

. - - 2 . . .

TITLE: Asymptotic Behavior of the Matrix Elements in the Two-Charge - Meson Theory (Asimptoticheskoye povedeniye matrichnykh elementov v dvukhzaryadnoy mesonnoy teorii) PERIODICAL: Nauchnyye doklady vysshey shkoly. Pisiko-matematicheskiye nauki, 1958, Nr 2, pp 152-157 (USSR) ABSTRACT: In the present paper the author investigates the asymptotic behavior of the matrix elements of the S-matrix during arbitrary processes for "large impulses": $P_1P_k \gg m^2$, in connection with the pseudoscalar meson theory. It is assumed that b bosons and 2f fermions (b+2f = n+1) with the impulses $P_1, \dots, P_{n+1}, \sum_{l=1}^{n+1} P_l = 0$ have a share in the considered process. The behavior of the matrix elements W_h is considered in two cases: 1) $P_1P_k \rightarrow \infty$, 2) $P_1^2 \rightarrow \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.Y.Shirkov and B W Moducer 6	TITLE: Asymptotic Behavior of the Matrix Elements in the Two-Charge - Meson Theory (Asimptoticheskoye povedeniye matrichnykh elementov v dvukhzaryadnoy mesonnoy teorii) PERIODICAL: Nauchnyye doklady vysshey shkoly. Pisiko-matematicheskiye nauki, 1958, Nr 2, pp 152-157 (USSR) ABSTRACT: In the present paper the author investigates the asymptotic behavior of the matrix elements of the S-matrix during arbitrary processes for "large impulses": $ P_1P_k \gg m^2$, in connection with the pseudoscalar meson theory. It is assumed that b bosons and 2f fermions (b+2f = n+1) with the impulses $p_1, \dots, p_{n+1}, \sum_{l=1}^{n+1} p_l = 0$ have a share in the considered process. The behavior of the matrix elements W_h is considered in two cases: 1) $p_1 p_k \rightarrow \infty$, 2) $p_1^2 \rightarrow \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanke D.V.Shirkov and B.V.Medvedev for theirvaluable discussion of the matrix	24(5) AUTHOR:	Ginzburg, I.F. 50V/155-58-2-33/47
PERIODICAL: Nauchnyye doklady vysehey shkoly. Piziko-matematicheskiye nauki, 1958, Nr 2, pp 152-157 (USSR) ABSTRACT: In the present paper the author investigates the asymptotic behavior of the matrix elements of the S-matrix during arbitrary processes for "large impulses": $ \mathbf{p}_1\mathbf{p}_k \gg \mathbf{m}^2$, in connection with the pseudoscalar meson theory. It is assumed that b bosons and 2f fermions (b+2f = n+1) with the impulses $\mathbf{p}_1, \dots, \mathbf{p}_{n+1}, \sum_{l=1}^{n+1} \mathbf{p}_l = 0$ have a share in the considered process. The behavior of the matrix elements \mathbf{W}_n is considered in two cases: 1) $\mathbf{p}_1\mathbf{p}_k \to \infty$, 2) $\mathbf{p}_1^2 \to \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.V. Shirkov and B.V. Moducial	PERIODICAL: Nauchnyye doklady vysshey shkoly. Fiziko-matematicheskiye nauki, 1958, Nr 2, pp 152-157 (USSR) ABSTRACT: In the present paper the author investigates the asymptotic behavior of the matrix elements of the S-matrix during arbitrary processes for "large impulses": $ P_1P_k \gg m^2$, in connection with the pseudoscalar meson theory. It is assumed that b bosons and 2f fermions (b+2f = n+1) with the impulses $p_1, \dots, p_{n+1}, \sum_{l=1}^{n+1} p_l = 0$ have a share in the considered process. The behavior of the matrix elements M_i is considered in two cases: 1) $P_iP_k \rightarrow \infty$, 2) $p_1^2 \rightarrow \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.V.Shirkov and B.V.Medvedev for	TITLE:	Asymptotic Behavior of the Matrix Elements in the Two-Charge - Meson Theory (Asimptoticheskove povedenive matrichnykh elementer
behavior of the matrix elements of the S-matrix during arbitrary processes for "large impulses": $ \mathbf{p}_1\mathbf{p}_k \gg m^2$, in connection with the pseudoscalar meson theory. It is assumed that b bosons and 2f fermions (b+2f = n+1) with the impulses $\mathbf{p}_1, \dots, \mathbf{p}_{n+1}, \sum_{l=1}^{n+1} \mathbf{p}_l = 0$ have a share in the considered process. The behavior of the matrix elements \mathbf{m}_n is considered in two cases: 1) $\mathbf{p}_1\mathbf{p}_k \to \infty$, 2) $\mathbf{p}_1^2 \to \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.Y.Shirkov and B.Y.Matrix	behavior of the matrix elements of the S-matrix during arbitrary processes for "large impulses": $ \mathbf{p}_{1}\mathbf{p}_{k} \gg m^{2}$, in connection with the pseudoscalar meson theory. It is assumed that b bosons and 2f fermions (b+2f = n+1) with the impulses $\mathbf{p}_{1}, \dots, \mathbf{p}_{n+1}, \sum_{l=1}^{n+1} \mathbf{p}_{l} = 0$ have a share in the considered process. The behavior of the matrix elements \mathbf{W}_{n} is considered in two cases: 1) $\mathbf{p}_{1}\mathbf{p}_{k} \rightarrow \infty$, 2) $\mathbf{p}_{1}^{2} \rightarrow \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.V.Shirkov and B.V.Medvedev for	PERIODICAL:	Nauchnyye doklady vyschey shkoly. Pisiko-matematicheskivo pouki
processes for "large impulses": $ \mathbf{p}_{1}\mathbf{p}_{k} \gg m^{2}$, in connection with the pseudoscalar meson theory. It is assumed that b bosons and 2f fermions (b+2f = n+1) with the impulses $\mathbf{p}_{1}, \dots, \mathbf{p}_{n+1}, \sum_{l=1}^{n+1} \mathbf{p}_{l} = 0$ have a share in the considered process. The behavior of the matrix elements \mathbf{W}_{n} is considered in two cases: 1) $\mathbf{p}_{1}\mathbf{p}_{k} \to \infty$, 2) $\mathbf{p}_{1}^{2} \to \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.Y. Shirkov and B.Y. Modulation for	processes for "large impulses": $ \mathbf{p}_{1}\mathbf{p}_{k} \gg m^{2}$, in connection with the pseudoscalar meson theory. It is assumed that b bosons and 2f fermions (b+2f = n+1) with the impulses $\mathbf{p}_{1}, \dots, \mathbf{p}_{n+1}, \sum_{l=1}^{n+1} \mathbf{p}_{l} = 0$ have a share in the considered process. The behavior of the matrix elements \mathbf{W}_{n} is considered in two cases: 1) $\mathbf{p}_{1}\mathbf{p}_{k} \rightarrow \infty$, 2) $\mathbf{p}_{1}^{2} \rightarrow \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.V.Shirkov and B.V.Medvedev for theirvaluable discussion of the results	ABSTRACT:	In the present paper the author investigates the asymptotic behavior of the matrix elements of the S-matrix during arbitrary
the pseudoscalar meson theory. It is assumed that b bosons and 2f fermions (b+2f = n+1) with the impulses $p_1, \ldots, p_{n+1}, \sum_{l=1}^{n+1} p_l = 0$ have a share in the considered process. The behavior of the matrix elements \mathbf{W}_h is considered in two cases: 1) $p_1 p_k \rightarrow \infty$, 2) $p_1^2 \rightarrow \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.Y.Shirkov and B.Y.Maturdan for	the pseudoscalar meson theory. It is assumed that b bosons and 2f fermions (b+2f = n+1) with the impulses $p_1, \ldots, p_{n+1}, \sum_{l=1}^{n+1} p_l = 0$ have a share in the considered process. The behavior of the matrix elements \mathbf{W}_h is considered in two cases: 1) $p_1 p_k \rightarrow \infty$, 2) $p_1^2 \rightarrow \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.V.Shirkov and B.V.Medvedev for theirvaluable discussion of the results		
2f fermions (b+2f = n+1) with the impulses $p_1, \dots, p_{n+1}, \sum_{l=1}^{n+1} p_l = 0$ have a share in the considered process. The behavior of the matrix elements \mathbf{W}_h is considered in two cases: 1) $p_1 p_k \rightarrow \infty$, 2) $p_1^2 \rightarrow \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.V.Sbirkov and B.V.Murden for	2f fermions (b+2f = n+1) with the impulses $p_1, \ldots, p_{n+1}, \sum_{l=1}^{n+1} p_l = 0$ have a share in the considered process. The behavior of the matrix elements \mathbf{W}_n is considered in two cases: 1) $p_1 p_k \rightarrow \infty$, 2) $p_1^2 \rightarrow \infty$. At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.V.Shirkov and B.V.Medvedev for theirvaluable discussion of the results.		
At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.Y.Shirkov and B.Y.Mardandar for	At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.V.Shirkov and B.V.Medvedev for theirvaluable discussion of the results.		2f fermions (b+2f = n+1) with the impulses $p_1, \dots, p_{n+1}, \sum_{i=1}^{n+1} p_i = 0$
At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.V.Sbirkov and B.V.Madundar for	At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.V.Shirkov and B.V.Medvedev for theirvaluable discussion of the results		have a share in the considered process. The behavior of the matrix elements \mathfrak{M}_{h} is considered in two cases: 1) $p_{1}p_{1} \rightarrow \infty$, 2) $p_{1}^{2} \rightarrow \infty$.
their valuable discussion of the menults	Card 1/2		At first the behavior in the first non-vanishing approximation of the theory of perturbation is determined. Then numerous corrections are introduced. The author thanks D.Y.Sbirkov and B.Y. Moduceden for
Card 1/2		Card 1/2	or the tesuits.
			status en

CIA-RDP86-00513R00051672

CIA-RDP86-00513R00051672

CIA-RDP86-00513R00051672

SPIER S

GINZBURG, I.F.; KOBKOVA, V.J., red.

[Inelastic interactions between high-energy particles in renormalizing theories of strong interactions] Neuprugie vzaimodeistviia chastits vysokikh energii v renormiruemykh teoriiakh sil'nykh vzaimodeistvii. Novostoirsk, In-t matematiki SO AN SSSR, 1962. 17 p. (MIRA 17:9)

s/056/63/044/002/020/065 B102/B186

THE REPORT OF THE REPORT OF THE REPORT OF THE PROPERTY OF THE

AUTHOR: Ginzburg, I. F.

TITLE: Inelastic interactions of high-energy particles in renormalized strong-interaction theories

PERIODICAL: Zhurnal eksperimental'noy i teoreticheskoy fiziki, v. 44, no. 2, 1963, 500-513

TEXT: A method is developed for analyzing high-energy strong interactions in renormalized theories. The method is based on a representation of the common properties of these theories, such as those given by N. N. Bogolyubov and D. V. Shirkov (Vvedeniye v teoriyu kvantovannykh poley - Introduction into quantum field theory, Gostekhizdat, 1957), and an expansion of the Green functions and the differential cross-sections for inelastic processes in a power series of the reciprocal energy 1/s, taken as the small parameter ($s = (k_0 + p_0)^2 = m_0^2 + \mu_0^2 + 2\mu_0 E$, $s \ge |t|$). First the author investigates the kinematics of the inelastic processes considered for $s \rightarrow \infty$; these processes are divided into two cases according to the type Card 1/3

r

Inelastic interactions of	· ; 	s/056/63/044/002/0 B102/B166	20/065
of momentum transfer between the	fast (p.) an	d alow (k) particla	c
characterized by $1 = 2p_i - p_o = \sqrt{t}$ (2) $\lim_{s \to \infty} p_o s^{-1} = 0$. In the following of the perturbation the and are divided into a finite number of the divided into a finite number of the term of the shown of a given topology to the Green function of the importance of therefore sufficient to compare the parts correspond to the first nonvapproximation. For this the well-applied. This method is also used importance of graphs of different the limiting case $s \to \infty$, graphs	<pre>: (1) lim </pre>	pols - u > 0 and case (1) is investing jected to a classific am groups characteristributions of all gra- ual in first approxim- of a given topology is this class whose his rturbation-theoreticand of generalized graph lows for comparing to It can be shown that	gated. cation zed by apha of mation. t is gh-energy apha is the t in
main contribution to the Green fun corresponds to the exchange of one	1011001100 +62		_
Card 2/3	i u	irticies between the	fast
	1	·	

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672 and a second second

A STATE AND A STAT

	teractions of		S/056/63/044/002/020/06 B102/B186	
and the slow for the usual and 1 table.	groups. The reg pole theory of	ion of applicabili peripheral interac	ty is shown to exceed t tions. There are 3 fig	hat ures
ASSOCIATION:	otdeleniya Aka	uemii nnuk sssr (t	l'nym tsentrom Sibirsko Istitute of Mathematics In Branch of the Academ	
SUBMITTED:	May 5, 1962	÷	:.	
	. I	•		
			i.	
	. · ·		1 ×	
			i	
ard 3/3		9 - -		
			1 e	
	4 P. 1			

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

See.

CIA-RDP86-00513R00051672

STATES CONTRACTOR STATES CARDEN

10

Inelastic interactions of high-energy particles in renormalized strong interaction theories. Zhur. eksp. i teor. fiz. 44 no.2:500-513 F '63, (MIRA 16:7)

1. Institut matematiki s vychislitel'nym tsentrom Sibirskogo otdeleniya AN SSSR.

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

350

CIA-RDP86-00513R00051672

AFFTC/ASD/ESD-3/IJP(C)/SSD L 17618-63 EWT(d)/EWT(1)/FCC(w)/BDS60 S/056/63/044/003/020/053 59 AUTHOR: GINZBURG, I. F. TITLE: Nonsymmetric ultraviolot asymptotic expressions for higher Green's functions of the renormalized theory PERIODICAL: Zhurnal eksperimental'noy i tekhnicheskoy fiziki, v. 44, no. 3, 1963, 894-898 TEXT: The higher Green's functions of the renormelized theory were usually studied in the weak coupling region with a logarithmic accuracy while S. Weinberg (Ref. 2: Phys. Rev., 118, 838, 1960) investigated such Green's functions with a power accuracy. The present paper obtains Weinberg's estimates using a simpler method, convenient for the analysis of physical processes at high energies. Nonsymmetric ultraviolet asymptotic expressions for multiparticle Green's functions in the nonphysical region ($p_1^2 \rightarrow \infty$) are defined by diagrams with exchange of a 16 minimum number of particles. There are 3 figures. Oard 1/2

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA

CIA-RDP86-00513R00051672(

L 17618-63	S/056/63/044/003/020/053	1	
Nonsymmetric	, ultraviolet asymptotic expressions		
ASSOCIATION	Institut matematiki s vychislitel'nym tsentrom Sibirskogo otdeleniya Akademii noyk SSSR (Mathematical Institute and the Computer Conter of the Siberian Section of the Academy of Sciences USSR)	<u>)</u>	
SUBMITTED:	May 5, 1962		
			•
Card 2/2		· .	•
		.	

:				
	L 2213-66 EWT(d) IJP(c) ACCESSION NR: AP5019250	118/005	6/65/049/001/0335/0344	j i
-	AUTHOR: Ginzburg, I. F.; Shirkov, D.	- 		
	TITLE: The renormalization group and the second sec	the ultraviolet asympt	otic limit of scatter-	•
	SOURCE: Zhurnal eksperimental'noy 1 to 335-344	-	v. 49, no. 1, 1965,	
	TOPIC TAGS: scattering amplitude, uv a	spectrum, Green functi	on, group theory	•*
	ABSTRACT: This paper contains a concis renormalization-group method and a dete method in problems of ultraviolet asym	ailed analysis of the ptotics. The foundati	possibilities of this ons of the	4
	renormalization-group method are brief. functional equations derived by L. V. (are written out and are used as the bas behavior of the scattering amplitude (Ovsyannikov (DAN SSSR sis for finding the hi	v. 109, 1112, 1956) gh energy-asymptotic	
	energies, then f is a function of one a and a function of two arguments if the case the renormalization-group method (turbation theory, but in the latter case	argument if the scatte momentum transfer is gives a better asympto	oring angle is fixed fixed. In the former tic than ordinary per-	
c	ard 1/2	n		
			· · · · · · · · · · · · · · · · · · ·	
			•	

	and the standard and the standards	neneternet som nørder vædere i s	Entroline Control of the second s	an the an and the second s	的在五日正常的日本大学的美国	
	· · · · · · · · · · · · · · · · · · ·	•		•	·· · · · · · · · · · · · · · · · ·	
	L 2213-66	• /*	•			
	ACCESSION NR: AP50	19250			12.	
	rithmic terms in the is formulated, which both the elastic and the Appendix and A. 1 (I. G.) also thanks 1	leads to an asym the inelastic am Logunov for provi	ptotic expression plitudes. "We the ding the initiat: rig. art. has:	n. of the quasi- mank <u>I. Todoro</u> lve for the wo L figure and 3	-Regge type for for writing rk. "One of us formulas.	
	ASSOCIATION: Institu Akademii nauk SSSR (1 Department, Academy (1	it matematiki s v Institute of Matheof Sciences, HSSR)	vchislitel'nym to matics with Com	sentrom Sibirs putation Center	kogo otdeleniya r, Siberian	
	SUBMITTED: 27Feb65	INC	L: 00	SUB CODE:	NP	
	NR REF SOV: 015	отн	ER: 004			
	•					
	مندور المراجع ا مراجع المراجع ال مراجع المراجع ا					
				at F	· · · · · · · · · · · · · · · · · · ·	
	Card 2/2 8P	ri 11 - 11		0 1	2 9 1 	
्रम्		an an an an Anna Anna Anna Anna Anna An			for the state of t	

CIA-RDP86-00513R00051672

RAFOPORT, T.B.; GINZBURG, I.G.; KRASNIKOV, M.A.; KUKOVA, A.V., red.

> [Engineering and structural drawing; a manual for students in course II of "Building of Railreads", "Bridges and Tunnels", "Industrial and Civilian Construction", "Water Supply and Sewerage System", "Economics and Organization of Construction for Railroad Transportation"] Inzhenernsstroitel'noe cherchenic; uchebnoe posobie dlia studentov II kursa spotsial'nostoi: "Stroitel'stvo sheleznykh dorog"(S), "Mosty i tonneli" (MT), "Promyshlennoe i grazhdanskoe stroitel'stvo" (PGS), "Vodosnabzhenie i kanalizatsiia" (VK), "Ekonomika i organizatsiia stroitel'stva na zheleznodorozhnom transporte" (ES). Noskva, Vses. zaochnyi in-t inzhenerov zhel-dor. transp., 1953. 69 p. (MIRA 17:9)

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

本国的社会和121

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-

CIA-RDP86-00513R00051672

A CONTRACTOR OF THE OWNER OF THE

90-58-7-1/8

AUTHOR: Stepanov, G.M.; Ginzburg, I.I.

· 1997 - 21 - 21 1997年 \$1997年 1997年 1997年

TITLE: Some Methods of Standardizing Electric Power Consumption in Depth-Pumping Oil Production (O nekotorykh metodakh normirovaniya elektropotrebleniya pri glubinnonasosnoy dobyche nefti)

.

PERIODICAL: Energeticheskiy Byulleten', 1958, Nr 7, pp 1-7 (USSR)

ABSTRACT: The authors discuss K.N. Kulizade's article on methods of standardizing electric power consumption in depth-pumping oil production; agree with his formula for calculating the specific electric power consumption but cannot accept his conception of k - the factor covering the variable component of the power consumed by the pump in relation to the size of the useful load. Kulizade regards this as a constant depending only on the type of pump, whereas the authors state that k also varies from field to field depending on the working conditions and can not be generalized. As an illustration of the errors possible by this method, they compare Kulizade's experimental findings with the results worked out from his formula (Tables 1 and 2). Some inaccuracies in the experimental data are pointed out. The method of calculating the specific power consumption Card 1/2employed in the offices of Orgenergoneft' and O.P. Shishkin's

IZBURG, I.			
	Oot	; 1947	
	USER/Shipe, Marchant Shipe, Braigment and Supplies "The Performance of the Fleet in the New Fiv Plan," I. Ginzburg, L. Turetskiy, 5 PP	- I M I	
	Morskoy Flot" No 10 "Morskoy Flot" No 10 Resume of the goals set for the merchant flo 1946 - 1950 Five-Year Plan. Present equipm be more completely utilized, operations exp and new equipment is to be added to carry of plan.	eet in the ent is to edited, nut the	
		30194	
	10		

CIA-RDP86-00513R00051672

all states PA 3099 GINZBURG, I. USER/Ships - Repair Oct 1947 Shipbuilding "Ways of Decreasing the Cost of Ship Repairs," I. Ginzburg, A. Syrmay, 4 pp "Morskoy Flot" No 10 Consideration is given to the various expenditures in ship repairing and the means and possibilities of decreasing them in order to cut the very heavy expense incurred in this work. 10 30199

CIA-RDP86-00513R00051672

GINZEURG, I.

17660 USSR/Merchant Fleet 4604.0410 Dec 1947 "The Maritime Fleet on the Increase," I. Ginzburg, (L. Turetskiy, 32 pp "Morskoy Flot" No 12 2 Maritime fleet has exceeded norm for first year of postwar Stalin Five-Year Plan. In 1947, plan had almost been fulfilled by November, an average of 20% increase over operations for similar period during 1946. Some data, all in percentage figures. IC 17660

CIA-RDP86-00513R00051672

UBER/Engineering Shipping Ships, Cargo	May 48
"Capacity of the Fleet and Red Price of Transportation," I. (Turetskiy, 42 pp	duction of the Cost Ginzburg and L.
"Morskoy Flot" No 5	
First part of series on method transportation costs. Discuss Capacity of fleet on actual ca price per ton mile for cargo t	es effect of
	1/49725
	1/49[2]

CIA-RDP86-00513R00051672

Cost accounting of seegoing vessel

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RE

CIA-RDP86-00513R00051672(

CIA-RDP86-00513R00051672

CIA-RDP86-00513R00051672

CIA-RDP86-00513R00051672

CIA-RDP86-00513R00051672

Ginzburg, I.I. "Protective films on diffused-pulverized silicates and their possible technological mignificance in ceramics," in symposium: Syr'yevyye resury tonkokeram. prom-sti SSSR i puti ikh ispol'zovaniya, Moscow-Leningrad, 1948, p. 149-54

SO: U-2888, Letopis Zhurnal'nykh Statey, No. 1, 1949

GINZPURG, I. I.

21823. GINZPURG, I. I. Obrazovanie Drevney Kory Vyvetrivaniya Na Territorii SSSR, Ee Mineraly i ikh Svoystva "rudy Yubkeynuy Sessii, Posvyashch Stoletiyu So Dnya Rozhoeniya Dokuchayeva. M. L., 1949, S. 203-15. -- Bibliogr: S 214-15

and the second second

SO: Letopis' No. 33, 1949

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

是中国影

STATES AND STATES

CIA-RDP86-00513R00051672

"APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00051672

THE REAL PROPERTY OF

A Kerolite, 3MgO 3SiO 3H₂O - 1, 1 Gunzburg and 1 A Rukavishnikova Zaprob Uncovid: Mineral: Obak-Acutar (Mem. soc. russe mineral.) 79, 34 64(1080).~ Kerolite is important in the general genesis of absence of the Mg hydrosilicate series. G and R. distinguish a Acodue (D a powerbinkke dense mineral of conchedid fracture, loss birefringence, as 1 520 to 1 557, higher in Nicotity concerns. The thermal curve shows an endothermic effect with a max, at 760% and an evolution effect at 010% similar. B-Kerolite (III), including "ipadaite," is usually greenide colored, transform in this wertrons the club edony-like collocal, get-like. In this wertropical, with hardness 2.5, 4.2 105, get-like. In this wertropical, with a rather marked birefringence; is about 1.513-1.510 (from 6 different occurrences). Fibrois agreegates in H have a definitely lower n = 1.487-1.494, and a birefringence up to 0.088. Also admixed birefringence 0.0120 is rately observed. The thermal curve of H shows endothermic effects at 120 1507, 025 0507, and

CA

$\frac{1}{Mg_{2,2,0}}$ by $f_{2,2}$. Also, if $S_{1,2} \oplus O_{1,2} \oplus O_{1,2}$, which makes the analogy to altapalgus evident, with Mg(OD) (brucket) between the montmonilonite parcels the distinction of L and II as mobile stans of the same reprintmental, kerobre is analogous to Califors distinction of a and configure $i \in L$ if S(SS). The weak speed occurrence of II communications down to explain configure is that acteristic, it is sometimes charged in significant from the periphers to the context in radial to september. From the periphers to the context in radial structures. Crucks are till dwith calibration. The chemrelations are given in the following scheme:

-0-10 MK

APPROVED FOR RELEASE: Thursday, July 27, 2000

Segurarities Plant I is

CIA-RDP86-00513R00051672(

CIA-RDP86-00513R00051672

"APPROVED FOR RELEASE: Thursday, July 27, 2000

- 1. GINZBURG, I. I.; RUKAVISHNIFOVA, I. A.
- 2. USSR (600)
- 4. Mineralogy

 Minerals of weathering of the ancient crust. I. I. Ginzburg, I. A. Rukavishnikova. Reviewed by I. D. Sedletskiy. Izv. AN SSSR. Ser. geol. No. 5, 1952.

9. Monthly List of Russian Accessions, Library of Congress, April 1953, Uncl.

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

STREET, STREET,

CIA-RDP86-00513R00051672

GEIZBURG, I. I.

The Committee on Stalin Prizes (of the Council of Ministers USSR) in the fields of science and inventions announces that the following scientific works, popular scientific books, and textbooks have been submitted for competition for Stalin Prizes for the years 1952 and 1953. (Sovetskaya Kultura, Moscow, No. 22-40, 20 Feb - 3 Apr 1954)

Name	Title of Work	fominated by
Ginzburg, I. I. Korin, I.Z. Rukavishnikov, I. A.	"The Ancient Crust of Ero- sion on the Ultra Basic Rocks of the Urals" "Minerals of the Ancient Crust of Eroslon of the Urals"	Institute of Geological Sciences Academy of Sciences USSR

SO: W-30604, 7 July 1954

CIA-RDP86-00513R00051672

CIA-RDP86-00513R00051672

APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00051672(

CIA-RDP86-00513R00051672

APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00051672(

CIA-RDP86-00513R00051672

GINZBURG, I. I.

"Information on Hypergene Processes in the Works of A. Ye. Fersman" Tr. Mineralogich. muzeya AN SSSR, 1953, No 5, 19-29

The author briefly expounds the basic ideas of A. Ye. Fersman in the field of hypergenesis and their development in the works of Soviet scientises. He notes the most important successes in the study of the geochemistry of hypergene processes; e.g., the discovery of the formation of minerals as a result of soil forming process (work of B. B. Polynov and his school), the work of A. P. Vinogradov in biogeochemistry, work on weathering crust and oxidation zones (S. S. Smirnov, F. V. C'ukhrov, I. I. Ginzburg). (EzhGeol, No 3, 1954)

SO: W-31187, 8 Mar 55

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

当中的

CIA-RDP86-00513R00051672

SINTSURG, I . I.

- 7

USSR/ Cost	ochemis	try - Geochemistry, Hydrochemistry	D.
Abs Jour	: Ref	erat Zhur - Khimiya, No 2, 1957, 4153	
Author Inst Títle	: Aca	zburg, I.I., Vitovskaya, I.V. lemy of Sciences USSR onite in Weathering Shell of Lead-Zinc Deposits of tral Kazakhstan	
Orig Pub	: Sb:	Kora vyvetrivaniya. No 2, M., AN SSSR, 1956, 184-1	187
Abstract	lime badd sokc CaO	at description in central Kazakhstan of the claycy eral s sokonite, formed in ore skarns and skarnic estones. Associated minerals: montmorillonite, elevite and nontronite. Chemical composition of t nite (in %): SiO ₂ 38.16, Al ₂ O ₃ 6.70, Fe ₂ O ₃ 2.38, 1.27, MgO 1.19, K ₂ O + Na ₂ O 0.98, ZnO 34.88, H ₂ O- , H ₂ O+7.52, total 101.36. Structural formula	he
Card 1/2		- 42 -	

USSR/Cosmochemistrice in the state of the s

WINDOW DOWN

Abs Jour : Referat Zhur - Khimiya, No 2, 1957, 4153

 $(OH)_2 + 0.10(ZnO + CaO)$. Spectral analysis revealed

in addition: Pb, Cu, Cd, Cr, V, Ba, Sr, Ti, Sc and Y. Secured were a thermogram, roentgenogram and electron microphotograph of the mineral; simplest physical and optical properties were determined.

Card 2/2

- 43 -

Star Bugg J.T.

CIA-RDP86-00513R00051672

and and a state of the state of

THE NEW

يحاطفهم وتجريحو تتحالب الماراطان

GINZBURG, I.I.; VITOVSKAYA, I.V.

Weathering of garnet, axinitic, and tremolitic rocks in arid regions of central Kazakhetan. Kora vyvetr. no.2:299-316 '56. (MLRA 9:8) (Kazakhetan--Tremolite)(Kazakhetan--Garnet)(Kazakhetan--Axinite)

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

NUT THE REPORT OF THE PARTY OF

Transferrance and

A REAL PROPERTY AND

Translation	15-57-1-579 from: Referativnyy zhurnal, Geologiya, 1957, Nr 1, p 92 (USSR)
AUTHORS :	Ginzburg, I. I., Rukavishnikova, I. A.
TITLE:	The Age of the Weathering Crust in Central Kazakhstan (K voprosu o vozraste kory vyvetrivaniya v Tsentral'nom Kazakhstane)
PERIODICAL:	V sb: Kora vyvetrivaniya, Nr 2, Moscow, AN SSSR, 1956, pp 321-322.
ABSTRACT:	From a study of a brontotherium jawbone (containing teeth), found in red clays, the authors have concluded that the weathered layer in central Kazakhstan was formed no later than the Oligocene, and possibly earlier. The latest age of nontronite and opal develop- ment is no later than Oligocene.
Card 1/1	Ye. S. K.

I

Translation	15-1957-3-3174 from: Referativnyy zhurnal, Geologiya, 1957, Nr 3, p 106 (USSR)
AUTHOR:	Ginzburg, I.I.
TITLE:	The Aggression of Water in Relation to Its Movement Through Rock [Tr. note: Aggressive water is acid, limestone-attacking water] (Agressiya vody v svyazi s yeye dvizheniyem v kamne)
PERIODICAL:	V sb: Kora vyvetrivaniya. Nr 2, Moscow, AN SSSR, 1956, pp 355-387
ABSTRACT :	In order to study the chemical aggressiveness of solu- tions while they are seeping through rock, experiments were conducted on 16 samples of limestones and dolomites from the Shiryayevskiy and other kar'yery (quarries) on the Zhiguli Mountains, near Kuybyshev. It was noted that the most highly dolomitized samples are distinguished by variable composition, attended by Fluctuation in the transmissi- bility coefficient, porosity, size of pores, and so forth. Chemical, thermal, and petrographic studies in-
Card 1/3	

CIA-RDP86-00513R00051672

CIA-RDP86-00513R00051672

15-1957-3-3174 The Aggression of Water in Relation to Its Movement Through Rock tion of fluids migrating through the rock. The factors of time and pressure also influence the coefficient of transmissibility. It was calculated that water will pass through approximately 100 m of rock, even if dense, in 3,300 years. With water pas-sing through it, dolomite loses 0.0054% of its weight in a year; limestone loses up to 0.27%. In 3,300 years, 18% Ca and Mg would be removed from dolomite; but porous limestone would be dissolved entirely in 400 years. However, the processes of solution generally proceed much more slowly because of the precipitation of sediment from the solution and the consequent stopping up of the pores, and because impermeable layers, if present, prevent free drainage. Thus external conditions deter-mine the results of the struggle between the two opposing proc-esses of leaching and cementation. Card 3/3 V. A. V. **有限的**有限的问题。

CIA-RDP86-00513R00051672

CIA-RDP86-00513R00051672

$C_{\mathcal{I}}$	10 5 13 6 K C, 2 - <u>Z.</u>	1.3970/19480
USSR/Cosmoche	mistry - Geochemistry. Hydrochemistry, D	
Abst Journal:	Referat Zhur - Khimiya, No 1, 1957, 743	
Author:	Ginsburg, I. I.	· · · · · ·
Institution:	Academy of Sciences USSR	
Title:	Geochemical Methods in Ore Prospecting	
Original Periodical:	Vestn. AN SSSR, 1956, No 6, 58-64	,
Abstract:	Geochemical prospecting methods based on the analysis of a large num- ber of small samples containing trace amounts of the elements of in- terest require a quick and accurate methodology. Semiquantitative spectroscopic analysis is of great importance in this respect. Further progress in geochemical prospecting must be achieved by the utilization of one sample for the determination of 6-10 and more elements. Geochemical, hydrochemical, biochemical, and geobotanical prospecting methods are finding wide application. For complex in- vestigations the creation of integrated prospecting teams and field laboratories is necessary. For the preliminary survey of large	
Card 1/2		

"APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00051672

646

PHASE I BOOK EXPLOITATION

Ginzburg, Il'ya Isaakovich

بمنتقرب لهجنجي وتعورف الد

- Opyt razrabotki teoreticheskikh osnov geokhimicheskikh metodov poiskov rud tsvetnykh i redkikh metallov (Experience in the Development of Theoretical Principles for Geochemical Methods of Prospecting for Nonferrous and Rare Metals) Moscow, Gosgeoltekhizdat, 1957. 10,000 copies printed.
- Ed.: Smirnov, V. I. Ed. of Publishing House: Godovikov, L. A. Tech. Ed.: Gurov, O. A.
- PURPOSE: The book is intended for practical and theoretical exploration geophysicists specializing in geochemistry.

COVERAGE: The book covers the entire field of geochemical exploration and reviews both the recent methods of chemical analysis of rock (or soil) and the peculiarities of geology of individual mineral deposits, essential for practical prospecting work. Each method is described in its teleological aspect. The material for conclusions as to the methodology was partially supplied by the author himself and partially extracted from the reports of leading Soviet geochemical explorers and from the records of the All-Union Congress of Geochemists (1956). Card ¥16

355 A

Experience in the Development (Cont.)

646

Acknowledgment is extended to the following Soviet scientists (from the geochemical laboratory staff of the Academy of Sciences, USSR) for their contributions: I. A. Rukavishnikova, I. V. Vitovskaya, V. V. Borodin, Yu. Yu. Bugel'skiy, K. M. Mukanov, L. D. German, A. I. Pokrovskaya (an analytical chemist), and N. P. Sechina (a spectral analyst); furthermore, the following scientsits have contributed their material to the author: S. D. Miller, I. P. Benivalenskiy, G. I. Rossman, and A. G. Betekhtin; in addition, the following scientists have reviewed the book: O. D. Levitskiy, F. I. Vul'fson, and V. M. Kreyter. In the introduction to the book, the author recapitulates the main achievements of Soviet geochemistry in the field of petroleum and metal prospecting by geochemical methods. Following the decree by the Ministry of Geology in 1955, the geochemical element has become an integrated part of every geophysical and geological prospecting scheme. Each chapter is accompanied by an extensive bibliography, consisting almost entirely of Soviet contributions. There are 328 references, 317 of them Soviet, 8 English, and 3 German; and 72 figures (mostly diagrams) and 28 tables. The appendix, written by A. I. Pokrovskaya, contains a summary of practical geochemical methods used in sample analysis for determining the presence of metal in rock. In the conclusion it must be mentioned that the term "hypergene" (supergene) has a broader meaning than one given to it in the American scientific literature. In this book the term "hypergene" includes all relevant ore-formation processes. Card 2/16

144

Experience in the Development (Cont.) 6	46
TABLE OF CONTENTS:	
[Note: There is a certain discrepancy between headings in the Table of (those in the text. Information in brackets is added to clarify	Contents and the text]
Foreword	3
Introduction	5
History of geochemical exploration in USSR Geochemical prospecting outside of USSR	5
Slime analysis in geochemical prospecting Development of prospecting methods - physical, physiochemical,	7 8
chemical, biochemical, etc. Connection between geochemical prospecting and geological surveying;	8
integrated (combined) character of operations Contributions of geochemistry to prospecting	10 11
Card 3/16	
3	
PERSONAL PROPERTY AND A DESCRIPTION OF A	

18**3**2

이 일어서

Experience in the Development (Cont.)	646	
Ch. I. Methods of Analytical Geochemical Prospecting Spectroscopic method Qualitative chemical spot test and powder method Colorimetric method; comparison between chemical and colorimetric methods	13 13 15	
Phase analysis [Analysis based on differences in solubility] Electrodialysis Water analysis; other methods Selection of proper method of analysis	15 20 21 21 22 22	
Ch. II. Geochemical Indicators [of the type of deposit] Chemical elements in the role of indicators Trace elements in the crystal lattice serving as indicators Minerals in the role of goechemical indicators Selection of proper indicators Geochemical correlation of elements [paragenesis] Factors on which geochemical indication is based	24 24 28 29 33 34 37	
Card 4/16		

Experience in the Development (Cont.)	646
Ch. III. Metal Concentrations in Eruptive and Metamorphic Rocks Geochemical basis of concentration and dissemination (dispersion)	38 of
chemical elements in rock	38
Ability of elements to disseminate and concentrate	39
Permeability of rocks and metal concentration in them	41
Concept of dissemination halos	1414
Connection between the contour of dissemination halos and the	
structure of deposits	45
Features of metal distribution in original rock; metal distribution	n in
contact rock enclosing the halo	46
Mineralization of metal ore	48
Mineralization of "sterile" metal ore [nonconcentrated ore]	49
Trace elements in the crystal lattice of minerals	52
Disseminated mineralization	54
Syngenetic and epigenetic dissemination	55
Enriched metallic mineralization	58
Mineralization of halos. Indices of mineralization	60
Forms of mineralized areas, their size and extension	60
Card 5/16	
<i>.</i>	

153

Experience in the Development (Cont.) 646	
Ch. IV. Concentrations of Metal in Sedimentary Rock	6.
Conditions inducing concentration	69
Transportation of sedimentary materials	69
Conditions of deposition and transportation of metal-bearing sediment.	70
Stages of sedimentary ore formation	•
Penetration of columnitions date the method is the test	77
Penetration of solutions into the rock strata and its influence on urarium content.	
	78
Metal content in sedimentary rocks	79
Stratification of metal ore concentrations in sedimentary rocks	80
Deposits formed by sedimentation	81
Metals in coal ashes	83
Correlation of individual elements and types of their occurrence	83
Ch. V. Frospecting in Bedrock	86
Effect of "hypergenic" ore-forming processes on the changes in metal	ω
content in bedrock	86
Importance of metal-impregnable rocks	
Hypergenic migration of metals into metal-impregnable rocks	87
Conditions effecting the stage in development of areas of mineralization	87
Correlation problem in hypergenic zones and in original rocks	•
Distance product in hypergenic zones and in original rocks	Ör
Dissemination of high-mobility elements and their compounds in original rock	
	98
Geochemical prospecting for sedimentary rocks Card 6/16	101
care of TD	
a a a strategram a sa da sa	· PARTA CONTRACTOR STRUCTURE S

Experience in the Development (Cont.)	646
Ch. VI. Prospecting for Blind Deposits (Underground Prospecting)	103
Search for ore in sedimentary rock under alluvial blanket	103
Search for blind ore in original rock	104
Rock structure as indicator of deposits	104
Zonal arrangement of ore and stages (steps) of hydrothermal proces Behavior of metals embedded in or in contact with ore body and the	
extent of their dissemination	106
Importance of eroded surface in searching for blind ore bodies	110
Symptoms of possible mineralization; tests	111
Interpretation of results of geochemical prospecting	118
Conclusions	119
Ch. VII. Metal Concentrations in Loose Rocks Covering the Halos of Mineral Dissemination Halos of dissemination Factors and processes effecting the formation of dissemination has Present-day erosion and soil formation	122 122 108 123 124
Behavior of individual elements in soil (copper, lead, zinc, cadm molybdenum, tin, arsenic, selenium, antimony, tellurium, gold, si nickel, cobalt, barium, strontium, boron, fluorine, other element Card 7/16	ium, lver,

Accumulation of minerals depending on the interplay of soil and	
climatic conditions	134
Metal content in dissemination halos	135
Actal below the water-table stratum	135
Importance of the composition of ground air	135
Ancient erosion	136
Absorption of solutions by roots of plants	138
Aineralization of decayed vegetation	139
Capillary extraction of underground water and its natural	
evaporation [by sun]	140
The role of capillary extraction in arid regions	141
Impact of irrigation on concentration of metals	143
Problems of the uptake of deep-seated water-soluble salts	144
Diffusion of gases by heat	144
Ionic diffusion	144
Importance of electric currents [in dissociation processes]	144
Ascending (pressure) waters and their role	145
Dxidation [of sulfides and of lower oxides of metals]	148
leached and weathered zones	154
Mineral composition of oxidation zones; ferroginous outcrops (gossans)	
1 8/ 16	

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

245 1257

Experience in the Development (Cont.)	646
· Erosion of soil crust and of oxidation zones	157
Porcesses of mechanical transportation	158
Formation of zones and streams of dissemination (of rock fragments);
bottom sediments; eluvial processes; pseudo-halos of dissemination	159
Search in eluvial and alluvial formations	164
Coagulation, sedimentation and absorption	165
Genetic types of dissemination halos	168
Shapes of dissemination halos in blanket deposit	169
Interpretation and evaluation of dissemination halos	171
	174
Ch. VI. Surface Prospecting in Blanket Deposits	174
Depth of the test pit	175
Size of rock samples according to type of rock	176
The weight of rock sample tested	177
Slime and spectroscopic analyses	177
Selection of proper method of test pit analysis Cases of "pseudocontamination" of rock [incidental occurrence of	
	178
minerals in rock samples, Search for lead	178
Search for lean	- 1 -
Card 9/16	
на сталини салани конски сомрении инкрытики придерживани у Лебен — (С. С. П. С. С. 2898) Какалал	

Experience in the Development (Cont.)	646
Search for zinc and cadmium	170
Search for silver	179 181
Search for copper	181
Search for molybdenum	186
Search for tungsten	
Search for tin	187
Search for gold	189
Search for nickel, cobalt and chromium	190
Search for fluorspar	191
Search for heavy spar (barite)	193
Search for lithium	193
Some practical advice; conclusions	194 194
 M. IX. Metal Migration in Water Hydrogenic elements Mineral solubility and hydrogen-ion concentration Forms of metal occurrence in water Metal content in water of different origin 	197 197 197 198 199
Factors influencing metal content in water; the importance of the	
phildetor	202
Degree of sulfide oxidation and its importance	202
Water exchange processes	204
ard 10/16	

105

perience in the Development (Cont.)	646	
Features of sulfide distribution in sulfide-bearing rock Climatic conditions [and their impact on metal concentrations]	204	
impact of water-bearing rocks (aquifers)	205	
Concept of migration coefficients	206	
Migration of metals in water	206	
Metals in swamps	208	
Degrees of dissemination of metals in water	200	
Behavior of individual metals in water and some other chemical	elements	
or their compounds Lead	210	
Zinc	211	
Silver	212	
	213	
Cadmium Bixmith	214	
Tin	215	
nn Molybdenum	215	
Vanadium	216	
Chromium	217	
	218	1
11/16		
		ann i sann

-

1202-93

Experience in the Development (Cont.) Nickel Cobalt Arsenic Mercury Uranium Antimony, selenium, tellurium, phosphorus Germanium, gallium Beryllium Titanium Scandium Barium and strontium Ions of sulfuric acid and of chlorine Fluorine	646 219 219 220 220 220 221 221 221 221 221 221 221	
Analysis of water extracted from rock Determination of the pH of water Card 12 <u>/</u> 6	225 225	

1999-5-54E

xperience in the Development (Cont.) 646	
h. X. Hydrogeochemical Prospecting for Metals and Characteristics of Water	
for Various Types of Deposits	227
Determination of features of dissemination	227
Prospecting in closed and open areas	227
Consideration of factors causing an increase in metal content of water;	
classification of waters in mineralized zones of West-Siberian mountains	229
Water in copper deposits and its features	232
Water in pyrite deposits	235
Water in multimetallic (complex nonferrous) deposits	237
Water in deposits of rare metals	238
Hydrochemical methods in permafrost areas	238
Determination of total isotopic composition of water and its importance	238
Gas analysis as a method of prospecting; other methods	239
Th. IX. Biogeochemical Prospecting Method	241
Theoretical foundations and practical application of biogeochemical methods	241
Metal content in vegetation ashes	242
Absorption of metals by different plants	244
Card 13/16	
Experience in the Development (Cont.) 646	
---	--
Search for sulfides of copper and iron	245
Search for nickel, cobalt and chromium	245
Search for copper	247
Search for zinc and lead	248
Search for molybdenum	249
Search for uranium	250
Search for other elements	251
Practical advice on methods; conclusions	251
Ch. XII. Geobotanic Prospecting Method	253
Theoretical principles	253
Types of indicator plants [growing on soil rich in particular metals] Teratological factors (indicating structural peculiarities);	254
metallophillic flora	255
Factors indicating the presence of copper, uranium, and selenium; examples Vegetation blanket as an indicator of lithological composition of rock.	256
hydrogeological conditions and tetonic rock structures	259
Aerial geobotanic prospecting	260
Card 14/16	
	o de la companya de

TO BOX

(**1**94

ACT

JET:

Experience in the Development (Cont.) 646	
Ch. XIII. General Conclusions on Geochemical Prospecting Geochemical map-making and types of maps Topomineralogical maps Geochemical maps proper Geochemical prospecting in bedrock Objectives of prospecting Types of geochemical map of bedrock Geochemical prospecting in blanket sediments Prospecting in an open area Prospecting in closed slightly broken areas Prospecting in closed deeply-broken areas Prospecting in vooled and swampy regions Importance of auxiliary methods: hydrochemical, biochemical, botanic, etc. Drilling for map-making Types of metallometric survey Selection of proper method and interpretation of geochemical prospecting data	261 261 262 263 265 265 265 265 265 267 267 267 267 268 268 269
Card 15/16	
	THE REPORT OF

697

-07.6C.2.14

160.000

Experience in the Development (Cont.) 646	
Distortion in position (site); forms of bounds marking the halos of mineralization. Application of geochemical exploration methods in extre North-East. Selection of proper scale in mapping a deposit. General conclusions	eme 270
Appendix	
Simplified method of assaying lead, copper, wolfram, malybdenum, and silver in the field Reagents Determination of wolfram Determination of molybdenium Determination of silver Setermination of copper Determination of zinc Determination of lead Bibliography	275 275 276 277 277 279 280 281 282
AVAILABLE: Library of Congress	
Card 16/16 MM/bmd 10-14-58	

288.10.-3

. GINZ. But	RO, II.	11-12-5/10
AUTHOR:	Ginsburg, I.I.	a the shared mon 10
, TITLE:	Basic Results of Study of Ancient Cores of the USSR (Osnovnyye rezultaty izucheniya vaniya v SSSR)	
PERIODICAL:	Izvestiya Akademii Nauk SSSR, Seriya Geo (110 pp 61-88 (USSR)	
ABSTRACT:	# 12, pp 01000 (0100) Studies of disintegration of mountain more than 20 years ago by B.B. Polynov a and they were continued in 1938 by D.T. ko and other USSR scientists. Examination disintegration of the earth's crust were prospecting for nickel, aluminum, iron, resisting clays, zirconium, titanium, di rare earths and other minerals deposits of disintegration. It was found that the rinds was not restricted to regions of Ukraine, but that they were distributed tory of the USSR. Ancient rinds of dis be of such importance that it seemed ju new branch of geology, specializing on these geologic formations and the method	Ul'yanov, G.S. Giltsayon ions of the effects of e brought about by mangan, kaolin, heat- iamonds, optical quartz, associated with rinds he occurrance of these the southern Urals and over the entire terri- integration proved to estified to establish a
Card 1/3	tuese Boorder	

11-12-5/10

Basic Results of Study of Ancient Cores of Weathering in the USSR

present time ancient rinds of disintegration are regarded as a special continental formation, which has been formed under the influences of solar energy, atmospheric and biogenic agents acting upon basic rocks of different composition. As a result, new layers with different structural, and chemical properties were formed containing mineral deposits typical for disintegrated rinds. Following extensive studies of rinds of disintegration, the following 7 types of rinds were established: 1. Residual rinds of decomposition; 2. Residual rinds of leaching; 3. Rinds of filtration; 4. Rinds which were transformed by new processes of disintegration, deposited on the initial rinds; 5. Re-deposition or shifting of the rinds; 6. Washed-out rinds; 7. Metamorphosed rinds. Each of these types can be subdivided, depending on the properties of the disintegrated rocks as well on the form of deposition, into the following groups: open and covered rinds; plain and complex rinds; rinds covering square areas and those covering strips; widely dispersed rinds and those of local distribution. The author published 7 tables, on which are given the characteristic features of disintegration, leaching, filtration, redeposition, transformation, washing-out and the development of

Card 2/3

Extant.

Basic Results	11-12-5/10 of Study of Anelest Cores of Weathering in the USSR profiles of rinds. The method of determining the age of rinds has not yeat been settled. It is a rather simple matter to determine the age of a rind which is overlaying or which is covered by a known formation. The author cites numerous rinds of disintegration deposited in various geologic strata of the USSR. He examined furthermore the correlation existing between ancient rinds of disintegration and sedimentary de- posits found in depressions, as well as the influence of climatic conditions prevailing at the time of formation. There are 8 tables, 68 Russian, 1 British, and 1 American
AVAILABLE:	Library of Congress
Card 3/3	

CIA-RDP86-00513R00051672

GINZBURG, I. I.

"Types of Old Crusts of Weathering in USSR."

paper distributed at the International Clay Mineralogy Congress in Brussels, Belgium, 1 - 5 Jul 58.

Comment: B-3,116,859.

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

CIA-RDP86-00513R00051672

GINSBURG, I.I. AUTHOR: Ginsburg, I.I. 11-1-23/29 TITLE: Conference on the Research and the Use of Clays (Soveshchaniye po issledovaniyu i ispol'zovaniyu glin) PERIODICAL: Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, 1958, # 1, pp 110-111 (USSR) ABSTRACT: The first conference on research and use of clays was held in L'vov from May 26 to June 1, 1957. This conference was called by the L'vov State University imeni Franko, by six institutes of the Academy of Sciences and other scientific organizations. It was attended by 250 scientists. The following problems were discussed with more than 100 lectures: 1. General questions on the mineralogy of clays. 2. Methods of mineral research and special properties of clays. 3. Engineering-geological properties of clays and minerals. 4. Study of clays and soils of different districts. 5. Technology of clays. 6. Results of studies of bentonites, bauxites, loess and erosion of the earth's crust. The lectures dealt with problems pertaining to the nomenclature of mineralogy, heating and dehydration curves, thermic effects, X-ray ana-Card 1/2lysis, mineral composition, technological properties, genesis,

and the second second

GINZBURG, I.I.

.

14

Nickeliferous magnetite in silicate-nickel deposits. Kora (MIRA 13:12) vyvetr. no. 3:33-38 '60.

l. Institut geologii rudnykh mestorozhdeniy, petrografii, mineralogii i geokhimii AN SSSR. (Magnetite)

"APPROVED FOR RELEASE: Thursday, July 27, 2000

TE SEALT EESSENDER ENGERALT HERMENE STEREN DER SERVERKENTEN DER STEREN DER STEREN DER STEREN DER STEREN DER ST

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

CIA-RDP86-00513R00051672

este practice record

91**5.**23453

-

GINZBURG, L.L., KABANOVA, Ye.S.

TANK THE THE REAL PROPERTY OF

Silica content in natural waters and forms of its occurence. Kora vyvetr. no. 3:313-342 '60. (MIRA 13:12) (Silica) (Water--Composition)

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

CIA-RDP86-00513R00051672

GINZBURG, I.I.; OL'SHANSKIY, Ya.I. [deceased]; BELYATSKIY, V.V.; Prinimali uchastiye: NUZHDENOVSKAYA, T.S., laborant; ROZHDESTVENSKAYA, Z.S., laborant; KOZHINA, V.M., laborant; FEODOT'YEV, K.M., otv.red.; SHLEPOV, V., red.izd-va; LAUT, V.G., tekhn.red.

> **(Studies of** experimental and technical petrography and mineralogy] Issledovaniia po eksperimental'noi i tekhnicheskoi petrografii i mineralogii. No.4: [Studies on exidation of sulfides] Eksperimental'nye issledovaniia po ekisleniiu sul'fidov. Moskva, Izd-vo Akad.nauk SSSR. 1961. 130 p. (Akademiia nauk SSR. Institut geologii rudynkh nestorezhdenii, petrografii, mineralogii i geokhimii. Trudy, no.59) (MIRA 14:7) (Sulfides)

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

CIA-RDP86-00513R00051672

GINZBURG, I.I.

Basic problems relative to the study of the formation of weathered surfaces and their importance for mineral prospecting. Geol.rud.mestorozh. no.5:21-36 S_0 '61. (MIRA 14:9)

1. Institut geologii rudnykh mestorozhdeniy, petrografii, mineralogii i geokhimii AN SSSR, Moskva. (Weathering) (Minerals) (Prospecting)

APPROVED YOR: RENEWSE: THUISDERVSKAW 27. 2000 CRSHOULA RDP86-00513R0005 MELKOV, V.G.; OS'KIN, N.I.; RUZHKOVA, YO.V.; STRAKHOV, N.M.; KHRUSHCHOV, N.A.; SHMANECHKOV, I.V.; SHCHERBAKOV, D.I.; YANSHIN, A.L.; AMIRASIANOV, A.A.; GOMAN, YA.D.; ZUBREV, I.N.; KOROVYAKOV, I.A.; ORLOVA, P.V.; PASOVA, F.G.; SAAKYAN, P.S.; TERENT YEVA, K.F.; SHANOBSKIY, L.M.; CHERNOSVITOV, Yu.L.; SHCHERBINA, V.V.

> IUrii Konstantinovich Goretskii; obituary. Sov.geol. 4 no.12: (MIRA 15:2) 153-155 D '61. (Goretskii, Iurii Konstantinovich, 1912-1961)

والمعريقي ووالمحاط الهرا

CIA-RDP86-00513R00051672

NIKITIN, Konstantin Konstantinovich; GINZBURG, I.I., otv.red.; ASTROV, A.V., red.izd-va; KASHINA, P.S., tekhn.red.

> [Ancient weathering surface of ultrabasic rocks in the Buryktal Massif] Dravniaia kora vyvetrivaniia Buryktal'skogo massiva ul'traosnovnýkh porod. Moskva, Izd-vo Akad.nauk SSSR, 1962. 189 p. (Akademiia nauk SSSR. Institut geologii rudnykh mestorozhdenii, petrografii, mineralogii i geokhimii. Trudy, no.69). (Ural Mountain region-Weathering) (Ural Mountain region--Ultrabasite)

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

YITOVSEAYA, Irine Vladimirovna; GINZBURG, I.I., doktor geologo-miner. nauk; BRODSKIY, S.A. red. izd-va; SUSHKOVA, L.A., tekan. red.
[Mineral composition and behavior of microelements in the supergene zone of Akchagyl and Kyzyl-Espe] Mineral'nyi sostav i povedenie mikrcelementov v zone gipergeneza Akchagyla i Kyzyl-Espe. Moskva, Isd-vs Akad, nauk SSSR, 1962. 120 n. (Akademiia nauk SSSR. Institut geologii rudnykh mestorozhdenii, petrografii, mineralogii i geokhimil. Trudy, no.75.). (MIRA 15:6) (Kazakhstan--Ore deposits) (Kazakhstan---Trace elements)

"APPROVED FOR RELEASE: Thursday, July 27, 2000

"APPROVED FOR RELEASE: Thursday, July 27, 2000

GINZBURG, I.I.; NADZHAKOVA, G.E.; NIKITINA, A.P.

the contrast carding second services and an end period a service parameters of

Recent and ancient laterite weathering of basalts in Brazil and the Russian Platform. Kora vyvetr. no.4:3-95 '62. (MIRA 15:9) 1. Institut geologii rudnykh mestorozhdeniy, petrografii, mineralogii i geokhimii AN SSSR. (Brazil--Weathering) (Brazil--Basalt) (Russian Platform--Weathering) (Russian Platform--Basalt)

CIA-RDP86-00513R00051672

CIA-RDP86-00513R00051672

APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00051672(

۰,

CIA-RDP86-00513R00051672

.

SC STORES

GINZBURG, I.I.

Types of ancient weathering surfaces, forms of their occurrence and classification. Kora vyvetr. no.6s71-101 '63. (MIEA 17:9) 1. Institut geologii rudnykh mestorozhdeniy, petrografii, mineralogii i geokhimii AN SSSR, Moskva.

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(

The store of the store

اللالة موجاية وكالداد عال

YASHINA, R.S.; GINZBURG, I.I.

and a set of the

Checking on the use of 0.P. Mehra, and M.L. Jackson's method of the removal of iron oxides from soils and clays for mineralogical purposes. Kora vyvetr. no.5:398-403 '63. (MIRA 16:7) 1. Institut geologii rudnykh mestorozhdeniy, petrografii, mineralogii i geokhimii AN SSSR. (Mineralogical chemistry)

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051672(