Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

THE DEPUTY SECRETARY OF DEFENSE

WASHINGTON. D.C. 20301

JAN 2 1981

MEMORANDUM FOR SECRETARIES OF THE MILITARY DEPARTMENTS
CHAIRMAN, JOINT CHIEFS OF STAFF -
DIRECTOR, DEFENSE ADVANCED RESEARCH

PROJECTS AGENCY
DIRECTOR, DEFENSE COMMUNICATIONS AGENCY
DIRECTOR, DEFENSE INTELLIGENCE AGENCY
DIRECTOR, DEFENSE INVESTIGATIVE SERVICE
DIRECTOR, DEFENSE LOGISTICS AGENCY
DIRECTOR, DEFENSE MAPPING AGENCY
DIRECTOR, DEFENSE NUCLEAR AGENCY
DIRECTOR, NATIONAL SECURITY AGENCY
DIRECTOR, WWMCC SYSTEM ENGINEERING

" SUBJECT: DOD Computer Security Evaluation Center

Although your comments in response to Dr. Dinneen's
memorandum of November 13 indicate some concern about working
relationships within the proposed Evaluation Center, there
is no disagreement or doubt regarding the need. Therefore,
the proposal made by the Director, National Security Agency
to establish a Project Management Office is approved. <Ef-
fective January 1, 1981, the Director, National Security
Agency 1is assigned' the responsibility for Computer Security
Evaluation for the Department of Defense.

Please provide the name cf your representative for
computer security matters ToO ASD(C31). The individual
chosen for this task should be empowered to work in your
behalf to develop and coordinate the charter and imple-
menting directives for the Center. I expect this working
group to identlfy necessary personnel and fiscal resources.

S0 7 / / : //, |
e .(:;;J L L/QI&%Léé%{/C/

W. Graham Claytor, Jr.
cc: ASD(CI)

ASD (Comptroller) -
DUSD{Policy Review) ' .

PoQﬁHmHoOSD_Dmme
eleass instructions apply.

FPigure 1-1 ?43{.4*
2

l Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

e
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

assessment of the progress to date in achieving widespread
availability of trusted computer systems.

The computer manufacturers are making substantial progress

in improving the integrity of their products, as can be seen
by a review of section 3 of this report. Most of the

incentive for this comes from a strong need to build more
reliable and easily maintainable products coupled with a
significant increase in the computer science understanding '
of how to produce more reliable hardware and software. This
trend was well established before the efforts of the
Initiative and can be expected to continue at an
accelerating pace. But the existence of an organized effort
on the part of the government to understand the integrity
measures of industry developed computer products will have a

~ strong influence on the evolution of the industry’s
integrity improvement measures.

If the government can establish consistent evaluation
criteria, the efforts of the Initiative to date have shown
that the industry will evolve their systems in accordance
with those criteria and the government can then expect to be
able to purchase high integrity computer products in the
same manner they purchase standard ADP systems today,
without the high additional costs of special purpose
development and maintenance. This is the philosophy being
pursued by the Initiative, to influence the .evolution of
highly reliable commercial products to enable their use in
sensitive information handling applications and to obtain
sufficient understanding of the integrity of individual
products to ,determine suitable environments for their use.

This report is organized in the following manner. The
remainder of this section summarizes the major activities of
the Initiative since June 1978. Section 2 gives background
on the general nature of the computer security problem and
some technical details helpful in understanding the trusted
system evaluation process. Section 3 describes the current
status of the Initiative, including: (1) a description of
the Evaluated Products List concept, (2) a description of
the Trusted Computing Base (TCB) concept, (3) current draft
| evaluation criteria, (4) a proposed evaluation process, and

‘ (5) the status of current Initiative evaluation efforts.

Section 4 describes ongoing R&D, plans, and industry

| implications in the areas of trusted operating systems,
. trusted applications, and verification technology.
|

. 1.1 COMPUTER SECURITY INITIATIVE ACTIVITIES
Figufe 1-2 illustrates the overall activities of the

| Initiative. There are three main efforts being pursued in
| parallel. The eventual outcome of this work is the

. Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

z-T1 2an814

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

.e.mn..”. 2861 : 08l - .. 8LGt
151754310044 QILVATVA. "
_" * 4
|
“ JVAIND
SWI1SAS “ g — SOSH
0aLLIwgns _ WA
| | -
ABISNONI o 11 - SOSX |
TYWHo4 | TYWHO NI
! ISVHd NOILYN VA 1l
|
|
|
INIWIINVHNI ONV MIIATY | ‘04000 AWISRONI | ‘0400 Q00 | 1d4vHd .
“ 3SYHA NOILVDId193dS i
|
|
_ SdOHSHYOM/SHYNINIS a118Nd
m . 3I5VHd NOILY3003 B _

FALLVILING ALIUN3ES UdiNdiiod

roved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

X
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

establishment of a consistent and systematic means of
evaluating the integrity of industry and government
developed computer systems. This outcome will be
accomplished when the Initiative has reached the Formal
Evaluation of industry developed systems represented in the
lower right of the figure. Before this can happen, the
evaluation process must be formalized, criteria for
evaluation established and an Executive Agent identified to
carry out the evaluations. The vertical dotted line

- represents the accomplishment of this formalization. Prior
to this, in the Specification Phase (Part II on the figure),
draft evaluation criteria and specifications for a "Trusted
Computing Base" (TCB) are being developed (see section 3 of
this report). Thesé draft documents are being distributed
for comment to the DoD through the Consortium and to
industry through the Education Phase efforts described
below. In order to ensure that the draft criteria and
specifications are realistic and feasible, the Initiative
has been conducting, at the invitation of various computer
manufacturers, evaluations of several potential industry
trusted systems. (Section 3.5 describes present efforts).
These informal evaluations are performed by members of the
Consortium, governed by 0OSD General Council approved legal
limitations and non-disclosure agreements. They are
conducted as mutually beneficial technical discussions with
the manufacturers and are serving a vital function in
illustrating the feasibility of such an evaluation process
and the industry”s strong interest and willingness to
participate.

The other major part of the Initiative’s efforts as
represented on figure 1-2 is the Education Phase. The goal
in this effort is two fold: (1) to transfer technology to
the computer manufacturers on how to develop trusted
computer systems and (2) to identify to the general computer
user community that trusted computers can be built and
successfully employed in a wide variety of applications.

The principle method of accomplishing these goals is through
public seminars. Three such seminars have been held at the
National Bureau of Standards in July 1979, January 1980, and
November 1980. These seminars were attended by 300-350
people representing all the major computer manufacturers,
over 50 computer system user organizations and over 25
Federal and State organizations. The seminars have |
generated a great deal of interest in the development of
trusted computer systems. In addition freguent
participation in national level conferences such as the
National Computer Conference (1979 and 1980) have helped to
establish the viability of the trusted computer concept.

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

S
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

There are three major efforts in the DoD computer security
R&D program. The first is the development and demonstration
of trusted operating systems. 1Included .in these efforts are
the Kernelized Secure Operating System (KSOS), which went

into initial test site evaluation during the fall of 1980,
and the Kernelized VM/370 System (KVM/370), which will be
installed at two test sites by the first quarter of 1981.
Also included in this activity is the hardware and security
kernel development efforts on the Honeywell Secure
Communications Processor (SCOMP). All of these efforts
began as DARPA programs with joint funding from many
sources. Through the efforts of the Initiative,
arrangements have been made, starting in Oct 1980, for the
Navy to assume technical and contractual responsibility for
the KSOS and SCOMP efforts and for the.Air Force to assume
similar responsibility for the KVM/370 effort. These
efforts are essential for the demonstration of trusted
computer systems to the DoD and also as examples to the
manufacturers as incentives to produce similar systems.

The second major R&D activity is the development of
applications of trusted computer systems. These include the
various gqguard-related information sanitization efforts (e.gq.
ACCAT GUARD, FORSCOM GUARD), trusted front-end systems (e.g.
COINS Trusted TAS, DCA COS-NFE), trusted message system
activities (e.g. DARCOM Message Privacy Experiments), and a
recently—-started effort in trusted data base management
systems.

The third R&D thrust is the establishment of a verification
technology program to advance the state of the art in
truéted system specification and verification. The first
phase of this program (FY80-FY83) includes major competitive
procurement activities to broaden our experience in using
current program verification technologies. This effort is
being undertaken to better understand the strengths and
weaknesses of these systems in order to be able to better
specify our requirements for future improved systems which
will be developed in the second phase of the program
{FY83-FY86). The Air Force has a major effort in this area
beginning in FY81. The Navy is initiating an R&D effort to
integrate several existing technologies into a package for
the specification and verification of applications like the
var ious Guard systems now under development.

A significant factor in the progress of the DoD R&D

activities in the past year has been the actions taken in

response to recommendations of the Defense Oversight ‘ ‘
Committee”s Report, "Employing Computer Security Technology _ S~
to Combat Computer Fraud." The Committee”s report

recommended that the Services establish long-term programs

in computer security R&D and that spec¢ific sums be allocated

by each service in FY79, 80 and 81 while these long term

Approved For Release 2007/06/01 : CIA-RDP83M00914ROO’I8.00060009.-2

T
_ Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

grograms are being established. The FY80 funds recommended
oy the Committee were provided by March 1980 and have been
lnstrumental in keeping ongoing efforts underway and
pProviding the resources needed to establish the new
application and verification technology development efforts.

roved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

SECTION 2

BACKGROUND

The Defense Science Board Task Force on Computer Security
described the nature of the computer security problem in a
report entitled "Security Controls for Computer Systems"
dated February 1970 [WARE70]. That description remains
valid today and is reprinted here in part to set the context
for this report.

2.1 NATURE OF THE PROBLEM
2.1.1 The Security Problem

"The wide use of computers in military and defense
installations has long necessitated the application of
security rules and regulations. A basic principle
underlying the security of computer systems has
traditionally been that of isolation--simply removing the
entire system to a physical environment in which
penetrability is acceptably minimized. The increasing use
of systems in which some equipment components, such as user
access terminals, are widely spread geographically has
introduced new complexities and issues. These problems are
not amenable to solution through the elementary safeguard of
physical isolation. ‘

"In one sense, the expanded problems of security provoked by
resource-sharing systems might be viewed as the price one
pays for the advantages these systems have to offer.
However, viewing the question from the aspect of such a
simplistic tradeoff obscures more fundamental issues.

First, the security problem is not unique to any one type of
computer system or configuration; it applies across the
spectrum of computational technology. While the present
paper frames the discussions in terms of time-sharing or
multiprogramming, we are really dealing not with system
configurations, but with security; today’s computational
technology has served as catalyst for focusing attention on
the problem of protecting classified information resident in
computer systems.-

"Secondly, resource-sharing systems, where the problems of
security are admittedly most acute at present, must be
designed to protect each user from interference by another
user or by the system itself, and must provide some sort of
"privacy" protection to users who wish to preserve the
integrity of their data and their programs. Thus, designers
and manufacturers of resource-sharing systems are concerned
with the fundamental problem of protecting information. 1In

AQQrdved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

.
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

protecting classified information, there are differences of
Qegree, and there are new surface problems, but the basic
issues are generally equivalent. The solutions the
manufacturer designs into the hardware and software must be
augmented and refined to provide the additional level of
protection demanded of machines functioning in a security
environment.

2.1.2 Types of Computer Systems -

"There are several-ways in which a computer system can be
physically and operationally organized to serve its users.
The security controls will depend on the configuration and
the sensitivity of data processed in the system. The
following discussion presents two ways of viewing the
physical and operational configurations.

2.1.2.1 Equipment Arrangement and Disposition

"The organization of the central processing facilities for
batch or for time-shared processing, and the arrangement of
access capabilities for local or for remote interaction are
depicted in figure 2-1. Simple batch processing is the
‘historical and- still prevalent mode of operation, wherein a
number of jobs or transactions are grouped and processed as
a unit. The batches are usually manually organized, and for
the most part each individual job is processed to completion
in the order in which it was received by the machine. An
important characteristic of such single-queue, batched,
ruﬁ—to—completion systems which do not have an integrated
file management system for non-demountable, on-line memory
media is that the system need have no "management awareness"
from job to job. Sensitive materials can be erased or
removed from the computer guickly and relatively cheaply,
and mass memory media containing sensitive information can
be physically separated from the system and secured for
protection. This characteristic explains why solution to
the problem we are treating has not been as urgent in the
past.

"In-multiprogramming, on the other hand, the jobs are
organized and processed by the system according to
algorithms designed to maximize the efficiency of the total
system in handling the complete set of transactions. 1In
local-access systems, all elements are physically located
within the computer central facility; in remote-access
systems, some units are geographically distant from the
central processor and connected to it by communication
lines.

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 :

Remote-Access

Local-Access

CIA-RDP83M00914R001800060009-2

¢

N4

Batch

Batch

B

5 Locai-Access g
A A
A ag .)

i & Muitiprogrammingh @ Multiprogramming g

SR I : < S—

Remote-Access Remote-Access §
g $ § é 4

Time-Shared

Difficulty and
Complexity of
§ Security Controls §

Figure 21

Type il

PROGRAMMING VIA

Type | Type It LIMITED LANGUAGES Type IV
AND
FILE PROGRAMMING VIA CHECKED-CUT FULL PROGRAMMING
QUERY INTERPRETATION COMPILERS CAPABILITY
& 4~ & 9
Limited New Languages
A:rphcatlon Increasing New Compilers
ograms User Capability,
Difficulty, and

roved For Release 2007/06/01 :

Complexity of &
Security Controls §

Figure 2-~2

10

CIA-RDP83M00914R001800060009-2

" Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

2.1.2.2 User Capabilities

"Another way of viewing the types of systems, shown in

figure 2-2, is based on the levels of computing capability
avallable to the user.

"File—query Systems (Type I) enable the user to execute only
limited application programs embedded in the system and not
available to him for alteration or change. He selects for
execution one or more available application programs. He
may be able .to couple several of these programs together for
automatic execution in sequence and to insert parameters
into the selected programs.

"Interpretive systems (Type Il) provide the user with a
programming capability, but only in terms of input language
symbols that result in direct execution within the computer
of the operations they denote. Such symbols are not used to
construct an internal machine language program that can
subsequently be executed upon command from the user. Thus,
the user cannot obtain control of the machine directly,
because he is buffered from it by the interpretive software.

"Compiler systems (Type III) provide the user with a
programming capability, but only in terms of languages that
execute through a compiler embedded in the system. The
instructions to the compiler are translated by it into an
assembly language or basic machine language program.
_Program execution is controlled by the user; however, he has
available to him only the limited compiler language.

"Full programming systems (Type IV) give the user extensive
and unrestrained programming capability. Not only can he
execute programs written in standard compiler languages, but
he also can create new programming languages, write
compilers for them, and embed them within the system. This
gives the user intimate interaction with and control over
the machine”s complete resources--excepting of course, any
resources prohibited to him by information-protecting
safeguards (e.g., memory protection, base register controls,
and I/0 hardware controls).

In principle, all combinations of equipment configurations
(figure 2-1) and operational capabilities (figure 2-2) can
exist. In practice, not all the possible combinations have
been implemented, and not all the possibilities would
provide useful coperational characteristics.

2.1.3 Threats To System Security
"By their nature, computer systems bring together a series

of vulnerabilities. There are human vulnerabilities
throughout; individual acts can accidentally or deliberately

11

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

jeopardize the system”s information protection capabilities.
Hardware vulnerabilities are shared among the computer, the
communication facilities, and the remote units and consoles.
There are software vulnerabilities at all levels of the
machine operating system and supporting software; and there
are vulnerabilities in the organization of the protection
system (e.g., in access control, in user identification and
authentication, etc.). How serious any one of these might
be depends on the sensitivity (classification) of the
information being handled, the class of users, the
computational capabilities available to the user, the
operating environment, the skill with which the system has
been designed, and the capabilities of potential attackers
of the system.

"These points of vulnerability are applicable both in
industrial environments handling proprietary information and
in government installations processing classified data.
This Report is concerned directly with only the latter; it
is sufficient here to acknowledge that the entire range of
issues considered also has a "civil" side to which this work
is relevant.

"The design. of a secure system must provide protection
against the various types of vulnerabilities. These fall
into three major categories: accidental disclosures,
deliberate penetrations, and physical attack.

"Accidental Disclosure. A failure of components, equipment,
software, or subsystems, resulting in an exposure of
information or violation of any element of the system.
Accidental disclosures are frequently the result of failures
of hardware or software. Such failures can involve the
coupling of information from one user (or computer program)
with that of an other user, the "clobbering"” of information
(i.e., rendering files or programs unusable), the defeat or
circumvention of security measures, or unintended change in
security status of users, files, or terminals. Accidental
disclosures may also occur by improper actions of machine
operating or maintenance personnel without deliberate
intent.

"Deliberate Penetration. A deliberate and covert attempt to
(1) obtain information contained in the system, (2) cause
the system to operate to the advantage of the threatening
party, or (3) manipulate the system so as to render it
unreliable or unusable to the legitimate operator.
Deliberate efforts to penetrate secure systems can either be
active or passive. Passive methods include wire tapping and
monitoring of electromagnetic emanations. Active
infiltration is an attempt to enter the system so as to
obtain data from the files or to interfere with data files
or the systemn.

12

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

"One method of accomplishing active infiltration is for a

legitimate user to penetrate portions of the system for

which he has the authorization. The design problem is one

of preventing access to files by someone who is aware of the

access control mechanisms and who has the knowledge and

desire to manipulate them to his own advantage. For -
example, if the access control codes are all four-digit
numbers, a user can pick any four-digit number, and then,
having gained access to some file, begin interacting with it
in order to learn its contents.

"Another class of active infiltration techniques involves
the exploitation of trap-door entry points in the system
that by-pass the control facilities and permit direct access
to files. Trap-door entry points often are created
deliberately during the design and development stage to
simplify the insertion of authorized program changes by
legitimate system programmers, with the intent of closing
the trap-door prior to operational use. Unauthorized entry
points can be created by a system programmer who wishes to
provide a means for bypassing internal security controls and
thus subverting the system. There is also the risk of
implicit trap-doors that may exist because of incomplete
system design--i.e., loopholes in the protection mechanisms.
For example, it might be possible to find an unusual
combination of system control variables that will create an
entry path around some oOr all of the safeguards.

"Another potential mode of active infiltration is the use of
a special terminal illegally tied into the communication
system. Such a terminal can be used to intercept
information flowing between a legitimate terminal and the
central processor, or to manipulate the system. For
example, a legitimate user’s sign-off signal can be
intercepted and cancelled; then, the illegal terminal can
take over interaction with the processor. Or, an illegal
terminal can maintain activity during periods when the
legitimate user is inactive but still maintaining an open
line. Finally, the illegal terminal might drain off output
directed to a legitimate terminal and pass on an error
message in its place so as to delay detection.

"Active infiltration also can be by an agent operating
within the secure organization. This technique may be
restricted to taking advantage of system protection
inadequacies in order to commit acts that appear accidental
but which are disruptive to the system or to its users, or
which could result in acquisition of classified information.
At the other extreme, the agent may actively seek to obtain
removable files or to create trap doors that can be
exploited at a later date. Finally, an agent might be
placed in the organization simply to learn about the system
and the operation of the installation, and to obtain what

13

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

T
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

pieces of information come his way without any particularly
covert attempts on his part at subpversion.

"In passive subversion, means are applied to monitor

information resident within the system or being transmitted

through the communication lines without any corollary

attempt to interfere with or manipulate the system. The

most obvious method of passive infiltration is the wire tap.

. If communications between remote terminals and the central
processor are over unprotected circuits, the problem of
applying a wire tap to the computer line is similar to that
of bugging a telephone call. 1It is also possible to monitor
the electromagnetic emanations that are radiated by the
high-speed electronic circuits that characterize so much of
the equipment used in computational systems. Energy given
off in this form can be remotely recorded without having to
gain physical access to the system or to any of its
components or communication lines. The possibility of
successful exploitation of this technique must always be
considered.

"Physical Attack. Overt assault against or attack upon the
physical environment (e.g., mob action) is a type of
vulnerability outside the scope of this Report.

2.1.4 Areas of Security Protection

"The system design must be aware of the points of
vulnerability, which may be thought of as leaKage points,
and he must provide adequate mechanisms to counteract both
accidental and deliberate events. The specific leakage
points touched upon in the foregoing discussion can be
classified in five groups: physical surroundings, hardware,
software, communication links, and organizational (personnel
and procedures). The overall safeguarding of information in
a computer system, regardless of configuration, is achieved
by a combination of protection features aimed at the
different areas of leakage points. Procedures, regulations,
and doctrine for some of these areas are already established
within DoD, and are not therefore within the purview of the
Task Force. However, there is some overlap between the
various areas, and when the application of security controls
to computer systems raises a new aspect of an old problem,
the issue is discussed. An overview of the threat points is
depicted in figure 2-3.

2.1.4.1 Physical Protection

"Security controls applied to safeguard the physical
equipment apply not only to the computer equipment itself
and to its terminals, but also‘to such removable items as
printouts, magnetic tapes, magnetic disc packs, punch cards,
etc. Adequate DoD regulations exist for dissemination,

14

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2.

COMPYTER NETWORK VULNERABILITIES
RADIATION

TAP$
QAD!ATION ﬁ

RADIATION TAPS RADIATION
i RADIATION CROSSTALK T caossm.x
. c|o MUNICATION)
s M
GO— - — SWITCHING . .
)] T LINES |
.| PeocessoR | o centee |\ |-)
LCQ}-—-——‘- ..
\ _ ﬁ Q Q HAQDWARE
' THEFF’:LES IMPROFER CO: wECTIOﬂS ﬁ
PG opammg CROSS COUPLIRG
UNAUTHORIZED ACCESS ggztiispség;%\s‘%gg SYSTEMS PROCOAM: AMMER co%gogés
OISABLE Fa0TECTIVE FEATURES
MEASURES PROVIDE “1#5"
REVEAL PROTECTIVE MEASURES
HAQDWA&i
FAILURE OF PROTECTION CIRCUITS ms’:‘g:’“g;‘:"“'li ogﬁ:s ACCESS’
CORITRIBUTE TO SOFTWARE FNLU S £ HARDWLE:E ATTACHMENT OF RECORDERS
€ STAMD-ALONE UTILITY PROGRAMS
sonwmze v ALCH 0% UGS USER
FNLUQE OF FQOT‘CT’ON FEATURES IOENTIFICEY 10N
ACCESS CONTROL AUTHENTICATION
BOUNDS CONTROL SUBTLE SOFTWARE
ETC. ~ MODIFICATIONS
Figure 2-3
| .
15

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

o —
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

control, storage, and accountability of classified removable

items.

Therefore, security measures for these elements of

the system are not examined in this Report unless there are
some unique considerations. The following general
guidelines apply to physical protection.

(a)

(b)

(c)

The area containing the central computing complex and
associated equipment (the machine room or operational
area) must be secured to the level commensurate with
the most highly classified and sensitive material
handled by the system.

Physical protection must be continuous in time,
because, of the threat posed by the possibility of
physical tampering with equipment and because of the
likelihood that classified information will be stored
within the computer system even when ‘it is not
operating.

Remote terminal device must be afforded physical
protection commensurate with the classification and
sensitivity of information that can be handled
through them. While responsibility for instituting
and maintaining physical protection measures is
normally assigned to the organization that controls
the terminal, it is advisable for a central authority
to establish uniform physical security standards
(specific protection measures and regulations) for
all terminals in a given system to insure that a
specified security level can be achieved for an
entire system. Terminal protection is important in
order to:

~ Prevent tampering with a terminal (installing
intelligence sensors) ;

- Prevent visual inspection of classified work
in progress;

- Prevent unauthorized persons from trying to
call and execute classified programs or obtain
classified data.

"If parts of the computer system (e.g., magnetic disc files,

- copies of printouts) contain unusually sensitive data, or
must be physically isolated during maintenance procedures,
it may be necessary to physically separate them and
independently control access to them. In such cases, it may
be practical to provide direct or remote visual surveillance
of the ultra-sensitive areas. If visual surveillance is

used,

it must be designed and installed in such a manner

that it cannot be used as a trap-door to the highly
sensitive material it is intended to protect.

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

16

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

2.1.4.2 Hardware Leakage Points

"Hardware portions of the system are subject to malfunctions
that can result directly in a leak or cause a failure of
§ecurity protection mechanisms elsewhere in the system,
including inducing a software malfunction. In addition,
properly operating equipment is susceptible to being tapped
or otherwise exploited. The types of failures that must
directly affect security include malfunctioning of the -
circuits for such protections as bounds registers, memory

{ead~write protect, privileged mode operation, or priority

interrupt. Any hardware failure potentially can affect

security controls; e.g., a2 single-bit error in memory.

"Both active and passive penetration techniques can be used
against hardware leakage points. 1In the passive mode, the
intervener may attempt to monitor the system by tapping into
communications lines, or by monitoring compromising
emanations. Wholly isolated systems can be physically
shielded to eliminate emanations beyond the limits of the
secure installation, but with geographically dispersed
systems comprehensive shielding is more difficult and
expensive. Currently, the only practical solutions are
those used to-protect communications systems.

"The problem of emanation security is covered by existing
regulations; there are not new aspects to this problem
raised by modern computing systems. It should be
emphasized, however, that control of spurious emanations
must be applied not only to the main computing center, but
to the remote equipment as well.

"Although difficult to accomplish, the possibility exists
that covert monitoring devices can be installed within the
central processor. The problem is that the computer
hardware involved is of such complexity that it is easy for
a knowledgeable person to incorporate the necessary
equipment in such a way as to make detection very difficult.
His capability to do so assumes access to the equipment
during manufacture or major maintenance. Equipment is also
vulnerable to deliberate or accidental rewiring by
maintenance personnel so that installed hardware appears to
function normally, but in fact by-passes or changes the
protection mechanisms. : .

"Remote consoles also present potential radiation
vulnerabilities. Moreover, there is a possibility that
recording devices might be attached to a console to pirate
information. Other remote or peripheral equipment can
present dangers. Printer ribbons or platens may bear
impressions that can be analyzed; rémovable storage media
(magnetic tapes, disc packs, even punch cards) can be
stolen, or at least removed long enough to be copied.

17

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

" Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

"Erasure standards for magnetic media are not within the
Scope of this Task Force to review or establish. However,
System designers should be aware that the phenomena of
retentivity in magnetic materials is inadequately
understood, and is a threat to system security.

2.1.4.3 Software Leakage Points

"Software leakage points include all vulnerabilities
directly related to the software in the computer system. Of
special concern is the operating system and the
supplementary programs that support the operating system
because they contain the software safeguards. Weaknesses
can result from improper design, or from failure to check
adequately for combinations of circumstances that can lead
to unpredictable consequences. More serious, however, is
the fact that operating systems are very large, complex
structures, and thus it is impossible to exhaustively test
for every conceivable set of conditions that might arise.
Unanticipated behavior can be triggered by a particular user
program or by a rare combination of user actions.
Malfunctions might only disrupt a particular user’s files or
programs; as such, there might be no risk to security, but
there is a serious implication for system reliability and
utility. 'On the other hand, operating system malfunctions
might couple information from one program (or user) to
another; clobber information in the system (including
information within the operating system software itself); or
change classification of users, files, or programs. Thus,
malfunctions in the system software represent potentially
serious security risks. Conceivably, a clever attacker
might establish a capability to induce software malfunctions
deliberately; hiding beneath the apparently genuine trouble,
an on-site agent may be able to tap files or to interfere
with system operation over long periods without detection.

"The security safeguards provided by the operating system
software include access controls, user identification,
memory bounds control, etc. As a result of a hardware
malfunction, especially a transient one, such controls can
become inoperative. Thus, internal checks are necessary to
insure that the protection is operative. Even when this is
done, the simultaneous failure of both the protection
feature and its check mechanism must always be regarded as a
possibility. With proper design and awareness of the risk,
it appears possible to reduce the probability of undetected
failure of software safeguards to an acceptable level.

"Probably the most serious risk in system software is
incomplete design, in the sense that inadvertent loopholes
exist in the protective barriers and have not been foreseen
by the designers. Thus, unusual actions on the part of
users, or unusual ways in which their programs behave, can

18

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

induce a loophole. There may result a security breach, a

suspension or modification of software safeguards (perhaps

undetected), or wholesale clobbering of internal programs,

data, and files. It is conceivable that an attacker could

mount a deliberate search for such loopholes with the

expectation of exploiting them to acquire information either .
from the system or about the system--e.g., the details of

its information safeguards.

2.1.4.4 Communication Leakage Points

"The communications linking the central processor, the
switching center and the remote terminals present a
potential vulnerability. Wiretapping may be employed to
steal information from land lines, and radio intercept
equipment can do the sawme to microwave links. Techniques
for intercepting compromising emanations may be employed
against the communications equipment even more readily than
against the central processor or terminal equipment. For
example, crosstalk between communications lines or within

. the switching central itself can present a vulnerability.
Lastly, the switch gear itself is subject to error and can
link the central processor to the wrong user terminal.

2.1.4.5 Organizational Leakage Points

"There are two prime organizational leakage points,
personnel security clearances and institutional operating
procedures. The first concerns the structure, -
administration, and mechanism of the national apparatus for
granting personnel security clearances. It is accepted that
adequate standards and techniques exist and are used by the
cognizant authority to insure the reliability of those
cleared. This does not, however, relieve the system
designer of a severe obligation to incorporate techniques
that minimize the damage that can be done by a subversive
individual working from within the secure organization. A
secure system must be based on the concept of isolating any
given individual from all elements of the system to which he
has no need for access. In the past, this was accomplished
by denying physical access to anyone without a security
clearance of the appropriate level. 1In resource-sharing
systems of the future, a population of users ranging from
uncleared to those with the highest clearance levels will
interact with the system simultaneously. This places a
heavy burden on the overall security control apparatus to
insure that the control mechanisms incorporated into the
computer systems are properly informed of the clearances and
restrictions applicable to each user. The machine system
must be designed to apply these user access restrictions
reliably.

19

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

o
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

"In some installations, it may be feasible to reserve
Certain terminals for highly classified or highly sensitive
Oor restricted work, while other terminals are used
exclusivel{ for less sensitive operation. Conversely, in
some installations any terminal can be used to any degree of
classification or sensitivity, depending on the clearance
and needs of the user at the given moment. 1In either of
these cases, the authentication and verification mechanisms
built into the machine system can be relied upon only to the
| degree that the data on personnel and on operational

| characteristics provided it by the security apparatus are
accurate.

"The second element of organizational leakage points

| concerns institutional operating procedures. The

| consequences of inadequate organizational procedures, or of
their haphazard application and unsupervised use, can be
just as severe as any other malfunction. Procedures include
the insertion of clearance and status information into the
security checking mechanisms of the machine system , the
methods of authenticating users and of receipting for
classified information, the scheduling of computing
operations and maintenance periods, the provisions for
storing and keeping track of removable storage media, the
handling-of printed machine output and reports, the
monitoring and control of machine-generated records for the
security apparatus, and all other functions whose purpose is
to insure reliable but unobtrusive operation from a security
control viewpoint. Procedural shortcomings represent an
area of potential weakness that can be exploited or
manipulated, and which can provide an agent with innumerable
opportunities for system subversion. Thus, the installation
operating procedures have the dual function of providing
overall management efficiency and of providing the
administrative bridge between the security control apparatus
and the computing system and its users.

"The Task Force has no specific comments to make with
respect to personnel security issues, other than to note
that control of the movement of people must include control
over access to remote terminals that handle classified
information, even if only intermittently. The machine room
staff must have the capability and responsibility to control
the movement of personnel into and within the central
computing area in order to insure ‘that only authorized
individuals operate equipment located there, have access to
removable storage media, and have access to any machine
parts not ordinarily open to casual inspection.

2.1.4.6 Leakage Point Ecology

"In dealing with threats to syétem security, the various
leakage points cannot be considered only individually.

20

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Almost any imaginable deliberate attempt to exploit
weaknesses will necessarily involve a combination of
factors. Deliberate acts mounted against the system to take
advantage of or to create leakage points would usually
require both a system design shortcoming, either unforeseen
or undetected, and the placement of someone in a position to
initiate action. Thus, espionage activity is based on
exploiting a combination of deficiencies and circumstances.
A software leak may be caused by a hardware malfunction.

The capability to tap or tamper with hardware may be
enhanced because of deficiencies in software checking
routines. A minor, ostensibly acceptable, weakness in one
area, in combination with similar shortcomings in seemingly
unrelated activities, may add up to a serious potential for
system subversion. The system designer must be aware of the
totality of potential leakage points in any system- in order
to create or prescribe techniques and procedures to block
entry and exploitation.

"The security problem of specific computer systems must be
- solved on a case-by-case basis employing the best judgment
of a team consisting of system programmers, technical,
hardware, and communications specialists, and security
experts."

21

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

L
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

2.2 TECHNOLOGY DEVELOPMENT HISTORY

Much has been learned about methods of assuring the
integrity of information processed on computers since the
emergence of operating systems in the early 1960s. Those
early efforts were primarily concerned with improvements in
the effective use of the large computer centers that were
then being established. Information protection was not a
major concern since these centers were operated as large
isolated data banks. There were many significant hardware
and software advances in support of the new operating system
demands. Many of these changes were beneficial to the
interests of informdation protection but since protection was
not an essential goal at that time, the measures were not
applied consistently and significant protection flaws
existed in all commercial operating systems [TANGS8O0].

In the late 1960s, spurred by activities such as the Defense
Science Board study quoted in the previous section, efforts
were initiated to determine how vulnerable computer systems
were to penetration. The "Tiger Team" system penetration
efforts are well known. Their complete success in
penetrating all commercial systems attempted, provided
convincing evidence that the integrity of computer systems
hardware and software could not be relied upon to protect
information from disclosure to other users of the same
computer system.

By the early 1970s penetration technigues were well
understood. Tools were developed to aid in the systematic
detection of critical system flaws. Some detected
mechanical coding errors, relying on the sophistication of
the user to discover a way to exploit the flaws [ABBO76],
others organized the search into a set of generic conditions
which when present often indicated an integrity flaw
[CARL75]. Automated algorithms were developed to search for
these generic conditions, freeing the "penetrator” from
tedious code searches and allowing the detailed analysis of
specific potential flaws. These techniques have continued
to be developed to considerable sophistication. In addition
to their value in searching for flaws in existing software,
these algorithms are useful as indicators of conditions to
avoid in writing new software if one wishes to avoid the
flaws that penetrators most often ‘exploit. '

These penetration aids are, however, of limited value in
producing high integrity software systems. While they could
be used to reveal certain types of flaws, they could assure
the analysts that no further exploitable flaws of other
types did not remain.

In the early 1970s the Air Force/Electronic Systems Division
(ESD) conducted in-depth analyses of the requirements for

22

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

secure systems [ANDE72]. The concepts which emerged from
their efforts are today the basis for most major trusted
computer system developments. The basic concept is a
Reference Monitor which mediates the access of all active
system elements (people or programs) referred to as
subjects, to all systems elements containing information
(files, record, etc.) referred to as objects. All of the
security relevant decision making functions within a
conventional operating system are collected into a small .
primitive but complete operating system referred to as the

Security Kernel. The security kernel is a specific

implementation of the reference monitor in software and

hardware. The three essential characteristics of this

kernel are that it be:

complete (i.e., that all accesses of all subjects to
all objects be checked by the kernel) ;

isolated (i.e., that the code that comprises the
kernel be protected from modification or interference

by any other software within the system) ;

correct (i.e., that it perform the function for which

it was intended and no other function).
Since these Air Force studies, considerable effort has gone
into building security kernels for various systems. The
reference monitor concept was the basis for work by MIT,
MITRE and Honeywell in restructuring the Multics operating
system [SCHR77]. MITRE and UCLA have built prototype
security kernels.for the PDP-11 minicomputer
[WOOD77,POPE79] . System Development Corporation (SDC) 1is
building a security kernel for the IBM VM/370 operating
system [GOLD79]. Ford Aerospace and Communications
Corporation is implementing the Kernelized Secure Operating
System [MCCA79,BERS79] based on the Secure UNIX prototypes
of UCLA and MITRE. AUTODIN II, the DCA secure packet
switching system is employing this technology in the packet
switching nodes. The Air Force SACDIN program (formerly
called SATIN IV) is also employing this technology.

23

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

e
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

2.3 TRUSTED OPERATING SYSTEM FUNDAMENTALS

An operating system is a specialized set of software which
- provides commonly needed functions for user developed

application programs. All operating systems provide a well
. defined interface to application programs in the form of
system calls and parameters. Figure 2-4 illustrates the
relationship between the operating system and application
software. The operating system interfaces to the hardware
through the basic machine instruction set and to
applications software through the system calls which
constitute the entry points to the operating system.
Applications programs (e.g., A, B, and C) utilize these
system calls to perform their specific tasks.

A trusted operating system patterned after an existing
system is illustrated in figure 2-5. The security kernel is
a primitive operating system providing all essential
security relevant functions including process creating and
execution and mediation of primary. interrupt and trap
responses. Because of the need to prove that the security
relevant aspects of the kernel perform correctly, great care
is taken to keep the kernel as small as possible. The
kernel interface is a well defined set of calls and
interrupt entry points. 1In order to map these kernel
functions into a specific operating system environment, the
operating system emulator provides the nonsecurity software
interface for user application programs which is compatible
with the operating system interface in figure 2=4. The
level of compatibility determines what existing single
security level application programs (e.g., A, B, C) can
operate on the secure system without change.

Dedicated systems often do not need or cannot afford the
facilities or environment provided by a general purpose
operating system, but they may still be required to provide
internal protection. Because the security kernel interface
is well defined and provides all the primitive functions
needed to implement an operating system it can be called
directly by specialized application programs which provide
their own environment in a form tailored for efficient
execution of the application program. Examples of this type
of use are dedicated data base management and message
handling systems.

Figure 2-6 illustrates the relationship between two typical
computer systems connected by a network. Each system is
composed of an operating system (depicted by the various
support modules arrayed around the outside of each box) and
application programs (e.g., A, Q, and R in the inner area of
the boxes). The dotted path shows how a terminal user on
System I might access File X on System II. Working through
the terminal handler, the user must first communicate with

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

IS — e
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

APPLICATION
PROGRAMS

WELL DEFINED A \ 8 c

--.»—

INTERFACE
OPERATING

SYSTEM

HARDWARE

Figure 2-4

APPLICATICN
PROGRAMS

c D

WELL DEFINED A l B
-)

INTERFACE

OPERATING
SYSTEM

EMULATOR -
WELL DEFINED '

A

INTERFACE SECURITY

KERNEL

HARDWARE

Figure 2-5
25 .
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

an application program (A) which will initiate a network
connection with the remote computer through the network
interface software. On System II an application program or
a system utility (Q) is initiated on the user”s behalf to
access File X using the file system. Program Q could
perform a data base update or retrieval for the user or it
could arrange to transfer the file across the network to the
1ocal computer for processing.

When this scenario is applied in a secure environment, the
two systems are placed in physically secure areas and, if
the network is not secure, encryption devices are installed
at the secure interface to the network as shown in figure
2-6.

Figure 2-7 illustrates the function of the security kernel
in the above scenario. Because the kernel resides directly
on the hardware (figure 2-5) and prccesses all interrupts,
traps and other system actions, it is logically imposed
between all "subjects" and "objects" on the system and can
perform access checks on every event affecting the system.
It should be noted that depending on the nature of the
hardware architecture of the system, the representation of
the kernel may have to include the various I/0 device
handlers. The DEC PDP-1l1l, for example, requires that all
device handlers be trusted and included in the kernel since
I/0 has direct access to memory. The Honeywell Level 6 with
the Security Protection Module option (under development)
does not require trusted device drivers since I/0 access to
memory is treated the same way as all other memory accesses
and can be controlled by the existing hardware mechanisms.

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

X34,

— ————. —— S — —— A e —— — — —

STVYNINYIL

S

Yy

g-z 2an313

N

1 WYHOOUd [T
wZO—P<O—J&&< ”.,/2?,///«”/%.

W3ILSAS [V
ONILVH3dO §

SLINN

I
|
I
|
|
|
|
“ NOILJABINI
i

STVNIWYIL

T
-
o i

s

bk

EENEIHER]
ALI¥NO3S
TVIISAHd

’
NN SR
65 SN\

-y

27

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

(-7 2in314

TANYIN [T
ALIMND3S L

n/ \v _.wZOC.QU_J&&Q

|

W3LSAS [

-y M ONILVYHIdO §

e yrévs

y |

” .
|
|
|
|
!

SLINN

|
_
_
_
_
_
_
_
NOILJANIN3 _
~_

o ——— — — ——— S S T— — — —

r : STYNINEIL] .Séooma% [STYNIWYEIL

W,

\\\\///

.
|
“ |
o _

HILIWIHIL
ALIENO3S

!
| |
_ |
_ IVIISAHd “
“ |

— — — — — — ———" V——" Sm— — —

e e e

28

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

2.4 SYSTEM SECURITY VULNERABILITIES

Protection is always provided in relative quantities.

Complete security is not possible with today”s physical

Security measures, nor will it be with new computer security

measures. There will always be something in any security *
sys?em which can fail. The standard approach to achieving

reliable security is to apply multiple measures in depth.

Traditional locks and fences provide degrees of protection -
by delaying an intruder until some other protection

mechanism such as a roving watchman can discover the

attempted intrusion. With computer systems this "delay

until detected" approach won”“t always work. Once an

intruder knows about a security flaw in a computer system,

he can generally exploit it quickly and repeatedly with

minimal risk of detection. '

Research on the security kernel approach to building trusted
operating systems has produced a positive change in this
situation. While absolute security cannot be achieved, the
design process for trusted computer systems is such that one
can examine the spectrum of remaining vulnerabilities and
make reasonable judgments about the threats he expects to
encounter and the impact that countermeasures will have on
system performance.

A caution must be stated that the techniques described here
do not diminish the need for physical and administrative
security measures to protect a system from unauthorized
external attack. The computer security/integrity measures
described here allow authorized users with varying data
access requirements to simultaneously utilize a computer
facility. They provide this capability which relies upon
the existing physical and administrative security measures
rather than replacing themn.

The nature of traditional physical and administrative
security vulnerabilities encountered in the operation of
computers with sensitive information is well understood.
Only users cleared to the security level of the computer
complex are allowed access to the system. With the advent
of ‘trusted computer systems allowing simultaneous use of
computers by personnel with different security clearances
and access requirements, an additional set of security X
vulnerabilities comes into play. Tableé 2-A describes one
view of this new vulnerability spectrum as a series of
categories of concern. Each of these concerns was not
serious in previous systems because there was no need or
opportunity to rely on the integrity of the computer
hardware and software.

The first category is the Security Policy which the system
must enforce in order to assure that users access only

29

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

MO Axap T U7 Builsal ddueuazuley
— - D

MO

aupMpary pajelad
K134n238 104 340IX3 == MO
930e43poy

UYSLH

93La3poy

NI CYWIEETS
aA13e19y

Buy3ss) asuvuajupey

*adempley
JueAB 3L A314n03s JO
$%2ayd juepunpad ‘Butyssy

Bupysa)l uayjdwo)

23ds wajsks skaqo

. 10H 3°47 uoijepiiea
FA115BL9JU} 40 |RAuey

A34AL300 udanob
Yojym suojjaasse A314Andss
YSE1qe3sa s(npow yoed Jo4

NGJARY

UGN osay
£331hquasuing

hcowuumLouuw

u043292 *659) ‘uetjoung
oLfio] 21523 95LIdw0d
Yoty suntyduny orjaubeu .
-04325(9 21350q w.i0judd $o18Kyd 9draLQ
(suotriouny ¥o

‘oNy ¢+6+3) suopjonagsuy
8514dwod §dLyM sUotLIduNng .
2160f 215°q WAOJu3d S24U0432243 3LNILL)

{uois

-on43sut ggy ¢6°3) suoiy : . salnpoy

<DNUSUL BULYORL WAOA3d U0}3on13SU] auespleH
{3udpuadag usiiefe3su]) adenparg

e e 1 7 o 42 " -

{(vuepuadapu] uoije(ie3sul) auemizosy

saeMpaey
£q p3Inoaxa a4 yoyn
S3p0d> Aupulg 53Ul uotjey

uojjejusuaidur
~uduadut 0N tuogsues)

abenbuey suiydey

(2 “WISVd ‘ueslsoy
*6°3) ojul ynpow ysea
40} SUOLS}AOLd uoijedLy
-1233dg W33sAS wiopsueaj

uotjejusuadu]
abenfue 4apag udiLy

. {suojjuasse
0/1 seuded *+H°9) anpou
wazshs yse3 424 diyscoty .
=2184 £2:101 ysp|qe3s3 u0}3RIL3193CS waysAs
(£ot10d

A3tandag gog ¢-6°3)
$324N0So4 ‘suasn wsysAs
{1e uaamysq drysuoiry
-2132 £314n338 YSE{qRIs3 A31i0d4 A33anass

UoL3aung NLoooumu

S9TITITqeIduInA £3Tandag walskg Surizeradp V-7 o798l

30
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

e
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

authorized data. This policy consists of the rules which
the computer will enforce governing the interactions between

System users. There are many different policies possible
ranging from allowing no one access to anyone else”’s

information to full access to all data on the system. The
DoD security policy (table 2-B) consists of a lattice
relgtionship in which there are classification levels,
typically Unclassified through Top Secret, and compartments
(or categories) which are often mutually exclusive groupings
gBELL74]. With this policy a partial ordering relationship
is established in which users with higher personnel security
clearance. levels can have access to information at lower
classification levels provided the users also have a "need
to know" the information. The vulnerability concern
associated with the security policy is assuming that the
poligy properly meets the total system security
requirements.

The second general concern is the System Specification
Level., Here the function of each module within the system
and its interface to other modules is described in detail.
Depending upon the exact approach employed, the system
specification level may involve multiple abstract
descriptions. The vulnerability here is to be able to
assure that each level of the specification enforces the
policy previously established.

The next vulnerability concern is the high level language
implementation. This category constitutes the actual module
"implementation represented in a high order language (HOL)
such as EUCLID or PASCAL. This vulnerability involves the
assurance that the code actually obeys the specifications.
The next concern on the vulnerability 1list is the machine
code implementation which includes the actual instructions
to be run on the hardware. The step from HOL implementation
to machine code is usually performed by a compiler and the
concern is to assure that the compiler accurately transforms
the HOL implementation into machine language.

The next level of concern is that the hardware modules

implementing the basic instructions on the machine perform

accurately the functions they represent. Does the ADD

instruction perform an ADD operation correctly and nothing

else? Finally, the last concerns include the circuit

electronics and more fundamental device physics itself. Do -
these elements accurately perform in the expected manner?

As can be seen by analyzing this vulnerability spectrum,
some of the areas of concern are more serious than others.
In particular, relatively little concern is given to circuit
electronics and device physics since there is considerable
confidence that these elements will perform as expected.
There is a concern with hardware modules, though in general

31

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

S
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

TABLE 2-B -- DoD Security Policy

I. Non discretionary (i.e., levels established by national policy
must be enforced).

Compartments
- A B C
N
i - Top.Secret
Secret
Confidential
Unclassified

Partially Ordered Relationship

Top Secret B Secret » Confidential > Unclassified
Compartments A, B, C are mutually'exclusive

Example:)

User in Compartment B, level Secret can have access to all
information at Secret and below (e.g., Confidential and
Unclassified) in that compartment, but no access to
information in Compartments A or C.

II. Discretionary, "Need to know" - (i.e., levels established
"informally'").

32

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

mgst'nonsecurity relevant hardware failures do not pose a
significant vulnerability to the security of the system and
will be detected during normal operations of the machine.
Those security relevant hardware functions can be subject to
frequent software testing to insure (to a high degree) that
they.are functioning properly. The mapping between HOL and
mach}ne code implementation is a serious concern. The
cgmpller could perform improper transformations which would
violate the integrity of the system. This mapping can be
checked in the future by verification of the compiler
(pre§ently beyond the state-~of-the-art). Today we must rely
on rigorous testing of the compiler.

The selection of the security policy which the system must
support requires detailed analysis of the application
requirements but is not a particularly complex process and
can be readily comprehended so the level of concern is not
too high for this category.

The system specification and HOL implementations are the two
areas which are of greatest concern both because of the
complex nature of these processes and the direct negative
impact that an error in either has on the integrity of the
system. Considerable research has been done to perfect both
the design specification process and methods for assuring
its correct HOL implementation [POPE78b,MILL76,FEIE77,
WALK79,MILL79]. Much of this research has involved the
development of languages and methodologies for achieving a
complete and correct implementation [ROUB77,AMBL76,HOLT78].

As stated earlier this vulnerability spectrum constitutes a
set of conditions in which the failure of any element may
compromise the integrity of the entire system. In the high
integrity systems being implemented today, the highest risk
vulnerability areas are receiving the most attention.
Consistent with the philosophy of having security measures
in depth, it will be necessary to maintain strict physical
and administrative security measures to protect against
those lower risk vulnerabilities that cannot or have not yet
been eliminated by trusted hardware/software measures. This
will result in the continued need to have cleared operation
and maintenance personnel and to periodically execute
security checking programs to detect hardware failures.

Over the next few years as we understand better how to
handle the high risk vulnerabilities we will be able to .
concentrate more on the lower risk areas and consequently
broaden the classes of applications in which these systems

will be suitable.
Computer system security vulnerabilities constitute paths
for passing information to unauthorized users. These paths

can be divided into two classes: direct (or overt) and
indirect (or covert) channels [LAMP73,LIPN75]. Direct paths

33

: Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

grant access to information through the direct request of a
user. If an unauthorized user asks to read a file and is
granted access to it, he has made use of a direct path. The
folklore cf computer security is filled with case histories
of commercial operating systems being "tricked" into giving
direct access to unauthorized data. Indirect or covert
channels are those paths used to pass information between
two user programs with different access rights by modulating
Some system resource such as a storage allocation. For
example, a user program at one access level can manipulate

- his use of disk storage so that another user program at

another level can be passed information through the number

| of unused disk pages.

Unauthorized direct access information paths can be
completely eliminated by the security kernel approach since
all objects are labeled with access information and the
kernel checks them against the subject”s access rights
before each access is granted. The user who is interested
only in eliminating unauthorized direct data access can
achieve "complete" security using these techniques. Many
environments in which all users are cleared and only a
"need-to-know" requirement exists, can be satisfied by such
a system.

Indirect data paths are more difficult to control. Some
indirect channels can be easily eliminated, others can never
be prevented. (The act of turning off the power to a system
can always be used to pass information to users.) Some
indirect channels have very high bandwidth (memory to memory
speeds), many operate at relatively low bandwidth.

Depending upon the sensitivity of the application, certain
indirect channel bandwidths can be tolerated. 1In most cases
external measures can be taken to eliminate the utility of
an indirect channel to a. potential penetrator.

The elimination of indirect data channels often affects the
performance of a system. This situation requires that the
customer carefully examine the nature of the threat he
expects and that he eliminate those indirect paths which
pose a real problem in his application. 1In a recent
analysis, one user determined that indirect path bandwidths
of approximately teletype speed are acceptable while paths
that operate at line printer speed are unacceptable. The
assumption was that the low speed paths could be controlled

- by external physical measures. With these general
requirements to guide the System designer it is possible to
build a useful trusted system today.

34

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

2.5 TRUSTED SYSTEM ENVIRONMENTS

The applications for which trusted operating systems will be
used and the environments in which they will operate cover a
wide spectrum. The most sensitive practical environment
encompasses highly sensitive intelligence information on a -
system with unclassified users. AUTODIN II is employing
security kernel technology to operate a packet switched
network in such an environment. A minimum sensitive
environment in which a trusted system might be placed
involves unclassified information where individual
need-to-~know or privacy must be maintained. There are a
large number of environments between these two that have
differing degrees of sensitivity.

The type of application for which the trusted system will be
used influences the concern for the integrity of the system.
For example, while AUTODIN II does not employ full code
verificaticn or fault resistant hardware, it is being used
for an application which offers the user few opportunities
to exploit weaknesses within the packet switch software.
Thus it can be used in a much higher-risk environment than
can a general-purpose computer system. A general-purpose
programming environment offers many more opportunities to
exploit system- weaknesses. The combination of the
sensitivity of information being processed relative to the
clearances of the users and the degree of user capablllty
afforded by a particular application are the primary factors
in determining the level of concern required for a |
particular system.

There are examples of multilevel systems that have been

approved which provide significant data points in the
environment/application spectrum. Honeywell Multics,

enhanced by an "access isolation mechanism”, is installed as

a general-purpose timesharing system at the Air Force Data

Services Center in the Pentagon in a Top Secret environment

with some users cleared only to the Secret level. Multics

has the best system integrity of any commercial operating

system available today. While it does not have formal

design specifications as described in the previous section,

the-system was designed and structured with protection as a

major goal but. Formal development procedures were not used

because the system was developed before these techniques

were available. In spite of this, after a very thorough and -
careful review, the Air Force determined that the benefit of

using this system exceeded the risk that a user might

attempt to exploit a system weakness, given that all users ' .
have at least a Secret clearance.

There have been several other examples where current
technology enhanced by audit procedures and subjected to
rigorous testing have been approved for use in limited

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

sensitivity applications.

The degree to which one must rely on technical features of a
system for integrity depends significantly on the
environment that the system will operate in and the
capabilities that a user has to exploit system weaknesses.
There has been some study of the range of sensitivities for
different applications and environments [ADAM79]. Section
3.1 describes a way of combining these application and
environment concerns with the technical measures of system’
integrity. :

36

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

2.6 VERIFICATION TECHNOLOGY OVERVIEW

The security kernel approach to designing trusted computing

systems collects the security relevant portions of the

operating system into a small primitive operating system.

In order to have confidence that the system can be trusted, -
it is necessary to have confidence that the security kernel
operates correctly. That is, one must have confidence that
the security kernel enforces the security policy which the

system is supposed to obey.

Traditional means such as testing and penetration can and
should be used to uncover: flaws in the security kernel
implementation. Unfortunately, it is not possible to test
all possible inputs to a security kernel. Thus, although
testing may uncover some flaws, no amount of testing will
guarantee the absence of flaws. For critical software, such
as a security kernel, additional techniques are needed to
gain the necessary assurance that the software meets its
requirements. Considerable research has been devoted to
techniques for formally proving that software operates as
intended. These techniques are referred to as software
verification technology or simply verification technology.

In the case of a security kernel, the critical aspect of its
operation is the enforcement of a security policy. The
ultimate goal of a verification is to prove that the
implemented security kernel enforces the desired security
policy. There are five main areas of concern in rélating
the security policy to the implemented security kernel: the
seburity policy itself, system specification, high order
lahguage implementation, compiler, and hardware. The
following paragraphs discuss the way in which verification
addresses each of these areas.

2.6.1 Security Policy

DoD has established regulations covering the handling of
classified information. (e.g. DOD Directive 5200.28).
However, in order to prove that a security kernel enforces a
security policy, it is necessary to have a formal
mathematical model of the security policy. It is not
possible to prove that the model is correct since the model
is a formal mathematical interpretation of a
non-mathematical policy. Fortunately, mathematical models
of security have existed since 1973 when Bell and LaPadula
formulated a model of multilevel security. [BELL74].
Various models of multilevel security have been used since
1973, but they have all been derived from the original
Bell-LaPadula model. Since this model has been widely
disseminated and discussed, one cam have confidence that the
model correctly reflects the non-mathematical DoD
regulations. In the case of software with security

37

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

O
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

requirements different from those of a security kernel, a
Specialized model is needed, and thorough review is required
to determine that the model guarantees the informal
requirements.

2.6.2 System Specification

In practice the gap between the mathematical model of
security and the implemented security kernel is too great to
directly prove that the kernel enforces the model. A
specification of the system design can be used to break the
proof up into two parts:

a) Show the system specification obeys the model.

b) Show the kernel code cdrrectly implements the
specification.

Step a) is called Design Verification. Step b) is called
Implementation or Code Verification.

To be useful for verification, the meaning of the system
specification must be precisely defined. This requires that
a formally defined specification language be used. Formal
specification languages, associated design and verification
methodologies, and software tools to help the system
designer and verifier have been developed by several
organizations. Since a specification typically hides much
of the detail which must be handled in an implementation,
design verification is significantly easier than code
verification. The design verification usually requires the
proof of a large number of theorems, but most of these
theorems can be handled by automatic theorem provers, There
are several methodologies available today that work with
existing automatic theorem provers. Verification that a
formal design specification obeys a security model has been
carried out as part of the AUTODIN 1II, SACDIN, KS0S, and
KVM/370 programs. Design verification can be useful even if
no code verification is done. Traditional techniques can
give some confidence that the code corresponds to the
implementation, and design verification will uncover design
flaws, which are the most difficult to correct.

2.6.3 HOL, Compiler, Hardware

After the system specification has been verified to obey the
security model, the remaining problem is to show that the
kernel implementation is consistent with its specification.
The gap from specification to object code is too great for
| current verification methodologies to prove that object code
| ' is consistent with a specification. However, work has been
| devoted to developing techniquds for proving that the HOL
implementation of a system is consistent with its

38

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

-
= "

specification. The implementation for a system is much more
detailed than a specification, and more attributes must be
shown to be true to support the top-level design assertions.
Thus, verification that the code is consistent with its
specification is much more difficult than verification of
the design properties of the specification. Usually many
theorems must be proved for code verification. Even with
automatic theorem provers the verification requires
significant human and computer resources. Recent work in
verification technology has developed code verification to
the point that it is now feasible to attempt code
verification in some small systems. Tc date, code
verification has been done only for example systems.

To complete the verification one would have to consider the
compiler and hardware. At present, it is beyond the state
of the art to formally prove that production compilers or
hardware operate as specified. However, since the compiler
and hardware will probably be used on many systems, flaws in
their operation are more likely to be revealed than flaws in
the code for a new system. The software is the area where
there is the greatest need for quality assurance effort.

2.6.4 Summary _

Verification is useful for increasing one”s confidence that
critical software obeys its requirements. An example of
cr%tical software where verification can be useful is a
security kernel. Verification does not show that a system
is!correct in every respect. Rather verification involves
showing consistency between a mathematical model, a formal
specification, and an implementation. Verification that a
formal specification is consistent with a mathematical model
of security has been demonstrated on several recent systems.
Verification of consistency between a specification and a
HOL implementation is on the verge of becoming practical for
small systems, but has not yet been demonstrated except for
example systems. Verification of consistency between the
HOL and machine language is not practical in the near
future. (Verification is discussed in more detail in
section 4.3.)

39

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

e
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

SECTION 3

COMPUTER SECURITY INITIATIVE STATUS

The goal of the Computer Security Initiative is to establish
widespread availability of trusted computer systems. There
. are three major activities of the Initiative seeking to
advance this goal: (1) coordination of DoD R&D efforts in
the computer security field, (2) identification of
consistent and efficient evaluation procedures for
determining suitable environments for the use of trusted
computer systems, and (3) encouragement of the computer
" industry to develop trusted systems as part of their

standard product lines. This section describes the

| Initiative activities in support of 2 and 3 above. (Section
4 addresses item 1.)

3.1 THE EVALUATED PRODUCTS LIST

Section 1-1101 of the Defense Acquisition Regulations (DAR,
formerly called the Armed Services Procurement Regulations
or ASPRS) defines a procedure for evaluating a product prior
to a procurement action. This procedure establishes a
Qualified Products List (QPL) of items which have met a
predefined government specification. This procedure can be
used when one or more of the following conditions exist:
"(i) The time required to conduct one or more of the
examinations and tests to determine compliance
with all the technical requirements of the
specification will exceed 30 days (720 hours).
(Use of this justification should advance product
acceptance by at least 30 days (720 hours).)

(ii) Quality conformance inspection would require
special equipment not commonly available.

(iii) It covers life survival or emergency life saving
equipment. (See 1-1902(b) (iiy.)"

Whenever any of these conditions exist, a Qualified Products
List process may be established. Under these regulations, a
specification of the requirements that a product must meet
is developed and widely distributed. Any manufacturer who
believes his product meets this specification may submit his
product for evaluation by the government. If the precduct is
determined to meet the specification, it is entered on a
Qualified Products List maintained by the government agency
performing the evaluation.

40

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Any agency or component seeking to procure an item which
Meets the QPL specification can utilize the QPL evaluation
in -1ts procurement process in lieu of performing its own
separate evaluation. The QPL process allows the efficient
and consistent evaluation of complex products and the
general availability of the evaluation results to all DoD
procurement organizations.

There is a provision of the QPL process described in the DAR
that requires all products considered as part of a
particular government RFP to be already on the QPL prior to
issuance of the RFP. If a manufacturer believes that his
product meets the government specification but the
evaluation has not been completed at the time of issuance of
the RFP, that product will be disqualified from that
procurement action. This provision has been viewed by many
as anti-competitive and has been a deterrent to the wide use
of the QPL process.

The Special Committee on Compromising Emanations (SCOCE) of
the National Communications Security Board has established a
modified QPL process for the evaluation of industry devices
which meet government standards for compromising emanations
(NACSEM 5100). Under the provisions of their Preferred
Products List (PPL), a manufacturer supplies the government
with the results of tests performed either by himself or one
of a set of industry TEMPEST evaluation laboratories which
indicate compliance with the NACSEM 5100 specification.

Upon affirmative review of these test results, the product
will be entered on the TEMPEST Preferred Products List. Any
manufacturer may present the results of the testing of his
product to the government at any time including during the
response to a particular RFP.

The evaluation of the integrity of industry developed
computer systems is a complex process requiring considerable
time and resources that are in short supply. A QPL-like
process for disseminating the results of these evaluations
is essential. Under these circumstances, a small team of
highly competent government computer science and system
security experts will perform the evaluation of industry
submitted systems and the results of their evaluations will
be made available to any DoD organization for use in their
procurement process, eliminating the inefficiency and .
inconsistency of duplicate evaluations.

As described in section 3.4.1, there are many technical
features which influence the overall integrity of a system.
Some of these features are essential for protecting
information within a system regardless of the type of
application or the environment. However, many of these
features may not be particularly relevant in particular
applications or environments and therefore it may be

41

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

reasonable to approve systems for use in some environments
even with known deficiencies in certain technical areas.

For example, in an environment where all users are cleared
to a high level and there is a need-—-to-know requirement, it
may be reasonable to employ a system which has not
completely eliminated all indirect data paths (see section
2.4.1) on the premise that a high degree of trust has
already been placed in the cleared users and they are not
likely to conspire with another user to attempt to exploit a
complex indirect channel to obtain information for which
they have no need-to-know. Similar arguments can be made
for systems processing information of a low level of
sensitivity. Since indirect paths require two conspiring
users they are difficult to use and in most cases are not
worth the risk of being detected.

Thus, systems with certain technical features should be
usable for applications of a particular type in environments
of a particular type. It is possible to describe classes of
those integrity features required for different application
and risk environments. If there is a process (as described
in section 3.4) for evaluating the integrity of various
trusted systems, then an "Evaluated Products List" (EPL) can
be constructed matching products to these protection classes
(and, thus, to certain application and risk environments).

It appears that the technical integrity measures can be
categorized into a small set of classes (six to nine) with
considerable consistency in determining into which class a
particular system will fit. Figure 3-1 is an example of an
Evaluated Products List, consisting of six classes ranging
from systems about which very little is known and which can
be used only in dedicated system-high environments (most of
the commercial systems today) to systems with technical
features in excess of the current state-of-the-art. The
environments are described in terms of the sensitivity of
the information and the degree of user capability.

The Evaluated Products List includes all computer systems
whose protection features have been evaluated. The first
class implies superficial protection mechanisms. = A system
in this class is only suitable for a system-high
classification installation. Most modern commercial systems
satisfy at least the requirements of Class -I. As one
progresses to higher classes, the technical and assurance
features with respect to system protection are significantly
strengthened and the application environment into which a
system may be placed can be of a higher sensitivity.

In discussing the Evaluated Products List (EPL) concept with

various communities within the defense department and the
intelligence community, it has become clear that, while the

42

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

N1-2-S-Si&
putuex boad
I9sn TIng

O—-S-SL
butwweapoad
I9sn TINng

0-8~SL
butwwexpoxd
I9SN pPa3jTWIY

S-S4 OSadv

SIUSWUOIT AUD
MOU 3~ 031-DPa3U
ubruag

apou
pa3eoIpsd

S3USWUOIT AUF
31qTssod

ISIT SIOoNGo¥d TILVAIVAE TI-€ 2Inbrg

WA
TI-S0s4
9-5051

SOTITNKW

SO
aw DOOUBYUS,,

21In3eR
swoa3séAs

1eTOIdWWOoD
uispow 3ISOW

saTduexy

soodg 2a1empiey
stsdATRUY 3po) 3I02[q0

SUOTSTAOIJ Uled 1I2A0) pIapuailixy
ST7 WOIJ UOTIIRIBUIH ISe) IS
uor3ejudwaTdul PIOTITILSA

SUOTISTACIG Yzed 3IA2A0D PO3ITUT]

g§r] TPwIOJ WOIJ uoTrjeI”dUSH bUuTilsay
UOT3IedTITI3A STIL

suorjlenigyrosds 192497-do TRPWIOH

gL uo paseg burasag

ubrsag umog-dog

901 P9309301d ¥ PITITIUIPI ATIeITD
g0L JO uorjeor3yrosadg 194a97-dog

but3tpny

buryssy uorjeizsuag
- A31anoss ejep Ai1ojepuep

uor3edITIUIYINE UIboT]
uor3losjzoxd awos aary Aep

sainjeaj TeOTUYDYL

sse1d

43

2

RDP83M0O0914R001800060009-

Approved For Release 2007/06/01 : CIA

Approved For Release'2007/06/01 : CIA-RDP83M00914R001800060009-2

technical feature evaluation process is understood and
agreed upon, the identification of suitable application
environments will differ depending upon the community
involved. For example, the Genser community may decide that
the technical features of a Class IV system are suitable for
a particular application, whereas the same application in
the intelligence community may require a Class V system. As
a result, the EPL becomes a matrix of suitable application
environments (figure 3-2), depending upon the sensitivities
of the information being processed. 1In addition to the
intelligence community and the Genser community, there are
the interests of the privacy and the financial communities
and the non-national security communities whose
requirements, frequently, are less restrictive than those of
the national security communities.

The successful establishment of an Evaluated Products List
for trusted computing systems requires that the computer
industry become cognizant of the EPL concept and of computer
security technology, and that a procedure for evaluating
systems be formulated. Section 3.2 (below) discusses the
focus of operating system protection requirements, the
Trusted Computing Base. Section 3.3 describes the
Initiative”s technology transfer activities. Section 3.4
presents a proposed process for trusted system evaluation
and section 3.5 summarizes current, informal system
evaluation activity.

44

Approved For Release 2007/06/01 - CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Z—-€ d9NoI1dg

— — e — — 9
— — — — — g
— — — — — b
— — — — — >
— — — — — Z
—— — — — — 1

O3S TIVN-NON ALINNWINOD ALINNWWINOD
TVIONVNI d3SN3ID 2ON3DITTILNI

ADVAIHd .
SLNIWNOHIANI SLONAOHd .- SIHNLVI4 SSYID
/NOILYDITddY AHLSNANI 1VIINHOIL "
37avLINS

1SI1 SLO1T0Ud AILVATYAT

45

roved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

A

L
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

3.2 THE TRUSTED COMPUTING BASE

A siinificant prerequisite to achieving the widespread
availability of commercial trusted systems is the definition
of just what the requirements for a trusted system are.
Security kernel prototypes had been built over the years,

. but they were specific to particular hardware bases or
operating systems. In order to present the basic concept of
a security kernel and trusted processes in a general manner.
that would apply to a wide range of computer systems and
many applications, a proposed specification for a Trusted
Computing Base (a kernel and trusted processes) was prepared
by Grace Nibaldi of The MITRE Corporation [NIBA79a]. The
specification describes the concept of a Trusted Computing
Base (TCB) and discusses TCB requirements. The rest of this

. section describes the Trusted Computing Base, and is
excerpted from [NIBA79a). (We have preceded. the section
numbering used in [NIBA79a)] by TCB. Thus, Nibaldi’s section
3.1 appears below as TCB.3.1l.)

TCB.1 Scope

In any computer operating system that supports
multiprogramming and resource sharing, certain mechanisms
can usually be identified as attempting to provide
protection among users against unauthorized access to
computer data. However, experience has shown that no matter
how well-intentioned the developers, traditional methods of
software design and production have failed to provide
systems with adequate, verifiably correct protection
mechanisms. We define a trusted computing base (TCB) to be
the totality of access control mechanisms for an operating
system,

A TCB should provide both a basic protection environment and
the additional user services required for a trustworthy
turnkey system. The basic protection environment is
equivalent to that provided by a security kernel (a
verifiable hardware/software mechanism that mediates access
to information in a computer system); the user services are
analogous to the facilities provided by trusted processes in
kernel-based systems. Trusted processes are designed to
provide services that could be incorporated in the kernel
but are kept separate to simplify verification of both
kernel and trusted processes. Trusted processes also have
been referred to as "privileged," “responsible,"
"semi~-trusted"”, and "non-kernel security-related (NKSR)" in
various implementations. This section documents the
performance, design, and development requirements for a TCB
for a general-purpose operating system.

In this section, there will be no attempt to specify how any
particular aspect of a TCB must be implemented. Studies of

46

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

present~day computer architectures [SMIT75,TANG78] indicate

that in the near term a significant amount of software will

be needed for protection regardless of any support provided

by the underlying hardware. 1In future computer

§rchitectures, more of the TCB functions may be implemented

in hardware or firmware. Examples of specific hardware or .
software implementations are given merely as illustrations,

and are not meant to be requirements.

This specification is limited to computer hardware and
software protection mechanisms; nct covered are the
administrative, physical, personnel, communications, and
other security measures that complement the internal
computer security controls. For more information in those
areas, see DoD Directive 5200.28 that describes the
procedures for the Department of Defense.

(Section 2 of the TCB specification contains references.
They have been included in the references for this report
rather than being included here as TCB.2.)

TCB.3 General Reguirements
TCB.3.1 System Definition

A TCB is a hardware and software access control mechanism
that establishes a protection environment to control the
sharing of information in computer systems. Under hardware
and software we include implementations of computer
architectures in firmware or microcode. A TCB is an
implementation of a reference monitor, as defined in
[ANDE72], that controls when and how data is accessed.

In general, a TCB must enforce a given protection policy
describing the conditions under which information and system
resources can be made available to the users of the system.
Protection policies address such problems as undesirable
disclosure and destructive modification of information in
the system, and harm to the functioning of the system
resulting in the denial of service to authorized users.

Proof that the TCB will indeed enforce the relevant
protection policy can only be provided through a formal,
methodological approach to TCB design and verification, an
example of which is discussed below. Because the TCB
consists of all the security-related mechanisms, proof of
its validity implies the remainder of the system will
perform correctly with respect to the policy.

Ideally, in an implementation, policy and mechanism can be
kept separate so as to make the protection mechanisms

flexible and amenable to different environments, e.g.,
military, banking, or medical applications. The advantage

47

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

e —
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

here is that a change in or reinterpretation of the required
policy need not result in rewriting or reverifying the TCB.

In the following sections, general requirements for TCB
design and verification are discussed.

TCB.3.2 Protection Policy

The primary requirement on a TCB is that it support a
well-defined protection policy. The precise policy will be
largely application and organization dependent. Four
specific protection policies are listed below as examples
around which TCBs may be designed. All are fairly general
purpose, and when used in combination, would satisfy the
needs of most applications, although they do not
specifically address the denial of service threat. The
policies are ordered by their concern either with the
viewing of information--security policies--or with
information medification~--integrity policies; and by whether
the ability to access information is externally
predetermined--mandatory policies--or controlled by the
processor of the information--discretionary policies:

1. mandatory security (used by the Department of
-Defense--see DoDD 5200.28), to address the
compromise of information involving national
security;

2. discretionary security (commonly found in general
purpose computer systems today) ;

3. mandatory integrity; and
4. discretionary integrity policy.

In each of these cases, "protection attributes" are
associated with the protectable entities, or "objects"
(computer resources such as files and peripheral devices
that contain the data of interest), and with the users of
these entities (e.g., users, processes), referred to as
subjects. In particular, for mandatory security policy, the
attributes of subjects and objects will be referred to as
"security levels." These attributes are used by the TCB to
determine what accesses are valid. The nature of these
attributes will depend on the applicable protection policy.

See Nibaldi [NIBA79b] for a general discussion on policy.
See Biba [BIBA75] for a discussion of integrity. '

TCB.3.3 Reference Monitor Requirements

As stated above, a TCB is an implementation of a reference
monitor. The predominant criteria for a sound reference

48

Approved For Release 2007/06/01 : CIA-RDP83M00914ROO1800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

monitor implementation are that it be

1. complete in its mediation of access to data and
other computer resources;

2. self-protecting, free from interference and
spurious modification; and

3. verifiable, constructed in a way that enables
convincing demonstration of its correctness and
infallibility.

TCB.3.3.1 Completeness .

The requirement that a TCB mediate every access to data in
the computer system is crucial. In particular, a TCB should
mediate access to itself--its code and private data--thereby
supporting the second criterion for self-protection. The
implication is that on every action by subjects on objects,
the TCB is invoked, either explicitly or implicitly, to
determine the validity of the action with respect to the
protection policy. This includes:

1. unmistakably identifying the subjects and objects
and their protection attributes, and

2. making it impossible for the access checking to be
circumvented.

In essence, the TCB must establish an environment that will
simultaneously (a) partition the physical resources of the
system (e.g., cycles, memory, -devices, files) into "virtual"”
resources for each subject, and (b) cause certain activities
performed by the subjects, such as referencing objects
outside of their virtual space, to reguire TCB intervention.

TCB.3.3.1.1 Subject/Object Identification

What are the subjects and objects for a given system and how
are they brought into the system and assigned protection
attributes? In the people/paper world, people are clearly
the subjects. In a computer, the process has commonly been
taken as a subject in security kernel-based systems, and
storage entities (e.g., records, files, and I/0 devices) are
usually considered the objects. Note that a process might
also behave as an object, for instance if another process
sends it mail (writes it). Likewise, an I/0 device might be
considered to sometimes act as a subject, if it can access
any area of memory in performing an operation. 1In any case,
the policy rules governing subject/object interaction must
always be obeyed. The precise breakdown for a given system
will depend on the application. Complete identification of
subjects and objects within the computer system can only be

49

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

o

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

assured if their creation, name association, and protection
attribute assignment always take place under TCB control,
and no subsequent manipulations en subjects and objects are
allowed to change these attributes without TCB involvement.
Certain issues remain, such as (a) how to associate
individual users and the programs they run with subjects;
and (b) how to associate all the entities that must be
accessed on the system (i.e., the computer resources) with
objects. TCB functions for this purpose are described in
TCB.4, "Detailed Requirements."

TCB.3.3.1.2 Access Checking

How are the subjects constrained to invoke the TCB on every
access to objects? Just as the .TCB should be respcnsible for
generating and unmistakably labelling every subject and
object in the system, the TCB must also be the facility for
enabling subjects to manipulate objects, for instance by
forcing every fetch, store, or I/O instruction executed by
non-TCB software to be "interpreted" by the TCB.

Hardware support for checking on memory accesses exists on
several machines, and has been found to be very efficient.
This support has taken the form of descriptor-based
addressing: each process has a virtual space consisting of
segments of physical memory that appear to the process to ve
connected. In fact, the segments may be scattered all over
memory, and the virtual space may have holes in it where no
segments are assigned. Whenever the process references a
location, the hardware converts the "virtual address" into
the name of a base register (holding the physical address of
the start of the segment, the length of the segments, and
the modes of access allowed on the segment), and an offset.
The content of the base register is called a descriptor.

The hardware can then abort if the form of reference (e.g.,
read, write) does not correspond to the valid access modes,
if the offset exceeds the size of the segment, or if no
segment has been "mapped" to that address. The software
portion of the TCB need merely be responsible for setting up
the descriptor registers based on one-time checks as to the
legality of the mapping.

Access checking in I/0 has been aided by hardware features
in a variety of ways. In.one line of computers, devices are
manipulated through the virtual memory mechanism: a process
accesses a device by referencing a virtual address that is
subsequently changed by hardware intc the physical address
of the device. This form of I/0 is referred to as "mapped
I/0" [TANG78]. Other methods of checking I/0 are discussed
in section TCB.4.1l.2.

50

Approved For Release 2007/06/01 : CIA-RDP83M009’I4ROO1800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

TCB.3.3.2 Self-Protection

Following the principle of economy of mechanism [SALT75],
the TCB ideally protects itself in the same way that it
protects other objects, so the discussion on the
completeness property applies here as well. In addition,
not uncommonly many computer architectures provide for
multiple protection "domains" of varying privilege (e.g.,
supervisor, user). Activities across domains are limited by -
the hardware so that software in the the more privileged

domains might affect the operations in less privileged

domains, but not necessarily vice versa. Also, software not

executing in a privileged domain is restricted, again by the

hardware, from using certain instructions, e.g.,
manipulate-descriptor-registers, set-privilege-bit, halt,

and start-I/0. Generally only TCB software would run in the

most privileged domain and rely on the hardware for its

protection. (Of course, part of the TCB might run outside

of that domain, e.g., as a trusted process.) Clearly, if in

addition to the TCB, non-TCB or untrusted software were

allowed to run in the privileged region, TCB controls could

be subverted and the domain mechanism would be useless.

TCB.3.3.3 Verifiability

The responsibility given to the TCB makes it imperative that
confidence in the controls it provides be established.
Naturally, this applies to TCB hardware, software, and
‘firmware. The following discussion considers only software
verification. Techniques for verifying hardware correctness
have tended to emphasize exhaustive testing, and will no
doubt continue to do so. Even here, however, the trend is
toward more formal techniques of verification, similar to
those being applied to software. One approach is given in
[FURT78]. IBM has done some work on microcode verification.
Minimizing the complexity of TCB software is a major factor
in raising the confidence level that can be assigned to the
protection mechanisms it provides. Consequently, two
general design goals to follow after identifying all
security relevant operations for inclusion in the TCB are
(a) to exclude from the TCB software any operations not
strictly security-related so that one can focus attention on
those that are, and (b) to make as full use as possible of
protection features .available in the hardware. Formal
techniques of verification, such as those discussed in the
next section, are promoted in TCB design to provide an
acceptable methodoleogy upon which to base a decision as to
the correctness of the design and of the implementation.

TCB.3.3.3.1 Security Model

Any formal methodology for verifying the correctness of a
TCB must start with the adoption of a mathematical model of

51
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

the desired protection policy. A model encompassing
mandatory security and to some extent the discretionary
Security and integrity policies was developed by Bell and
LaPadula [BELL73]. Biba [BIBA75] has shown how mandatory
integrity is the dual of security and, consequently may be
modeled similarly. There are five axioms of the model. The
primary two are the simple security condition and the
*-property (read star-property). The simple security
condition states that a subject cannot observe an object
unless the security level of the subject, that is, the
protection attributes, is greater than or equal to that of
the object. This axiom alone might be sufficient if not for
the threat of non-TCB software either accidentally or
intentionally copying information into objects at lower
security levels. For this reason, the *-property is
included. The *-property states a subject may only modify
an object if the security level of the subject is less than
or equal to the security level of the object.

The simple security condition and the *-property can be
circumvented within a computer system by not properly
classifying the object initially or by reclassifying the
object arbitrarily. To prevent this, the model includes two
additional axioms: the activity axiom guarantees that all
objects have a well-defined security level known to the TCB;
the tranquility axiom requires the classifications of
objects are not-changed.

The model also defines what is called a "trusted subject"
that may be privileged to violate the protection policy in
some ways where the policy is too restrictive. For
instance, part of the TCB might be a "trusted process" that
allows a user to change the security level of information
that should be declassified (e.g., has been extracted from a
classified document but is itself not classified). This
action would normally be considered a tranquility or
*-property violation, depending on whether the object
containing the information had its security level changed or
the information was copied into an object at a lower
security level.

TCB.3.3.3.2 Methodology

A verification methodology is depicted in figure 3-3. 1In
this technique, the correspondence between the
implementation (here shown as the machine code) and
protection policy is proven in three steps: (a) the
properties of a mathematical model of the protection policy
are proven to be upheld in a formal top level specification
of the behavior of a given TCB in terms of its input,
output, and side effects; (b) the implementation of the
specifications in a verifiable programming language
(languages such as Pascal, Gypsy, Modula, and Euclid for

52

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

£-¢ d40014

19VYNORV1
INIHOV W

IJNICN0LSIUUCT
s\- Adl83A /
uwuwwﬂm“cf_ NOILVOHIIDdS 1140 %
G - 1YWyo4 aalll.:uz.qsm_.:dﬁ ,
HOIH

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

15Y0UddY . X0E—-YN04, IHL

Ad1N04d
ALEEN33S
qQlE0M 1¥3y

53
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

which verification tools either exist or are currently being
planned [GOOD78b]) is shown to faithfully correspond to the
formal specifications; and finally (c¢) the generated machine
code is demonstrated to correctly implement the programs.
The model describes the conditions under which the subjects
in the system access the objects. With this approach, it

- can be shown that the machine code realizes the goals of the
model, and as a result, that the specified protection is
provided.

Where trusted subjects are part of the system, a similar
correspondence proof starting with an additional model of
the way in which the trusted subject is allowed to violate
the general model becomes necessary. Clearly, the more
extensive the dutied of the trusted subject, the more
complex the model and proof.

TCB.3.3.3.3 Confinement Problems

The TCB is designed to "confine" what a process can access
in a computer system. The discussion above centers around
direct access to information. Other methods exist to
compromise information that are not always as easily
detected or corrected. Known as "indirect channels", they
exist as a side-effect of resource-sharing. This manner of
passing -information may be divided into "storage" channels
and "timing" channels. Storage channels involve shared
control variables that can be influenced by a sender and
read by a receiver, for instance when the fact that the
system disk is full is returned to a process trying to
create a file. Storage channels, however, can be detected
using verification techniques. Timing channels also involve
the use of resources, but here the exchange medium is time;
these channels are not easily detected through verification.
An example of a timing channel is where modulation of
scheduling time can be used to pass information.

In order to take advantage of indirect channels, at least
two "colluding" processes are needed, one with direct access
to the information desired, and a second one to detect the
modulations and translate them into information that can be
used by an unauthorized recipient. Such a channel might be
slowed by introducing noise, for instance by varying the
length of time certain operations take to complete, but
performance would be affected.

Storage channels are related to the visibility of control
information: data "about" information, for example, the
names of files not themselves directly accessible, the
length of an IPC message to another user, the time an object
was last modified, or the access control list of a file. It
is often the case that even the fact that an object with
certain protection attributes ‘exists is information that
must be protected. Even the name of a newly created object

54

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

such as a file can be a channel if this name is dependent on
information about other files, e.g., if the name is derived
from an incremental counter, used only to generate new file
names. This type of channel can often be closed by mak ing
the data about legitimate information as protected as the
information itself. However, this is not always desirable:
for instance, in computer networks, software concerned only
with the transmission of messages, not with their contents,
might nead to view message headers containing message
length, destination, etc.

Systems designers should be aware of confinement problems
and the threats they pose. Formal techniques to at least
identify and determine the bandwidth of the channels, if not
completely close them, are certainly of value here. Ad hoc
neasures may be necessary in their absence.

TCB.3.4 Performance Reguirements

Since the functions of the TCB are interpretive in nature,
they may be slow to execute unless adequate support is
provided in the hardware. For this reason, in the examples
of functions given below, hardware implementations
(including firmware/microcode), as opposed to software, are
stressed, with the idea that reasonable performance is only
accomplished when support for the protection mechanisms
exists in hardware. Certainly, software implementations are
not excluded, and due to the malleability of software, are
likely more susceptible to appreciable optimization.

TCB.4 Detailed Requirements

The kinds of functions that would be performed by a TCB are
outlined below. Those listed are general in nature: they
are intended to support both general-purpose operating
systems and a variety of dedicated applications that due to
potential size and complexity, could not easily be verified.

The functions can be divided into two general areas:
software interface functions, operations invoked by
programs, and user interface functions, operations invoked
directly by users. 1In terms of a security kernel
implementation, the software interface functions would for
the most part be implemented by the kernel; the user
interface functions would likely be carried out in trusted
processes.

TCB.4.1 Software Interface Functions

The TCB acts very much like a prim{tive operating system.

The software interface functions are those system calls that
user and application programs running in processes on top of
the TCB may directly invoke. These functions fall into three
categories: processes, input/output, and storage.

55
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

In the descriptions that follow, general .input, output, and
Processing requirements are stated. Output values to
processes in particular could cause confinement problems
(i.e., serve as indirect channels), by relating the status
of control variables that are affected by operations by
other processes. Likely instances of this are mentioned
wherever possible.

. TCB.4.1.1 Processes

Processes are the primary active elements in the system,
embodying the notion of the subject in the mathematical
model. (Processes also behave as objects when communicating
with each other.) By definition, a process is "an address
space, a point of execution, and a unit of scheduling." More
precisely, a process consists of code and data accessible as
part of its address space; a program location at which at
any point during the life of the process the address of the
currently executing instruction can be found; and periodic
access to the processor in order to continue. The role of
the TCB is to manage the individual address spaces by
providing a unique environment for each process, often
called a "per-process virtual space®, and to equitably
schedule the processor among the processes. Also, since
many applications require cooperating processes, an
inter-process communication (IPC) mechanism is required as
part of the TCB.

TCB.4.1.1.1 Create Process

A create process furction causes a new per-process virtual
space to be established with specific program code and an
identified starting execution point. The identity of the
user causing the process to be created should be associated
with the process, and depending on the protection policy in
force, protection attributes should be assigned, such as a
security level at which the process should execute in the
case of mandatory security.

TCB.4.1.1.2 Delete Process

A delete process function causes a process to be purged from
the system, and its virtual space freed. The process is no

. longer considered a valid subject or object. If one process
may delete another with different protection attributes, an
indirect channel may arise from returning the fact of the
success or failure of the operation to the regquesting
process.

56

| Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

TCB.4.1.1.3 Swap Process

A swap process function allows a process to become blocked
and consequently enable others to run. A TCB implementation
may choose to regularly schedule other processes to execute
after some fixed "time-slice" has elapsed for the running
process. If a TCB supports time-slicing, a swap function
may not be necessary. In order to address a denial of
service threat, this will not be the only process blocking
operation: certain I/O operations should cause the process
initiating the operation to be suspended until the operation
completes.

For example, the hardware could support such an operation
through mechanisms that effect fast process swaps with the
corresponding change in address spaces. An example of such
support is a single "descriptor base" register that points

to descriptors for a process” address space, only modifiable
from the privileged domain. The swap would be executed in
little more than the time required for a single "move"
operation.

As was mentioned above, the "scheduling" operation in itself
may contribute to a timing channel, that must be carefully
monitored.

TCB.4.1.1.4 IPC Send

A process may send a message to another process permitted to
receive messages from it through an IPC send mechanism. The
TCB should be guided by the applicable protection policy in
determining whether the message should be sent, based on the
protection attributes of the sending and receiving process.
The TCB should also insure that messages are sent to the
correct destination.

An indirect channel may result from returning the success or
failure of "queuing" the message to the sending process,
because the returned value may indicate the existence of
other messages for the destination process, as well as the
existence of the destination process. This may be a problem
particularly where processes with different protection
attributes are involved (even if the attributes are
sufficient for actually sending the message). If such a
channel is of concern, a better option might be to only
return errors involving the message itself (e.g., message
too long, bad message format). Clearly, there is a tradeoff
here between utility and security.

TCB.4.1.1.5 IPC Receive

A process may receive a message previously sent to it
through an IPC receive function. The TCB must insure that

57

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

.,
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

in allowing a process to receive the message, the process
does not violate the applicable protectlon policy.

TCB.4.1.2 Input/Output

Depending on the sophistication of the TCB, I/0 operations
may range from forcing the user to take care of low level
control all the way to hiding from the user all device
dependencies, essentially by presenting I/O devices as
simple storage objects, such as described below. Where I/0
details cannot be entirely hidden from the user, one could
classify I/O devices as devices that can only manipulate
data objects with a common protecticn attribute at one time
(such as a line printer), and those that can manage data
objects representing many different protection attributes
simultaneously (such as disk storage devices). These two
categories can be even further broken down into devices that
can read or write any location in memory and those that can
only access specific areas. These categories present
special threats, but in all cases the completeness criteria
must apply, requiring that the TCB mediate the movement of
| data from one place to another, that is, from one object te
another. To resolve this problem, all I/O operations should
be mediated by the TCB.

Some computer architectures only allow software running in
the most privileged mode to execute instructions directing
I/0. As a result, if only the TCB can assume privileged
mode, TCB mediation of I/O0 is more easily implemented.

In the first category, if access to the device can be
controlled merely by restricting access to the memory object
which the device uses, the problem becomes how to properly
assign the associated memory to a user”s process, and no
special TCB I/0 functions are necessary. However, if
special timing requirements must be met to adequately
complete an I/0 operation, qulck response times may only be
possible by having the TCB service the device, in which case
a special operatior is still needed.

When the device can contain objects having different
protection attributes, the entire I/0 operation will involve
not only a memory object, but also a particular object on
the device having the requisite protection attributes. TCB
mediation in such a case is discussed under "Storage

. Objects.” '

TCB.4.1.2.1 Access Device
The access device function is a directive to the TCB to
perform an I/0 operation on a given device with specified

data. The operations performed. will depend on the device:
terminals will require read and write operations at a

58

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

minimum. The TCB would determine if the protection
attributes of the requesting process allow it to reference
the device in the manner requested.

This.kind of operation will only be necessary when mapped
I/0 is not pessible.

TCB.4.1.2.2 Map Device

The map device operation makes the memory and control
associated with a device correspond to an area in the
process” address space. As in the case of the "access
device" function, a process must have protection attributes
commensurate to that of thHe information allowed on the
device to successfully execute this operation. This
operation may not be possible if mapped I/0 is not available
in the hardware.

TCB.4.1.2.3 Unmap Device

The unmap device frees a device mapped in the address space
of a process.

TCB.4.1.3 Storage Objects

The term “"storage objects" refers to the various logical
storage areas into which data is read and written, that is,
areas that are recognized as objects by the TCB. Such
objects may take the form of logical files or merely
recognizable units of a file such as a fixed-length block.
These objects may ultimately reside on a long-term storage
device, or only exist during the lifetime of the process, as
required. Where long-term devices have information with
varied protection attributes, as discussed in the previous
section, TCB mediation results in virtualizing the device
into recognizable objects each of which may take on
different protection attributes. The operations on storage
objects include creation, deletion, and the direct access
involved in reading and writing.

TCB.4.1.3.1 Create Object

The create object function allocates a new storage object.
Physical space may or may not be allocated, but if so, the
amount of space actually allocated may be a system default
value or specified at the time of creation.

As mentioned above, naming conventions for storage objects
such as files may open an undesirable indirect channel. 1If
the names are (unambiguously) user-defined or randomly
generated by the TCB, the channel can be reduced.

59

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2 A ‘

e
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

TCB.4.1.3.2 Delete Object

The delete object function removes an object from the system
and expunges the information and any space associated with
it. The TCB first must verify that the protection
attributes of the process and object allow the object to be
deleted. 1Indirect channels in this case are similar to
those for "delete process." The fact of the success or
failure of the operation may cause undesirable information
leakage.

TCB.4.1.3.3 Fetch Object

The fetch object function makes any data written in the
object available to the calling process. The TCB must
determine first if the protection attributes of the object
allow it to be accessed by the process. This function may
be implemented primarily in hardware, by mapping the
physical address of the object into a virtual address of the
caller, or in software by copying the data in the object
into a region of the caller”s address space.

TCB.4.1.3.4 Store Object

The store object function removes the object from the active
environment of the calling process. If the object is mapped
into the caller”s virtual space, this function will include
an unmap.

TCB.4.1.3.5 Change Object Protection Attributes

A protection policy may dictate that subjects may change
some or all of the protection attributes of objects they can
access. Alternatively, only trusted subjects might be
allowed to change certain attributes. The TCB should
determine if such a change is permitted within the limits of
the protection policy.

TCB.4.2 User Interface Functions

The TCB software interface functions address the operations
executable by arbitrary user or applications software. The

. user interface functions, on the other hand, include those
operations that should be directly invokable by users. By
localizing the security-critical functions in a TCB for
verification, it becomes unnecessary for the remaining

" software running in the system to be verified before the
system can be trusted to enforce a protection policy. Most
applications software should be able to run securely, by
merely taking advantage of TCB software interface
facilities. Applications may enforce their own protection
requirements in addition to those of the TCB, e.g., a data
base management system may require very small files be

60

Approved For Release 2007/08/01 : CIA-RDP83M00914ROO’I800060009-2

Approved For Release 2007/06/01 :*CIA-RDP83M00914R001800060009-2

controlled, where the granularity of the files is too small

to be feasibly protected by the TCB. In such a case, the

appiication would still rely on the basic protection

envircnment provided by the TCB. When users need

Capabilities beyond that normally provided to general

applications, such as the ability to change the owner of a -
file object, direct contact with the TCB is required.

In kernel-based systems, the user interface functions are
comronly implemented as trusted processes. Moreover, these
trusted processes rely on the equivalent of the software
interface functions for support.

These functions fall into three categories: user services,
operations and maintenance, and administration.

TCB.4.2.1 User Services

Certain operations may be available to users as part of
standard set of functions a user may wish to perform. Three
are of interest here: authentication of the user to the
system and of the system to the user, modification of
protection attributes, and special 1/0.

TCB.4.2.1.1 Authentication

The act of "logging in", of identifying oneself to the
system and confirming that the system is ready to act on the
benhalf of the requester, is critical to the protection
mechanisms, since all operations and data accesses that
subsequently occur will be done in the name of this user.,
Consequently, identification and authentication mechanisms
that play a part in validating a user to the system should
be carefully designed and implemented as part of the TCB.

Likewise, the system must have some way of alerting the user
when the TCB is in command of terminal communications,
rather than untrusted software merely mimicking the TCB.

For example, the TCB might signal to the user in a way that
non-TCB software could not, or a special terminal button
could bhe reserved for users to force the attention of the
TCB, to the exclusion of all other processes.

TCB.4.2.1.2 Access Modification

Access modification functions allow a user to securely

redefine the protection attributes of objects he/she

controls, particularly in the case of discretionary policy. -
Also included here are operations that allow a user to

select the protection-attributes to be assumed while using

the system, where the attributes may take on a range of

values. For example, a user with a security level of Top

Secret, may choose temporarily to operate as if Unclassified

61

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

s —
Approved For Release 2007/06/01 : CIA-RDP83M00214R001800060009-2

in order to update bowling scores.

Many factors must be considered in implementing such an
operation, particularly if implemented in a process. The
user must have some way of convincing himself that the
object for which the protection attributes are being changed

- is indeed what is intended. For instance, the user might be
allowed to view a file to confirm its contents before
changing its security level. Another issue involves the

- synchronization problem resulting from other processes
possibly accessing the object at the instant the access
modification is attempted. The TCB should prevent such a
change from occurring unless the object were "locked", or
temporarily made inatcessible to other processes, until the
operation was complete, and also access to the other
processes should be re-evaluated on completion.

TCB.4.2.1.3 Special I/0

; I1/0 functions not covered in the software interface

| functions due to their specialized nature are: (a) network

| communications, and (b) spcoling, e.g. to a line printer or
mailer. The ramifications of both of these areas are too
extensive to adequately cover here. The reader is referred
to [KS05718].

TCB.4.2.2 Operations/Maintenance

In the operations and maintenance category fall those
functions that would normally be performed by special users,
the system operators, in running and maintaining the system.
Examples of such operations are system startup and shutdown,
backup and restore of long-term storage, system-wide
diagnostics, and system generation.

TCB.4.2.2.1 Startup/Shutdown

The security model discussed above assumes that in a TCB, an
initial secure state is attained and that subsequent
operations on the system obey the protection policy and do
not affect the security of the system. This characteristic
of a TCB can be said to be true regardless of the protection
policy and security model employed. A "startup", or
bootstrap, operation addresses the initialization of the
system and the establishment of the protection environment
upon which subsequent operations are based. The model
itself, or the formal specifications of a specific design,
can address what the characteristics of all secure states
are, and hence the requirements for the initial secure
state. Consequently, programs that create this state can be
well—-defined. Since it is the operator who must execute the
necessary procedures that initialize the system, TCB
functions interfacing the operator must be trusted to do

62

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

what the operator specifies.

Shutdown procedures are equally crucial in that an arbitrary
suspension of system activities could easily leave the
system in an incomplete state, making it difficult to resume
sgcurely (for instance, if only half of an updated password
file is moved back to disk). One must, for instance, write
all memory-resident tables out to disk where necessary.

TCB.4.2.2.2 Backup/Restore i

To allow for recevery from unpredictable hardware failure,
and conseguently the arbitrary suspension mentioned above,
"checkpoints” mav be takKen of a given state of the storage
system, for instance, by copying all files from disk to some
other medium, such as magnetic -tape. In the event of system
failure, the state of files at some earlier time can be
recovered. The backup function must operate on the system
in a consistent state, and accurately reflect that state;
the restore function must reliably rebuild from the last
completely consistent record it has of a secure state. Note
that the backup system requires an especially high level of
trust since it stores protection attributes as well as data.

TCB.4.2.2.3 Diagnostics

Diagnostics of both hardware and software integrity can
thwart potentially harmful situations. 1In particular,
hardware diagnostics attempt to signal when problems arise,
or, when something has already gone wrong, they try to aid
the technician in pinpointing where the problem is.

" Diagnostics written in software typically access all areas
of memory and devices, and consequently, if run during
normal operation of the rest of the system, require tight
TCB controls. If possible, they should be relegated to user
programs and limited to specific access spaces during the
course of their operation. However, in such a case it would
be impossible to test the security critical hardware, such
as descriptor registers if present. Such software, for
on-line diagnosis, must be included in the TCB, and limited
to operator use.

TCB.4.2.2.4 System Generation

System generation deals with creating the program modules in -
executable form that can subsequently be loaded during
system startup. It is included here for completeness,
although there is no intention to require that editors,
compilers, loaders, and so forth, be verified to correctly
produce the code that is later verified correct, Correct
system generation is an area that is clearly vulnerable, and
procedures must be made to ensure ‘that the master source is
not intentionally corrupted.

63

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

|
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

TCB.4.2.3 Administration

The administration and overall management of a system both
in terms of daily operations and security operations may be
relegated to a user, or users, other than the system
operator. Functions in support of system administration
include but are not limited to updating data bases of users
and their valid protection attributes; and audit and
surveillance of protection violations;

- TCB.4.2.3.1 User Data Base Updates

A typical user data base would contain at a minimum the
names of valid users, their authentication data (e.g.,
password, voice print, fingerprints), and information
relating to the protection attributes each user may take on
while using the system. TCB functions must be available to
an administrator to allow updates to the data base in such a
way that the new information is faithfully represented to
the user authentication mechanism,

TCB.4.2.3.2 Audit and Surveillance

Audit facilities capture and securely record significant
events in the system, including potential protection
violations, and provide functions to access and review the
data. Surveillance facilities allow for real-time
inspection of system activities. Audit and surveillance
mechanisms provide an additional layer of protection. They
should be implemented as part of a TCB not only because they
require access to all activities on the system as they
occur, but also since if they are not themselves verified to
be correct and complete, flagrant violations might go
undetected.

(End of the TCB extract.)

64

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

3.3 TECENOLOGY TRANSFER ACTIVITIES

Once the requirements have been defined, a second

sigpificant prerequisite to achieving the widespread

availability of commercial trusted systems is the transfer

of the computer security technology, developed largely under -
the auspices of the DoD, to industry. This technology,
although available (in part) in the open literature, had
never been presented in a cohesive and detailed manner. To
stimulate technology transfer, the Initiative sSponsors a
series of computer security seminars aimed at Consortium
members, the computer industry, and general computer users.
Consortium members are also actively involved in nation-wide
conferences and workshops addressing computer security and
computer systems in general. Descriptions of some of these
activities follow in chronological order. '

3.3.1 The MITRL Computer Security Workshop

During the week of 29 January to 2 February 1979, MITRE
Corporation personnel conducted a computer security workshop
for DoD personnel. The workshop involved eight general
lectures, five different technical workshop groups, and four
guest lecturers.

The goal of the workshop was to bring together for the first
time all of the technology, background, and experience
necessary for a DoD program manager to understand the
state-of-the-art in computer internal security confrols
(e.g. the security kernel), but the material included
traditional concepts (e.g. periods processing with color
changes) as well.

There were 53 registered attendees from DoD and related
agencies, including one person from the Canadian Department
of National Defense. Among the agencies and services
represented were: NSA, DCA, DIA, WSEO, DoDCI, USAF, ESD,
RADC, SAC, DSDC, DA, DARCOM, NESC, NOSC, USMC, and CINCPAC.

The general lectures were presented on the following topics:

Introduction, History, and Background
Operating systems and Security Kernel Organization
Mathematics of Secure Systems
Specification of Verifiably~Secure systems
Secure Computer System Developments (KSOS, SCOMP,
KVM/370)
Design and Verification fo Secure systems .
Secure systems: Experience, Certification, and
Procurement .
Secure systems: Present and Future

~ 77 U Approvéed For Rélease 2007/06/071 CIA-RDP83M0O0914R001800060009-2° T

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

The guest lecturers were:

Mr. Stephen T. Walker
Staff Assistant, OUSDRE/C3I
"DOD Computer Security Initiative"

Mr. Steven B. Lipner
ADH, MITRE Corporation
‘"The Evolution of Computer Security Technology"

Mr. Clark Weissman

Chief Technologist, System Development Corporation
"System Security Analysis/Certification: Methodology
and Results"

Prof. Jerome Saltzer
Professor of Computer Science and Engineering, MIT
"Security and Changing Technology"

Technical Workshops were given on the following topics:

Basic Principles

Security Kernel/Non-Kernel Security-Related Software
Design

Secure system Verification

Secure Computer Environment

Capability Architecture

3.3.2 1979 National Computer Conference .
On June 4-7,,1979, the 1979 National Computer Conference was
held. An entire session of the conference was devoted to
the Initiative. Seven technical papers were prepared for
the session, which was chaired by Mr. Stephen T. Walker,
OUSDRE/C3I. The papers appear in the proceedings of the
conference. The papers, and their authors, are as follows:

"Applications for Multilevel Secure Operating Systems,"
John P. L. Woodward, The MITRE Corporation.

"The Foundations of a Provably Secure Operating System
(PSOS) ", Richard J. Feiertag and Peter G. Neumann, SRI
International.

"A Security Retrofit of vM/370," B. D. Gold,

R. R. Linde, R. J. Peeler, M. Schaefer, J. F. Scheid,
and P. D. Ward, System Development Corporation.

"KSOS - The Design of a Secure Operating System,"”

E. J. McCauley and P. J. Drongowski, Ford Aerospace and
Communications Corporation.

66

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

"UCLA Secure UNIX," Gerald J. Popek, Marx Kampe,
Charles S. Kline, Allen Stoughton, Michael Urban, and
Evelyn J. Walton, UCLA. .

"KSOS - Development Methodology for a Secure Operating
System," T. A. Berson and G. L. Barksdale, Jr., Ford
Aerospace and Communications Corporation.

"KSOS - Computer Network Applications,"
M. A. Padlipsky, K. J. Biba, and R. B. Neely, Ford
Aerospace and Communications Corporation.

3.3.3 1979 Summer Study on Air Force Computer Security

During June and July 1979, the Air Force Office of
Scientific Research sponscred a summer study on Air Force
cemputer security issues. The Initiative provided extensive
support and assistance to the studv. Forlowing 1is a
significant portion of the Executive Summary written by
Dr. J. Barton DeWolf and Paul A. Szulewskil, editors of the
study report [DEWO79].

The study was held at the Charles Stark Draper Laboratory,
Inc. (CSDL), with some sessions at Hanscom aAir Force Base
in Bedford, ™MA and at the MITRE Corporation in Bedford, MA.
The objectives of the study were to evaluate current
research and development in relation to Air Force
requirements for multilevel secure computer systems, to
identify critical research issues, and to provide guidance
énd recommendations for future research and development
eémphasis. To this end, over 150 attendees representing

" academic, industrial, civilian government, and military
‘organizations, participated from June 18 through July 13 in
an intensive technology review and evaluation.

The summer study was divided into the following nine
sessions, each lasting from 1 to 3 days.

(L) Air Force Computer Security Requirements.
(2) Security Working Group Meeting.

(3) Trusted Operating Systems.

(4) Verification Technoloéy.

{(5) Secure Data-Base Management.

{(6) Secure Systems Evaluation.

{(7) Secure Distributed Systems and Applications.

67

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2 o T

S —
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

(8) Air Force Computer Security Policy.
(9) Summary and Research Recommendations.

Although all the sessions shared a common format, each

individual session chairperson was responsible for the
- specific form and content of his or her session.
Participants, in general, prepared only slides to supplement
their oral presentations. Typically, each session began
with short presentations by each of the participants, which
served to provide an overview of the technology and to
stimulate ideas and discussion. The presentations were
followed by discussion periods, in which questions of
interest were addressed. Certain participants knowledgeable
in the pertinent areas of computer security under discussion
were selected to summarize the sessions in detail. These
session summaries form the body of this report. The
remainder of this executive summary highlights key findings
and recommendations. -

In the keynote presentation on the opening day, Major
General Robert Herres described the multilevel security
problem as a dilemma:

".,..on the one hand, we must maintain the
security and integrity of our sensitive
information, but on the other hand, we must be
able to respond quickly to rapidly changing
situations, especially during times of crisis or
war. And this means we must process and
distribute information rapidly among many people
at different levels of command, and possessing a
variety of clearances and “needs to know”.

"We cannot let security considerations throttle
our operational responsiveness, but we also
cannot jeopardize sources of intelligence
information, war plans, actions or sensitive
information by having some unknown hole in our
security which could be exploited by some
individual or group, quite undetectably."

The Requirements Session emphasized the need for solutions
to problems arising from the sharing of sensitive
information in computer systems. Presentations were made by
representatives of the Defense Communications Agency (WWMCCS
program), ESD (OASIS program), the Military Airlift Command,
the Air Force Weapons Laboratory, the Defense Mapping
Agency, and the Rome Air Development Center (KAIS pregram;
other tactical programs). In general, it was found that
requirements had not changed significantly from those
reported in the 1972 study, but that the trend towards
distributed processing and computer networks was adding a

68

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

new dimension of urgency and complexity to the problem. The
pPresentations described current modes of processing
classified information as combinations of dedicated, system

high, and periods processing. These modes entail numerous
inefficiencies which include the following.

(1) Waste of computer resources.

(2) Overclassification of information.
_(3) Overclearing of users.

{(4) Excessive number, of clearances.

(5) Duplication of hardware‘and-software.

{6) Reliance on cumbersome, costly, and time-consuming
manual procedures for review and declassification of
information.

There was also widespread concern regarding the cost of
converting or adapting existing software and data for use
with new hardware or operating systems, though efficiency
gains resulting from the use of multilevel secure systems
would tend to offset the conversion costs. The impact
(including the cost impact) of computer security
requirements on the accomplishment of Air Force mission
quectives has not been fully analyzed.

The Working Group Session discussed topics which were
covered in greater detail in the other sessions; therefore,
a separate summary is not included herein.

The Trusted Operating Systems Session brought together a

panel of 12 practitioners--persons actively involved in the

design and development of trusted systems--to discuss their

experiences and views on system architecture, hardware

support, and development methodologies. Most recent trusted

system development activity has followed the kernelized

operating system approach recommended by the 1972 ESD

planning study. 1In this approach, software specifications

for the security management portion of the operating system

(i.e., the kernel) are proven to be in conformance with a

mathematical model of the security policy. This approach

has been successful in producing several prototype -
implementations of trusted operating systems, with a number

of production versions nearing completion. However,

opportunities to develop applications programs on these ' .
systems have been very limited, and experience is badly

needed. In the past, operating system penetration studies

have been useful in demonstrating protection mechanism

weaknesses, and future studies will be needed on the new

generation of trusted systems. In general, panel members

69

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

o —
Approved For Release 2007/06/01 : CIA-RDP83M00214R001800060009-2

felt that such studies would show them to be far more secure
than their predecessors. With respect to hardware support
for trusted systems, the panel felt that, although the
situation has been improving, several areas were in need of
research emphasis. These included the following.

N (1) Hardware-mapped input/output (I/0).
(2) Protection of logical objects.
(3) Unified device interfaces.
(4) Multiple domains (more than two).
(5) Fast domain Switching.

| The Verification Technology Session served to emphasize the
essential role that formal specification and verification
have played in the development of trusted systems. As
mentioned previously, formal verification or proof
techniques have been used to show the correspondence between
the kernel specifications and the mathematical security
model. Current specification and verification approaches
and tools are limited in capability, however; and (for the
most part) have not been used to show the correspondence
between the code and the specifications. Furthermore,
current verification systems are usable only by a small
community of educated designers; and there is a need both to
make the tools easier to use and to enlarge the user
community. Despite these limitations, verification
technology has matured to the point where it is desirable to
attempt verification through the code level on limited-scale
real applications, such as clear-core routines and labeling
utilities. It is also desirable to develop methods to
verify that firmware and hardware have been implemented in
accordance with their specifications. One of the highlights
of this session was an on-line demonstration of the Gypsy
and AFFIRM verification systems.

The Secure Data-Base Management (DBM) Session dealt with a
challenging applications area in need of future research and
development emphasis. Security technology for the DBM
problem is still in its infancy. To date, the limited
experience in the application of trusted operating system
technology to DBM issues suggests that several problems need
attention. A critical issue is whether current mathematical
security models are adequate for multilevel data bases.
Data-base constructs not well addressed in current models
include multi-level objects and multilevel relations,
aggregation and inference, and data objects--the sensitivity
of which is content-dependent. Also the support provided in
some trusted coperating system designs may not be adequate
for DBM applications. To be ugeful for DBM, the operating

70

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

system should support access control on finer granularity
dgta objects than most current systems support (e.g.,
files). The user interface to the data base is another area
of concern.

The Secure System Evaluation Session addressed the need to
establish a DoD secure system approval process--a critical
element of the computer security initiative recently
undertaken within the DoD. The session focused on

(1) The technical evaluation and categorization of
trusted systems.

(2) The characteristics of threat environments and
applications.

Seven levels of protection were proposed for evaluating
trusted systems. The threat environment was characterized
in terms of processor coupling, user/data exposure,
developer/user trust, and user capability. The session
provided evidence that a workable evaluation process could
be established, and that a consensus could be reached
matching threat environments with a desired level of
protection. A key assumption throughout the session was
that limiting the user”s capability (e.g., use .of function
keys, transaction processing in a nonprogramming
environment) significantly reduces the security. risk. Since
the security requirements of such systems are not well
understood, this is an area recommended for future. research.

The Secure Distributed Systems and Applications Session
discussed approaches to providing multilevel secure computer
network services. The presentations included discussion of
SACDIN, the KSOS network connection, the military message
experiment, and several other systems. It appears that the
trend towards distributed systems can benefit system
effectiveness, but it exposes information to additional
security threats such as integrity violations, indirect
communication channels, and incorrect user authentication.
Some approaches are emerging for the use of encryption in
secure networks, but more work is needed in this area. Key
areas for future research include the following.

(1) Design methodologies.
(2) Policy issues.

(3) Communications prqtocols for multilevel secure
networks.

The Air Force Computer Security Policy Session dealt with current
DoD policy as set forth in DODD 5200.28, as implemented in
Air Force Regulation 300-8. Current computer security

71

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

policy often inhibits the operational capability of
Automatic Data Processing (ADP) systems, as.was emphasized
during the session on requirements. The problem will be
alleviated as multilevel secure computing systems become
widely available. The situation would also be improved if

current policy more adequately took into account the degree-

of risk in various operational environments. Low-risk
environments could then utilize less costly rules and .
procedures. As was pointed out on several occasions during
the summer study, current policy needs to be extended to
cover other data-processing issues: fraud, privacy, data
integrity, declassification, aggregation, sanitization, and
denial of service. An informal statement of current policy
on these issues would assist the development of formal
mathematical models. S :

To summarize, in the last few years, the field of computer
security has made significant progress towards the goal of
trusted computing systems for multilevel-secure

applications. The following research and development goals

were generated by the group in the final session.

: (1) Continued support for ongoing trusted operating
- system projects (e.g., KSOS, KVM/370).

(2) Increased support for future applications to be
hosted on these systems. ' ‘d

(3) Research to improve hardware support for trusted
operating systems with emphasis on hardware-mapped
1/0, protection of logical objects, unified device
interfaces, multiple domains, and fast domain
switching.

(4) Verification-methodology research with a focus on
practical, real applications of limited scale.

(5) Research to improve the hardware support for
verification and to improve verification system
support tools.

~ (6) Research to develop methods to verify that hardware
and firmware have been implemented in accordance
with their specifications. :

(7) Research to identify trusted operating system

enhancenents needed to support data-base management

applications.

(8) Improved technology transfer between acadenic,
industrial, civilian government, and military
domains in the computer security field.

72

- Approved For Release 2007/06/01 : CIA-RDP83M00914R0018000680009-2

77

A e L e el em At

Approved For Release 2007/06/01 : CIA-RDP83MO00914R001800060009-2

(9) Standardization of terms for the ADP security
community. ' .

(10) Research to define the secdrity requirements of -
limited-capability systems.

(11) Research to concentrate on design methodologies,
policy issues, and communications protocols for
trusted distributed processing architectures.

(12) Development of approaches to detect and control
indirect communication channels (timing channels).

(13) Continued research on encryption approaches and
their relation to kernel technology and capability
architectures.

(14) Research to extend formal (mathematical) policy

' models to cover the problems of fraud, privacy,
multilevel data bases, data integrity,
‘declassification, aggregation, sanitization, and
denial of service. '

(15) Development of methods to evaluate security risk in
ADP systems in terms of threat identification and
guantification of loss.

The Air Force needs multilevel secure systems. - The
technology is at hand. An active and ongoing research and
development program is nerded to make the technology widely
available and useful over a broad range of applications.

(End of Summer Study executive summary.)

3.3.4 July 1979 Industry Seminar

On 17 and 18 July 1979, the Initiative conducted its first
industry technical seminar at the National Bureau of
Standards in Gaithersburg, Maryland. The 280 attendees were
drawn almost equally from computer manufacturers, system

- .houses, and government agencies. The objective of this
seminar was to acquaint computer system developers and users
with the status of the development of "trusted"” ADP systems
with the DOD and the current planning for the evaluation of
the integrity of commercial implementations of these '
systems. The seminar presented an overview of a number of

. topics essential to the development of "trusted" ADP
systems. Much of the material presented was of a technical
nature intended for computer system designers and software
system engineers. However, the sophisticated computer user
in the Federal government and in private industry should
have found the seminar useful in understanding security
characteristics of future systems.

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

e
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

PROGRAM

SEMINAR ON
DEPARTMENT OF DEFENSE

COMPUTER SECURITY INITIATIVE

to achieve the widespread availability
of trusted computer systems

- July 17, 1975

8:30 am Registration at National Bureau of Standards

9:15 Opening Remarks - James H. Burrows, Director
V institute for Computer Sclences and
Technology
National Bureau of Standards

9:30 Keynote Address - "'Computer Security Requirements in the
DoD"'
Honorable Gerald P. Dinneen
Assistant Secretary of Defense for
Communications, Command, Control
and Intelligence

10:00) . - Y"Computer Security Requirements Beyond
b . the DoD"
Dr. Willis Ware
Rand Corporation

10:3C Coffee Break
10:45 - DoD Computer Security Initiative Program
Background and Perspective
Stephen T. Walker
Chairman, DoD Computer Security
Technical Consortium
1}¥:30 - Protection of Operating Systems
Edmund Burke
_ MITRE Corporation
1:00 pm funch
i 2:00 - Kernel Design Methodoloéy
’ LtCol Roger Schell, USAF
\ Naval Post Graduate School
) 3:15 Bresk " | ‘
3:30 ~ Formal Specification and Verification
Peter Tasker
MITRE Corporation
L:30 Adjourn

T e ol

FICGURY 3-4
74

— e

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

. R
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

July 18, 1979

9:00 am - Secure System Developments

Kerneiized Secure Operating System
(Ks0S))
Dr. E. J. McCauley
Ford Aerospace and Communications
Corporation
Kernelized VM-370 Operating System
(KvM))

Marvin Schaefer
System Development Corporatlon

11:00 Coffee‘Break

11:15 - Secure Communications Processor
Matti Kert
Honeywell Corporation

12:00 - Secure System Applications
John P. L. Woodward
MITRE Corporation

1:00 pm_ Lunch

2:00 ' . - DoD Computer Security lnitiative

: Stephen T. Walker
3:30 ' Adjourn

FIGURE 3-4 CONCLUDED
75

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

S
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Figure 3-4 shows the program for the seminar.
3.3.5 January 1980 Industry Seminar

.On 15-17 January 1980, the second Initiative-sponsored
industry seminar was held at the National Bureau of
Standards. This seminar was a key part of the task to
transfer the computer security technology to industry
(especially the computer manufacturers) and to those who
will be using and buying trusted computers. There were 300 -

- attendees from industry and government along with about 30

participants.

The seminar was organized into three sessions: a general
introductory and keynote session on 15 January; a policy and
requirements session on 16 and 17 January; and a parallel
‘session on Trusted Computing Base (TCB) design on 16 and 17
January. The first of the two parallel sessions provided in
depth discussions of policy issues as they apply to
multilevel secure computer systems, an analysis of
applications of such systems within the DoD and beyond, and
a presentation of the Trusted Computing Base concept. The
TCB session, intended for operating system developers and
sophisticated computer science technical experts, provided a
detailed analysis of the Trusted Computing Base concept,
which is the emerging generalized basis upon which high
integrity operating systems may be evaluated, followed by
discussions by the principle designers of the major DoD
trusted system developments relating their systems to the
TCB concept.

Figure 3-5 is a copy of the seminar program.
3.3.6 November 1980 Industry Seminar

On 18-20 November 1980, the Initiative conducted its third
industry seminar at the National Bureau of Standards. This
was the latest in the series of seminars to acquaint
computer system developers and users with the status of
trusted ADP system developments and evaluation. There were
380 people registered for the seminar.

The first day of the seminar included an update on the
status of the Initiative and presentations by five computer
manufacturers on the trusted system development activities
. within their organizations. Following these presentations
was a panel discussion on "How can the government and the
computer industry solve the computer security problem?”

The second day of the seminar opened with a discussion of
the technical evaluation criteria that have been proposed as
a basis for determining the relative merits of computer
systems. The discussion of the assurance aspects of those

76

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

PROGRAM

Second Seminar on the Department of Defense Computer Security lnitiative

January 15, 1980

9:30 am

1:00 pm

Nat ional Bureau of Standards ‘ -
Gaithersbhurg, Marvland

Red Auditorium .

"The Impact of Computer Security in the Intelligence
Community"

br. John Koehler
Neputy Director for Central Intelligence for
Resource Management

"The Impact of Computer Security in the Department
of Defense

Dr. Irwin Lebow
Chief Scientist
Defense Communications Agency

"The Impact of Computer Security in the Federal
Government''

Mr. James Burrows .

Dircctor, Institute for Computer Science and
Technology

National Bureau of Standards

BREAK

"The Impact of Computer Security in the Private
Sector" :

Mr. Ed Jacks
General Motors Corporation

"Status of the DoD Computer Securitv Initiative"

Mr. Stephen T. Walker
Chairman, Do) Computer Security Technical
Consortium

LINCH

FIGURE 3-5

77

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

January 15, 1980
(Continued)

2:00 pm

4:30 pm
January 16-17, 1980

SESSION I

January 16, 1989
9:15 am

1:00 pm

"Computer Security Impacts on Near Term Systems'

Mr. Clark Weissman

System Development Corporation

"Computer Security Impacts on Future System
Architectures"

Mr. Ed Burke
MITRE Corporation

BREAK

A "discussion" of what the computer manufacturers
would like/should expect to hear from governmen:
users about trusted computer systems

Dr. Theodore M.P, Lee
UNIVAC Corporation

Mr. James P, Anderson
James P, Anderson Company
ADJOURN

TWO PARALLEL SESSIONS

Gneral Session - Red Auditorium

"Policy Issues Relating to Computer Security"

Session Chairman: Robert Campbell
Advanced Information Management, Inc.

Mr. Cecil Phillips .
Chairman, Computer Security Subcommittee
DCI Security Committee

Mr. Eugene Epperly
Counterintelligence & Security Policy Directorate
Office of the Secretary of Defense

.Pentagon

Mr. Robert Campbell
Advanced Information Management, Inc.

Mr. Philip R. Manuel
Phillip R. Manuel and Associates

Dr. Stockton Gaines
RAND Corporation

LUNCH

FIGURE 3-5 CONTINUED

78

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

January 16, 1630
(Continued)

2:00 pm

4:00 pm

January 17, 1980
SESSION I

9:15 am

1:00 pm

2:00 pm

"User Requirements and Applications” -

Session Chairman: Dr. Stockton Gaines
RAND Corporation

Mr. Larry Bernosky
WIWMCCS System Engineering Office

LtCol Cerny

Federal Republic of Germany Air Force
BREAK

Dr. Tom Berson

SYTEK Corporation

Mr. Mervyn Stuckey
L.S. Department of Housing and Urban Development

ADJOURN

"User Requirements and Applications" (continued)

Dr. Von Der Brueck
IABG, Germany

Mr. John Rehbehn

‘Social Security Administration

Mr. William Nugent
Library of Congress

Mr. Howard Crumb :
Federal Reserve Bank of New York

BREAK

"Trusted Computing Base Concepts'

Mr. Peter Tasker
MITRE Corporation

LUNCH

GENERAL DISCUSSION and WRAPUP -
Mr. Stephen T. Walker

FIGURE 3-5 CONTINUED

79

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

PROGRAM

November 18, 1980 Red Auditorium
9:15 Opening Remarks
Seymour Jeffries,
Institute for Computer Sciences & Technology
National Bureau of Standards

i DOD Camputer Security Initiative

Stephen T. Walker, Chairmman
DOD Computer Security Technical Consortium

INDUSTRY TRUSTIED SYSTEM ACTIVITIES

Paul A. Karger
Digital Equipment Corporation

10:45 Break
11:00 INDUSTRY TRUSTED SYSTEM ACTIVITIES - Continued

Irma Wyman
- Honeywell

Viktors Berstis
IBM

Jay Jonekait
TYMSHARE, Inc.

Theodore M. P. lLee
Sperry-Univac

1:00 Lunch

2:00 PANEL: "How Can the Government and the Computer
Industry Solve the Computer Security Problem?"

Theodore M. P. Lee, Sperry-Univac
James P. Anderson, Consultant
William Eisner, Central Intelligence Agency
Steven P. Lipner, Mitre Corporation
Marvin Schaefer, System Development Corporation
3:00 Break
3:15 PANEL - Continued

4:30 Adjourn

FIGURE 3-6

82

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

| Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

November 19, 1980 Red Auditorium
9:00 "Quality Assurance and Evaluation Criteria"

Grace H. Nibaldi
Mitre Corporation

9:50 "Specification and Verification Overview' -

William F. Wilson
Mitre Corporation

10:45 Break
SPECTFICATION AND VERIFICATION SYSTEMS

11:00 "FDM: A Formal Methodology for Software Development'

Richard Kemmerer
System Development Corporation

12:00 "Building Verified Systems with Gypsy'' .

Donald I. Good
University of Texas

i ' 1:00 Lunch

S‘PECIFICATION AND VERIFICATION SYSTEMS - Continued

2:00 "An Informal View of HDM's Computational Model"

Karl N. Levitt
SRI International

3:00 Break
3:15 "AFFIRM: A Specification and Verification System'

Susan L. Gerhart
USC Information Sciences Institute

4:15 Adjourn

FIGURE 3-6 CONTINUED

83 B

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

5O ——
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

November 20, 1980 Red Auditorium
9:00 "An Overview of Software Testing'

Mary AJo Reece
- Mitre Corporation

THE EXPERIENCES OF TRUSTED SYSTEM DEVELQPERS
9:45 "Update on KSOS"

John Nagle
Ford Aerospace and Camumications Corporation

10:45 Break
11:00 Kw-370

Marvin Schaefer
System Development Corporation

12:00 "Kernelized Secure Operating System (KS0S-6)"

Charles H. Bomneau
Honeywell

1:.00 Lunch

2:00 PANEL: '"Where Would You Put Your Assurance Dollars?"
Panelists: Dewvelopers, Researchers, & Testers
3:00 Break

3:15 PANEL - Continued

4:15 Adjourn

FIGURE 3-6 CONCLUDED

84

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

3.4 TRUSTED COMPUTER SYSTEM EVALUATION

This section proposes an evaluation process by which trusted

computer system developments may be reviewed and evaluated

upder the Initiative. The results of applying the process -
will be to develop a list of products that have undergone
evaluation, and thus are eligible for use in applications
requiring a trusted system. This list of systems has been
designated an evaluated products list (see section 3.1).
Trotter and Tasker have documented the proposed evaluation
process [TROT80]. trusted computer systems. This section
contains a condensation of that paper.

There are three prime elements to the evaluation process:
the TCB provides the requirements; evaluation criteria nave
been preoposed and are being coordinated with industry; and a
plan has been advanced for a government-wide evaluation
center. The TCB was described in section 23.2. The
subsections below discuss the criteria and the center, and
then present the proposed evaluation process.

3.4.1 Evaluation Criteria

An important requirement of an evaluation program, both from
the viewpoint of th'e manufacturer and the government, is
that the evaluation be consistent for all manufacturers and
all products. To achieve this, a detailed set of evaluation
criteria is needed that will allow both the protection value
of architectural features and the assurance value of
development and validation techniques to be considered. 1In
addition, it is necessary that the criteria be independent
of architecture so that innovation is not impeded. Three

' evaluation factors have been defined, and various degrees of
rigor for each factor have been incorporated into seven
hierarchical protection levels representing both system-wide
protection and assurance that the protection is properly
implemented. The evaluation criteria address two aspects of
a system considered essential: completeness (is the policy
adequate) and verifiability (how convincingly can the system
be shown to implement the policy).

The proposed evaluation criteria are summarized here, and
are documented in detail by Nibaldi [NIBA79b]. It should be
emphasized that these criteria are preliminary and are
undergoing review.

3.4.1.1 Factors -
There are three prime evaluation factors: policy, mechanism,
and .assurance. These factors are shown in figure 3-7, and

are briefly described below. They are fully described and
developed in {NIBA79b].

85

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Policy
Mechanism
Prevention
Detection
Recovery
Assurance
Development Phases
. Design
Implementation
Validation Phases
- Test ing
Verification
Operations/Maintenance

Figure 3-7. EVALUATION FACTORS

Policy

A protection policy specifies under what conditions
information stored in the computer and computer resources
might be shared, typically placing controls on the
disclosure and/or modification of information. If there is
a clear, concise statement (and hence, understanding) of the
protection policy a trusted system purports to obey, then an
evaluator of the system can better determine (through
testing or other forms of validation) if the system enforces
the stated policy. In fact, formal methods of design
verification depend on precisely stated policy "models" to
make rigorous mathematical proofs of correctness.

Mechanism

The mechanisms that actually enforce the protection policy
may include both hardware and software. To be effective,
they too must be complete and verifiable, but in addition,
they must be self-protecting, able to maintain their
effectiveness in the face of accidents or malicious attack
by users or their programs. Operating systems can
potentially confine users so that unauthorized access cannot
occur, yet if they are poorly implemented, they have the
potential to undermine even safeguards that are built into
user programs or applications. As a result, an evaluation
is expected to concentrate on operating system and related.
software and hardware controls, particularly in the areas of
detection and prevention of policy breaches, recovery from
errors, and system operations and maintenance. The TCB is
the basis for the evaluation of. the mechanism.

86

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2)]

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Assurance

The evaluation criteria should take into account not only
that a system promises to provide a certain amount of
protection (by having a suitable policy and exhibiting the
appropriate mechanisms) but also that it can deliver that
protection with some degree of confidence. Absolute
certainty is beyond the state-of-the-art in software
engineering, but steps taken in the design, implementation,
and validation phases of a trusted system”s development are
known to raise the level of confidence one has in the
system. These steps include, for instance, top-down design,
structured programming, penetration testing, and
mathematical verification of conformance to policy.

3.4.1.2 Protection Levels

Seven protection levels (six levels and null) are defined
[NIBA79b]. These levels are cumulative in that a rating at
a certain level requires that the criteria at that level and
all lower levels be satisfied. When a system is evaluated
it will receive a rating determined by the highest
protection level that is completely satisfied. Thus a
system that has satisfied all of the requirements except one
for a "Level 3" will be assigned a "Level 2."

This criteria has been defined so that in the lowest levels,
a system must first meet certain policy standards, even if
its mechanisms are not deemed sufficiently strong to counter
certain subtle attacks. At higher levels, the emphasis
shifts to the evidence that the software, and ultimately the
hardware, 1is correct.

LEVEL 0: NO PROTECTION

When there is no indication in any of the three
areas that a system can protect information, the
system receives a level 0 evaluation.

LEVEL 1: LIMITED CONTROLLED SHARING

Level 1 applies to systems in which the presence
of data access controls that are capable of
providing only limited protection are recognized.

LEVEL 2: EXTENSIVE MANDATORY SECURITY

The system protection provides: 1)
administratively controlled authorization to read

- data, 2) flow control to prevent data compromise,
and 3) write access control.

87

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

S —
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

LEVEL 3: STRUCTURED PROTECTION MECHANTSM

The protection mechanisms must be clearly
identified, isolated and made independent of other
software. Trust is gained through methodological
design of the protection-related components of the
operating system (i.e., the TCB) and modern

programming techniques, adeguate test results are

still the primary means of assurance.

- LEVEL 4: DESIGN CORRESPONDENCE

At this level formal methods are employed to
confirm trustworthiness of the design.
Mathematical proofs of correspondence of the
design to a security model are required.

LEVEL 5: IMPLEMENTATION CORRESPONDENCE

The system must be shown to formally correspond to
the verified top-level design, and more stringent
requirements for denial of service provisions,
hardware fault tolerance, and leakage channel
control are demanded.

LEVEL 6: OBJECT CODE ANALYSIS

A formal analysis of the object code is required
as final evidence that the implementation software
fulfills the requirements of the security -model.
More rigorous scrutiny of the hardware base is
demanded, and formal methods of verification must
also be applied to the hardware.

3.4.2 Security Evaluation Center

It is proposed that the evaluation function be performed by
a government-wide computer security evaluation center so
that the evaluations will be as consistent as possible and
so that scarce technical personnel can be best utilized. To
properly apply the evaluation process, the center will
maintain a staff experienced in security issues, TCB design,
system design, testing, penetration, and interaction. 1In
addition to the evaluation of industry secure systems, the
staff will be available to government agencies requiring
design or consultation on individual products or contracts,
particularly in the area of design of applications software.
Also, the center will establish and maintain an internal
research and development capability to both enhance current
and create new development tools essential to the system
evaluation process.

88

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

3.4.3 Trusted Computer System Evaluation Process

The proposed evaluation process consists of four sequential

steps: 1) preliminary evaluation, 2) interactive evaluation,

3) final evaluation, and 4) periodic re-evaluation. The .
preliminary evaluation step is a determination of the
suitability of an industry developed system for evaluation
based upon the design of the TCB of the system. When the
TCB has been adequately specified, the system will be ready
for an interactive evaluation. The interactive evaluation
is a review of the system design in terms of the TCB and the
means by which the system satisfies the criteria for the
level of protection which the manufacturer specifies. The
final evaluation invclves analysis and testing of the
completed system to determine the level of protection
provided and the strengths and weaknesses relative to that
level. This description presumes that these evaluations
will be performed by a government-wide evaluation center.

3.4.3.1 Preliminary Evaluation

Preliminary evaluation is an analysis of the TCB of a
manufacturer’s system to determine the adequacy of that
system for use in an environment requiring trusted access
controls. The purpose of this evaluation is to determine
whether or not the manufacturer’s system is sufficiently
designed and documented, in terms of the TCB and the
evaluation criteria, to begin an interactive evaluation.
When the manufacturer reguests an evaluation, he will
provide the evaluation center with complete system
documentation and indicate the target level of protection he
hopes to achieve. This can best be accomplished through a
presentation given by the manufacturer describing the
computer system under development in terms of the TCB
specification, and detailing the design and implementation
of the system in terms of the technical evaluation criteria.
The preliminary evaluation will determine if the TCB can
provide this "target" level of protection by analysis of the
design methodology and the hardware and software mechanisms
provided by the system.

When the security evaluation center receives a request to
evaluate a system, a team will be formed to perform the
evaluation. The output of the preliminary evaluation will
be the team”s assessment of the status of the system, and
the potential the system has for achieving the level of
protection stated by the manufacturer or the highest level -
the system might achieve based on the information available.

The assessment may indicate that the system is not yet ready

to proceed to a full interactive evaluation. This would

occur if the specification has not been well defined in

terms of the TCB, or if the complexity or method of

implementing the TCB is not amenable to this type of

89
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

S
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

evaluation. In that case, the evaluation team will identify
what further information is needed, or what steps should be
taken before the system is ready for interactive evaluation.

Although it is presumed that most evaluations will be
conducted on systems that have been designed with verifiable
protection in mind from the onset, there may be released
(production) systems that have a sufficient protection base
and data protection capability to allow restructuring of the
system to incorporate a TCB. 1In this case, the focus of the
preliminary evaluation will be on the changes necessary to
the production system (in structure, documentation and
testing) to satisfy the criteria for one of the protection
levels,.

3.4.3.2 Interactive Evaluation

The interactive evaluation is a logical extension of the
preliminary evaluation, which will begin when a preliminary
evaluation indicates the product is suitable as a trusted
system. The review of the system will focus on the TCB,
while the review of the system design will focus on the

evaluation criteria (i.e. how the design satisfies the
criteria for the level of protection specified in the
preliminary evaluation). The method of conducting the

evaluation will be a series of presentations given by the
developer, together with documentation appropriate to the
level of development of the system. The areas of hardware
and software which were covered in the preliminary
evaluation will now be covered in depth by the
manufacturer”s design team. The manufacturer will determine
the schedule for presentations based upon his progress in
developing the system. One possible method is to tie the
presentation schedule to the manufacturer”s internal design
review cycle.

The evaluation team will review the system design and point
out security relevant design tradeoffs that may have been
overlooked. In no case will the team attempt to re-design
the manufacturer”s system. The issue addressed is the
compromise of the system through data security and integrity
flaws, timing and storage channels, and denial of service.
The evaluation team will provide the manufacturer with in
progress reports detailing the teams assessment of the TCB
design issues, and supplying feedback on the protecticn

- provided by the system. The manufacturer will not be
required to supply special documentation defining the TC3
provided the internal documentation adequately defines the
system design., KSOS-6 (SCOMP KSOS) [BONN80a,BONN80b] and
KSO0S-11 [KS0S78] specifications provide examples of the type
of specifications required for adequate system definition.

90

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

The interactive evaluation of an industry system will be
complete when the analysis of all specifications is
complete. The computer system will then be ready for final
evaluation.

If the evaluation has been initiated prior product release
it will occur concurrently with the development of the
system. If the evaluation process is initiated later, in
anticipation of subsequent releases of "trusted versions” of
the system, any interactive evaluation step would take place
during the manufacturer”s formulation of the releases.

3.4.3.3 Final Evaluation

The final evaluation consists of analysis and testing of the
precduction system to determine its strengths and weaknesses
relative to the mechanisms provided for the level of
protection which was originally specified. The developers
will provide the evaluation center with a production system,
or suitable access to one, and will provide details on the
test methods and procedures used to determine the way in
which the criteria have been satisfied for the specified
level of protection. 1In addition, the manufacturer must
show the way in which the test procedures map to the
development specification, or to the Top-Level Specification
for systems requiring verification.

The final evaluation cannot take place until the
manufacturer hds completed his internal acceptance testing
and the system is available for field testing, so that the
evaluation team will have complete access to the system for
nands-on testing. There is no requirement that the
evaluation occur as soon as the system is available. The
manufacturer may choose to wait for some future release of
the system before the final evaluation takes place.

The manufacturer will perform the actual detailed testing
and where necessary, verification, to clearly demonstrate
the protection capabilities of the system. To aid the
evaluation team”s analysis of the testing, the manufacturer
should provide the complete test plan and any test data
requested by the evaluation center.

The evaluation team will determine what further testing is
necessary, if any, to assure that the system provides the
security and integrity for the specified target level, using
the manufacturer”s qualification testing as a starting
point. The result of the final evaluation will be to
determine the "actual" level of protection and to place the
system in the evaluated products list. The output from the
final evaluation will be in three parts: 1) a public
document giving the level of the system and the possible
environments where it is usable; 2) a classified flaw

91

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

[
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

analysis of the system, including limitations and
vulnerabilities, and where and how the system can be used;
and 3) evaluation team notes.

3.4.3.4 Periodic Re-Evaluation

Computer systems, being dynamic, will be modified or
enhanced at random intervals and thus will require
re-evaluation. The evaluation center and manufacturer will
jointly analyze all system changes to determine the security
related aspects and thus the extent of the re-evaluation
needed. The higher the level of the system, the more
detailed the re-evaluation will be. For example, code
related changes may only effect systems of level 5 or higher
where code proofs are required, while design changes will
effect systems of level 4 or higher since these systems
require mathematical proof of correspondence of the design
to a security model.

3.4.3.5 Timing of the Request for Evaluation

The evaluation of an industry developed computer system may
start during any phase of product development. As part of
the evaluation process, the center hopes that its insight
and feedback to the manufacturer will tend to enhance the
trustworthiness of the final system. Because of this, we
believe that the earlier in the cycle the evaluation is
started, the greater the protection potential for the
resulting system, since the security design will be
reflected in all specifications, and because there will be
maximum exposure between the development team and the
evaluation center. 1In conflict with the idea of early
contact is the need for adequate system definition and the
need to minimize exposure of the manufacturer”s sensitive
marketing plans. Ideally, the request will occur in the
early stages of product development but after the system
design has been well defined in terms of the TCB.

It is important to note that high-level design information
which is usually produced in the early phases of development
may not exist when evaluation is started later in the cycle.
Since this information is essential to a proper evaluation,
the manufacturer may find it necessary to produce
specifications after-the-fact. This will only happen for
systems designed for a high level of protection.

3.4.3.6 Configuration Management

- The manufacturer must provide a physically secure facility
where a master copy of the evaluated product will be
maintained (for products of level 4 and above). This is
needed to provide some assurance to the user of a trusted
system that the copy he receives is a true copy of the

92

| : Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

system that was evaluated. For some high level products,
the manufacturer will be required to provide a secure
machine facility for development and testing of the trusted
system.

3.4.4 Summary

A process for evaluating the security and integrity of a
commercially produced computer system has been presented.

In a sense, the process is both generic, in that generalized
‘evaluation factors have been defined, and specific in that
seven protection levels are used to categorize the evaluated
system. The process is defined in terms of a TCB, but is
readily extendible so that future systems of possibly
different configurations can also be evaluated.
Implementation of this evaluation process will require the
cooperation of both private manufacturers and the
government-wide computer security evaluation center.

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

O ————
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

3.5 CURRENT EVALUATION EFFORTS

Prior to the establishment of an evaluation center and firm
evaluation criteria, there are a number of ccmputer systems
‘undergoing informal evaluation. Since a government-wide
computer security evaluation center has not yet been
established, the evaluations are being conducted by
evaluation teams made up of Consortium members and the
Consortium”s technical support.

- The evaluation teams meet with developers of the systems on
a periodic basis. These meetings have allowed the
evaluation teams to learn about the specifics of a
manufacturer”s product and have provided a forum for
discussion of the evaluation criteria and process in the
context of the manufacturer”s proposed plans. §Since the
meetings often result in company-proprietary information
being made available to the team members, a Technical
information Agreement between the DoD and each corporation
is signed. This agreement spells out the Government’s
obligations in keeping the proprietary information from
public disclosure. A copy of the Technical Information
Agreement appears in figure 3-8.

The following sections briefly describe the computer systems
currently under evaluation.

3.5.1 DEC VAX/VMS

VMS is DEC”s operating system for their VAX-1l series of
computers. It has been designed to make full use of the
hardware features of the VAX machine. VMS uses all four
protection domains (user, supervisor, executive, and
kernel), and takes full advantage of the virtual and I/0
mechanisms.

VMS can be decomposed into three portions, corresponding to
the three non-user VAX-11l hardware domains. That portion of
VMS typically thought of as the core operating system is
itself decomposed to run in both the kernel and executive
domains. The command language interpreter runs in the
supervisor domain, while user programs run in the user
domain. The size of the code running in the kernel and
executive domains is estimated to be 65-100K bytes. The
size of the kernel domain itself, not counting device

. drivers, is about 30K bytes. The remainder of this
discussion will focus on the VMS core cperating system in
the executive and kernel domains.

The VMS kernel implements the abstraction of processes, and
generally runs in the context of the process that caused it
to run. Certain processes maintained by the kernel are
operating system processes that run in domains other than

94

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

TECHNICAL INFORMATION AGREEMENT

This Agreement is between
(hereinafter the '"Corporation') and the Department of Defense (hereinafter
the ''DOD").

The Corporation may disclose to the DOD certain documents containing technical
information and ideas (hereinafter collectively called ''Data'') on present and
potential future computer architectures and operating system designs that are be-
lieved by the Corporation to be confidential and therefore exempt from disclosure
under 5 USC Section 552 (b) (4) (1376) (The Freedom of Information Act). The
documents containing such Data are identified as

The Purpose of this disclosure
is to enable the DOD to evaluate the security and integrity of the computer archi-
tecture and design, and except as specified below the DOD will not disclose or
use such Data other than for the purpose of evaluation as stated herein.

All Data which the Corporation believes to be exempt from public disclosure
shall be marked with a proprietary notice as provided by the Corporation. At
the time the Data is submitted to the DOD and on a quarterly basis thereafter
the Data will be reviewed by the DOD and the Corporation to identify the Data or
portions thereof that the DOD and the Corporation believe to be exempt from
public disclosure under 5 USC Section 552 (b) (4) (1976) (The Freedom of Information
Act). If at the time of submission of the Data to the DOD or as a result of a
quarterly review, the DOD and the Corporation do not agree that any portion of
the submitted Data is exempt from public disclosure, such portion of the Data and
any copies thereof shall be immediately returned to the Corporation. The Corpora-
tion and the DOD recognize that Data which is agreed to be exempt from disclosure
at the time of submission to the DOD or at the time of a quarterly review may
‘subsequently cease to be exempt. Therefore, the Corporation agrees to notify
the; DOD when Data is no longer believed by the Corporation to be exempt from public

disclosure. Failure to provide this notice, if in fact notice should be
given, does not mean that the Data is still believed by the Corporation to be
exempt.

The DOD will expend its best effort during the term of this Agreement to
protect the Data or portion thereof that the DOD and the Corporation agree, at
the time of the latest review, to be exempt from public disclosure under 5 USC Sec~
tion 552 (b) (4) (1976) (The Freedom of Information Act), PROVIDED HOWEVER, that
the DOD shall not be liable for any unauthorized disclosure or use if such Data;

(a) is presently known or hereafter becomes known to the public by other
than a breach of duty hereunder, or

(b) is known to the DOD prior to the time of disclosure to jt by the
Corporation, or

(c) is subsequently developed by the DOD independently without reference
to the Data, or

(d). is independently and rightfully acquired by the DOD from another
source without restriction, or

(e) is identified by the Corporation as believed by the Corporation no
longer to be exempt from public disclosure.

FIGURE 3-8
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

P Y =

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

In the event that a third party requests Data covered by this Agreement,
the DOD agrees to notify the Corporation and to consult with the Corporation in
advance concerning release of the Data to any such third party. Further, in the
event of such request by a third party, the Corporation agrees to support the
effort of the DOD to protect the Data of the Corporation by providing informa-
tion necessary to justify an administrative denial of the Data to a third
party, and the Corporation shall endeavor to intervene in any court proceeding
initiated by a third party requestor of the Data. If the court denies the
motion for intervention the Corporation agrees to provide an _amicus curiae brief
for the consideration of the_court.

In the event a court orders the DOD to release the Data to a third party
requestor, DOD shall provide the Data to the third party in conformance with the
order of the court.

This Agreement constitutes the entire understanding between the parties
hereto with respect to the subject matter of this Agreement.

This Agreement will commence on the date of signing by the parties hereto
and terminate years, subject to renewal. Upon termination of this
Agreement, should DOD be in possession of any Data considered to be proprietary
by the Corporation, DOD shall, at the corporation's option, either destroy said

Data or return it to the Corporation.

FIGURE 3-8 CONCLUDED

96

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

user and perfOLm functions such as flle management and
process swapping.

Within the kernel itself, there is a logical fifth domain
that is called the interrupt domain. This "domain" consists

of that kernel code wnhich runs at the interrupt level in
egponse to some kind of interrupt, and consists mostly of _
I/0 drivers and some code to support the InterProcess ¢

Communication (IPC) mechanism. VMS supports two types of

IPC mechanisms: mailboxes and common event flags.

Mailboxes, similar to UNIX pipes, are supported by.a rather

complex mechanism that includes quotas. Mailboxes are made

to look just like I/0 devices, and are hence processed at

the interrupt level within the kernel. Common event flags

are a simpler, semaphore-like mechanism.

Kernel functions that run cutside the interrupt level
include the AST (software interrupt) mechanism, the PAGER,
the QIO mechanism, and the mechanism portion of the
scheduler.

3.5.2 IBM System/38

The System/38 is the latest IBM offering in a series of
business computing systems. The series began with the
System/3 and evolved through the System/32 and System/34.
Initial customer deliveries of the System/38 were made in
June 1980. ;

System/38 consists of a high—level base machine (hereafter
called HLM), and three IBM licensed software products:
Control Program Facility (CPF), Report Program Generator
(RPG III), and Interactive Database Utilities (IDU).

HIM is an object-oriented high-level machine architecture

providing many of the supervisory and resource management

functions found in tvpical operating systems, including

functions specifically designed to support data base

processing. HIM is itself internally layered into the

physical hardware, a horizontal microcode layer, and a

vertical microcode layer. HLM is the focal point of this

description of System/38 and is treated in greater detail in

the following subsections. . .

CPF extends the object-oriented HLM architecture to provide
typical operating system abstractions and functions to the
user, and to the RPG III and IDU subsystems. CPF constructs
such user-level abstractions as files, programs,
dlrectorles, and message gueues out of the more primitive
objects implemented by the HIM. CPF provides integrated
support for interactive data base and work station
applications and for batch processing.

97
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

o —
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

RPG III is an enhanced version of the RPG II programming
language found on the S/3, S/32, and S/34 computers.

IDU consists of a set of data base utility programs which
build upon the file management and data handling functions
of HLM and CPF to provide interactive data entry; source

- language entry; and query, retrieval, and update operations.

3.5.3 Tymshare GNOSIS

Gnosis is a capability-based operating system for the IBM
S/370 architecture. As a capability-based system, Gnosis
controls access via hierarchies of capabilities, not by
access lists. Gnosis is made up of a kernel and its
supplementary software. The Gnosis kernel is unswappable
and runs in supervisor mode with real addresses. The kernel
does not include a file system and does not perform
scheduling. It does not include language processors, an
editor or a loader. These make up Gnosis”s supplementary
system which, when combined with the kernel, comprise a more
“normal” operating system.

The Gnosis kernel functions as a simple reference monitor:
for every action requested, the requester must hold the
appropriate capability. No capability, no access. The
kernel is small (approximately 50K bytes), written in
assembly language and can be described more as a control
program rather than a complete operating system. It is
designed to meet commercial needs for an efficient and
secure (guaranteed isolation of users) basis for
transaction~oriented applications. As a fringe benefit, the
relative simplicity of Gnosis (as is the case with VM)
permits easy conversion of programs written for other IBM
operating systems.,

Tymshare targeted Gnosis to the S/370 architecture, which
they know well and use in their commercial applications.
With IBM”s introduction of its low-priced 43xx family and
its existing 30xx series on the high end, there is now a
formidable range of S/370-compatible machines, which is to
some extend duplicated by machines produced by the
plug-compatible manufacturers (Amdahl, Itel, etc.).
Whatever its perceived shortcomings in the security area

" (for example, it 1is only a two-state machine: privileged and
problem) the architecture is extremely popular and in
widespread use.

Gnosis and VM are both control programs, but with different
design goals. VM remains the only operating system on which
other operating systems are developed and tested. Gnosis
itself is being developed under VM. Gnhosis, however, should
be considerably better adapted than VM for transaction-based
applications, which do not require the generality of the

98

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

virtual machine approach.

To understand intended applications for Gnosis, consider a
large database on a computer shared by mutually suspicious
users. Both need to use the database (and other
applications on the computer) but each wants to be
guaranteed that the other cannot monitor accesses to the
database or tamper with private applications. Gnosis .
provides building blocks {(capabilities) and per-process

virtual environments (domains) from which Tymshare claims

policies which guarantee isolation can be implemented.

Unlike the DoD sponsored kernelized operating systems under
development, Gnosis is not formally specified or verified.

3.5.4 Navy SHARE/7

The SHARE/7 Timesharing System was developed by the Naval
Fleet Combat Directive System Support Activity San Diego
(FCDSSASD) in the 1972-74 time frame with multi-level
security as a principal design goal. SHARE/7 runs on the
AN/UYK-7 military computer built by UNIVAC (no commercial
counterpart), and is principally used for the interactive
development and testing of CMS-2 language tactical software
for the AN/UYK-~7 and AN/UYK~20 fleet computers. The system
provides a comprehensive set of interactive tools
specifically tailored to development and testing, including
file utilities, editor, compilers, loaders, debuggers,
simulators, program documentation aids, and configuration
management controls. FCDSSASD is responsible for
distributing the system to other Navy commands. Fifteen
Navy sites use the system. : '

The SHARE/7 system is a multiprocessor system. FCDSSASD has
two interconnected 3-CPU AN/UYK-7 computers with two I/O
Controllers (IOCs), 15 memory modules of 240,000 32-bit main
memory, and a disk storage subsystem. A single, modified
NOVA/D1l16E minicomputer is used as a terminal multiplexor
for both systems.

The AN/UYK~-7.is a two-state machine: a privileged interrupt

(or monitor) state, and task (or user) state. It supports

both memory mapping and protection hardware: its

descriptor-based process. Each segment is composed of -
512-word (32-bit) pages and can grow as large as 128 pages

or 64K words, making the maximum address space of a process

512K words. The protection hardware distinguishes between

read/write, read-only, and execute-only access.

1/0 appears to be interpretive, i.e., handled exclusively
through system calls. There is no user or mapped DMA I/0.

The kernel of the operating system, called the Monitor, 1is
responsible for handling all hardware and software (system

99

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

call) interrupts. When a user logs in, the Monitor creates
for the user a single process (also referred to as "job" or
“task") running a trusted, or privileged, executive (EXEC)
command interpreter. EXEC then runs programs for the ‘user
" in "sub-processes" within the original process. Each
sub-process may recursively start other sub-processes, some
of which may be trusted, thereby generating a stacking
effect like procedure calls.

The Navy has initiated a Security Test and Evaluation (ST&E)
to determine if the system will be accredited to operate in
multi-level mode, running unclassified, confidential, and
secret information simultaneously. The Consortium has been
asked to provide support.

.3.5.5 COINS II Terminal Access System

TAS provides a uniform processing environment for
computer-naive intelligence analysts as they query COINS
data bases distributed on hosts on the COINS II intelligence
network. It is implemented as a COINS II network host on a
PDP-11/70 processor operating under the UNIX operating
system. The analyst logs on to TAS and uses TAS to
formulate queries of data bases distributed on COINS II. He
formulates these queries in the ADAPT query language. TAS
takes each query and establishes a connection to the
appropriate COINS II host; creates and submits a batch job
(or, in the case of SOLIS, logs on and issues SOLIS
commands) to perform the user”s query; and receives the
resulting response, apprising the TAS user of its arrival.
All of this processing occurs transparently to the TAS user.
TAS provides*'the analyst with a repertoire of commands to
prepare, edit, and submit gueries; to display and print
responses; and to check on the status of pending queries.

In addition, TAS gives the analyst facilities for creating
and editing text files; for creating and sending mail to
other analysts; and for retrieving and displaying mail.

TAS provides control of access to the COINS hosts. It
maintains per analyst and per terminal data bases which
establish analyst and terminal clearances and determine
which COINS II hosts and data bases may be accessed by each
analyst and terminal. TAS provides a subsystem (accessible
only to the TASMASTER) for the maintenance of these data
bases. TAS maintains a log of all network transactions and
all access violations.

The COINS program office is investigating the impact of
upgrading TAS and the COINS network to incorporate the DOD
standard Transmission Control Protocol Version 4 with
internetworking protocols (TCP4-IP) and converting TAS and
NAS from UNIX to KSOS. The Consortium is supporting
formulation of a multilevel secure design for TAS to act as

100

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

a basis for the impact analysis.
3.5.6 DTI COS-NFE

The Communications Operating System/Network Front End
(COS/NFE) is a prototype network front end designed to
connect a host (currently a WWMCCS H6000) and terminals to
the AUTODIN II packet switching network. It is being .
developed by Digital Technology Incorporated (DTI) under

contract to the Defense Communications Agency with System

Development Corporaticn (SDC) as the subcontractor

responsible for specification/verification tasks.

Currently, the COS/NFE is targeted for implementation on a

PDP 11/70.

Two major design goals for the COS/NFE are high message
throughput and verifiable DoD multilevel security. The need
for multilevel security arises from the fact that the
terminals attached to the COS/NFE may be at different
security levels and also from anticipation that a multilevel
host may be used with the COS/NFE or attached to AUTODIN II.

The software architecture of the COS/NFE is not a fully
functional operating- system (no applications run on the
COS/NFE), but is required to be a high speed, event driven
secure protocol processor. The protocols that will be
implemented in the COS/NFE are link level, channel level and
service level Host-to-~Frontend protocols (HFP), AUTODIN II
THP, TCP, IDP, SIP and Mode VI protocols and various
terminal protocols. Secure message processing is achieved
by the identification and total separation of protocol
processing for messages of different security
classifications. 1In addition, the COS/NFE will maintain a
database for authenticating users and their connection
requests as well as producing a printed audit trail of all
security related events.

To insure security, a complete formal specification

verification of COS/NFE is planned. A top-level

specification has been written and verified in SDC”s Ina Jo
specification language. At least two more lower level

specifications will be produced and verified.

Implementations of the COS/NFE will be done in the high .
level language PASCAL and code proofs may be done.

3.5.7 Intel 432

Discussions have just begun with Intel with respect to their
432 system. The 432 is an Ada-oriented machine that
includes a significant amount of hardware support for
high-order language and virtual machine concepts. The
hardware and its "silicon operating system" treat
processors, processes, storage, and interprocess messages as

101
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

objects. Resource management is supported by the silicon

OS. The 432 is of interest because virtual environments
such as those provided by the 432 are the basis for

protection enforced by a TCB.

102

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

3.6 STATUS SUMMARY

This section of the report has described the prime elements
of the Initiative and its evaluation effort. The concept of
an Evaluated Products List was illustrated. We described
the Trusted Computing Base: a set of generic requirements
for the protection mechanism in a trusted system. The
extent of Initiative involvement in workshops and seminars,
including the Initiative-sponsored seminars directed toward
industry, was detailed. Finally, we covered the proposed
evaluation criteria and evaluation process, and we indicated
what systems are currently undergoing an informal evaluation
procedure to increase the government’s and industry”s
understanding of trusted system development and evaluation.

The next section describes the status and plans for the
technologies critical to trusted system development.

' 103 :
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

L
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

SECTION 4

RESEARCH AND DEVELOPMENT ACTIVITIES

There are three major efforts in the DOD computer security
R&D program: (1) the development and demonstration of
trusted general-purpose operating systems, (2) the
development of applications of trusted computer systems, ana
(3) the establishment of a verification technology program
to advance the state of the art in trusted system
specification and verification. The sections below discuss
the current R&D efforts and plans in each of these areas.

4,1 Trusted Operating Systems

The development of trusted operating systems was identified
as critical to achieving overall trusted systems as far back
as the Ware Report (see section 2.1). The trusted operating
system area has now reached the demonstration stage. BEarly
R&D efforts (1972-1976) produced the following results:

- A Verified Top-Level Specification (TLS) and
implementation of a security kernel for the DEC
PDP-11/45 minicomputer.

- A verified TLS for a security kernel for the Multics
operating system. -

- Two prototype security kernel implementations for
supporting the UNIX operating system running on a
PDP-11/45 or 11/70 minicomputer.

This section discusses current R&D efforts, ties current
commercial plans into this work, and briefly indicates
future directions for the trusted operating system area.

4.1.1 Current Research

Current trusted operating system R&D is focused on three
systems:

~ The Kernelized Secure Operating System (KSOS), a
. UNIX-compatible trusted operating system running on
the DEC PDP-11/70 minicomputer.

. - The Secure Communications Processor (SCOMP), and a
: version of KSOS that runs on the SCOMP (KSO0S-6).

- A Kernelized version of the VM/370 operating system
(KVM/370) .

104

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Each ©of these efforts is discussed below in some detail.
4.1.1.1 KSO0S-11

The Kernelized Secure Operating System (KSOS) program began -
as a DARPA program, with funding from a variety of sources.
Through the efforts of the Initiative, arrangements have
been made, starting in October 1980, for the Navy to assume
technical and contractual responsibility for the KSOS
effort.

KSOS began as an effort to produce a commercial-gquality
security kernel for the UNIX operating system, running on
the DEC PDP-11/70 minicomputer. The effort was named KSOS
to reflect the fact that its kernel was independent of the
UNIX operating system that is considered wroprietary by
Western Electric, This effort is often referred to as
K505-11 to distinguish it from the KSUS being developed for
the Honeywell SCOMP minicomputer (see section 4.1.1.2).

The KSOS system is being developed by Ford Aerospace and
Communications Corporation (prime contractor), and SKRI
International (subcontractor in the verification area).
Prototype secure UNIX designs done by UCLA [POPE7Y] and
MITRE [WOOD79] were provided as inputs to the KSOS design,
but the final design is different from both the MITRE and
UCLA designs, although it is closer in architecture to the
MITRE design. -

Ford has prepared top-level specification of the KSOS kernel
in SPECIAL that are being verified to an SRI restatement of
the Bell and LaPadula security model. KSOS was originally
to have been coded in EUCLID, but the lack of an operating
EUCLID compiler within the necessary timeframe forced a
switch to the Modula language. SRI has built some tools to
do correspondence proofs between Modula and the SPECIAL
specifications, but full code proofs for a’ system the size
of KS0S are beyond the state-of-the-art for current
verification technology.

The KSOS system is divided into three main portions: the
security kernel, the UNIX emulator, and the Non-Kernel
Security-Related Software (NKSR). The kernel runs in the
PDP-11/70 kernel mode, and suvpports the following object
types: processes, segments, files, devices, and subtypes.
Files are organized in a flat file system by the kernel.
UNIX-style directories of filzs are implemented by part of R
the NKSR called the Directory Manager. Subtypes are used as

a type extension mechanism.

The Emulator uses the KSOS kernel primitives and maps them
into the environment expected by a vrogram running UNIX.
The NKSR implements TCB User Functions (see section TCB.4.2

105
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

in section 3.2) through a secure terminal interface that
allows the user to communicate reliably with the NKSR
through the kernel. This type of interfacé is extremely
useful in preventing certain types of spoofing.

4.1.1.2 KS0S-6 (SCOMP)

- The Honeywell Secure Communications Processor (SCOMP) is a
modified version of the Honeywell Level 6 minicomputer. The
hardware modifications, made with security in mind, were
first conceived to address the need of a secure front end
terminal controller for the Multics system. 1In 1977 DARPA
and various other organizations began funding the SCOMP
hardware development and the development of a
UNIX-compatible security kernel for the SCOMP hardware.
Starting in October 1980, the Navy assumed technical and
contractual responsibility for this effort. This version of
KSOS is often called KSGCS-6 to distinguish it from the
PDP~11 version of KSOS (KS05-11).

The SCOMP hardware consists of a standard Honeywell Level 6
minicomputer with a Security Protection Module (SPM) added.
The SPM provides segmentation, paging, protection rings
similar to Multics, argument validation, and virtual address
translation for I/O programs.

In addition to deVeloping the SPM, Honeywell is developing a
version of KSOS that will run on the SCOMP-hardware. KS0S-6
differs from KS0OS-11 primarily where there are hardware
differences between the 11/70 and the SCOMP. The SCOMP
suppor ts a large number of small Segments, as opposed to the
PDP~11"s eight segments. However, the SCOMP segments are
very small compared to Multics segments that are up to one
megabyte each. KS0S-6 memory management is therefore quite
different from KSOS~1l. The SCOMP supports virtualized I,/0
devices that are not shared. As a result, the KS0S-6 kernel
Suppor ts an additional object, namely devices, that the user
can program directly.

KSOS-6 uses the protection rings of the SCOMP hardware.
Calls from the user to supervisor and supervisor to kernel
rings, as well as argument validation, are done in hardware.

KS0S-6 has been specified in SPECIAL and will be coded in
UCLA Pascal. The top-level specification is being verified
using SRI”“s Hierarchical Development Methodology (HDM).

4.1.1.3 RKVM/370

IBM”s Virtual Machine/370 (VM/370) operating system is
designed to run on IBM medium-to-large-scale computers. A
virtual machine structure provides separate "virtual
environments" for any number of users. Each of these

106

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

e
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

environments provides a set of processor resources that is
the same as those available to a user if he were running on
the "bare" machine. Thus, a virtual machine multiplexes the
physical processor resources and isolates and protects each
virtual environment from the next.

In March 1976, DARPA sponsored an effort at the System
Development Corporation (SDC) to produce a kernelized
control program for VM/370. The resulting system is called
KVM/370 [GOLD79]. This effort is scheduled to produce an
initial system release to test sites in the first quarter of
1981. Milestones along the way have included a
determination of the feasibility of the project through an
abstract design in the first year, and an initial
demonstration at the end of the third year. The KVM effort
is now funcded and managed by RADC,

KVM/370 offers each user the capability to share the
physical processor among the same (or different) versions of
an operating system, each running at different security
levels. A limited amount of information sharing between
virtual environments is also possible with KVM/370,
constrained by the DoD rules for information access.

The KVM/370 system architecture consists of the.féllowing:

(1) A kernel and verified trusted processes,_running
in the real supervisor state of the S$/370.
} (2) Audited semi-trusted processes having access to
same global system data, executing in real problem
state, but having access only cto virtual
addresses. ‘

(3) Non-Kernel Control Programs (NKCPs), one per
security level, having access to system data for
the supported security level only, executing in
real problem state with virtual addresses.

(4) User VMs, each controlled by the appropriate NKCP
for its security level, executing in real problem
cstate.

Great pains were taken in the ‘design of KVM/370 to provide
correct mediation of I/0 access by the KVM/370 kernel and
trusted processes. The problems arise because the I/O
Channel Control Words (CCWs) must be statically analyzed for
security correctness before allowing the channel to operate
on them. The hardware offers no help in this area.

The kernel and verified trusted processes were originally
intended to be written in a strongly-typed PASCAL-based
programming language such as EUCLID, but because of its lack

107 .
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

of availability at the time, JOVIAL/J3 was chosen instead.
JOVIAL is not a verification-oriented programming language.
Consequently, although the formal specifications of KVM/370
will be verified against the security policy enforcement
‘criteria, the implementation will not be formally verified.

4.1.2 Status of Industry Efforts

Past R&D in the area of trusted operating systems has
focused on security kernel and trusted processes as a means
of achieving a high level of trust in the security features
of an operating system. The efforts described in the
previous subsection have paved the way for the computer
industry to develop their own trusted operating systems.

But the computer industry must deal with one salient problem
that the R&D community has been able to avoid: installed
customer base. A computer manufacturer’s installed customer
base is both his source of current income and the base for
any further market penetration. It is the largest single
determinant of future share of the market. This is the case
because customers build up a tremendous investment in
personnel training and application software as their
personnel use a particular manufacturer”s computer system.
With each upgrade in system, where there is the possibility
of moving to a different manufacturer”s computer line to
take advantage of new features not present in the product
Jine of the current supplier, this investment argues
strongly to stay with the current supplier”s product line.
Thus, a manufacturer is reluctant to make changes to his
product line that will lead his customers to question his
commitment to continued support of the base for their
applications.

The inertia represented by the installed customer base works
against rapid and easy assimilation of the TCB-based
protection technology into available computer systems. The
computer systems that dominate the market today have their
design rooted in the era of batch job processing.

Protection in modern processing environments has to be based
on the reality of timesharing: each user of the computer
system is, in effect, a separate job stream. Most

- large~-scale systems have adopted this model of interaction
at the user level, and changes have been made in the
underlying hardware to incorporate changes in technology,
but a substantial portion of the system is carried over from
the old architecture.

The TCB protection concept argues that protection be based
on a virtual environment per user and that the mechanism
enforcing this protection be central to the design. The
bare computer is multiplexed (timeshared) into a Separate
virtual computer for each user. The user-level features of
the bare computer (sometimes slightly enhanced) are made

108

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

available to each user”s operating system. Details of the
tables used to maintain and enforce these virtual
gnvironments are hidden from the user. The operating system
1s essentially a single~user operating system.

Operating systems that derived from the batch era do not
satisfy these requirements. Most started out as single-user
(or rather single job stream) operating systems. In many
cases, i1f more than one user 1is to be served, the
multiplexing among users is done in the application software
for that application. Where a "user virtual environment"
has been provided, it 1is usually provided in many different
parts of the large operating system and, therefore,
typically scattered through more than a million lines of
code. In these systems, a great deal of the internal
structure of the operating system (e.g., tables) is visible
to the user or application software. Application software.
takes advantage of the availability of these internal data
structures, often for performance reasons. Thus, in
existing computer systems, we see inter-user protection
dependent on large porticns of the operating system and
application software dependent on numerous internal
operating system data structures.

In recognition that timesharing suggests a different
computational model, and for other reasons of reliability
alluded to in section 1, manufacturers” computer architects
are gradually working toward the virtual environment per
user model. However, demands for compatibility with
existing application software generally outweigh the
architects” desires for a more simple (and therefore more
maintainable) system. Furthermore, in addition to the
customer dependencies desc¢ribed above, we see resistance to
change on the part of the system software people inside a
computer company. They have their own investment in
familiarity with the internals of the existing operating
system. Both Honeywell and IBM have systems that
incorporate a reasonable timesharing model in the form of
Multics and VM/370, but these systems constitute only a
small part of their respective sales—--even though they have
been available for ten years.

The industry relations portion of the Computer. Security
Initiative must take into consideration the manufacturers”
concerns. It is very unlikely that a manufacturer will make
significant changes to his new product lines unless he can
somehow maintain compatibility with the existing application
software. And it is likewise unlikely that he will make
changes toward better protection in his systems unless there
is a strong incentive from the marketplace.

The concept of commen evaluation criteria as embodied in the
TCB proposals currently undergoing industry coordination and

109
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

s
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

the idea of a government-wide evaluation center aim at
generating market pressure.

Although it should be clear from the foregoing that current
operating systems employ an architecture based on a model of
processing and protection that is quite different from the
timesharing model desired today, one would still like to be
able to evolve from current systems to ones that provide
better protection and integrity. Based on past and ongoing
. experiences, we see two ways for such an evolution to occur:
- radically new systems can be introduced that satisfy
protection needs but can present an environment that will
allow the customer to continue to run his favorite operating
system or applications; or the user interface can be evolved
toward a consistent protection model and the interface to
the operating system gradually solidified and made opague
with respect to internal data structures.

The totally new system approach nas already been taken for
Multics and VM/370. Both systems are capable of acting in
modes that allow existing mainline operating systems of the
respective vendors to run as i1f they were on the native
machine. Multics runs the GCOS operating system
"encapsulated" and even runs large GCOS jobs faster than
GCOS runs them on its native machine because of more
advanced memory management hardware and software. VM/370
provides multiple virtual IBM S/-370s, any one of which can
look to IBM”s various S/370 operating systems like a bare
S/370. 1In fact, VM allows a bare §/370 of one hardware
configuration to look like another configuration. Further,
the underlying architecture of the latest membér of the IBM
System/3x product line varies radically from the that of its
predecessors, yet it supports the same customer community.

The evolution method is being pursued by at least two
manufacturers. One of these manufacturers has added
protection at the file and user level that would tend to
support the DOD protection policy in a benign user
environment. The other manufacturer has come up with a
consistent set of access control mechanisms for protecting
all objects accessible at the user interface, and has
proposed to implement the mechanisms. The initial

. mechanisms would allow access to operating system data
structures to be controlled as well as access to other
users” objects. Eventually, when control of access to
operating system data has been sufficiently restricted, the

" operating system can be restructured into a TCB and
non-protection-relevant operating system modules. A third
manufacturer has recently released a new product which
already has a strong protection mechanism in place.

While none of these five systems was constructed using the
verification technologies discussed in section 4.3 below,

110

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 CIA-RDP83M00914R001800060009-2

each system provides better and more reliable protection
than its predecessors and, in some cases, than other
general-purpose systems. The increased protection stems
from existence of a consistent protection model, improved
simplicity and centralness of the protection-relevant
structure of the system, and application of better design
methodologies.

4.1.3 Future Directions

The three government developed kernel-based prototypes
provide an adequate demonstration base for the feasibility
of TCB-based trusted systems. These efforts will be
extended for use in a wide variety of applications and to
further explore the basic principles of security kernel
development. However, the basis for most future work in
trusted cperating systems will come from individual
manufacturers in the context of their own product lines and
preduct plans.

Through the different aspects of the Computer Security
Initiative, members of the manufacturers” design teams are
gaining an appreciation of government protection needs and
research in providing the needed protection. With this
appreciation has come a receptive environment for inclusion
of protection features in the list of customer requirements
from which future releases of current products and future
products are defined. Likewise, protection requitrements and
evaluation criteria from the Initiative effort are finding
their way into RFPs for systems requiring protection of the
imbedded computer system, and vendors are responding.

State-of-the-art development and verification methodologies
are not yet a part of manufacturer offerings, although
several of the manufacturers who are committed to real
protection assurances (e.g., level 4 in the evaluation
criteria) are actively pursuing verification possibilities.
As verification technology moves into the production world,
manufacturers will be prepared to adopt it as well if the
requirement is firmly stated in the marketplace.

111

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

L
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

4.2 TRUSTED APPLICATIONS

The understanding and state of construction of
~production-quality prototype trusted computers incorporating

the TCB corncept has progressed to the point where

feasibility is no longer a question. As indicated
. previously, industry has started to get involved in the
construction of trusted systems, and the state of
verification technology suggests that these systems must be .
structured in terms of a TCB and untrusted operating system
software. It is now important to refine our understanding
of areas where these systems can be applied and how the
structure of the application software is influenced by the
user virtual environment enforced by the TCB. Past R&D in
trusted operating systems have provided two major benefits
.in terms of trusted applications:

- the ability to run trusted application code on an
operating system that cannoct itself be easily
subverted (running trusted code on a conventional
operating system can give a.false sense of security
because, even if the application code is verified, it

can be subverted by attacking the operating system
itself); and

- the verification technology developed for operating
systems applies very well to small applicaticns that
do not require a general-purpose operating system.

This section reviews current trusted application efforts and
discusses their implications for industry.

4.2.1 Current Research

This subsection discusses the major classes of trusted
applications currently being studied and reviews current R&D
efforts in these areas. The three classes are:

- Trusted connection of existing untrusted systems
(guards)

- network front ends
- database management systems
4.2.1.1 Trusted Connection of Existing Untrusted Systems

Because of the present lack of general-purpose trusted
computer systems, data of different security levels must be
processed on different computers. Evolving defense systems
depend heavily on the capability of passing information
between computers operating at different levels.

Unfor tunately, such connections are very difficult to

112

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

implement in a trusted manner. This problem will be made
much easier when all computers have trusted operat ing
Systems, but such is not currently the case.

There is a recurring need to make a subset of classified
data in a given system available for use at a lower
classification level, a process referred to as
"sanitization" or "downgrading.

Currently, there are several methods available to provide a
sanitize and release function. The simplest involves
reading information to be sanitized from a terminal or the
higher level sensitive system, and entering the sanitized
version on a -ermlnal or the lower level sensitive system;
there is a mancal "air-gap" between the systems. A more
sopuisticated soluticn involves a single CRT terminal that
can he connected to either system (by means of a hardware
switch}), but to only one system at a time. 1In this mode,
data from the higher sensitive computer is read into the
terminal and sanitized using the terminal”s editing
capabilities. Then the terminal is disconnected from the
higher sensitive computer and connected to the lower level
system, and the data is read into that system..

The problem with these solutions is that they are
time-consuming and cumbersome. A better approach involves
providing a trusted interface between the two computers at
dlfferent sensitivity levels. We call a trusted computer
that implements this interface a "Guard." The Guard system
allows data to flow between these systems in a secure and
controlled manner. The Guard systems under development
today have at least one human reviewer involved in the
sanitization process. A Guard system can provide better
throughput than the switched terminal described above, and
is much more flexible in its capabilities. Two types of
Guard applications have been proposed: (1) those that run
trusted application code on a trusted operating system, and
(2) those that run stand-alone, without an operating system.
The following sections describe Guard systems currently
being designed or developed.

4.2.1.1.1 The ACCAT Guard -

The ACCAT Guard is a system that is installed at the
Advanced Command and Control Architectural Testbed (ACCAT)
at NOSC in San Diego. The ACCAT Guard has been built and
tested on the UNIX operating system, and will run on KSOS in
the near future. It has been built by Logicon Inc, under
contract to the Navy.

The system provides an interface between two computers or
networks operating at different classification levels.

113

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Hereafter, the computer or network operating at the lower
classification will be referred to as the LOW computer or
network, and the computer or network operating at the higher
classification will be referred to as HIGH.

The Guard allows these two computer/networks of different
. classifications to communicate by providing (1) an upgrading
facility to pass data from LOW to HIGH, and (2) a
sanitization and downgrading facility to pass properly
sanitized data from HIGH to LOW with appropriate human
review.

Two general classes of data transfers are provided by the
ACCAT Guard. 'The first is ARPANET network mail transfers.
Network mail can normally flow among users on the LOW
network or among users on the HIGH network, but cannot flow
between the two networks. ACCAT Guard allows mail to pass
between the LOW and HIGH networks in a secure, controlled
manner.

Second, the Guard allows users on the LOW computer/network
to query a database resident on some HIGH computer, and
allows properly sanitized responses to be sent to the
requesting user.

The Guard minicomputer is connected to the LOW and HIGH
networ ks through Private Line Interfaces (PLIs) [BBN77] over
the ARPANET. PLIs are encryption devices that allow a
computer with a specific key to securely communicate with
other computers having the same key. Thus the. Guard system
has two distinct ARPANET connections that are at different
security classifications. Figure 4-1 shows the connection
of the Guard computer via PLIs and the ARPANET to the other
computers. The LOW and HIGH computers are prohibited from
directly communicating because their keys are different.

There are two types of personnel designated to operate the
ACCAT Guard system, sanitization personnel and the Security
Watch Officer. The main responsibility of the sanitization
personnel is to sanitize responses from the HIGH database.

A Guard system can have many sanitization personnel, whereas
it has only one Security Watch Officer, whose function is to
review all data downgraded by the Guard and approve or deny
the downgrade. Thus the Security Watch Officer has
responsibility for the security of the system.

The sanitization function can be performed by untrusted code
operating at the high level and thus ease the verification.
burden. Therefore, all data is shown to the Security Watch
Officer before it is released. The Security Watch Officer
communicates through his terminal to a trusted process on
the Guard that securely shows the data to be released and
then asks for an acceptance or reject of the downgrade.

114

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

FOVIHILINI 3NIT ILVAIHd

TSUOTIVQUUOD LANVAYY PIAEN8 LyDOV--1-4 2aIn31g

[]
PO

diL/dWi 13NV4HY
$§3004d 31SNy1L

¢ A3IN
11d

H31NdNOD
HOIH

¢ A3

1Nd

L A3M
1Nd

HOMH

1

dL

NOILILYYd | NOILILHVd

MO

L A3Y
11d

HILNGWOD aBVNO

H31NdAOD
MO

115
roved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

A

L
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

This trusted process is trusted to downgrade only data it
has shown to the Security Watch Officer, and only at the
explicit request of the Security Watch Officer.

4,2.1.1.2 LSI Guard

with functionality somewhat less than the ACCAT Guard. The
LSI Guard is also a Navy program. The LSI Guard differs
from the ACCAT Guard in that:

- The LSI Guard system 1is a microprocessor-based Guard system,
- it runs stand alone on a microprocessor without an ‘
operating system; |
- it supports only one type of data transfer, similar 1
to the mail transfer of the ACCAT Guard;

- it supports only one user, whose job is similar in
function to the Security Watch Officer, but with an
additional editing capability;

- it uses a sophisticated function key box to make the
user s job easier and less error-prone, as well as
easing the verification task; and

-~ all of the code in the system is expected to be
verified.

A prototype function key box and implementation on a DEC
PDP-11/03 (commonly called the LSI-11l) have been built by
the MITRE corporation. I. P, Sharp Associates Ltd. 1is
building a verification environment combining the Stanford
Verifier and the Euclid language with which they expect to
develop a verified version of the LSI Guard.

4.2.1.1.3 The FORSCOM Security Monitor

The U.S. Forces Command (FORSCOM) is an Army operations
center that is soon to become a node on the WWMCCS
Intercomputer Network (WIN). A consequence of this upgrade
is that FORSCOM must raise the classification of its
operations; both at FORSCOM and its remote sites; from
Secret to Top Secret, even though little or no actual Top
Secret access is required.

The FORSCOM Security Monitor program seeks a near-term
method for allowing Secret users of the WWMCCS Entry System
(WES) to gain controlled access to the Top Secret FORSCOM
WWMCCS /WIN system. The proposed approach is to identify a
useful subset of the WES capabilities that are judged "safe"
and place a guard-like system between this safe subset and
the user. The current plan is to have the FORSCOM Security
Monitor (FSM) ready to test in an operational exercise

116

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

e
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

scheduled for the fall of 1980.

The FSM system has been implemented on standard UNIX by

Logicon Inc., with Navy and DCA sponsorship. The MITRE
Corporation is preparing a design for the system that will

minimige the amount of code that has to be trusted in
providing the required functions.

The FSM system is similar in concept to the previous two
Guards, though it works between users and a computer system
rather than between two computers. Another unique.feature
of the FSM is that it "filters" the users commands so that
only the "safe" subset of WES commands can be executed.
Also, in addition to traditional review and release
capability, the FSM can also automatically downgrade
fixed-format responses to the user, such as error messages
generated as the result of an erroneous command entry.

FSM-1like applications have shown up in other systems. NASA
is considering the use of an FSM-like approach for
protecting Space Shuttle planning data about DoD missions.

4.2.1.2 Network Front Ends

Another class of trusted applications addresses some of the
problems involved with trusted networking of computers of
different classifications. Two such applications, the
Terminal Access System and the COS-NFE, have been described
in sections 3.5.5 and 3.5.6, respectively.

4.2.1.3 Database Management Systems

Using a trusted computer system allows one to process
multiple levels of data without having to overclassify the
data. If multiple levels of information must be intermixed
and shared by the users of the system, the data must be
organized and accessed in a meaningful manner, using a
Database Management System (DBMS).

For a DBMS to securely process multiple levels of

information, we must be able to trust the DBMS to protect

the data. Therefore, multilevel database management is an

impor tant application for trusted computing systems. Two .
major trusted DBMS studies have been undertaken in the past
under Air Force sponsorship, by I. P. Sharp Associates Ltd.
[KIRK77] and System Development Corporation [HINK75]. Both
of these studies helped to identify and clarify the key
technical issues in trusted DBMS technology.

Two major conclusions and areas for future work can be drawn
from this past work:

117

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

o —
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

1. Using conventional, general-purpose TCBs to support
- a Trusted DBMS, protection of very small objects
(e.g. 1individual fields in data records), although
highly desirable, is difficult, often forcing
designs that cause groups of records to be
classified at a single level.

3]
.

Even if multilevel records are supported, using
them is difficult with the rules of the traditional .
mathematical security models.

The MITRE Corporation, under Navy sponsorship, is beginning
a Trusted DBMS program that examines these conclusions. The
MITRE approach involves the definition of a new (or
modified) security model for trusted database management
that is specific to a class of DoD applications. Rather
than using a general-purpose TCB, MITRE will design a TCB
designed to support an existing DBMS in a trusted manner.
The design will be targeted for implementation on the SCOMP
minicomputer (see section 4.1.1.2).

4.2.2 Future Directions

As just discussed, there are three areas of active
application development. The first class contains guard
systems that protect a large, untrusted computer or
collection of computers from unlimited access by an
uncleared or untrusted person. These systems are seen as a
necessity in the near term to compensate for the lack of
general purpose trusted computers. Certain guard systems
may always be desirable, even with the widespread
availability of trusted computers. Guard systems are being
built on TCB systems or are restricted enough in function
that the whole guard system is to be verified. ~Several
types of guard system are under active development.

The second class of systems consists of communication
processors and user support systems. These systems are
complex enough that they need to be structured with an
identifiable TCB. While they are intended to perform true
multi-level functions, they may be used in the near term to
~serve guard functions as well. There are three advanced
development applications and two production applications in
this class that have been or are being directly influenced
by trusted computer technology. COINS terminal access
system (TAS), the Communications Operating System NFE
(COS/NFE), and a Communications Access System (also for
COINS) comprise the advanced development systems in this
class. The Production systems are Autodin II and the SAC
Digital Information Network (SACDIN). Two of the advanced
developments have been or will be structured to run on KSOS.
The other advanced development system and the two production
systems have their own special-purpose TCBs.

118

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

The third class is Trusted Data Base Management Systems. A

TDBMS can be seen as either a special-purpose operating

System or an application. The TCB concept has a small

effect on overall system performance in a general-purpose -
system because the TCB need only enforce data protecticn to
the file and process level. All information within a file
is protected at the level of the file, and each user process
is restricted to modifying data at one classification.

These restrictions are reasonable for most general-purpose
computers because one is generally concerned about providing
multiple single-level working environments for the users.
These restrictions cause applications to be structured
differently where that user is moving among protection
levels (as in a message system), but the performance is
still within reasonable bounds. However, in a data
management system, every query will generally access data of
at least two protection or sensitivity levels. Here, the
conventional file-level protection would inflict a heavy
penalty on either performance or ability to adequately
discriminate between protection levels. For DBMSs, support
for smaller data storage entities is needed in the TCB.

A program has been defined and is underway to explore the
operational requirements for TDBMSs, examine the impact of
these requirements on the current protection model, and
design a TDBMS with a TCB tailored to DBMS protection needs.

With the widespread availability of verified, commercial
trusted computer systems capable of supporting multiple DOCD
classification levels (protection level 4) still a few years
away, interim solutions are needed. For those organizations
that cannot structure their system so that a guard function
can be used, there is an alternative: the computer on which
the system will be implemented can be chosen from a product
line where the manufacturer has made a commitment to evolve
toward a trusted computer system (as described in the
previous subsection). Precedent for this is found in the
ACCAT Guard and COINS TAS systems, where the initial system
is built for Western Electric”s UNIX operating system.

ACCAT Guard was developed on UNIX for use on KS05; TAS was
developed and installed on UNIX and is being considered for
redeployment on KSOS.

This approach has several advantages. Development of the

application software may begin on the existing system, with

a clear idea from the manufacturer of what he plans to i
support on the trusted system. The existing system serves

as both an in-place testbed and an indication of the

compatibility base of the manufacturer. At the same time,

the cxistence of a real application development targeted for

a manufacturer”s proposed trusted system will help improve

the manufacturer”s commitment to the system. He will see a

firm market for trusted systems and will be encouragea by

119
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

the marketing value of being one of the first. The
interaction between the application developers and the
Manufacturer will tend to further increase understandi

the issues and increase the amount of creative talent
involved in the solution.

ng of

120

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

&.3 SPECIFICATION AND VERIFIC 4T DN E_ INOLOGY

Previous sections have referred to the role of specilicutrn.n
and verification technology in establishing the assurancz o:
the integrity of trusted systems. In this section, the
technology is described and a plan for further development
and transfer of the technology into a production environment
is described.

4.3.1 Systém Components

Specification and verification systems are built around a
language--a formal notation--ad typically provide at least
the following components:

- specification processor;
- Verification condition generator; and
- theorem prover.

Specification languages, in this context, are formal
notations related to mathematics, logic, and programming
languages. Their purpose is to state precisely, and in only
as much detail as relevant, the functions provided by a
system of programs to be verified. For the sake of
compatibility with software tools. the syntax of these
languages is adapted to machine processing.

The scope of specifications, within the spectrum from
abstract system properties to assertions embedded in
programs, varies considerably among the systems surveyed.
There is some tendency to use the word "specification" to
include everything that is not in the implementation
language, but we shall use "specifications" in a narrower
sense to mean "functional specifications" unless otherwise
indicated.

A specification processor may do nothing more than syntax
checking, or it may also act on the basis of security
requirements to generate theorems. The various ways in
which security requirements may be stated as specification
properties and translated into theorems are discussed below.

A verification condition generator (VCG) takes a program as
input, together with some assertions about it, and uses
knowledge of the programming language semantics to generate
formulas. Assertions are not themselves theorems because
they are not valid out of context; they become true only in
conjunction with statements about the result of program
execution, and these latter statements are generated by the
VCG.

Specifications are the prime source of assertions, since
they express design requirements. In addition, the user

121
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

L
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

SECURITY
REQUIREMENTS

SPECIFiCATION _ SPEC
~ —#> PROCESSOR
7
2
(o)
ZAPY
) A
\O
G THEOREM
’84 PROVER
@
%)
PROGRAM

£ VCG

SUBROUTINE
SPECIFICATIONS

- FIGURE 4-2. VERIFICATION SYSTEM COMPONENTS

122

Approved For Release 2007/06/01 : CIA-RDP83M00914ROO’I860060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

must supply two other types of assertions.

Some additional assertions have to be supplied for technical
reasons. An example is a "loop invariant" for each looping
statement in a program. These are required in the
verification approach used by all the systems investigated,
but cannot usually be constructed automatically.

Of greater significance are the additional assertions
required for subroutine or function calls. These assertions
constitute a specification for the subroutines. They are
the basis of a hierarchical approach to program development,
since by giving the subroutine specifications, the calling
program can be verified independently of the coding and
verification of the subroutines. The collection of
subroutines and their specifications ar the next lower level
in the hierarchy, and they can be verified just as the .
calling programs are. The main difference is that security
properties need to be checked only for the top level, or, in
some cases, the second level.

Theorems arising either from a specification processor or a
VCG ‘are handed to a theorem prover. If a theorem prover is
unable to prove a theorem with information at hand, it
returns to the user, and an iterative or interactive process
ensues, in which the user provides more facts, suggests a
proof strategy, or goes back to fix either the assertions or
the program.

Figure 4-2 summarizes the relationships among specification
processor, VCG, and theorem prover, and shows where
assertions enter into the verification process.

4.3.2 Security Properties

There are currently two types of security properties that
have received significant attention in the context of
verification of top level specifications: access control
properties and information flow properties. '

Access control properties are statements about the legality
of a data structure representing a secure state, or about
the transitions allowed between one state and the next. The
*-property (restricting access to prevent copying
information into a lower level object) is a state property.
Tranquility (the security level of an active object does not
change) is a transition property.

State properties are invariants; they are proved inductively
by showing that if they are true for a given data structure,

then they are true for the transformed data structure
resulting from a function call. The specification processor

123

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

s —
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

must be able to set up the induction step of the proof.

Transition properties do not require an induction step, but,
like state properties, require a processor that can
eliminate tge time element from a specification to produce
logical (timeless) theorems. Both of these types of
properties relate to specifications in much the same way
that assertions relate to programs.

There is really only one information flow property:

- information flow from one variable to another should be
consistent with the security levels of the variables. A
flow processor determines potential information flows from
the specification by a syntactic analysis of the effects of
function calls. The user contributes only the security
level assignment. Thus, a flow processor is a specialized
tool guite different from processors for transition
properties or state invariants. Among the systems
investigated, only HDM has a flow processor, referred to in
that system as the "Multilevel Security Formula Generator".

4.3.3 Current Research

The MITRE Corporation prepared a survey of specification and
verification methodologies for the Initiative. This
subsection contains the introduction to that survey, and an
overview of each of the systems surveyed. For more detail
on the individual methodologies, see [CHEHS80].

This survey was prepared at the regquest of the Chairman of
the Computer Security Technical Consortium to survey and
evaluate the status of prominent avtomated specification and
verification methodologies. We have chosen, largely on the
basis of availability of information, to discuss the
following five systems in this report:

Gypsy University of Texas at Austin

HDM SRI International

FDM System Development Corporation
AFFIRM University of Southern California,

Information Sciences Institute
Stanford Verifier Stanford University

The methodologies discussed in this report should be
considered experimental. For the most part, they are

. undergoing continuous evolution. Some groups have made the
tools and documentation of their methodologies publicly
available. However, none of these methodologies should be
considered final products. Significant work, both
theoretical and practical, remains to be done in most areas
of software verification, and the systems can be expected to
change as new research yields better solutions to the
problems. Because this report is intended to assist in the

124

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

practical application of these methodologies, work in

progress and future work is generally not discussed except

in those cases where near-term solutions are evident, for

example, a tool almost completed. Our assessments generally

reflect the state of the systems as of late 1979. -

In addition to aiding the verification of a system,
application of one of these methodologies to a software .
development program may provide benefits in areas such as
improved dccumentation, reliability, and maintenance.

Indeed, some of the systems focus more on the overall
software development process than on verification. Though
we recognize these additional benefits may be as important
as the verification itself, the scope of this report is
limited to the specification and verification aspects.
Particularly, we concentrate on proof of security of a
design, correspondence cf the design and implementation, and
the degree of automat:ion priovided within each system.
Experience and configuration data are provided for each
methodology.

It was our intent that this report provide information
encouraging others to explore the application of the
methodologies we destribe. For that reason, we concentrate
on describing each of the rather different techniques
independently. We have concentrated on surveying, rather
than evaluating the five methodologies. We believe that
considerably more experience and improvement is needed in
the technology before a comparative evaluation can be
meaningful.

4.3.3.1 The Hierarchical Development Methodology (HDM)

HDM is SRI International”’s approach to software development
that covers the areas of system design, specification,
implementation and verification, and provides a set of
languages and tools to support these areas. The goal of HDM
is to structure the software develcopment process in a way
that will result in highly reliable, verifiable, and
maintainable software. Although the ultimate goal is to
produce software that is completely verified, the
verification tools of HDM are less complete at this time.
Considerable work has been done in the area of verification:
the theory is fairly well understood and some support tools
are available, but much work remains to be done in the area
of code proofs. Verification is currently one of SRI’s
major effort in HDM. The information in this section is .
largely a result of discussions with SRI. Except for topics

related to verification, most of the information in this

section can be found in the HDM Handbook [LEVI79].

The process of system development is outlined in figure 4-3.
Each step is named in a box, with lines connecting related

125

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

REQUIREMENTS

ACCEPTANCE BY SCRUTINY

MODEL

MANUAL MATHEMATICAL PROOF

RULES

VERIFICATION

TOP LEVEL (INTERFACE)

SPECIFICATION |VERIFICATION
' IMPLEMENTATION
VERIFICATION TRANS- .
MAPPINGS c;F TATION| SOURCE CODE
LOW LEVEL |VERIFICATION COMPILATION
SPECIFICATION | _ _ _ 5
{ ' , MACHINE CODE
|
: | VERIFICATION
]
| ! IMPLEMENTATION
! !
MAPPINGS] TRANS- :
CIF TATION | SOURCE CODE
T :
i
! |
' - i
LOWER LEVEL _IVERIFICATION COMPILAT
SPECIFICATIONS T T 1ON
ACCEPTANCE MACHINE CODE

PRIMITIVE MACHINE

FIGURE 4-3. HDM SYSTEM DEVELOPMENT

126

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2 i

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

steps labelled to show how the correctness of correspondence
between steps is verified or proved. Arrows indicate where
one step is derived from another. The entire development
process is divided into two major stages: first is design
definition and specification, shown running vertically down
the left side of the figure, followed by the implementation
stage on the right side of the figure.

The system definition and specification stage begins with
the top two steps shown in the figure: preparation of a
model of system requirements; and embodiment of the model as
a set of rules of information flow. These two steps have,
to date, only been carried out in an automated way for proof
of security properties, although manual proofs of other
properties have been carried out (sece the discussion under
DESICYM VERIFICATICY below). Thus the requirements are the
well-known subset of the Department of Defense security
requirements that have been formalized in the Bell and
LaPadula (MITRE) model of security [BELL74]. The rules of
information flow are a restatement of the model in a more
restricted sense so that proof of correspondence of the next
step, the top level specification, to the model can be
carried out automatically by a fairly simple technique
called flow analysis. The top level specification, written
in SPECIAL, should be the simplest possible description of
the system”s external behavior. The lower level
specifications describe, at varying degrees of detail,
abstract machines implementing more primitive functions of
software and hardware, down to the lowest level that is
‘assumed to describe the primitive machine--some arbitrary
combination of hardware and software upon which the
"yerified" software runs. This primitive machine could
consist of the machine language instruction set if the
system were verified to that level, or it could consist of a
set of higher level language primitives if verification
stopped at the source code level. Between levels of
specifications, mappings are written, in SPECIAL, that
define how the data structures at a given level of
specification are implemented in terms of data structures at
the next lower level of specification. Note that at the end
of the specification stage the only proof is that the top
level specification obeys the rules of the model. The lower
level specifications are simply design detail. However, all
levels of specification and the mappings are subject to
syntactic and consistency checks.

The next major stage of system development is
‘implementation. This means writing the source code in some
high order language for which there is a compiler that can
generate machine code for the target machine. The choice of
implementation language is unrestricted; however, if
verification of the programs is desired, they must be
translated manually or automatically into a Common Internal

127
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Form (CIF), which is a simple programming language that can
interface to the HDM tocls. There is currently a CIF
translator for Modula.

The implementation is structured as a set of procedures that

show how each of the functions specified in a given abstract
. machine are implemented in terms of the functions in the
specification of the abstract machine at the next lower
level. Using the mappings and the two levels of
specifications, the CIF representation of these programs is
verified to be correct--that is, assuming the lower level
machine works as specified, the higher level machine is
implemented correctly. Given the correspondence of the CIF
to the real programs, correctness of the CIF implies
correctness of the réal implementation.

SRI originally designed an "intermediate-level programming
language" (ILPL) as an "abstract" language for the
implementation. Programs were first written in ILPL and
then transiated into CIF for verification purposes. The
intent was then that an implementation in a real language
would somehow be generated form the ILPL, or perhaps ILPL
would be compiled directly. However, no ILPL compiler was
ever written for any machine. With the use of the Modula
language for KSOS, ILPL is now considered obsolete--Modula
is currently the only implementation language suppor ted by
tools for automatic translation into CIF. With this direct
translation of real programs into CIF, there is now no need
for the notion of "abstract implementation™ in ILPL. ILPL
is mentioned here for historical purposes and because it is
extensively discussed in the HDM handbook [LEVIT79].

Note that the only reason for separating the CIF
implementation from the real implementation is practical:
the verification tools need only interface to one common
implementation language (CIF) for different target
languages. It is presumably easier to write CIF translators
for different languages than to modify the verification
tools, though this has not yet been done extensively.

The entire software development process under HDM need not
necessarily proceed in a "pure" top-down manner as
described, even though the result is always a hierarchical
decomposition of the system into modules of specifications
and programs. It is also not necessary for the
specification and implementaticn to be fully completed
before any verification begins. It is desirable for
verification to take place on an incremental basis so that
flaws in the design, detected by verification, can be
corrected before the system is completed. Because
reverification of an entire system is costly in terms of
computer time, SRI has just begun building tools to allow
only affected portions of a system to be reverified when a

128

Approved For Release 2007/06/01 - CIA-RDP83M00914R001800060009-2

Approved ‘For Release 2007/06/01 " CTA-RDP83MO0914R001800060009=2 "~~~ = -

change is made. Of course initial verification of a system
1S extremely costly in both manpower and computer time. A
Second verification of the same system takes little
additional manual effort.

4.3.3.2 The Ina Jo Methodology

Ina Joe is the name System Development Corporation applies .
to its high-order non-procedural specification language and

also until recently to the overall hierarchical design and

verification methodology which is based upon the Ina Jo

language. This methodolegy is now known as the Formal

bevelopment Mo%qodoloay {FDM) . The complete methodology

wrovides Yentures which are intendsd to enforce the rigorous
SV £ O and subseavent verificetion of computer systems.
These features include:

- Identification and specification of relevant
requirements;

- Design specifications;

- Verification of specifications with respect to
requirements;

- Program design specifications; and

% ~ Verification of program implementation.

-Among the several automated tools which are provided to
support the methodology, by far the most visible is the Ina
Jo language. Also provided is a syntax checker/theorem
generator (the Ina Jo processor), an interactive theorem
prover (ITP), and a set of verification condition generators
(VCGs). The choice of implementation language can be made
subseqguent to development of the specifications, but each
new implementation language reguires that a new VCG be
written. A subset of PASCAL has been used for
implementation in several demonstration applications and at
one point SDC was developing its own implementation
language, FREGE.

Figure 4-4 gives a highly idealized illustration of the .
interaction of the basic elements of the methodology.

Upward arrows on the right indicate hierarchical

correspondences (which must be verified using the ITP)

defined by the mappings specified on Levels 1, 2, ..., n-l, .
and downward arrows on the leift indicate implied

translations of the top level corfectness criteria to lower
specification levels. The lLevel 1 Specification is mapped

downward to the program cede, and both are used to generate
verification conditions. Formal verification of correctness

criteria against the corresponding level specification is

129 i .
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

CRITERION AND < o
CONSTRAINTS

LEVEL n SPECIFICATION (INA JO)
(TOP LEVEL)

CRITERION AND
CONSTRAINTS [@— — — —&

(LEVEL n-1)

LEVEL n-1 SPECIFICATION (INA JO)
(MAPPINGS TO LEVEL n)

$

7

CRITER!ON AND l
CONSTRAINTS

(LEVEL n-2)

@ — — —

LEVEL n-2 SPECIFICATION (iNA JO)
(MAPPINGS.TO LEVEL n-1)

v
!

!

¢
L)

k)

4

CRITERION AND
CONSTRAINTS [<@— — — >

(LEVEL 1)

LEVEL 1 SPECIFICATION (INA JO)
(MAPPINGS TO LEVEL 2 AND
TO IMPLEMENTATION CODE)

VERIFICATION

GENERATOR

130

CONDITION lgg | HOL IMPLEMENTATION CODE

FIGURE 4-4. COMPONENTS FOR THE INA JO METHODOLOGY

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

carried out on the top level only (since the verification on
lower levels is implicit by transitivity). These elements
and their interaction will be discussed in detail in the
following sections.

4.3.3.3 The Gypsy Verification Environment

The Gypsy Verification Environment is being developed as
part of the Certifiable Minicomputer Project (CMP) at the
University of Texas under Donald I. Good. The development
.of the methodology upon which Gypsy is based began in
September, 1974, motivated by a need to build small-scale
systems that perform critical functions with very high
reliability. The objective of the methodology was to build
formally verified software that runs on fail-secure hardware
[GOOD78al . One of the specific goals has been the
development of a formally verified communications processing
system of 1000~2000 lines of code. Communications
processing was selected as the particular applications area
because these applications typically are small-scale systems
that contain many problems -common to more dgeneral systems.

A specific application area also was desired in order to
keep the development of the methodology clearly directed at
-solutions to the problems of real systems. By systems
standards, systems of 1000-2000 lines are small; but by
formal verification standards, they are very large.
Verifications of this scale required that the methodology be
fdeveloped with equally strong emphasis on both the
theoretical and the practical problems of verification.

1

'The Gypsy methodology is based on a wide range of structured
‘programming, formal proof, and specification methods.

. Throughout the development, the emphasis has been on
‘integration: horizontal integration of programming,
specification, and proof methods; and vertical integration
of methods, languages, and tools. This integration has
resulted in the development of a language, also referred to
as Gypsy, that is both a formal specification language and a
verifiable high-level language for systems programming.
Together with the verification methods, the language allows
specification, implementation, and verification to proceed
incrementally and in parallel. The methodology supports
automated proofs involving concurrency, exception handling,
and data abstraction with access control.

The emphasis in the Gypsy Verification Environment has been
on implementation proofs rather than design proofs.
Verifiability is a major goal of the language design, and
the verification system is designed for proving the
correspondence between specification and implementation.
However, it is also possible to use the verification
environment to prove properties of Gypsy specifications.

131

Approved For Release 2007/06/01 : CIA-RDP83M0O0914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

The Gypsy Verification Environment is intended to be a
complete verification system. It includes a syntax-directed
editor, a parser, a verification condition generator, a
theorem prover, an executive, and a separate compiler.
Figure 4-5 shows the relationships between these components.
The syntax-directed editor allows the user to directly
compose parsable Gypsy statements. The parser checks Gypsy
specification and implementation statements for both
syntactic and semantic errors, and produces an intermediate
form of code for use by the rest of the system. The
verification condition generator determines all the paths
through a procedure or function, and generates a
verification condition (theorem) for each path. The theorem
prover attempts to prove each theorem, with assistance from
the user as necessary. The executive coordinates the other
components, suggests possible actions to the user, and
handles terminal communication. There is also a separate
cross-compiler which accepts output from the verification
system and produces code for the LSI~-11.

A Gypsy interpreter for use in program testing is currently
under development. MITRE has developed a tool for security
flow analysis for use on a limited subset of Gypsy
specifications.

4.3.3.4 The Affirm System

AFFIRM is an interactive system for program specification
and verification, developed under the Program Verification
Project at the USC Information Sciences Institute. It is an
experimental system intended to test the application of
current research ideas to nontrivial programs.

The description which follows is derived from the system
documentation [AFFI79], other published material, and some
experience using the system on a security verification
example [MILL7%9]. That example, a substantial one, was
specified and verified successfully in two days.

The abstract data type approach to program development
regards the top level description of the system as a
program, or collection of programs, which are "abstract" in
the sense that they perform operations on data structures
like queues or sets that are not primitive, i.e., not
provided automatically by the programming language.
Instead, such data structures have to be manipulated and
accessed by a sét of operations implemented as subroutines.
In AFFIRM, an abstract data type specification is a set of
"algebraic axioms" or properties of the operations. The
axioms can be used to prove any assertions about the usage
of the data type, without knowing how the operations are
implemented. Of the systems investigated, only AFFIRM
explicitly features the use of algebraic axioms for data

132

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

WALSAS NO9ISHA WVE90¥d ASdXD S-% Td4NO1d
3114 H31d1NdWIS
371dW0D
HOLYHINIO HoLia3 HOLVHINID
34 H3INOHd a3io3dia NOILIGNOD H3SYVd
311dWO0D W3YO3HL XV LNAS NOILVII4iH3A ASdAD
AHVHEI : 131
NOILdI¥ISIa <@—— P 33X 3 ASJAD
WV HOO0Nd

!

SANVYWINOD H3sSN

133

Approved For Release 2007/06/01 : CIA

RDP83M0O0914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

type specification, although similar axioms play a role in
the Stanford Verifier, and they may be included as "lemmas"
in Gypsy. :

The AFFIRM concept of hierarchical development involves

manual recoding of higher level programs into different
- languages as well as the refinement of data structures. The
top level programs are LISP-like recursive functions; these
are implemented abstractly in a variant of Pascal; and the
concrete implementation could be in a third language not
directly supported by AFFIRM, such as Bliss, used in the
Delta Experiment [GERH79].

The system has a datapase component that provides facilities
for insertion, deletion, and retrieval of specifications,
programs, and proofs [MUSS79]. Already in the data base is
a library of specifications for data structures such as
sets, sequences, and stacks, which are commonly used in the
implementation of higher level structures.

The AFFIRM theorem prover may be used effectively at all
levels. At the top level, it can be used to prove
properties suggested by the user. Properties provable at
the top level describe the cumulative effects of sequences
of function calls. Access control properties and possibly
more general statements about storage channels could be
stated this way. Invariants, such as various forms of the
*-property, can be proved by "data type induction". Between
each successive pair of levels, one can prove the
correctness of the implementation.

4.3.3.5 The Stanford Pascal Verifier

The Stanford Verifier is a system for program verification.
It is a prototype system currently under development by

D. C. Luckham and others at the Stanford Artificial
Intelligence Laboratory.

The system consists primarily of a verification condition

generator for a version of Pascal, called Pascal Plus, and a

theorem prover. There is no explicit support for

requirements definition, high-level specifications, abstract
" data types, or hierarchical program development.

The theorem prover is not interactive, but it runs very

. quickly. The user does not have to suggest substitutions,
subgoals, or case hypotheses. Knowledge about the problem
domain which is likely to be of use to the theorem prover is
prepared ahead of time in a "rule file". If the theorem
prover fails to prove a true verification condition the
user”s only recourse is to improve the rule file.

134

Approved For Release 2007/06/01 - CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

4.3.4 R&D Plan

This section presents the essence of a high-level technical
plan for the Department of Defense Trusted System
Veri?ication Technology R&D Program. The plan covers the
requirement, major objectives, technical background and
present capability, technical approach, and risks for the
Trusted System Verification Technology R&D Program. It
covers an eight-year R&D program beginning in FY80. The
plan was prepared for the Initiative by Ann Marmor-Squires
at NSA [MARMBO]. ’

-

4.3.4.1 Requirement

The use of computers within DoD and the Intelligence
Community as significant components of critical systems has
increased rapidly over the last decade. These systems,
which collect, analyze, store and retrieve classified data,
and perform highly critical control functions, demand
correct functioning of software. In developing software
that must satisfy such rigorous security requirements, the
ability to convincingly demonstrate that the software is
performing -its specified function correctly and that the
integrity of the data is maintained, is of vital concern.
Recent advances in programming methodology and program
verification technology have significantly improved the
state of the art in software development and maintenance.
‘However, these efforts are largely experimental and further
‘R&D is needed to achieve the capability of supporting the
systematic development of verified and trusted software.

4.3.4.2 Objectives

The ASD(C3I) Trusted System Verification Technology R&D
Program is intended to support the goals of the Initiative.
The objective of the Program is to develop for DoD the
technical capability for the effective practical
verification of trusted ADP systems. Achieving this
capability will fill a major gap that exists in providing
complete technical solutions to the multilevel security
problem, will provide a technically sound basis for the
trusted system approval process within DoD, and will assist
computer manufacturers and DoD contractors in developing
trusted and verified systems.

Although the state-of-the-art in verification technology has
improved over the last decade, further R&D 1is needed to make
this technology practical and effective. Because of the
lack of a complete verification technology capability, the
near—-term prototype trusted computer systems currently under
development (KSOS-6, KS0S-11, KVM/370) will not be fully

135

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

verified; this is a critical element missing from a
convincing demonstration to the computer industry. The
Trusted System Verification Technology R&D Program will
provide the needed technology development and demonstrations
of its practical application to the development of trusted
systems.

As noted in earlier sections, the development of an
effective mechanism for approving trusted ADP systems for
DoD use is a major goal of the Computer Security Initiative.’
This must be accomplished within the framework of the
existing approval procedures. Current DoD policy permits
the use of ADP systems in multilevel secure applications
when the Designated Approving Authority for a particular DoD
site is convinced that the overall security environment,
including external, physical and administrative security
measures, is sufficient to overcome the risks against the
system. The task of the approving authority is an
exceedinglv complex one, especially with the advent of
software and hardware systems concurrently processing
information for multiple users at different access leveis
and at diverse locations. This task is further complicated
when computer systems are required to communicate and share
data, as is becoming commonplace within DoD. In addition to
reviewing personnel and administrative security, TEMPEST
requirements, site and application requirements, the
approval authority must determine that the measures taken in
the system design and implementation are sufficient to
permit use of the system in a multilevel secure mode. A
formal verification process is necessary to provide sound
technical advice to the approving authority for effective
decision making. This judgment needs to be based upon an
evaluation of the software methodology used in the
development and verification of the system under
consideration for approval. The software development and
verification methodology must be a rigorous process in order
to insure the integrity of the system design and
implementation.

The R&D Program described in this plan will help provide the
necessary technology to achieve an effective approval
process for trusted systems. The approval process must be
efficient, consistent and enable formal assessments based
upon accepted criteria. In addition to providing the DoD
with an effective and practical verification technology,
evaluation guidelines and criteria will be developed under
this Program for formally assessing software development
methodclogies and automated support systems. Used in
conjunction with technical appraisals of the environment and
applications for which a particular system is suitable, this
will assure a reasonable approval process for use in trusted
systems in widespread application areas.

136

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Involvement of the computer manufacturers in developing
trusted ADP systems is the third objective of the
Initiative. 1is not in a position to develop, support and
maintain their own computer systems, except for some
special-purpose applications. Encouraging computer
manufacturers to develop new computer systems that will be
suitable for use by DoD in security applications is
essential for the widespread availability of trusted
systems. . Assuring that the system developed meets its
specifications is a necessary component of assuring that the
system can be trusted. The Program described herein will
not only provide for DoD an effective practical software
verification technology, but will make it available to the
computer manufacturers and DoD contractors for their use in
developing high integrity ADP systems for DoD use.

4.3.4.3 Technical Background and Present Capability

The widespread recognition of the "software problem”
resulted in much research attention focusing on the
development of highly reliable quality software. Economic
pressures to reduce the high cost of developing and
maintaining software coupled with numerous R&D efforts in
programming methodology have improved the state-of-the-art
in the short term. Within the last five years, much of the
programming methodology research has focused on formalizing
the development of software into a systematic and rigorous
process having a firm mathematical foundation.
Methodologies which make the development process precise
facilitate the formal verification of both the design and
the implementation. Even if the verification is never
carried out, the discipline involved in using these
methodologies has already served a useful purpose by aiding
in the elimination of many of the difficulties of program
development. This research, although not particularly

or iented towards the development of trusted software, has
been successfully applied in various degrees to several
prototype trusted systems under current development (KS0S-6,
PSOS, KVM/370, KSOS-11). These efforts are all supported by
var ious components of DoD.

Automated tools to adequately support these new
methodologies are crucial to their successful widespread
practical application outside of the R&D laboratory.
Unfortunately, the development of the tools has lagged
behind the evolution of the methodologies. Increased
development activities are required to produce a
comprehensive integrated set of tools to support the entire
development process and demonstrate its effectiveness on

large systems.

Currently, these methodologies and support tools are in the
early stages of practical application. There has been

137

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

limited experience in using them; much of this experience
has been limited to the developers themselves. The
applications have primarily been- small- to med ium-scale
systems, many of which have only ‘been carried to the
detailed design phase. None of the prototype trusted system
developments has been carried out to completion (i.e., a
. fully verified implementation). Such an effort today would
be very costly in terms of time, people and machine
resources and would probably not result in an efficient
implementation. In addition, although there has been some
practical experience with the existing automated support
tools on several projects, they are all still to be
considered experimental. Further work is needed to produce
a comprehensive support system for the development of
verified and trusted software. '

In summary, to achieve the widespread availability of
trusted ADP systems, DoD nceds mature and stabilized
methodologies for the entire scfitware development and
maintenance process for trusted systems. Thes
methodologies must be fully supported by comprehensive
integrated development and verification environments using
effective computational resources. Their effective
application must then be demonstrated to the computer
industry.

4.3.4.4 Technical Approach

The Trusted System Verification Technology R&D Program is an
‘eight year effort that will be carried out in. three phases.
Phase I (FY80 - FY82) is a three-year consolidation phase;
Phase II (FY83 - FY85) will be a three-year design and
prototype implementation phase; Phase III (FY86 - FY87) will
be a two-year refinement and application phase.

The primary objective of the Phase I tasks is to bridge the
gap between today”’s experimental verification efforts and
the development of the next generation development and
verification environment for use in the late 1980s. Phase
IT will design and implement a prototype development and
verification environment for trusted systems development.
Phase III will refine this prototype implementation and
demonstrate its effectiveness and transfer the necessary
technology widely within DoD and industry for their use in
the development and verification of trusted systems in the
late 1980s. :

The approach that is being taken in Phase I to carry out its
objective of bridging the gap is to:

(a) Demonstrate the complete formal specification,

- implementation and verification of several useful
trusted system applications.

138

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

(b) Bring several current specification and
verification methodologies and their associated
languages and support tools to a level of
completion sufficient for interim use during this
phase;

(c) Perform a comparative analysis of the chosen
methodologies focusing on their strengths, i
weaknesses and limitations;

(d) Continue basic verification technology research
seeking breakthroughs to make the technology more
practical and effective;

(e) Track the ada language and programming environment
efforts for potential integration of the Phase 1II
efforts;

(£) Specify the requirements for the next generation
development and verification environment for
trusted software development;

(g) Transfer technology to DoD and industry of the
current generation completed methodologies and
supporting languages and tools.

Work on items (b) and (c¢) has begun under a contract with
Digicomp Research Incorporated. The program, managed by
RADC, has three parts. The first part, begun in September
1980, is a survey of three prominent specification and
verification methodologies to determine strengths and
weaknesses of each and to identify areas which could be
enhanced to make the methodologies more useable. During the
second part, subcontracts will be let to accomplish some of
the enhancement identified in Digicomp”s survey. In the
third part of the program, Digicomp will apply at least two
of the enhanced methodologies to a secure database design in
order to evaluate their improved useability.

At the end of Phase I (FY83), we should be in a position to
begin the development of the next generation development and
verification environment. This development will be carried
out during Phase II and will be based on the experience
‘gained in completing the current generation methodologies
and in demonstrating their use on several trusted system
examples, the verification technology research performed and
the initial set of requirements developed for the next
generation environment. The approach that will be taken in
Phase II will be to:

(a) Refine the major issues that need to be resolved in
undertaking the development of the next generation
development and verification environment for

139
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

e
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

trusted systems, e.g., suitability of Ada and/or
other languages as core language(s) for which the
environment will be developed and means of
providing effective computational resources so that
the environment may be used in a practical and
efficient manner;

(b) Design and specify the n2xt generation development
and verification environment for trusted software
development;

(c) Implement a prototype of the next generation
environment;

(d) Continue technology transfer within DoD components
and the computer industry of the current generation
environment and begin the introduction of the
prototype next generation environment for
experimental applications.

At the end of Phase II (FY¥85), we should be in a position to
refine the prototype environment into a widely available
"production-quality" system and demonstrate its
effectiveness.

The approach that will be taken in Phase III will be to:

(a) Refine the prototype implementation -of the next
generation development and verification environment
into a "production-quality" system;

(b) Demonstrate its practical and effective use on
suitably chosen trusted systems applications;

{c) Expand the user community within DoD components and
transfer technology of the next generation
environment to the computer industry for their use
in developing trusted systems.

At the successful completion of Phase III (FY87), we should
have achieved the technical capability for the effective and
practical development and verification of trusted systems of
significant size and complexity. There will be a sizeable
user community within DoD familiar with the technology and
it will have been demonstrated and transferred to the
computer industry for their use in developing trusted
systems for DoD. '

140

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

During all three phases, the most advanced verification
technology we have will be made available to the Evaluation
Center for use in evaluating system security. Guidelines
and criteria will also be developed for the Evaluation
Center to determine the effectiveness of computer
manufacturers” development methodologies.

4.3.4.5 Risks

The efforts being proposed under the Trusted System
Verification Technology R&D Program are exploratory research
and advanced development, and as such, involve some risk.
They represent considerable expansion over previous work and
will incorporate significant advances. The recognition of
the "software problem" has resulted in much research
focusing on reliable software development. Several
methodologies having firm theoretical foundation have
emerged for developing formally specified and verified
software. Their successful widespread application outside
of R&D laboratories requires automated tools to adequately
suppor t them; unfortunately, the development of automated
support tools has lagged behind.

Several R&D projects under DoD sponsorship have explored
some practical issues and have produced experimental
implementations. These efforts undoubtedly will serve as a
basis for the proposed R&D Program; however, there.remain
numerous technical issues and tradeoffs and pragmatic
considerations that need to be investigated in order to
support the systematic development of verified and trusted
software of substantial size and complexity. -Some of these
considerations include: (a) limitations of verification in
trusted system development (i.e., "complete" correctness
will not be achievable); (b) acceptance of new language(s)
for widespread use in trusted system development (i f
integration with Ada is appropriate and feasible, risk would
probably be lessened but other complications may be
introduced); (c) effective computational resources need to
be developed to realistically carry out the verification
process. The potential benefit of the proposed R&D Program
applied to the development of trusted systems should
outweigh the technical risks involved.

141

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

S ——
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2 |

REFERENCES

[ABBOQ76] Abbott, R. P., et al., "Security Analysis and
Enhancements of Laboratory," Livermore, CA,
National Bureau of Standards, Washington D.C.,
NBSIR 76-1041 (April 1976).

[ADAM79] Adams, J. A., "Computer Security Environmental
Considerations," IBM Federal Systems Division,
Arlington, VA, contract MDA 903-79~C-0311,
(August 1979).

[AFFI79] AFFIRM System Documentation, USC Information
Sciences Institute, (November 1979): AFFIEM
Reference Manual (D. H. Thompson, ed.); AFFIRM
Collected Papers; AFFIRM Type Library
(S. L. Gerhart, ed.); AFFIRM Annotated Transcript
(S. L. Gerhart, ed.); AFFIRM User s Guide
(S. Gerhart, ed.);

[AMBL76] Ambler, A., "Report on the Language GYPSY,"
University of Texas at Austin, ICSCA-CMP1,
(August 1876).

[ANDE72] Anderson, J. P., "Computer Security Technology
Planning Study," J. P. Anderson and Co., Fort
Washington, PA, USAF Electronics Systems
Division, Hanscom AFB, MA. ESD-TR-73-51. Vols I
i, and II, (October 1972). AD-758206 and AD-772806.

[BBN77] BBN Report 1822, Appendix H, Bolt, Beranek, and
Newman, Cambridge, MA, (1977).

[BELL73] Bell, D. E. and L. J. LaPadula, "Secure Computer
Systems," ESD~TR-73-278, Volume I-I1I, The MITRE
Corporation, Bedford, MA, (November 1973 - June
1974) .

[BELL74] Bell, D. E. and L. J. LaPadula, "Secure Computer
Systems: Mathematical Foundations and Model,"
) M74-224, The MITRE Corporation, Bedford, MA,
{(October 1974).

[BERS79] Berson, J. A. and G. L. Barksdale, Jr.,
"KS0S--Development Methodology for a Secure
Operating System," Proceedings of the 1979
National Computer Conference, {(June 1979),
pp. 365-371.

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

[BIBA75] Biba, K. J., "Integrity Considerations for Secure
Computer Systems," ESD-TR-76-372, The MITRE
Corporation, Bedford, MA, (June 1975).

{BONN8Oa] Bonneau, C. H., "Secure Communications Processor
Kernel Software (Part I)," CPG8656A1, Honeywell
Incorporated, Avionics Division, St. Petersburg,
FL, (February 1980).

[BONN80Ob] Bonneau, C. H., D. B. Cameron, and D. S. Lane,
"Secure Communications Processor Kernel Software
(Part II)," CPG8656A1, Honeywell Incorporated,
Avionics Division, St. Petersburg, FL, (February
1980).

[CARL75] Carlstedt, J., R. Bisbey, and G. Popek, "Pattern .
Directed Protection Evaluation," USC Information
Sciences Institute, I1SI/75-31, (January 1975).

{CHEH80] Cheheyl, M. H., M. Gasser, G. A. Huff, and
J. K. Millen, "Secure System Specification and
Verification: Survey of Methodologies," MTR-3304,
The MITRE-Corporation, Bedford, MA, (February
1980).

[DEWO79] DeWolf, J. B. and P. A. Szulewski, "Summer Study
on Air Force Computer Security (1979)," Charles
Stark Draper Lab, Cambridge, MA, (October 1979y,
AFOSR-TR-80-0094, AD-B043742L.

[FEIET77] Feiertag, R. J., et. al., "Providing Multilevel

i Security of a System Design," Proceedings ACM

. Sixth Symposium on Operating System Principles,

; (November 1977).

[FURT78] Furtek, F. C., "A Validation Technique for

: Computer Security Based on the Theory of

: Constraints," ESD-TR-78-182, The MITRE
Corporation, Bedford, MA, (December 1978).

[GERH79] Gerhart, S. L. and D. S. Wile, "Preliminary
Report on the Delta Experiment,” Specifications
of Reliable Software, IEEE Catalog

No. 79 CH 1401-9C, (April 1979), pp. 198-211.

{GOLD79] Gold, B. D., et al., "A Security Retrofit of
VM370," Proceedings of the 1979 National Computer
Conference, (June 1979), pp. 335-344.

143
Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

[GoOD78a) Good, D. I., R. M. Cohen, and L. W. Hunter, A
Report on the Development of Gypsy, I1csCa-CMP-13,
The University of Texas at Austin, (October

1978) .

- [GoOD78b] Good, D. I., R. M. Cohen, C. G. Hoch,
L. W. Hunter, D. F. Hare, Report on the Langua.e
Gypsy: Version 2.0, ICSCA-CMP-10, The University
- of Texas at Austin, (September 1978).

[HINK75] Hinke, T. H., and M. Schaefer, "Secure Data
Management System," RADC -TR-75-266, System
Development Corporation, Santa Monica, CA,
(November 1975). ‘

[HOLT78] Holt, R. C., et al., "The EUCLID Language: A
Progress Report," Proceedings of ACM 78
Conference.

[KIRK77] Kirkby, G., and M. Grohn, "On Specifying the
Functional Design for a Protected DMS Tool,"
ESD-TR-77-140, I. P. Sharp Associates, Ltd.,
Ottowa, Canada, (March 1977).

[KSOS78] - "Computer Program Development Specifications
(Type B-5) - Secure Minicomputer Operating System
(KS0s) ," Ford Aerospace and Communications
Corporation, Western Development Laboratories
Division, Palo Alto, CA, (September 1978) .

[LAMP73] Lampson, B., "A Note on the Confinement Problem,"
Communications. of the ACM, 10, (17 October 1973),
pp. 613-615.

{LEVI79] Levitt, K. N., L. Robinson, B. A, Silverberg, The
: HDM Handbook, Vol. I-III, Menlo Park, CA,
Computer Science Laboratory, SRI International,
(June 1979).

[LIPN75] Lipner, S., "A Comment on the Confinement
Problem," Fifth Symposium on Operating System
Principles, Austin TX, (November 1975).

[MARMBO] Marmor-Squires, A. B., "Trusted System
Verification Technology R&D Program," National
Security Agency, CSRS-TN-8004, (July, 1980).

[MCCAT9] McCauley, E. J., P. J. Drongowski, "KSOS--The
Design of a Secure Operating System," AFIPS
Conference Proceedings, Vol. 48, (June 1979),

- pp. 345-353.

144

Approved For Release 2007/06/01 - CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

[MILL76]

{MILL79]

[MUSS79]

[NIBAT79%a]

[NIBA79b]

[POPE78Db]

[POPE79]

[ROUBT77]

[SALT75]

[SCHR77]

[SMIT75]

[TANG78]

Millen, J., "Security Kernel Validation in
Practice," Communications of the ACM, Vol 19,
No. 5, (May 1976).

Millen, J. K., "Operating System Security
Verification," The MITRE Corporation, M79-233,
(September 1979).

"Musser, D. R., "Abstract Data Type Specification

in the AFFIRM System," Specifications of Reliable

‘Software, IEEE Catalog No. 79 CH 1401-9C, (April

1979), pp. 47-57.

Nibaldi, G. H., "Specification of & Trusted
Computing Base (TCB)," M79-228, The MITRE
Corporation, Bedford, MA, (November 1973,

Nibaldi, G. H., "Proposed Technical Evaluation
Criteria for Trusted Computer Systems," M79-225,
The MITRE Corporation, Bedford, MA, (October
1979) . :

Popek, G., and D. Farber, "A Model for
Verification of Data Security in Operating
Systems," Communications of the ACH, {(September
1978).

Popek, G. J., et al., "UCLA Secure UNIX,"
Proceedings of the 1979 National Computer
Conference, (June 1979), pp. 355-364.

Roubine, 0. and L. Robinson, Special Reference
Manual, SRI International, Menlo Park, CA,
(January 1977).

Saltzer, J. H., "The Protection of Information in
Computer Systems," Proceedings of the IEEE,
Vol. 63, No. 9, (September 1975).

Schroeder, M., D. Clark, and J. H. Saltzer, "The
MULTICS Kernel Design," Proceedings of the Sixth
Symposium on Operating Systems Principles, West
Lafayette, Indiana, (November 1977).

Smith, L., "Architectures for Secure Computing
Systems," ESD-TR-75-51, The MITRE Corporation,
Bedford, MA, (April 1975).

Tangney, J. D., "Minicomputer Architectures for
Effective Security Kernel Implementations,"”
ESD-TR-78-179, The MITRE Corporation, Bedford,
MA, (October 1978).

145

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

[TANGS8O0] Tangney, J. D., "History of Protection in
Operating Systems," MTR~3999, The MITRE
Corporation, Bedford, MA, (July 1980).

{TROT80] Trotter, E. T. and P. S. Tasker, "Industry
Trusted Computer System Evaluation Process,”

. MTR-3931, The MITRE Corporation, Bedford, MA,
(May 1980)
. [WALK79] Walker, G., R. Kemmerer, and G. Popek,

"Specification and Verification of the UCLA UNIX
Security Kernel," Proceedings of ACM SIGOPS
Conference, (December 1979), to be published in
Communications of the ACM.

[WARE70] Ware, W. H., Ed. "Security Controls for Computer
Systems," R~609-1, Rand Corporation, £anta
Monica, CA, (February 1970, reissued October
1979).

[WOOD77] Woodward, J. P. L., and G. H. Nibaldi, "A
Kernel-Based Secure UNIX Design," MTR-3499, The
MITRE Corporation, Bedford, MA, (November 1977).

{WOOD79] Woodward, J. P. L., "Applications of Multilevel
Secura Operating Systems," Proceedings of the
1979 Natiocnal Computer Conference, (June 1979),
pp. 319-328. ’

146

- Approved For Release 2007/06/01 : CIA-RDP83M00914R0018000680009-2

e

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

Approved For Release 2007/06/01 : CIA-RDP83M00914ROO’I 800060009-2

H "LLV

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

. [
- P . .
- IS - - . d

U KEYNOTE AUDRESS
v CO.deTER SECURITY INITIATIVE ST

Pes

August 10, 1981
. ’ T S : speak br1ef]y
It IS a p]easure to welcome you to this Sem1nar and to / |with you about
computer securlty, the recent developments w1th1n the Department of Defense and
the Inte]11gence Commun1ty and the cha]lenges that Tie ahead.
As Dr. Gnra]d P Dlnneen former Ass1stant Secretary of Defense for C3I
defined at the f1rst of these Semunars tdo years ago a "trusted' conputer

-

system is one. w1th suff1c1ent hardware and software 1ntegr1ty “to a]low 1ts use

|
} for th° SImultaneous proceSSIng of nu1t1p]e levels of c]ass1f1ed or sensxtxve .
|

- . - <. - . E - -

lnformatlon.. ‘ T o R

The n°ed for trusLed computer systens is very real and growxng rap1d]y._;\

,Factors -ind 1u°nc1ng th]S need are.'ii ‘ |
- tneggrow1ng use of autonated 1nf0rnat10n hand]1ng systens Lhrougnout
the DoD and the Inte]11g°nce Cownunuty ard in part1cu]ar the]1nk1ng
. of these gystems 1nto naJor networxs, |
Ca 1ncreas1ng requarements for contro]]}ng access to cawpartnented and
senswtxve 1n;ormat10n,
- the requ1rem°nt for broader dlssen1natlon of 1nformatxon both thhxn
: and beyond the commun1ty, . |
'-;:growing difficufties with obtaining required nuirbers of c1eared‘
personnel, both nllltary and c1v111an. i
Desoitercontwnu1ng 1nterna1.e.forts to develop spec1a] purpose LFUSLed

systemé for unique needs, we already. rely "ery heaV1]y on the products of the

' computer industry to meet our information process1ng_requ1rements, and this

-

Approved For Reléase 2007/06/01 : CIA-RDP83M009‘14R001800060009-2

¢

Approved For Release 2007/06/01 : CIA:RDP83MOQ914ROO1800060909-2 -

dependence wi]]'continue to grow significantly in the future. It is therefore
very gratifying to observe the progress bsing made by the canputer 1ndustny in .
'app1y1ng computer secur1ty techno]ogy as represented by the 1ndustry presenta-
tions at th]s and the previous Semxnars. - . -

<It is very important, a]so, that the bepartment of.Defense and the
Intelligence Community develop suffictent expertise to'be able to eyaluate the
integrity of computer software and systems daveloped by 1ndustny and
government, and that we be ab]e to .de term]ne suitable’ phy51ca1 and 3
adm1n1strat1vefenv1ronments.for thelrcappiication;~ We havevhad‘scattered-.‘
efforts over the past- several years to eva]uate Specflc systems for spec1f1c e
1nsta11atlons. But” tnese efforts have a]ways been more or 1ess ad hoc, and
because of the’ exten51ve techn1cal background requ1red expens1ve Tt carry out.ax.

1 am very pleased therefore. to announce today the establxshmont of ai ;
.Cemputer: Sacurlty Techn1ca1_Eva1uatlon Center .or the Departreat of. De.ense uqd.“db;€h,,“
the Intelligence Community at the Nat1ona] Secur1ty Ag ncy.: . LasL fa]],“as o5 | |
D1rector of NSA 1 enthus1ast1cal]y endorsed the estab1lshment of th1s Cencer,.
at NSA as a néw and separate functzon., 1 a very pleased with: the' progress_
be1ng made in sett1ng up the Center’ and I rema1n strongly commltted to 1ts s
success;s:, e o S A

1 wou]d]tke to make several oBseryatﬁons-about the:Center'and some of itsfag
relationships:;s:' o A ’ '_ T - | o R o o .

- Because the'private sector’ computer’ manufacturlng commun1ty is the--e

pr.nary source of ADP systens the Center s ro]e will bé to worg-*
with the manufacturers deriving as much system 1ntegrxty as p0551b1e S g
fromcindustry‘deve]Oped systems. Th1s‘1s a rather sharp ¢ontrast to o

the NSA's more traditional cormunications securIty role where the-

government has’ the domlnant technlcaT ro]e..\.

-,Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

- Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

-

The Center wil] have a difficult task developing procedures wh{ch |
assure protectlon of sensitive port1ons of a systen wh\cn the
gov;rnment does not own. Simply c1a551fy1ng secur1ty rglatéd
portidns of a system built by industry won t work since the govern%
ment represents such a sra]] portion of the overall mar&et that the

manufacturers may well deC1de not to sell to the government rather

| than accepting tne limitations’ imposed by c1osswf1cat1on. Thws,

in the end, m1ght Jead to a h1gh1y undesirable 51tuat10n vhere private -

sector'users (e.g.,'banks,f1nsurance compan]es)_have higher integrity::y
'systems than the: governnpnt._a; I AR R

But’ sens1t1ve port1ons of systems aﬂd the "known vu1nerab111t1es oS

that'remain'must be protected; in the,lnterests of both the'govqrnment~wtl

and the manufacturers.x It is quite:likely.therefore.that tne most s
sensitive port1ons of the’ government s :dnalyses will b2 both c]a sified:
and prOpr1etary to the manufacturer., Careful,_reasonod jnteraction: ,“.

 between the govarnment'and inddstry will be needed to work out: :t

> -~ - -

A suztable worklng relationships.ps. o Ta s e -
. The Cenuer will act in the 1nterests and .for the benef]t ‘of the-.z

anartmpnp of Defénse and the Inue]11gence Communxtj. Its eva]uau1on oy

‘w111 not be lntended for use by other than the DoD It will not make:' 2

f general product endorsements.,_Bub as thh the Qua]1f1ed Products List:-
procedures (as prescrlbbd in the DD Defense Acquisition Regulations),=
the re]atlve merit of a system in tne hierdarchy of eVa1uated‘products;%§

may be available pub]icly in order to provide incentive’and;ud

. eﬂco"ragonent for manufacturers to deve]op trusted systems and prlvate,.¢

soc+or users to employ them. .

-

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

2d

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2 _

Agencies are being.eneouraged to estabffsh or enhance their own
teehnica1 security test and evaluation capabi]ities to ensure
wideéeread use and availability of trusted computer s/sLens. The-
computer nanufacturwng cownun1ty must work closely with the Center
and these Service organizations to ensure that reasonable products
are available for use in sensitive app]1cat1ons.' ‘

In conc]us1on, 1 wou]d Tike to restate my awareness of the importance of -
this problem area, my enthusiasm for the estab]ishment of the Evaluation -
Center, and my deep and cont1nu1ng Interest in 1ts success. - I>encourage yoh to.::'
-pare1c1pate fu]ly in this Senlnar, ask the tough questions, learn al] you can; i
and then go out and apply what you have]earned so that we may all have trust->

'fworthy computers in the very near future

_ Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

- «._ Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2 ,

LIV |

I

Approved For Release 2007/06/01 : CIA-RDP83M00914R _

~ Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

BY LTG LINCOLN D. FAURER,

DIRECTOR NSA

AT IEEE CONVIPUTER CONFERENCE 81
 WASHINGTON, D.C. |
15 SEPTEMRER 1981

Approved For Release 2007/06/01 : CIA-RDP83M00914R001800060009-2

