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ABSTRACT

A number of recent clevelopments in| the theory of diffraction
of electromagnetic waves, particularly those dealing with apertures
in plane conducting screens, are reviewed, The subjects treated

include modifications of Kirchhoff's theory, the theory of small

apertures, Babinet's pririciple for plane obstacles, variational
principles, and singularities at sharp edges,

For completeness, a discussion from an alternative view-
point of the problem of diffraction by aperture by Professor

N. Marcuvitz has been included in this report.
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I, Introduction

The theory of diffraction has three major fields of application: (1) optics,
(2) radio-wave propagation, and (2) acoustics, (2) and (3) the wavelengths con-
sidered are usually of the same order of magnitude as the diffracting obstacle,
while in the case (1) the wavelengths are usually small compared to the obstacle,

A further difference between these three fields is that (1) and (2) involve es-
sentially vectorial problems, while the problems | involved in (3) are mainly scalar,
However, in most applications of diffraction theory to classical optice, light
is considered as & scalar wave phenomenon (polarization effects are ignored).
For example, calculations on diffraction by aperfures are usually based on
Kirchhoff's mathematical formulation of Huygens! | principle. Experiments have
shown that this is justifiable when the wavelength is small in comparison %o the
size of the aperture. Polarization cannot be ignored in radio-wave propagation,
where the wavelength is of the same order of magnitude as the aperture, (ne way
to cover this is by using an electromagnetic equivalent of the scalar Muygens-
Kirchhoff formmla. This scalar formula may be applied to any of the six rec-
tangular components of the electric and magnetic |vectors. In order that the

8ix wave functions so obtained should satisfy Maxwell's equations we have to
introduce certain contour integrals along the rim of the aperture (Rottler).

The theory of Kirchhoff and Kottler are poor substitutes for rigorous
diffraction theory (wave equation plus boundary ¢onditions) in the quasi-optical
range bhecause they do not correctli describe the [field in the vicinity of the
aperture and the edge. In the extreme case of very long waves they entirely
fail to predict the torrect order of megnitude of the field far from the aperture
(Rayleigh).

The purpose of this report is to comment on|some of the new developments
in diffraction theory. Various modifications of |{the Kirchhoff theory have re-—

cently been proposed. Rayleigh's potential-apprgach has been extended to
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higher-order approximations, Tﬁe integral-equation technique has been developed
extensively, and varietional methods have shown their usefulness in a great number
of problems, Also, the rigorous form of Babinet's principle in plane obstacle
diffraction theory has been obtained. New insight into the character of singu-
larities at sharp edges has profoundly influenced meny aspects of diffraction
theory.

A number of importent recent developments have not been treated in these
lectures. Among these we can mention the exmct solutions recently obtained for
diffraction by circuler apertures and disks, and the Wiener-Hopf technique which
has proved its power in the solution of certain waveguide problems,

Only steady-stete problems will be discussed. The time factor is under-
stood to be exn(-iwt)., For a genersl introduction into diffraction tﬁeory,
which includes descriptions of the early work by Kirchhoff, Kottler and
Rayleigh, see!

Baker and Copson, The Mathematical Theory of Huygens' Principle, Oxford,

Clarendon Press, 1950,

Sommerfeld, Vorlesungen uber theoretiéche Physik, vol. 4, Optik ,

Wiesbaden, Dieterich Verlag, 1950.
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II Kirchhoff's_s Theory of Diffraction

Tet Z be & screen of vanishing thickmeps covering a finite part of the
plene z = 0. Oonsider & system of sources in| the left half-spece (z < 0), If
the screen were absent, these sources would produce & wave field u (P) at the
point P, The actusl field u(P), produced when the diffracting fcreen 1s present,
is the sum of u (P) and u,(P), where u, (P) 18| the diffracted field due to the

secondary sources on @ . By Green's theorem

ikr ikr
. 1 ) o)
"d(P)”-hn/{“ﬁ' ('——er )’-er —aﬁ— }dz.

. ;
where the integration is over both faces of ZP. and r is the distance from P %o

d Z:. Further, 3/3v denotes differentistion with respect to the integration-
Point coordinates in the direction of the normal to Z drawn into free space,

Kirchhoff made the following assumptions:

. du
(1) u= L) g—?’* = -5;9- on 8 (11luminnatdd side of secreen)
(14) u=0, %& =0 (on dark side of screen).

The total field then becomes, ia Kirchhoff's spproximation,

- ikr 2u ik
(2.1) K.(P)=u°(1’)+1%;/s{°r 5.59' - oaa_zf(e rr)}dz’

&

where now the 1ntegration is only over the illuminsted part S‘of Z o, While n
refers to the normel of S drawn into the shedol region (z > 0),

Serious objections cen be raised against Kirchhoff's theory[]']. In fact, as
ve let P approach a point Q on the screen Z, equetion (1) fails to reproduce the

assumed values u, and auo/an. This can be shown with the use of the following

o
1%r ikr u P ->qQ
1 3. (e ) S - I e .
hﬂ —/uo an ( r ) d. A_ R LHT az/u.o T d.Z -9* 2:{ P -:> Q__ .

theorem:
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Then the limiting values of K! (P) ere

1 éik:r auc
(2.2) RRS Aol

where C = 1 or 3 sccording as P is on the

2 °F 2
2.

Conseqnently, only if

/

will the limiting values of K, be identica

ou
0

on

o ikr

r

1

———

Ly

a7 =0

1
2u0+

this condition cannot be fulfilled for arbi
if we take two screens, one inside the othe

Then, using the above condition, we obtain

1 =y Buo
m:,s/-';" = tZ=0

where 5 (the Mdifference” between the two d
ou

It wounld then follow that 5;{0' = 0 on 3., By
du :

fore '5;1-9- would not necessarily be equal to

This shows that Xirchhoff's procedure is no

follows from & consideration of the limiting

du 2 )
) 3 1

(2.3) ¢ =2 -(-k2+—-—+————)—”!
°n 3?3yt oM

Generally it can be seid that the reason foi

theory is thet u and du/dv cannot simultene:

2

equation Au + k“u = 0 1s elliptic.

If Kirchhoff's boundary conditions on ::

l with the assumed values uo‘.

Yr 2013/07/17 : CIA-RDP83-00423R000600590007-4

12,

derk or on the illuminsted side of

(P - S)

However,
trary S and uo, ag can easily be seen

r, and subtract their field equations:

riginal screens) and u, ere arbitrary,
% uo wag arbitrarily chosen and there-
zero., Hence we have a contradiction.
t self-consistent. The same conclusion

b
4

values of axs/an,. which are

eikr

a7 .

[+

(¢}

r the inconsistency of Xirchhoffls

busly be prescribed on Z since the

?  were exact, then u and du/dn

would jump by the amounts v, and auo/an respectively across S, In fact, these

Jumps are produced by Ks’ as may at once be

(3) for the limiting values on S. This is

pretation of Kirchhoff's formula (1) in thei

verified from expressions (2) and
in accordance with Kottler's inter-

KZ8 is the rigorous solution, not

of a boundsry-value problem, but of a saltuj problem[z] .
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_ _ 5.
We shell now discuss the complementary problem of diffraction by an infinite
plene screen with a finite aperture A, Assuming the same primery fileld u s we
apply equation (1) where now S means the complement of A, To avoid the slight
difficulty that S is no longer finite, it may be necessary to assume that the
impginary part of k is positive., Now the integral over S is equal to the integral
over S + A minus the integral over A, The integral over S + A equals -, (P)
if 2 > 0 and equals zero if z < 0, Hence the total field behind the aperture, in

Kirchhoff's sense, is

ikr ikr
1 e _9° 3_ (e
(2.4) Ka.(P) = -lm,[ r m ~ Yon ( r ) } a7z .
and the total field in front of the aperture is
1 os"kr auo o) eikr -
(2.5) K, (P)= u_(P)~ E;-Z =5 - %3 CF ) tazZ .,

where n is the normal of A drawn into the shadow region (z >0).
The anslytic contimuation of the function (4) through the aperture is precisely
the function (5), and vice versa, There are no discontinuities in the aperture,

where we have

1 1 /eikr auo
Ka(P)z-iuo(P)'m A T 3n a2,
(2.6) S (2) () ,
X (P au_ (P 2 ikr
g g PO I i O T ay .
n 2 on axz ayz Lm h o T

Equation (L) is usually derived in a differenﬁ menner, nemely by applying
Green's theorem for the half-space z 2> 0 and assuming thet u and 3u/dn are zero
on the dark fece of the screen and thet in the aperture they are equal to the
unperturbed values, However, Kirchhoff 's original method is preferable since
it =voids the diffienlty that (L) does not reproduce the vealues assumed in the
aperture hut rather the values (6).

For complementary problems (A = S), 1t follows from (1), (L) and (‘_;5)

that
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Ko ¥ K, = %
Ka + K! = zuo
This is Bahinet's principls in the sense

)
It hes often been sug,zested[ ] that

term of an sccurate solution of a boundan

[5]

Pranz derived equations (4) and (8) as fq

metions. This was disproved by Franz
given by Schelkunoff.) A zero-order appi
(z > 0)., This agrees with the boundary o
wave equation is vioclated in the aperturd
by a correction term arising from the sed
term equals the right-hand side of equati

7]

the new interpretation, Frunz[ deviged

is applicable for all wavelengths. In th
an open question whether Franz's theory v

III, Modified Kirchhoff Theory

Modifications of Kirchhoff's theory
diffrection probleme*, One aim of this m
a meang for distinguishing between the tw

(I) seslar wave function venishing on a s
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or z >0

or z <0,

of Kirchhoffls theory[B],

Kirchhoff 'e formule gives the first

y-value problem by successive approxi-

and Schelkunoff{6]. In sddition,

1lows, (A similar interpretation was

oximation is u = u (z<0),u=0

ondition at the black screen, but the
. The wave equation 1s then restored
ondary sources in the aperture, This

on (4) for all P (2 2 o). By elaborating

egn interesting diffraction theory which

e author'e opinion, however, it is still

111 eventually hecome of value in practice.

heve recently been proposed for planar
odified Kirchhoff's theory was to provide
o principal boundsry-velue problems:

pft screen and (1I) normal derivative of

scalar wave function vanishing on a rigild

screen (in the terminology of acoustics).

The modiried theory makes use of the two

space, vhich are known explicitly.

principal Green's functions of the half-

* See,for example, Bouwkamp, Thesis, Gro

ningen, 1941,

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/07/17 CIA-RDP83-00423R000600590007-4



Declassified in Part - Sanitized Copy Approved for Re/lease @ 50-Yr 2013/07/17 : CIA-RDP83-00423R000600590007-4

Let u(P) denote a wave function that is regular for z > 0. Then, in the

half-space z > 0, we have Rayleigh's formulss:

ikr

(3.1) R, : m(P)w.--zl"-/‘r g—‘-’in az_,
ikr

(3.2) R,: u(P) = % /u aa—n_(° =) ez,

where n points into the hmlf-space z > 0, and the integration is over z = +0.
Equetions (1) and (2) follow 2t once from an application of Green's theorem using
the two principal Green's functions of the weve equation for the half-space.

In applying Reyleigh's formulas to diffraction problems we shall assume, 28
in the usval version of Kirchhoff's theory, thet u and 3u/3n may be replaced by
the corresponding ceometricel-optics velues: immedistely behind the screen u and
3u/3n ere tsken to be zero, &nd in the aperture they are replsced by u and
aub/an. We heve previously denoted Kirchhoff's solutions by Ké and Ké, where the
subscripts refer to diffraction by a finite aperture and by a finite screen res-
pectively. It is convenient to introduce a similer notation for the wave functions
derived from Rayleigh's formulas., For example, Ral(P) will denote the wave
function for the diffraction by the aperture A based on Rayleigh's first formla
(1). TFor obvious reasons, the corresponding modified Kirchhoff solutions will
be termed "Rayleigh solutions®.

The complete set of Rayleich solutions for the diffracted field in the right

half-space (z > 0) then becomes

ikr du
1
(3.3) R, (P) = u (P) + = ‘4"—;—- gf ay ,
1 eikr auo 4
(3.4) Ra.l(P) = on [ r 3 dZ ’
ilker
1 3
(3.5) R, (P) = u (P) - -z-n-{uo =& e,
ikr
(3.6) R ,(P) = —?1-; 4‘10 éér-; G al .

*

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/07/17 : CIA-RDP83-00423R000600590007-4



Declassified in Part - Sanitized Copy Approved for Release _@059-Yr 2013/07/17 : CIA-RDP83-00423R000600590007-4

Unlike Kirchhoff's theory, the modified theory is se]Lf-consistent[B]. The

reeson for thie is that in the modified theory it was sufficient to assume
boundery values for either u (in the cspe of 3.2) or du/dn (in the case of Rl).

In fect, all values sasumed to exist at 2z = +0, whether behind the screen or

in the aperture, are exectly reproduced by the Rayleigh solutions when P approaches

the plane z = 0 from the right,
The analytic continuation of the Bayleigh solutions Iinto the illuminated half-
space are ensily obtained. Bquations (3) and (5) remein valid for points P to the

left of the plane z == 0., On the other hand, equations (L) and (6) are to be re~

placed by
ikr o
(3.7) Ral(P) = 11°(P) - uo(-P) - m,{ — 3 ¢ >,
and
ikr
: - 1 2_ (e -
(3.8) BaZ(P) - uo(P) + u‘o("P) + ZnJ(uo dn ' r )all

respectively, Here uo(-P) means the vﬂlug assumed by u, at the reflection of P
in the plane z = 0; uo(P> ¥ uo(-P) is the zero-order reflected field in the sense
of geometrical opntics,
Iike Kirchhoff's solution, the Rayleigh solutions &re exmsct solutions of
saltus problems, The functions'Bbz and Raz Jump from 2u° on the illuminated face
of the screen to zero on the dark face,| Similarly the normel derivetives of Rsl
and Ral ‘Jump across the screen from 2 auo/an to zero. Further, the Kirchhoff
gsolution 18 Just the averege of the twd corresponding Rayleigh solutions, viz.,

=1 . -1
Ka T2 (Ba.l + 'Raz) ' Ke T2 (Rsl + RBZ)'A

while Babinet's principle now assumes €ither the form

Bal + .Rs

or the form

u, (z >0), R,4R 2110(1’) - uo(-P) (z < 0),

1l sl

=2
1

. +
Ra.z Rsz

u (z>0), R 20 (P) + u (-P) (z < 0)s

2* 82
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As we mentioned before, one aim of the modified Kirchhoff theory was to furnish
a method for distinguishing between the two principal boundary-value problems pre-
viously noted. Accordimgly, since aRal/an = 0 on the dark face of the screen, Ral
of equation (L) was proposed[9J as an approximate expression for the diffracted
fieXd behind the aperture in the acoustically rigid screen for the incident wave
u, (i.e., R, ¢2). (¢1 and ¢, are defined in equations (9) and (10).) Similarly,
Ra2 was suggested for the diffracted field behind the acousticanlly soft screen
(i.e., Razg;gl). It is obvious that these approximations will be accurate immediate-
ly behind the screen but poor in the vicinity of the aperture., The approximation
is a complete failure if it is extended to the respective  analytic continuations
through the aperture into the illuminated space, because on the lit face of the
- screen we have aRal/an =2 auo/an and Ra2 = 2uo. In fact, the reflected-field
terms in equations (7) and (8) supggest the opposite correspondence between the
Rayleigh solutions and the solutions of the boundary-value problems, We shall
now discuss this correspondence in more desail.
Iet ual(x,y,z) denote the wave function for the diffraction of the primary
field uo(x,y,z), incident from the left (z < 0), through a finite aperture in a

perfectly soft plane screen, Then [10]

u (x,5,2) - u_(x,y,-2) + @, (x,5,-2) (z < 0)
0 o 1

(309) u =
al ¢1(xs5’:z), (2 > 0)

where ¢1, defined for z > 0 only, has the following properties: (i) ¢1 is a solution
of the wave equationy (ii) ¢l = 0 on the dark face of the screen; (iii) ¢l is
regular at infinity (Sommerfeld's radiation condition); (iv) a¢l/az = 3u,/3z in

the aperture; (v) ¢l is uniformly bounddd, and |grad ¢l|2 is integrable over any
finite part of three-dimensional space, including the rim of the aperture. .

Let ua2(x,y,z) denote the corresponding wave function for an aperture in a

perfectly rigid screen. Then
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(2.10)

- 10

ub(x,y,z) + ub(x,

P, (x,7,2),

y”’z) - ¢2(x,y,-z) (2 < O)

(z >0)

where ﬁz is also defined or =z 2 0 and has similar properties as ¢l except that

(11) and (iv) should be replaced by: (1i]) ‘6}62/32 = 0 on the screen, and (ivy')

¢2 = u, in the aperture. Existence theorems and questions of uniqu‘eness will

not be discussed for the time being. Ie
rerty (v) ensures that no energy is radi
It is difficult. if not impossible,

for an aperture of arbitrery shape. The

t 1t suffice to mention that the pro-
ated by the singulerities at the rinm,
to determine the functions ¢1 and ¢2

trouble is that edither ¢] or ¢2 solves

& mixed boundery-velue problem: f and 3f/3n are given on mutwally complementary

rarte of the plane z

0 (l;ee (11) and (iv)). However, by virtue of (1ii) and (11')

and Rayleigh's formula, we have for any eperture A the following relations:

(2.11)

T
2WJ/ﬁ¢1 e ) 4 )

Yo if we &ssume thot the vaknown ve.lues

¢z

¢

o™

A

hf ¢1 and a¢2/an in the averture may be

replaced by the respective unperturbed values of the incident wave » we find that

g.~ R

1 a2’
we obtain

(3.12)

For z > 0 the approximation

1 (Z >0)o

1= Raz (=

~.
al

> 0), LY

(z >0), Yo

If this is sybstituted into equations (9) and (10)

¥ 20 -R,, (z<0)

M2 -RBR,, (z<0).

(12) is identieal with that discussed previously,

It should be noted that the approximate solutidns do satisfy the correct boundary

conditions at the screen. However, they

are not analytic functions: either the

normal derivetive or the approximate solutfion itself is discontimuous in the

aperture,

In deriving the approximetions (12) the properties (ii) and (11')’ have been
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-1l =
uged. Yet almost equally characteristic for plenar boundery-velue problems are

the properties (iv) and (iv'). The latter express thet for problem I (u = 0 on
the screen) du/dn is unperturbed in the aperture.' Starting from this point of
view we can derive & different set of approximationa[;lj. From Rayleigh's

formule (1) and property (iv) it follows that
1kr a¢1

ikr Bu
1 -2 _iL.f.__._ 1
(3.19) Ve al SRSV A 2y .
Unfortun~tely, the values of aﬁllan are not known on the infinite screen S, If
we assume thet they aré approximately equal to zero, we arrive at ﬁlzs Bal' By
2 similar reesoning in the case of problem 11, we get ¢2;= Raz’ It 18 not diffi-

cult to verify that this ultimately gives

(2.14) u

U1 ® Re.l ! a2 ¥ Raz
everywhere in free space, The approximate solutions &re now analytic snd they
produce the correct (unperturbed) values of aual/an and v, in the aperture, but
they violate the correct boundery conditions at the screen. Insofar as an accurate
approximetion to the field is more important in the aperture than in the viecinity
of the screen, the approximations-(lh) seem preferable to the opposite relations
(12).

An alternative way of showing the close reletion between the original and
modified Kirchhoff solutions is the following. Consider, for example, the
diffracted field behind an eperture. Notins that 3/3n = d3/dz' = ~3/3z for any

funection of r, we have from equetion (1) that
=R
(~,15) 2K (P) = £(P) + 57 e(P),

where £(P) and g(P) are both even functions of z, viz.,

ikr 3 ikr
(3.16) R Yo e T T =

Comparison with (4) and (6) shows that
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- 12 -

9
(3.17) R,(®) = £(p), B (P)= 3 &(P).

Consequently, the functions Ral(P) and Raz(P) are simply twice the even and odd
varts respectively of Ka(P)o
In addition, the function f(P) is equhl to the velocity potential of & mem-

brane vibrating in e rigid baffle with vefiocity distribution —auo/an; the seme
holds for g(P) and -uo. Methods &and numerfcal results of the theory of ascoustic
radiation are therefore valugble in diffrection theory also. Verious suthors
have used the modified Kircthoff theory in| one wey or eanother. Bremmertizﬂ applied
Reyleigh's second formula tc the diffractipn theory of Gaussian opties. Various
me thematicel aspects of equation (2) were discussed by Inmeberg[lil , and Scheffers Lj'b‘-’
emphasized the usefulness of this eqnation(in the Fourier forwaorthe calculation of
Fraunhofer patterns. Durand[ig] applied the Fourier equivalent of (6) to & circular
aperture gnd to o helf-plane for the case pf a plane wave &t normel incidence.
%pencerl ] compared Ral for a circular aperture (plane wave ot normal incidence)
with the corresponding exact solution of the boundary-value problem II., Experi-
mental results on the diffraction of sound|around a circulardisk were discussed
in connection with the Kirckhoff approximetions by Primekoff, Klein, Xeller and
Carstensen[;7].
In concluding this seection, we shall Priefly discuss the Kirchhoff solutions
for the diffraction of a plane wave normally incident on a circular sperture. Let
8 denote the radius of the aperture, and let the incident wave u, = eikz impinge

from the left. Choosing the origin of coordinetes at the center of the aperture,

we heve 1in the shadow region

1 3y
K, = =3 (1kU+ az) v [By, = -1k,

(2.18)

1 aU
—27\/(8 dS___,Ra2=..S-Z-,

where U 18 the velocity poteatisl of Reyleigh's piston for unit velocity dis-
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tribution.

The integsral is easy to evaluste if P lies on the z axis, The result is

/ 2.2
(1.19) R - eikz eik 7 +a

al = ’
- o 2 2

(Q.?O) Raz = eikz - ey eik vz +a ,

2* 2

7 Ta
(q 21) K = eikﬂ - ;l_ eik 224-&2 _ 2-_ z eik 22'.'8.2
RO & 2 2 5 > .

z +e

It should be noticed that these expressions are equally valid if P is on the
negative z axis., If a tends to infinity, Ral and Ka do not reduce to the inci-

kz. unless the medium is assumed to be slightly absorbing (i.e.,

dent field ei
imeginary part of k is positive),

The respective Fraunhofer patterns are also easy to calculate, let py ©
denote spherical coordinastes with the positive z axis &s poler axis. Then at

large distances from the aperture

U~ AGR) pt otFP

1

where A(9) is the amplitude of the spherical wave, We find

35 (cesind)

(3.22) (1/a)r ) = g »

I3 (kasing)

(3.27) (i/a)Aaz =~ !

Jl(kasing)

(a.2L) (i/a)AK-—- ~ten(e/2) °

where we use an obvious notation for the amplitude, and where 0 < 8 <

nvid

, &nd
Jl is 2 Bessel function,
.The amount of energy transmitted through the averture can be computed by

integrating |A|2 over half of the unit sphere. It is convenient to introduce
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the transmisgion coefficient, which is

the energy incident on the aperture in

the problem under discussion this coeff
1412 as

for the three

(3.25)

The relevant expressions

the sense of geometrical ortics,

»~
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the ratioc of the transmitteqd energy to

In

icient is

/2
5

a

|4(8)]%ein0ds .

L

[}

different cases mentioned above are

7, (2a)
(3.26) Ty=1-—-5—,
J, (2Zen) N
(2.27) T, =1+ — - / Jo(,t)dt,
(3.28) Tp = 1= 5 [0%e) s 72k + == / I (v)ag] .

Egquation (26) is & clessicel result

Tor very small velues of k& we hove

T

~

(2, 29)

These values of T are in complete disegr

bhoundary-value problems.

LNIRY ~ L0102
2(1m) ' T, 6(1@)

This is not suj

1

obtained by Lord Rayleigh.

v Ty ~—-(ka)2

pement with the results for the exact

rprising, since the Hirchhoff approxime-

tion holds for small wavelengths, Tor very large velues of ka we have
. 1 sin(2ka)-n/4)
1‘\.— ]l - = 3[2 1
: Yo (ke )-
1 1 dos (2ka-m/4)
(3- 30) T ~ 1 -t =
2 ka 2 (ka_)s/z
1 1 _ sin(2ke)-m/4)
T ~1 - (& ) e
h ka b,ﬁ (ka.)3/2
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IV. Braunbek's Modification of the Kirchhoff Theory.

An attempt to improve the modified Kirchhoff solution was made by
Braun'bek[.B] who observed that the Kirchhoff solution does not constltute
the main term (in & series of powers of 1/kn) of the exact solution. How-
ever, before entering into a discussion of Braunbek's theory, we shall
firet discuss the solution constructed by Sommerfeld for the diffraction

of & plane wave by & half-plane:

~ikpcos(8-6,_) VYZkpcos{(e-0)/2) 4 .2
5 = Ae o 0 e:l‘c: ac
o

~1kpcos (+0 ) Zepeosf(e+0 )/ 2) A 22

+ Be it ,

4]

on which Breunbek's theory is based.,

A simple derivetion of Sommerfeld's formilas is implicit in an inter-
esting paper by J. Brillouin[w}; this proof we now present.

Consider e plane wave 1ncident on & screen which cuts the plane of
drawing in the upper half of the y eaxis (fig. 1, direction of incidence

normel to edge of screen).

Screen

Fig, 1

(The restriction to normel incidence causes no lack of generality since

the proof can be generalized to arbitrary oblique incidence.) Introduce
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new "semi-parabolic" coordinates u, ¥ such that

v:ly ygv

(4,1)
u = =y +\/y2+52 z =%12+2uv

(i.e., one of the parabolic coordinates is rejected in favor of a rectangular

coordinste), which can he written in terms of polsr coordinaten as well:

v =-~pcos @

29

u = 2p cos 2

(k.2)

where 0<p<ooeand oLoLm,

Now, from (1) we sese that

3 z. 9 L3 B S I
(4.3) 3z © wkv du y [ v = uty g °
3% 3%
With the use of (3), A = — 2% T Dbecones
Ay oz

2 2 2
_3 L2 ] 3 103
(h.4) A = B2 =y {auZ T Avd }+ vtu ou °

The wave equation A:Q- + %2 E = 0 is not separable in these coordinates;
however, we follow the same procedure s we would if it were separable and

assume thet § = F(v)G(u), The wave equetion then becomes

(L.5) e[Fmac?i] + %_— !:F{GM 'alﬁ' G'} - r'c{, =0

which can be satisfied if we take T and|G such that the relations

(L, 68) L QN S

n
o

(4. 6b) 7 o 2%1‘ G'} - 714

are setisfied,
From €6a) it follows that

(b.7) P = q ek’
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and when this result is substituted into (6b), the latter becomes

L] e a. .
(4,.8) %’-;--I-%;ni.—v: ilc=a-aElog; G'W] .

It is seen from (8) that

ika
G = fo
Ve
and finally that
n eikt
(£.9) G=B/ —VE_—dt.

Using the results of (7) and (9) the solution D = F(v)6(u) becomes

n ikt

kv e
(4,10) 76 = {const.) e f —\}%— at.
Tyansforming to polar coordinetes, we ohtainz_ )
2 s~(e/2)
peos™(0/2) |
)

- 8
(k,11) TG = (const.) e ikpcos’ g-v-?‘ at

» _
and moreover, if we let kt = T, (11) becomes

Y2Kkpeos (6/2) , 42
(L,12) PG = (const.)e""‘mpcwg e aT .

If we had started with 6 ¢ Go instesd of @ (this just means 2 rotation
of the coordinate system) we would have obtained two other soluntions, and

by taking & linear combination of these two, we would have as our final

result ) ‘ (6-6
- —tkpoos (8-0_) JPEPOOPT d 72
(4.,13) FG = Ae e AT

o
£°‘+0°2
~tipoos (o ) $APOST2T | 2
+ Be ° _/ e aT

0
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which is exactly the form of Sommerfel
(The boundery conditione can be met by
and B.)

We shall now treat the two special

(1.e., ﬁl = 0 on the screen, and apz/a:

i's solution and hence verifies it.

an adjustment of the constants A

] cases referred to in Section III

n = 0 on the screen). However, we

shall use henceforth a slightly different system of coordinates; see fig,

2.
Incig

»Z

Fig, 2

Defining ﬁl end §, to be

# ikpcos (8-6 ) -1"/4
() Lae T 08 /fl o'
¢2 v:'; -

-0
vhere s, =V 2ko sin(-E-g-), 8, = =2kp sin(

is the incident wave, it can be verified

vanish on the screen.
There are other functions which saf

same time, the boundary conditions, Tk
az¢1/azz, a“gsl/az”, ete., which obvious]
vanish on the screen[zol. However, thed

the edge and hence are not sdmissible sd

lent Wave
> Z
2 tkpcos (¢+0 ) -1"/4 g 2
Car Fe 0 21T
Vi Lo
o+ ikpcos (O—Qo )

> ), and where u= e

| directly that }51 and 3p,/3n both

iefy the wave equation and, at the

s, for example, the functiions
Ly satlsfy the wave equation, also

e functiocns are too singular at

lutions; ¢1 and ¢2 of equation
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(14) are a.dmiesi'ble"ZO] .

Tor the purpose of discussing Sommerfeld's theory, two electromagnetic
fields ean be constructed from the solutions of the scalsr wave equation

previously discussed, The first field is
(b.lSﬂ.) EH = (ﬂllovo)o

which vanishes on the screen, and for which H, determined by Mexwell's

equations, is given by

ap -a¢
B = 1 1y,
ic B 0, 3z * oy )
and the second field 1is
(£.15Y) )y = ($,,0,0),

the normel derivetive of which vanishes on the screen, and for which

a¢ -3
-ix E = (0, —2 et ¢2 ).

The explicit expressions for all field components for the Sommerfeld

half-plane problem are

Igx-_-ﬁl
. 1 1, /2. _i(xp+n/i
¢281nQo-cos Ee‘o cos -2-9 ke e(p /%)
1
2

o /___2 ol (kp+m/L)
kp

in the case of iné¢ident field polariged parallel to the edge, and

R
y

1
B = ¢lcosG‘o—cos 5 0 sin

A = ¢2

1 1. /2 i(ptn/b)
~p,sing -sin 7 @ sin 59 Tep ©

1 1, /2. ilkpn/h)
. ¢2coseo + sin7 0 cos 3 9 = e

=
it

o]
]

for the incident magnetic vector parallel to the edge. For the defini-

tion of coordinetes, see Fig. 2, not Tig, 1.
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Braunbek's theory malkes use of the valyes of the scalar fields &and their normal
derivetives on the x,y plane (4.,e., the plane determined by the screen).
The non-venishing derivatives of ¢1 and ¢2 necessary to compute the field

quantities are

ad ™ 1kp
! JoE 4™ 1 1.6
5= (1ksing )ﬁz +H e cos § 8 {cos2 0 =
ap o ] ikp
—l V_@;‘ -1/4 v l,.e ,
3= (ikeind )B, -\ e sin § 6, {ainz 9 - }
(4.16)
ap n ikp
L 2 -1 /b 1,8 .
3 = (ikcosa )fy -q" e cos § 8 {sin; @ =
ag n/ ikp
2 2 =174 1,8 .
37 = (1keos8 )P, -\)ﬁ e sin § O {cos2 e = .

To caleulate the fields on the x,y plane, we let 8 = 0 and 8 = n, We
T
confine ourselves to the case of norme] incidence and hence tsake 90 =3 .

This gives us

H
(=]

(k.17) 6 =0 ﬁ

2 A" P s
kﬁz—v—ﬁe _é—_k_‘; aT ’
and
3
1 _
3z ik
6, =1
(1,18) 2 " 0 2
o=m py = 1 2 &t /H T ot Tan
V= Ve
- v, ik
d T, © 2 _\fiz_-‘-i/hep
-i’-a=ik-%£e-i/h£_ eitdt rre

Am o]
Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/07/17 : CIA-RDP83-00423R000600590007-4



Release @ 50-Yr 2013/07/17 : CIA-RDP83-00423R000600590007-4
-2 -

Declassified in Part - Sanitized Copy Approved for
We shall now discuss Braunbek's attempt to improve the modified

Kirchhoff solution for & circular aperture, As was mentioned in the be-
ginning of this éection Braunbek observed thet Kirchhoff's solution does
not constitute the main term of the exact solution. To obtain the correct
mein term, we must estimste the effect of the second integral of (3,13)
on ﬁl' (The problem for ¢2 is analogous.) Braunbek replaced %ﬁi on the
screen by the value derived from Sommerfeld's theory for the half-plane,

es if S hed a locelly straight edge. This is a prlausible assumption, be-

cause a¢1/an 18 expected to be rapidly decremsing from the edge over &

distance of a few wavelengths(confirmed experimentally in the case of ;62
by Severin and Starke [21]), and the wavelengths here considered are small
with respect to the radius of the aperture. For the circular aperture

and a normally incident plane wave, Braunbek's approximetion becomes
ikr ikr
- - ik e ik e
(4.19) f= B, = - 2% | 5 aQ_ - —2"4-——-—1, Ej(kg).w(kfﬂ a)y |,

where g ia the distence to the rim and
™
m 00 2 1/4
(1.20) §lx) = 2 o2 /bf et Tar; w(x) = &—— 1% |
Y Vx Vrx

The evelustion of Bl on the axis of the aperture is comparatively simple,

Integration by parts and some trivial transformetions yield

(h,21) Bl(O,O,z)

1/2
- e:lk:z -;/Z‘we -1"/beikyz?+a2 f°° T+ka+}_c_yzz+a§ eir aT
™ 3D .
TRk Vz +e V-*E

The integral is elementary if z = 0, At the center of the aperture Braunhbek's

o

function is exmctly equal to

(4,22) B,(0,0,0) = 1 -VZ o'*®,

When z 1s greater than zero, the integral in (21) can be expamied _oymptotically,
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In a first approximetion, the square ro¢
by its value of the integrand at the low
cept for terms of order 1/ks,

(k.23) B, (0,0,2) = oikZ e”‘w

which 18 Braunbek's result (obtained som
showed that (22) and (23) are in excells
exact values. The corresponding diffrad

Braunbelr,

2

-Yr 2013/07/17 : CIA-RDP83-00423R000600590007-4

t in the integrand may be replaced

er limit of integration., Then ex-

a

vz,

2
+&8 El +
z +8
ewhat differently). His computations
nt agreement with Meixner and IIE“.':':H;ze'ta[zzJ

tion pattern was also evaluated by

In studying Braunbek's paper, the guthor encounters some difficulties

in eonneetion with a secoad type of appy

the equation

. 1icr
1 3
'51:51174’5135(2’5—)“

given in Section III, Braunbek replaces

1 - §(xE) derived from Sommerfeld's theo

-

Braunbek claims that, except for terms g

(4.24) foxBY = 3 [.. =

B¥ are identical on the aris of the aper

1l
this to be incorrect, bectuse from the v

oximation to § In starting from

1.

2z

¢1 in the aperture by the value

ry. Then

eik:r
r

[1639) d Z]

f order 1/ka, the functions B, and

1

ture. The present author believes

alues at the center of the aperture

we can see, without any caleulation at alll, that

B¥ (0,0,0) = 1 - () ~

which differs from (22),

n
ol I

Vo=

1 eika.
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V. Yariationel Formulation of Scalar Diffraction Froblems.

A variationsl formulation of planar diffraction problems, which permits

accurate numerical evalustion of the diffracted amplitude and the trans-
mission eross-section for & wide range of frequencies, was given by Levine
and Schwinger£23]. They illustrated the utility of the variational method
by 2pplying it to the circular aperture for & normally incident plane wave,
The analysis was criticized by Copson[zh] gsince meny of the integrals in-
volved appeared to diverge. Copson, however, in deriving what he calls
“levine and Schwingert!s variational principle® in & mathematically sound

way, confined himself to the problem for ¢2, while his eriticism concerns

that for ¢1. Fortunately the divergent integrals that ocecur in levine
and Schwinger's paper are easy to eliminate without affecting the numerical
results, However hefore we treat these problems let us first discuss the
integral formulation of scalar diffraction problems with application to
small apertures,

As is seen from the second equation of (3.11), the wave function ¢2
is uniquely determined in space by the valves of its normal derivative in
the aperture. Let the unknown values of a¢2/an in the aperture be denoted
by f{x,y). Recalling that ¢2 = u, in the aperture, we find the integral

[2s]

(5.1a) J/nf(x'.y')G(x.x'.Y.Y')dx’dy' = -uo(x,y,o),
A

equation

where the kernel G is symmetric znd singular, viz,
¢ = (Y/2ms)e® . 8% = (x=x")Z 4 (y-y)?,

and where (x.y,o) is any point of the aperture.

Similarly, the first equation of (3.11) shows that ¢1 is uniquely
determined by its value in the aperture:

ikr
(5.1) ¢1=§;[-2l“-d{¢1°r dz]
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In this case we have the further condition that Bﬁl/az = auo/az in the

aperture. Since in ecustion (1) the [term in brackets is a solution v,

say, of the wave equation, we have

3p 2 2 2

1 _ 3w _ 2 85, 3.

32 =2 =~ K rE5+ 5y,
LY ax 3y

8o that the following relation is obtained[ZGJ:

Ju (x,y,o) 2 P,
(5.2) 2 3 = I:kz + é__2_+ '3—5'] $,(x',y',0)6(x,x",y,5" Jax'dy?,
ox 3y A

where (x,y,0) is in the aperture. This relation ie not a pure integral
equation; it is a differential-integrtl equation., It should be noted that
the differential operator may not be ppplied to G under the integration sign
since the resulting kernel would not be integrable, Maue [27] gave an equi-

valent form of equatior. (2), namely,

du -
(5.3) ‘gz—o' = x? /ﬁlGdZ-/(gmd ¢1 .« grad G) )_,

wvhere both gradients are to he taken with respect to the coordinates of
integration x', y'. Equstion (3) follows from (2) by a process of differ-
entistion and integration by pmarts, snd use of the condition ¢1 = 0 at

the edge of the aperturs, The second |integral in (3) is & Cauchy's -
principle velue (smell zircle around x,y,0 of radius e¢ —=> 0). A second

integration by parts is impossible because of the singularities at the

edze.
Only in a few simple cases can the differential-integral equation (2)
be transformed into & pure integral equation. If the inecident field is a

Plane wave, u = exp [ik (ax+By+Yz)], ¥ E (1—@2-82)1/2. we have

A (Xpyvo) - [k + ____+ _a_f__] (i/ky) eik(ax'—ﬁl’) .
3x? ayz

so thet (2) becomes
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(5.4) [ b (xtuyt0)e(xxt vy ) = 7 M) 4 Ny

where ;( ijs a solution of the two-dimensional wave equation in the aperture.
The function /ﬂf can be uniquely determined (except for a constant maltiplier)
for & normally incident wave (o= B = o) in the cases of the circular aper~
turetzel and the infinite slitl:zg]. The resulting equation can be trans-
formed into a pure integral equation with & non-symmetric kernel.

Let us now return to the discussion of the variational formulation of

planar diffraction problems as given by Ievine and Schwinger. 4s was mention-
ed before, the divergent integrals that occur in their paper are easy to
eliminate without affecting the mumerical results. In what follows, the
notation is suggested by that of Levine and Schwinger.

Let A (nyn') denote the amplitude of the diffracted wave, where n and
n' are unit vectors in the direction of observation and of propasgation of
the incident plane wave respectively., Further, let 8 and 8! be the angles
between the positive z axis and these unit vectors. From equation (1) it

follows that
(5.5)  Ay(an) = - (/zmcos 6 [ §,(p0e™ ™ 'ast,

where dn,(p') is the value of ¢1 in the aperture.. The integral equation
in levine and Schwinger's paper Bheir equation (2.9{\ contains & non-
integrasble kernel and should be interpreted in the sense of one of the
differentisl-integral equations (2) or (3). Let us choose Maue's equation

(3). Then

(5.6)  2m 1k cosa'e™'P = kzﬁn.n:')e(p.p')asv ./vwsn.(p')vm(p.p')as'.

where p is in the sperture and

oiklp-p'l

(5-7) G(p.p') =
lp=p ']
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If we maltiply througt in equation (6) by # y(p)(where (o) 1 the

solution for & plane wave in the direction n"), and integrate over the

aperture, there results

(5.8) 2mikcosd! ¢n,,(p)eik“'9d5= 7 Bu(p)e(p.p")P_, (p")asas"

w

oM (o )V'¢n 1 (p")6(p,p")dSas T,

The last integral appears after an integration by parts; the integrated

term drops out because bn"' like ¢n'
The right-hand side of equation (8) {
sequently so 18 the left-hand side,
side and by a similar term in which 3

uvse (5) and invert, we obtain

(5.9) Al(n“.n') = Al(-n',-n")

vanishes at the edge of the aperture,

s symmetrical in n'! and n" and con-

If we divide (8) by this left-hand

! and n" ere interchanged, and then

(P )e-ikn" pdS/ ¢_nn| (p )eikn 'pds

co88 'cosG"/ﬂn.,

- ”

yALRIG

It can be proved that the equation (9

20 ()T _a (o ")]6(puptasast

) 18 stationary with respect to small

independent variations of ﬂn' and ¢-n" abont their correct values; those

veriations which do no violate the ¢
admissible,

The stationary character of the
approximate calenlstions., In fact, a
butt-ns in equation (9) may result in
without the necessity of solving the
Scale factors are of no account since

p.

of any aperture

The same remarks arply to the plaj

in a plane screen (p

ondition ¢1 = 0 at the edge are

pxpression (9) is of importance for

Judicious choice of aperture distri-

a reasonably correct value for Al

priginal differential-integral equation,

(9) is homogeneous of degree zero in
ne-wave transmission cross-section O

erfectly rigid or soft) whieh accord-

ing to Levine and Schwinger [30] , is related to the amplitude A of the

spherical wave at large distances bdeh]

Ind the aperture in the direction of
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the incident wave by

(5.10) & =- -i—"— Im A,

Trom equeation (10) it follows that

b_(p)e~t*PPas (o)elDPas
(5.11) T;(n) = - % cos20 In j a(ple p_ (e
/{¢n(p)¢-n(p ')-k:'z Vﬁn(p) Vip_n(P)}G‘(p.p 14848

levine and Schwinger discussed the limiting form of this squation for

low and high frequencies. In the static case as k epproaches zero

ik|p=p | 2 3
(5.12) ¢ =2 P E S ; + ke Efpme | p1| 2 o O(kh):{ .
p-p p-p

Using equetion (12), we obtain the following for the denominator of (11):

Ve, V. X
(5.13) / - =81 ikV¢nV’¢_n + kz(%lp—p'| V¢nv ¢-n+ A3y
o-p'l lp-p 1

3 1 112 ! b .
+17( 8+ Zlo-p'| "V, VB ) t0(k) pasas’,
At this point we shall prove the theorem

(5.1’4) éXdy'éX'dy' V¢1(Z,Y)' vtﬁz(x ! .Y')F (va'oyoy') =

../d_x'dy'xéz(x',y')/dxdy¢1(x.y) Ar,

which is necessary for the further calculation of expression (13), We

agasume that ¢1 and ¢2 are arbitrary functions defined in the region S and
equsl to zero on the boundary of S. The left-hand side of equation (13)
can be written in the form

(5.15) /c;.xdy Vﬁl(x,y) -/dx'dy‘ V' {562]?} -, V'F Q.

However, it follows from partial integration and the condition that ¢2 =0

on the boundary of S that
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V' {87} '—/ B2

Boundary

re

/dx.'dy'

Hence, expression (15) becomes

dx 'dy

-/dxdy Vﬂl(x,y) .
S ‘
vhich can he written asg

(5.18)

Using & similar procedure on the integ

of equation (14) can be shown to be aq]

"_'/d‘.X'dY' ¢2(JC'.Y')/dXdy ¢1

If we agssume that ¥ is g function of a

then 90! = _.@=_ 9!, and thus the

is of the form |p-p'|2

Now, to continue our discussion of the

we can see that the expression for the

'¢2(x',y')

Yr 2013/07/17- : CIA-RDP83-00423R000600590007-4

(direction cosine) =

v'F,

-ﬁX'dY'ﬂz(x'.y')/dxdy v § (x,5) wF,

rel of V¢1(x,y) U'F, the left side

nal to
(x,y) v wF,
1 argument of the form (xmx')%+(y—y1)2

theorem is proved. Therefore if F

then we find, miking use of the theorem (14), that

o8, + Bl opr|Zusis - 8,6

4

p,(p')asas?,

limiting form of equation (11),

denominator becomesn

v¢ .v¢»
(5.17) [- k7 &1-?:3+%ik3 dp+o0@™]
|o-p | lp~p | v
= E3+k2Q+€§k3R:|.

The numerator of equation (11) becomes

(5.18)] fop_

since in this case # is not dependent on

term of the transmission ¢ross—-section

ilen - /(m-p')ﬁnﬁ_n- %kz

However, for smell apertures (with respect to the wavelength) ¢n=

ﬂnﬂ_n [n . (9-9'532}0‘545'
¢_n‘ = ¢
& special n, Therefore the lecding

ip given Wy
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4
(5.,19) 61(n)~-a;- kb'cosze Ej¢(p)dS] a8 k =>0

E Vﬂ(&)v'ﬁ(o 'l deSj
/ lo-p ']

which 18 an illustration of Rayleigh's )\-u law for small scatterers,

The analogous problem for ¢2, discussed by Copson[3 1] and by Levine [3 2] s
is easier since it is based on the pure integral equation (1a). From this
equation it follows that

(5.20) /Ym(p')G(p,p')dS' = -2ﬂeikn'p,

where Yn,(p") is the value of a¢2/ag in the aperture due to a plane incident
wave traveling in the direction n', The amplitude can be found from the second
equation (3,11)s

1l ~iknp?
(5.21) pynnt) = - & /¥ (p1)e™H ™ as,

and the analogue of (9) becomes

—ikn"p ikn!
ﬁn,(p)e dSﬁ_n"(p)e Pas

/11 (0)6(p,p")Y_ o (01 )aSaS!

(5.22) Az(n"’n') = Al(-n',-n“) =

which expression, again, is stationary with respect to small variations of Yni
and !ﬁ! about their correct values. In this case the variations are not res-
tricted by a condition at the edpej the correct aperture fields Y are infinite
there,

The corresponding formula for the transmission cross-section is

~1knp .. iknp
on ﬁn(p)e dsﬁ_n(p)e ds

(5023) 0‘( ) e T
2" K ﬁn(p)G(p,p')Y_n(p‘)des‘

while the leading term in the static case is given by
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[ fr(p)as]®
(5.24)  O%(n) ~2n (k > 0).
[ ¥(P)¥(p') 4o4s ]2
lo=p! |
This leading term, it may be noted, is egyal to 211(32 where C is the electro-

static capacity of a metal disk of the s shape and size as the szperture.,
The variational principle for ¢l was [successfully applied by Levine and
Schwinger [3 3] for the diffreaction of a normally incident plane wave through

a circular aperture. The correct aperture|distribution is assumed in the

form[?’hl
0

(5.25) g, = Zl af.=.n(l-p2/-'st2)n"l/2 >
n=

where the coefficients a 4 have yet to be deltermined. The denominator of

equation (9),
24 ¢
(5.26)  ® =/ [0, (0)0,,(e1)-10, ()79, (01 ]0(p,01)asas",

can be written in the form

A, (P13, (p1)

1 A a 2n o
(5.27) F = -2—,;{ pdp'ofp‘do'{dY'[k 2.(p)8 (p')- o807 <cos( Y-Y')}

eik sz-z‘pp'cos(‘I-Y' )+p'2

>

2

V’pz-?pp tcos(¥-¥!)+p!

og_  op
where we used the relationships V¢n(p)-V'¢n,Jp')= -552 55—-,11'- cos (Y-¥!') and

eik \/pz-2pp'cos(_Y-Y' Y+p 12
G = .

l/pz-pr'co:s(!-Y' )+p'2

Now G can be written in the form

e:&Ic Vp2-2pp'cos(!’-!' )+p'2 3
(5.28) = E;f JO(X\/p ~2pp! (‘08(Y~Y')+p' e
o) \-_/-;E-kz

2n Vp2-2pp' cos( ¥-¥! )+p'-2
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When we substitute equation (28) into equation (27) and use the addition theorem

for Bessel functions, the: denominator becomes
o0

(5.29) F = 211/
(o]

a
M Foso foraet [50,(008,, (01, (0) 5, (h01)
(o] 0
VA" O

~ 3% 3T Jl(XP)Jl()\p')]o

a g
However, the expression _/ pdp 55—11 Jl(kp) when integrated by parts gives us
.0

%
/apdp -é-g-,—n- J, (M) = o J; (Ap) l: -/¢n§5{p Jl(kp)} dp
o .
-jsdn %{p Jg(kp)} dp
{aan {35 00) + 203 001}
= -f¢nmJo(kp)dp.
(o}

From this we see that

a

a og  ag_, \ o
{pdq{ ptdp! '8‘52 -é—pi,l»— I () (Mp1)= X'ofapd{p'dp'%(p)fl‘n.(p')Jo(Xp)Jo(Xp').

Hence equation (29) becomes

00 2 .2 8 a
(5.30) F=2nf &)%—;:% ah [ pde/ ptdetd (A0) I (Ae)g (0)F ,(p"),
[o] - (o] (o}

which can be written finally as
o) a a
2 .2
(5.31) F = -%{x\/x K [ ode/ 0140, ()9, (p1) I (N0 I (R0

Equation (31) is the same as that obtained by Ievine and Schwinger. However,
they used a non-integrable kernel in the integral equation, and hence the valid-
ity of their procedure is somewhat doubtful. Although the present method is more
difficult than Levine and Schwinger's, it is a valid procedure.

Now, if the series expansion (25), where the individual terms are of the form
2, 2\n=~1/2
1-p /a%) / >
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- 32 -
is substituted in (31), we get a double sum of terms:
o
(5.32) = -2n [AVAZE [ [ oan(1}p2/a2yn-t/ 2Jc,(xp)]
() ()

a
= [/ pao(1ko?/ad)™ 25 (0p)]
o]

Howewver
2 n-1/2
2 n/2 a"J (xa)2 R-n+1/2)
/bdp(l“F’z/ az)n.l/zJo(Xp)" a2 / J o(kasinQ)sinOcosznGdO:- n+l/2 )
o o] (Xa)n+1/2

Substituting this into equation (32) we the
- J_l.,,(ha)d (ra) -
(5.33) F, = -n2n+mﬁn+%) [(m%)aB{m nil/2 m1/2 sz_k’é' dh,

(-)\a)n‘*m

and then writing X = kv we obtain finally

(5.34) F_= -2na(2/ka)™ " le/g)[('mrl,g)

o0
* { (v2-p)t/ 2,~(n+n) a1 /-z(kav)Jm " /Q(kav)dv.

2 142 )0-1/2

Moreover, using the equation ¢n(p) = (1-p s we have

a
/ 9,(p)ds = 2n [ pdo(1-p?/a )" 1/?

o
2
2n f /sinOcosznO#[O = na2 ME}_
o]
2

J(n+3/2)

na
n+l/2

and we can now write A (the amplitude ip the forward direction) as
p

o (2 =4l
2a 00

Z Cnn®nln
m=l n=l

(5.35)

where the coefficients Cppy 2T€ defined

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/07/17 : CIA-RDP83-00423R000600590007-4 _



Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/07/17 : CIA-RDP83-00423R000600590007-4

- 33 ~
(5.36) e = (2/ka)™™ [(me1/2) [(ne1/2)e (k)

and

(5.37) fmn(ka) =_/(v 1)1/2 -(m+n) +1/2(kanr)J +1/2(kav)dv.

°
Let us now apply small variations San to the true values of a. In view
of the stationary character of (35) we then find

o9 a -Aloo

l n = oe 0
T 2, Wl T % 2, Cman (L2000

On the other hand, it follows from equation (5) that
2 x &
(5-38) Al = =ika ;1 m -
Elimination of Al thus gives the following infinite system of linear equations

for the unknown anf:

(5'39) Z cmn n = (m = 1,2,..-).

‘n=1 ika(m+1/2)

An approximate solution of (39) was obtained by Levine and Schwinger by assuming
a =0 if n > N and solving a,,°**,ay from the first N equations of (39). The

corresponding approximate value of the transmission coefficient becomes

(So)-lo) tiN) = Re E 2 a(N)o

n=1 n+l n

It seems worth noting that the integrals (37) can be expressed in terms of
Fn = Jn+iHn where Hn is Watson's notation for the Struve function. The symmetry
between the real and imaginary parts of f i Were not recognized by levine and
Schwinger, although their expressions are easily transformed into the symmetrical

form by a partial integration.

T levine and Schwinger apparently overlooked the fact that their coefficients A and

[35] is thus equal

Dn are simply related by An = 1an. The factor C o of Magnus
to ik, so that his Table I provides at once the first terms of the power series

for A,
n
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One has
. 2a
£14(a) = - (5 - EIE) + 1}—a(1 + h%)_{ F (t)dt- 8—22- F_(2a)- 111_ Fy(20),
£ (a) = i("‘2 1_3+21@ad l/?g (t)dt - -3 F_(2a) - 25 F,(2a)
-7 -7 - ) - =3 ]
12 T TET 82 T 82 | he 1663 © 8a2 1
(5411) i, a 3 L5 1 3
flz(d) = - ;(% - 15 + 3oq " 6&?) 4 R-(.!-(l + -2-25 + ———)/ ¥ (t)dt
¢ 2o (1 2p)F (20) - = (1 15 ¥, (20,
32a ha™ ua

The infinite system of linear equati
Magnus [3 6]. He showed that, for sufficie
a, is unique and can be expanded in a con
also shown that in the NE approximation
cients of the power series for 815 esesdy
formulae were given,
for ka —»00. Owing to an error of sign i
part of Con? the conjugate values should
same error (and others) accurred in the p
the wrong definition of (X k2)1/2 when 0
table of coefficients and found complete

except for the last column. The followin

ons (39) was thoroughly studied by
ntly small values of ka, the solution
vergent power series in ka. It was
the exact values of the first N coeffi-

are obtained. Explieit recurrence

Speci.al attention was paid to the limiting form of (39)

n the definition of the imaginary
be taken in Magnus's table, The
sper by Sommerfeld E 7], who took
< A < k. The author checked Magnus's
pgreement with his own calculations,

values are taken from the authoris

A4

]

paper D 8] 3 we give one ternm in addition t¢ Magnus:
4 = - zika L+ %(ka)z + -g-i—(ka)3+ 1—25-5(ka)u+ 2—%—5-3%&&)5
1 6 323i 7 )
+ (go-h—o' - é‘]‘_‘; )(ka) uuloo (k ) +"’" : ]
3
) i(ka) + 2o(ka)e Bka)? s Ao(ka)t + 104 Dyeve
a, = - [1 + (ka) + gﬁ(ka) + gg(ka) + m(ka) + ]9
(e B B )
i(ka)7 2.2
ah—-m [l-l»O(ka)].

For the aperture distribution, an alt

ernative expansion, which is somewhat
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simpler! than the Levine-Schwinger-Sommerfeld form (39), is in terms of

Legendre functions, viz.,
00

(5.43) gy = > b B, ., V1-p"/a%).
n=o

The diffracted amplitude in the forward direction is then determined by the

first coefficient alone:
1 2
(54)ily) A) = - 5 ika‘b .

Avplication of the variational principle leadé to the following infinite system

for the unknowns bn:

o0
(5.45) D d b = -i-f{—'a 6., (6,0 = 15 6, = 0 if m > o),
n=o0

0

where

2 = (6/ka)? [(m+3/2) [(n+3/2)

m! nl gmn(ka);

(5.16) ©
g (a) = { (P12, 12(aV) T3 p(av)av.

In this case the various approximations to the transmission coefficients are

~

given by the ratio of two determinants, viz.,

€17 ¢ * * By

(5.47) t§N+1)= %%5 Imagin. part of

Eo  * ¢ ¢ BNN

in which for N = O the upper determinant should be interpreted as unity. It
may be verified that equation (L47) gives exactly the same approximations as
équation (39). The advantage of (47) is in its expdicit analytical form, which

invites a detailed study along the lines of Magnus's paper.

] ﬁf’is also simpler than the Legendre-function expansion of Levine and Schwinger [39]
btained by direct integration of the differential-integral equation (5.4)e
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Only slight changes in the preceding
cover the second boundary-value problem,
of (25) represents the aperture values of
a term with n = 0, Secondly, +A2/23 is g1

include the terms my,n = O, Thirdly, fm n

o)
(5.48) hmn(a) ../f(v2_l)-l/2v-(m+m
o

which function is related to fﬁn by Diﬂ

(5.49)

hmn(a) = (m+n--2)fmn

For example,

1 2a
ho(a) = T{ F (t)dt,

2
(5.50) L/ go(t)dt

A
2

hp(a) = 5+

hy(e) =2 G2y« L

The corresponding first-order approxi

(1)
b

variational principle.

s was calculated by Miles[hll although
Miles introduced a
the admittance Y = Z™0 = G-iB, which were

field aperture values of a¢2/az and compar

values of the transmission coefficient (t2 =

by
Fl(2ka)

ka

(P + b)Y = Pz[-

where

Yr 2013/07/17 : CIA-RDP83-00423R000600590007-4

analysis are necessary in order to

First, the series analogous to that
a¢2/az; in this series we include
jven by equation (26) modified to

a) should be replaced by

)Jm+1/2(av)Jn+l/2(av)dv,

da mn(a)‘
- %E Fo(2a),
3

j; (t)dt- —- F (20)- e (2a).
ua (e}

mation of the transmission coefficient,

this was obtained by a less powerful
n impedance parameter Z = R-iX, and
evaluated for constant and static-
and Rirchhoff

td with the rigorous

ReZ). His curves are represented

2ka

-3i Q2/ F (t)dt,

0
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(P’Q) = (1’0)’ (031) or (1,2/kaﬂ).
Again, the simplest analytical approximations of the transmission coeffi-

cient t2 (circular aperture, plane wave at normal incidence) are obtained if

we start from an expansion in Legendre functions. We now assume that in the

aperture

2
3¢ 0 P, (Y1-p"/a")
(5.51) 2.7 5 -2 :

oz n
n=o0 \ )l-pz /a2

Then by equation (21), the scattered amplitude becomes A2 = -a280 s while

insertion of (51) in (22) gives

2
A B

(5052) 5-28..- = 0 Foe) ° ]

Z Z DmanBn

m=0 n=0
where

© . =

(5.53) Dy = [ma/2) (a2 /2) Cn62)3 Opn(@)= [ ()"0 1p(@0) 3y (e,

Application of the variational prineciple for ¢2 gives the following infinite system

of ‘equations for the unknowns B :

X 2
(5.54) L DB = = 3 Omo (M = 0,1525000)0

The successive approximations of the transmission coefficient are then simply

given in close analogy with equation (u7), by
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- 38 1L

G1 ¢ » « Gy

[ ]

. 4

Gy oo« Oy

(5.55 (Nel), _ b — -
) t’2 nka Im
G'oo ¢ e GroN
GNo tee GNN

It should be noted that in the integrals (37), (ué), (48), and (53) the roots
are understood in the sense

.
(vP-)V/ 2 L3 (1?) /2, (2o1)1/2 +1(1-v¥)™ Y2 hen o < v < 1.

g mn 3 >

of Fn and the indefinite integral of F‘0
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¥I. Rigorous Form of Babinet's Principle in Electromagnetic Diffraction

Theory.

On several occasions we have discussed Babinet's principle in one form
or 2nother, Only recently has it been possible to extend this principle so
23 to bhe applicable to rigorous,electromagnetic diffraction theory. Our
representation is essentially that of Copsonf¥2,42) . In what follows,
the time fector expliwt) is omitted; as before, k denotes the wave number.

Tet (;.;) denote any arbitrary incident field, where £ stands for the
electric field vector and g for the megnetic fleld vector. It is assumed,
therefore, thet ; and'é satisfy Maxwellls equetions. Inter on we shall use
the term "complementary® incident field. This is the field defined by
(=%, %), in the order (electric, magnetic) vector. As is well known, this
complementary field also satisfies Maxwell's equetions. The complementary
field of the complementary field is identical with the original field ex-
cept for sign.,

Tirst of all we consider the aiffraction of the field (;JE) by a per-
fectly conducting plane screen (finite or infinite) of zero thickness.
Secondly, we consider the diffraction of the complementary field (<2.%)
by an aperture in a perfectly conducting plane screen of zero thickness

the aperture in the second problem is of the same size and shape &as
the screen in the first problem. For simplicity we call these two diffraction
problems complementary diffraction problems, The rigorous form of Babinet's
principle asserts that the solution of one of these spparently different
problems gives, at once, the solution of the rempining problem. We now

turn to the proof of this stetement, and to its precise form.

Tn the first problem the total field everywhere in space is given by

- Y- e > g S o~
(f+%°, 2+ H), where the scattered field (®° , B®) can be derived from the
vector potential A% of the currents induced in the screen by the incident

flow. Let I denote the surface current density vector. Then
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- o dler
A% = l/ I &— s,
[+] r
(6.1) N R - ~ N
B® = curl A%,  -ikE® k= x°A" + grad div A°,

The unknown two-compbnent vector.

= Y
I, defined only on the screen, has

to satisfy certain integro-differential equations in ordsr that the well-

¥nown boundary conditioans shall be sat

The superscript s will be omitted for

sereen's surface., For example, the ng

field must vanish at the screen. Thisg

of the screen)

dA

2A
- =
Ay

ax

(6.2)

-8, for

Similerly the x-componeat of the total

iefied at the surfnce of the screen,

all quantities evalusated at the

rmal component of the total magnetic

requires that ( z = 0 in the plane

211l points (x,y,0) on the screen.

electriec field must vanish at the

screen, Thus
ikfx(x.y.o) = szx + -aé; [?;-:4. -a:;.yl]
a2 3k
= K2A_ + ;;55- + §? 35? - gz:]
A WAY I 2%}
= kz“’x + AAx + AKf_ |- .éa.gzl (x,¥,0),

where {\ ie the two-dimensional lapla

—a
the facts that A® nas a rero z-compong

equations.
oe
2 = —
(6.3) K°A_ + AAx = 37 1

Also, from the condition thet the y-cd

vanish at the screen, we have

ce operator and where we have used

nt and (?,?) is & solution of Maxwell's

The last eqaation can be gimplified to

or all points (x,¥,0) on the screen.

mponent of the total electric field
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3¢
(6.4) szy + AAy = - a—z}- for all points (x,¥,0) on the screen.

Finelly, bearing in mind that on the screen we have

ikr ikr
1 e 1 e
(6.5) A = c/Ix r % AY e /Iy r 95

where r‘2 = (x—x')2 + (y—y')z, as = dx'dy', I = -f(x',y'), we see that

equetions (2) throueh (5) constitute a set of integro-differential relations
for the unknown current denaity ‘f.

By physical intuition we expeet these relations to have at least one
"admissible™ solution ? = (Ix' Iy) satisfying all vhysical regquirements as
to singularities possibly occurring at the edge of the screen., It is not
known whether the assumption of sbsolute integrability of_f over the screen
would entail a unique admissible solution. The integrals in (5) cannot be
proper Riemann integrals; they are improper because of singularities of I
and I at the edge, Recent work of Meixner[] Nb.ue["], and others makes it
plausible that the component of I tanzential to the edze becomes infinitely

-1/
leree as D.‘t 2

and thet the component of? normel to the edge venishes as Dl/z,
where D is the distance to the edge., Similar Pproperties hold for the field
vectors themselves, although it is not clear at present what conditions are
necessary and/or sufficient for a unique physically acceptable solution.

Ye now consider the complementary diffraction problem. There is need
for 2 proper distinction hetween the fields in front of and behind the aper-
ture, Let (—I‘TO, _15!‘0) denote the total field in the illuminated space if there
ie no hole in the sereen. Tor exomple

B
ox

'gx(x'YoZ) + gx(x'yo“z)

z < 0,
H
oy

fy(x.y.z) + fy(x,y,-z)
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-
Tet (El’ Hl) denote the total field for/z < O in the presence of the hole,

=
and let @‘., Hz) denote the total field|for z 20 (that is, behind the

»

aperture). Further let  be any two-component vector defined in the open-
ing. Define the vector -i‘d by

s dkr
(6.6) i"u=-%/xﬂ;-—ds.

Then we will show that when f = (Kx’ Ky) satisfies the proper conditions,

the fields cen be expressed ae follows:

E, =% 17
17 % - T (z € 0)
3 <> 274 =4
-1k 4 = -ik.'E.o + ET + grad div F
E2 = curl ¥ } )
- (z > 0).
+ikif'2 - k20 4 grea aiy T

YPirst of all, so long s ¥ 1s integrable, the field defined by the preceding
-,

equations in terms of ¥ vie T¢ satisfies Maxwell's equaticns in the half-

spaces z < 0 and z > 0, and it satisfies the appropriete boundary conditions

at the screen (i.e,, thet the tengentia)] electric and normel msgnetic fields
vanish), Purthermore, nc matter what 7 ig, the tangentiesl electric and normal

megnetic fields are sutonatically continuous in the aperture,

The only conditions that are not aptomsticelly satisfied are that the
normal T component and the tangential E‘component be continuous in the aper-
ture. JIn fact these components are eesily seen to be identical with the

corresponding components of the undisturbed incident field. Again dropping

the superscript 4 when we refer to valuee on the aperture, we find that these

conditions are
oF aF_

(€.8) -5;1 - -a';]" = -€, for all points (x,y,0) on the opening.
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3
o —
(6-9) kzFx + AFx - az b .
for all points (x,y,0) on the
og
= o X opening,
(6.10) kzl"y + AP = - =

It is remerkehle that these equations are precisely the same &s those for

Ax, Ay in the first problem., Assuming thet either system has o unique solu-

tion, we see thet the two mtually complementery problems ere 8imply identicel:

T_3Ow Fd _ s
FP=4,X= —_f; hence F~ = A", Moreover, if we introduce the notation
Y —tn >4 ﬁd
(Ez, Hz) = (B, H) for the diffracted field behind the sperture, we have
(6.11) F=H ang = 3° (z > 0),

and this is Babinet'!s principle in its risorous form for diffraction by
plene perfectly conducting screens and apertures,
By analogy to the first problem, E is called the magnetic current

density, Ite components show the same behavior at the edge &s does the
electric current density in the complementary problem. The vector -fd is

called the megnetic vector potential,

In conecluding this section, 1t may be noted that taking the comple-
mentary field [transformation (£,2) —> (z2,2)] of a plane wave is equi-
valent to rotating the plane of polarization through & right angle counter—

clockwise, looking in the direction of propagation.
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VII. Diffraction by & Small Aperture in 8 Perfectly Conducting Flane Screen

In this section we shall comment upon Bethe's {%] theory of electro-
megnetic diffraction by swall apertures. It appears [LW] that Bethe's first-
order approximation is fundamentally inclorreet with respect to the field

near the aperture.

_— e

Let Ei, Hi denote the incident field, and 1et—ﬁo,—io denote the field
in the illuminated half-space (z < 0) 1f there is no eperture in the screen
(z = 0). Then

i, i
T = Ex(z) - Ex(-z)

E_= m;(z:» - E;(-z)

e
"

td
R e
~~
B

+

E: (-2)

Hi(s) + Hi(-z)

o
L}

H;<z> + n;<-z>

m
"

0z Hi(Z) H;(-Z)J
where z < O and where we have omitted explicit reference to the x,y-coordin-
ates,

As we have seen in the preceding se¢tion, the diffracted field can be

derived from fictitious megnetic currents (and charges) in the aperture:

By = Bo - cwrl ¥ (z <0)

_ﬁl =§o + ikP + (i/k) grad div|F (in front of sperture)
(7.1) - -

E2 = curl P (z > 0)

~—ln - —_ . , .

H, = -1cF - (1/x) gred div F (behind a.pezture)j

— —
where F 18 the megnetic vector potential |given in terms of the currents X

by means of
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ikr
o 1 > e

aperture

The magnetic cherge density, 7 , is found from

(7.7) Ay K= == + = =1kc7,

end the scaler megnetic motential w satisfies the equation

eikr g —
(7.1) v = 7 = dS=EdivF.

aperture

In order that these formulae hold it is necessary that the component
X ( bl
of X normal to the edge of the screen vanishes at the edgel cf, Bouwkamp o
-y
FTor erbitrary X the tangentisl electric &nd normal magnetic components

are eutomatically continuous in the aperture. We heve for these components
(7.5) X =& [Ex7], 7=2iﬂ-(:7e-51’),
V,where script letters refer to values in the aperture, and n is the unit
vector in the positive z-direction.
Conditions for _E are obtained by requiring that the normal electric
and tengential megnetic components are contimous in the aperture. Thus we have ’

Ez = 1z 2

lim B ==1imEz=
K

In the ovening, therefore, .
M = Y n = . N
—

—

e .
—_ N —>
¥ xn = Hxn.

ai

0z

N N

" (and seme for y-comp.).

1im Hlx = 1lim F_ = %

2x

o

ool

1
XN = %
Consequently, @8 a by-product we get the theorem: in the aperture the values
of the tangentisl msgnetic end normal electric field components are exectly

equel to the values of the corresvonding components of the undistunrbed inci-

dent field.
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As we have seen in the preceding sed

to the system of integral-differemtial e

(7.7)

So fer our formmletion is gener2l,
—
waves (k => 0), and assume that K can be

1

- S B
Tet X° rna ¥ denote the paurts of K of re

ively. It avpears that relative order is
assume

o -

¥ = K% + K + 0(k?),

—)o -
where K~ = 0(1), X - 0(k). Then, expand
powers of k, we have
q-,__l.l/g‘;ds,,.l./&__;/
efr e/ r c

The third integral, of order k, apparentl]

sult of differentiation of this term with

*4ion, the ahove requirements lead

mations

¥ - cﬁx.y)
?"—K’(I'oy.)
d.S = d.x'dy'

2

r“ = (x-x')2 + (y-y')z

(x,y,0) any point in eperture

(x',y',0) same

z’= 0

We next congsider the cese of long

expanded in & power series of k.
lative order zero and one respect-—

the same as absolute order, Thus

ing the exponentiel function in

11K%4S + 0(x?) .

r 48 independent of x and y. The re-

respect to x or y is identically zero,.

We need not retain this term in the expreesions for the fields in our order

of approximetion.

— 20
F° .- ‘;/x_ as
(7 89) c r
bt - X
7'1 = - l K_ ds,
c r

with the same convention =28 to the sunerad

Therefore f = “FO + ? 1

2
+ const.k + 0(x“), where
(order 1)

(order k)

ripts zero and one as before,
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e have AF = A0 & 2T 0(x?). Therefore,except for terms of order K?,

> —» -
we may replace 2F +aF by AF . Equetions (7) then reduce to (8a) and the

following
o I Yol 1 -a agi ]
aFy- -2l o ot - 1B3-53]
- afh 1 - aai .
0 _ |4 =X . = |20 ==
('78b)< Aqy— : Rz "'k'-'»'o' Aqy _@k{* az}_bo
1 1
\'iﬁ s . [51] N [_a_{gq]
d3x 3y z k=o’ ax Ay ki Vg K=o

Iet us eveluste the right~hend sides of equations (8b) for o plane-
polerized ohlianelw incident electromegnetic weve, We choose the xz-plane
eas plane of incidence and cell Oo the angle between the z-axis snd direction
of incidence. The phase function of the incident wave therefore 1is

, % |
expD.k(xsinOo-!-zcosOoﬂ . Purther, let ¢ o denote the angle hetween E° and the

xz-plene., Then, in an obvious component notation,

—
i
B = (cos¢ocosgo,sinﬂo,-coe¢osin9°)expD.k(xsinGo-*zcosoo)__l
- |
H = (-sin¢°coseo,cos¢°,sinﬁosineo)expﬁk(xsin%ﬂcos@oH.

Accordingly, in this case we have
i

o)
> A
ye 1’csin¢°cose o exp(ikxsing o)
2, 2
Pyl 1chos¢°cos 8, e:qo(ikxsinoo)

i .
EZ = —cmsﬁosineo exp(ik’xsineo),

and eamnrtions (8h) heoome
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A‘f: = 0
(7.9) Acff, =0

]
%%

ax - Sy— - —COS¢°sin‘;o

Note that if we had replaced -

ik
AT = -isindocoseo
L | 2
A‘f:r = icosﬁocos 9,
1.1 1
3F 3F
J X x_ 2
I 3 -ixcosﬁosin 90.
i i
3¢ 3¢
X i
E_Lf. el éz in equstions (7)

z
by their corresponding constant values at the origin of coordinates(which

may be the center of a circular aperture, for example) we Qould have obtained

the aprroximete equetions

AT

X

(7.10) AF.

% . %
vy

<

o

]
!

Q/

ikcos¢ocos

~iks 1n¢°cose ,

2

-cos¢051n9°

%

—

and conseguently, bearing in mind that Cf-: c}'o + ?1, we would have obtained

eas, (9) except for the laat one:

7

X
5% = T3y = 0 instesd of = —ixcosf sin

20.
0

Fouations (10) are essertially those of Bethe [“] and Copson E'ZI They can
L) ?

therefore, only lend to a correct <§° berm; the term <¥ 1 is necessarily wrong

in their approximat ion.

It is possible to eliminate derivatives with respect to k. by introducing

derivatives with respect to x,y:

ast

-cosﬂosineo[1+1kxsinoo:]z5:(o,o,o) +x 5;-”- (030,0).

w \'2 : VvV
?

we &ssume

ai

agl

i _ i z
6z(x.y.o)z 52(0.0.0) + x --a-;(o.o.o) +y #(0,0,0),

Our final equations thus hecome, for &nYy plane-wave excitation
?
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1 L]
(7.11) AFJ =o0; (7.10) OF_ = =P
1
(7.12) AFJ =0, (7.15) AF _ =
0 ,¢,—S;l 3 1
¥ .a_l X = S
(7.13) S;I - 5—};5 =Y (7.16) 3% 3y Bx + Sy,
i i i i
oF oE oF oB
—Z -
\-Jht-zreP—-é,-;I Q f,ﬂag;f,Ssay, .

A11 these equetions are evaluated at the center of coordinates, The constents
heve the following orders of megsnitude:
v = 0(1); P,9,R,S, = 0(k),
This theory will now be applied to the case of a circulsr aperture of

smell redius 2 (xn << 1). TFor that purpoge we want some compliceted integrals

of the type
G(x,y) = .. _flx'y)  ___ dx'dy! (x? + 32 ¢ a?) .
1 )
A Vizx2 (=312
Ir
f=1 , then G = 1 and DG =0
f = x! .thenG-—z%x and AG =10
f=x'y".then(‘r=§xy and AG=2
£ = xt? , then G = Ilg(baz*rsxz—yz) and AG =3 .

9,5 "
(For more generel results, see Bouwkamp[ 3 o Inzvirtue of this we find the
DoPy X +P T P, x'yt+p, (x! 2.y1%)

-%-K;
AV R
2 42
' 14 1y W4 1“ 3 )
1 o Ogtly¥ e xtaLxy q,(y
- =T =
¢ ¥ 2\ 2

n"~ Ya --:c'z-y’2

solves (11) and (12) [with 10 arbitrary parameters (p snd q)]. FPurthermore, on

evaluntion of the relevant integrals we find that
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° 1 1 2 2
?x-p"zplx"'2P2y+§P3xy+‘83ph(x‘y)

o
Fo=artay+ioxs? + 2 4, (y%~x?)
y oY% 2N T 2T g ¥ -x
and thus
0 (]
o

- & " 202 + 3 Dugten)y - Gpramal.

This should equsl ¥, thorefore q_.3 = -2, p3 = -2q,4. q2-192 = 2Y., Then we have

(242
) % x° - Po*Py T+P,.¥-2q,,3y+p), (x“~§°)
2 Va2 52
(7.17) 2 |2
1o SotuTtapx2n iy, (-2
¢y =3 ’
n az-::'z-yz

which conteins 7 independent psremeters | (8 perameters p, q with one relation,
Qy=Pp = 2V, hatween them), is & general |[solution of equations (11),(12), (13)

and the first equation (8a)., Equation (17) is presumably the general solution

with the requirement that XK dbe abéblutaly integrable over the aperture,

It is clear that additional conditibns are ne'cessafy in order to find
a unique solution,

0f course, thé 'cﬁarge density should be integrable over the aperture.
In our case, this means thst xK: + yK; hould contain & fsctor aa-xz-yz.
Equivalently, the radial component Kp of K must vanish at p = a, If.we

assume
0, 30 V 2 2 2 2 2
(xKx-O-yKy) 8 -x"wy" = (do-l-dlxq.dzy)( —xz—y ))
ve find that a1l coefficients (aleo 4 ,d, d,) are to be zero, except for the

one relation p2+q2 = 0. We are then left with & unique solution

1o _
[+

=

x - —— L KO = s
2\/_:2 2 °
ﬂ a -p

Y a7 2

or in vector notation
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P27 (0,0,0)

(7.18) K% = (= Ky of Bethe),

Q Jrs

2n .a-g

Note that div X° = 0.
In the same way we determine Kl. We split this vector into four simpler

ones which can he more simply treated:

=R g2 () @)

First Part:
In what follows the notation (& =>b) means "contribution to & 1s bf,

%kle) _ 2p(-2a%2x%4y?) , 1,0, 2P xy 3
3"2 Vaz-xz-yz °© v 31,'2 aL2__){2_y2

C.Fx > *55 (20a2-912-3_y2) , {r’; - 1;1' Py

Aqrx'é-l” A‘T‘yéo;

Second Part:

1,02, _20x 1,(2) _ _ 2G2e%x%2r®) |
c x !

] c'y
an? Va2 x2_y? an? Ja2x2 2

1
F,> tox, F > - L 20entoy?),

A?;—B’ o, Acf‘y—> Q;

K. dF
—_— S
ax - ay '9 0 3
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- 52| =
Third Poart:
1. (3) LR xy 1. 0) . _ &BaZxiy4)
;k"u:zzzz’ o'y 7T 2‘/"922;
I~ YaS-x"ey In® Va“-x"-y
F > lusg F L (te2niad),
x 2 > Yy 12 ) )
AS_ >0, AT, >0,
3F  3F
= ~ 3y >R x,
Fourth Part:
, 2 2 2
1,00 Bla=x™y) | 1, () _bSxy .
¢ x N LI 4 55 °
g2 VooxZg? w2 VoZa? g2
5. 2,02 o2 g 1 ,
I >- S @iyriud), 7, >isx
F ,
AF, > o, 8F, >0,
3F, oF,
—_— X
5z - 3y v

It can be verified that the correspondi charge density contributions are

determined by
Laspnfl) | _2Px
c

'ﬂz ‘\/az-pz

Lo @ .2

% v 2P - — By
2 V > 2
™ 8 —p
> -’
Late ") o =28z \
¢

2 VaZo?

and hence
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(7.19) Lavek - Z (P-S)x+(RQ)y
n 22
-p

By virtue of Maxwell's equations for the incident field, we have
i
P.8 = ix Hx (0,0,0)
R - Q, = —1k H;‘. (0’0)0)0

-
Moreover div E° = 0, 80 that the magnetic charge density becomes

® + E,(0,0,0)

1 Oty = - L
(7.20) 7 = T div (R%+K") - — (Bethe) ,
8" -p

—

L (his K,) is wholly incorrect, although div K,

Bethe's expression for 5

is correct. According to Bethe
2 -
X, = i—’-zf- Va2_p? % (0,0,0),
n

but the correct value is

Ll v 2 [(P.zs)(az.xz.&2)+gzn.g2g :}
= 2
c'x X oy \ r—.——-az-xz-yz
Lol o gy o -2 |(P=28)xpe (2R 82 2x %y’
ey S ¥ 2 > .
I (222

The correction is precisely a divergence-free vector, This difference can

be written 28 the curl of a certain vector, In fact, one finds

R G eur1 i VaZaZoy? { (eo28)y + (@-2m)x} |

i i 1 1
JE 3E 3B 3B
2 ~\/2 2 2{ x Y _ z z
=Ky + zcurlE\ 8t-x"y" x5, ¥ 3, 2 =Y 3y )}]’

3m

Using vector notetion we have the following expression, which can be applied

to plane-wave excitation:
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—',H-

e 2

L. Valp

3"2

1

(7.21) =T K

Q =

{ zn:n;%:

+7p - fﬂcﬁox;- gred(n .
where all quantities refor to values at

gradients are taken in the tengential

radine vector from the center of the ci
Fauation (21) shows that Kz vanish

K; hecomes infinitely large as 1/ Vaz-p

The complete expressions for our p

1 Liky/ 2 2
5 K: = == Va“-p E—sinﬁocoseoc
3
(7.22)
gl Adle -—-l'--; [:sinﬁ cosd_(a
c P 3 P o Vo
\/; -p
+ (pZ _ %9.2

For the totel field in the aperture we ¢

5 _ 2coe¢$osin0°

L

b
<

L3

grad(m » —io)§

s D>
il < - I
a'2 2

)

the center of the aperture and the

1

direction of the aperture; p is the

rcular aperture,

e8 at the edge és 9,2-';,2 and that

2 since(7iXp)has the direction of f.

lane-wave~incidence case become
1.2

osf+cosd (1- Sein <9°)sin¢:|

R 2 !

- %— o )sinﬁcosﬂoif(az_ %pz)

)Binzoo } cosp ] .

rat

P n Vaz_pZ
84% 1 E 2 2
- e sin¢ cosd (a - P )sin¢
3 \/aZ_pZ o o
(7,27)

E¢ = B—;WEVaz-pz E—sin?)oc099°cos¢+co

o= —13'2—-—— -~
J’@z = E’inﬂoaosoocosﬁ-coa;ﬂo
o v a -p
where
Zz ? jfp. grﬁ are the undiasturbed
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2 1 2 ,,2 1 2
+ cosﬁo{(a -Fp )+ (p°- 5a )s:lnzeo cosf | + o(kzaz)

¢°(1- %sinze o )sing ] + 0(x%?)

sinf] + 0(ka)

incident field.
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For the csse of normal incidence (Oo=0, ¢°=0) this result reduces to
the first few terms of an earlier expression (Bouwlmmpl?ﬂ).

-—>
Once we know smell-sperture epproximations for K, (see egs. (18) and (21))

—
we can try to evaluate the vector potentisl F to the same order of approxi-

mation hy means of (2) and ultimately to arrive at the corresponding field by

means of (1). This process is easy for the field at large distances from the

aperture (in the wave gone). Applying kmown methods We find the asymptotic

representations
| 7 iker
La 1 e
T~ [P-s+ J1xYeinesing ] =
3 olkT
. e (o - -‘Y sinesinﬁj
T
ka3 i
P o~ [Q_
y 3m
ikr
L'a31k 1 e
- ---3;- ['p+ -2-‘Y sin@cos;é]-—;—-— s

where a = Hi(O,Q,O), = H;(0.0,0), and P, Q, R, S have the same meaning os

before, while r, 0, f# are spherical coordinates,

l+0( )}

where r is & unit vector in the r-direction; the values of H and E are those

In vector notation, one has

e ]
a_/ik - - -
(7.21) Fea 55 [H +E xr, ]

taken at the center of the eperture. Using curl(onro) = 0(-;), we find that in

- -
the wave zone E = curl T + 0(%,-), so that

2.3 ikr
k [ R e S e
7.2 +
(7.25) By~ I To* EzHo onroj =
2 ikr
- ™ ka’ >
Ay~ TaB~ S F x ® +7 xznoj — .

These relations ere those of Bethe., Although his expression for X was wrong,

the far-field expressions turn out to be right. The explenation is that the

—
correction term in X is 2 divergence-free vector.
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The £ield (25) behind the sperture| in the wave zone is exactly the sum
— -
of an electric dipole (moment Pe) and & magnetic dipole (moment IPm-)l, both lo-

cated at the center of the sperture:

— 3. ;

Pe = % '-’-‘3_-'; Eo (normel to plane of the eperture)
(7.26) '

P = £ HO. (in the plane of the aperture),

—~ 96q
¥ote that the sign of Pe is incorrect in Bethe's paper[ -l .
We now turn to the transmission cross-section of the small aperture,

The procedure for calculating is well known:

22 2 22 2md , p2
IE|© = x lroxﬂ = k“(Fg + F¢)

- ikr
F,= cose[i'xco%l‘yasinﬂ = - -L'E-B-:"h er [ocosg+peind]coso

3.
I‘¢ = -Fxsin¢+l‘ycos¢ = - 9..‘;3_"7_13 #' [-asing+Boospt -]2'-‘Ysin9-_1

om 4 .
/S alE? = -l-é"i'é-;— + [(cZ+82) (14cos 0 )+ %stinzo_lﬂ
o g T '

on /2 6, 4
o2 168 % 1 b 2, .2 1.2
dﬂfsinelﬂ a9 = 18X L Mo (o%8%) + 2 ¥°]
4 gn 2 M3 3

(o]

we Bl 6. L
=12 168 it 2 .2v,37 _ la’k - -2
/ |El1* af) = T (i (“+8°)+v1] = T E@Hoz + .on_

let Stot denote the time-aversge (indidated by a bar) of the Poynting energy

flux; then

2 ¢ 6, L 2 2
(7.28) S, , = &= |Br|“ = S5 a2’k (4 BS + B ),
tot  Lm 2,7"2 o °

This agrees with Bethe's expression (we have corrected & trivial misprint in

his peper). In the plane-wave case one has

— 2 2 2 2 2 2 :
hHg +E = 2[L(sin ¢ocos 9 +fos ¢o)+cos ﬁosin GDO] .
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The right-hand side becomes

8[1 + % sin? Oc:’ forﬁos 0,
2 _ =
8 cos 00 for ¢0 2 .
Therefore
S.L = 802 a6k cos @
27

(7.26)

b1 .2
[3+ i sin Oo:l.

27

The energy flux of the incident wave per unit of cross-sectional area equals

c/8n, Hence for the Vcross-Sections,

61 = -éé-;i"- a6kucoszo
(7.70)
6k
Sy =me 2" El+hein9_J

For the general cage ,

, 6
(».71) o gﬁ k [+ (%coazﬁo—sinzﬁo)sinzaoj .

For unpolarized incident weves (natural ¥light 1),

614&1: D'

(7.32) o' = T

sinzeo:] .

Equations (28) through (32) are dve to Bethe,

A few words must be said sbout the field near the sperture (the quasi-
static field). TFor this case we have to calculate F for small values of ke
and ke, This is most effectively done in spheroidal coordinates u, v related

to the cylindrical coordinates by

62 = 22(1eu®) (12, s = auv, 0<cucl, e €v < o .

L7 ‘
(See, for example, Bouwkamp[ ].) Very tedious and complicated calculations
are required, thougsh, Therefore we shall give final results only. Note the
branch 0 < arc cot v < m,

Totel electric field near aperture, for both z < 0 and z > 0:
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F'Y
28
Ex = T:-"- [Q(varccot v=1) + 29
_3(1+v2)
+ E_u__xg > [Y +* 4(Rx+Sy)- P'Z).] .
m (0 4v <) (14+v<) L4y 2 ’
Ey = 2u E’(varccot v-l) + "&?2—'
3(1+v°)
T E, 4 b(Rfoy)-z(q:aPy)] .
m (0 ) (1+v) 14v? ’
2Y
E = = larccot V - L4
z ™ ,: U\2_""2

2
+ = (Rx*'Sy)Eerccot v - =X > by

12 (a2 ( 14v%)

by Qs Py)
I (0v2) (14v?)

+

For the $otal meonetic field:

=
[}

23_ Lyx(ax+By)

-? [arccot v . =L > )
™2 (ufay?) (1v2)2

14y

Hy = %ﬁ Earccot v - -1—2]- —vy (ot ;
1+v naz(uz-»vz)(lwz)z ’
H = _ _‘*_u_(méy_L__
z ﬂa(u2+v2)(l+v2) '

Note ¢ 2
ote that on the aperturs v = 0, u =%-p /8.2 and on the screen u = 0
2, 2 = '
= + - =
v =+ Vp“ /a1 (for z = +0). By calculating the Jump of H across u = 0
we are able to calqua_te the electric clrrent density in the sereen near the

edge. This ia left to tire reader, For|the case of normal incidence, see

Bouwkamp qu .
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VIII. Copson's Theory of Diffrection

In & recent peper, Professor Copson [Aj] hes commented upon the B note by the
reviewer? that was added to my review 51 of Copson's earlier paper entitled
® An integrzl-ecuation method of solving plane diffraction problems® [yzﬂ. As is
obvious from Copson's answer &s well as from two pepers by Miles 2 , My comments
have led to some confusion 88 to the boundsry conditions to be satisfied on the
rim of the diffrscting obstecle, In order that eny posaible misinterpretation of
my eriticism mey be evoided, it seems worth while to discuss these questions in
preater detail than is permitted in 2 short review., This also presents the
opportunity to stress how cerefully Copson's differentisl-integral equations must
be hendled in practical spplications; we now mow that his solutions for the small
cireular disk and aperture are in error¥,

T6 present a clear nicture of the problem,,I shall quote the essence of Copson's
theorem &4 as well as my comments published in Mathematical Reviews, The theorem

"
in question is hz] :

* It should be noted thet Copson now agrees fully with the theory outlined in
this section [5h

% Tor the discussion in this chapter we have preserved the originel notetion of
Copson. His formletion in terms of scalar functions is essentielly equivelent

to that given in Section VII with the following exceptions:

~ilwt +iwt

(1) In Sectiom VII, the time factor was taken as e ; Copson uses e ®

(2) 1In Section VII the exciting weve is incident from the left while here
incidence from the right is assumed.

The functions v snd u are the x ond ¥y rectangular components respectively of
the vector potentisl F; w is the scelor potentiel v .

The functions ey snd -ex ere proportionel to the x =znd y rectanguler components
respectively of the magnetic current density K; hz is proportional to the megnetic
surfece charge density M .

When these differences are taken into account the formulation in terms of vector
functions given in Sectien VII is equivalent to that given here, The correspondence

hetween the equations may be seen from the following table,

Equetions in Sectien Vil Corresponding Equations in Section VIII
7el ' 8.1 and 8.6
7,2 and 7.4 8.2 end 8.3
7.3 8.4
7.7 8.5
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Let an electromagnetic field -ﬁi, 'ﬁi be incident in the half-space z > 0 on
a perfectly conducting screen in the plane z = 0, the aperture in the screen being

denoted by S, Then the tctal field in the helf-space z < 0 is

= éu- i = -a-v. B | - JaE - -a_!
Ex az’hy oz ? Ez ox Jy °?
(8.1) '
ow ow ow
where'f
1 .
(8.2) (u,v,w) - z;[é(ex’eyahd) § dx'dy!
and
v = du
(803) ikw = - 'a'i' 1 '53; .

The functions ex,ey,,hz which are connected by the relation

oe oe
: Yy - X
(8.1) J'khz == 53 * Jy"' ?

satisfy the differential-inbegral equationssk

% 4hz Eodx‘dy‘ * ik,/g-ey §odx'd5" = 27d{i(xsy,°)»
9 : . | i
(8.5) E/S/’hz Qodx'dy' - ik[S/ex §°dxvdyt = 2nHy(.>c,y,o),

3855/4‘95: Iodx'dy' * %‘/s,/ey Qodx'dy' - -2nE:zL(x,y,o),

when (x,y,0) is a point of &, If there were no aperture in the screen, the total
field would be null in z < O s but would be io, _ﬁo, say, in z > 0. In the presence

of the aperture, the total. field in z>01is
du

0 0 v o ou  av
%‘%-a’%=%'ﬁ’%‘%*a*w’
(8.6)
0 . ow 0 ow o} ow
foHx-lkv-ax, Hy'Hy+iku'§i’ Hngz'é'E'
t ¢ = e'ikR/R, R® (x—x')2+(y-y' )2 4 z2; 9:0 = Q when z = 0,

# Copson terms them "integral equations" .,

: - 7-4
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My comment upon this theorem was as follows[Si]:

W There remains only one question not properly accounted for by this
analysis, namely whether or not line charges along the rim of the screen are
necessary’. For instance the procf of theorem 4 is incomplete. Suppose
the equations (5) are solved rigorously, under the side-condition (k). It is
not at once evident whether the wave functions u,v,w defined by (2) fulfill (3).

Now it can be shown that
o) a 5]
(8.7)  -ikw - S5+ 5 /{{a (ey &) - ov (o Phax‘ay's

Maxwell's equations are satisfied if and omly if the right-hand integral van-

ishes. Because e, = E ey = Ey in the hole, the integral over S can be trans-

x,

formed into an integral along the rim of the hole

(8.8) %= [ &5 a8,

where ES denotes the electric field tangential to the rim of the hole, Therefore
the condition for Maxwell's equations to be satisfied is

(849) E 6 = O»

This is an extra condition with regard to the solution ey ey, hz. For a circular
hole the condition is equivalent to x'ey - y'ex = 0 at therim. This condition is
satisfied in Copson's (and Bethe's) theory for the small circular hole, and Copson
states that his approximate solution does not violate (3)."

The validity of Copson's assertions and his theorem has not been questionedj
however, I claim that a necessary condition for Copson's theorem L to be self-
congistent is
(8.10) e, =0 on the rim of S,
where ey denotes the projection of the vector'g = (ex,ey) at the rim upon the

tangent to the rim.
The condition (10) does not imply that either ey or.ey or both are finite
on the rime. In fact, they generally become infinite on the rim of order D‘1/2,

where D denotes the distance to the rim. Thus (10) does not exclude that e is

6]
o mmiian wae maiead hv Rourein in a review of Bethe's paper Bethe[u
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infinitely large on the rim, where e, means the projection of € at the rim

upon the normal of the rim.,
Incidentally, eg and e, should |be considered as limiting values of

the corresponding components of @ when the field point tends to the rim from

the interior of the aperture., The vecton e is not defined outside S although,

following Copson, we may take it to be zdro there: in this case (ex,ey)s(Ex,Ey)

over the whole plane z = 0, Of course, the limiting values of e, and ey are zero

when the field point is tending to the rim from outside Se In this sense, (10)

states that ey is continuous on the rim. | On the other hand, e, is in general

discontinuous there.
To prove that (10) is a necessaky condition it will be assumed that S

is a finite part of the plane z = O, with| a simple closed boundary curve s. More=-

over, it will be supposed that ex,ey, and hz are absolutely integrable over S

and have continuous first-order derivatives with respect to x' and y' in the

interior of S.
Let So be any subtdomain of S with boundary curve 8, such that & and

8, have no points in common. Then Stokes|s theorem may be applied to the vector

e in the domain So when the field point (:c,y,z) is outside S, Thus

/4 {-5%- (G ey)- 5%— ( @ex) } dx'dy's= / Qesds,_
0 o

where the integrand of the surface integral is the z component of curl ( @3).
Now using (L) and the fact that (3/3x', 3/oy') @ = -(3/3x,3/3y) D, we see
that the integrand is equal to
% | 3

'-ikhzé- ey-éz'i' ex'a-i .

It thus follows that
- _B_ 13yt _é_/ 1dy! - / ixtdy! ./

(8.11) ax/{ey@xdy + 5 Sexédxdy ik Shzédxdy s@esds.
0. o (o 0

The change in the order of integration and differentiation is Justified, since

all integrals involved are uniformly convergent with respect to x,y,z and ab-

solutely convergent with respect to exs Ohh.e
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The same remark appliesd if in (11) the limiting case is taken where So becomes
S, though it must be impiicitly understood that cértain regularity conditions

as to the boundary curves 8, and s are satisfied. If so, then (11) leads to

(8.12) -3 S otk = %—n-é@esds
and then (10) follows from (12) and (3).
As emphgsized before, in the proof of (10) it has not been required that
ey and ey are finite on s, Yet an explicit example may be useful.
| If S is a circular aperture of radius &, the following functions are

admissible (so far as integrability is concerned):

2 2 2
e, = A 28 -x' -2y + B Vaz-x'z‘---y'E + Cy!',
V-
(8.13) &=

x'y!

ey = A
az-x' 2-y'

- Cx',

where A, B, and C are constants, It is easy to verify that the corresponding
function hZ is given by

(8.14) ikh, = -(34+B) —¥ ..

a =x'"~y!?
Clearly these functions are absolutely integrable when x'2+jr'2' < a2 , and are
continuously differentiable when x'2+y'2 < a2. Unless A = 0, they are all
singular on the rim, Notwithstanding this, e s is finite on the rim, as is

readily verified if polar coordinates are introduced. Letting x' = r' cos {¢',

y!' = r' sin @' we have

2,2
e, =14 za-rl BV&:LZ-J:"2 } cos @t
, 'Vaz-r';

ey = ~Cr' - (2A+B) Vaz-r'z sin ¢,

and so in this case e = -Ca on the rim. Consequently, the condition (10)

(8415)

would rule out the case C ¥ O, but it does not require A =0,
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In view of this, I shall now quotes# from Copson's answerz[yj]

"Bouwkamp's arcument depends on differentil
and the use of Green's theorem. If e, is
whereas, if it is discontimious, it become
‘himself has point out. And similarly for
on the rim, and (3) is a consequence of (2
the functions e, and e_ is ‘nfinite on the

As a matter of fact, my proof of (10)
simply incorrect, as is also borne out by
is that e,
case which has been overlooked by Copson.

should not be singular on the r

Consequently, I fully maintain my "cr
to say, if we intend to solve Copson's dif
we should look for those solutions e, ey 1
(10) because then and only then will the e
and (6) solve Maxwell's equations. This i
differential-integral equations (5), which
which I therefore added in my review, does

theoreme On the contrary, it was meant to

ation under the sign of integration
continuous it vanishes on the rin,
s infinite on the rim, as Bouwkamp
ey. Thgs either e, and ey vanish
) and (4); or else at lesst one of

rim, and Bouwkamp's argument fails'',
shows that Copson's assertion is

the explicit example (13), What matters
imj. this constitutes an intermediate

iticism" of Copson's paper. That is
ferential-integral equations (L), (5),
which satisfy the auxiliary condition
lectromagnetic field specified by (1)
iformation concerning the solution of the

was omitted in Copsoh's paper and
not weaken the value of Copson's
be and is in fact a further step

‘towards the practical application of the theorem, especlally in the construction

of approximate solutions,

In addition, it is now evident that ir
diffraction problems there is mever need of

the rim,

the Huygens ~Kirchhoff principle to electrg

as fictitious bdundary values of the field
require these line integrals in order that
the correct boundary values automatically

At the time of writing my review of C

for the small circular disk and aperture se

This settles an old question cond

a rigorous formulation of plane
additional line integrals along
erning the ''rigoroug’ extension of
magnetic diffraction problems. Where-
vectors on an open surface in general

Maxwell's equations be satisfied,

jzke these equations vanish identically.

son's paper, his approximate soluticns

emed to be correct, since the condi-

# Actually, Copson discusses the complement
fer to keep the argument in accordance wi

work.

ary problem, his theorem 5. I pre-

th what I eriticized in Copson's
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tion (10) happened to be fulfilled and Bethe's earlier results were confirmed.
However, mainly because of Meixmner's investigations, I have since come to the

conclusion that Bethe's as well as Copson's firstworder solutions are correct

in the wave zone, but that they fail in and near the aperture or disk.

The fact that Copson's approximate solution for the small circular aperture
is incorrect will be shown by the simplest possible example, namely the diffrac-
tion of a plane-polarized wave impinging in the normal direction. In this case
Copson's equations (6.L4) - (6.6)[u2] reduce to

(8.16) e =MK% o a0y no--d L

x n y ¥ Vg ’

a -x"2

if it is assumed that the incident wave is polarized parallel to the x axis
and of unit amplitude (E =1, H y = 1), In the limiting case ka -» O, Copson's

equations (5) then reduce to

3 dx'dy' | . //“ dx'dy' _
ax/ghz 5 + ik [ e'Y 5 0,
_a_ } dxtdv! _ s // dx'dy! . .
(8.17) ay/éhz ———‘H—p i ff o S o,
_3_ dx'd;:‘ i / dx'dy!" -
ax/éex R /A S o,

where
02 = (x=x1)? + (yy)?, xoay® < o,
If the expressions (16) are substituted in (17), the right-hand members become,
in the same order,
03 =2n + nk2(2a2-x2-y2) = -2n+0(k2a2); =2nikx = O(ka);

thus, as in Copscn's paper, (16) is an spproximate sclution of (17).

However, a second solution is provided by

(8.18) o = Lik 2a2-x'2e2y' ; ulk _ bk
¢ x  3n 2 2 °y © : n )
a -r -] -r

which, if substituted in (17), will make the right-hand members equal to
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- 3 nbay = 0(?a?)s -2n + 35 1k2(2082-3%2-9y% )= -2n+0(ka%); O.

This clearly demonstrates that equations (L4) and (5) of Copson's theory
must be handled very carefully in order to determine an approximate solution
8ys Oy h . In addition it is to be noted that the approximate solution (18)
is better than Copson's (16) since in the first case equation (17) is satisfied
up to terms of relative order (ka)2 and in the second case only up to terms
of relative order ka.

The condition (10) is not decisive as to the question whether (16) or
(18) is the physical solutior, since both (L6) and (18) are consistent with
(10)., Thus (20) is not a sufficient condition, at least not for the purpose
of finding the long-wave approximation.

The solution of this difficulty is simple. A detailed investigation of
the electromagnetic field calculated on the| basis of Copson's (that is, Bethe's)
approximate solution (16) has revealed (Bouwkamp l:"‘7:1) that the corresponding
electric field, which is throughout of order ka compared to the magnetic field,
is discontinuous in the aperture., There ig no sense in retaining Ex in the aperture
and ignoring Ez , as Copson did in his apprdximation, since these quantities are
of the same order of magnitude.

As was shown elsewhere (Bouwkamp l:hb']) the approximate solution (18) does

not lead to a discontinuity in the electrid field in the aperture.
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IX. Diffraction by Narrow Slits

In this section we shall be concerned with approximate solutions for
the diffraction of plane waves by narrow slits., The x-axis is assumed to
be parallel to the edges, and we shall consider only problems that are in-
dependent of x, That is, the direction'of incidence of the plane wave is
in a plane normal to the edge. The integral-equation formulation of these
two-dimensional problems follows at once from the corresponding formulation
in three dimensionsY if we integrate with respect to the x-coordinate, If
in three dimensions we have rs (x-x')2 + (y‘-—y')2 + (z-z')2 and in two
dimensions p2 = (y-y')2-+ (z-z')2, then

ikr

: > e ' (1)
(9.1) Ve 7 ' = i H " (ko)
- 00

The two principal boundary-value problems for the slit are to be for-
mulated as follows:

Problem I, ¢ = O on the screen:

P =8,0s2) - 9,(y5-2) + g (y,-2) (z < 0)

¢ = 9,(y,2), (¢ >0),
Problem II, 3%/3n = O on the screent

B =0,vs2) + 9,(y,-2) - §,(y,-2) (z<0)

g »8.(y,2) | (z > 0),

where the wave functions Ql and ¢2 (defined for z.> 0 only) can be represented
in the form of integrals extended over the aperture, the integrands contain-
ing the aperture values of Ql and 3¢2/Bn respectively, The two-dimensional

analogue of Rayleigh's formulas are

t See chapter III,
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(9.2) ( 9,(ys2) = - %'ggjf (y',O)H(1
#,(y,2) = - _/r 59— oy, O)H(

where 2a is the width of the slit.
As in the case of the circular apert

relations for ¢1 and Q2 by requiring that
the case of protlem I, and @ = ¢o in the

Qo is the incident field,

. 2 a
(9.3) -21 [ S 9 (v,2] = %+ L) /
-8

dy
a | F,(y',2")
(9.0) 219 (5,0) = f 4 Br o b
-g z2=0

where ~a < y < a.
Henceforth we consider only the case

= exp(ikz).
y=2a8in &, y!

We &lso introducs

a 8in 6!, ka

choose Qo

ikn

a cos @ ls‘a; ¢2(a sin

Fl(O) = - cos 8 951(& sin @,

Fz(o) =

(- <o <.
Equations (3) and (4) then reduce to
5 4 2 n/e

(9.5) 2i = (8 ta s ) [
dy -n/2

<8<

Nl:l

2
-2

F (0')}1(1

n/2
(906) 2i =/

(L) . .
» F,(01)H,™’ (&|sin0-sin0" |

We now try to find aprroximate solut

for the case where ¢ is smsll. To this el

functions of the corresponding static potential probiems.

eigenfunctions £(6) of the homogeneous ini
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) (x Vig-y)%+2% ) dy
D) (e Yigeyt)2ez? ) ay',

ure, we obtain differential-integral

o@/dz

aperture for problem IT.

a¢o/az in the aperture in

Of course,

These di.fferential-integral relations are

'¢1(y',o)H§1)(kIy-y'I)dy'

B (kly=y Day',

of normal incidence; that is, we

the notations

r €

0)

'z)'z=0«

(e|sinB=sing'|) de!

dde! .

ions of the equations (5) and (6)
nd we recall that we know the eigen-
More explicitly, the

tegral equation
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n/2 3
(9.7) /  log{ 2|sine-sinG'| Y £(8) do' = Af(0)
-n/2

are sin(2n+1)6 and cos2n@, where n = 0,1,2,.44¢ The relevant eigenvalues A

are equal to -n/m, where m = 2n, 2n+l (m # o) respectively; they are zero if

m = 0., Thus

00

(9.8) - -]2: log |2(sinG-singt!)| = 21_'_ 513 cos2ndcos2ne’

00
+ %; ?ﬁtI sin(2n+1)08sin(2n+l)6!,

Both @ and @' are between -n/2 and n/2, Equation (8) follows from the lzcnown[S SJ

expansion
00

- % log|2(cosg-cosg!)| -4¥% cosmcosmg!
when we make a suitable change of variables,
We need an appropriate expansion of the Hankel-function kernel in our
integral equations. This is a series expansion in powers of €& in which the

coefficients depend on 6, ©' and on log e¢. This expansion is

2y eh+ ses +Ync2n + 0(62n+2 log €) ] ’

(l)(slsn.nO §ino'|) = 2 [Y +Y, 67+,

where

Y = p + log|2(sinG-sinc')|
(n>0)

m sinG-sin P-1- 5 eee= = + log|2(sind-sind") |

and p is an abbreviation for

p = v + log( % e) - g- i (v = 0,577 *** = Euler's constant).

Iet us first consider problem II. Assume that

2 4
F2(0)=fo+fs + eee

1 +f2e

Then
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F2(O')Hgl)(s|sirﬂ-sin0'|) . 2k [fo ol e2(f011 + fl’!o)

+ a;""(fc\!2 + 07+ £,.)) + eee ]
Substituting this in equation (6) gives u$ an infinite set of integral equations
of the potential type, viz.,
FEAR LR
(9.9) & [ £y¥,d00 = - f£ ¥ 0

S Y 0 = - [1 ¥ a0 - [£7d01, ete.

=

Since we know from (7) or (8) that
jYOdO' = np,

we immediately get the zero-order approximation

. 1
(9010) fo = 5 [ 3

If we insert this result in the righit-hand side of the second equation of

(9) we get an integral equation for f,, namely

1 1 1
fdeO =3 ].-E(2+-§)cos20 .

To solve for rl wé assume i;‘l has the form f1-= cl+c200520', where ¢y and c, are
independent of €', Then

n
S £ ¥ e = VAKX cof ¥,c08201d0! = cqmp - 15 C,C0820,

Therefore we find by compaiing coefficients that

(9.11) £, = %5 2 + (2p+l) cos |26 2.

On inserting f_ and f| from (10) and (11) in the third equation of (9)

and evaluating the necessary integrals, wWe find
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o1 o L 1 1 1,1
S £¥ et = - VA s/ - (f+ &) / Yjcos20'de! =

.-gnﬂ p_%_.g’%+(%-%)c0829+%%+1}—p-)cosh0 .

This in turn leads,in the same wey as before for the function fl, to an explicit

solution for f2, viz.,

=t a2 .1y, 1 22 1l (i.1 :
(9.32)f5 = -z (1 - 15 2p2)+§5(p 3) cos % + 1755 ( 3+ fp)eosle,

Equivalent representations of the results (10), (11), (12) are

(9.13) { £ = A - )} + (54 1%5) cose

9 1 1 3 2. 1 3y b
(1-E§+;2—) 'T{;(l"'}ﬁcos Q) +E8(1+7E)cms e.

REMARK. In deriving this result we have used various transformations of an

essentially elementary character. For conveniénce we list them here:

[sinO-sinG '] C

1l - % COS26~ % cos28! ~2 sinGsind!

]:sing--sfmg']Ll = —95 - 2 cos26 + %‘- coshe + sin6'(sin3e-6sine)

+

5inGsin3e! + cosQO'(%cosZO-Q) + %cosh@'
/Yldg' =1% {-— bp + (2p+l1) cos 29}

fYocos2nO'd0' = - % cos2ne (n > o)
fY?_dO' = g'ﬁ %p - i— + (% - 2p)cos26 + %(pi-r {-,-a-)cosuO

/Y100329'd9' - g { 22‘- p + %; - % cos26 - %E coship ¥,

Finally, our result (13) can e brought into the following form: If we

assume the field expansion in the aperture to be
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o
(9.18) =2 Fp(7,0) = 257G (1 - y/6P)
o
then
1 1 1 2 1
fﬁco >k (1- 55)(k&) * 758 (
1 1 2 1 3
(9.25) | 6] =5(1+ §B)(ka) - 321 - Iﬁi)
4
| C, Eg(l + «-—)(ka)"l + vee
i C3 - 00
correct up to and including terms of orde

by .o 1is O[(ka)s:l.
It is to be noted that our result co

only gave terms up to but excluding (ka)b

be noted, however: his A' should be repl

HOnl and 3roschwitz[5 7] ).
We now turn to calculating the wave

slit, Let p, © be polar coordinates with

S -n/l 1 &
¢2, m{—’;; 1(1(?) n/ ) /‘ s

Inserting (14) and (15) we get

1

S als

= ei(kp"3ﬂ/h) [l +

¢2 2‘1?6

+ g-'E(ka)u --pcos20+sinu0-35

hence

,' € c0520 + -]:—

19,15~ 5 [L+3 T2

I I

where ¢ = ka and R = real part of p.

Averaging over all angles, and using

cos29 = sin20 =57,L-
cosHO = sn% ’%’

r (ka)h/{.ihogka) 2 .

T ¢2(Y':O)e

-h {-Rcos20+2eosu0~l sinb’O 35111 0+E+

nt+1/2

9 , 1 by vee
l-u—p-*'?)(ka)-b

(ka)h 4+ voe

The aror, represented

nfirms that of Sommerfeld [56] who

A small error of Sommerfeld must

aced everywhere by 2A'/ni (see also

field at large distances behind the

respect to the positive z-axis. Then

et &3
iky sna@dy'

2

I]f(ka)ecos e

2

in o+ 1

3
"%

L

b

R
2IPI

1
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we find that the transmission coefficient is
2
n 1 2 3 b L 1
‘L’,ﬁ’-—-——-—z[l+ € + € 1 + = Re (2) ]
2 h8|p| H 536 j P

or, explicitly,

2
(9.16) b, =—t/luka 5 [+ $0)% ¢ gp (k)" {1 +
[wlog(%ka)]2+ %—

L Y+log(%-ka)

+

- . R ] .
[v+1og(Txa)] % I-
Note that this "(:,2 is also the transmission coefficient for the electromagnetic
case if the incident wave is polarized perpendicular to the edge and the screen
is a perfect conductor.
Problem I can be solved in a similar way. We assume Fl(O') to be of the
form

.00820' +cC cosuO' +c coség' + ses

Fl(O.') = c; 5 3

where

2 u [ RN ]
clagl+825 +g35+

- 2 b, ...
Cp =g, & +eggE ¥
0y = 8 elt 4 eoe

C! = ®ve

1

and where g, depend on & (not on 6'), but only as some power of log €. Then

2
T Fl(Q')Hgl)(ﬂsinO-sinO' 1) = g,¥ cos0!

2 : 2
O'+gu!ocosu0'+gl‘llcos_ o ]

el [gQYocos
v et [83Yoc°529' + 85’10605,40' + ngocoségl + g2Y100829'.
+ gqucosuO' + glyzcoseg' ] + v,

We thus require integrals of the form
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jr!hQOSznO'dQ'.

The following explicit results have been f

_/’!bcos2c'd0' =vE (2p-c0820)

oundz?

S ¥c0s"01d0t = 7 (3p-200820- ficos"e)
J/'Yocoséc"dO' = %5(1°P - Erc05¢0- %cosho- %coséo)

S choszg'dO'

S chos“o'do'

f YzcoszO' as!

In the process of evaluation all functions
a form containing the cosines of the even
the odd multiples of € and @' in a symmetn
applied.

To cope with the opera-or 52 +

& |7

22

Q.

CcCOS28 = <}

2

a coslp = 16(2-3cos20)

2
a

RCARSY

N

cosbP = =12(9-16c0s826+10

&

thus we have

2

a ijbcos29'd0' = n

2_/!’ cociég'de' = n (2cos?2

o g |5

2 d
a

3 1
D + ia)cosQO -

L o 3T
jr Y cos 8!de! = 5= cos2

p+ %)cos20 - %5 coslo }

cosll = 5%5 cosbo

10

SIS

- 5p)cosQO+(§—+ 12O)°°sh0'T§500860

f

multiples of 6 and ®' and the sines of

thostO' were first trgnsformed into
ical way, and then (7) and (8) were

i , we note that

cosl®);

G+coshl)

£os2é)

2 n
ALI. sotde! = X (-
E_f!'lco cls 5 (~2p-1+
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2

a i—-nglcosuO'dO' = -3’-15(-6p-3+uc0520+ % coslie)

5 42
2d 2 n fo 3 3 1 -
a 'gy'_"z'ftgws G'de! = T2_E{9p' i -(6p+ 5) cos2e + EcosBO} .

Consequently

21(e? + a° -——)/ F (0')H(l)(e]sinﬁ sine!|)dos
ay®

2
=g [1+ %-(2p-cos20) Ji
+ g [52 + % au(2p-c0520) ]
+ gh' [?- e2cos20 + -geu(Bp-2cos20- EcoshO) ]

+ gl [% 52(-2p—1+c0820) + %? sh %-. - 3p+(2p+ %)coszg - 13 osh@}]

-g— € cos26 ]
+ g [g- e*(2cos0+coslo) ]
*. g, [ et (~2p-1+cos26) 1

[%‘5 e"(~6p-3+hcos26 + % cosls) ]

+ g [% eh {913_ % - (6p+ %)00829 + -:LLIcosuO }]
+ terms of higher order.
According to the integral-differential equation (5) this should be equal to 2i plus

terms of order 56. Therefore we find

1 2 7 7
gy =1 g3=j_-5'(P-'gP+3—2')
=1_P =
€28~ 1L 86 = 320
- 1 g -
&y = 12 &g 5'5(129).

We finally get the following result: let
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- 76 -
2 2, 2\p=1/2
(9.17) ¢1(y,0) = =ika 5_ Cn(l-y /a S
n=1
then
(o) =1 - bp- Hka)® + $50° + § o+ Totea)t + o
1 2 1 1 L
Co = 75 (ka)® = (p= 5)(ka) ™|+ *«*
(9.18) < 2 1i . 32 2
C3 = 35 (ka)~" + eo°

c ™ XN 2

REMARK. This result is at variance with that of Sommerfeld[5 8] and that of
T (4
Groschwitz and HdnlLS ‘?]. Sommerfeld gave (in our notation)
- 1l 3 2
0, =1-7 (p-g)(ka) + oo
1 2 L X N J
02 = -A-i-z- (ka) +

Our result (17), (18) in Groschwitz-Honl notation would be

2 .
Co=-28-i-[l-+e {-%10gye+%1og2+i3_6+%}‘}]

The transmission coefficient for problem I turns out to be

i

2
(9.19) Tl - 1-315 (ka)3 [1 + ng(ka)2 {l - %(wlog %’i ka) .]} v o0 ]
' J

Note that ’tl applies to electromagnetic waves if the incident electric field

is parallel to the edge.
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Section X

Diffraction by an Aperture

in a Planar Screen
by

Neo Marcuvitz
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X. Diffraction by an iAperture in a Planar Screen by Nathan Marcuvitz

The ecircular aperture problem solved by Bouwkamp can be treated by a
somewhat different, but equivalent, method that emphasizes the vector aspect of
the diffraction problem. A dyadic Grden's function formalism is employed to
obtain a transverse’ vector integro-differential equation for the transverse
electric field in the aperture. The knowledge of the aperture field permits
a direct caleculation of the electromagnetic fields at any point. The desired
aperture field is obtained by solving {first an inhomogeneous transverse vector
partial differential equation and then| an inhomogeneous vector integral equa-
tion of the first kind.

The formulation of the problem is independent btoth of the nature of
the sources and the shape of the aperture. The solution of the inhomogeneous
steady state field equations**

VX G =ik - M

(10.1) 7xl = ~kE

is to be obtained subject to boundary conditions:

a) nxE=O0 on the screen

(10.2) b) E =0 asy —>o0 (Imk = o /e > 0)

~scate ? H scat,

c) Eian ~\/8, E in the aperturs,

1
normal ;g

emphasized, conditions a) and b) alone not sufficient %o insure a unique
field solution, Condition c¢) defines th

the rim of the aperture and, together with a) and b), does imsure such a solu-

where s is the normal distance to the rim of the aperture. As Bouwkamp first
e
e singularity of the electric field at

tion., Condition b) refers to that portion of the far fields due to current
sources M(r) (real or induced) ata finit¢ distance L. 4s Bouwkamp discussed
above, it is convenient to divide the figld region into two parts, z < 0 and
z > 0, to the left and right of the scredn, with sources prescribed in the
region z < O, The total field in the region z < 0 is equivalent to that pro-
duced in & half-space, with a perfect co:kuctor at z » 0, both by the pre~
scribed sources and by the "induced" magnetic current source n x E

# i.e., parallel to the rlane of the screen.
%t M.K.S. system but normalized so that iptrinsic impedance /u/e of vacuum is

unitye.
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in the aperture (g = unit normal vector in positive z - direction). Similarly
the fields in z > 0 may be regarded as produced solely by an induced magnetic
current density -n x E in the aperture.

It is convenient to introduce a "half-space" dyadic Green's function
I(r,r') defined by (cf.[L0])

(10.3) vx (VxY) = K°Y = -ikeﬁ(g—;')

subject to boundary conditionms
a) Y=>0as |[r-r'| = ® (Imk>0)
b) nx(vxY) =0 at z=0,

where & is the unit dyadic defined by € « A = A, and &(r-r') is the three-
dimensional delta function, Physically =Y'r,r') * e is the magnetic field
produced at r by a delta-function magnetic current flowing in the direction
e at r' in the half-space. The half-gpace Oreen's function can be defined
in terms of a "free-space" dyadic Green's function Y.(r,r') which obeys

Eq. (3) with the omission of condition b). The free-space Green's function
is given by (cf. {LO|)

(20.14) Yo(r,r') = -ik(e + i—g) glr,z!)
where g(f,{;‘) is the scalar Green's function defined by

(v + k%)g = =6(r-z')

(1005) g = 0 as iE-—l:'/" - 00 (Im k>0),
Although

ik|g-r'|
(10.6) g =S

bnlz-z'|

is a simple closed form, a more conveniént representation for subsequent appli-
cations will be considered below. The half-space dyadic Green's function Y(g s, 1)
is obtained by additive or subtractive superposition of two free-space dyadic
Green's functions Yf(g ,g'), ome corresponding to the source at r' and the

other to its image at r' -~ 2nn « r's In particular, for a transverse magnetic
source on the z = O plane,

(10.7) Y(r,rt) = -2ik(s + i’-g-) e(r,r'),
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where r'= (x',5',0).
The magnetic field due to both|the presecribed and induced sources

can be expressed in terms of Y(r,r'), the field of a "point® source, Since

the prescribed sources are assumed to lip in z < 0, the magnetic field in

z < 0 can be represented by means of superposition (or equivalently by use

of the vector Green's theorem) as
(10.8) H(r) = B (c) - Ap Y(r,g!)e n x E(r')ds’, z<0

where the first term ﬂo is the magnetic|field produced by the prescribed
sources in the absence of the aperture,|and the second term is the field
produced by the induced sources n x E in the aperture., Similarly, the
magnetic field in z > O produced by the| induced sources -n X E in the

aperture is

(10.9) B(x) =+ /o YE,z') « px B(g)est, 2> 0.

~

Tt is evident from Eq. (2) that the figld representations (8) and (9) satisfy
the field equations (1) in z < 0 and tHe boundary conditions (2a) and (2b).
loreover, since n x (V x Y) has a jump|discontinuity of value -:‘Lketé(lg-g, 1) t
at z = z! = 0, it follows that Eqs. (8) and (9) yield values of n x E(r)

that are continuous as z > & O and equal to the value of n x E in the
aperture, The requirement of continmuity of the H(r) x n given by (8)

and (9) in the aperture region (z = « ) imposes the condition

(10.10) -go_(g) Xns= ?///;Lp nx Y(r,o') xn . §t(z:")d5', r —=> (x,y,%0)
"in the aperture”

on the transverse electric field E‘t in the aperture. The continuity of

nx¥x n at z = O should be noted; however 2z is not permitted to equal

2! = O since the integral in (10) becomes divergent at r = r'. Because

of this latter fact, as Bouwkamp has emphasized, Eq. (10) is not a true

integral equation but may be called a pseudo-integral equation for E (r).
In view of the representatipn (7), Eg. (10) may be rewritten as

(1 ) (r) lik( ”—-—-7—Vtvt =) (r,r")E, (x*)
10.11) =H (r) xn = iik(e, - — :// g(r,r')E (r')dS', r in the aperture,
o t X ap® '~ ~t

In a rectangular x , y coordinate gystem, 86(p=-p') = 8(x-x')&(y~y')3

&y = XX, * YoV, = transverse unit dyadic.
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where the interchange of differentiation and integration is permissible since
the integral exists before and after interchange. Since g(z,z;') is integrable
even in the limit z = 2' = 0, Eq. (11) is a true integro-differential equation.
Te emphasize this fact we may rewrite (11) in the forms#:

(10.12a) curlﬁ F - k°F = -ikH (p) x n
~ ~ ~0 s ~
(10.120)  F(p) = b //_ elp,p)E (p")ds"
where we have defined
g2 Ce . 2
(10.13) curlt F =1 x vtvt xn*E=99 +F-~ Vi F,

and where p = (x,y,0) is the coordinate vector in the aperture. It is
necesssry i:j:rst to obtain the general solution of the vector differential
equation (12a) for F, and then to solve the integral equation (1Zb) for
~Et’ The arbitrary constants in the resulting sclution for gt are determined
by imposing the remaining boundary condition (2¢).

A general solution to Eq. (12a) can be obtained ina variety of
ways, depending on the nature of the excitation };Io and the shape of the

aperture, It thus appears desirable to specialize at this pgint.

Diffraction of a Plane Wave by a Circular Aperture

Since an arbitrary source distribution can be resolved into plane
wave constituents, it is basic to consider a plane wave incident on the aper-
ture. There are two independent types of vector plane wavest the E- and the
H- wavesx¥*, distinguished by their polarization. If a rectangular coordinate
system with origin at the center of the aperture is oriented so that the plane
wave is incident in the xz-plane, the transverse field distribution of an E-mode

[55]

wave is given by

# Bouwkamp writes Eg. (12a) in a somewhat different form. From (12a) one notes

that
: 2 o . o2
(1) -k°V, « F =-ikV,  * H xn = -kK'E__
whence on expansion of curlﬁ of (12a)
(11) (V2 + k%) F = ik(e, + Vtvt) H xn=-<E
t ~ tT T2 "N T AT T sot

Eqse (1) and (ii) which together are equivalent to Eg. (12a), are employed by
Bouwkamp but with ¥ replaced by F x n,
#*% Cf, [SS_]; Section 26 contains a description of a complete orthogonal set

of vector plane waves,
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' 'S ik x
1 = t X - P T -
(10.1ka) e (2) h'(p) xn = -7, iy e T x
and that of an H-mode wave is given by
elkxx ik x
(10.14b) 3"(2) = B“(B) xn = -7, % n i = g To s

where g and h denote, respectively, the |transverse electric and magnetic field
distributions of the mode in question. |With Bouwkamp's choice of plane wave
excitation, the unperturbzd transverse magnetic field Ho(p) X n in the aperture

-

is a superposition of an li- and H~ mode:
(10.15) Ho(p) xns=TIh'(p) xn 4 I"W"(p) x n,
~ -~ s ~ ~ ~ ~r oS -~

where I' and T' are twice the incident amplitudes of the transverse magnetic
fields of the plane waves defined in Egsle (1L4). For Bouwkamp's choice of plane

wave excitation,*
(10,16) 1! = -2cosf , I* = 251n¢°cosO°, k, = k sin6_ .

The solution of Eqs. (12) for & composite wave of the form (15) is un-
necessarily complicated since the symmetry of the excitation is concealed.
Accordingly it 1s desirable to represent 'lf‘_(g) as a superposition of an E- and

H- mode component, vizs:

(10.17) F(p) = [I'g'(g) + e (g) ] 3
then (12a) decomposes into

(10.17a) curli}j‘" - kzg' = -ikg'(g) xn

(10.17b) Gurllm - kK’p = -1ian (p) lx n,

and correspondingly (12b) decomposes intd

(10.18a) FPi(p) = L 7 glpsp!)E!(p1)ds?

(10.28) P (p) = 1 /7" glp,pn)m (prhast,
~ 'O /ap gl 2o

where

(10.18¢c) f;’t(f,) = Ivg'(g) + I"E"(B).

% See Bouwkamp's definition of the angles 0t 9g» P O Pelt7e
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Solutions of the vector partial differential equations (17) can be
obtained readily. In fact the general solution of Eqs. (17) may be expressed
in the form:

00 J (kp)

(10.19a) E'_j(.%)- = Qi(;%-)ﬂ + Zl 2_amvtx g( mk . sin mf)
m=
s I, (kp)
+ S 21V, X E( " cos nf)
m=0.
m(g) W (phg & I (ke)
(10.190) ==L %2_?—% + S 28 9, x a(L— cos np)
- m=0
p.9
J_(ke)

0
+ ;f%v X n("— sinng) .

From Eqs. (13) and (1h) we see that the first term in Eq. (19a or b) is a parti-
cular solution, while the remaining nH-mode terms", which alone can satisfy the
homogeneous equations (17), represent the complementary solution. The @-polar-
:’Lzat:'mn‘t of the complementary solution is of the most general form; however, it
may be delimited by using the symmetry properties of the field. In view of the
rotational symmetry of the structure asbout the center of the circular aperture,
the @-dependence of the field is determined by the nature of the excitation. The
symmetry of the excitation is evident when a solution in powers of ik is considered.
As Bouwkamp has shown, only the E-mode component (192) contributes to zero-order
in ik, whereas both the E- and H- components of F contribube to first-order in ik.
To make explicit the perturbation soluticn in powers of ik one employs

the scheme:

(10.20) n(p) = h (p) +ik b (p) + (ik)zgt(g) + 0o

o) = F (p) +ik By (p) + (10°Fp(p)s

then Egs. (17) decompose into

2
(10.21a) curlt"}j"o =0
(10.21b) curlZf) = - E D
2 - .
(10.21c) curlt'li‘2 +F, = -hy ¥ 1
2
(10.214) curlil, + Fy = =h, X 1,

t Note that x = pcos @ ; y = p sin ¢.
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It should be noted that the zero- and
determined solely by Eqs. (2la and b )3
f these two solutions, Egs. (2lc and 4d)
(14) in Egs. (21a and ¢) indicates that
ng aperture field E (p) have no pre-

- Furthermore, Eqs., (14) reveal that
dent E- or H- mode is polarized along

(the superscripts ' and " are omitted),

first-order solutions ,\F;o and »gl are not
to determine the transverse divergence

respectively are required. Use of Egs.
in zero-order both Eo and. the correspon
ferred dependence, i.e. s they are radi
the electric field (or h x n) of an inc
the X5 T Y, directions respectively.

(21b and d) indicate that in the first

fields must have the following polar components?s:

(10.22a) EF';-vcos @ Eg ~ gin ¢
El Asin EY ~ cos ¢,
¢ 1 g q q

From (22a) the rectangular components folllow by the transformation

(10.22b) E = cos ¢ Ep - 8in ¢ EQ’

- E E le
E.y sin ¢ 0 + cos ¢ 7y

It is convenient to deal with rectangular field 6omponents since Eqs. (18) imply
that the angular symmetry of the rectangylar (but not polar) components of E and
E are similar, Since the symmetry of the first-order aperture field is known s

we can give a more detailed characterization of the rim singularity than that
given in (2¢). Equations (22a) state that in the first order the rim condition
(2c) may be decomposed into

o) E‘; ~ CcOS ¢ Ed,./g sin @

(10.23)
/5 E} ~ sin ¢ Eau,/'s' cos ¢ ,

Bouwkamp has pointed out that the zero-order solutions obtained in
the literaturesi# have usually been corred¢t, but that this is not the case for
the first-order solutions. Since the difference between the method employed here
and that of Bouwkamp is most evident in the first order, only this order of solu-
tion will be considered below,

T see note on previous page.,
* Since g(p,p!') is indepencdent of the ¢ orientatiorn of the coordinste axes.

** See section VIJ., For a derivation emplpying the methods herein , cf. the
author's "Coupling of Waveguides by Small Apertures'!, p.68, report R157=47,
PIB-106, Polytechnic Institute of Brooklyn.
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First order solution in (ik).

The general solutions (19) permit a ready determination of the first-
order form* of E(-p). It is relevant therefore to consider at this point the
first-order form of the integral equations (18). ILet

. : 1 ik

8(es0') = g,(psp!) + (Lk)gy(@sp!) + oov = —=——— 4 =
(10.24) hnle-o'|

E(p) = E (o) + (1Kk)E,(p) + 3
Then in view of the corresponding expansion of‘g(p) in (20) and the stated
radial nature of,go(p), one has the first-order integral equation (for either
the ! or " component):

F(p) = “QAZ; g,(ps0') E (p)ast,

where go(g,z') is the static form of the Green's function in (5), defined to

within a constant by

Vzgoﬁg,r') = =8(r-r?),
In an oblate spheroidal coordinate system ©, ¢ associated with an gperture of
radius a,

X = 8 cos © cos §

(10.26) y = a sin 6 sin ¢,

where 0 < # < 2n and 0 < 6 < n/2, The statlc Green's function g, can be represented
diagonally in this coordinate system in terms of a complete set of orthogonal

cosm@
functions Eh(coso) sinng

£o 6 vanishes at © = J, The latter property implies thet n end m are either both
even or both odd integers, and that m < n. The desired diagonal representatioﬁﬁﬁ@l&q
is ‘

which are periodic in ¢ and whose derivative with respect

0 1n 2 :
g,(ps0t) = g; D em(2n+1)E%22£§£ pﬁ(oi] Pl'(c0s0) Pl (cose ! Jcosm(@-¢/1),

(10.27) 2o o n+m) !

wherefem is the Neumann number and equals 1 or 2 depending on whether m = C or
> 0. On substitution of (26) and (27) one obtains as the "diagonal" form of the
integral equation (25):

# The first~order solution can likewise be obtained by means of Eqs. (21).
% Note that Eq. (27) represents a convenient form for some of Bouwkamp's integral

theorems,
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2n n/2 2
' teinG ! t (n-m){ .
.131(2)' %[dﬁ'{d@ sino' € (61) g’:mem(Zml) [;:: ; P::(O)J Pﬁ(cos@)?ﬂ(cos@ )
(10.28) cosmw“g')};

whers
£(6) = cos 6 gl(g).

It is evident that Eq. (2f) can be solved immediately on representation of gl(p) in

cosm@
a series of Pﬁ(cos@) sinmg

which Fl = E]'. and the other in which F, = Fr,

»n

functions. Two cases will be distinguished, one in

E-mode Solution
In view of Eqs. (lha) and (22a) we see that the only terms of the
general E-mode solution (192) that yield [contributions to the first order in

ik are 5 2
Fip) =-‘?(ZL - geos P)x, + | 20,V x n(~=—— sinf)

(10.29) J (kp)
*| 20,9,x 1 (-3";—— ain3g)

where the omitted Qs ar'n terms have the wrong symmetry and the omitted ikxx;_‘co
term has been considered in the zero-order approximation. To the desired order
Eq., (29) becomes

> , 2
(10.30)  Fi(p) = [@1‘ ﬁf +(s1n%0 -0 )1%) 8 + ((al+a3)k2+2sin200)%-c082é]§o

k2p2
+ (al-aB)—a-— sin2g ¥
where we have put kx = ksin@o. Substituting p = a sine and noting that

(10.31) sinzo = % [1-P2(cosg)] = %lfg(coso),

one obtains 5
1 2. .2.g° 2 ., 2 .a \

gl'(g)- ay- ;‘; +(sin 8,-a;k )‘6‘ + (alk -sin Oo)-g-PQ(cosG/

(10.32)

2, . 2 \al 2 k2a? 2 .
+((al+a3)k +2sin go)iﬂ P2(coso)c082¢J§0+(al-a3) o P2(cosQ)s1n2¢go .

The integral equation for the first-order aperture field Ei(_e)- is given by (2R)
with (32) as the left-hand nember, On equating coefficients of corresponding
terms, one finds that

(10.33) éoseﬂ@i(g) = [Ao-ﬁA,L,PZ,(cosQ)+A§Pg(cosQ)cos2¢]§o+BgP§(cosO)sinEon,

where
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1 2 2 a2
neA, = a;- ;ﬁ + (sin 6, -a K ) z

4
% nal, = (alk2-sin20 o) %—
3 2 2 2 a2
7 nah; = ((a1+a3)k + 2sin GO) an
22
% naBg = (al-a3) _E_k2a .
" The application of the rim boundary condition (23) to (33) ylelds

2 2

Ay = By
A
2 2.2 - A,
hoy =g =3k = 03

from this the two arbitrary constants oy and a3 follows

2 _ 2
a3k - 8in 00

alkz =1 (to first order).

Equation (33) then yields for the first-order E-mode component of the electric
field in the aperture:

ppex
(10.34) E{(p) = = [,/az-pz (2-5in% )x, + T2 (1+sin’0 ).
a"-p

H-mode solution
As in the case of Eq. (29) the only terms in the general H-mode
solution (19b) which are of interest for the first-order solution are:
22
(1-kx“/2) J, (%p) J.(%p)
x e P
(10.35) _}f‘i(g)= 5 Fo+eB VX 3(-—-;—- cosﬂ)-‘-zﬂavtx 5(-—1&-—— cosp),

K2 -k°
X

where the coefficients 'Bo and B, have been employed to remove in first order
the ikx Yo term of the particular solution, and where all Bm and Br'n terms with
the wrong symmetry (cf. Egs. 22) have been omitted. Using the relations (31),

we can rewrite Eq. (36) to the first order as follows:

, K202 12 0ose)sinagn + |5 (5. kmton? a°
F1(p) = =(By*py)—pp~ Pplcose)sinfx, + K2 -1 +(pyk"-tan"8,) Z-

2

2
O, 2 2 2 2 2 \
(10,37) -(Blk ~-tan Qo)a P2(cosG)+((ﬁ1-g33)k -2tan 90)—;u P2(cosO)cos2¢]zo.

As before, if we substitute (37) into the integral equation (28) for the aperture

field ;E'i and equate the corresponding coefficients’we ¢btain
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cosé !i' (o) = Cng(cosO)sinQQ_ggo-r [D o D2P2(cosg)+D§P§(cos@)c082¢ ]XO s

(10.38)

where k2 a2

3 “acg = -(By*83) 5y

2
1 ‘
ﬂ:LDo = ;f:;z - ﬁl + (Blk
X

2 a
~tan Oo) z
]11 naD, = (tan29_ c—plk‘?) %—

2
% naDg = ((Bl-ﬁf )kz-‘-ZtanzOo) %E .

Furthermore, the imposition of the rim conditions (23) on (38) leads to

2 2
C2 = "'D2

D
2 .2
DO- T-‘P 31)2 0 ’

and hence the arbitrary constants B and By in (38) become

2 2
]331{ = -tan Oo

31k2 = seczgo (to the first order).

Equation (38) then yields for the H-mode component of aperture field in the

first order:

5 PP Y
(10.39) ,@'i(g) = -3 % Ya +p Io * -—;é—;—p-é' ]ﬁ

In view of Egs. (16) and| (18c) we find by superposition that the
total first-order aperture field for the Bouwkamp choice of incident wave is

ikgl(g)s ?-'E}E \/az-p (2112‘(0-1'«9’;0-1!511129050) |
(10 .pa) 2

+

T

, 2
' (I'}O-I“EO + I'sin Qogr,.o)]
a“-p

or, as Bouwkamp obtained,

2 [2 &
T [ 8 =P (-1k2§°x B~ vtEon)

2

(20.40p)
* R (-ikﬁox_g * Vibon) ]

2 G d
a“~p

where .E}o and V are the unperturbed values evaluated at the center of the

tEon
aperture,
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