂd§- (1.12)

As is known, the characteristic expressions are obtained from the condition of im-
possibiiity of a unique determination of the derivatives from the system (1.9) and
(1.11). This means that a linear relation must exist between the coefficients of
the equations (1.10) and (1.12), which leads to the equalities

A At dy dV + MU — od}
2 (2 — . = .
vt wyo =t v s (1.13)

From the equalities (1.13) two systems of characteristics are obtained in the plane
(€, n), and two conditions along them, respectively:

oy o —UWtay W@ (1.14)
(d§)1?_m'2— at— Ut '
. 2y
) U+ madv + B [ S — w3 =
ay Wi —al
=$w——————a'__m dt.
(1.15)

The equation of the third characteristic of the system (1.5) and the corresponding

- condition along it, according to the above~presented facts, are written in the form
dn . "4
—] =M= -,
( dt )s v (1.16)
w2 . dp
P (1.17)

From (1.14) and (1.15) it follows that the first two systemsof characteristics will be
real under the condition

O —8)+ (v,—1)? > a2, (1.18)

FOR OFFICTAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1

FOR OFFICIAL USE ONLY

Using equation (1.6) which is valid in any direction it is easy to obtain the follow-
ing expressions along the characteristics of the first and second families of ni 2
respectively: *

odg =y Y= gy U [a 8+ 2.
a a@V FUYWE—aY) 2 (4

(1.19)

If we substitute this expression for the vorticity w in the right hand side of the
conditfons (1.15), after some transformations along the characteristics n]'_ s We -
obtain :

W+ Vvy)de (V — dp
VdU — Wtk (Vg W1
UV + —re (n + )iV > =0 (1.20)

where

M=,
a

1n the case of plane-parallel flow the equations of the characteristics (1.14) in
the plane (§, n) retain their form, and instead of expressions (1.15) and (1.20),
we have

VW —a?

s

dU =V + — [ — W] = F 0

Vn, —_ .
Vil — Udy &+ ZEVme) e a9 o _
Vg 7y P 1

The equation of the third characteristic (1.16) and the conditiomns along it (1.17)
also retain their form in this case.

Hereafter, when solving the problems, the expression for the displacement rate of
the breaskdown surface in the self-similar motion is needed. If Fj(x, y, t) is the
breakdown surface, then, as is known [4], the displacement rate D of this surface
is expressed by the formula

— OF /ot
VOFox) - R0 (1.21)

In the case of self-similar motion the velocity D is a uniform function of zero or-
der and, consequently, the equation of the breakdown surface will be a uniform
first-order function

Fy(x, y, t) =tF (& ). (1.22)

Using (1.22), formula (1.21) assumes the form

(1.23)

10
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Obviously, the expressions

2
on

oF 1
) G

G &'

are directional cosines of the normal to the breakdown surface with the coordinate
axes Of, On.

The expressions (1.20), (1.17) along the characteristics (1.14), (1.16) together
with the boundary conditions and the conditions on the breakdown surface, including
formuia (1.23) permit "step-by~-step'" determination of the current field and the
se¢tions of the breakdown surface in the regions where the condition (1.18) is
satisfied. The value of the "vorticity" v is determined by the formula (1.6), and
along the characteristics ni.z, by the formulas (1.19). Of course, for the calcula-

tions relations (1.20) can be replacad by the expressions (1.15) equivalent to them.
The procedure for determining the parameters using the presented characteristics is
analogous to the procedure for determining the parameters in a supersonic steady
state. eddy movement. Therefore we shall not describe the method of performing the
required nperations for calculating these parameters.

Let the flowbe irrotational (w = Q). From the definition itself, it follows that
for self-similar currents the velocity potentials ¢(x, ¥, t) can be represented in
the form

9%, 9 )=t n). (1.24)

Let us introduce the auxiliary function ®(£, n) into the investigation:

O =P W) — - + ).

It is easy to check that

According to (1.10), the function ¢ satisfies the equation

a0 ny O30 [ 3y
a?—UY) —— — WV —— 4+ (g — V) 22 +3a2 —W? =
( ) W 3 (@®*—V? e 3az — W2 =0, (1.25)

The characteristics of the equation (1.25) describing the potential movement in the
plane (£, n) are defined by the equations (1.14). The conditions along thesc charac-
teristics in the case of potential motion will be obtained from the expressions
(1.15) setting w = 0 in the right-hand side:

av + |é.;dv+—“—[ ”:]" ——W’+3a’J ~0.

at— U3
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Let us return to the Lagrange integral:

_gi _O_’_ _d‘L__ . R 2
R i (0= i+ (1.26)

For the self-similar motion that on the basis of (1.24) this equation is transformed
into the form a
P M-t —n B 2 Sd_p=
] it 1 m T2 + > f@).

- In this equation the expression on the left is the function of £, n; on the right
ig the time function. It is impossible by any combination of variables E, n to
obtain the time dimension. Hence, it follows that for self-similar flows the time
function f£(t) in the right-hand side of the Lagrange integral is equal to a constant:

P (5, ﬂ)—i—j’é—ﬂ—i—%%—% + S%— = const.

Introducing the function ®(£, n) into this equation, we obtain

_ O, n)+-“-;l+S—df- = const. 1.27)

It is clear that expression (1.8) is the differential of the integral (1.27), and
now it occurs in any direction and not only along the "current line" (1.7) as
happened in the general case of rotational motion.

Let us proceed to the derivation of the linearized equations of gelf-similar motdion.
The linearization of the equations of motion of a compressible liquid is based on
the assumption of smallness of the disturbed motion. Here the variations of the
parameters of motion and their derivatives are considered small so that in the equa-
tions of motion and continuity only the linear terms are retained.

Then after linearization, the system (1.1) assumes the form (for convenience here-~
after the coordinates are given the subscript "0"):

Gor 1 5 Gy 1 %

ot p ox,' at p Oy,
i;p(ﬁkTﬂqw_:o, O _ g P
ot ox, [N Yo ot at

(1.28)

More strictly, the system (1.28) can be obtained as follows [5]. Let us propose that
- in the problem there is the small parameter 8. Then if we distort the parameters of
motion in the form of expansions with respect to powers of §, and substitute these
expansions in the equations of system (1.1) and equate the coefficients for identi-
cal powers of 6, then in the first approximation these equations assume :the form of
- (1.28).

- There are three cases where it is possible to introduce the small parameter § and,
consequently, to construct the linear theory.

12
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1. The motion after a wave of weak intensity (a sound wave) when v/a = o(8)and the
. body has an arbitrary shape. For an ideal liquid this condition is equivalent to
- the following:

(P—Po) /Po=0(5)

(here py 18 the pressure in the medium at rest, v, p is the speed of the particle
and the preasure after the wave, respectively).

2. The wave intensity is arbitrary, but the body introduces a small disturbance in-
to the basic flow; in this case the small parameter is the relative thickness of the
body.

4 3. The wave of arbitrary intensity encounters almost a vertical wall with a slope
6 = /2 - o(d8);in this case the effect of the distorted part of the wall can be considered
as a small reflected discontinuity disturbance.

Thus, let any of these cases occur and we obtain the equations (1.28). 1In these
equations with the accuracy adopted above, th~ density p entering in by a factor is
assumed to be constant and equal to its initial value. Excluding the velocity com-
ponents and the density from the system, we obtain the pressure equation:

D B w1
axg 6y;‘; Yo dy, T et oo (1.29)

It is necessary to note that the equation (1.29) is obtained without the assumption
of potentialness of the flow, and the speed of sound a with the above-adopted
accuracy was assumed constant. For two-dimensional motion, the pressure is deter-—
mined from the equation

P P 1 O
a3 ' ok at o’ (1.30)

The Lagrange integral (1.26) for the potential motion after linearization assumes
- the form .

p
+ e const. (1.31)

mlm
- 1

- Differentiating this equation with respect to t for a censtant value of the density
and excluding the derivative of the pressure, with the help of the two last equa-
tions of system (1.28) we obtain the equation defining the velocity potential:

| B 1 0%

02 T B T oy Ty, T @ on (1.32)

55 0% L o
0xg ()yg et o’ (1.33)
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From the equation (1.33) it follows that any velocity component of planar motion
also satisfies the wave equation. For example, for v _ we have

y
%y, % | v
S e B g
oxj s at on (1.34)

In the linear self-similar problems it is more convenient to introduce dimension-
less coordinates:

B X =0 y=_y£_.
at at (1.35)

In these coordinates the equations (1.32) and (1.33), correspondingly, assume the
form

1) P 0y, 0 (e 1 99 _
( x)d.x' 2xy Jxdy = y-)ay=+y' =0

T (1.36
) P 9y PP (- e
(I=ay -2y 54 (- £ -0 (1.37)

where ¢(x; y) is a function related to the velocity potential 5 by the formula 5 =
a2t¢. If we introduce this function into the Lagrange integral (1.31), we obtain

xS _ 0% p
Plx, y)—=x AT + o = const, 1.38)

where 09 _ o dp _ vy
ox a y o

Correspondingly, equations (1.29) and (1.30) in the coordinates of (1.35) are written
- in the form

TP gy By Pe g,
(1= ox® 2xy dxdy +=4) ay* 2 ox
—gyl L% g (1.39)
oy y Oy
o Fe 0 O LS g 9,0
(1 =) daxt 2y dxdy +0=4) day° 2 ox 2y dy =0. (1.40)

Equations (1.34) are also reduced to the form (1.40).

The characteristics of the equations (1.36), (1.37) and (1.39), (1.40) in the (x, vy)
- plane are the same. They are defined by the equations

xy:!:VX‘vy’- i
xt—1 ’ (1.41)

!/;.2=
Thus, the indicated equations are of .hyperbolic type outside a circle:

(1.42)

x2+y1=1_
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By direct statement it is possible to check that the integrals of equations (1.41)
will be straight lines:

G+ n+(—2
Y, 2= '
2, (1.43)

pt Va+g—1
1 +x,

plane (x, y), through which a given pair of characteristics passes). It is easy to
check that the characteristics of (1.43) are tangents to the circle (1.42).

where C,, = (x,, ¥y, are the coordinates of the point in the
! 0* 70

In the case of axisymmetric motion for the equation (1.36) we obtain the system of

characteristics:
U+n+1-~ % C—1
- 2 dx W
1 2C, , dvS 4 5 dv, + T 0,
GA+n+1—2 -1 &t o
- ly = , v dv —L=0
be 2C, vd‘+ 26, o+ 1—x g

(1.44)

The system of characteristics for the equation of two-dimensional potential motion
(1.37) will be ottained from (1.44) if we drop the last term in the equations
of the characteristics in the plane (vx, vy).

It is well known that in the region x2 + y2 < 1 the equation (1.40) using the
Chaplygin transformation

X =rcosé, =rsind, r= 28
y e (1.45)

reduces to the Laplacc equation in the region € < 1:

2 (g, P _
8—67(8737)“' o = (1.46)

Thus, in the plane (g, 0) the pressure p is a harmonic function, and it can be
represented as the real part of an analytical function

: L(x)=ple, 0)+if(e, ), 7= eeo, (1.47)

In this statement the determination of the pressure reduces to a boundary problem
for a function of a complex variable. Any velocity component of the planar motion
in a liquid in the variables €, 6 will also satisfy the Laplace equation.

For example, for vy we ghall have

0 (. , v
® % (" 3 ) tam =0 (1.48)

Consequently, analogously to (1.47) it is possible to write

L(x) =u,(e, 6)+if(e, 0). (1.49)
15
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If ¢(t) is defined, then another velocity component v will be found by quadrature.

The Cauchy-Riemann conditions for the function (1.49) are written as follows:

Sy 9 oy _ U
edd de ' ds e 08 (1.50)

From the condition of absence of vorticity it follows that

_ due — duy
_By el (1.51)

Let us rewrite equation (1.37) in the form

(1) 2% _2"”%“1"5’“%‘0' (1.52)
Using expressions (1.50)-(1.52) the complete differential
do, = -%":—-dx -1—% dy
: is easily reduced to the form
dv, = ——l—_l—;.—-(xydv, +- -:—:—:—:—df). L.53)

that is, it is expressed in terms of the complete differentials of the real and
imaginary parts of the functions (7).

Analogously, if the analytical function W(z) = Ve + 1if is found, then

1
-y

dv, =

LA

(xydv,— i _—.-:’ df) .

(1.54)
Penetration of an Ideal Incompressible Liquid by Solid States
§ 2. Penetration of an Incompressible Liquid by a Wedge

Let a rigid wedge symmetrically penetrate an ideal liquid occupying all the

lower halfspace. The velocity of the wedge v, is constant, it is directed vertically
downward, normal to the horizontal surface of the liquid (see Figure 1.1). The
most general statement of this problem is presented in reference [1]. Let us take’
the origin of the cartesian coordinate system at the point of contact of the apex of
the wedge at the free surface at the time of beginning of the penetration. The Ox
axis will be directed along the horizontal surface to the rigat, the Oy oxis will
be vertically downward in the direction of the penetration velocity. The problem
obviously is self-similar, and the motion is potential. The velocity potential

$(x, ¥y, t), just as the velocity of the liquid at infinity, is equal to zero. On
the faces of the wedge obviously we have the boundary condition

cp
—_— =, C R
on 0 osﬁ
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where B is the alope of the face of the wedge with the Ox axis, n is the outer nor-

mal to the face of the wedge. On the free surface, during the entire time of move-

ment the pressure remains constant and equal to the atmosphere. The shape of the

free surface is unknown in advance and is subject to definition during the course of
- solving the problem.

Figure 1.1 Figure 1.2

The problem reduces to determining the velocity potential from the Laplace equation
for the above-indicated boundary conditions. After determining the velocity poten-
tial, the pressure in the liquid is calculated using the Cauchy-Lagrange integral.
The exact solution of the problem stated here has not been found. Mathematical
difficulties of the analytical solution of the problem are related to determining
the shape of the free surface. In the basic work [1], a procedure is indicated for
solving the problem by the method of successive approximations, and the result of a
specific calculation is presented. Many researchers have engaged in studying this
problem. The results of all these studies are discussed in considerable detail in
the monograph [2], and they are not discussed here.

Let us proceed with the investigation of this problem in the two limiting cases where
the angle B is close to zero or a right angle.

a) Penetration of an Incompressible Liquid by a Thin Wedge.

Let a wedge with a small apex angle 2Y penetrate a liquid which is initially at rest
and which occupies the lower halfspace. The initial penetration rate v. is directed
vertically downward, perpendicular to the free surface. The Oy axis is directed
along the penetration rate into the liquid, the ox axis along the horizontal surface
to the right. The origin of the coordinates is placed at the point of contact of
the apex of the wedge with the free surface of the liquid at the time t = 0. It is
possible to demonstrate [1] that for very small angles Y(Y+0), with the exception of
insignificant regions adjacent to the points AA of the face of the wedge (Figure 1.2),
the slope of the free surface is infinitely small; therefore in the investigated
linearized problem, this surface is assumed to be horizontal after the penetration.
period.

Let us take the problem of determining the complex potential W(z) of the motion:

WE)=9+iy=[(2), z=y+ix, (2.1)

17
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w

dz ’vv'w" x"

ox ' ¥ oy (2.2)

- The boundary conditions on the faces of the wedge are shifted to the segment OH of
the Oy axis, where H(t) is the depth of pemetration. In this segment the boundary
conditions are written as follows:

v, =+ H(t)y. (2.3)

The dot over the H denotes differentiation with respect to t. On the free surface,
the velocity potential ¢ and the velocity component v, are equal to zero. By the
principle of symmetry, let us continue the function dW/dz of formula (2.2) to the
upper halfplane of the plane z = y + 1x (see Figure 1.2). Let us construct this
function in the entire plane xOy with a section of the segment (-H, H) of the Oy
axis. In this segment the velocity component vy, that is, the imaginary part of the
function dW/dz has a discontinuity (the discontinuity is denoted by brackets): in
the OH segment

.lvx] = 2HY'
in the HO segment

[Ux] = — 2”}’ (2.4)

Denoting the limiting values of the function dW/dz on approaching the axis from the
right and the left, respectively, by the signs (+) and (-), we have:

. ANNE. & _ 2Hyi on —HO,
).~

\a e ) —2Hyi on OH. (2.5
According to the Sokhotskiy formula [6], we have
H . 0 .
_av 1 \‘ 2Hyidy 1 2Hyidy
dz 2ni y—2 2ni S y—z2
H
Hence, after performing the integration
_4v _ Hy LAY
4z n '"[' (, ) ] (2.6)

Here the branch of the logarithm is selected which in the segment O < z < H of the
y axis on both sides gives

daw -

e =+ Hy.

From equation (2.6), the complex potential is defined by quadrature, Calculating
this integral, we obtain:

""W(z):'H_Y[—221"Z+42-rl|n(z’—H‘)—Hln Z—Z ]‘
t

kY

On the Oy axis the velocity potential ¢ has the form;

18
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il —ay— —) +H1 ———”‘y],
¢ = "[2ylny —yln(H—y) + Hin =L

0<y<H. 2.7

The pressure along the face of the wedge is defined by the linearized Cauchy-Lagrange
formula

L _p=p 09 _ _ Hy in A=y _
P [ ot n H+y
—ﬂ?—[%ln —4y—yln(H'—y?) 4 H1n H=y
" Y—4y—yln(H—y) + lnH+y}
0<y<H. (2.8)
At a constant velocity H = vo, ﬁ =0
_AL= P=ro _ __ vy In-Y—y
P P Toon vt +y '
O0<y<yyt.

The vertical force of resistance to penetration is
H

F=2apydy - +-2ﬂn'-(2ln2-HH2 +3, 4H2H),

; (2.9

For a constant penetration rate H = vo, ﬁ = 0, we obtain

F=‘_2:—Pv’vgt‘2ln2, (2.10)

The Investligated problem was solved for the first time in reference [L], where the
following formula was obtained for the force (in our notation)

Fy = 1,78003 ty2. (2.11)

This force is twice the force defined by formula (2.10). The difference is explained
by the fact that in reference [1] when calculating the force F, the momentum of the
liquid particles on the free surface was not taken into account. Let us return to
this problem in the section devoted to the penetration of a compressible 1iquid

by solid states. Comparing formulas (2.10) and 2.11), we have

41n2
£11
1,78

F
h= = = — ~
F =0,495x0,5.

b) The penetration of an incompressible liquid by a blunt wedge considering the lift
of the free surface.

Let a very blunt symmetric wedge (B*0) penetrate an incompressible liquid. The pene-
tration rate v, 1s perpendicular to the flat free boundary of the initially quiet

liquid (Figure'l.3,a). The problem is solved in the linear statement: the boundary
conditions are removed to the horizontal surface of the liquid and linearized by

19
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the Cuuchy-Lagrance integral, Let us take the origin of the cartesian gystem of
coordinates xOy at the point of contact of the apex of the wedge with the liquid
surface, the 0x axis is directed along the free surface to the right, and the Oy
axis into the liquid, in the direction of the penetration rate. The velocity poten-—
tials satisfies the Laplace equations ’

Zo L % 9
0x? + ay? ’ (2.12)

- c £
Rl <1
H{{ < [y x
Y a
-C | c
l X
y 6

Figure 1.3.

The pressure is determived from the linearized Lagrange equation
Ap=p—p, = —p-2
P=P=P="P%" (2.13)

The problem 1is solved for the following boundary and initial conditions (Figure
1.3,b).

On the wetted surface of the wedge (-c, c¢) on the Ox axis at some point in time t
for -c < x < c we have

—a—q-)- =«$’- = Up.
on oy (2.14)

On the rest of the Ox axis, the velocity potential is zero:

¢ =0 for xL—¢, X2>C (2.15)

At the initial point in time t = 0

Q= .1:0_

= (2.16)

Along with the velocity potential ¢ in accordance with the continuity equation it
is possible to introduce the harmonic current function Y conjugate to ¢ and investi-
gate the analytical function W in the complex plane z = x + 1y, where

Wogriv, =iy, 2.17)
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The problem stated in this way coincides in its mathematical formulation with the
problem of impact of a plate 2c¢ wide against the surface of the liquid. The solu-
tion of this problem is well known [2]. In our notation it has the form

W=9+iv=in(V7—c—2. (2.18)

Hence, along the wetted part (-c, c) for the velocity potential we obtain

P=—yVi—x, |x|<ec. (2.19)

The speed of the fluid on the free boundary according to (2.18) is defined by the
formula :

v, =0

%=—%;—J_m"4L x| >c.

l/ :—g | (2.20)

Let us note that in the solution obtained the velocity vg can be both constant and
a time lunction. The case of the constant penetration rate will be considered
further. If we do not consider the lift of the free surface and the increase in
wetted surface of the wedge connected with this when determining the wetted segment
of the wedge, we have

— oyt
€ =ulclgf. (2.21)

In the investigated self-similar problem the propagation rate of the ends of the
wetted part of the edge with respect to the free surface ¢ considering the 1ift of
this surface is constant [1]. We shall limit ourselves to an investigation on the
right-hand side of the movement of the wedge during symmetric penetration (see
Figure 1.3,a). When determining the point E (the edge of the wetted segment of the
face of the wedge) the foam part on the free surface is neglected [2]. This part
lies above the deflectionpoint of the free surface and, therefore, it is considered
that the deflection point coincides with the point E on the face of the wedge. The
liquid particle e on the free surface which at the time t after the beginning of motion
is at the point E of the face of the wedge obviously has the coordinate x = ct.
From Figure 1.3,a it is clear that e

¢
h+H=c-tgp; H =y, h=|Vuv (x, c)at
IJ v , (2.22)

The last integral is calculated simply:

Substituting this solution in the first equality (2.22), we obtain
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c = % v, {ctg B) . (2.23)
Consequently, the velocity ¢ is

. N

c:—;voctgﬂ. (2.24)

Thus, as a result of 1ift of the free surface the wetted part of the wedge on the
x axis occupies the segment

2 =-:wo cigft.

Without considering the variation of the free surface from {2.21) it follows that

- 2c= 2uycigpt.
1f ¢ is taken from the formula (2.21), according to (2.13) and (2.19) the pressure

along the wetted part is determined from the expression

2
prgctgp
Ap=p—p,= —_—

. = ' (2.25)
. v%l’ ctg? B

Here the total force acting on the wedge is

F = npv3tctg?p. (2.26)

Correspondingly, when considering the variation in shape of the free surface we
have

for the pressure

2
: ool ctg B
- Ap=p—py = - ————,

2 l/:FFT- (2.27)

or

for the force
F = npuycH, €= 2y, clgP.
o 5 toctep (2.28)

By analyzing some of his results cf numerical solutions, Wagner proposed the follow-
ing approximation formula for calculating the resistance force [1, 2] (for the angle
0<B <7/2):

22
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F = nouf H [2—;— 1]2 (2.29)

§ 3. Penetration of an Incompressible Liquid by a Cone

Let a cone of arbitrary apex angle penetrate a liquid initially at rest, occupying
the entire lower halfspace. The speed of the cone vg is constant and directed into
the depth of the liquid perpendicular to the plane of the free boundary of the
liquid at rest. The period where the cone has not completely submerged in the liquid
is considered. In this statement the problem is self-similar, and the motion of the

liquid is potential. The parameters of motion of the liquid depend on the coordi-
- nates &, :

L. X - 2
® ‘v C t !

where t Is the time, X, 2z are the cartesian coordinates in the meridional plane of
the investigated axisymmetric problém. The origin of the coordinates 1s placed at
the point of contact of the apex of the cone with the surface of the liquid at the
time of beginning of penetration. The 0z axis is directed vertically downward, the
Ox axis is along the horizontal surface of the liquid to the right (Figure 1.4).
The pressure is constant on the free surface. On the generatrix of the cone we have
the boundary conditions

&)
— =y, cosp,
n 0 ﬁ

where ¢ 1s the velocity potential, n is the external normal to the generatrix of the
cone, B is the angle of inclination of the generatrix to the Ox axis. Just as in
the case of penetration of a wedge of arbitrary apex angle with constant velocity,

_ the solution of the investigated problem here cannot be obtained analytically. By

Figure 1l.4.

the method of successive approximationspresented in reference [1] the solution can
be constructed numerically. This method can be used successively to construct the
shape of the free surface and determine the force of resistance to penetration.
A detailed study of this problem, including some important theorems pertaining to
the geometry and kinematics of self-similar flow and the properties of the free
surface connected with can be found in references [1, 2]. Here studies are made of
the cases of penetration of a cone with a small apex angle and a blunt cone.
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a) Penetration of an Incompressible Liquid by a Thin Cone., A study is made of the
vertical penetration of an ideal liquid occupying the lower halfspace by a thin
cone with a small apex angle. Before the beginning of penetration the liquid is

at rest, the initial pemetration velocity v is perpendicular to the plane of the
free surface of the liquid. The motion of the liquid arising on pent _ration by the
cone will be small, and it is possible to demonstrate that with the exception of
small regions in the vicinity of the points of intersection of the cone, the free
surface of the liquid will differ little from the initial undisturbed surface [1,
71; consequently, the problem can be considered in the linear statement and the
boundary condition at the free surface taken down to its initial plane. The origin
of the cartesian coordinate system will be placed at the point of contact of the
apex of the cone with a free surface at the time of beginning of penetration t = 0.

Figure 1.5,

The Oz axis will be directed vertically downward, and the Ox and Oy axes will be
placed in the plane of the free surface of the liquid before beginning of penetra-
tion. The problem has axial symmetry. At some point in time t in the meridional
plane the picture of the motion is illustrated in Figure 1.5. The velocity potential
¢(x, y, z, t) satisfies the Laplace equation, that is, it is a harmonic function,

and on the basis of the linear statement its value on the free surface z = 0 is
equal to zero during the entire penetration time. Then the velocity potential, on
the basis of the principle of symmetry, can be continued unevenly to the upper half-
plane and represented in the form [8]

H
) q®) df o= x? -+ gt
q) e An -S‘H}/(E_,—z)l+—f’ * (3.1)
Here H(t) denotes the depth of penetration. On the basis of smallness of the

angle Y, the boundary condition on the cone is written as follows:

9% _ g
ar Y (3.2)

where H is the penetration rate. The problem reduces to determining the unknown
function q(z) under the integral (3.1) from the boundary condition (3.2).

On the generatrix of a thin cone from formula (3.1) we have [7]

Goy L 96
( or ),-.o—> on  r (3.3)
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Thus, within the framework of the linear approximation it is possible to write

- @)= Ay, 0<z<H,

2nr —Hy, —H<2<0, G.4)

Noting that the radius r on the cone is related to the angle Y by the formula r =
(H - 2)Y, from the conditions (3.3) and (3.4) for force intensity q(z) we obtain
0, z>H,
AV (H—2), 0<2< H,
— oAy (H+2), —H<2<0,
0, zL£H.

q() =

On the basis of (3.1), the velocity potential in final form will be represented by
the formula [7]

H 0
=L g _H=0dE y'H (H+E)dt
? 2 v H V(E—z)‘+r5 + 2 _5; V(E-‘Z)’-*-"“' (3.5)

The excess pressure 1s determined by the linearized Cauchy-Lagrange equationlz

p=—p—. (3.6)

—-al=Ly’ﬂ{—2(H—z)lny+2z—r—(H——z)ln4+

2t
HY— 23

+zln%:—:-J+

+ Ly [2(ln2-—-lny) + ln——z—’-——J
2 ! Hy—23 |’

3.7)
where H is the acceleration of the penetrating cone,

The analysis of the expression in the right-hand side of (3.7) demonstrates that the
excess pressure p is equal to zero not on the free surface, but at the point under
it at a shallow depth on the order of Y [7]. Therefore for a thin cone the total
force can be obtained with high accuracy by integrating the pressure over the entire
wetted surface:

H
F = 2y 'fp(H—z)dz=m[aH2H2+kH’ﬁ]. (3.8

[

lEverywhere that confusion will not be introduced by it, the excess pressure p - Py
will be denoted by p.
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where m, o and A are constants defined below.

The pressure under the integral is defined using formulas (3.6) and (3.7). The law
of motion of the cone of mass m will be defined by the formula (the weight of the
cone will be neglected)

The results of the galculation give the following law of variation of the velo-
city and acceleration of the cone as a function of the depth of penetration H:
7SN .. L
(1 - AHPA (1 + AHBZBAAMT (3.10)
The depth of penetration for which the acceleration of the cone reaches the maximum
will be defined by the formula
3
2
e V2
2 + 1 (3.11)

In formulas (3.8), (3.10) and (3.11) the constants o and A have the following
approximate values:

- a:—ﬂ(]nQ_'_]nY);
m
] o (2 os 2y B
A= (31n2—e— 3lny, )

m 3

- (3.12)

Let the penetration rate be constant and equal to vg. According to (3.6) and (3.7)
- the excess pressure along the generatrix of the cone in this case will be given by
the formula

2 2 1

p—_fpvo'y’[2(ln2—-ln‘v)-{- In — J

H2- 2 (3.13)

The force acting on the penetrating cone in the vertical direction will be defined

by the formula (3.8) in which the pressure is taken from (3.13). As a result, for
the force F we have:

F = o,f*d, (3.14)

_ where the constant ccl has the value
0, = ma =—rnpy*(In2 - Invy). (3.15)

The speed of the liquid on the free surface z = 0 will be found by differentiation
with respect to z of the velocity potential (3.5):

o9 B[ 2 VIR
- —72—2—[-—7——2111—-——’——]

(3.16)
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Let the penetrating body be a cone with a small apex angle 2y which at a height of
Hp becomes a thin cylinder of circular cross section with a radius Hpy. It is
obvious that up to a depth of H < Hp the solution to the problem coincides with the

B solution for an infinite cone presented above. For a depth of penetration H > Hp
the velocity potential will satisfy the Laplace equation, and the boundary condi-
tions will assume the form:

0, 0Kz H—H,
—={Hy, H—H <:<H
y) r .
Jr 0 :>H, (3.17)
Using the principle of symmetry, it ie also possible here to continue the solution
to the upper halfplane of the plane z, r and distribute the sources over the axis

of the vertically penetrating body (along the Oz axis). It is easy to see that the
distribution of the sources over the conical part of the body is identical with the
distribution for an infinite cone, and the plane of the sources q on the cylindrical
part of the body will be equal to zero. Therefore the velocity potential assumes

the form
- H~H H
1 ; (H+§) dg (H—§)dt
rz2,t)y=—vyH —Tea Ml —elds
vrnd=5y [ V&= +r VE—7F+7
—H +H

(3.18)

The quadratures in the right~hand side of (3.18) are taken simply, and the velocity
potential will be expressed in terms of finite functions. The excess pressure will
be determined from the linearized Cauchy-Lagrange integral:

p=—p—F.

The calculations demonstrated the presence of negative pressures (rarefaction) on
the surface of the cylindrical part of the body and in some region of the conical
part adjacent to its base [8]. The maximum acceleration will always be achieved
before the beginning of penetration of the cylindrical part, and for real products
when H = Hp. In Figure 1.6 graphs are presented for the variation of the dimension-
less velocity /v, and the ratio H/vZ for a cone with an apex angle 2y = 13° and
weight mg = 20 kg penetrating water.

b) Penetration of an Incompressible Liquid by a Blunt Cone Considering the Lift of
the Free Surface.

Let a very blunt cone with apex angle 2y symmetrically penetrate an incompressible
ideal 1liquid initially at rest. The liquid occupies the lower halfspace, the ini-
tial velocity of the cone vo is directed perpendicular to the plane of the free

surface of the liquid.

The angle of Incllination B of the generatrix of the cone to the free surface is
small. In the meridional plane r, z, the penetration picture is shown in Figure
1.7.

The origin of the coordinates is taken at the point of contact at the apex of the
cone of the free surface at the time of beginning of penetration, the Oz axis is
directed vertically downward into the liquid, the r-axis, along the initial
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Figure 1.6.

- horizontal free surface to the right. Just as in the case of penetration of a
blunt wedge, the free surface of the liquid outside the spray jet is slightly in-
clined to the r axis, and the boundary conditions on the generatrix of the come
and the free surface are carried over to this axis. The problem is solved in the
linear statement and it is formulated as follows. Let us find the velocity poten-
tial ¢ satisfying the Laplace equation

o Ge ! %o _
ot rar 0. (3.19)

the zero initial values

-0 -2 o0
t=0,(p—-0y ot

and the boundary conditions

2=0, 9(r,0,#)=0, Hetgp < r< o0,
L9009 _ f), 0<r< Helgh, (3.20)

oz
where H(t) is the depth of penetration, the dot over the H denotes differentiation
- with respect te time t, that is. ¥ {ie the nenetration rate. The -boundary conditions
- of (3.20) coincide with the boundary conditions in the problem of impact entry of
a disc of radius H ctgB into an incompressible liquid. The solution of this problem

“

Figure 1.7.

is presented in reference [2]. Obviously, on the basis of uniqueness of the solu-
tion of the Laplace equation here it is possible to use the indicated solution. The

- solution of the Laplace equation which satisfies the boundary conditions (3.20) will
be represented in the form

28
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o(r, 2, )= ‘5 A(M) Jy (M) e22ah, (3.21)

where J.(x) is the zero-order Bessel function. Substituting the solution of (3.21)
in the goundary conditions (3.20), for determination of A(A) we obtain the pair of
dual integral equations [7]: -

) J’Ax(n)lo(n.&)dn=0. E>1;

c ' 3.22)
§ Ao, 9an = A2 (
p e E<],
here the following notation is introduced;
H r
A— = —_——= = .
=0 g =h AM=40)
The solution of equatioms (3.22) is known [7, 9]:
2 H l
Ax(n)=—‘/__ a2y (s,
= 9P V“ p E /.(Ev ﬂ)dﬁ-
Substituting the Bessel function Jl/Z(x) defined by the formula
: 2
Jiy, (%) = l/—— sin x,
nx
and the above expression under the integral sign, after calculation we obtain
- H3H 1 sinn
* A == F (5o —5).
Now the potential ¢ according to (3.22) will be represented in the form
o w
M__'_l_< _s“"_"),] " Hctgb dn.
_ HHctgp S n cos M °(§' m) e m (3.23)
- At the boundary z = 0, this expression assumes the form
¢(r, 0,1 ___“_l_ __ siny J d
HHctgp (5 n (cosn n ) o(& m) dn. (3.24)

After several calculations this expression for the potential will be written as
follows [8, 7]:

0, Hetgp<<r<oo,

o, 0,8) = '
[_%VF%T(’T—_r?, 0.<r< Hetgp.

(3.25)

The excess pressure along the wetted part of the generatrices of the cone will be
defined by the linearized Lagrange formula,
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For the investigated problem this formula gives

p=£{ HH3 ctgip
| VEdgp—n

where H is the acceleration of the penetrating cone. The force F acting on the come
with penetration is defined by the formula
Hetg B
F=2n 5 pr dr,
0

+h VH’ctg’ﬁ—r’}, 3.26)

where the pressure p in the expression under the integral sign is given by the
expression (3.26). After calculation of the integral we obtain

= dpctgrpH (fr + -k
F = 4pctg® pH (H‘+ = ) 3.27)

Ior constant penetration rate (H = vo) for excess pressure from (3.26) wc have

5 vcle P
P== — (3.28)

1 —
‘/ Bictglp
The force acting on the cone in this case will be

F=4pctg’up 2. (3.29)

Note. The velocity potential on a disc of radius R, according to the above-indica-
ted analogy, will be obtained from the expression of the potential (3.25) by replac-
ing the values of HctgB by R and H by V, in it:

0, R r<oo;

T - 2yR=T, o<r<R,

- where V, 1s the velocity of the disc at the time t = 0 after normal impact of the
disc against the surface of an incompressible 1liquid. 7The force of resistance Fl
acting on the disc at this time is

R
Fl = 2“8‘ PCPfdr = '-:—‘PVIRS.

J (3.30)

Let v. be the impact velocity of a disc of mass m. On the basis of the theorem of
momengum, we have:

mu,—mV, = -43— e VR,

Hence, the velocity Vlwill be defined:

L eR (3.31)
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Thus, the apparent mass on impact of the disc against the liquid will ke
=2 ops
=3 pRE.

In the solution obtained above, the increase in surface of the wetted part of the

cone as a result of 1lift of the liquid surface during the penetration process was

not considered. The effect of the 1ift of the free surface on the magnitude of the

wetted surface of the cone is determined by the same method as in the problem of

penetration of a blunt wedge. Therfore there is no necessity for another detailed

- discussion of it. We shall limit ourselves to investigation of the penetration by
a cone with constant velocity v,. In this case the problem will be self-similar
even in the investigated linear statement, the wetted part of the cone in the plane
z = 0 will be a circle of radius c, where

= ct. (3.32)

The variation rate of the radius ¢ is a constant and subject to determination. It
is determined from the equality

vt +h=ctigp. (3.33)

The value of h in equation (3.33) is defined by the integral

!

I = |6{u,-dr | (3.34)

where v_ 1s the velocity of the particle on the free surface rising to the generatrix
of the Cone at the time t.

The velocity potential of the liquid when considering the 1ift of the free boundary
B in the investigated linear statement will be determined from the Laplace equation

in terms of the boundary conditions (3.20) on replacement of the value of HctgB in

them by the radius c. Therefore the value of this potential will be obtained from

the expressions for the potential in the formulas (3.23) and (3.25) after the above-

indicated substitution. As a result, for the velocity potential on the wetted part

of the cone and the vertical velocity component on the free boundary we obtain:

0, cr<Coo,

B yF=E, 0<r<g
b1

vy, r<¢
v, ={ 2y, e ____i_)‘ <.
[—<msm rooyE=a < (3.35)

The particle of liquid on the free surface which after the beginning of penetration
at the time tarrivces atcontact with the generatrix of the cone has the coordinate,
before the beginning of motion equal to ¢t (Figure 1.7). Then on the basis of (3.35)
the integral (3.34) will be written as follows:
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R =

4 . . i
ﬂ“amin f_*__ﬂ_jd,l'
n 0 ct V!:""—t‘.‘“"
Calculating the integral, we shall have

h=_"’.'it<2_._“_)_
n 2

After substitution of this value in the equality (3.33) for the rate of expansion ¢
of the wetted surface of the cone in the plane z = 0 we obtain the formula ’

=4
= %cteh (3.36)

Consequently, the radius of expansion of this surface at the time t will be deter-—
mined from the equality

¢ = —:—vo(ctgﬁ)t. (3.37)

For excess pressure along the generatrices of the cone we now obtain

The expression for the resistance force has the form

3
F = tpricig’ps? ("4;) : (3.38)
In reference [7] it is demonstrated that the penetration law expressed by formula
(3.10) is observed qualitatively on penetration by a cone with finite halfapex angle
vy if ¥ < 1. In this case the constants o and A in formulas (3.10) are determined
experimentally, for evample, by the values of the penetration rate H at two given
depths Hl and HZ'

§ 4. Movement of a Thin Cone in a Liquid of Finite Depth

a) Vertical Penetration of a Liquid of Finite Depth by a Cone. Let us consider a
thin cone of mass m with apex angle 2Y which vertically penetrates an incompressible
1iquid with depth h [10]. At the time of contact with the free surface the speed of
the cone is v.. Let us assume that the viscosity and gravitational forces can be
neglected. Let us place the origin of the coordinates at the point of contact with
the free surface, let us direct the x, y axes along the free surface and the 0z

axis vertically downward (Figure 1.8). The pressure on the free surface is constant
and equal to Py The problem of penetration by a cone reduces to solving the La-
place equation

Fe P Pe
T o + =0 (4.1)
with the boundary conditions
32
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9=:0 for 7-0; (4.2)
% =0for 2=k (4.3)
[4
-7':;=v,, on the cone.

The velocity [;c')tential of the disturbed motion will be found in the form

g=——L (Lhnb0 45
4n R
3

where R is the distance from the point (£, n, %) of the gurface S to the point (x,
y, z) at which we determine the velocity potential. The surface S (see Figure 1.9)
will be constructed in.such a way as to satisfy the conditions (4.2), (4.3). Let us
first satisfy the condition ¢ = O for z = 0, for which we take the wetted surface of
the cone as the surface S, and its mirrcr image with respect to the plane z = 0,
where q(x, y, z, t) is continued unevenly. In order to satisfy the condition 3¢/ 9n=
0 for z = h which still has not been satisfied, let us add the surface S; which is
the mirror image of Sg with respect to z = h to the surface Sg; let us complete con-
struction of the function q(x, y, z, t) with respect to z = h evenly. As a result,
we violate the boundary condition. ¢ = 0 for z = 0, but this deviation will be less
than that which occurred for z = h. Continuing this process, we obtain the surface

S = S0 + S1 ves + Sn, which at the limit for n + « precisely satisfies the boundary

conditions (4.2), (4.3) (for the velocity potential ¢ > 0 for R + ®), where the
function q(x, y, z, t) will be periodic with the period z = 4h. Let us present
the solution of this problem for a thin cone. If Y is a small value, then the boun-
dary condition on the cone assumes the form

ap :
< =HOv. (4.4)

where H(t) is the cone penetration law. The velocity potential of the disturbed mo-
tion of the liquid will be as follows:

Amco H
\ﬂ (— iy "~ q() db
“~ AL T =T

¢= qin

Moo

However, on the cone we also have

o1 A
— = 2 (— 1y S’ rq(t)dt
4n . - [(2nh 4L — 22 + r3's )
) Hence, for r + 0 we obtain
P99 90 )
or 2n

Thus, we have the approximate formula:

q(2) = 2aH (1) yr.
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Figure 1.8. Figure 1.9.

Substituting the value of r on the cone, we arrive at the expression q(z):

q@:‘_%mow+”wfm —H<2<0,
H(t) (H—2)¥*  for 0<2z<H.
Thus, the potential of the disturbed motion of the liquid is given by the following
expression:
_ , s . :
=—H )y — HED AR
o= HO)Y P 1y=[
Awa—00

Y@k Tt

o w-pa ] (4.5)
Vahit—mrna |

Differentinting expresslon (4.5) with respect to t we obtain

n=»ce

ﬂL=%ﬂmw 2(—1V{§ (H+b)dt _

o JVEEIT— 7
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H
—_ j’ (H—Q)df J
V@RI = T A

0

L i 0
+ iy Mgw (— 1)n£i <m+d:_z)=+,= -

H
_,5 Vm:—c—a-w J

Let us demonstrate that the series of derivatives converges absolutely and uniformly.
For this purpose let us estimate the behavior of the nth term of the series for

- n + © (analogously, for n - -®);

e H

Ian|=l 5‘ ___d; —g & =
YT R ) VeI
d; —

§ V() v
H
— 4

5 Vi |

since the first term is larger than the second and they are both larger than zero,
by increasing the first and decreasing the second, we have

. h h
lanl € o — mht+htzdr
_ ! ht+z2+r _L
DN [1._ fﬁ+z+r)-] e
4hin?
The value of
-?Ih—(h+l+r)
<M,
l-—( hdz24r \%
)

therefore |a I < M-(l/nz) in this serles, and, consequently, also the series (4.5)

converges abrslolutely and uniformly, and the operation of term-by-term differentia-
tion is entirely regular. For a cone that becomes a cylinder, with a length of the
conical part equal to Hp, the integrals are taken within the limits from -H to -H +

Hp and from H - Hp to H, respectively,
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Let us define the law of motion of the cone. The force acting on the cone is equal
to

H
F =2xy? S (p—po) (H —2) dz.
]

- The pressure gradient will be determined from the partially linearized Lagrange

integral
C | 2 \?
Ap=p—py,=—p¢ Z;p -7 p(—o?) .

Using expression (4.5), we obtain the following expression for the force F:

—F - (M BHY Hf - (cty - 3,H%) H? 3,
where 0 ,
hyes = mpvt (Iny o+ 102 4 ).

a, = npy*(Iny + In2+ 1),
n " nAz=oc l
— ey el
pl - 36h3 E ( l) nd -’
ne=]

The equation of translational motion of a cone (its natural weight is not considered)
will have the form:

A{l 4+ (A + BH?) H°] + (o + 3pH?) H*A* =0, (4.6)
where u=——9‘—, }‘____A,' ﬂ=—ﬁ—.
m m

Integrating equation (4.6), we obtain

Y 0,
H = — 4.7
(1 -+ AHS 4 BHm)
.. o2 (A - 2BHI) HY
o — aog (A -+ 2BH7)
iaL.H
A1+ AHY 4 By (4.8)

Expressions (4.7) and (4.8) for h >« become the solutions (3.10) of this chapter.
From expression (4.7) it follows that on penetration of a liquid of finite depth,
- the cone loses velocity faster than penetration into the halfspace.

b) Movement of a Cone in a Liquid of Finite Depth in the Direction of the Free Sur-
face. Let a thin cone of mass m with apex angle 2Y move under the effect of the
force F. in an ideal incompressible liquid of depth h vertically upward in the
direction of the free surface. The initial speed of the cone is v,. The pressure
on the free surface will be considered constant and equal to Pge Bet us place the
origin of the stationary coordinate system at the point of intersection of the axis
of the cone with the bottom, let us direct the (x, y) axes along the bottorn surface
and the z axis, vertically upward. The velocity potential of the disturbed motion
of the liquid ¢(x, y, z, t) will satisfy the Laplace equation (4.1).

36

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1

FOR OFFICTAL USE ONLY

Figure 1,10,

- We shall consider the free surface to vary little, and the boundary conditions on it
- ¢ = 0 will be taken down to the plane z = h, From the condition of impermeability
of the bottom we obtain: ‘

® .0 for z -0.

- dz

On the cone the normal velocity component of the liquid 3¢/9n is equal to the projec-
tion of the velocity of the points of the cone v_ on the normal. Thus, the boundary
conditions of equation (4.1) assume the form

p=0 for z==#h; (4.9

d¢ = Z=0
o =0 for , (4.10)

3¢/on = v, or (for a thin ccne)

6 a = ]
. wor=Ht)y. (4.11)

It is easy to demonstrate by arguments analogous to the arguments of § 4a that the
solution of the equation (4.l) satisfying the conditions (4.9), (4.10) will be as
follows for a thin cone:

Razoo H

= — ! v _.l)n! ¥ I3 ——_l___—__
q; 4 ,: ( l_){ q(:) [y/m
1
Ve Dii—aF +7 Jdg}' (4.12)

where H(t) is the distance between the bottom and the apex of the cone. The distri-—
bution density of the sources will be obtained from the boundary condition (4.11)

q(z)=[ WA (@) (H+2)y for —H<2<0,
2nH(t) (H—2)¥* for 0<z<H.

The final form of the potential of the disturbed motion of the liquid will be as
follows: 0
£m+mx

o=y HOY Y —ir|
]
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1 1
X - | dg +
' [V(2M-‘c+z)-+r' VREFDE+T—F +7 ] ¢

H
" i _ 1 . (4.13)
+_§ (H C)[ ] dc}.

Y=+ 2t + 12 VRO F AT -2+

For a cone becoming a cylinder, with a length of the conical part equal to HI" the
integrals are taken, respectively, within the 1imits from -H to - H + H and from

_ H - H. to H. Let us define the law of motion of the cone. The force acting on the
cone on the part of the liquid is

H
F =2ny? j (p— py) (H — 2) dz.
]
Using the Lagrange integral and expression (4.13) we arrive at the expression:
F = (M -+ BH) B + (o, + 2B,H) H?H?,

where the coefficients are given by the following expressions with high accuracy:

o, = — npyt (lny—3ln2+ -;-)
o xl=——:-npy‘(lny—3ln2+-§—),

A Y ),

h 4 i 4n(n+1)
=i

The equation of motion of the cone assumes the form
mH = Fy—F— mg,

or

B (14 M HO— BHY) + (0 — 2pH) H2Ht = =T — F,, (4.14)
her
mere g B a—M g B
m m m

The solution of the equation (4.14) under the initial conditions t = 0,
H@©Q) =0, H(0)=u,
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has the form

—2 _(a—2Bx)xt
‘5 1Azt —Pxd

" Fy (x) :
[ 23‘ T dx]

From expression (4.14) it is easy to determine the thrust FO for which

the column will move with a constant velocity A

Fi=ti(a—9BH)H, or Fo=m[v}(a—28H) H* + g]. (4.15)

As is obvious from expression (4.15), for movement of a cone in a liquid of finite

depth in view of the effect of the free surface the force Fo 18 less than for move-

ment of it in an infinitely deep liquid (for the latter case B = 0). When the
depth of the liquid approaches infinity, the law of motion of the cone in the half-
space can be written as:

. H
H= /- 1 [03_1_25* 3 (x) dx ] .
b3 2a

§ (1 4+ Ax?)

c) Motion of a Cone in the Case of Waves on the Liquid. Let us consider thecase
where there are progressive plane waves of low amplitude on the free surface of
the liquid. Along with the cartesion coordinate system (x, y, z) let us consider
the cylindrical system (r, z, ) for which the z-axis coincides with the z-axis

of the cartesion system, and Y is the angle between the x and r axes., For deter-
minacy let us consider that the waves are propagated in the positive direction of
the x-axis. The velocity potential of the general motion of the liquid will be
represented in the form

Q=@+ P+ P

where ¢0 is the velocity potential of the liquid during vertical movement of the
39
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.cone to the free surface of a liquid initially at rest which is defined by formula.:
(4.12). The potential of the wave motion of the liquid ¢l which satisfies the
boundary conditions

0P, o? a
A = =: .—‘El— = =
5z P ¢ for =z h ~ =0 for z=0,

has the form [11]

_ 88 chkz . fr cos b — of
@ = oy sin (kr cos ¢ —- ot),

where o is the wave amplitude, c is the wave velocity, A is the wavelength, A =
27/ k, 02 = gkthkh, ¢ = g/k. Since on the cone 3p/on = Vs then for determination
of the additional potential ¢2 we have the following boundary conditions:

(P.——:O for z="h,

- 99y ag chkz
> =T €08 P cos ot Y™ on the cone,
99,
?=0 for 2=0,

Using the results of § 4a, we obtain the value of the potential¢2:

_ _ogy cospeosat NV v
- s = 2 ch kn Eu( b x
: X 1
X H 4 t)chk -
{_5;( ) g[ VER=T+ o+
1
- — d
VRmn+Dh+g—z +1 ] ¢+
H
1
H—1t) chkt —
+0S( oc ;[ ———

1
Y2in+Dh+—zp 1 J dc} )
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§5. Ricochet of a Plate from the Surface of an Ideal Incompressible Liquid

Let us consider the two-dimensional problem of the incidence of a slightly bent

- plate of mass m on the surface of an ideal incompressible liquid. Let us
agsume that the submersion of the plate is insignificant, and the free surface
of the liquid differs little from its undisturbed level. Therefore the boundary
conditions on the wetted surface of the plate will be taken down to the hori-
zontal plane coinciding with the initially undisturbed level of the free surface.
1n addition, undcr the boundary condition of the free surface we shall neglect
the ponderability of the liquid and the square of the velocity of absolute motion.
We shall consider that the motion of the liquid begins with a state of rest [12].
Let 07 be the origin of the stationary coordinate system coinciding with the
point of contact of the trailing edge of the plate with the free surface at the

_ initial point in time.

For determination of the liquid flow in the lower halfplane let us introduce the
moving coordinate system (£, n) with the origin at the center of the wetted sur-
face of the plane, let us direct the £ axis along the undisturbed level of the
free surface, the n-axis, vertically upward (Figure 1.11). Under the given
assumptions, the magnitude of the complex-conjugate velocity dW/dz=U-iV in the
moving coordinate system will be [13]

: c
: Jﬂ—-=101<1-—~77§==§F—)——
— V& - ds: .1

’

1 fm(n
wmiyT—a ) b1
B=s—x—c t=—(+p)+V,b

where V, and v are the horizontal and vertical components of the plate velocity,
2c is the magnitude of the wetted surface, B 1s the angle of attack, B is the
angular velocity of the plate with respect to the rear edge and x is the path
traveled by the plate from the time of contact with the free surface of the
liquid. The unknown function w(x) entering into equation (5.1) and the function
known in the theory of nonstationary motion of a profile as the distribution

B density of the eddies trailing off the rear edge characterizes the magnitude
of the horizontal component of the velocity of the liquid particles at the free
surface behind the plate, and it is determined from the first type Volterra
integral equation:

(5.2)
(fx(x) = —9cY, V=0t + — BC)
The buoyancy acting on the plate 1s [13]
Y,-,;-i‘-( "‘;" ul> + mpc (V,+-%j—)ua +
. (5.3)

w(s)ds
YZc+x—3 (x—9)

’

g

where p is the liquid density.
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Figure 1.11

- For determination of w(x), we reduce the integral equation (5.2) to a system
of ordinary differential equations [12]. For this purpose let us expand
Dotx-s in a series with respect to powers of s/(2c+x), let us integrate it term
by term and introduce the notation

1 . s" o (s) ds
PEFIN=

Yn =

Then equation (5.2) reduces to the following system of equations:

- i U, .
yn=-5:-;[[-2——r(ﬂ 1) (1 4 20)

X

% - x }yn_lf
+xy'n_.——n(1+2é>yn}.

treeil i 1 (2t — 3 (5.4
filx)=V2%+x Lyo_ ‘E‘.‘h“‘s—yt" _—(z—k')"—‘l" J

with the initial conditions

=0, y,Q= ... =4O = .- =0.

Knowing the solution of system (5.4), for example, knowing yo(x), “et us
determine the unknown function w(x) from the integral equation

Yo (x) = j ____u: s)ds
g vx—s

However, this is the Abel integral equation, and its solution is

(o(X]=—L[ y°(0_) +S HhO & ]
=Lyy  J Vit

Thus, for determination of w(x) it is necessary to solve an infinite system of
ordinary differential equations. In order to find the approximate solution w(x)
of equation (5.2) in the expression of the kernel in a series it is possible to
1imit ourselves to n terms. Then the corresponding system of ordinary differen—
tial equations will also contain n equations.
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Let us prove convergence of this method. Without limiting the generality of

the proof, let us set 2c=1 for simplicity (nonstationary movement of the pro-
file of unit length). Let w(x) be the solution of equation (5.2) for the
function f£3(x), contdinuous together with the derivative for Osxsxy, and wp(x)

be the solution of the corresponding approximate equation where we shall limit
ourselves to n terms in the expansion of the kernel in a series. Let us subtract
one equation from the other and denote the difference w-wp by ¥,. Then with
respect to ¥,(x) we arrive at the equation analogous to (5.2): ’

- - en(t) = SW (s)l/-l:}:-x—s

(en<x>=vr+—x0§§ () ot ). (5.5)

Let us show that if w, (x) is continuous together with the derivative, then e,(x)
- and e, (x) approach zero for n*», From the definition of en(k) and continuity
’ of w,(x) we have:

x

Lt
<M Y e, (

ko1 ) b

()i <),

However, the sum cppytc yotcoiqt. .. 1s the remainder of the converging numerical
series, that is, the sum approaches zero. Differentiating e,(x), we obtain

=V 3 ()

+
x
" (n*l)cnqj‘( s )" @ (5} ds
P I4+x Yi—s'

For differentiation of e,(x) we use the formula

- __d_[x‘/(ﬂ)ds _fo ff’(x)ds
dt )y x--s V'x Vi-s'

which is valid for any function f(s) continuous together with the derivative
in the segment O<s<x.

For proof of the fact that én(x)-PO for n*, it is sufficient to show that
(n+1)cp4170 for nre, for the remaining terms approach zero just as in the preced-
ing case. It is possible to show that

(1 4 ongy = L Cn=tt o
T Tamh (e
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Applying the Sterling formula, we finally find that (n+1)cn+l~l/2J;E for nre,
that is, it approaches zero for m*». In equation (5.5) let us replace x by t,
let us multiply the two sides times (x-t)~ /2dt and integrate within the limits
from 0 to x. Now if we vary the order of integration from the right and differ=
entiate, we obtain

X

Fo (%) = ¥ () & ;—gwn K (x, 5)ds,
1]

X

RECAGL __Ety __ _FR-E®
) =\ = K9 = o= — sy yT =y (5.6)
0
- 5 . _r—s_
Tk x—s

Here E, F are the total elliptic integrals of the first and second types.
Equation (5.6) is a second type Volterra integral equation with continuous kernel,
and for it the estimate

x

R ACIRTATIES %exp%gmsnds;

1K (x, 91 <K, .1 |

is valid. The value of én(x)+0 for n+=; therefore f,(x) also approaches zero
for n+o, and proceeding to the limit in the inequality (5.7), we find that
|w(x)=un (%) |40 for me,

Now let us proceed to the solution of the problem of incidence of a flat plate
of mass m on the surface of an ideal incompressible liquid. The horizontal
velocity component of the plate at the time of contact with the free surface
will be set equal to Vyp, and the vertical compoment, vg; the angle of the plate -
with the undisturbed level of the free surface will be considered small and

equal to B. The depth of submersion of the rear edge will be denoted by h(x).

Let us consider the plate quite long and its movement in the liquid will be con-

sidered until the upper edge is above the free surface. The problems of ricochet

of a plate from a free surface of the liquid and landing on the free surface will

be considered under the following assumptions: 1) horizontal component of the

plate velocity is constant; 2) the angle of the plate with the undisturbed -
level of the free surface does not change; 3) the plate is acted on by gravita-

tional force and the buoyancy of the nonsteady planing (hydrostatic forces

- are not considered, for their effect is insignificant).

In view of the constancy of the horizontal velocity component, as the independent
variable we shall take the path traveled by the plate from the time of contact

- with the free surface and replace the differentiation with respect to time by
differentiation with respect to path: d/dt+V,gd/dx.
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Under these assumptions, the movement of the plate in the vertical plane can
be described by the following system of integral differential equations:

o4 X — (5.8)
mVio—F—y(x)—mg. m(s)[/2+ :

x—=5

with the initial conditions

x=0, R(0)=0, H(0)=— Do

x0

The magnitude of the wetted surface of the plate 2c¢ is determined by integration
of the vertical velocity component of the liquid at the free surface in front of
the plate. From expression (5.1) let us determine the vertical velocity component
of the liquid on the { axis at some fixed point £* (0<c<E*, n=0). Converting

by means of the equality E*=s*-x-c to the stationary coordinate system, we find:

1
Y =1 =2 (5"

V(s*, x) == = [v,[(s‘-—x—-c)_

s‘

~Vm>1+%5m(s)@ds}

0< 2+ xLs). (5.9)

Let us expand the expressions Y2ctx-s and (s—s*)_1 in uniformly converging series
with respect to powers of s/(2c+x) and s/s*, let us multiply them and place the
product under the integral sign. Performing term-by~term integration which is
possible in view of the uniform convergence of the series, which is the product,
and considering that

‘S's"m(s)l x—sds .. — (!/n+l

(2L+,\)nl 2c+\ J")'

n=1223,...,

we obtain

X S 00
b (2¢ 42 —8) (x—35) _ (2c 4+ 2)/e _ x
j‘(l)(s) s —s° dS = - Ebk (ylH-l 25+X _(/k)_
0 =0
Bp=1,... b, =-2t2 p @13l
[} n s n—1 @l .

Substituting the value of the integral in expression (5.9) and performing the

integration, we obtain the amount of 1lift of the liquid ahead of the plate at
gsome fixed point s¥*:

R n(s*, x) = -Vl:-SV(s', 1)dt
0
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fet us find the magnitude of the wetted surface of the plate (the formation of
a wake in the vicinity of the leading edge 1is not considered). At the leading
edge of the plate s*=2ctx; consequently, the 1lift of the liquid is
X
1-|=—Vl—-SV(2c+x.t)dr. (5.10)
x
[}

On the other hand, the amount of 1lift of the liquid at the leading edge can be
expressed in terms of the wetted length of the plate

n=2p +h,
where h is the depth of submersion of the rear edge.

Equating the values of n found by two different methods, for the wetted surface
we obtain .
= —(n—h),
p

where n is calculated by the formula (5.10).

Analogously, knowing the values of the vertical and horizontal components of the
liquid velocity at the free surface we define the shape of the free surface after

the plate:
30 = g (Ul +36 Dl
n(s", ¥) = h(s") + Tl' YV[S‘ + E(s*, 1), 1] dr,
where
1
U =‘ To(s), 0<s<x,
0, s 0,

V(500 1) = (olle+ v —s0) =

1
ViEc+t—s)(t—s)
T

—V (e +1—s°)(1—so)]-——l—b§m(s)

V@ +t1—3)(x—53) ds}.

2n s— S

Here E(s*, x) is the shift of the liquid particle of the free surface with the
coordinate s* after the plate in the horizontal direction, n(s*, x) 1s the y-axis
of the same particle. The integral in the expression for the vertical velocity
is taken in the sense of the main value. The system of parameters of the problem,
namely Vyn, Vo g, my p, £, permits three dimensionless combinations

) \%
o= B, y:——_—_ﬁ"—_—’r—'
Vxo \/- m\7T
- g
(%)
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which also determine the nature of motion of the plate, Let us introduce the
dimensionless combinations

x_—_-;‘/ -'l‘ h=F‘/—’;’—l, v=t-foo. m=5:!V,o....
p

Now replacing the integral equation in the system (5.8) by the system of ordinary
differential equations (5.4), we arrive at the following system of equations
describing the motion of the plate (the bars over the dimensionless variables
will be omitted):

h':l’.
RT3\ L L NT SRR — _-._._._l_—]
¢ e B 0[6+20—9— = |-
t_(f.L — ) —=
Y™ i ‘ g T N+ 2057 }y"“"' (5.11)
+ sgpr—n (1 4 26) 4o}
‘ n=1238, ...,
E with the initial conditions
i
i X=0, h(0)=0, U(O):-—a, y1(0)=“.=yn(o)=“,.=0,
; where
i
i n 2PB—v) , 1 1 (2k—3
)-*_—, = —— o} — —_ ves T[T — -
o Y Vs ph Tt et g e
1 | 1 . (2k — N
6-: — — . . c——— -1
)/2c+x [yo+ 2y|+8y51...‘+ @R y.....J,
T T
01 4
’ [via ~ 2 :
0 et u(ll,/ - ‘_;\26(1)
NIA 12 175 14,35 % ~ he |1
-0 } 7;; : 7 =] i
0
_qu ! 2 3 4 N
)
Figure 1.12 Figure 1.13
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When solving the system (5.11) for the given values of o, B, Y two cases are
- possible: either o, B and y are such that ricochet of the plate from the free
surface of the liquid takes place or after landing on the water, completing
several oscillations, the motion goes into the planing regime (multiple deflec~
tions of the plate from the free surface are not considered). Let us present the
results of numerical integration of system (5.11) for the case a=0.2; g=0.1; y=6
(the angle of approach to the water is about 12°, the trim angle is 6°, v is
the dimensionless velocity). The calculations were performed for n=10 (with an
- {ncrease in the number of equations the results do not in practice change).

The dimensionless values of the depth of submersion of the rear edge of the plate
h(x), the vertical velocity v(x) and the distribution density of the vortexes are
const ructed in Figure 1.12 as a function of the dimensionless path traveled by

the plate. At the beginning of submersion the motion is close to self-similar
touchdown of the planing step with the given values of o, B and y. For x%3,

the y-axis of the tralling edge becomes positive, but ricochet still has not
occurred, and the motion continues above the undisturbed level of the free surface,
which takes place as a result of 1ifting of the level of the 1iquid surface in
front of the plate and corresponding to planing with so-called negative draft.

At subsequent points in time, the movement of the plate upward continues, and at
%35.25 ricochet occurs. The graphs of the magnitude of the wetted gurface of

the plate and the lift of the liquid at the leading edge are presented in Fig 1.13
as a function of the dimensionless path traveled by the plate from the time of
contact with the free surface of the liquid.

Figure 1.14

B
Q! - 0.1
T v g4 02
o 12 03 04
A 4 02 Puxow
T 2 (1) )
5 l ' | ot nuccupobanue
-2 i T3 4 5 6 ;;el
- Figure 1.15 Figure 1.16
Key:
1. Planing
2. Ricochet
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The family of curves representing the shape of the free surface for several
successive positions of the plate is presented in Figure 1.14. Figure 1.15

shows the results of touchdown of the planing step with conversion to planing

for a=0.2, B=0.1, y=4. From the graphs it follows that the fluctuations in depth
of submersion of the trailing edge h(x) and the vertical componment of the velocity
v(x) quickly damp, and the movement goes into the planing regime with negative
draft.

When investigating this class of problems, it is of interest to determine the
ricochet boundary, that is, the relation between a, 8, and y which on surfacing
at the time of a decrease in the magnitude of the wetted surface to zero gives a
vertical velocity equal to zero. Knowing the position of the ricochet boundary,
it is possible in each individual case, without solving the problem, to determine

- whether a smooth landing of the plate on the water with transition to planing
takes place or there will be ricochet.

For determination of the ricochet boundary, a series of calculations were made by
the numerical integration of system (5.11). The results of the calculatioms
" are presented in Figure 1.16 where a family of curves corresponding to various
angles of incidence of the plate are constructed in the plane (B, y) (the tangents
of the angle of incidence o=Vyg/vy are indicated on the curves).

The calculations show that the tendency toward ricochet increases with an increase
in the horizontal component of the velocity, with an increase in the angle of
incidence (within the framework of linearity) and with a decrease in weight of
the plate.

Penetration of a Compressible Liquid by Thin Bodies
§6. Statement of the Problem in Equations of Motion

We shall assume that the liquid is ideal, weightless, it occupies the lower half-
space, and it is initially in the state of rest.

By a thin three-dimensional body we mean a body in which the ratio of the dimen-
sions of the transverse cross section to the length § is small: &<<1l. For a
thin flat body we mean a body having small thickness by comparison with its
length and width.

If a thin body moves at a low angle of attack o~§, the disturbances which it

introduces into the initial state of the liquid will be on the order of § (at

individual singularities and even on lines, this condition can be violated).
- The body moving in a compressible medium causes a shock wave. For a thin body,
the intensity of the shock wave is on the order of § (by intensity we mean the
relative pressure or density gradient on the wave), and the variation in entropy,
as 1s known, is on the order of 63, that is, with a high degree of accuracy the
entropy over the entire flow field can be considered constant S=const. Let us
note that for such slightly compressible media as water, even in the case of
powerful shock waves the entropy varies insignificantly.

According to the Lagrange theorem in the liquid initially at rest, the vortexes
- can occur only as a result of viscosity, nonpotentialness of the force field
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and nonbarotropicity. By assumption the liquid is ideal, and the mass forces

are absent; therefore the only cause which in our case could lead to vortex

_ formation 1s the nonbarotropicity caused by passage of the shock waves. However,
as was noted above, on penetration by thin bodies the entropy of the liquid does
nct change and, consequently, its movement is potential.

Let us select the stationary cartesian coordination system x, y, z, directing the
0z axis inside the medium, and the Ox and Oy axes, along the undisturbed free sur-
face. Considering what has been stated, tha equations of motion can be written

- in the form

v I 1 d
7 - grad - = — - 8raap (6.1)

L  pa? divy =
= ~vgradp + patdivo =0, 6.2)

d -
p=p(p), a* =—;7, v =gradg.

From the first equation we have the Cauchy-Lagrange integral

(.22 .3
J plp) at 2

Pa

po is the initial pressure equal to the pressure on the free surface. Excluding
the continuity (6.2) of p and p from the equation, using (6.1) and (6.3), we
obtain the equations for the potential

a*A(p—-uT?;—QZ%:——Egrad%-= . (6.4)

As has already been noted, the velocity components are of no higher order than §.
Assuming that their first derivatives are of the same order, we see that the

last two terms of equation (6.4) are of a higher order of smallness than the first
two. Retaining only these main terms, we obtain the linearized equation

- 3 _ %9
- a*h9 = 0 (6.5)

- where it is necessary to take the speed of sound in the undisturbed liquid as a

with the assumed degree of accuracy. On the basis of the proposals that have been
made, the initial data are ¢=3¢/d3t=0.

Linearizing the Cauchy-Lagrange Integral, we obtain
- p=—P— (6.6)

where here and hereafter p denotes the difference between the true and the initial
pressure.

Let us return to the boundary conditions. During the process of motion, the free
surface varies, and its shape is unknown in advance. For determination of the
equation of the free surface z=£(x,y,t) we have the condition
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_ziz_aig_ af . af dx , 6% dy
dt 0z a ' oax dt T dy dt

S S I S I 6.7

Experience shows that on penetration of a liquid by thin bodies, the free surface
(especially in the initial stage) is deflected little from the wndisturbed .
level, that is, £~§. Assuming also that the slope of the free surface remains
small, from (6.7) we obtain

op

Tz (6. 8)

|

The condition (6.8) is satisfied for z={(x,y,t), but it is sufficient to consider
with the assumed degree of accuracy that it is satisfied for z=0. Condition
(6.8) 1is used for determining the form of the free surface £ if the potential is

- already known. In addition to the kinematic condition (6.8) on the free surface
2=£(x,y,t) the dynamic condition of equality of the pressure p=pp, that is,
2¢/3t=0, 1is satisfied or, considering the initial data, ¢=0. As a result of
smallness of £ the last condition can be brought down to the surface z=0.
Finally, for the potential when z=0 we obtain the condition

(0, x, 4 0 =0. (6.9)

The condition of impermeability is satisfied on the surface of the moving body

- 99 _
T Un» (6.10)
where v, is the projection of the velocity on the external normal to the gurface

of the body. Hereafter, the condition will be specified in each individual case.

Let us note that at the point of intersection of the surface of the body with the
free surface the boundary conditions (6.9) and (6.10) do not agree with each other
which means this point will be a singularity for the solution of the problem,

In the small vicinity of this point, a significant lift of the liquid takes place
by comparison with the undisturbed level.

The tip of the body will also be a singularity for the solution.

§7. Vertical Submersion of the Thin Solid of Revolution without an Angle of
Attack. Penetration by a Cone

The origin of the cylindrical system of coordinates 0zr6 will be selected at the
point of contact of the body with the liquid, and the time will be reckoned from
the contact time. The z—axis is directed along the axis of the body into the
liquid, and the r-axis, along the surface. The law of motion will be denoted by
H(t). The penetration of the body with velocity vg<a and vp>a is illustrated in
Figures 1.17, a and 1.17, b. For vertical submersion without an angle of attack,
the flow that arises is axisymmetric, that is, it satisfies the equation

P9 , o + 1 dp 1 &g 7.1

o2 ord r 9 @
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The initial conditions for the function ¢(z,r,t) are zero

w(z,r.0)=%'f-(2. r,0) =0,

the condition on the free surface z=0

9. r.H =0 (7.2)

The equation of the surface of the body is conveniently given in the form r=f(x)
where x is reckoned from the leading eédge inside the body $o that in the-
selected coordinate system we have

r= i[H(t)-—z], 0<Z<H(t).

_ v>a
r I_ ' r
e
i m
a L b

Figure 1.17
The boundary conditlon on the submerged part of the body has the form:

L AN HO =2, 0<e<H ().

On the rest of the 0z axis
e _
P =0,

Thus, equation (7.1) must be solved under the boundary conditions

i?;={ HOFHO—2], 0<z<H (), (7.3
- or 0, 2> H(f).

Condition (7.2) offers the possibility of continuing the function ¢ unevenly
into the halfspace z< 0:
- P(—z,rt)=—gr1).
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- Here the "reflected"body in the halfplane z<0 will have the equation

r=flHE) +2], —H®)<z<L0,
with the boundary condition

o

: Lo _[—HOF[HO+2] —H(t)<2<0, (7.4)
_ or 0, e —H(1).

The solution of the problem will be found in the form of the potential of the
delaying sources distributed along the z-axis with density q(z, t) [14],

a 5-” 96.1) g (7.5)

e =— 4n R

vhere R=vV(£-2)2+12, and t' is the "delay" time t'=t-R/A.

Expression (7.5) satisfies equation (7.1) for any quite smooth function q(z,t).

For satisfaction of the initial conditions it 1s necessary to set q=0 for t<0.

If we select the function q(z,t) so as to satisfy the boundary conditions (7.3)

and (7.4), then we automatically satisfy the condition (7.2). Thus, for determina-
tion of q(z,t) we obtain the integral equation

‘ _1L f’____ql%»w dt = 2 (7.6)
| 4n  or R T oo

where 1t is necessary to substitute the value of 3¢/3r from the boun.ary condi-
tions (7.3) and (7.4) in the righthand side. If the shape of the body f(x) and
the law of motion H(t) are given, the righthand side of the equation (7.6) is
known.

However, the law of motion 18 unknown. For determination of 1it, it is possible to
use Newton's law

mH ()= F,—F,

where m is the mass of the body, Fy is the given external force, F is the force
of resistance of the liquid which is defined by the formula
H#®
F=2n | fIHO—2A] H{H)—2] pdz
]
Therefore in the investigated case Newton's law is written in the form

. p”m TH () — 2] =L "?‘L(E_"'_)dg dz 7.7
mH(t)=Fo——2—S [f[H(t)—z]f[ =7 =\ = } .

0 ]
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For determination of two unknown functions q(z,t) and H(t) we have the system
of integrodifferential equations (7.6) and (7.7).

We shall consider that the law of motion H(t) is known; then it 1s necessary to -
solve the equation (7.6). Let us now present (7.5) in the form

“ult) .
” — »” s I_ "
o= — - [ 9lz.t) q(!.t)R gz.t) | 4@ t)R CALL) ]dE.

4n
- —Wi(f)

where ‘Yl and Y9 denote the integration limits (finite values for any t). The
first integral of this equation gives
: —:ﬁ-q(z, f){—21nr +In[p,—z+ V(@ —2F + 7 X
X[+ 2+ Vo 20 + .|
- If q(z,t) is differentiable, then the remaining integrals are bounded for r=0,
for, for example, according to the Lagrange theorem
‘I(E- t')—Q(Zn t')=q,[z+u.(€-—z), t'I(E—Z), 3
where J<o<1l and
q6.t)—qlz.t) - n ,
et | = altag—a.rl
Hence, it follows that for r+0, ¢ has the form

cp!m=-;74(z,.t) Inr+o(g), (7.8)

where o(q) denotes a value on the order of q, and

SO 173/ .
T +0(q)

L) (7.9)

o

This condition differs advantageously from the condition (7.6) in that it is local.
Comparing the last expression with the boundary conditions (7.3) and (7.4), we
obtain

WHOF[HO—21F [HO)—2], 0<z<H ),

' z .

As is obvious from (7.9), the intensity of the sources at the point z at the
time t with the error 0(63) will only be determined by the component of the
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normal velocity at this point at the time ¢t. Thus, the solution of the problem
will be

1 ° , ’ 7] '
¢=_?§_Eﬁ(t)f[ﬂ(t)—‘é]f (H()—¥)dt+

0
t3 | wAOmBO s arEO +y 8

The boundaries of the actual region of integration are determined from the condi-
- tion that at them the function under the integral sign vanishes. For the first

integral this will be at H(t')-£=0, and for the second, at H(t')+&=0 (let us

remenber that £(0)=0). Consequently, the integration limits are roots of the

equations
b= H |- V= L
§l=_[-1[t-.-;—]/T-( T r’]. (7.11)

in which t, z and r are the parameters, In the general case the region of
integration will consist of several individual pleces, but if the function H(t)
is monotonic, it is easy to see that in equations (7.11) there are only two roots
and the region of integration will consist of one continuous interval between
these groups. Geometrically, the roots of equations (7.11) denote the
coordinates of the points of intersection on the plane (&, t') of a semi-
hyperbola |

't Y[E—2) i 1 3

=t —=VE=2FFr (7.12)

with the curves £=H(t') and &=-H(t') which are the trajectory of the leading

edge and its mapping. The limits have a simple physical meaning: they separate
the sources, the disturbance of which has successfully reached the point (z, r) at
the time t from the rest. It 1s simplest to determine the region of integration
for movement of a body with constant velocity H(t)=vy. In this case the limits

£y and &1 are found from the quadratic equations:

§.=v.,[t—l— V(E.—z)'+r']. (7.13)
b= — o[- L VTR (7.16

If zZ+r2<a2t2, then for subsonic and suwersonic movement, each of these equations
has one root having the physical meaning

E-=7;LT[M‘2—%‘+ MV(%‘—Z)’—(M'—])r’], (7.15)
(7.16)

b= e [~ e 40 4 MY GFF A= =17,

Here M=vg/a.
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The expression for the potential in this case will be

q’="£“(%flﬁ(1)—-§]f’w(t —EldE +
_ (7.17)
0
Y 1 ! 1 oL -
+T§?fl”(i)+§lf [Ht') + B d&.

If zz+r2>a2t2, then in the case of subsonic movement equations (7.13) and (7.14)
do not have real roots, and ¢=0.

For vg>a equation (7.14) has no roots, and (7.13) can have two roots, one Or nome.
For the roots of equation (7.13) we now have

§I.2 =

m_HW“%&MWW~W—WhMﬂ. (7.18)

where both roots are positive and the larger one E%+corres onds to the "+" sign.
Hence, it follows that for (vot—z)2>(M -1)r and 2 rzgazt the potential ¢
has the expression:

§

g=—2 | LIHE)—UFHO— S (7.19)
%

The condition of multiplicity of roots of (7.18) has the form

(M2—=1)r* = (vt —2)%

This is the equation of the Mach cone with half-apex angle a-—ardg-zﬁfr~
On the Mach cone ¢=0,

As an example let us consider submersion with constant velocity of a thin cone
with half-apex angle Y.

1. For subsonic movement vp<a, from (7.17) for excess pressure, we obtain

p=3 o || el | e ) @200

where &9, 51 are defined by (7.15) and (7.16).

For ) we have 42 .
at —2

= Yy ————, — ;=1
Bt~

and from (7.20) for the pressure near the surface of the body we obtain
@+ VIEPGi—2)
i --§)
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On the surface of a moving cone tuy(vot—z) the excess pressure is

! +VZ2+yiwg—zpp | 4z
p=—pviy?in —_ 2 1N ———
- 2 PYY A= = 2 puly? In ey (7.21)
for the force of resistance we obtain
vt
'y 1
F= 2ny’j (vot — 2) pdz = mpudyst® In pt (7.22)

0
Formulas (7.21) and (7.22) show that for subsonic penetration by a thin cone the
_ pressure . distribution along the generatrix and the force of resistance do not
- depend on the M number and coincide with the corresponding values on penetration
of an incompressible liquid.

If we considered the quadratic term in the Cauchy-Lagrange equation '%'({;1)2
»
then instead of formula (7.21) we would obtain

4 _1] (7.23)

1
= — pudy? | In ————
P 9 P 07 [ n‘v’(vg‘!_z.)

and instead of (7.22)

1 1
= 3 —_—
F = npudy"t (ln 2 > )
As is obvious, consideration of the quadratic term leads to a decrease in the
resistance.

2. For supersonic penetration, the pressure distribution in the section of the
surface of the cone z<at is expressed by the same formula (7.21). For the
section at<z<vgt it is necessary to use the formula (7.19); for r+0 the value of
the limits from (7.18):

z—at z4at
— — = U,
=0 G—a ) O yta

and the pressure on the body is

4
. _l_ 2092 .__L___l_ 3 4 (7.24)
P J VR -z i V-1

This value is exactly equal to the pressuve on the cone during stationary move-
ment i{n an unbounded medium., This 1is obvious, for the free surface influences
only the section of the cone which 18 inside the sphere z24+1r2<a%t2,

For the force of resistance we obtain
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F = apuiyt [[S(vot—z)ln —La] -+
0

¥ (o — 2)

'K 3

i 4 oM — | 4
t _ ]

“ (Ut —2)In e 5 dz]} = npviytt [[——2 A In 7

——ln—l%—21n(M+ 1)+‘M—2;,‘l1n(w_1)] +

M1t 4 ]= ” :<u_ Lo
+[ 2 n?’(M’—l)] mpupytt (In o +In e )

(7.25)

Retaining the quadratic term in the Cauchy-Lagrange integral, we would obtain
the previous formula (7.23) for O<z<at; for at<z<vgt

= e (in 4 1)
p= - oy (In vor—n V)
and 1 aM 1
F = npth t'(l d 1
ooy (I g 10 T 2)'

For M=1, the value of 4M/ (14M)2=1 and with an increase in the Mach number, it
decreases; therefore the coefficient of the force of resistance of the cone

N C=—2£—=22(1n-1_'[n_ﬂ__
e S (1+M)*)

decreases with an increase in the M number. For M=1 the formula (7.25) coincides
with (7.22).

§8. Inclined Penetration by a Thin Body at an Angle of Attack. Inclined
- Penetration by Cone

Let us consider the inclined entry of a sharp thin body into a compressible
liquid halfspace at an angle 8 to the free surface (the angle between the initial
- velocity and the horizontal surface) (Figure 1.18) [151.

Let us select the origin 0] of the stationary system of coordinates at the point
of contact of the body with the liquid, and let us direct the 03z] axis at an
angle 6 into the liquid. The law of motion of the body along the zj axis will
be denoted by z3=H(t). We shall consider that in addition to the movement along
the 0yz; axie {the basic movement) the body undergoes small transverse and rota-
tional motions. For simplicity we shall assume that the transverse and rota-
tional motions take place in the same plane, and we shall select it at the
coordinate plane 0jzjy;. The Ox1 axis is located on the free surface and supple-
ments the coordinate system to the right.
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Figure 1.18

The law of transverse movements of the leading edge of the body will be denoted
y1=A(t), and the angle between the axis of the body and the 031z7 axls, in terms

- of a(t). Within the framework of the linearized theory, the values of a(t),
A(t) and their derivatives must be on the order of §.

The formulation of the boundary condition on the body in the system 01z1y1x]
is inconvenient, for during the process of motion the axis of the body does not
coincide with the Olzl axis. Therefore let us also introduce the moving

- coordinate system Ozyx, directing the Oz axis along the axis of the body and
selecting the origin at the point of intersection of the axis of the body with
the free surface (Figure 1.18), These systems are related by the expressions

z=2zcosa+ (y,—M + Htga)sinae =z, -+ ayy;
- y=—2zsina +(y,—A+Htga)cosa = (H—2z)a + y, —a; (8.1)
X =x,.

Now in equation (6.5) which is valid for the stationary system 01z3yjx], let us
proceed to the moving system Ozyx. Using (8.1), we obtain

e _ e
ot ot
ﬂ’. =ﬂ -+ 2&@.{_-6’_@0}'
ot oyt dyoz oz
P9 _ M 2o i bas
—_— =L -2 a4} ,
a2 oyt dydz + d22

that is, with accuracy to values of higher order

Fdp , g
i - 2 3
ax? o o o« 9y
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Then, denoting the derivative with respect to t in the Oxyz system in terms of
3'/3t, we have

- dp '@ e 2V 4 Ho—A 9% (y.q).
_a:‘='TaT+'5y"[(H z)a + Ho— M+ —-(4:9)

However, since by assumption the velocity components are small, with the adopted
degree of accuracy

o _ 99
it ot
and analogously
Jo _Pe,
ar on (8.2)

Thus, in the coordinate system Oxyz, the equation (6.5) retains its form., From
(8.2) it follows that the linearized Cauchy-Lagrange integral also remains
invariant.

In the Ozyx system, the law of motion along the z axis of the leading edge remains
as before z=H(t), and the equation of the surface of the body will be r=f[H(t)-2].
However, now the transport velocity of the system itself is superposed on the
velocity of the surface with respect to the Ozyx system. For components of the
transport velocity from (8.1), we obtain the expressions:

by 0: v, = (2— H)a— Hu -}, v, = —ya.

Let us introduce the polar system (r, 6) into the Oyx plane, reckoning the

angle © from the positive y-axis. In the adopted approximation, the normal to
the body coincides with r, and the projection of the relative velocity of the
surface points on the normal is H£'[H(t)-z]. The boundary condition on the body
will have the form:

-%(f—: Hf’ Il-l(t)_—z]'IT‘I"In = Hf’ [H(t)——z] +
+ |(z— Hya— Ha 4 4] cosb. 8.3

As for the remaining conditions, they remain as before: the initial conditions

are 0, the condition on the free surface ¢=0 is also -satisfied on the undisturbed
- level, that is, for y=ztgé. On the basis of linearity we shall find the solution

of the problem in the form ¢=¢1+¢2, where ¢; on the body satisfies the condition

B~ AP O —7, 0<z<H({D), (8.5)
and ¢3, the condition
%‘i’-:[(z—ﬂ)d——H&%—i}use.'0<z<H(t). (.6)
. The function ¢; corresponds to the inclined penetration of a body moving with
] the velocity f(t) along its axis, The function ¢y corresponds to an asymmetric
60
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flow field as a result of the presence of an instantaneous angle of attack

(the term ~Hacos 0), the transverse translational motion (the term Acosf) and

as a result of rotational velocities with angular velocity & (the term (z-H)&cos®
under the condition (8.6)). Thus, the general problem of penetration is divided
into a number of partial problems.

1. Let us consider the problem for determining ¢;. Although the condition on
the body (8.5) coincides with the analogous condition of §7, the flow in the

- investigated case will not be axisymmetric as-a result of asymmetric arrangement
of the body with respect to the free boundary. Let us continue the function ¢3
to the upper halfspace so that at the symmetric points with respect to the free
surface 1t will assume values opposite in sign. With this continuation the
0z and Oy axes mirror the free surface. The mapped system will be denoted OzpyQxg-
The relation between the systems is as follows:

2, =2z cos 28 + y sin 29,
Yo =2 8in 26 — y cos 28,
X=X, 1} =X+ y3 = r?sin® 8 - (2 sin 20 — r cos 0 cos 28)2.

8.7

The "mapped” body will have the equation ro=f[H(t)-zg], O<zp<H(t).

Let us distribute the sources with the intensity q(z,t) along the axis of the
body 0<z<H(t) and intensity qg(zg, t) with respect to the axis of the "mapped"
body 0<zp<H(t). From expression (7.9) which is valid also in this case, we find

- gz, ) =2Hf[H(t) —2]f [H(t)—2], 0<2<H (1)
o (29, 2) == _Q“Hf [H(t)—2z] F [H(¢) —z], 02 <H(Y), (8.8)

- on the rest of the z axis and z,, we set q=q0=0. For the potential ¢; we obtain

7]
»

) ‘Px=—_1‘j

5 :
. 1 R U JE S A &
A Gl Lo Bl Gt YL (8.9)
0 0

where
R=V@E—20'+r, R = VE—2)? + e

and the Integration limits are found from the equations:

L=H (z-—% Vie—%r+m), &=H (‘—‘;l; V(§°—§1)1+r§). (8.10)

Formula (8.9) is suitable over the entire region for subsonic movement and inside
the. sphere zz+y2+x25a2t2 for supersonic movement. Outside the sphere
22+y2+x2>32t2 for supersonic movement, the effect of the free boundary is not felt,
and the formula (7.19) is valid there. From (8.8) it follows that
qp(zgst)=-q(zg,t), and from (8.10) it follows that £1(20,90)=E2(2z,r). Therefore
it is possible to write (8.9) in the form
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P = ‘P; (2,1, 1) —q).l (20, T'o 1,
(8.11)

where 9 r, t)=-]};'§:';}'q(§'t"’l—R)d§'
0

This formula makes it possible to draw some qualitative conclusions: namely,
since the potential everywhere is on the order of o(q) ~0(62), except the location
of the sources where the estimate (7.8) is valid for it, in the vicinity of the
body r+0, z>0 we have

- 9} (20, 7q. 1) = @} (zcos 28, zsin 28, ) 4 0(8%),

where the value of 0(83) depends on 6. Inasmuch as the value of ¢% (z,r,t) in
general does not depend on 6, it follows that the-effect of the asymmetry of the
streamlined flow on the pressure distribution with respect to the body is on the
order of 0(§3). This asymmetry of the pressure causes the appearance of a side
force and a moment with a value of 0(8%4). The axial force, just as for vertical

- penetration, will be on the order of 0(642ns), and 1t will depend on the angle 6.
Thus, both forces and the moment with inclined penetration without an angle of
attack turn out to be in practice of the same order. As was demonstrated below,
the side force and the moment as a result of the angle 8 are an order less than
the analogous values as a result of the angle o, Therefore the side force and the
moment as a result of 6 can be neglected and we can limit ourselves to the calcula-
tion only of the force of resistance.

As an example, let us consider the motion of a cone with constant velocity
H=vg and the half-apex angle y. We have

q = 2nYy? (vt — 2),

b= oy M=o+ MY = =P = D)7,

T Mz vt + MY (of — 2 — (=T 73],

Using expression (3.9), for the pressure we obtain the formula:

. tl
L aq,,:_xv,,[- @ a ]=
P = P ot 9 oYY bs VE—22+1° 6( V(E—'zo)"'l" fg (8. 12)
L] VEFA+) V B+ri—20  fM—1)fog— Mz
= 5 Py " b (M— 1)+ of — Mz
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In the vicinity of the body 0

- at 2 _ 1 . _
k=1, Py b= [M22 cos 28 — vyt +

+ MV uf—zcos 20 — (MF—1) 2 sin 28].

Substituting &3, & and the equation of the body r=y(vgt-z) in (8.12), we obtain
the pressure on the body, and by integration of the pressure, the force F. If
8 is close to 7/2, then expanding £ in the vicinity of 8=7/2 in a series, we
ohtain on the body:
1 3
pi= eyt in [ — x
Y (v — 2
x 1—cos29 [1 z (1 4 cos 29) o (M? — 1) 235in3 29 }
o2 d+2 4 (vt + 2 )

This pressure differs from its value for vertical entry (7.21) by the amount Ap:

AP=—£—pvgy2 [ln 1—cos29 +‘“+°°520)+ M —1 z’sin'?&]

2 (vt + 2) 4 (vt +2p

The axial force of resistance by comparison with the value for 8=n/2 changes by
an amount AF which for subsonic movement is equal to

1 | —cos20 , /3 T
AF-_-.npugwﬂ[_Q-ln_—Q—-T(T—2lnz)(l - cos 20) -+

LM (i——san) sinQﬁ], (8.13)
’ 4 2
for supersonic movement,
_ o[ 2M—1 1 —cos2f aM—1

AF = mprpyt [ oM In 2 - ( 2M?
1+M M2— ] 6.M — 1

—21n )l'cosQ\‘} 4———( '
)T ) 1 oM (8.14)

2 14+ M\ .,

+ W 5in m )sm 26].

2, Definition of ¢,. The asymmetric current field caused by the presence of the
angle a(t) and the transverse displacements A(t) in the cylindrical system Ozr@
gatisfies the equation

_@_’&__*_0’@,_1_ 1 dp, . 1 d%qy 1 P, (8.15)
-3 '

ar? roor o ogeY gt ap

The boundary condltion (8.6) states that the solution to the problem can be
found 1n the form ¢2-°(z, r)cost, where & satisfies the equation
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[ 'y 1 6@ 1 1 Q@

AT NSt L _ A ov

d23 N v L r ar ' M ®= o o’ (8.16)
_ the condition ¢=0 at the free boundary and the condition
: D |~ Ha+i+ - H)d|=C (e ) (8.17

on the surface of the body.

The general form of the solution of the equation (8.16) is easily written, giving
attention to the following fact: if ¢(z,r) satisfies equation (7.1), then
¢=3¢/dr satisfies equation (8.16), which is proved with the help of differentia-
tion. Thus, the solution to equation (8.16) is the function
1 0 c 1 ’ :8.18)
- =g ) (8.
® 4n Or 3 R 76 1)
where it is necessary to select q so as to satisfy the conditions (8.17) on the
- body and the condition on the free surface. From the condition on the body we
have the integral differential equation for q:
1 1

- — 2 [ pe @ =Ce 0. 0<z<HY,

which we shall solve approximately.

Just as when obtaining formula (7.8), we find that for r»0, ¢ and 3%/3r are
asymptotically equal:

ﬂ___‘_q_(zr;i+o(i), (8.19)

from which in the segment 0<z<H(t) we obtain

g(z, 1) = —2aft [H (1) — 2] C (2, 1). (8.20)
For z>H(t) we set q=0.
Trom (8.19) and (8.20) it follows that q is on the order of 0(62(}) and with the
help of the asymptotic formula (8.19) it is defined with an accuracy 0(83C).
In ovder to satisfy the condition on the [ree boundary, just as before, it is

necessary to mirror map the body and place the sources on the corresponding
segment of the axis of the "reflected body":

0o (2o, 1) = 201 [H () — 2] C (20, 1).
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The solution to the problem will be
D - 01 T lD,.

)
R S o 4
SR S

0, = _-l_ij-;_aqo (g, t— GLR°> dt,

where £y and £ are determined from (8.10). However, in the vicinity of the
body ¢1=(1/21r)%q/r)+o(620) and <I>2=o(GZC); therefore with an accuracy to the
terms o(§2C) the potential ¢ near the surface of the body will be
@p = —= [2[H (t) — 2] [Ha— A — (2 — H) @] cos 6.
r
As is obvious, ¢7 does not depend on the compressibility of the liquid or on the

presence of the free surface. Additional pressure on the body caused by trans~
verse and rotational motion is

P, = ——p%’?— —p {211’[' [H()—2] [Ha — X — (z — H)a] +

le(f)—Zl—;T[Ha-—K—(z——H)d] cos 6. (8.21)

For the axial force of resistance Fy, the size and force Fy anrd the moment L
with respect to the tip we obtain:

F, =0,
H ) 2n
F,=— J‘ f[H(t)—-z]dzbs p, cos 0d6 =
0
= p{(H?a — Hh =- HHa)S - (Ha + Ha — 1) Q, + aQ,)}. (8.22)

H() 2n
L= — J‘ [H(t)—z]f[H(t)-—z]sz p, cos 0d6 —
0 0
=p{HA(Ha— 4 + Ha)S —H (Hu—1)Q, 4- (Hu —1Q, --aQ.},

where

Hi)
S=aft{H{)], Q = § f? (§) g8, (8.23)
H() H(ll
Q=n [ POE Q== | PrEE
0 6
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Thus, the normal force and moment caused by the presence of transverse and
rotational motion of the body do not depend on the compressibility of the medium,
the presence of a free surface, and they are completely determined by the
geometry of the body and its law of motion.

In the special case the motion of the cone at a constant angle o, vg=const,
- A=0 will be obtained

F” = upvf,tzy’a; L = % npvgt&y!a.

so that the center of pressure of the submerged part is at a distance
z*=(2/3)v0t from the apex of the -cone.

§9. Penetration of ‘a Compressible Liquid by Thin Flat Bodies. Penetration
by a Wedge

Let us consider the vertical submersion of a thin profile (Figure 1.19). The
stationary carftesian system will be bound to the point of contact, the Oz axis
will be directed vertically downward, the Oy axis, along the free boundary.
The law of subversion of the tip will be denoted by z=H(t), the equations of
the right and left generatrices of the profile, by y=f[H(t)-z] and

y=g[H(t)~z] [14, 15]. The potential satisfies the equation

Pe |, d¢ 1 & 9.1)
' oy a o

the condition ¢=0 or che free boundary z=0 and the boundary condition

ﬂ__ : , _ _?2'____ d ’ - 9.2)
e =Hof =2 -=Hbe (Ht)—2] (

'respectively on the right and left generatrices of the profile,

Figure 1.19

In the two-dimensional case the potential in the vicinitv of y=0 is limited to
the opposite of tho gpatial case, where for r»0 it has the logazithmic
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singularity (7.8), and therefore the boundary conditions (9.2) can be taken
from the profile surface to the plane y=0.

As usual, we satisfy the condition on the free boundary by continuing ¢ unevenly
to the halfspace z<0.

Let us represent the right and left generatrices of the profile in the form

Yo="F+F Ya=fy—Fu 9.3)
where f,—.:";g,f,:f';g.
Then on the basis of linearity, the problem can be broken down into two
problems ¢=¢;+¢y, where ¢1 corresponds to flow around a symmetric profile
y=+f1(z) with the boundary condition
a .
—I o+ Hf\ [H (1) —2) 9.4)

o
for y=+0 and O<z<H(t), and ¢§ corresponds to streamline flow around a distorted
i

body of 0 thickness (the midIine of the initial profile) with the equation
y=f5(z) and the boundary condition

%L:Hfélﬁ(t)—z]. y=+0, 0<zHO. (9.5)

From the conditions (9.4) and (9.5) it follows that ¢; is even, and ¢ is odd
with respect to y; therefore it is sufficient to find these functions for
y30.

1. Penetration by a symmetric profile. From the property of evenmess of ¢; it
follows that 3¢,/3y=0 in the segment of the z-axis not occupied by the profile,
z>H(t). Using %‘he continuation of ¢1 to the halfplane z<0, we find that
3¢1/3y is known on the entire axis y=0:

HORIHWO —2], 0<z<H({),

—HWF[H® +2], —H()<2<L0,
0, lz| > H(f).

o

dy

According to the theory of the delaying potential the solution of the investi-
gated problem is given by the formula

wly )= —%.ﬁ ;7? 0.7 Va (‘_T)dﬁdr 9.6)

- —

where S is the region of the plane (£, 1) in which the expression under the
square root sign is positive, and 1>0. This region is the interior included
between the hyperbola

et LY
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and the trajectory of the leading edge of the profile &=H(t) and its mirror
mapping E=-H(t).

Being given the law of motion H(t), by formula (9.6) it is possible to calculate
¢1, and then the pressure p=-p3¢/3t and the remaining characteristics. Let us
present some results for the wedge with a half-apex angle y [14] moving with
constant velocity vg. For subsonic motion vg<a the pressure on the wedge (the
y-axis=0) is

2 — R
p= PRY | MyT—E+ty T M E=2 9.7
R W T— M MYT=B—tyT=—m at

For the force of resistance on the wedge we have
- l"f Us 3 .
F=2Yj Pd2=-—-—4'lv———-ln(l+l/l——M"), (9-8)
P aY1=—m

Completing the limiting transition for a’w, we obtain the pressure distribution
andthe force of resistance on penetration into an incompressible liquid:

z

2 14—
PUp Y

In Uf

2

| ——

2
F= % pUs v In 2,

which corresponds to formula (2.10).

The pressurc and the force of resistance for sonic penetration will be found by
the limiting transition for M+]

4
F= Tpvgy’t.

For supersonic motion on a section of the wedge O<z<at subjected to the effect
of the free boundary, the pressure is

203y oy |

nym—1

In the segment at<z<vgt where the effect of the free boundary is not filled,
the pressure is constant
PRy

- p=—}7‘m,—-"j‘r~ (9.10)
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The force of resistance in the sections 0<z<at and at<z<vgt, respectively, is

F1=-i:;-gwi—l t[u(#—1)+2arcthM’-—_“l], (9.11)
nynt—
F,=_VM2”—1iwrt(1-—‘7) (9.12)

and the total force of resistance to penetration by the wedge is expressed by
the formula
Fo Ry

= tarctg Y Mi—1, (9.13)

Let us also note that in the section of the wedge O<z<at for subsonic and super-
sonic motion the pressure is expressed by different formulas (9.7) and (9.9) and
depends on the M number at the same time as on penetration by the cone in the
corresponding section of the generatrix the pressure does not depend on the

M number.

2. PTenetration cof anAsymmetric Profile. For the function ¢ the boundary con-
dition 1s known in the region occupied by the body O<z<H(t) and i1ts reflection
~H(t)<z<0. If the motion is supersonic, then disturbance ahead of the body is
absent and, consequently, 3¢2/3y=0 for [z|>H(t), y=0. 1In this case 3¢;/dy

is known on the entire axis y=0, and the formula (9.6) again gives the effective
solution.

For subsonic motion the disturbance outside the circle z2+yZ=a2t2? and, conse-
quently, 8¢2/8y=0 for |z|>at, y=0. However, in the segments H(t)<z<at,
-at<z<H(t) the value of 8¢2/3y is unknown, for on the basis of unevenness of ¢y
in this section ¢2=0. Therefore, before using formula (9.6), it is necessary to
determine 3¢9/3y in the indicated section from the condition ¢2=0. From (9.6)
it follows that for determination of 8¢2/3y in the region H(t)<z<at, an integral
equation is obtained. Solving this equation with respect to formula (9.6), we
obtain the solution of the initial problem.

Let, for example, a plate be submerged with constant velocity vp>a and angle

of attack a=const. Then the pressure on the windward side of the plate will be
expressed by the formulas (9.9) and (9.10). On the leeward side, on the basis

of unevenness, the pressure will be expressed by the same formula, but with a
minus sign. Hence, for the force of resistance we obtaln the previous expressions
(9.11)~(9.13). TFor the lateral force and moment with respect to the tip from

" the sections 0<z<at and at<z<vgt we obtain: :

Yla_ﬁ‘.'_g_v__g ln(L - 1) 4 QarctgV/ M =1/,
Yy W —1 M
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20031{ 1 B ter——
L= e {2 gt e — ]} tg M:—1 +
! Y M—1 [ ( M ) - 2are V !

n 21— ———-_ 7
+ oo M1 MV M ”J'
2003 ¥ i
Y, =————— ] — —
: y=1 ( M)'
2005 ¥1* L1
L = ———————— — — ——— 2
2T ym=1 [1 M oM ™ 1)]'

The total lateral force and its moment acting on the plate are

dpoly —_
Y=o farctg/ M —1
T gV .
200} y — e
L=-—°——zz(2at Mz—l_i__M;'_).
aym—1 rcgl/ 2 M

The pressure center is located at a distance from the leading edge of the plate

VM —1
“ A ————————————— .
b= (1 4 Marctgy Mi—1 /

For Mre, 2=(1/2)vyt, that is, the pressure center is in the middle of the sub-
- merged part of the plate. For M»1l the pressure center is at the following
distance from the leading edge of the plate:

[ = vyt (1 - %) = 0,21460,¢.

Tt must be noted that the position of the center of pressure of the plate depends
on the M-number at the same time as for a coné with any M the pressure center is
at a distance of 2/3 of the submerged part.

Penetration of a Compressible Liquid by Blunt Bodies

§10. Penetration of a Compressible Liquid by a Slightly Distorted Outline

Let a cylindrical body make contact with the free surface of a compressible
liquid at rest at the time t=0 (Figure 1.20).

The generatrices of the cylinder are parallel to the surface of the undisturbed
- liquid occupying the lower halfspace, and its velocity vg at the time of impact

is perpendicular to the surface of the liquid. In this statement the movement
- of the liquid will be plane parallel, and the parameters of motion will depend
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on the cartesian coordinates Xg¥g and the time t. The origin of the coordinates

_ is selected on the free surface at the point of encounter of the body with the
surface of the liquid. The Oxy axis is directed to the right with respect to the
free surface, the Oyg axis into the liquid, downward. It is proposed that the
velocity vg 1s much less than the speed of sound a in the liquid: vp/a<<1.
During the process of penetration, the rate of expansion of the boundary of the
contact area of the investigated blunt outline in the plane xyygy is on the order
of V=vp/tgB, where B is the angle of inclination of the outline to the Oxy axis.
If V is greater than the speed of sound in the liquid, the body acts on the
liquid with respect to the surface which expands with supersonic velocity. As
was demonstrated below, the compressibility must Ye considered also for high
subsonic values of the velocity V. The condition vp/a<<l and the assumption that
V/a is on the order of one can be satisfied if B<<l. Considering insignificant
variation of the liquid density, by comparisox with the initial density, it is
possible to linearize the Euler equations of motion. As a result, for the veloc-
ity potential ¢(xy, yp, t), the velocity components vy, y, and pressure p in the
liquid we obtain a wave equation. Let us write it for the velocity potential ¢
[16]: _ —

do__ 1 e .
T T (10.1)

9
d,\g

The pressure is determined from the linearized Cauchy-Lagrange integral
=—p2 (10.2)
ct

The restrictions placed above permit linearization of the boundary conditions

- also. The boundary conditions are carried over to the yp=0 axis. Since on the
free surface outside the contact area with the liquid the pressure during the
entire time of motion is constant and equal to pg, -from (10.2) it follows that
on this part of the liquid boundary ¢(xp, Yo» t)=0. As a result, we obtain the
following initial and boundary conditions:

> 3 (10.3)
t=0. Q== 0, —Z-%=O;
>0, y,=0, _:;/‘% =1y, in segment L;
- t>0. yn=0, CP=0 in segment L, (10.43

where vy 1s the component of the penetration rate of the body with respect to the
yo axis. It will be a function of xp, t for an elastic body and a function of
only time t for a solid state. L is the projection of the wetted surface of the
body on the Oxg axis, L' is the entire 0%y axis with the exception of the L part.
If we add the equations describing the motion and deformation of the penetrating
body to equations (10.1)-(10.4), we obtain a closed system for determining the
motion as a whole.

Let a thin slightly bent wing of finite span move at a low local angle of attack 8
with supersonic velocity U. The origin of the moving coordinate system 0x1yj2j
bound to the moving wing will be taken at the forward point of the wing; the

0z, axis will be directed opposite to the direction of the flight speed U,
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the Oxq axis will be perpendicular to 0z in the plame of the wing, Oy will be
: \perpendicular to the Oxjzy plane. In the moving coordinate system the motion
of the liquid will be a steady state. In the linearized situation the velocity

potential ¢l(x1, Y10 zl) satisfies the wave equation [17]:

- 5% &
: ";;x + °a;:- = p? 00;?. (10.5)
where u2=U2/a2—l, U/a>l. The boundary conditions of this problem will be
Hn=0, ZT": =UB (%, z) in the section Lj;
h=0, o (x, y)=0 in the section L' (10.6)

a
Zl=0, ‘Pl=7zq"'= s
1

where L1 is the projection of the wing on the plane y;=0, L'l

1s the rest of the

plane y;=0. Let us note that the vortex sheet behind the body is not comsidered,

that is, the wing is incident in the direction of the zj axis.

From a compari-

son of equations (10.5) and (10.6) with equations (10.1), (10.3) and (10.4) it

is obvious that for
PG KX Y, 2 -

2 1 f
o, Ll Li-L’,

Figure 1.20

(10.7)

The problem of supersonic movement of a slightly bent wing is identical to the
problem of penetration of a compressible liquid halfspace by a slightly dis-
torted outline. Consequently, the solution of any specific problem of penetra-
- tion can be obtained from the solution of a corresponding problem of supersonic
movement of the wing. The velocity potential of the disturbed movement of a
gas during supersonic movement of a thin wing of finite span is represented in

the form [17]:

L 9, (€1 0 dEuds
@ (X1, Yy 2y) = - \g u, \wt (N .
T Ve u = It + 4
where
o0
Py, (xp Zl) = —gzl:— , R
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Using the analogy of (10.7) for the velocity potential of disturbed motion of
the liquid in the penetration problem, we obtain:

9y, &, ) dids

Bl v == =
‘P( (] Yo n § ?/u’lt—t)'—(xo—-i)’—yé

6

Bl 0= 3y, o'

where o is the part of the plane £, T cut off by the hyperbola
ar=at—Vm-

Let us consider a blunt rigid wedge with apex angle 2y which moves in the direc-
tion of the Oyg axis with constant velocity vp (Figure 1.21).

_ Figure 1.21

Let penetration of the liquid by the wedge begin at the time t=0. For the wedge
boundary conditions (10.4) are written in the form

o .t o, ctg (2y = B)t < Xg < UpctEg Bt
Yo
, LBy (10.8
;;)(xov g, &) =0, Uodgﬁ‘t<xov xu<"odg(2v UNE )

The speeds of the points of intersection of the face of the wedge with the free
surface right and left will be denoted, respectively, by V; and Vy. It is
obvious that

V,=v,ctgf, Vo = v,ctg (2y + B). (10.9)
Let us denote

M =Vya, M,=V,a. (10.10)

These Mach numbers will be called supersonic and subsonic depending on whether
they are greater or less than one. Three cases can occur:

a) Both Mach numbers are greater than one,

b) One of the Mach numbers is greater than one and the other ig less than one,
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c) Both Mach numbers are less than one.

The problem of penetration of the wedge as a constant velocity, as has already

been noted, does not contain the characteristic linear dimension, and it is

gelf-similar. In accordance with §1 of this chapter let us introduce the new
- values of x, y, ¢ by the formulas:

X, Y, o ‘ 2
x=-al£-, y=_;%., @ (X, Yo 1) = a@(x, y). (10.11)

In these coordinates the pressure and any velocity component of the liquid satisfy
the equation (1.40). Let us write it for the component Vyi

—x) P 9py Py B g O g, % (10.12)
1=+ ax? 2xy O0xdy +=4) ay? 2 ax %y dy =0.

The equation (10.12) for x24y2<1 is of the elliptic type. “By the Chaplygin
substitution (1.45) in this region it becomes the Laplace equation (1.48)

L (el g Py (10.13)
eae< ae)+ae' =0

Thus, the velocity components vy, v, and the pressure p in the plane ¢, 6 can
be considered as a real part of somg analytical function in the complex plane
T=c¢e~’, For example, according to (1.49), vy can be represented as the real
part of the function £(7):

E(1) =v,(e, 0) +if(e, 0). (10.14)

Here the differentials of the velocity components and the imaginary part of the
function (10.14) turn out to be related by the expressions (1.53) and (1.54):

_ N—g (10.15)
dv, = ——— <xydv”-i-—1 e df).

1 ] —e?
do, = ——— (rydo, — =% df). (10.16)

At points of the Ox and Oy axes, the first terms in the righthand side of
formula (10.15) obviously disappear. This greatly facilitates the solution of
the specific problems.

For supersonic motion of a delta wing, if the coordinate axes are selected so

that the equation (10.5) exists, and the origin of the coordinates will be at

the apex of the wing, the movement of the liquid that arises will be conical

[16]. This means that the velocity components will be functions of the ratios
. n=%, (10.17)

Equation (10.5) will be satisfied by any velocity component of the liquid and
also the pressure in it. If in equation (10.5) we proceed to the new coordinates
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£, n and then use the substitution of variables (the Chaplygin conversion):

£5 . w2 2e
r = 2 -+ 2 mr e— —

then in the plane €, 8 we obtain theLaplace equation (10.13) for the region
ingide the circle.

If one of the velocity components is defined inside the circle by the method of
analytical representation (10.14), the other two components are determined by
the quadrature using the expressions analogous to (10.15), (10,.16) [16, 18].

Thus, the solution of the problem of penetration by a wedge and supersonic
movement of a delta wing in the elliptic region are reduced to the same boundary
problem.

Lot us proceed with the solution of the problem of penetration of a compressible
l{quid haltspace by a blunt wedge for the above-indicated three possible combina-
tions of Mach numbers M; and Mj.

§11. Penetration of a Compressible Liquid by a Blunt Wedge

a) Both Mach Numbers on the Faces of the Wedge Supersonic. In the plane of the
coordinates Oxy, the picture of the motion is demonstrated in Figure 1.22., 1In
the investigated case the region of disturbed movement will be énclosed by the
Mach lines AC and A ¢y originating at the points A and Al of intersection of
the surface of the ]]:iquid with the places of the wedge and the arc CC;. The
Mach lines are tangent at the points C and C1 to the circle of unit radius with
center at the origin of the coordinates. In the reglons ABC and A1B1C] where
the equation (10.12) is of the hyperbolic type, the flow is defined just as for
supersonic movement of a wedge with Mach numbers M; and My and normal velocity
component on the wedge v,=vg. Therefore in these regions the parameters of
motion are constant and are defined, correspondingly by the formula

) aM,v,
0 = - fo . U, =1y, p.—;-p—',‘“—, 1< e <M,
YT V=1
U= ——, Uy = Up, P=-—-‘MM—’U°—. M, <xL—1.
Va1 VM1

(11.1)

The values of the velocity component and the pressure defined by formula (11.1)
are valid to points of the arc BC and BjCj of a unit circle, and they define
the boundary values on these segments the boundary 6f the elliptical region

of equation (10.12).

For determination of the parameters of motion inside a halfcircle of unit
radius, let us return to the plane t=celb where, for example, the velocity
component vy satisfles the Laplace equation (10.13). 1In this plane the region
of motion again will be a halfecircle of unit radius with center at the origin
of the coordinates (Figure 1.23).
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Figure 1,22 Figure 1.23

The boundary conditions for v, are the following. On the segment of the hori-
zontal axis BBy and the segments BC and B1C] the arcs of the halfcircle vy=vj.
In the segment of the arc CCy: v,=0, v,=0. Let us note that the analogous
boundary conditions on the boundary of the halfcircle (inside the Mach come
emitting from the apex of the wing) are obtained for supersonic motion of a
delta wing where the sides of the angle emerge beyond the Mach cone beginning
at the apex of the wing [18]. Let us represent the harmonic (in the plane
r=cel®) function vy as the real part of a complex function (10.14), and let us
map the halfcircle on the halfplane by the complex variable z with respect to

the formula Lo (:+l )2

-1 (11.2)
Here the outline of the halfcircle goes to the real axis of the plane z
(Figure 1.24).
The solution of the problem in the plane z is given by the formula {14, 19]
. A2
=y L2 g (11.3)
uy+zf U pr n o
where the following notation is introduced
WL . B Y. el B (11.4)
M, —1 My +1

- Using (10.15) and the linearized Cauchy-Lagrange integral, the solution (11.3)
will permit determination of all of the pressure parameters.
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-0 § - 4 C, 8 a > B+

7%

Figure 1.24
The excess pressure p and velocity vy along the wedge in the section -1gxg1l

in the plane of the dimensionless coordinates x, y are defined by the following
expressions [14, 19]:

p = 2% i My arctg V—'————‘M Y

= | V- My + ) (1 )
Mg (Ml—l)u+x)]_ (11.5)
yMl_l M+ —x
- _ 200 M=y
e { v eV mha—s

I R 1/(M.—na—x) '
m (My+ 1) (14-%) (11.6)
The solution to the problem where one of the numbers Mj and M; is equal to one

will be obtained from the solution (11.5) and (11.6) if in them the correspond-
ing number M approaches one.

For symmetric penetration at the wedge M]_-MZ-M in the disturbed region of
motlon, outside the unit circle in the plane x, y (the regions ABC and A1B;C,
In Figure 1,22), according to (11.1), we obtain

Y . Y - — PMy,
HTE RS T P e

M=2ctgp, I <x<M, —M<x<—1
a

In this case the formulas (11.5) and (11.6) assume the form:

_1 Mi—1
P A artg‘/l~x:'

b = .ﬂ_.l__'m, W)
x PR v g -__l—x' ” —*](X(l.
(11.7)
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For M>»1 these formulas give

2pav, 1 v = 2v, x
) = .
LY g

p=

A st *

The force acting on the wedge is defined by integration of the excess pressure
on the section of the wetted part of the wedge. As a result, for this force
F(t) we obtain

F(t) = pavt {ctgB + | ctg (B + 2y)|}. (11.8)
For symmetric penetration this formula gives
F(t) = 2pviatctg B. (11.9)

In formulas (11.8) and (11.9) the expressions

Yo{ctg B +|ctg (B + 2y) |},
20, ctg -t - ’

denote the length of the wetted surface of the wedge. Thus, the total force act-
ing on the wedge at the time t is exactly equal to the instantaneous force for
normal impact of the plate with a velocity vp, the width of which is equal to the
width of the wetted part of the wedge at this time. In reference [20] it is
demonstrated that this situation 1s valid in the more general case. 1In the sec-
tions on axisymmetric penetration, this problem is discussed in more detail.
However, it is necessary to note that the pressure distribution along the face
of the wedge is essentially not constant.

b) Let the Number Mj Be Greater than One, the Number M, Less Than One
(Mixed Problem). The picture of the flow in the plane of the dimensionless
coordinates x, y in this case will be shown in Figure 1.25, a.

For the complex function (10.14) in the investigated case in the plane ¢, 6
(Figure 1.25, b) we obtain the following conditions on the boundary of the half-
cirele. On the section of the wedge A1B and on the arc BC of the halfcircle
vy=v,; on the remaining part CBy of the arc of the halfcircle v,=0, v4=0; in

the section BjA; of the free surface the velocity potential and, consequently,
the velocity component vy are equal to zerc. Then from (10.15) it follows that
in this section df=0, and since the desired parameters of motion at the point Bl
are continuous, it is possible to assume that on B1A] the function f=0. Thus,
for the desired function (10.14) we obtain the mixed problem, the solution of
which will be constructed by the known method of [6].

Annlogous boundary conditions are obtained for supersonic movement of a delta
wing where one side is inside and the other, outside the Mach cone emerging from
the apex [18]. After mapping the halfcircle onto the halfplane of the varlable
z using the fumction (11.2), the solution to the problem is represented in the

form [19]
0, 4 if = tp— Lo In VIRl £V L= bl +Azl/___z _
ni VIiE i —V1i—Mz Zem Ay
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M, i
2 8 Mox
B’ 0 A
y
¢
8
) B\ 4 O\ A
]
¢ qeee
b -
' Figure 1,25
1
= According to formula (10.15) of the preceding section, since
; 1—et \3 1—¢ 2vz
- l—={—F) . rareli e
14et l+e 142
X

at the point z=0 we have a singularity. However, z=0 corresponds to the point of
intersection of the leading wave with the free surface, and in it the solution
must be regular. For this purpose at the point z=0 the following must be
satigfied: (d/dz)(vy+if)=0. This condition defines - the constant A in the

= above-presented solution:

- PR 1/1,4-1,
P M

The final solution is expressed as:

Uy—f‘l‘f:t’o""ﬂl“ln Vl+k1/x|,+)/l_'k‘l/z e
Mo T F Rl — Y T= Rz

_‘L.2_1/1|"’Ml/
2= "

(11.10)
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On the real axis £ of the plane z for the imaginary part of the desired functiom,
from (11.10) we obtain

fe Zogp XMtV I—Ak 20 ‘/7.1+A. t
B YT M= VT= 4 E— e (11.11)
In these formulas the following notation is introduced:
_ M+ =M S L2
M= M —1 o 1+M ' I—x
(11.12)

Y
Figure 1.26

Using (10.15) it is easy to calculate the value of the velocity component vy
along the wetted part of the wedge. In the dimensionless plane x, y along the
x axis we shall have

1+x
v, = 2 2 arctg(l/~_1__1__}“z_'__
s | VM- \ Mt Ao

Vg w8 Pt , (11.13)
T+
1/ —h

The pressure along the wetted part is defined by the formula:

be zpauo[ My Y Ty ‘/ =
= _{_
Tl M) VM 1 My+ x

M
-+ == arctg l/ MM+ | M
Vag—1 My + Ma) (1 — %) p<asl

(11.14)

In the region 1gxsMy obviously we have

av, Uy
p= paveM, , U= () .
Vu—i

VmE
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From the solutions (11.13) and (11.14) it is possible to obtain the pressure and
velocity distribution for the case where one:face of the wedge is perpendicular
to the free surface of the liquid. In this case My=0, A9=1; then

2P900M1 T"-;—- 1) x
p= arct —1 s
VM —1 &V mi=s

=Y _—2
Ve = n[ } w? amg‘/l—x Mr1
_QV_LI/-
My 41

The investigated case of penetration is illustrated in Figure 1.26. The solution
of this problem in the general case where the velocity vg makes an acute angle
with the Ox axis 1s presented in references [14, 19], In this study it is pro-

posed that the speed of the liquid on the left edge is finite, that 1s, there is
smootk streamlined flow around the trailing edge (see §12).

P —x J
A ) (11.15)

c) Both Mach Numbers Are Subsonic (Mj<l, Mg<l). The picture of the flow in the
plane ¢, 6 in this case is 1llustrated in Figure 1.27.

Figure 1,27

In order to use the analogy with the problem of streamlined flow around a super-
sonic delta wing, it is more convenient instead of the complex function (10.14)
to introduce the following function into the investigation

W =u,(e, 0)+if(e, 0). (11.16)

Here the relation between the velocity components and the function f(e, 8) is
presented in the following form [19]:

[xydv,— | —e? df]. (11.17

dv, =
v 1463

1— 43
The function (11.16) has the following boundary conditions. The velocity vy in
the section AA] (the wetted part of the wedge) is comstant and equal to Vo3
then, according to (11,17), in this section the imaginary part of the function
(11,16), that is, f(e,0) is constant. In the sections A1B;, AB v.=0, and on the

arc of unit radius BB; the welocity components vy, vy are @qual to zero.
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The obtained boundary problem completely coincides with the problem of determining
the veloclty components of the gas in the direction of supersonic movement of a
delta wing, the edges of which are inside the Mach cone emerging from its apex.
This mixed boundary problem for determining the function (11.16) is solved by

the Keldysh-Sedov methodl [6].

The results of the calculations along the wetted part of the wedge, for example,
for excess pressure, give the following expression [20]:

p= pav, . 1 %
B—(0-B)K YTFM) 0+ My
A My +x n My —x _
x[ 11‘/,M,—x M | M, <x <My (11.18)

In formula (11.18) K and E denote the complete first and second order elliptic
integrals, respectively, with the modulus k where

=My —My (11.19)
(14 M,) (1 + M)

The solution of (11.18) remains in force when one of the numbers My and My is
equal to one. When one of the faces of the wedge is perpendicular to the free
boundary of the liquid, for example, the left boundary, the corresponding * is
equal to zero, For such penetration from (11.18) we obtain:

p= pav, . M, ‘/ X
2E—(1— 1) K VIiTH, —x+ M)’
=M ‘ (11.20)
14+ M °
For symmetric penetration M;=M,=M<1, formula (11.18) gives:

__pay M

3 = (11.21)
b=

where E; 1s the complete second type elliptic integral with modulus kj and

p

1= R

for the symmetric wedge

B=1— M

lpor this purpose it is necessary to map the region of disturbed motion onto
the halfplane of the auxiliary complex plane.
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The solution of (11.21) remains valid for M=1. The total force acting
on the wetted surface of the wedge is obtained by integrating the pressure
(11.18) in this section:
2nM M, L
YUTFM)T+0) + V- =My Et (11.22)

F (1) = pay,

In the case of symmetric penetration by a wedge

F(:)=pau,-2’%‘i.2uotctgp. (11.23)
1
o
zuP"a“
%
M- Zctgp N
AN N__M=10 g yavi

Figure 1.28

It is possible to show that wM/2E1<1, and, consequently, for subsonic values

of the numbers M] and My the total force of resistance to penetration is less
than the force of the hydraulic impact of the plate of the same width at the
time t=0 [20]. For a*» at the limit from formula (11.23) the formula for an
incompressible liquid is obtained for a force of resistance with symmetric pene-
tration of a compressible liquid. From the results of investigating the
symmetric penetration of an incompressible liquid by a blunt wedge it is known
that the excess pressure on the surface of the wedge is given by the formula

(2.25): ) pud ctg B
| — (X E (11. 24)
V()
and the force acting on the wedge, by formula (2.26):
F(t) = npujtctg?B. (11. 25)
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hg-%kcypq
Megcigp |

Figure 1.29
Er.

Py cigp

1,0 05 0 05 ) 0
biclgp
Figure 1.30

Let us note that for values of Mj and M2 larger than one and the condition
vp<<a, from the equality

it follows that the Mach angle o of the characceristics beginning with the
points of intersection of the supersonic face of the wedge with the free surface
is much greater than the angle B formed by the face with this surface:

a>>B.,
The numerical results for the case of entry of a symmetric wedge are presented

in Figure 1.28, and for the asymmetric case, in Figure 1.29 [20]. TFigure 1,30
shows the pressure distributions for the Mach numbers M=0.5, 0.25 and M=0,
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which corresponds to an incompressible liquid. The graphs in this figure show
- that for M numbers less than 0.25, the effect of the compresgibility is
ingignificant.

§12. Penetration of a Compressible Liquid by a Flat Plate

a) Incidence of the Plate at an Angle to the Surface in the Presence of an
Angle of Attack. Let a rigid flat plate fall with a constant velocity vp
directed at the angle a to the undisturbed free surface on the free surface of
an ideal compressible liquid occupying the lower halfspace. At the time of
hitting the water the plane of the plate will be at an angle B to the free surface.
It is required that the force and the rotational. moment acting on the plate from
the liquid will be determined. The diagram of the incidence of the plate is
shown in Figure 1,31, The problem is considered planar on the basis of the fact
that the plate has infinite length. The problem is solved under the assumption
that as the plate submerges, the point E, which 18 the point of intersection of
the plane of the plate with the free surface of the liquid, moves in the positive
direction of the Ox axis (to the right) with a velocity equal to the speed of
sound a in the liquid. The given case is possible where the angle 8 is small.
Considering Vo 8in a<<a, let us solve the problem in the linear statement [211].

- The mass forces are not taken into account. The period of submersion of the
plate from the time of contact of the tralling edge with the liquid to the time

- : the leading edge of the plate is submerged in the liquid is considered. With
this statement the problem will be self-similar.

Figure 1.31 Figure 1.32

The origin of the coordinates is placed at the point of contact of the trailing
edge of the plate with the free surface. The Oxg axis is directed along the free
surface to the right, the Oyy axis Is vertically downward, Since the angle B 1is
small, the boundary conditions on the plate are carried over to the horizontal
surface, It 1s proposed that the free surface changes little, the trailing edge
has streamlined flow smoothly around it, and there is no leakage of the liquid
to the upper surface of the plate. In this case the boundary conditions on the
free surface are also carried over to the horizontal surface. Here it must be
noted that in connection with the fact that the rate of displacement of the

point E horizontally is higher than the speed of sound, the free surface to the
right of the point E remains undisturbed as the plate submerges. During the time t
after contact the trailing edge of the plate moves horizontally and vertically,
respectively, by the amount

Xop = Upf cOsa, Yos = yylsina.
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The projection of the wetted part of the plate on the Oxgy axis will be defined
by the formula

BE — besing
tgp

The coordinate: of the point of intersection E of the plate with the free surface
will be

Xo£ = X0~ BE = vt (cosu —+ —SIZ—G)

In the adopted linear statement the region of disturbed motion of the liquid in

the Oxy plane is shown in Figure 1.32. The segment BE of the Ox axis corresponds

to the wetted part of the surface of the plate. Inside the region DCE, the

effect of the free surface is not felt. In this region the parameters of the

liquid are determined by the known formulas for steady-state supersonic stream—
u line flow around a thin plate. For determination of the flow inside the half-
circle of unit radius, we use the fact that in the plane T=eei the velocity
component v, satisfies the Laplace equation, and it can be represented in the
form of the real part of the complex function E(t):

t(x)=u,(e, 0 +if(e 0). (12.1)

Another component vy, as was pointed out many times, is calculated by formula
(1.53). For determination of the function (12.1) we have the following boundary
conditions. On the basis of constancy of the pressure in the section AB
corresponding to the free surface, vu=C, but then from (1.53) it follows that
df=0, and since the desired functions are continuous at the point A, in the
section AB it is possible to set f=0. 1In the section BC of the wetted surface
of the plate and on the arc CD we have the boundary condition vy=vg sin a. On
the remaining part of the halfcircle (the arc AD) the velocity component vy=0,
vy=0. For determination of the complex function (12.1), the mixed problem was
obtained. This problem can easily be solved using the Keldysh-Sedov formula
[22] if we map the region on the upper halfplane of the variable z using the

function
S Y
zﬁ(h_]).

As a result, for £(1) we find the expression

- k= ' V=T°'°°5“’ (12.2)
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Using formula (12.2) all of the parameters of motion are calculated by simple
quadratures. In the section of the wetted surffice the excess pressure can be
defined using the Lagrange integral

1 . "Atp [ A1 l/(lJ-x)(l-—x)—p.
p=-—pav,sina —~———— arct, —_—e L
= Pasina ]/ =2 o Fpram
-1 (1+ 2 —x)—pn T
— —— arctg l/-—-—._. + ___.:]_
Vi B 2Vy
According to formula (12.3) the pressure on the plate from the liquid increases
from the trailing edge (x=vg cos a/a) to the point C (x=1). 1In the section CE
the pressure is constant and equal to

(12.3)

_ paveM sina'
VIW’TT—T (12.4)

The point E has the coordinate

- The total force acting on the plate from the liquid

;M= 1 ‘
B F = papt(M—) | ._.”H(M+ 1—l/-—2+-”—), (12.5)

_ The moment L; of the pressure force of the liquid on the plate with respect to
the origin of the coordinate is expressed by the formula

2 o M—v_ A=
pav,t sxnal/M_H [(M+1)(M - )+

) .;.(1._\,)1/-_'.;_*_!.].

The coordinate of the application of the equivalent force is defined by the
formula

L=

|-

(12.6)

l—w l+v
. (a« <M+1>(M~——2—)+u-v>l/ :
1= =

2 l/ T+ ° (12.7)
Mri=) —5—

Here x; is the coordinate of application of the equivalent force in the coord .nate
%90yg. For submersion of the plate in the liquid, where the point E (the
boundary of the wetted width of the plate surface) shifts along the surface with
the speed of sound in the liquid (M=1), equations (12.5) and (12.7) assume the

form
F- pa%Bt(l - ¥) l/--‘—;—”-(2 — l/—'—}”—)

- 5= VIV +U—w) VTS
2 2V ZT-¥VT+v '

(12.8)
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If the submersion velocity of the plate is directed vertically downward
(a=1/2), then for M>1 the force will be

M _ Ve (12.9)
F=pa’BtM1/M+l(1+M 5 )

and the point of its application 1s

=l _MEDeM—)+ VI (12.10)
2 M42—y3 :
_ Here .
M=
ap *

If introduction of the plate takes place at an angle a=n/2 and M=1, then from
formulas (12.9) and (12.10) we obtain

F=LpaBt@Vi—1), x= ATy
2 2@YVZI—1)

For a=n/2 from formula (12.3) we obtain
- —
I AL A4t 1/ U L9/ —x =1
= — 2 | e—e———arct -
P up‘w"‘/ A [ Vif g A+l

— arctg _:__i'—"-—l+-’2‘—].

X

This pressure does not coincide with the pressure expressed by formula (11.15).
The reason for this consists in the fact that in the problem of this section

the trailing edge (point B) has streamline flow of the liquid smoothly around it,
which led to the requirements of finiteness of the velocity at this point. If

it is not required that the velocity be finite (which would be improper in this
problem), then the formula in the plane z along the plate that follows would be
obtained for the pressure:

. _pavy A - p A-i- 1 arctg ‘/!sz .
P 1/ A [/}.-HA k A

] (12.11)

+(1+p ﬁ‘:;

Here o=rn/2 after transition to the plane Oxy and replacement of A by M according
to form.s (12.2) from formula (12.11) along the plate we obtain

___2pauM 1/ M—=1
p= /W—lamg M=

which coincides with formula (11.15).
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b) Vertical Incidence of a Plate. Let at the time t=0 an absolutely rigid
plate of width 2c with constant velocity vp directed vertically to the free
surface, begin to penetrate an ideal compressible liquid occupying the lower
halfspace. The penetration diagram is shcwu in Figure 1.33. For solution of
the problem it is proposed that there is no leakage of the liquid to the upper
surface of the plate. Accordingly, the problem of penetration by the plate is
equivalent to introduction of a solid state with leading flat tip in the form
of a rectangle of width 2c and length 2>>2¢. The Ox axis of the stationary
coordinate system is directed along the horizontal free undisturbed surface,
and the Oy axls, vertically downward. It is assumed that vp<<a; consequently,
the equations of motion of the liquid are linearized, and we obtain the wave
equation for the potential., For linearization of the boundary conditions it is
necessary to satisfy the inequality vgt<<2c which will be valid if

2 .
°<t<T' (12.12)

| A

y
Figure 1.33

- Thus, according to the inequality (12.12), we shall consider the time interval

- during which the boundary conditions on the plate and the free surface can be
carried over to the horizontal plane. Since on the free surface of the liquid
the excess pressure p=0, and the 1li¢'dd is in a state of rest before entry
(¢=3¢/3t=0), from the linearized Lagrange integral

=——p_——

ot

it follows that ¢=0 6n th. free surface. Let us introduce the dimensionless
varlables in the form

= ’ p ] P ’ X
= ) =t X = —
pay ¥ T e c
y=L =2
c c

and in the following arguments let us stipulate omission of the strokes on the
variables. Then for 0<ts2 the solution of the problem will be described by the

equation
Lo P9 29
T = e W>0 (12.13)
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with the following boundary and initial conditions:

99
By o= EOT OSES R (12.14)

Ql=0=0 for x<0 and x>2,

_ e _ or | =
9= =0 for {=0. (12.15)
The Lagrange integral assumes the form
—
P==P% (12.16)

The system (12,13)-(12.15) for t<2 can be solved by the above-presented method of
self-similar coordinates and the Chaplygin transformation. Here the problem of
determining the pressure directly will be solved. Obviously the pressure also
satlsfies the wave equation (12.2). Using equality (12.16), on the basis of
conditions (12.14) and (12.15) we obtain the following boundary and initial
conditions for the excess pressure:

g=0, Z_Z=_6(t) for 0<x<2,

p=0 for x<0and x>2,

=0, p=_‘;!:;=o.

Here 6(t) is the Dirac delta function. The solution of this problem is presented
in reference [23]. The pressure on the plate from the liquid in the time interval
O<t<2 is given by the formula

p=1—Larctg l/-‘:—lH(t—x)—

— L arctg ‘/—-‘—-—~1H(t—2+x). (12.18)
b 2—x

Here Il is the unilt Heviside function,

(12.17)

For the dimensionless force Fg acting per unit length of the plate for ts2, we
obtain

F__ ¢
2cpav, =F, = l_-g_‘ (12.19)

The formulas (12.18) and (12.19) are generalized to the case of penetration by a
plate with variable velocity v(t), the initial value of which is vj:

t=0, v(0)=u,.
The value of the pressure p for variable penetration velocity is expressed in
terms of the pressure (12.18) using the Duamel integral

¢
,','___.Ed-‘-Sp(t——r, x)V(z)dr,

here
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- Differentiating the righthand side, we obtain
- : v
p=pt. 0+ (pt—r -
0

Analogously, the force F with varisble rate of submersion of the plate is
defined in terms of the force of (12,19) using the Duamel integral by the
formula

f _ _F = -
re = Fo=Fol)+ !Fa (t—v) s,

Let a plate of unit length have a mass equal to m. Then the equation of motion
of the plate, the initial velocity of which is vpg, will be written as follows
in dimensionless coordinates:

a_ dv z
vom T -Zl_ = - 2CPGU°F0.

Using the expression for the force FO' we obtain
'

_ dv 4
T=-—e[i.(t)+jr.,(t—r)m.dr]. (12.20)
- 0
Here e=_z£_'
- m
t
If we introduce the new function S=/V(x)dx, then from (12.20) we obtain the
0
second order differential equation
AS L d et
o tegy— 5 S=0 (12.21)
with the initial condition
_ ds
S$=0, 7=1 for t=0. (12.22)

Solving this equation, for the velocity and acceleration of the plate we obtain
the following expressions:

e e O R
E e o T A

ha=—t (eFVITE).
Investigating (12.24), we find that d25/dt?=0 at the time

2 e
ty= ————In(/oF 2
o= S Ve R et ),

dt,
t 4 0.
0 <2 =<0
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Hence, it follows that before the diffraction wave from one edge reaches the
other, the acceleration of the plate changes sign. Consequently, a negative
pressure appears in the liquid on the surface of the plate at some time tj<tgp,
the smooth streamlined flow is disturbed, and separation of the liquid can
occur in this case.

=\

—Lf |

_ ) N
' ) AV
0 N\

4 1 X 2
: N

Figure 1.34

In Figure 1.34 the graph is presented for the variation of the force acting on
the plate from the liquid and the varlation of its velocity in dimensionless
variables calculated by formulas (12.23}, (12.24) [24] for €=0.2. Let us note
that in the case of e¢+0 (a heavy plate) from (12.20) we obtain the acceleration
dv/dt+0 and, consequently, the velocity V»1 —- penetration with constant velocity,
that 1s, the previously investigated case.

Inconclusion, let us note that the problem of incidence of a plate along the
normal to the free surface was investigated in references {25, 26].

§13. Consideration of the Lift of the Free Surface on Penetration of a
Compressible Liquid by a Blunt Wedge

Let us consider penetration of a copressible liquid by a blunt wedge considering
the 1ift of the free surface. The conditions of the problem are the same as in
§11. In the case where on penetra:ion the Mach number on the faces of the wedge
is subsonic, as was noted above, tie free surface of the liquid is in motion. In
this case the disturbed free surface on both sides of the wedge influences the
movement of the liquid which occurs now inside the halfcircle of radius at.

Let us give the approximate method of considering the free surface on penetration
by a blunt wedge with Mach nimibers M1 and My less than one. The penetration rate
is constant. As has already been noted above, the conditions and the restrictions
given in §11 remain in force. The requirements justifying the transfer of the
boundary conditions to the horizontal surface of the 1iquid initially at rest arve
also satisfied. During the penetration process the pressure on the free surface
remains constant, equal to the inltial pressure in the liquid., At the same time
the pressure of the liquid in the vicinity of the apex of the penetrating wedge
fncrcases, that is, the pressure gradient increases in the direction of the free
boundary. Since the gravitational force is not considered, under the effect of
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the pressure gradient with time the free surface will rise upward, also increas-
ing the wetted part of the wedge. The movement is self-similar. The picture of
the flow in the plane of the self-gimilar coordinate

Xo Yo

af at

is illustrated in Figure 1.35.

Y

Figure 1.35

The sections E'EK and E'j1E.K; of the region of motion or the liquid are called
"spray." For the small values of the angles B and m-(2y+B) investigated here
the thickness of the spray with respect to the normal to the face of the wedge
is on the order of HB, where H=vyt is the depth of penetration. In reference [2]
it is demonstrated that when solving the problem of penetretion it is possible
to neglect the effect of the spray; then, approximately, the deflection point of
the free surface E' coincides with the point E on the face of the wedge. The

- same thing pertains to the points E'l and E] on the left side of the pattern of

- motion (Figure 1,35). 1In this approximation the wetted sections of the wedge

will be the sections DE and DEj, but not the sections DA and DA; as assumed in

- §11. On the basis of self-similarity of the problem the displacement rai:eg of

the points E and Ej along the horizontal surface of the liquid at rest (along

the x-axis) will be constant. Let us denote these-velocities by ¢ and ¢

respectively, Then in the plane of the self-similar coordinates xOy (Fig 1.36)

the distances OjE, O0,E, will be

b 3 0

' 0, ——25‘—=-—=M°, 0,Fy = === =M (13.1)

- After determining the numbers M?_ and Mg the problem is solved analogously to the

) solution of the problem presented in §11, c. The total force is calculated by
integrating the pressure with respect to x in the interval —01t<x<ct. Thus, the

= problem is reduced to determining the velocity c¢ and c1 Let us note that if

- the case of mixed penetration occurs, for example, M1>l Mp<1, the corresponding
solution of the problem considering the effect of thé free surface will be
obtained from the solution of §11, b, replacing the Mach number M2 in this
solution by Mg (the Mach number M1>l is left unchanged).
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Thus, the solution obtained according to (13.1) will contain two constants

¢ and él as parameters subject to definition. In particular, the rate of
lifting the particles of the free surface to the right of the point A of the
face of the wedge -- v, (just as the speed of the particles of the liquid
boundary to the left of the point A1) -- is a known fumction which depends on
the parameters

v, =0, (x, M, M), M<x<1, y=0. (13.2)

The coordinate of the particle e on the free boundary before the beginning of
penetration which at the time t comes in contact with the wedge at the point E,
is equal to ct. That is, in the Oxy plane this point has the coordinates:

_ ¢/a, 0. Analogously, the point ej in this plane has the coordinates -cl/a, 0.
The height of lifting of the particle e at the time it arrives at the point E
of the face of the wedge is h, where

t
h=¢eE = Vvyd‘r,
i

Here ty is the time of arrival of the disturbance at the point e=ato=&t. There~
fore the preceding expression can be written as follows:

v\ 1%

4 .
h= 3 9, (-‘f- M, M3 dr. (13.3)

Making the substitution of the variables in the integral

=t

at

we obtain . 1
_ PR ’ 0, dx
a . vy ("y Mov M'.‘) 7 .
R 4 (13.4)

The velocity of the particles of the free surface left of the point Aq of the
face of the wedge analogously to (13.2) is written in the form

: v, =1, (x, Mi, M), —1<x< =M,

The tift by of the particle ¢ of the free boundary (Figure 1.36) is defined by
the formula .
hl = v dt
,dT,

!

where ty is the time of arrival of the disturbances of the point ey determined
from the equality atg=cjt. Thus, the 1lift hy can be represented by the integral

e

t .
hy = ( 5, (_% M, M) dr. (13.5)
t
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Figure 1,36

By substitution of the integration variable T

the intcgral (13.5) is reduced to the form:

t
y 13.6
hy = L;’_ S o, (—x, M, Mg)_%_ ( )
a
[

Obviously, the integrals in the righthand sides of (13.4) and (13.6) have positive
real values.

From Figure 1,36 it is easy ‘to be convinced of the correctness of the equalities:

ot +h=ctigh,
vt + by =it tg 2y + B)-

Hence, we obtain two equations for determining the constants ¢ and Elz

!
o+ M1 | 0, (x, M, M) £ =cigp,
it
! . (13.7)
vo+M2j o, (v, M) M) Z- =G tg 2y +B).

M9

2

In the cage of gymmetric penetration
M, =M} = M; y=(%_p), E=6

and system (13.7) is reduced to one equation for determining the velocityl

1In this case it is possible to limit ourselves only to the right half of the
region of motion of the liquid.
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1
v, + My S v, (x, Mp) == =ctg,
« A
M,

My = =.
(13.8)

For the given vg, Y and B the system of equations (13.7) defines the velocities
c and cq, and by formulas (13.1), the numbers , . For symmetric penetration
at the wedge, the velocity of the liquid on the freé surface is represented in

the form
Ve

| s
_1 .
v, =0; UV=C g ‘/-;—,_—“'dﬂ» AE< o0, (13.9)

The value of E at the upper bound of the integral (13.9) is related to the dimen-
gionless self-similar coordinate x by the equality

b=
and the constants A and C are defined as follows:
1 1
B
Ce (13.10)
RE, (&)

where Ey is the total second type elliptic integral with modulus ky. Using
(13.9) equation (13.8) establishes the following relation for determination of
the velocity c:

aM = 2M,E, (k)
v .
M=Z2tclgh My=—. (13.11)

The function E](kl) ig tabulated. Some values of the ratio
nov,
S 2ctgh . Ey (k)

and the numbers M and M are presented in Table 1.1 for different values of k%.

In the case of k%=1 (M=0) corresponding to an incompressible liquid, for the
velocity ¢ we have ‘
ELY

c= o v, ctg B,

which coincides with the result of §2. For kq,=0 (M=1) velocity ¢ coincides
with the velocity V=v, ctg B and it is equal to the speed of sound in the
liquid:

¢=v,ctgp = a.
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Table 1.1
kf E, M, M
T

0,00 . > i 1
0,10 1,523 0,049 0,921
0,20 1,489 0,894 0,848
0,30 1,445 0,837 0,770
0.40 1,399 0,775 0,691
0.50 1,351 0,707 0,608
0,60 1,298 0,632 0,522
0,70 1,230 0,548 0,429
0,80 1,178 0,447 0,336
0,90 1,106 0,316 0,222
1,00 1 0,00 Q

Considering the 1lift of the free surface of the liquid the formulas for excess
pressure pj on the surface of the wedge and the force of resistance F; during
svmmetric penetration assume the form

p1=‘—im; lxl<Mo;
VM _a (13.12)
Fy =20 (cytgpt.

The ratio of the force F calculated without considering the effect of the lift of
the free surface by formula (11.23) to the force Fj is given by the equality

F E \?
LI (..- ) 13.13
F‘ ) ( )
For the limiti:ng cage of an incompressible liquid (MO=0) and for the case where

the value of ¢ is equal to the speed of sound (Mg=1), this ratio is, respectively,

(13.14)

§14, Penetration of a Compressible Liquid by a Blunt Wedge in the Nonlinear
Statement

Just as in the problems of penetration by a blunt wedge in the linear statement,
it is assumed here that the penetration rate is constant, less than the speed of
gound in the liquid and directed vertically downward, that is, perpendicular to
the free surface of the liquid at rest before beginning of penetration. A study
is made of symmetric penetration where the faces of the wedge form an identical
angle B with the free surface [19]. Let the rate V of displacement of the

point A and C of the intersection of the faces of the wedge with the free surface
be greater than the speed of sound in the undisturbed liquid:

[V =uv,ctgp>a. (14.1)
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Then on penetration of the wedge shock waves occur.

Let us consider the case where these waves are attached to points A and C. The
pattern of the motion in this problem is shown in Figure 1.37.

Figure 1.37

In this figure the line AB3C,C is the front of the formed shock wave. The dotted
lines B3By, C1C, outline the region of diffraction at the apex of the wedge B
behind the shock wave from the regions of disturbed motion behind the sections
ABy, CCy of the shock wave. The formation of shock waves at the points A and C
during the penetration process takes place by the same law as for the wedge dur-
- ing its supersonic motion. Therefore the sections ABp and CCy of this shock

wave which are influenced by the region of diffraction will be rectilinear. Then
the values of the liquid parameters in the regions ABBjA and CCyC,C are constant
and are determined from the conditions on the shock wave and its continuity

at the points A and C. These values define the boundary conditions in the
sections B1By and CyCy of the boundary of the region of diffraction. In the
section of the wedge BjBCq which is also part of the boundary of the diffraction
region, the component of the liquid velocity normal to the surface of the wedge
is given. Finally, the remaining section of the diffraction boundary BpCo is
part of the formed shock wave. In this previously unknown section of the boundary,
the parameters of the liquid are related by the conditions at the shock front. This
curvilinear section ByCp of the shock wave must be defined during the solution of
the problem. Obviously the motion that arises behind the shock wave will be
self-similar. The origin of the coordinates is placed at the point of contact
between the apex of the wedge and the free surface, the Oy axis is directed
vertically with respect to the direction of penetration, the Ox axis, along the
free surface to the right.

As was established in the first section of this chapter, the motion is described
by the equation, the region of the imaginary characteristics of which is defined
by the condition:

(0, —8)? + (v, — <’ (14.2)

where £, n are defined by the formulas E=x/t, n=y/t. The pattern of the motion
in the £, n plane is illustrated in Figure 1.38. The region where the
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inequality (14.2) 1s satisfied coincides with the region of diffraction of the
wedge angle [14, 19]. Let us denote the velocity components behind the
rectilinear sections of the shock wave by zy _ and Vige On the basis of continuity

- of motion behind the wave, the equation of tge lines” B1By and C;Cy according to
(14.2) will be written:

Uy — 8+ (v, —m)? =al, (14.3)

Figure 1.38

Since viy, v, are constants, according to (14.3) the lines C1Cy, B,B, are arcs
of the corresgonding circles. The problem stated here is equivalent to the
problem of diffraction of a shock wave from the apex of a solid wedge investi-~
gated by many authors [14, 19, 23, 27, 28]. The results of the studies of the
problem of penetration by blunt wedges in the linear statement performed above
under the condition (14.1) and also the results-of the studies of the related
nonlinear problem of reflection of a shock wave from the apex of the wedge in
the diffraction region lead to the conclusion: in the sections BjB and CyB of
the faces of the wedge where the effect of diffraction is felt, there is a con-
tinuous decrease in the velocity and pressure from points By and C; to the apex B.
This phenomenon is similar to the motion of a compressible liquid behind a
piston in a cylindrical tube having a bottom. Therefore we shall naturally try
approximately to define the parameters of the flow in these sections of the
wedge by the theory of uniform motion of a liquid [19]. The results of this
approximation turned out to agree well with the results of the analytical and
numerical calculations performed in reference [27], where an estimate of the
method proposed here is presented,

On the basis of symmetry of the problem we shall limit ourselves to the study of
the righthand half of the region of motion behind the wave. The parameters of

= the liquid behind the rectilinear section ABy of the shock wave are calculated
simply. However, in order to obtain the approximate solution along the face of
the wedge in the region of effect of the diffraction it is more convenient to
vary the statement of the problem somewhat. Let us communicate a velocity V
to the liquid-wedge system equal with respect to magnitude and opposite with
respect to direction to the rate of displacement of the point A along the free
surface. As a result, the shock wave AB2 becomes stationary, and the wedge
moves in the direction of its edge AB with a velocity
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Uy
=g Y (14.4)

At some point in time the wetted part of the face of the wedge is vot. With this
handling of the problem the speed of the liquid particle at the apex of the
wedge is vy,

Let o be the least angle of the oblique discontinuity with horizontal PgsPg
are the density and pressure in the undisturbed liquid. The parameters og
motion behind the discontinuity will be indicated by the subseript "1." The
equation of state of the liquid is considered to be known. Let us take it in
the generally accepted form for water:

p-—po=%[(\'§j)n_z], (14.5)

where k and n are the experimental constants.

Behind the rectilinear part of the shock wave, outside the region of diffraction,
the parameters are constant and are determined from co-ditions on the shock
front (V is the velocity of the oncoming uniform flow):

poV sina = p,u, sin (o — B),
poV sina{Vsina —u, sin(a — B)} = Py — Py,

Vcosa = v, cos (a — B),
pl—p,=i[("—‘)”—1], (14.6)

n Fo

From these relations and formula (14.1) we obtain

o N m ikt A= P
g po A P’
- i 2), sin? p
sinta - A1 2AsImMB (A —Ncost PP V=17 cos’P—dh sin? p '
pov.2A cos® B
P1— Py == .

2),3ind B + (A — 1)y cos?P £ cos By (A — 1)3cos? p— 4Asin3 p '

k
=Py = L — 1],
AR (14.7)

The sign in front of the square root sign is taken from the condition that the
angle of the shock wave is the least angle. The system of equations (14.7)
defines the constant parameters behind the rectilinear shock wave to the boundary
B1By of the region of diffraction.

Let us proceed to an approximate determination of the parameters of motion of

the liquid with respect to the unifomm theory along the face of the wedge in
the region of diffraction [19].
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Figure 1.39

In the inverse problem the liquid particles approach the shock wave with a
velocity V and then move along the face of the wedge at a velocity vi to the
boundary of the region of diffraction By on the wedge. Since at the apex of
the wedge the velocity v, is greater than vy, 1n the section BB rarefaction
occurs. It is proposed that this rarefaction be described along the wall using
plane uniform motion. Let us place the origin of the coordinate axis 0z at the
point A of the free surface and direct it along the walls from A to B (Fig 1.39).
Let us use the Riemann soluticn which in our notation is written as follows:
- 2 =U—a,
¢

2y

n—1 ' (14.8)

U—J‘-n—l =t

where a 1s the speed of sound in the disturbed liquid. On the rarefaction wave
front

U=V a= a.
Therefore the boundary of the rarefaction front is defined by the equation
25, = (v —~—ay)t =2, (14.9)

The cross section zp where the speed of the liquid reaches vy defined by
formula (14.4) is found from the Riemann equations (14.8) which give

(14.10)

N |

- G2 =4y H-T(UX_U’)' zﬁ:[”ﬁ'—az_ n;l (Ul—U-_»)Jf.
Let us note that the cross section z9 cannot coincide with the apex of the
wedge, for according to the formulas (14.10) this would mean that the speed of
sound ap at the point zp is equal to zero, which 1is physicallyimpossible. Con-
sequently, in the approximate uniform statement investigated here the medium
expands in the interval from z] to z3. From the cross section z) to the apex
of the wedge zg=vyt the liquid parameters remain constant, equal to the value
of these parameters at the boundary z;. In the section from z] to zp the
expansion process is defined by the equation:
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(14.11)

vhere ag is the speed of sound in the undisturbed liquid. Hence, for pressure
in this region we have

pmro= A (2 L) (o -2 1. (14.12)

n—+1

For pressure in the cross section zj we obtain

2n

p,.—p‘):i[(-‘z—’):‘_l], a=a + n_l (v, — vy). (14.13)

n Qo 2

Thus, the pressure in the section from the point A adjacent to the free surface
to the boundary of the rarefaction region zl-(vl—al)t ig constant, equal to p}
and determined from the system of equations (14.7). 1In the region between the
boundary z1 and zp=(vy-a,)t the pressure is defined by the formula (14.12),
finally, from the boundary zj; to the apex of the wedge zp=vyt, the pressure is
again constant and defined by the formula (14.13). Let us note that the more
exact, but complex calculations have confirmed good approximation which gives
the calculation of the pressure along the face of the wedge by the simple
formulas presented here [23, 27]. With respect to pressure it is easy to calcu-
late the force acting on the wedge in the vertical direction for any point in
time. This force F is

F =2sinp(F + F1+ Fo) (14.14)
where the force F acts on the section 0zj and is defined by the formula
F =p,(v,—apt.

&, 1s the force acting on the section z329 given in the form

2 2n
= g
B on+l n—1 (a‘)"' a,)" ﬂ_J‘ a _ |
T — a et — —_— | — . -+ .
Fi n n—l 1{3“—1 [ Gy (“o ay a )

Finally, the force &, in the section z,zy is

m:—“—[(&‘)rz‘-ljaz.

n a,

In these expressions it is possible to proceed to the densities by the formulas

a n—l n—l )
2 a p a 7
T: = (pa/Po) * '('1':' = (py/P1) : , ;t = (p4/Po) :
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§15. Penetration of a Compressible Liquid by Blunt Three-Dimensional Bodies

Let us consider the three-dimensional problem of the penetration of a compressible
liquid with a free surface by a rigid or elastic body. The initial velocity of
the body vy is perpendicular to the plane boundary of the liquid, and penetration
ocaurs in the direction of this velocity. Let the penetratior velocity be much
less than the speed of sound in the liquid and the ratio of the density p of the
disturbed motion of the liquid to its initial density py be insignificant:

Sy, 2 —1¢t, (15.1)
a p

Below, the initial liquid density is written without a subsecript. Let V be the
displacement rate of the point of intersection of the surface of the body with the
surface of the liquid with respect to the free boundary

V = =U°Ctgﬁ, (15.2)

Uy -
g f
where B is the angle of inclination of the surface of the body to the free horizon-

tal boundary of the liquid (Figure 1.40). When the velocity V is greater than the
speed of sound a, that is,

a

the contact area expands with respect to the free surface of the liquid at super-
sonic velocity, and consideration of the compressipility in the penetration prob-
lem is necessary. For example, the impact of a cylindrical body with flat front
tip against the liquid surface can be considered as impact at V + «. In order to
obtain reliable results in this problem consideration of the compressibility of
the liquid is mandatory. When determining the force effect on the penetrating
body, the influence of the compressibility can be significant even for a ratio of
the velocity V to the speed of sound in the liquid on the order of one [14, 19].
This requirement and the condition for the penetration velocity in formula (15.1)
lead to the conclusion: the compressibility must be considered in the case where
the angle B has an order much less than one (B << 1). Consequently, the depth of
penetration of a blunt body will be small, and the conditions (15.1) justify the
solution of the problem on the basis of the linearized equations of hydrodynamics.
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Here the boundary conditions are also linearized. Let us take the origin of the

rectangular cartesian coordinate system at the point of contact of the body sur-

face with the liquid boundary at the beginning of penetration; let us direct the

0z axis vertically downward, into the liquid, and let us place the Ox and Oy axes
R on the boundary plane of the liquid.

% |
y X

i
ll

Figure 1.40,

As a result of linearization, the boundary conditions at the contact surface be-

tween the solid state and the liquid and the boundary conditions at the free sur-

face of the liquid are carried over to the plane z = 0. On the surface z = 0, in

the contact area, the liquid velocity component with respect to the z axis is

taken equal to the velocity component of the body with respect to this axis. When
B solving the problem, the liquid is considered nonviscous, and the motion that

arises is considered potential. The velocity potential ¢ satisfies the wave equa-
tion

- _ 1 &g (15.4)
bo=—Z S

B The pressure in the liquid is defined by the linearized Cauchy-Lagrange equation
——p-8 (15.5)
- p=—0p o
Here and hereafter p denotes the difference between the pressure of the disturbed
motion of the liquid and the initial pressure pg- The initial conditions in the

liquid are written as follows (before beginning of penetration the liquid is at
rest):

t=0, ¢=0 2% _g (15.6)

The boundary conditions on the plane z = 0 have the form
I
—_— S

t>0, % on S,

- (15.7)
2=0 ¢=0 on S,.

Here v is the penetration velocity, S is the contact area on the plane z = 0, S
is the area of the plane z = 0 after subtracting the area S from it. In the gen—
eral case, on introduction of a deformable body, the penetration velocity v will
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be a function of x, y, t. For a rigid body v is only a function of time t. 1In
the case of penetration of a deformable body, it is necessary to add equations
that describe the deformed and stressed states of the penetrating body to equa-
tions (15.4-15.7), and then we obtain the closed system for the solution of the
problem. The velocity potential satisfying equation (15.4) and the conditions
(15.6) and (15.7) in terms of the velocity component along the z axis on the sur~
face z = 0 is written in the form [16, 20, 23]

I B ) R
| Pz (E'n- 0.!—T)dﬁdn (15.8)
P(x, 4,21t ==‘"-E;-u 5 R ,
where
w= () L R=VE—TIG—E . (15.9)
. 0Z 2=0

The velocity potential on the plane z = 0 for the entire time of motion is equal
to zero everywhere except the points of the contact area S. Outside the contact
area the excess pressure on this plane is zero. Since the derivative of ¢z (x, v,
0, t) is equal to zero for t < 0, the integration limits in the right-hand side of
formula (15.8) can be extended to the entire plane £, n. Then the pressure in the
liquid can be written as follows:

, R
" 1,0, t——) dtd
9 _ _p M‘q"(e ! “) " (15.10)

= — R )

gt 2n

where the stroke denotes differentiation of ¢, with respect to the argument T =
t - (R/a). The force F(t) with which the body acts on the liquid is defined as

follows:

: F(t)=”p(x, 9, 0, Hydedy =
S

\ (15.11)

') ’ r
P |8 n 0, t——) dbdn
=—§;ﬂ"“’yw ( -

r

where now r = ¥(x - £)2 + (y - n)2.

Independently of whether the boundary of the contact area expands with supersonic
or subsonic velocity or, according to formula (15.3), independently of the in-
equalities M $ 1, the pressure outside the area S on the plane z = 0 is zero.

This means the integration with respect to S in formula (15.11) can be extended to
the entire plane z = 0. Then it is possible to change the order of integration in
formula (15.11), which gives

" tp; E.n,O.f——r- ‘dxdy
ot [[an [ lirerEen

r
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The integration variables with respect to x and y will be replaced by integration
with respect to r and 6, when

9 = arctg “jg ) (15,13)

However, the expression under the integral sign in (15.12) does not depend on the
angle 6. Using the equality dxdy = rdrd® and the condition

T\ = -
6 (%, 4,0t— L) =0 for (——=<0, (15.14)

after integration with respect to 6, from (15.12) we obtain
at

F(:)=p”dgedns o (T;,'q,O.t—%)dr. (15.15)
0 ' .

In the internal integral of the formula (15.15) let us proceed from integration
with respect to r to integration with respect to T = t - (r/a), and let us con-
sider that the stroke of the function ¢, denotes differentiation with respect to T.
Then it is possible to calculate the internal integral. As a result, we have

F(f) =pa [ (8.0 t)dsdn, (15.16)

where integration extends to the entire plane z = 0. Formula (15.16) confirms
that the force F(t) is expressed in terms of the instantaneous values of the ve-
locity at the points of the surface z = 0 at the investigated point in time t.
Here the pressure distribution at an arbitrary point in time depends on the veloc-
ities of the points on the surface z = 0 during the preceding points in time.
When the number M defined by formula (15.3) is greater than 1 (M > 1) the distur-
bances in the liquid are limited to waves beginning with the supersonic edges of
the penetrating body. The free boundary of the liquid outside the area S is at
rest in this case, and, consequently, the expression under the integral sign in
(15.16) outside the area S is equal to zero. The integral (15.16) for this case
can be written in the form {20]

F(f) = paSv, (15.17)

where Vv is the average velocity of the body with respect to the contact area S.
For a rigid body the velocity Vv is equal to the instantaneous velocity of the body
v(t) at the time t. Let us note that the pressure distribution at the points of
the contact surface is far from identical, but its mean value is equal to pav.

For the subsonic value of the number M(M < 1) the disturbances in the liquid over-
take the outline of the contact area S, and part of the free boundary of the lig-
uid outside the area S turns out to be in a state of disturbed motion. Since the
investigated disturbances are propagated with the speed of sound in a liquid at
rest, the area S; of the disturbed region of motion of the free boundary of the
liquid outside the contact area is
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S, = na**— 8. (15.18)

In this case (M < 1) outside the circle of radius at with center at the origin of
the coordinates in the plane z = 0 the liquid boundary is in a state of rest, and
- the integral (15.16) can be written as follows:

F()=pa [ n 0 natdn +
S
oo (15.19)
+pa )} e 0, 0)azan.
Sy

- let us denote by v and V] the mean values of the velocities in the areas § and S
of the plune z = 0; then from formula (15.19) we obtain
F = paSu -+ paSyy, . (15.20)

- Under ordinary conditions Vl is negative, and the second term in the right-hand
side of formula (15.20) expresses the effect of a decrease in the force of the ef-
fect of the liquid on the penetrating body caused by the effect of the free sur-
face. For supersonic motion of the edges of the body over the surface of the lig-
uid (M > 1) this effect is equal to zero: the free boundary outside the contact
area has no influence on the penetration process.

The following sections discuss the solutions of specific problems.

-107

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1

FOR OFFICIAL USE ONLY

§16. Penetration of a Compressible Liquid by a Blunt Cone Considering the Lift of
the Free Surface

A study was made of the problem of penetration of an ideal compressible liquid in
a state of rest occupying the half-space z 2 0 by a rigid cone at constant veloc-
ity v, with apex angle 2y (see Figure 1.41) [29]. The velocity of the cone v, is
dlrected along its axis perpendicular to the plane z = 0 and vg << a. In addition,
it is assumed that B << 1 (a blunt cone), and the case where v, ctg B < a is con-
sidered. Obviously, the given problem will be axisymmetric ang self-similar. As
is easy to imagine from the physical picture of the flow, the free surface in the
vicinity of the cone will be raised with the course of time, further increasing
the wetted surface of the cone. For a correct statement of the problem it is nec-
essary to consider the lift of the liquid, as a result of which, from smallness of
the angle B, the wetted surface of the cone can increase significantly. Let us
denote the unknown radius of this wetted surface by c¢. Let us neglect the effect
of the spray, for with small B the vertical component of the momentum carried away
by the spray will be small, where c = const, as follows from self-similarity of
the problem. Here ¢ is the expansion rate of the periphery of the wetted surface.
When solving the hydrodynamic problem, we shall still consider the velocity ¢ to
be given. Then, linearizing the equations of motion of the liquid and the bound-
ary conditions [7], for definition of the velocity vector v = {vg(t, r, z),

vz(t, r, z)} and the pressure p(t, r, z) we obtain the following system of equa-
tions of the initial and the boundary conditions:

- ) dap?
80 = o Bp=—rem

for z2=0, >0
(16.1)

=1, for z=0, 0<r<ct; p=0 for z=0, ct<r,

where Vv and p are related by the llnearized Fuler equations. In addition, let us
R require that p > 0 and v »- 0 for r2 + 12 » ®, and let us require that p and v will

be integral in the vicinity of the edge of the wetted surface of the cone z = 0,

r = &t and that the apex of the cone z = 0, r = 0, which is necessary for unique-

ness of the solution.

The solution of system (16.1) includes the parameter ¢ which must be defined by

the Wagner method [1] from the following kinematic expression which relates to
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motion of a particle of the free surface of the liquid (r* in Figure 1.41) to the
motion of the cone:

t

—-ﬁfu,(r, ct, 0)dv + vt = ctig B (16.2)

&

Figure 1.41.

In [30] a method is proposed for reducing the axisymmetric problems for the wave
equation to two-dimensional problems, namely, representation of the solution of

- the axisymmetric problem in the form of a superposition of the solutions of the

- two-dimensional problems. Let us introduce the system of cartesian coordinates £,
n, z rotated relative to the x, y, z system around the z axis by the angle w:

§=xcosw-= ysinw = rcos (p— o),

= —xsinw ~ ycosw=rsin (¢ — o),

where r, ¢, z are the cylindrical coordinate system related to the X, ¥, z system
by the formulas

X=rcosQ, y=rsing, z=2

In the coordinate system £, n, z let us consider the ¢ ;o-dimensional solution of
the linearized equations of motion of an ideal liquid, that is, such that the ve-
locity vector \7'1 and the pressure p; do not depend on n, satisfy the wave equation

#f . o o |
& ' ooz atér '
and the velocity vector v, lies in the plane £z: Vl = {Vlg’ VIZ}' Then the ex-
pression
- pi i
U= J”x (¢, &, 2)do and p = jpl(t, t, 2)do (16.3)
-5 -
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make up the solution of a three-dimensional problem for linearized equations of
motion of an ideal liquid, for they are a superposition of the solutions of the
equations of motion. Here the functions V and p will satisfy the wave equation
with three spatial variables x, y, z. For the velocity components Vs Vg, Vg and
for the pressure p we obtain the following expressions (making the substitution

¢ - w = Q and considering periodicity of the functions under the integral sign in
(16.3) with respect to Q):

a
=2 S'vﬁ(t, rcosQ, z) cos 2dQ,
0

n (16.4)
v, =2 s 12 (£, reos Q, 2) dQ,
0

T
Up == 0, p=2fmu,mm9,ﬂﬂl
0

Consequently, the velocity v and the pressure p do not depend on ¢, that is, they
are solutions of an axisymmetric problem for the linearized equations of motion of
an ideal liquid and they satisfy the wave equation

f . @ . it

9% aél?

It is possible to show that the expressions (16.4) establish one-to-one correspon-
dence between the solutions of the planar and the axisymmetric problems [31].
Since in the self-similar problem V and p are uniform functions of the coordinates
and times of zero measurement, the two-dimensional solutions v, and p, also must
be uniform functions of the zero measurement and, consequently, by the method of
functionally invariant solutions [30], they can be represented in the form

viz(f, & 2) = ReV(8), v, (t, & 2) = ReW (8), 6
P (L, &, 2) =Re U (9), (16.5)

where U(8), V(B) and W(6) are analytical functions in the region Imé > 0, and the
complex variable 8 is defined explicitly from the equation

b=t—0t—2}a?2— 6 =0, (16.6)

where the branch of the radical (a'2 - 62)1/2 is fixed as follows: a section is
made in the plane 6 along the intervals of the real axis (-», a~!] and [a~!, +=),
and the value of the radical is considered positive for 6 = 0. Here the equation
(16.6) maps the upper half-circle z > 0, 22 + £2 < a?t2? of the real plane £, z
onto the upper half-plane of the complex variable 6, the half-circle z2 + g2 = a2¢?
onto the segment of the real axis [-a-!, a~!], and the segment [-at, at] onto the
remaining part of the real axis. The two-dimensional solution obtained inside the
half-circle, according to [30], is continuously continued through the arc of the
circle z2 + 52 = a2t? to the outside of the half-circle along the half-tangents
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defined by the equation (16.6), as a result of the fact that 6 as a solution of
(16.6) maintains a constant value along them (for z > at we assume the two-dimen-
sional solution to be identically equal to zero). Thus, the constructed two-dimen-
sional solution is the generalized solution of the wave equation [30]. Substitut-
ing expressions (16.5) in (16.4), we obtain the following formulas for the veloc~
ity components vy, V, and the pressure p in the axisymmetric self-similar problem:

n b4
0, = 2Re§V(e) cosQdQ, v, =2Re | W(0)dQ,
0 8 (16.7)

p=2Rer(e> dQ,
0

where 6 is explicitly defined from (16.6) for £ = r cos Q or, according to the se-
lected branch of the radical (a2 - 62)1/2 and the choice of the half~tangents ex-
B plicitly by the formulas:

- atr cosQ + iz a3 — 28 — ricos? @ £ 242 3 oocl 2
s = or a¥t ri co + 22,
8 a(ricos? Q - z3) > Q +

(16.8)

t &7 2 o5 (1 — a? o o
) 0= “’°°‘9i:’fc;g‘g’_l_“z’f)g Cd for @< ricostQ 22, z<Lat,

where the + and - signs in the lower formula of (16.8) are taken, correspondingly,
for cos 2 < 0 and cos > 0, and the radicals in both formulas are considered
arithmetic (for z > at, setting v; = 0, p, = 0, in formulas (16.4), we obtain
v =0, p=0)., Here, since V; and p; satisfy the linearized Euler equations

0vi; _ _ _9p gy __ %

6t poz ' ot~ pat’

the functions U(8), V(8), W(8) are not independent. It is easy to see that the
Fuler equations will be satisfied if

) V' (8) = U (8., W' (8) = U’ (8)V @™ —0%p. (16.9)
P

Thus, the solution of the axisymmetric self-similar problem for Vv and p is found
in the form of (16.7) where the functions U(8), V(8), W(8) are regular in the re-
gion Imd > 0, and they are related by the expressions (16.9), and 6 is determined
from (16.6) or (16.8).

When solvipg the investigated axisymmetric problem basically we shall follow the
procedure proposed in [32] when solving similar elastic problems.

Differentiating the equations (16.7) for vz and p with respect to t, for z = 0 we
obtain:
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n n

o _ R0) i _ ope { YO 4g, '

= _2ReS =4, = _2Reé 7 cos @ (16.10)
0

In the equaticns of (16.10), we introduce a new complex variable v by the formula
o =vl/2, performing the section in the plane v along the positive half-axis [0,
+»), Then the half-plane Im6 > O is mapped onto the plane v with the section fo,
+w=). Considering equation (16.9) relating U'(8) and W'(8), from (16.10) we ob-
tain:

dv;

Tk (16.11)

ml-e

. ) v FT_v
Res Foe % Rey FWVE—v . _
2 ]
i

YV—, ét YVV—mv,

where

1
Vo=, U@)=U?)=F

r

and, consequently, F(v) must be regular in the plzue v outside the section [0, 4+=);
for the branch of the radical (a=2 - v)1/2, the section was taken along the inter-
val of the positive half-axis [a-2, +»), and the radical is considered positive
for v = 0; for isolation of a single-valued branch of the radical (v - \)0)1/2 the
section [vo, +o) was taken, and for v = 0 the argument of the radical is consid-
ered equal to w/2.

The outline % (Figure 1.42) was obtained as follows. In Figure 1.43 the outline
%9 is shown in the plane 6 to which the integration path [0, 7] crosses from the
formulas (16.7) for z > 0. For z = 0 (z + +0) the ends of the outline 25 (the
points L and K) will lie on the segment [~a‘1, a‘l] symmetrically with respect to
the origin 8 = 0 and, consequently, on replacement of 8 = vl/z, the outline %j be-
comes the outline & which can be represented in the form of a circle of arbitrary
radius R (on the basis of the analytical nature of F(v) outside the section [0,
+w)) and two sections of identical length KT' and LT, passed, as is indicated in
Figure 1.42, along the lower and upper sides of the section [0, +=), respectively,
where the points K and L hit the same point v = vg.

K

Figure 1.42.
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For satisfaction of the initial conditions in equations (16.11) it is necessary
that it be possible for vy < a~2 to contract the integration lcop & to one point,
that is, the function F'(v) must be analytical outside the section [a~2, +=).
Since according to the boundary conditions, the expression for 9p/dt from (16.11)
must vanish for vy < ¢™2, F'(v) must be regular outside the section [e2, 4=), and
since 3v,/3t from (16.11) must disappear for v > ¢™2, accordingly, the integral
function in this expression must be analytical for Re v > Vg > 6‘2, and it de-
creases at infinity just as o(v=1) so that the integral with respect to the circle
disappears at R + ». Then it is possible to set

Av)

=

F'(v) =

where n is an integer, A(v) is an integral analytical function which does not dis-
appear at v = ¢~2, From the condition of integralness, the pressure on the edge
of the wetted surface of the cone must be n £ 2. Hence, it is easy to see that
A(v) must be limited: A(v) = A = const and n = 2, Thus, we obtain

F(v)=A(?—v)2 and F(v)=Avc?(c?—v)! +C,

For z = 0 analogously to the expressions (16.11), we obtain:

p:VvoReS—igg;ﬁ

vV —v,
! (16.12)
vz:_VVo Rej‘ 1 I:j'F,(p)Va—Q_pdp+ Cg]dV.
B P g vy v=v, 5

In (16.12) the integration with respect to u is carried out by the loop lying to
the same side of the real axis as the point py = v.

From (16.12) it follows that for satisfaction of the initial conditions it is nec-
essary that the functions under the integral sign in (16.12) be analytical at the
= point v = 0, that is C; = C, = 0 and, consequently,

F(v) = Ave? (¢°—v)—),
and the formulas (16.12) assume the form
‘o — Adv
p=ctV% Ref_—(c-—wr——’—v; '
(16.13)
dp.

— v —
_ ¥ Re Adv Yai—yp
Uz = gy -t p)?
vy vV—v, o (¢ B

Now from (16.13) it is obvious that p actually vanishes for v, < ¢™2, Let us de-
fine the constant A from the boundary condition vz = vy for vy > 6'2, z =0:
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: Vv, A { V&a—g
o 'vo Rej‘ dv ) .a —p dp = v,
—_ -3 . t3
P yVv=v, g (-
i where the integral with respect to p can be represented in the form
Y VETE L VE—E g ¢ TR
Akl ST g __"__“_P'_dp,+S YO —F gy — B+ Fy(v).
e —pp @2 =y ) -y
Here in the second integral the integration is carried out along the ray arg u =
arg v and B is given by the expression
L -1 A
B=—c[y? +~(1—y) 2arccos(y?)], y=cta™
Since Fy(v) changes sign on going through the section [¢72, +4=), then
Fo(vydv 0 .
S—*—vyfm for wv,>c?,
and we obtain vy = 2mABp~l. Hence,
Ae—— WpVi—y . (16.14)
onc [y —7y) + arccos Vy |
For the pressure distribution p on the wetted surface of the cone (vg > &~2) we
= obtain

p= vpcdtV1—y
Vear—r (Wy(d—w +arccos ¥y

(16.15)

where p has the integral singularity at r = &t.

In order to obtain the pressure at any goint of the half-space z 2 0, we make the
substitution of variable pu = (a™< - 62) /2 in formula (16.7) for p and, consider-
ing the branch of the radical (a=2 - 02)1/2 we obtain for a2t? > r2 + 22;

— 2A¢*Re 5‘ (oo™ — ) di .
’ J ey T AR e (P ) (16.16)

where the loop %] in the region of Re u > 0 is illustrated in Figure 1.44 and A is
given by the formula (16.14). Here, at the points K and L we have: u = yu;

u = pg, respectively, where u; and u, are the roots of the quadratic trinomial un-
der the sign of the radical in (16.16)
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afz L riYat—rt— 2 (16.17)
Py = a(P +2% :

For isolation of the single-valued branch of the radical in (16.16), a section is
made in the plane p from the point L to K (the dotted line) and the branch of the
radical is taken such that its argument will be equal to n/2 for real values of u
greater than a~'. Then considering that on different sides of the section LK the
expression under the integral sign in (16.16) assumes opposite values with respect

to sign but equal with respect to absolute magnitude and has two simple poles at
the points

!
a

U=gi(c?— a=-?)

using the remainder theorem, from (16.16) we finally obtain:

= —9nAct | ¢ VAgﬂ__i__
P= 242+ BY (16.18)

: ]/ V A+ B 4

aV e 2 (45 + B)

where

rt22Latt, Aj=2c?—a?) - c2rr— g,

1
-  By=22(c?—q-?) 2

and the radicals are considered arithmetic. 1In particular, for z -+ 0 and r > ¢t
the expression (16.18) vanishes, and for z + 0 and r < &t it coincides with the
expression (16.15). Let us note that the expression (16.18) disappears for r? +
22 + a2t2, and for ¢ »+ a from (16.14) we find A + ~vgp/4ma, and expression (16.18)
gives at the limit:

vy P22t Q3 — r2 — 371

2 A (16.19)

(a%? — r3) 2

p=

Formula (16.19) coincides with the analogous limit formula obtained from solution
of the problem of penetration of a compressible liquid by a blunt cone at ¢ =
vg ctg B > a, when vg ctg B + a (see the following section).

Analogously, it is possible to calculate the velocity components vz and vy in the
region rc + z¢ < a2t2, Let us note that for r2 + z2 > a2¢2 (z < at) all the func-
tions v,, v, and p vanish, for the points K and L of the ends of the integration

loop £1 in the plane y are incideat at the same point lying on a segment of the
real axis [0, a~!] in the plane u (since in the plane & they lie on the segment
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{-a~!, a=!] symmetrically with respect to the point 8 = 0) and, consequently, by
the Cauchy theorem the integrals over the closed loop %] vanish.

h

' ctap
,WQD ;

{ 15
- K -
' 1,?5\\\
(d)
1 %X " : atgp
V¢ “-a 0 025 05 075 10
Figure 1.44. Figure 1.45.

Now let us define the radius of the wetted surface c = ct, substituting the ex-—

pression for vz from (16.13) in equation (16.2). Then after some transformations
equation (16.2) assumes the form

'y P,
/v — v dv .
dt Li YO .y = ctgp, 16.20
X § HVt— S (1—wp 0 ep ¢ )

where the radicals are considered to be arithmetic. After integration we finally
obtain the following expression relating voa"1 ctg B and y:

v /'y 2v,
yY'y arccos V'y =2 igp,
a

Y+ —
v1i—y

(16.21)

where y = ¢2/a2,

The numerical solution of equation (16.21) is presented in Figure 1.45. It is ob-
vious that & depends on a for a constant value of v, ctg B and & + 4vg(ctg B)/w

for vg(ctg B)/a » 0 (the case of an incompressible liquid) and when vg(ctg B)/a -+ 1,
then ¢ + vy ctg B + a, and the free surface of the liquid outside the cone remains
undisturbed, which corresponds to the physical picture of the flow.

- Returning to formula (16.15), we note that if we consider the parameter ¢ given,
independent of a, then the pressure according to formula (16.15) depends on a in

contrast to the other limiting case--penetration of a compressible liquid by a thin

cone with subsonic velocity where the pressure of the cone does not depend on a
[23].

In the case of an incompressible liquid the formula for the pressure on the surface
of the blunt cone (§3) is obtained from (16.15) for a -

X

p=_2_”iﬂé_[1_ (.;’)2]"7, (16.22)
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B where ¢t just as in (16.15), is the radius of the wetted surface of the cone.
Formula (16.15) differs from (16.22) by the presence of the factor

L
Tafy? +(1—y)

1
arccos (y 2)]-1,

|
o

which varies within the limits from 7/4 to 1 and, consequently, for the same values

of vy, ¥, t and ¢ the pressure in the compressible liquid is less than the pressure
- in the incompressible liquid.

If in the formula (16.15) ¢ is given by equation (16.21), for the pressure on the
surface of the blunt cone we obtain the formula:

sy

If we do not consider the 1lift of the free surface in the compressible liquid,
then ¢ = v ctg B, and the formula (16.15) assumes the form

X3 '—-

(16.23)

o ue [, /righ i -+
YT {] vt ” ‘X (16.24)
1
! ' B et o -1
g [ )| o

For the case of an incompressible liquid considering lift of the free surface,
that is, according to (3.36) for ¢ = 4vy(ctg B)/m, the pressure distribution on
the cone is given by the expression

805 p arigh \11- —
= 1 — (X2 2 16.25
P n'tgﬁ[ ( dugt ” ' ‘ )
and without considering the lift of the liquid, by formula (16.22), where ¢ =
_ vg ctg B:
1
p 200 [1_("” ‘ﬂ z, (16.26)
ntgp Ut

Using formulas (16.23)-(16.26), the forces acting on the cone will be defined by
the following relations:

For a compressible liquid considering the 1lift of the surface
Fy = 7ip (1gB) &AF%, (16.27)

For a compressible liquid without considering the surface 1lift
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- an‘(‘, pt?

Yy
" | arcees ( i ) (16.28)
atgh / vy \?
l_(atgﬁ )

For incompressible liquid considering the lift of the surface (see formula 3.38)

tg*p

4 v
F3=:rtgﬁ(-%-) o2, (16.29)

For incompressible liquid without considering the surface 1lift (see formula 3.29)

F, = 4vhptictg®B. (16.30)

Then, referring to F,, we have

I L

Fe = 4 Vo
1
F_ m_ % L 1_( Yo )z}—-;arccos % }-l,
1 Fy 2 {atgﬁ T[ atgh atgP

Fo (4N £
m 2 n), IV) .

4
The graphs of the functions (I-IV) of vy(ctg B)/a are presented in Figure 1.46.

25
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0 025 a5 075 10
Figure 1.46.

It is necessary to note that the difference in the hydrodynamic forces (I-IV) act-
ing on the surface of the penetrating cone in four different cases arises not only
from the difference in pressures, but also the difference in areas of wetted sur-
faces. From these graphs it is obvious that the behavior of the force is de-
scribed most exactly and physically correctly by curve (I), which for

volctg B)/a +~ 0 gives the case of an incompressible liquid considering lift of the
free surface (IILI), and for vy(ctg B)/a + 1, when ¢ + a, it gives a_result which

coincides with the analogous limiting result obtained for the case ¢ = v, ctg B > a
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for vo ctg B +~ a (the point S(1, m/4)). 1In the last, limiting case the theory of
an incompressible 1liquid considering lift of the liquid (graph III) gives an in~-
crease in the indicated limiting result by approximately 2.6 times. Consequently,
for a more exact description of the hydrodynamic forces for not very small values
of the parameter v,(ctg B)/a by comparison with one, it is necessary to use the
curve (I) which is suitable for the entire range of variation of the parameter
vg(ctg B)/a from zero to one.

Obviously, the expressions obtained for the pressure and the forces acting on the
penetrating cone according to formulas (16.27)-(16.30) will also be valid for a
cone of finite height to the time t* when the free surface of the liquid reaches
its base. Let us denote the radius of the base of the cone of finite height in
terms of rp. Then the time t = t* can be determined from the equality ct* = rg,

In this case for a cone of finite height penetrating a compressible liquid, consid-
ering the lift of the free surface, the magnitude of the force from (16.27) after
transformations will be

¢z v
Fi=2(—"tgp L2 (16.31)

v U

For an incompressible liquid considering the lift of the free surface it is possi-
ble to write formula (3.36) of the present chapter:

T4 4
$ e ——p -
c = vt'ctgh=r,,

Thus, for t = t* from (16.29) the value of the force is

32 evp (16.32)

§ = e ——— .

nitgp 2

Let us introduce the resistance coefficients C, and C4: for compressible liquid
p 2
c

¢ =2 'uT) gp

and incompressible liquid

32
Co= s

In Figure 1.47 values are presented for the parameter C, tg B and C5 tg B as a
function of the M number:

Yo

atgp ’
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Figure 1.47.
For the number M = 0.5, the ratio C;/C3 = 0.8; for M = 1 the ratio C;/C3 = 0.61.
The dots on this curve denote the experimental data for the cone B = 10° for t = t*,
The experimental results, as is obvious from the figure, are closer to the theo-

retical curve-—the model of a compressible liquid. The deviation will be up to 15
percent.
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§17. Penetration of a Compressible Liquid by a Blunt Cone for V > a

A study was made of the problem of the penetration of an ideal compressible liquid
at rest occupying the entire lower half-space by a very blunt cone of circular
cross section [7, 23]. The velocity of the cone vg is assumed to be constant, less
than the speed of sound in the liquid vp < a and directed downward, perpendicular
to the free horizontal surface. It is proposed that the cone is so blunt that as
it is introduced the periphery of the intersection of the cone with the free sur-
face shifts over the surface at a velocity greater than the speed of sound in the
liquid. Under this condition the shock wave arises which cuts off the region of
disturbed motion from the liquid at rest. It is proposed that the shock wave does
not depart from the line of intersection of the surface of the cone with the free
undisturbed surface of the liquid. The shock wave front will be an axisymmetric
surface. Since the penetration pattern has axial symmetry, hereafter we shall
limit ourselves to investigation of the motion in the meridional plane Oxgyq (Fig-
ure 1.48).

Figure 1.48.

The origin of the cartesian coordinate system Oxgy, is taken at the point of con-
tact of the apex of the cone with the free surface of the liquid at the time t =0
(the beginning of penztration). In Figure 1.48 the line AA;B1B corresponds to the
front of the formed shock wave. The horizontal free surface of the liquid to the
left of the point A and to the right of the point B for the given statement of the
problem has no influence cn the region of disturbed motion of the liquid. The
points A and B are shifted along the free surface at a velocity V = vy ctg B. The
angle of inclination of the shock wave front o tc horizontal at the point A is de-
termined from the law of formation of a plane shock wave. Indeed, the shock wave
froat beginning with the points A and B will not be rectilinear, for penetration
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of an axisymmetric configuration takes place. Here a study is made of the problem
in the linear statement. The penetration of the cone in the nonlinear statement
of the problem will be considered below. It is proposed that the penetration
takes place under the condition

- v, € a, (17.1)

- V =vy,ctgp >a. (17.2)

The region of disturbed motion on penetration by this come will be cut off from
the liquid at rest by the line of the weak wave consisting of the straight lines
- AA, and BB; tangent to the circle of radius at with its center at the origin of
the coordinates and the arc A;B; of this circle. In the plane of self-similar
coordinates x = xg/at, y = yp/at, this region is found in Figure 1.49. The indi-
cated circle is the boundary of the region where diffraction from the apex of the
. cone is felt. From the conditioms (17.1) and (17.2) we find that B << 1 and, con-
- sequently, it is possible to carry over the boundary conditions to the plane
xg = 0. Then the solution of the problem by definition of the potential of the
disturbed motion of the liquid in the cylindrical coordinates xp, yp, © reduces to
solution of the equation
Po P 1 g 1 o (17.3)

+
0x% 6y§ Yo O atan

under the following boundary and initial conditions:

oo 9| o o
S el o= for 0y, < yo, 0O 2m, (17.4)
v, =2 =0 for g >y, 0<6<2m,

0xy |x=0

p=2_0 for t=0, (17.5)

ot

0

here yg(t) =V .tz vyt/g, for tg B = B.

52

Al Bi
X

Figure 1.49.
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The solution of the system (17.3)-(17.5) by the method of the delaying potential
in the investigated case is written in the form

PO ()

1 - on (', )L AL

® (%0, Yoo t) = — do — : (17.6)
o oj § VT 20, Lot

where

: t’=t-—%]/x§+y§+§’—2yo§cose

Since vy = v, then

0,
b3 dy;
L]
0 _ S oy (17.7)
of W VAT R+ — 2ok cosB

and y’g is determined from the formula

% =-$;_ [t - —;- V 2 + 4+ (90 — 2yp40 cos® ] :

Hence,

M
— — f—
Yo o [a My, cos8 + (17.8)

+ V(at — My, cos )% 4 (a2 — x5 — yb) (M* — 1)] )

where M = (v,/aB) > 1.

Differentiating (17.8) with respect to time, we obtain

(17.9)

do ___Ma [, + M (Mat — yq c056)
M—1 V(at = My, cos B + (@ — 22 — 3 (M — 1)

In the dimensionless variables x = xolat and y = yO/at these formulas assume the

form

SHo_ M 17.10)
el [1— Mycosd + R], (

dy, ___M [li M (M— ycos) (17.11)
adt M —| R ’

where

R=V{I=MycosOF + (I — 2 — %) FE—=T1) .
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Let us introduce the following two integrals into the investigation:

n ?
= [ L=Mycosh _Qj_l:ﬁﬂﬁ'_de
Ql“s R dev Qa— ) R ’

where

L+ V(i—2—) (1= M)
My '

Y = arccos

A simple investigation of the solution of (17.6) shows that in the region of dis-
turbed flow the (excess) pressure p = -p3¢/dt is expressed by the formulas:

= May,

o= Pm(“—Qz) for x4yt

(17.12)

p=-—p M.‘w“) Q for xX*+yP>1.

x(MI—|

At the point B (x = 0, y = M) behind the reflected wave the pressure is defined as

pp — Pzl
B = VrA—/lg-:—r-

Taking this into account, it is possible to represent formula (17.12) in the fol-
lowing form:

p M \
S e T TEywer Q) fer Al
(17.13)
M for xz4 y2>1.
ps ny ME—1 Q y>

In Figure 1.49, the pressure distribution along the generatrix of the cone calcu-
lated by formulas (17.13) is presented for M = 3.73. According to §15, formula
(15.17), the force acting on the cone in the vertical direction is

F = npavj(ctg? p) £*.

On the leading wave the equation of which has the form

y=—xctga + ; (sin a= —jt’——) (17.14)

with the help of formulas (17.6) and (17.12) we obtain
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- (cos @ ~- x) .
b 7=t ]/2 ysmza =l (17.15)
p= pavy ‘/2 (cosa —x) .

cosa ysin2a

Here let us point out that by analogy with the two-dimensional case (see §11) from
the formula

Sirla-_—.—l—=—ap—
M Yy

and from the condition (17.1) it follows directly that o >> B.

Thus, in the given linear statement of the penetration problem the Mach angle o is
large by comparison with the angle B. In the special case o = /2 (M = 1), for-
mula (17.12) gives

P pavo(l—.t’—ay’) for x4yl p=0 for x*+y3>1.

20—y *
Let us note that formula (17.6) defines the velocity potential also in the case
where the penetrating axisymmetric body has a deformed line deviating little from

the Oyy axis as the generatrix. The penetration velocity here also can be a vari-
able that satisfies the condition (17.2).
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818. Nonlinear Problem of Penetration of a Compressible Liquid by a Blunt Cone

Here a study is made of the vertical symmetric entry of a blunt cone with constant
subsonic velocity vy into a compressible liquid half-space. The expansion rate of
the radius of the circle, which is the line of intersection of the cone with the
free surface, is greater than the speed of sound a; in the undisturbed liquid.
Under these conditions, as was noted in §17, a shock wave is formed in the liquid
which cuts off the region of the disturbed motion from the liquid at rest. It is
Proposed that the shock wave does not depart from the line of intersection of the
€one with the free boundary of the liquid. On the basis of studying the corre-
Sponding linearized problem, it is possible to propose that the shock wave in the
meridional cross section is a curve consisting of two lines AA, and BB, differing
little from straight lines and joined by the curve A;B; under the apex of the cone
(Figure 1.48).

In the meridional plane x,0y, the origin of the coordinates is placed at the point
OF contact of the apex of the cone with the free surface of the liquid at the be-
glnning of penetration. The Oxq axis is directed vertically downward in the direc-

, tion of the velocity vg; the Oy, axis is directed along the surface of the liquid
at rest, to the right.

In the investigated axisymmetric problem the motion of the liquid is self-similar.
In the plane of the self-similar coordinates £ = xo/t, n = y,/t, the picture of

the motion is illustrated in Figure 1.50. The lines AjA,, BB, in this figure de-
- Note sections of the boundaries of the region of effect of the diffraction of the

- apex of the cone. The motion of the liquid is determined from the system of quasi-
linear equations (1.9) under the corresponding boundary conditions. This system
?f equations, just as the second-order partial differential equation equivalent to
it (1.10) is of the elliptical type inside the region where the following condition
is satisfied (vg» vy are the velocity components with respect to the x3, yo axes):

(O, —8)2 & (v, — < a2, (18.1)
This region coincides with the region of effect of the apex of the cone [14].

When the left-hand side of the inequality in formula (18.1) is larger than 32, the
indicated equations of the hyperbolic type and the corresponding characteristics

are real. These characteristics are represented by the formulas (1.14) and (1.15).
The problem was investigated in this statement in [19, 14, 23]. The condition that
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the equations are hyperbolic is satisfied after the sections AA, and BB) of the
shock wave. As was noted above, these sections are almost rectilinear, and, con-
sequently, the flow behind them can be considered potential. From the results of
the first section of this chapter it follows that in the case of potential motion
in the region where the condition

(v, =82+ (v, —M)* >a, (18.2)

is satisfied, the characteristics of the equation of motion of the liquid are rep-
resented in the form

( ) C Wxa/ T =@ (18.3)
I R 7

dU + ny1dV + _;‘E_[_ﬂ’. (18.4)
at—(p L}
8
§
Figure 1.50.
In these equations the following notation is introduced:
B U=v,—% V=u,—n W=U+V2 (18.5)

Let us note that the problem investigated here is analogous to the problem of
shock wave diffraction at the apex of the come [14, 19, 23]. On the basis of sym—
metry of the problem let us consider the region of real characteristics to the
right of the Of axis (Figure 1.50). Let o be the angle of the shock wave AAy with
the horizontal. This angle along the shock wave is a variable. In the region
AA A A where the effect of diffraction on the apex of the cone is not felt, using
the characteristics of (18.3) and the conditions on the shock wave it is possible
to construct the flow parameters and the section AA; of the shock wave. Let us
denote by D the velocity of the shock wave. From formula (1.23) of the first sec-~
tion it follows that at any point of the shock wave in the plane £, n the follow-
ine equality exists

D =Ecosa -+ nsina. (18.6)

The equation of state of the liquid will be taken in the form already used previ-
ously in the section on the nonlinear problem of penetration by a wedge. The con~
ditions on the shock front at the point A are written as follows (Figure 1.50):
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2
Pr— Py =£?a_0‘ [(.”.&.)" _1]- P1— Py = poDuy,

n Po
PoD =0 (D—1y), (18.7)
— cos
! ® cos@—p)
sina
D=1, tgB

Here B is the angle of the generatrix of the penetrating cone with the free sur-
face of the liquid at rest, p;, p;, V) are the pressure, density and velocity of
the liquid behind the shock wave at the point A; pg, pg, ap are the pressure, den-
sity and speed of sound in the liquid at rest. The last equality in the system
(18.7) follows from formula (18.6). Five unknowns at the point A are defined from
the five equations in formula (18.7) (a is the least angle):

a, D, P1r Pr1r Y.

let us note that at the point A the parameters of the liquid, the velocity and an-
gle of the shock wave are determined from the same equations from which these pa-
rameters are determined at the convergence point, on penetration of a compressible
liquid by a blunt wedge with the same apex angle. Thus, for the wedge and the
cone of identical apex angle at the point A the liquid parameters coincide. Fur-
thermore, the flow is defined using the characteristics just as for supersonic
steady-state motion of a liquid. The method of constructing the solution coin-
cides completely with the method of solving the problem of reflection of the shock
wave from the apex of the come [14, 19, 23]. From the point A the element of the
shock wave AM; is plotted at an angle o defined from the system (18.7), and the
values of the parameters of the point A are carried over to the point Mj. From
the point M;, the characteristic (18.3) (its element) is drawn, which intersects
the generatrix of the cone closer to the point A. Let us denote this point by M,
(Figure 1.51). The speed of the liquid at the point M, is found using the bound-
ary condition on the generatrix (the normal component of the velocity of the liq-
uid on the generatrix of the cone is equal to the normal velocity component of the
cone) and the corresponding equation of the characteristic (18.4) in which the
differentials are replaced by finite differences. The speed of sound at the point
M, is determined from the Lagrange integral (1.27). Let us introduce the speed of
sound a:

2 = (_de_) LU (_P_\"_ (18.8)

Then this integral in finite differences for any two close points 1 and 2 will be
written as follows [14, 19]:

@ g—d (18.9)
i—ll = 22 . *"Sl(vzx—le)+ﬂx(”zy"u1y)-
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Figure 1.51.

Formulas (18.8) and (18.9) define the speed of sound and density at the point M, if
the parameters of motion at the point M; are known. The pressure at the point M,
is determined from the equation of state of the liquid

p—Dy= poch [(.P_)"__l]_ (18.10)

n Po

From the point M,, an element of the characteristic (18.3) is drawn to the inter-
section with the continuation of the segment of the shock wave AM; at the point Mj.
The first three equations in formula (18.7), the equation (18.6) and the condition
along the characteristic MpM3 which we obtain from (18.4) replacing the differen-
tials by finite differences are valid at the point M3 at the shock wave. The five

R | obtained equations define five unknown parameters on the shock wave, including the

_ angle a3. For further solution of the problem from the point M3 the shock wave a
is plotted at an angle aj. During the course of constructing the solution, an-
other problem of determining the parameters at the intersection point of two char-
acteristics emerging from two close points at which the liquid parameters are al-
ready known, is encountered. This problem is solved by the usual method. Thus,
the flow behind the shock wave is defined "step by step" in the region of real
characteristics.

As an example, the parameters of motion of the liquid are defined by the indicated
method for penetration by a blunt cone at eight points shown in Figure 1.51.

The calculations were performed for the following data. The penetration velocity
vg = 397 m/sec, the angle B = 5°.

n = 7.15, pg = 101.94 kG-sec?/m"*, aj = 1,515 m/sec.

The results of the calculation are presented in Table 1.2. From the table, the
slow variation of the parameters of motion on going away from the point A is obvi-
ous. The angle of inclination a of the shock wave varies insignificantly so that

the shock wave remains almost rectilinear. This is in agreement with the results
of the solution of the problem in the linear statement.

By the method of characteristics it is possible to calculate the parameters of the
disturbed motion to some boundary close to the line which is defined by the equa-
tion

(V=8 + (v, —n)* = a’.
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Table 1.2

' A | My I M, I M, l M| M, l Mol M| oM,
13 m/sec _ o] 22,8 5,3|75,5| 17,3 | 229,6{ 49,7 | 139,6] 425,2
n m/sec [4538 |4500 |4477 {4412 |1340 |4155 {3970 (4063 3830
Ux m/sec 377 | 377 | 377 | 375 377 ;371 | 345 | 358 | 357
vy m/sec 227 | 227 | 226 | 225 224 221 | 218 | 219 208
a m/sec |2877 |2877 (2873 (2867 [2866 [2845 |2816 (2831 12776
D m/sec {2338 (2338 | — (2333 | — (2322 | — | — 2285
D 1,232] 1,232} 1,231| 1.230] 1.230| 1,227 1,223' 1,225/ 1,218
P, kg/cm2 10490 {10490 |10440 {10370 {10370 |10140 | 9830 | 9990 | 9330
a 31°01| 31°01] — | 30°56| — | 30°46| — — | 30°15

In the diffraction region the parameters of motion of the liquid and the corre-
sponding section A;B; of the shock wave remain unknown (Figure 1.50). The defini-
tion of the motion in this region encounters difficulties of the same nature as
when determining the motion between a blunt body and the departing shock wave in
the supersonic steady-state flow. 1In the case of penetration investigated here
(just as in the problem of reflection of the shock wave from the apex of the cone,
the problem is still more complicated by the fact that the solution obtained in
the diffraction region must fit with the solution obtained by the method of char-
acteristics at a finite distance.

The effect of diffraction leads to the fact that beginning with the points A, and
B, along the generatrices of the cone in the direction of its apex there will be
further, more intense continuous decrease in pressure. Its minimum is reached at
the apex of the cone.

In {27] the approximate solution was obtained for the problem of the diffraction
of a shock wave of constant intensity from the apex of a blunt cone. It is demon-
- strated that in the self-similar plane £, n in the diffraction region the pressure
on the cone in the section A,C (Figure 1.50) decreases by a parabolic law as a
function of the distance from the apex of the come. In view of the complete anal-
ogy of the mathematical statement of the problem of reflection of a shock wave
from the apex of the cone and the problem of penetration of a compressible liquid
by a blunt cone investigated here, it is possible to expect that the pressure will
vary similarly also in this problem in the diffraction region along the gemeratrix.
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§19. Impact of a Rigid Cylinder With the Surface of a Compressible Liquid

Let an impact take place at the time t = 0 with a velocity vy << a between an abso-
lutely rigid circular cylinder of radius r, with flat front tip and the free sur-
face of an ideal compressible liquid occupying the lower half-space z > 0 (Figure
1.52) [23, 33]. Here a is the speed of sound of the undisturbed liquid. Under
this condition, as is easy to demonstrate, for the initial time interval At - ry/a
where the compressibility of the liquid is significant, the problem will be linear,
and it is described in the cylindrical system of dimensionless coordinates rjzj by
the following equation and conditionms:

g 00 L 9% T .o_0 for r,>1, 2 =0;
_ 0rf+r10r1' azf—arﬂ ? ! ra '

@ _yt)r, for 0<n<l, z=0;

0z, (19.1)
- % _ 0 for 1t1=0
=% = -© ’
at r z
= = = ==
* ro n o Ty
f"a
Al A r
|
¥z

Figure 1.52.
Here ¢(r;, z), 1) is the potential of the disturbed motion, v(tr) is the penetra-
tion velocity. Hereafter, the subscript 1 will be omitted on the dimensionless
independent variables. This linear statement gives a proper solution at all points

except the small region at the edge of the disk where as a result of discontinuity
of the direction of the velocities, the latter must have a singularity.
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In the problem the force F(t) is found which acts on the disk at 0 <1< 1.
The Laplace transformation [34] with respect to T is applied to the system (19.1):

Mo, o 0

— 2
ar? " ror T 923 —p(D (Re p>0)»
O,0=0 for r>1,

(19.2)

é0
[ - ] =V({)r, for O0<r<Ll.
o0z 2=0

Then, applying the Hankel transformation to equation (19.2) [34], with respect to
r, it is easy to obtain for z = O:

1
g Dm0y (r %) rdr = — ———— X

Vor+ 2

(19.3)

0
x [55 (_%‘:L)Z_O Jo(r x)rdr+ V(p)roS J,,(rx)rdr},

- In (19.2) and (19.3) the following notation is adopted:
Ja(r x) is an n-th order Bessel function,
Vip)=v(r), O, 2 p)=9(r 2 7).

The reverse Hankel transformation for (19.3) with replacement of r by p for p > 1

gives
S (ﬂ> rdrS Jy (rx) o (px) —=25— =
P By v (19.4)
3 dr
==V (p)ryg\ J J, (xp) ——.
®) OS ()0 (10) —==
) It is easy to demonstrate that
0 btico
: (holondotm —220 = — [ 22,
. v P’J.-Xl b1 o .Vp!_sﬂ (19.5)
% d . b+'lx: d
J () J, (xp) ——eee = K, (sp) I (s) —=—.
05 Lo ) =t = Jm e

Here 0 < b < Rep; K,(x) and I,(x) are the MacDonald and Bessel functions of an
imaginary argument, respectively, of n-th order. The branch yvp2 - s2 is selected
so that
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Rel/pf—si>0 for 0< Res<Rep.

a(s)-_—[Ko(s’)[o(sP) for r>p,
Ko(sp) Iy (sr) for p>r.

Substituting the expressions (19.5) in (19.4) and making the substitution of vari-
able s, = s/p, we obtain

(2 rar(ogsds _
0z [z=m0 4 Vi—s

(19.6)
- ===V EKO (spp) 1 (5P) 7"—_7
— S../L @ '
R i
/ m= ==
/
Figure 1.53.

Here the subscript 1 on s; 1s omitted. The loop L is shown in Figure 1.53. Now
it is easy to note that_the integration loop in (19.6) can be deformed along the
section of the branch vl - s?, as shown in Figure 1.53. Then it is possible to
apply the asymptotic expansions of the cylindrical functions for large values of
the arguments, making one significant simplification.

- Let us imagine

- In(‘?)=

|-

(— i) [HD (gi) +~ HP (qi)] (g = sp, spr, spp).

Here Hr(lj)(qi) is the j-th type, n-th order Hankel function. It is easy to note
that the function H.[(ll)(qi) gives the delay factor exp (-2q) by comparison with
HT(IZ)(qi). From the shape of the deformed loop it is obvious that this factor sat-
isfies the inequality |exp (—2q)] < exp (-2Rep). Cons>oquently, the function
Hél)(qi) makes a contribution to the solution of (19.6) in the form of secondary,

tertiary, and other diffraction waves.

For the inverse Laplace transformation these terms appear only for t > 2, which is
excluded by the condition of the problem. Consequently, instead of I,(q) it is
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necessary to substitute the function 1/2 (-i)nﬂéz)(qi) in (19.6) and use its
asymptotic form. Then it is easy to see that for the first approximation with

- respect to 1/p, we obtain the following, if we deform the loop to the former posi-
tion after application of the asymptotic form):

o —_ oSPr=3pp r eSP—spp
— rdr\ ———ds = —-2V — ds.
5( 3 )I=OV ) YT P (p).j sYT—= (19.7)

Let us assume that

(;i) ~M(p—1B for p—=1,p>—1.
Z Ji=0

Then [35]

Y (s, pleP~Ms'—F  for s—>00,

(22

¥ (s, p) = % )z-so

e Vr dr.

—L’js

Here M; and M, are constants. Applying the Wiener-Hopf method to equation (19.7),
we obtain (Figure 1.53)

LoD oy L0V ] -0
2B s TP | gy =0,
- ZH Viss | mVT=s o (19.8)

Using the fact that the first term in brackets of the expression under the inte-
gral sign (19.8) is an analytical function in the half-plane Res < 1, from (19.8)
it is easy to obtain

¥ (s, p) = V(p)% (VT=s —1)yes*. (19.9)

If we find the second approximation of Y¥(s, p) with respect to 1/p, then instead
of (19.7) it is necessary to take

0

. — . Spr—spp
j(ao) Vr drj——————ep - ds =
) 02 | zm0 / Yy1=5 (19.10)
o £5P—3PD 3 o
=V (1— —
p ‘p)§ sYyT—=¢o 8ps 8psp )

It must be noted that in the expression under the integral sign of the left-hand
gide of (19.10) in the term 1 + y, the value of y has been omitted
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1 1

8psr 8psp

This is done for the following reason. In order to find the term of the second
approximation it is necessary to multiply both sides of the complete equation
(19.10) by exp (s'pp), integrate with respect to p from 1 to infinity and deter-
mine the second term in the asymptotic expansion of. the left-hand side with re-
spect to powers of 1/p. It turns out that the value of Y has no influence on this
term; it is related to the terms of higher order. This 1s easy to demonstrate if
we substitute [3¢/az]z=0 found from (19.9) in the left-~hand side of the complete
equation (19.10)., Then the result of integration of the terms related to y will
give a valve of the third order in the expansion with respect to 1/p.

vy Thus, after repetition of all the arguments analogous to the case of the first ap-
proximation for (19.10), we obtain -

¥ s, p)=e"’ro—v‘-?-[1/l——s— 1 T7:”—(1--1/1—9—

(19.11)
1 ——
—‘-4—;1/1—_5}.
From (19.11) it is easy to obtain
' F (22 _ oy (= e
5( < )Mrdr_ - V(p)[ T+ tol ’)]. (19.12)

Then frem (19.3) and (19.12) we obtain:

Sy [ L1 s
[ @emorar = pwm[ Tt 8p,‘+o(p-)].

- F(t)=—2nrpa S (%)Mrdrx
~ nripa [u(z)—of v(x) dx +§-:—Dfu(x) (t—x)de.

If the cylinder has large mass, it is possible for 0 S T < 1 to set v(t) = vy,

Then with accuracy to 0(13) the following is obtained

F (%) = nr§ pav, (l-—‘r -;--—;- r’)

Analogously, considering the following terms of the asymptotic expansion, we ob- =
tain
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= nrl — o, 2 . T ok (19.13)
F(t)_mopavo[l T+ 5 o+ ym + ™ ‘0(1:)].
1
S
05
0 TN
™~
a (9

025 g5 0%

Figure 1.54.

The function (19.13) is represented in Figure 1.54, where
- F (x)

Fo=
g pav,

In [36] a study was made of the problem of impact of a cylindrical body against
the surface of a compressible liquid in the approximate statement considering the

- nonlinear effect of the liquid medium and elastic properties of the penetrating
cylinder. As a result, the following relation was obtained for the maximum pres-—
sure at the time of impact:

p %D
p= oD

+
/' pE(—0)
V (1+0) (1 —20)

- where D is the velocity of the shock wave in the liquid, pj, E, o are the denmsity,
the modulus of elasticity and the Poisson coefficient of the cylinder material.

4
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§20. Impact of a Cylindrical Elastic Shell With a Liquid Filler Against the Sur-
face of a Compressible Liquid

- A study is made of the impact of an elastic thin-walled shell of circular cross
section, radius R, thickness h, with flat leading tip and liquid filler against
the horizontal surface of a compressible liquid at rest occupying the half-space.
The velocity of the impact is directed along the axis of the shell perpendicularly
to the surface of the liquid.

Figure 1.55.

At the time t = O normal impact of the leading tip of the shell, which is a rigid
disk of radius R and mass m against the surface of the liquid (Figure 1.55). It
is required that the stressed state of the shell be determined for small values of
the time considering the filler--an ideal compressible liquid. The investigation
of the problem of impact of the cylinder against the surface of the compressible
liquid was made in the preceding section. If the depth of penetration of the disk
U;(t) and its velocity U, (t) are represented in the form

Uty =-—ot+U(), U(t)=—1v, +0U(), (20.1)

for t the asymptotic value of the force of the resistance f of the 1iquid can be
written as follows:
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t
- f(t)=nR’pa[v,,—U(t)——%(uJ—XUdr)-{—
0 (20.2)
t
LA [ Coe—
. W[ ‘ 5U(t r)dr“.
0
In formulas (20.1), (20.2), vq is the initial velocity of the impact, o and a are
the density and the speed of sound in the liquid at rest into which the shell pene-
- trates. The additional mixing of U(t) occurring as a result of the forces of re-
sistance to penetration, the elastic forces of the shell at the front tip and the

pressure of the liquid filler is subject to definition during the course of solu-
tion of the problem.

Y v
1) ] u =

7, 2 va VIO T TS AN
—> o
p—

X

— Y
—"70
———y
—]
e P44 TIITIIT L va|

Figure 1.56.

Now it is possible to formulate the problem as follows. An external force given
by formula (20.2) begins to act on the bottom of the shell moving with constant
velocity v, from the point in time t = 0. It is required that the stressed state
of the shell be determined. In the meridional plane the origin of the cylindrical
coordinate axes xOy connected with the body will be taken at the center of the
disk; the Ox axis is directed along the axis of the shell, the Oy axis, perpendicu-
lar to the Ox axis (Figure 1.56). In agreement with formula (20.1), the displace-
ment of the points of the shell in the axial direction u;(x, y, t) will be written
in the form

U (x, 4y, t)=—vpt + u(x, y, t). (20.3)
Let v(x, y, t) be the transverse shift of the shell walls. Since the bottom is
rigid, in the cross section x = 0 there is no transverse shift, and on the basis
of formula (20.1) we have

x=0,u(0 y t)=u(), v=0

From the equality (20.3) we obtain the velocity and deformation of the shell along

its axis:
duy du duy du
= —, o e— —— T —
ot T T ox '
Ou, _ Ou
oy oy
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The equations of motion of the shell in the adopted coordinated system have the

- form
Hey doy Oy — 0y o
e M T ¥ =P
S s 2 (20.4)
00y 1 o _ . Fu
ox + v éy (mxy) =0 P ’

where oy, Oy, Og, Txy are the stresses in the generally accepted notatiomn, p; is
the density of the shell material. The stresses are related to the deformations
- linearly by Hook's law.

We shall consider that the longitudinal shift u of the shell does not depend on
the coordinate y and, as is usually assumed in shell theory, the normal transverse
stress gy is negligibly small by comparison with the normal annular and axial
stresses 0g and oy. Let us integrate the equations of motion of the shell and the
relations expressing Hook's law with respect to small thickness of its wall
h([h/R] << 1). Then, introducing the stresses and shifts averaged with respect

to this thickness, using the theorem of the mean and the assumptions made above,
we obtain (the average values of the stresses and strains are denoted by the same
letters as deuoted the corresponding nonaveraged values)*:

dt (- plx, ¢t 6% dog u
T TR TR AT =0
2 du v (20.5)
0;=P;(GIT+/€’—R—). -
du 2 U 2 0v
- 2 —— = —
_ 0g = Dy (k Fral aj >' T =008 P
P B 1 e 1 S S S e JNpS J J (20.6)
P (A + 2p) g (1—0?) [

In these equations Oy, 09, T are the axial, annular and tangential transverse aver-
_ aged stresses, u, v are the average longitudinal and transverse shifts, A, u are

the Lame coefficients, E, o are the Young's modulus and the Poisson coefficient,

p(x, t) 1s the difference between the liquid pressure and its initial pressure,

Py equal to the outside pressure. The system of equations (20.5) is reduced to two

equations in the shifts:

* 1If we do not consider the equality

vy | T 9 (yvzy)
dy y oy

and the averaging is carried out term by term, then instead of the second equation
of system (20.5), we cobtain

60; —1—.‘_— d’u
T TR TP
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20 B 20 pLeh
- ot R ox "R poh an

n Bu 2 du 2u

G TR an

The initial and the boundary conditions of equations (20.7) will be

t=0, x>0, u=u="—“=-gti=o, p(x, 0) =0;
) t>0, x=0, m ‘;‘; = f+ 2aRha, (0, f) — nR?p (0, t);

U(O. t) = 0.

At infinity (x =
are at rest.

After the investigated small time interval, the disturbances arising

end of the shell, as a rule, do not reach the other end of the shell.

a semi-infinite shell is considered. The investigation of the shell
length does not introduce any theoretical difficulties.

The solution of the systems (20.7) is represented in the form of the
solutions of the equations

aza’u_i_gu__zu_d’v

2 om R ox YR T T
2P B o
‘ax’TR ax o

with the initial and boundary conditioms

— du dv
l=0,x>0,u=v=-a‘—-=d—l=0,
>0, x=0, m "ft‘; — [ —2nRha, (0, ) — xR (0, §), v(0,1) =0

and the solutions of the equations

2 8% K du 2 v , p(x, B g%
Qg——— —— — — Q| ———— = ]/,
oxt R ox R oot o
g B v G
' o0 R or o

with the initial and boundary conditions
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t=O,X>0, U=U= 3t = at --On

(20.12)
£>0, x=0, mL _ 21Rha, (0, )
>0, x=0,m prrai Uy 1),

On the basis of the boundary conditions of (20.12) of equations (20.11) it is pos-
sible to assume that the axial stress oy arising out of the effect of the pressure
of the liquid on the sidewall of the shell is negligibly small by comparison with
the stresses og and 1. That is, in this problem along with Oy we assume 0x equal
to zero. Then instead of the equations (20.11) with the conditions (20.12) from
the system (20.5) we obtain one equation

P B I LU LT R T S - (20.13)

dx? R hpy o’ P

with the initial and boundary conditions

du
_ _ 2 o,
t=0 x30 v="5 (20.14)

>0, x=0, v(0, t)=0.

It is necessary to add the equations of motion of a liquid in the shell which are
considered in the one-dimensional acoustic approximation to the equations (20.9),

(20.13):
w1 %
ot P Ox '
(20.15)
w1 o2

2
+
x| puad ot R ot

where py, w are the density and velocity of the liquid, a, is the speed of sound
in it. For (20.15), we have the condition:

Jw

t=0, x>0, w= -2 _0,
o (20.16)
t>Qx=Quuﬁ%=i%%Q=dm.

The basic pevt of the transverse shift occurring as a result of the pressure of
the liquid on the sidewall of the shell is taken into account further in the sec-
ond equation of system (20.15). Using equation (20.13), the system (20.15) is re-
duced to one fourth-order equation for determining the velocity of the liquid (or
the pressure in it):
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A (1 Pw dw\ _p o (1 Pw_ Pw)
- o \Tg B om ) s ( 2 o ad )
L& (L o dw) o, (20.17)
R {2 o aa
A2 [ RN
0 (ag + 7

If we consider the inertia of the shell walls and the transverse tangential stress,
then the equation (20.17) becomes the known second-order equation describing the
propagation of the "hydraulic impact' with a velocity Ao.

Equation (20.17) has two characteristic velocities

A A _ (20.18)
a CF e

The study of the asymptotic form of the solution of equation (20.17) for small
values of the time demonstrates that the wave with the velocity a, does not intro-
duce disturbances into the liquid. Accordingly (the initial period of motion is
investigated) in equation (20.17) we drop the terms taking into account the trans-
verse stress. As a result, we obtain:

N 01 FPw 0*w ¢ /1w 0w
B Pw  Pwy . d 1w dw)_
a2 ( 2 3t x? ) R? ( Ao Ixt ) (20.19)

- The solution of equations (20.9), (20.13) and (20.19) and the first equation of
the system (20.15) will be found using the Laplace transformation. Let us intro-
duce the following correspondences between the originals and the transforms:

_- u(x, t)=U(x,s), vix, 1) =V(x,s), v(x t)=V,(x,9), (20.20)
- w(x, ) =W(x,s), p(x, ) +=Q(x,9).

Here v, and V; denote the solutions of equation (20.13) and its transform, s is

the complex parameter of the Laplace transformation. After solution of the corre-
- sponding ordinary differential equations the transforms (20.20) are represented in
. the following form:

o

i o ) ) o N @
U=0 (aiv'."— = e (o) — 2 (azvﬁ— = —RfT) exp (xv,)}-

kz
V=Cw 3 {exp (xy,) — exp (xv,)},

o\ VAFrVE—B 20.21
Y2 = ula,}/fl AFVA—B, ( )

2

“'f _B ai
A=a§s“+a{ - — R::.B=4a";a§52 Sz—L—F .
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., 2 1 _ § 4 vt
V=W, exp[——:f-l/s,:“i,J- Q“p°“°‘/s:+(,,z v, (20.22)
20673 A
wo:—WorsU(O,s), (02=-;-1’I—R *‘Vz, V3= Fz—'
k
Vy = ——— {exp(—xN,) —exp (— xN,)},
N2 — N2
_ % psU0.9) l/ g+
k= a  mh St (20.23)
2 PLNApE —i_ .sz+mz
Ni= @ o= L) 1/ st

The value of C; in formulas (20.21) is determined from the boundary condition
(20.10) written in the transforms

x=0, ms?U (0, s) = F - 2nRhp,a? _':% — aR%,a, l/::u;.:: U (0, ), (20.24)

Here F is the transform of the external force f. In the general case finding the
originals of the transforms (20.21)-(20.23) is a difficult problem. However, for
small values of the time it is possible to obtain an effective asymptotic repre-
sentation of the originals. It is easy to establish that for s - = in the rough
and more exact approximations the following asymptotic representations occur*:

(s, _Vird (1 nf).

3. — 2 N,
_ Yl_l axy ay =~ a s
2 2
€ .
n?=—2-=FU (1—-0),
.25
/ s Vs’-é-ag s (4 n 2 e% a'f . (20 )
Yz:l Z‘ as al( ‘ S’)‘ T 9 T ome v
V'
- s 52 -~ ? s s k 1 )
= S BN 5 (U L By K S
g, PLEY: {ao’ 00( s’) 2( )

According to formula (20.2) the transform F of the force f acting on the end of
the shell is defined in the form

1l a1 @ 1 opeg (sy—8Y a7 (20.26)
F = aRpav, (T R s R s‘) nRpa (,SU R 4R3s |’

* For the averaging indicated in the first footnote of this section we have

a

2 a0 .
ny= ) (1 -—20').
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From the first equation of formula (20.21) for the mapping of U and its derivative
with respect to x at x = 0 we obtain:

—_— a’
U(Ov s)=cl'ilvTv’_(agY1Yi+sz+ 'R_l,')' (20.27)
'Z—Z = Cyalvi (v} — ).
Substituting these mappings and the mapping F from (20.26) in the boundary condi-
tion (20.24), we obtain the linear equation defining the integration constant
C;(s). After determining this value it is easy to see that for the asymptotic
values of (20.25) the originals of the mappings (20.21)-(20.23) are represented
by quadratures [37, 38]. We shall limit ourselves to the investigation of the
simplest asymptotic representation where the terms of order 1/s2 and less by com-
- parison with values on the order of one are neglected in the mappings. In this
case, we have (s > »)

s s FETSEE s s (20.28)
By o= — S S LN =2 N, =%
Y1 o Y P ‘/ g = 2 o

Here the mappings introduced above are simplified and assume the form

X

U FR%pavy 1 _s—a e_-a-,_’
m s s+p

-x - 20.29

ARapuekla, 1 s—a e a,‘_e o, s] ( )

m(af—a%) s s+p

v aia: U, (& L - ais]
e ——————— {] - ] .
Yopk@—d) s

The following notation has been introduced

_ «= -;—’ = T,:,_ (2Rhpa; + Rpya,). (20.30)

When the shell does not contain a liquid, the mapping V, is equal to zero, and in
the formula (20.30) the last term in the expression for B is absent. As is obvious
from the first equality (20.29) in the above-indicated approximation the mapping U
for longitudinal shift does not depend on the wave propagated at a velocity of a,.
When keeping the largest term considering this wave, the mapping U has the form

—_ s 3 - =5
R%ay, { | s—a a, s 1 s—a g }
X, 8) = — e - —_——t .
U( ) $# s+B R’(af——aﬁ) $ s+B

The mappings of the deformations and the shift rate of the shell are obtained by
differentiation of the corresponding mappings in (20.29):

144

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1

FOR OFFICIAL USE ONLY

Ou dU ow g AV oy v (20.31)
dx dx at dax dx = dx dx

let us introduce two functions into the investigation:
¢(t)=(a+5)r°'—E;Et’+ﬁ(c+ﬁ)t-—(a+ B). (20.32)
F() =(a+p)eP + aft —(a +B).

Then, going from the mappings of (20.29), (20.31) to their originals, for the ion-
gitudinal shifts, deformations and velocities we obtain:

“(x't)=mﬂ(t—ai>q>(t—i>_

m@® 1 a
- ji:;*R'_P"ELH(t_L)f(t_L) (20.33)
ox ma,f? , a, a,
T TR (= - ).
at mf a, a
For the transverse deformations
So . __mReavk H(t——i-)q)(t—i).;_
dx mp? (a% — a%) a, a
+ IRy (t=Z)e(t=2).
magP? (a} — ad) ay a /"
(20.34)
du, nRYpavpyas (t——x—)(p(t——i o
dx mpyhB? (a3 —ad) a, a, ) '

, mR%auypeay N/
—_—H (t - )q)

mphagP? (af — ad)

In the formulas (20.33), (20.34), H(z) denotes the unit Heviside function. The
transverse shifts v and v; are expressed by the formulas:

v(x, t) = 3ZReavkla, [, 0, x ot -2
0 mﬂ‘(af—ag)l k al> ( al)

—ali-2)ofi-5])

7 (20.35)
oy, ) = —TOIRA_ [y [(—L)o(r-£)—

mpé (ag —_ ug) ok 1

- —H(z__i>®(t—i‘).
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In these formulas the function ¢(t) has the form
D) =—(@+ ﬁ)g—ﬂ!_.&g’_ta_!_ ‘52_(9_2&#__5(0 ~B)t + (@ + B (20.36)

- According to (20.5) the average stresses in the shell are defined as follows:

= ' 5 0
1=p1ag<.£v—.'rﬂ-), ox=p1<a —f—+k2-ii-gl-),

ax | ox 175x R
ou v+ v,
o = pu 1 3+ 42

The pressure of the liquid inside the shell is represented in the form

= By =)=

0 o

The penetration rate of the rigid bottom of the shell is defined by the formula
(20.1)

d1=—{v.,+i'§:;g§ﬂ‘-f(f)].

Hence, for acceleration of the rigid bottom of mass m, we obtain

5%u, Pu _ nRipav, [(1—1- L)rbl_ﬁ-],
B p

of? at m

Now let the penetrating cylindrical body be a continuous elastic rod of semi-infi-
nite length of radius R. In the one-dimensional statement for the longitudinal
shift u(x, t) we obtain the equation

Pu (20.37)
ar ox2 "

Here the wave velocity is denoted by c

C2=-E—.

P1
The initial and the boundary conditions of the problem will be

t=0, u=—a‘f-=0,
ot (20.38)
t>0, x=0, — R, = f(t).

£(t) in the boundary condition (20.38) is defined by the formula (20.2). 1In the
investigated problem the mapping U(x, s) of the shift u(x, t) has the form

146

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000300100006-1

FOR OFFICIAL USE ONLY

a a?
St R
Ulrs) =2 -
8 ._k(is_ a )
§ R 4R
b M M= pav,
M puc?

(20.39)

The mappings of the deformation and the shift rate are defined by the correspon-

dences:

L w w
ox dx = ot

Formula (20.39) shows that these mappings are simple, and their originals are de-
fined without additional restrictions. As a result, for deformations and shift

rate wa have

—g':‘ =— -’%’-e” ("':') [5inN<o (t —-—:f-) + o cosNe (t—-:-.) +
+%‘- WI'I-@-’T [sin Nm(t——%)-—mcost <t—-:—)]_

w12 1= 2]

4

_ﬁv_ob_’_l__y<_i' O
¢ 4 M+ c)' ot ax '

’ = ’

=_§_ wi_.gl.i. N:ﬂ'
R pa 2

(20.40)

The stress oyx and the total velocity t'xl of the particles of the elastic rod are

defined as follows:

- du . du
O, =F— uy=—y +—,
* ax 't LI
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§21. Estimating the Effect of Viscosity on Penetration of a Liquid by Solid States
In order to estimate the forces of viscosity on penetration of a liquid by solid
states, let us use the well-developed boundary layer theory [39, 40]. First let
us consider the problem of penetration by a semi-infinite plate with constant ve=
locity vg.

dinates at the edge of the

let us select the origin of the moving system of coor
y axis along the normal to it

plate, let us direct the £ axis along the plate, the
(Figure 1.57).

3

Figure 1.57.

oordinates the equations of motion and continuity in the

In the moving system of ¢
ressure gradient are written in the

boundary layer of a barotropic liquid without p

form

w0 P (21.1)
ot T at tv dy =V oyt

ou , Odv 0 (21.2)
LT I

ot ay

ocity of the liquid with respect to
fficient cf kinematic viscosity of
Let us proceed in equations (21.1)-

Here u, v are components of the relative vel

the £ and y axes, respectively; v is the coe

the liquid which is assumed to be constant.
- (21.2) to the new variables:
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} U y.t) =vu(s, ), vy, t) = —;’-0"(3. ),

-
Vv’

bt n=
S—v,,l'n

where u and V are the dimensionless components of the velocity.

Omitting the bar over the dimensionless variables, we obtain:

- —s 0 _m O Oou o ou G 21.3

: o T e e TV P (@.3)
Q% 0, 0<s<], 0<n <00 (21. 4)
Os on

The boundary conditions for the equations (21.3)-(21.4) will be

u(s,0)=0 for =0,

u(s,00) =0 for g=oco,
For equations (21.3)-(21.4), it is possible to introduce the current function ac—

cording to the equalities:

- u=ﬂ v=—N

-, (21.5)
an ' s

Here the continuity equation is satisfied identically, and the substitution of ex~—

pressions (2..5) in the equation of motion (21.3) leads to an equation for the
current functien:

s T n O oy o oy Ay _ oM (21.6)

with the boundary conditions

$(s, 0) =0, gq—“’=o for =0,

o0

=1 for n=o0
on

Let us represent the current function in the form
= n oy 21.7
‘P(S.ﬂ)=l/5f<7f)' @-7)

Then for the longitudinal component of the velocity we obtain the expression

3 - - -
u:ji:%‘?q‘:f’(y)v y—L_ (21'8)
- on oy ©n Vs
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Substituting the expression for ¥ from the expression (21.7) in equation (21.6),
for determination of the dimensionless current function f we obtain the Blasius
equation:

of” + ff" = 0. (21.9)
The boundary conditions for the third-order ordinary differential equation (21.9)

will be

f=0, =0 for y=0,
v (21.10)

for ;:00.

The equation (21.9) was integrated numerically, by the Runge-Kutta method, by many
authors, and its solution has been tabulated [39].

By the tangential frictional stress on the plate we obtain the known expression

oy f8uN o pw (v B PO (21.11)
T“p(ay)ym— ;/'v_t<0n’)n=o Vv vs '

where p is the coefficient of dynamic viscosity of the liquid which is assumed to
be constant.

The force of frictional resistance is

Fa(t) = 2" (0) oo} VWS—%_=4F (0) pus V¥, (21.12)
0
7 (0) = 0,33206.

let us define the force of the resistance on penetration of a viscous liquid by a
thin wedge. Neglecting the pressure gradient, for small half-apex angles of the
wedge, the force of the frictional resistance F; is close to the force of resis-
tance to penetration of the plate, and it is possible to consider that it is de-
fined by the formula (21.12). In this approximation the total force of resistance
to penetration of the wedge is

F(t) = F(t) + Fx(t). (21.13)

Here F, is the force of resistance on penetration caused by the component pyy of
the viscous stress tensor. It is possible to show that the value of Fp(t) coin-
cides with high accuracy with the force of resistance to penetration of an ideal
liquid by a thin wedge. Actually, the expression for the component of the stress
tensor pyy has the form:

2 du 4 dv
— )4 —_——— e - — P — 21.14
Puy Ps (S' t) 3 a 3 dy ' ¢ )
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where pl(g, t) is the pressure in the boundary layer, u, v are the longitudinal
and the transverse components of the velocity, respectively. Let us write the
continuity equation for the problem of penetration of a compressible liquid by a
thin wedge in the linear statement

Lo e 0 (21.15)
P 'pBE+p 9y

Substituting 3v/3y from equation (21.15) in equation (21.14), we obtain the ex-
pression for the stress pyy for y = 0:

Pyl = —p1 (5, ) — -;-— = =2 (21.16)

ot "

The values of P; in the stationary coordinate system for incompressible and com-
pressible liquids, respectively, are presented in §2 and §9. On substitution

of py in expression (21.16) it is first necessary to proceed to the stationary co-
ordinate system.

The magnitude of the resistance force Fnh(t) is calculated by the formula
vt

Using equality (21.16), after calculating the integral we shall have

Fall)= S oM pofy (st + 2 2), 10,

a

1 T—m

o M) = n(l+y M>,
V1i—Mm:

M =arctg{VM’—l)
P =

I<M< (21.17)
, M>1.

As is obvious, the second term in the parentheses in the right-hand side of formula
(21.17), considering the effect of viscosity, is constant. For an incompressible
liquid (M = 0), the force F,(t) does not depend on the viscosity. Introducing the
depth of penetration H = Vot, we rewrite formula (21.17) in the form

Fall)=—- o (M) oyt (1 2 L), (21.18)

The depth H at which the second term in parentheses is 0.0l for water (v = 10-6
m?/sec, a = 1,500 m/sec, M = 1), is on the order of 10~8 m, that is, in reality
when determining the component Fy of the resistance force the viscosity effect can
be neglected. On penetration of an incompressible liquid by a wedge, from (21.17)
we hava
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Fat) = ln2pyt, 9(0) = In2. (21.19)
For this case let us compile the ratio

CEl 2/ L (21.20)
CO=F=Fo """V >

or, introducing the depth of penetration H = vgt,

F e ./ o
1) = =% = vy Bl
0 Fr  af () |/ v

The depth of submersion at which F; is 10 percent of F, is defined by the formula

H— 100x3v [f” (0)] ’
yiv, In? 2
for a thin wedge with half-apex angle y = 10° penetrating water (v = 1076 m?/sec)
with a velocity 100 m/sec, this depth is 2.5 - 10-3 m. TFor a depth of penetration
H=2.5"+ 10"! m the frictional force F will be 1 percent of the resistance force
Fp. The estimate of the effect of the pressure gradient on the frictional force

- on penetration by a thin wedge can be made by the Karman-Polhausen integral method
[39, 40].

let us introduce the thickness of the boundary layer § into the investigation and
let us proceed to the dimensionless variables by the formulas:

U= UBE (s, M), n= Pavol—h (s), (21.21)
T8), 5=, ne L
. §=Vvtd(s), s= il et

In these equalities the dimensionless parameters are noted by a bar at the top.
The velocities of the external flow with respect to the wedge are expressed in
terms of the absolute velocity of the disturbed motion of the liquid u, (see §2, 9)
by the formula

loo = Uglhoo = Up— Uy (21.22)

Let us select the distribution of the dimensionless velocity by the thickness of
the boundary layer in the form

- 2u ($) ug, (s) 2 < 21.23
e i} 5(s), (21.23)
u(s, n) 70 n ) 72, 0< <o)

then for the tangential stress on the wedge we obtain the formula

o 2B b9 (21.24)
Vi 80
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x In formula (21.24) and below the bar over the dimensionless parameters is omitted.

In accordance with the Karman-Polhausen method for determination of the dimension-
less thickness of the boundary layer §(s), we obtain the equation

s 2 b s Qu,  Ue
_ (———5Mu,)u.,3-+(3 —= = 4
o (21.25)

1 dpl '_ dum e —
+ 5 Muoo S - = Mue 4.)5“

This ordinary first-order differential equation 1s solved under the condition
§(0)=0, s=0. (21.26)

On integration of equation (21.25) usually the new desired function A = 62 ig in-
troduced.

_ The force of the resistance F¥ 1s defined by the formula

vyt -
F,.—.26$’ wdk = 4 V¥ (I, + Iy). (21.27)

Here in the case of a compressible liquid I;, I, denote the integrals:

M

M
. -._L =1 (mE)ds
1 (M. y) = M§ (M, v) = Mé( 5 (21.28)

In the case of penetration into an incompressible liquid these integrals assume
the form

1

!
- L =[50 b= —[ 208 =t
0

6(; 8 ' o (21.29)

! The dimensionless thickness of the boundary layer which enters into the term under
the integrals (21.29) is defined from the differential equation

s 2 Uy wd_é_:-(L&_._’.‘l.{_iuwdu )6:
3 15 ds .3 ds 6 5 ds
B 2u 3 (21.30)
= — 2§ = —.
- 8 ot
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In the absence of a pressure gradient the integrals I, are equal to zero. The
equations (21.25) and (21.30) were integrated numerically by the Runge-Kutta
method. In Table 1.3 with an apex angle of y = 10° the values of I, and I, are
presented for different Mach numbers (M = O corresponds to the case of the incom=
pressible liquid).

Table 1.3

M 1,(M,10°) 14(M,10°) FilFy

- 0 0,3591 0,0711 1,2955
0,01 0,407 0,0037 1,2408

0,3 0,3258 —0,0048 0,9666

0,6 0,3109 —0,0176 0,8832

0,9 0,2867 —0,0241 0,7910

1,0 0,2401 —0,0248 0,6484

1,2 0,2906 —0,0281 0,7905

1,5 0,2844 ~0,0272 0,7745

In the last row of the table, the ratio of the force F¥ calculated by the formulas
(21.27) to the force of resistance of the plate F; calculated by the formula
(21.12) is presented. Table 1.3 shows that consideration of the pressure gradient
leads to some variation of the force of frictional resistance by comparison with
the plate. It is easy to show that this difference decreases with a decrease in

- the apex angle of the wedge. However, the variation of the frictional force

- caused by the pressure gradient does not change the order of the ratio of the
forces (21.20).

The viscosity effect on penetration of a compressible liquid by blunt bodies can
be estimated using the generalized Newton's law. In §12 the asymptotic solution
was obtained for the problem of impact entry of a rigid plate (half-band) of width
2¢ into a liquid for the initial period of time (t < c/a, a is the speed of sound
in the liquid). In the initial stage of submersion, the component pyy of the
stress tensor has primary influence on the resistance force, and the role of the
tangential frictional forces is insignificant.

- The expression for pyy has the form [39]

Su 4
FE)

2 Jv (21.31)
Pyy=—P1—TP 7”‘
it is assumed that py(§, t) is the pressure known from the solution of the ex-
ternal problem (§12).

The continuity equation has the form

- Lo g% 5% g
_ a? Gt e t e dy

(21.32)

Substituting the value of 3v/dy from equation (21.32) in expression (21.31), we
obtain
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4 & c‘pl (21.33)
(Puglymo = —Pr— 5 7 5~

The magnitude of the resistance force for vertical penetration of a plate of width
2c with constant velocity vy is

2 at
8 v (" dp at ,
Fn(t)=jp1d§+—"— —‘-d§=2pavc(l——)-,~
3 8 a[ o ’ % (21.34)

+ 2py, 0t
3 a

It is possible to assign the following form to the formula (21.34):
at 2 v c (21.35)
_ -2 -, <t —.
F,,(t)_.2pavoc[(l =)+ ac]. <<
For t = c¢/a, from (21.35) we obtain:

- F(t) = L2z
() = 2pame | -+ 2 2],

ac

For a plate with a width on the order of one (2c¢ = 1) penetrating water, the value
in brackets in formula (21.35) has the order [(1/2) + 10‘8], that is, it is possi-
ble to neglect the forces of viscosity and set Fn equal to

Fn(t)=2pavoc<l-——;—i), 0<t< <, (21.36)

Let us note that in the problem of normal impact of a cylinder against a liquid
surface (§19) the relative effect of the viscosity on the resistance force has the

- same order as in the two-dimensional problem of penetration of the plate, and it
can be neglected.

The solution of the problem of vertical penetration by a thin cone obtained in §7
indicates that the cone introduces a weaker disturbance into the liquid than a
thin wedge with the same apex angle and penctration velocity. The estimates anal-
ogous to the estimates made in the two~dimensional case indicate that the magni-
tude of the force Fy(t) coincides with great accuracy with the magnitude of the
force of resistance to penetration of an ideal liquid by a thin cone.

For determination of the tangential stress T and the frictional force Fr it is
necessary to solve the problem of the boundary layer with the external flow veloc-
ity ux equal to

umzvo(l’_ul). (21.37)

where u; is the dimensionless velocity of the disturbed motion of an ideal liquid
on the generatrix of a cone on the order of o(y2) (§7). If we neglect the small
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addition in expression (21.37) by comparison with one, we obtain the problem of
the boundary layer with the velocity of the external flow equal to the penetra-
tion velocity of the come vy. In the meridional plane the origin of the moving
coordinate system is placed at the apex of the cone, the £ axis is directed alotig
its generatrix, and the y axis is perpendicular to it (Figure 1.57b). Then for
the assumption made above, the basic equations of axisymmetric boundary layer in
the plane yOf are written in the fomm

Gu_ Qu , du (21.38)
o T LI PP TR

a(rw) | "3 _ g (21.39)
& | dy ’

Here u, v are components of the relative velocity of the liquid with respect to
the £ and y axes, respectively; r(E) is the equation of the generatrix of the
cone.

Let us introduce dimensionless parameters and independent variables by the follow—-
ing formulas into equations (21.38)-(21.39):

—

4y =0, 0G0 =]/ o)

Omitting the bar over the dimensionless variables, we have

O om Ow o 0w, 00 O (21.40)
s Os 2 oy T os oy oz’
s AW g 0gs<l, 0<m<oo (21.41)
ds on
The boundary conditions for the equations (21.40)-(21.41) will be
u(s,0)=0 for n=0,
u(s,o0)=1 for m=o0.
Let us introduce the current function according to the equality
v (21.42)

v
U = —, SU=——.
d s

Substitution of expressions (21.42) in equation (21.40) leads to the equation for
- the current function
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sei’l__ss_"i_ﬁ.ﬁ“_'_("_’l)’_,.
an onds 2 oyt o
L A SN A A

on  onos os o o

(21.43)

with the boundary conditions

oy
¥Y=—=0 for =0,

o
l—ﬂ:l for m=o0.

s on

Let us assume that the current function can be represented by the equality
s 7 _N (21.44)
= — 3 -_—),
¥ 31/3 f(V VS)

then for the dimensionless current function f(z), z = ¥3 (n//s) we again have the
Blasius equation (21.9) with the boundary conditions (21.10).

The tangential frictional stress on the surface of a cone is

ek () mde . L(Z) 2w DD (21.45)
Oy Jymd  VVE s \ O Jnmo Vi Vs

For the force of frictional resistance on penetration of a viscous liquid by a
thin cone we obtain:

Ol
Fe(t) = 2ry (w84t = —— /" (0) ooyt VW1,
oS V3 (21.46)
f (0) = 0,33206.

The ratio of the force of resistance F,(t) during subsonic penetration of an ideal
liquid by a thin cone (formula (7.22)) to the force Fp is (0 < M < 1)

; 3 4% L & 21.
0 () = £l - LT (1 W)I/T (21.47)

Fe® = 470

For vy = 100 m/sec, y = 10°, the inverse of this ratio is 10 percent at a depth of
H=vst=19- 1072 m and 1 percent for H = 1.9 m. These estimates are retained
also for supersonic penetration of the thin cone investigated in §7. Consideration
of the pressure gradient by the Karman~Polhausen method leads to the following
equation for the thickness of the boundary layer:
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- s ¢ @ (s e Be 1oy, 0
(g e e BE”

3 3 ds 6 d
2 M | o y diy, s 2, . : (21.48)
- —— — Mu =~ ' = —,
5 T ) ) at

Here the dimensionless variables §, u,, p; are defined by the formulas (21.21).

- The equation (21.48) is solved under the condition §(0) = 0. The frictional
stress on the generatrix of the cone is defined by the formula (21.24), where &8(s)
is the thickness of the boundary layer on the generatrix of the cone. For the
frictional resistance force we obtain the expression

Fy = 4apuyt VVE(L + 1), (21.49)

where I, and I, denote the integrals

M M
L= 12:..-'_5 Hls)sds (21.50)

M 6§ (s)

0

For subsonic penetration of a compressible liquid by a cone (M < 1) as demonstrated
in §7, the external solution does not depend on the Mach number, and it coincides
with the corresponding solution of the problem of penetration of an incompressible
liquid by a thin cone. In this case the thickness of the boundary layer is deter-
mined from the equation

- s 2 ds e L
Sl Ug— A | ——————— ;
(3 15 ”)“‘ds'(a ds 6§ 15 s
I 2 du_ u, t (21.51)
— =— §=—:
5 s ) ’ ot
- and the integrals I1 and I, in formula (21.50) assume the form
1 ods 1 (o) sds
= (38 |8l 21.52
! f.om ! 809 @158
0

The equation (21.51) was numerically integrated by the Runge-Kutta method. As a
result of the calculations, the following values were obtained for the integrals
(21.52) and the ratio of the force F¥ to Fq calculated by the formulas (21.49) and
(21.46), respectively:

F
Fr

(21.53)

“ae

I, = 0,168, [, =—0,0038, % = 0,8294.
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