THE STATE

GRIGORYEV, A.S. (Moscow)

"The state of stress and the carrying capacity of mombrane shells and plates undergoing large deformations".

report presented at the 2nd All-Union Congress on Theoretical and Applied Mechanics, Moscow, 29 Jan - 5 Feb 64.

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681

•

.

ACCESSIO	N NR: AP4041346	S/0115/64/000/005/0031/0033	مدانياته 1
AUTHOR:	Kulikovskiy, L. F.; Gri	igor'yev, A. S.; Grigorovskiy, B. K.	
TITLE: P	hotocompensation electro	ometer	
SOURCE:	Ismeritel'naya tekhnika,	no. 5, 1964, 31-33	
TOPIC TA		l electrode electrometer, photocompensation	
lamp L (se	e Enclosure 1) equally il rand is applied to the elec	of an electrometer movable plate, the light from luminates two photovaristors P_1 and P_2 . When ctrometer input, the plate will move until the coltage drop across feedback resistor r due to	n
measurand current I (an electron	the photovaristor-curren meter are supplied. An (ts difference). Formulas for designing such experimental electrometer combined with a 17 galvanometer) had these characteristics:	

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681 na ana ing manang ma

CCESSION NR: AP	24041346		1
ess; over-all error nstrument may have	by; input resistance, 10 ¹⁷ oh; , 1.5-0.5% for 100-1,000 m a full-scale current of 0.1- be or less. Orig. art. has:	ms; damping time, 0.5 sec or nv, respectively; the readout 1.5 ma with an internal 3 figures and 22 formulas.	
	by¢shevskiy politekhnicheskiy	·	
UBMITTED: 00		ENCL: 01	
UB CODE: EE	NO REF SOV: 000	OTHER: 000	
: ``			
•			

CIA-RDP86-00513R00051681

ACCESSION NR: AP4045921

S/0119/64/000/009/0022/0024

AUTHOR: Grigor'yey, A. S. (Engineer); Kulikovskiy, L. F. (Doctor of technical sciences, Professor)

TITLE: Photoelectric amplifier with a high coefficient of utilization of the electrometer aperture angle

SOURCE: Priborostroyeniye, no. 9, 1964, 22-24

TOPIC TAGS: electrometer, photoelectric amplifier, photoelectrometer

ABSTRACT: A linear-type electrometer with an aperture of 1.5° is used in a new photoelectrometer instrument (see Enclosure 1) in which, at zero reading, the light beam covers one-half of each of two photoresistors connected in opposition (FSK-7, b "differential photoresistor"). The coefficient of utilization of the aperture is 35%. Other technical data given: number of stationary plates, 2 pairs; plate height, 16 mm; ID and OD, 5 and 16 mm, respectively; voltage

Cord 1/3

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681(

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681 og skragerska pores

NATES OF ALL

ACCESSION NI	R: AP4045	921				3 4
rated output cu	rrent, 3 m feedback <mark>a</mark>	a; error, 1.59 re used in the i	np; quantity ran 6 or less. A st instrument. Or	andard F-117 p	hotounit	
ASSOCIATION: Polytechnic Inc		levskiy politekt	nicheskiy instit	ut (Kuyby*shev	•	
SUBMITTED:	00			ENCL: 0		
SUB CODE: 1	e, ec	NO REF	SOV: 002	OTHER:	000	· ·
•		•			•	
		•				

CIA-RDP86-00513R00051681

<u>L 15756-65</u> EWT(1)/EWA(h) Peb Accession NR: AP4048842		00/011/0026/0027	
AUTHOR: Grigor'yev, A. S. Kulikovskiy, L. F.	; Khersanskiy, B. S.; Gri	gorovskiy, B. K.;	
TITLE: Photoelectrometric	amplifier ₂ 5	· · · ·	
SOURCE: Priborostroyeniye	, no. 11, 1964, 26-27	B	
TOPIC TACS: photoelectrom amplifier	etric amplifier, electrom	eter, electrometer	c .
ABSTRACT: This article de in meauring voltage, current ionizing-radiation dosimet meters. In this device (se E is placed in the null po	nt, and charge, and widel ry, mass-spectroscopy, bi ee Fig. 1 of the Enclosur	y applied to ology, and in pli a), a movable element	
E is placed in the null po exposed to the light of a is applied, the element tw the resultant flow of curr	lamp L. When input volta ins, causing unequal phot ent I through a feedback	ge ^l V _i (Fig. 1a) ocell exposure and resistor R:	
:		· · · ·	
Card 1/3	• • • • • • • • • • • • • • • • • • •		
			110 T MIN. 2716 T T

CIA-RDP86-00513R00051681

GRIGOR'YEV, ' S. (Moskva)

Carrying capacity of circular and annular plates made of plastically nonhomogeneous material. Inzh.zhur. 4 nc.3:560-505 464. (MIRA 17:10)

1. Institut mekhaniki AN SSSR.

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681(

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681

CIA-RDP86-00513R00051681

		and the second	
ACCESSION NR: AP4041644	5/0146/64/0	007/003/0016/0017	
AUTHOR: Grigor'yev, A. S.; (Grigorovskiy, B. K.		
TITLE: Methods for increasing of an electrometer	the deflection angle an	d for linearization of scale	
SOURCE: IVUZ. Priborostroye	eniye, v. 7, no. 3, 196	4. 16-17	
TOPIC TAGS: electrometer, el	ectrometer scale		
ABSTRACT: A simple addition Plates 4-5 (see Enclosure 1) en illumination of two photovariston square-law torque, acting as a r and widens the working deflectio 2 figures and 1 formula.	rs, create an additional	op, due to the unequal restoring torque. This	
ASSOCIATION: Kuyby*shevskiy Polytechnic Institute)	politekhnicheskiy instit	tut (Kuyby*shev	
SUBMITTED: 28 May63		ENCL: 01	
SUB CODE: EE, IE N	O REF SOV: 000	OTHER: 000	
Cord 1/2	•		
•			
			認い消

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681
ARAMANOVICH, I.G.; CRIGOR'YEV, A.S.; GRIGOLYUK, E.I.;
DZHANELIDZE; WITH.
Letter to the editor on N.D. Tarabasov's article "Stressed
state of nonhomogeneous parts connected with a tight fit."
Isv, AN SSSR Otd. tekh. nauk. Mekh. 1 mashinostr. no.2:
188-192 Mr-Ap '63. (MIRA 16:6)
(Strains and stresses)
(Tarabasov, N.D.)

CIA-RDP86-00513R00051681

CIA-RDP86-00513R00051681

CIA-RDP86-00513R00051681

APPROVED FOR RELEASE: Thursday, July 27, 2000 C

CIA-RDP86-00513R00051681(

CIA-RDP86-00513R00051681

Los T

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681

"APPROVED FOR RELEASE: Thursday, July 27, 2000

 PAPPROVED FOR RELEASE: Thursday, July 27, 2000
 CIA-RDP86-00513R00051681

 M 1
 Image: A proved Nate, with the first for Control
 Image: A proved Nate, with the first for Control

 M 2
 Image: A proved Nate, with the first for Control
 Image: A proved Nate, with the first for Control

 M 1
 Image: A proved Nate, with the first for Control
 Image: A proved Nate, with the first for Control

 M 1
 Image: A proved Nate, with the first for Control
 Image: A proved Nate, with the first for Control

 M 1
 Image: A proved Nate, with the first for Control
 Image: A proved Nate, with the first for Control

 M 1
 Image: A proved Nate, with the first for Control
 Image: A proved Nate, with the first for Control

 M 1
 Image: A proved Nate, with the first for Control
 Image: A proved Nate, with the first for Control

 M 1
 Image: A proved Nate, with the first for Control
 Image: A proved Nate, with the first for Control

 M 1
 Image: A proved Nate, with the first for Control
 Image: A proved Nate, with the first for Control

 M 1
 Image: A proved Nate, with the first for Control
 Image: A proved Nate, with the first for Control

 M 1
 Image: A proved Nate, with the first for Control
 Image: A proved Nate, with the first for Control

 M 1
 Image: A proved Nate, with the first for Control<

CIA-RDP86-00513R00051681

2.1在14.24倍和44.264.264为42643446422.2653-1

CIA-RDP86-00513R00051681

运动运行网络卫军

1.0

1

CONTRACTOR STATES

*Investigation of Iron Alloys with Manganese and Chromium. I. The Automatic Region. A. T. Grigor'ev and D. L. Kudrvastevy (Irred. Nell, Firsto KAm. bad., 1940, 16, (2), 82–90, c = the, 1950, 64, 5297. [In Russian]: Alloys containing approx 4 and 10%, chronom and variable quantities of manganese were subjected to dilatometric, thermal, hardness quantities of manganese were subjected to dilatometric, thermal, hardness of the substance, and microstructural analyses. At a manganese content of D 12%, the x-2 y transformation was accompanied by a considerable ther-inal effect, a sharp vol. decrease on heating and expansion on cooling. The electrical resistance, and uncreatructural analyses. At a manganese content of 0–12%, the z z z y transformation was accompanied by a complexible ther-mat hardness was at a point where the z z - y transformation lines emission. The max hardness was at a point where the z - y transformation lines emission that transformation took place over a temp, interval which meraward with the maximum content. The z - y transformation recurred at a hyper-max hardness content. The z - y transformation meraward with the manganese content. The initial and final temp, of z - y transformation first decreased and then increased with the chromium content. In allova with that y - z z, thereby forming a hyper-size. The latter increased with the manganese content. The initial and final temp, of z - y transformation first decreased and then increased with a sharp vol. expension on heating and the transformation was connected with a sharp vol. expension on heating and rotizetion on cooling. The thermal effect of this transformation took place within a neriow temp, interval and was not complete when easiled to room temp. The allova between these two regions had two kinds of transformation is z < y at high and z < z > z at low temp. Where with $z = 2z^{n}$, nonganese transformations. A new constituent was observed in alloys with chron in 4 and manganese 18^{n} , and chronium to and manganese 27^{n} . The place may be identified with a manganese. phase may be identified with a manganese.

1 1

1.1

"APPROVED FOR RELEASE: Thursday, July 27, 2000

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681

USSR/Academy of Sciences Chemistry - Biography	Mar 49	
"In the Department of Chemic	al Sciences" 2 pp	
"Vest Ak Nauk SSSR" No 3		
heard Prof A. T. Grigor'yev' Shetch of N. I. Stepanov," a "W. I. Stepanov's Work on th Diagrams." Stepanov's work istic" diagrams led to impor chemical transformations.	nd Prof V. 14. Anosov a ne Matrics of Chemical on "composition-character-	
	46/4916	X

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681

CARAGER BARBER CARAGE BARBAS (PROCESS)

CIA-RDP86-00513R00051681

GRIGOR'YEV, A.T.; GRUEDEVA, N.M.

Rffect of carbon on the formation of the structural diagram of the system iron - chromium - manganese. Isv.Sekt.fiz.-khim.anal. 21:121-131 '52. (MLRA 6:7)

1. Institut obshchey i neorganicheskoy khimii imeni N.S.Eurnakova Akademii nauk SSSR. (Iron - chromium - manganese alloys)

y regences

|--|
CIA-RDP86-00513R00051681

APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00051681(

CIA-RDP86-00513R00051681

LE STE ANDER ER BREI VIELE BREISERSENSE - LA BREISERSENSE - LA BREISERSENSE - LA BREISERSENSE - LA BREISERSENSE

CIA-RDP86-00513R00051681

GRIGOR'YEV, A. T.

.

Solid State Physics, "hermodynamics (1896) <u>Izv. Sektora Fiz.-Khim. Analiza (Inst. Obshch. i Neorgan. Khimii A. N. SSSR)</u>, No 22, 1953, pp 122-128 Grigor8yev, A. T., and ^Gruzdeva, N. M. Effect of Tungsten on the ^Gtructure of Diagram of State of the ^Ternary System Iron-Ohromium-Magnanese

An isothermal cross section at room temperature is ade of the diagram Fe-Cr-Mn \blacklozenge 2% W within limits of 6-16% Mn and 30% Cr. It was found by metallographic investigation that the presence of W shifts the exterior limit of gammaloop to higher concentrations of Cr, which leads to a formation of a three-phase region.

So: Moscow, Referativnyy, Zhurnal, -- Fizeka, No 5, 1954 W-31059

CIA-RDP86-00513R00051681

CIA-RDP86-00513R00051681

GRIGOR'YEV, A.T. 3 USSR. Requations for the crystallisation surface in ternary re-tiprocal systems. <u>A. Ciricor ev.</u> Doklody Aked. Nauk S.S.S.R. 88, 278-0(1053); cf. C.A. 47, 100837.— Math. Equations are developed for the crystan surface in ternary systems in which a vol. decompn. or mutual di-placement occurs. J. Roviar Leach BB (AN

 DEFIGOR 'ZN', A. T. USSR/Chemistry - Silver-chrome alloys Card 1/1 : Pub. 129 - 12/25 Author : Grigor 'yev, A. T.; Sokolovskaya, Ye. M.; Kruglova, M. I. Title : Alloys of silver with chromium Periodical : Vest. Mosk. un., Ser. fizikomat. i yest. nauk, Vol. 9, No. 3, 77-82, May 1954 Abstract : Investigate the silver-chromium system by thermal analysis, micro-hardness measurements, and study of macro-and micro-structures. Establish the silver-chromium equilibrium diagram from these results. Institution : Laboratory of the Chemistry of Metallic Alloys Submitted : February 4, 1952 	31001
 Author : Grigor'yev, A. T.; Sokolovskaya, Ye. M.; Kruglova, M. I. Title : Alloys of silver with chromium Periodical : Vest. Mosk. un., Ser. fizikomat. i yest. nauk, Vol. 9, No. 3, 77-82, May 1954 Abstract : Investigate the silver-chromium system by thermal analysis, micro-hardness measurements, and study of macro-and micro-structures. Establish the silver-chromium equilibrium diagram from these results. Institution : Laboratory of the Chemistry of Metallic Alloys 	ning the second s
 Title : Alloys of silver with chromium Periodical : Vest. Mosk. un., Ser. fizikomat. i yest. nauk, Vol. 9, No. 3, 77-82, May 1954 Abstract : Investigate the silver-chromium system by thermal analysis, micro-hardness measurements, and study of macro-and micro-structures. Establish the silver-chromium equilibrium diagram from these results. Institution : Laboratory of the Chemistry of Metallic Alloys 	
 Title : Alloys of silver with chromium Periodical : Vest. Mosk. un., Ser. fizikomat. i yest. nauk, Vol. 9, No. 3, 77-82, May 1954 Abstract : Investigate the silver-chromium system by thermal analysis, micro-hardness measurements, and study of macro-and micro-structures. Establish the silver-chromium equilibrium diagram from these results. Institution : Laboratory of the Chemistry of Metallic Alloys 	
 77-82, May 1954 Abstract : Investigate the silver-chromium system by thermal analysis, micro-hardness measurements, and study of macro-and micro-structures. Establish the silver-chromium equilibrium diagram from these results. Institution : Laboratory of the Chemistry of Metallic Alloys 	
micro-hardness measurements, and study of macro-and micro-structures. Establish the silver-chromium equilibrium diagram from these results. Institution : Laboratory of the Chemistry of Metallic Alloys	
Submitted : February 4, 1952	
	_

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681 GRIGOR'TEV, A.T.; SOKOLOVSKAYA, Ye.M.; KRUGLOVA, M.I. Silver-chronium alloys. Vest.Mosk.un. 9 no.5:77-81 My '54. (MIRA 7:7) 1. Laboratoriya khimii metallicheskikh splavov. (Silver-chronium alloys) Vuduntion B-82533

CIA-RDP86-00513R00051681

GRIGORYEV, AT.

The settlation of allois of the prices along median of the prices of the

CIA-RDP86-00513R00051681

APPROVED FOR RELEASE: Thursday, July 27, 2000

CIA-RDP86-00513R00051681(

na popular narrak i konstruktivni narrak i se	and a second
GRIGOR TEN IT.	•
Category : USSR/Solid State Physics - Systems	E-4
Abs Jour : Ref Zhur - Fizika, No 2, 1957 No 3782	
Author : Grigor'ev, A.T., Sokolovskaya, Ye. M., Maksimova, M.V Title Investigation of Alloys of the Gold-Cobalt System	<i>ī</i> .
Orig Pub : Zh. neorgan. khimii, 1956, 1, No 5, 1047-1051	
Abstract : The microstructure, hardness, electric resistivity, coefficient of electric resistivity of Au-Co alloys winitial materials were 99.99% gold and cobalt contain 0.01% carbon. The resulting diagram of state is good of other investigators. Increasing the Co content re- increase in the hardness of the alloys in the two-pha- 145 kg/mm ² at 98% Co. In the solid-solution region, off towards the pure components, sharply towards Au, towards Co. The electric resistivity of the alloys for Co is added, and then varies almost linearly with a for wards Co. The temperature coefficient of the electric also almost linearly in the two-phase region, and indi- creasing content of Co.	and approximately a agreement with data esults in a linear ase region, reaching the hardness drops and less sharply first increases as slight reduction to- ic resistivity varies
Card : 1/1	

CIA-RDP86-00513R00051681

"APPROVED FOR RELEASE: Thursday, July 27, 2000

了出现和Prode影响和Prode Profe Table Prode Prod GBIGCR'/CV 17. Ente Category : USSR/Solid State Fhysics - Systems Abs Jour : Ref Zhur - Fizika, No 3, 1957, No 6599 : Grigor'ev, A.T. Sokolovskayn, Yo.M., Budonneya, L.D., Tyutina, I.A., Maksimove, M.V. : Investigation of the Frlledium-Gold-Gobelt System Author Orig Fub : Zh. neorgan. khimii, 1956, 1, No 5, 1052-1063 Abstract : Thermal-analysis methods and studies of the hardness and the microstructure efter enhealing end herdening from different tomperatures, of the specific electric resistivity, end of its tomperature coefficients were all used for the first time to study the Id-Au-So triple system. The two-phase region in the gold-cobalt system sprends extensively into the triple region, which reaches up to 47% Ed at the center of the diagreen at room to pereture, and is gradually reduced with increasing temperature, reaching 355 Fd at 16000. The doublo-eutectic line starts out from the cutectic point of the Au-Co system and extends into the triple system until it reacher a section with 20% Fd, The remaining portion of : 1/2 Cord+r E A MEAN CONTRACTOR AND AND A TO THE AND A TO THE AND A TO AND AN A TAKANG AND A TAKANG A TAKANG A TAKANG A TAKANG

-

CIA-RDP86-00513R00051681

Composition Ash B-8 USSR/Thermodynamics - Thermochemistry. Equilibria. Physical-Chemical Analysis. Phase Transitions. : Referat Zhur - Khimiya, No 6, 1957, 18503 Abs Jour : A.T. Grigo. yev, L.A. Panteleymonov, L.M. Viting, V.V. Author Kuprina. : Study of System Copper - Cobalt. Title : Zh. neorgan. Mimii, 1956, 1, No 5, 1064-1066 Orig Pub : The system Cu - Co was studied by the methods of thermal Abstract analysis of microstructure and hardness (Brinell's method). The initial materials were electrolitic Cu and Co containing not more than 0.01% of C. Melting was carried out in a Kryptol furnace in corundum crucibles under BaCl₂ slag. The results of chemical analyses of the top and bottom sides of alloys do not confirm the bibliographic data concerning the solubility absence in the liquid state. No signs of foliation were discovered. A small addition of Cu to Co causes a sharp rise of the alloy hardness. The phase graph is attached. - 184 -Card 1/1

CIA-RDP86-00513R00051681

ter contraction .7 E-4 Category : USSE/Solid State Physics - Systems Abs Jour : Ref Zhur - Fizika, No 2, 1957 No 3792 : Grigeriev, A.T., Panteleymonov, L.A., Kuprina, V.V., Rybak, L.I. Author : Investigation of the Falladium-Copper-Cobalt System. Title Orig Pub : Zh. necrgan. khimii, 1956, 1, No 5, 1067-1073 Abstract : The diagram of state of the Pd-Cu-Co system was investigated by metallographic methods and by methods of thermal analysis, hardness measurement, measurement of electric resistivity, and measurement of the tempersture crefficient of electric resistivity. It is shown that the mutual solubility of Cu and Co increases with increasing Pd contents. The heterogeneous region of the Cu-Co system is transformed into a triple system at room temperature, is gradually reduced with increasing content of Pd in the alloys, and is closed at approximately 55% Pd. The hardness of alloys of the sections through the triple diagram with constant Pd content increases strongly from Pd-Cu side, passes through a maximum, and dimitishes towards the Pd-Co side. The electric resistivity of the Pirich sections of the system varies in an analogous manner. : 1/1 Card

. ...

- n

- 5

 Author : <u>Grigor'yev A.T.</u>, Panteleymonov L.A., Sokolovskaya Ye.M., Bunina T.V., Mastyugina M.V. Inst : Institute of General and Inorganic Chemistry, Academy of Sciences USSR Fitle : Investigation of Alloys of the Palladium-Cobalt-Nickel System Drig Pub : Izv. Sektora Fizkhim. analiza IONKh, AN SSSR, 1956, 27, 185-197 Abstract : By methods of thermal analysis, investigations of micro- structure, hardness and electric resistance, a study has been mide of the RI-Co-Ni system. Shape of liquidus and solidus curves of sections with constant Pd content, and also the microstructure of the allows indicate the the 	USSR/Fhysical	Chemistry - Thermodynamics, Thermochemistry, B-3 Equilibrium, Physico-Chemical Analysis, Phase Transitions
 Inst : Institute of General and Inorganic Chemistry, Academy of Sciences USSR Title : Investigation of Alloys of the Palladium-Cobalt-Nickel System Orig Pub : Izv. Sektora Fizkhim. analiza IONKh, AN SSSR, 1956, 27, 185-197 Abstract : By methods of thermal analysis, investigations of micro-structure, hardness and electric resistance, a study has been inde of the Pal-Co-Ni system. Shape of liquidus and solidus curves of sections with constant Pd content, and also the microstructure of the alloys indicate the structure. 	Abs Jour :	Referat Zhur - Khimiya, No 2, 1957, 3731
 Inst : Institute of General and Inorganic Chemistry, Academy of Sciences USSR Title : Investigation of Alloys of the Palladium-Cobalt-Nickel System Orig Pub : Izv. Sektora Fizkhim. analiza IONKh, AN SSSR, 1956, 27, 185-197 Nbstract : By methods of thermal analysis, investigations of micro-structure, hardness and electric resistance, a study has been inde of the Pal-Co-Ni system. Shape of liquidus and solidus curves of sections with constant Pd content, and also the microstructure of the alloys indicate the 	Author :	Grigor'yev A.T., Panteleymonov L.A., Sokolovskaya Ye.M.,
 Title Investigation of Alloys of the Palladium-Cobalt-Nickel System Orig Pub : Izv. Sektora Fizkhim. analiza IONKh, AN SSSR, 1956, 27, 185-197 Abstract : By methods of thermal analysis, investigations of micro-structure, hardness and electric resistance, a study has been inde of the RI-Co-Ni system. Shape of liquidus and solidus curves of sections with constant Pd content, and also the microstructure of the alloys indicate the section. 	Inst :	Institute of General and Inorganic Chemistry Academy
Abstract : By methods of thermal analysis, investigations of micro- structure, hardness and electric resistance, a study has been made of the RI-Co-Ni system. Shape of liquidus and solidus curves of sections with constant Pd content, and also the microstructure of the allows indicate that	Title ·	Investigation of Alloys of the Palladium-Cobalt-Nickel
structure, hardness and electric resistance, a study has been inde of the RI-Co-Ni system. Shape of liquidus and solidus curves of sections with constant Pd content, and also the microstructure of the allows indicate that the	Orig Pub :	Izv. Sektora Fizkhim. analiza IONKh, AN SSSR, 1956, 27, 185–197
components of the ternary system PA-Co-Ni form with one	\bstract :	been made of the R1-Co-Ni system. Shape of liquidus and solidus curves of sections with constant Rd content and
Card 1/3 -80 -	Card 1/3	

STELLE

CIA-RDP86-00513R00051681

Abs Jour	: Ref Zhur - Fisika, No 1, 1958, 989
Author	: Grigor'er, A.T., Sokolovskaya, Ye.M., Pyatnitskiy, V.H.
Inst	: Noscow State University
Title	: Transformations in the Solid State in Alloys of the Copper- Zinc System in the Region of the & -Solid Solution.
Orig Pub	: Zh. meorganich. Maimii, 1957, 2, No 7, 1547-1551
Abstract	: An investigation was made of the system Cu-Zn in the re- gion of the or-solid solution using the methods of dif- ferential thermal analysis, electric resistivity at high temperature, hardness, heat capacity, X-ray analysis, elec- tric resistivity, and its temperature coefficient. Two kinds of transformations have been established in alloys, and these are explained by the authors by the formation of two modifications of the chemical compound Cu ₂ Zn, mamely
Card 1/2	

AUTHORS:SOV/78-3-11-17/23 Vorob'yev, V. S.TITLE:The Investigation of the System Gold-Silver-Cobalt (Issledovaniye sistemy zoloto-serebro-kobal't)PERIODICAL:Zhurnal neorganicheskoy khimii, 1958, Vol 3, Nr 11, pp 2532-2536 (USSR)ABSTRACT:The phase diagram of the system gold-silver-cobalt was construct- ed and investigated. The investigations covered the thermal analysis, microstructure, Brinell hardness, electric resistance, and its temperature coefficients. The purest metals with im- purities of a maximum of 0,01% were the source material. The alloys were treated in krypton furnaces under a barium chloride layer.The fusion and hardness diagrams of the system Ag-Co in the case of a varying Au-content are given in the figures 2 and 3. The determination of the electric resistance was carried out by means of a potentiometer at 25° and 100°C. The electric re- sistance of the system Ag-Co in the case of a varying Au-content is given in figure 4. The electric resistance reaches a maximum			
 PERIODICAL: Zhurnal neorganicheskoy khimii, 1958, Vol 3, Nr 11, pp 2532-2536 (USSR) ABSTRACT: The phase diagram of the system gold-silver-cobalt was constructed and investigated. The investigations covered the thermal analysis, microstructure, Brinell hardness, electric resistance, purities of a maximum of 0,01% were the source material. The alloys were treated in krypton furnaces under a barium chloride the fusion and hardness diagrams of the system Ag-Co in the case of a varying Au-content are given in the figures 2 and 3. The determination of the electric resistance was carried out by means of a potentiometer at 25° and 100°C. The electric resistance 		AUTHORS:	Grigor'yev, A. T., Panteleymonov, L. A., Kuprina, V. V., Vorob'yev, V. S.
 PERIODICAL: Zhurnal neorganicheskoy khimii, 1958, Vol 3, Nr 11, pp 2532-2536 (USSR) ABSTRACT: The phase diagram of the system gold-silver-cobalt was construct-ed and investigated. The investigations covered the thermal and its temperature coefficients. The purest metals with impurities of a maximum of 0,01% were the source material. The alloys were treated in krypton furnaces under a barium chloride the fusion and hardness diagrams of the system Ag-Co in the case of a varying Au-content are given in the figures 2 and 3. The means of a potentiometer at 25° and 100°C. The electric resistance was carried out by sistance of the system of		AITLE:	The Investigation of the System Gold-Silver-Cobalt (Issledovaniye sistemy zoloto-serebro-kobal't)
ABSTRACT: The phase diagram of the system gold-silver-cobalt was construct- ed and investigated. The investigations covered the thermal analysis, microstructure, Brinell hardness, electric resistance, purities of a maximum of 0,01% were the source material. The alloys were treated in krypton furnaces under a barium chloride tayer. The fusion and hardness diagrams of the system Ag-Co in the case of a varying Au-content are given in the figures 2 and 3. The means of a potentiometer at 25° and 100°C. The electric res-		PERIODICAL:	•
Card 1/2 is given in figure 4. The electric resistance reaches a maximum			The phase diagram of the system gold-silver-cobalt was construct- ed and investigated. The investigations covered the thermal analysis, microstructure, Brinell hardness, electric resistance, purities of a maximum of 0,01% were the source materials with im- alloys were treated in krypton furnaces under a barium chloride layer. The fusion and hardness diagrams of the system Ag-Co in the case of a varying Au-content are given in the figures 2 and 3. The means of a potentionners in the resistance was carried out by
	С	Card 1/2	is given in figure 4. The electric resistance reaches a maximum

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681(

CIA-RDP86-00513R00051681

There are 6 figures, 2 tables, and 10 references, 4 of which are Soviet.	The Investi	Sov/78-3-11-17/23 approximately at a ratio of Ag : Co = 1 : 1. The results of the calculation of the temperature coefficients of the electric tables 1 and 5. The diagrams of the temperature coefficients analogous to the diagrams mentioned above have a maximum and a minimum. The microstructure of the alloys was investigated after the determination of the hardness of the latter. Dark phases in the alloys are rich in cobalt, light phases are rich in gcld. The limits of the individual ranges in the phase diagram were determined by means of the microstructure investigations. The investigations showed that the separation zone in the binary system silver-gold exists at room temperature and is reduced by about 67% gold.
Card 2/2	SUBMITTED: Card 2/ 2	There are 6 figures, 2 tables, and 10 references, 4 of which are Soviet. October 21, 1957

STREET, STREET,

1473 Fr. A. 24

 I. Melting Curves of the System Iron-Cobalt-Palladium (I. Diagramma plavkosti sistemy zhelezc-kobal't-palladiy) PERIODICAL: Zhurnal neorganicheskoy khimii, 1958, Vol 3, Nr 12, pp 2736-2739 (USSR) ABSTRACT: To determine the melting curves of the iron-cobalt-palladium system, alloys were studied which had a constant palladium content of 10-90 atoms % and varying iron and cobalt contents. As the starting materials the purest electrolytic iron, refined palladium and cobalt, and a carbon content not higher than 0.01% were used. The cooling curves were plotted using a Kurnakov recording pyrometer. The form of the liquidus and solidus curves of the sections shows that in the ternary system Fe-Co-Pd a continuous series of solid solutions form. The crystals of the solid solutions were ascertained by a micro-structural determination. 	AUTHOR TITLE:	Kuprina, V. V., Grigor'yev, A. T. SOV/78-3-12-21/36 Investigations of Alloys of the System Iron-Cobalt-Palladium (Issledovaniye splavov sistemy zhelezo-kobal't-palladiy)
ABSTRACT: To determine the melting curves of the iron-cobalt-palladium system, alloys were studied which had a constant palladium content of 10-90 atoms % and varying iron and cobalt contents. As the starting materials the purest electrolytic iron, refined palladium and cobalt, and a carbon content not higher than 0.01% were used. The cooling curves were plotted using a Kurnakov recording pyrometer. The form of the liquidus and solidus curves of the sections shows that in the ternary system Fe-Co-Pd a continuous series of solid solutions form. The crystals of the solid solutions were ascertained by a micro-structural determination.		1. Melting Curves of the System fron-Cobalt-Palladium (I. Diagramma plavkosti sistemy zhelezc-kobal't-palladiy)
system, alloys were studied which had a constant palladium content of 10-90 atoms % and varying iron and cobalt contents. As the starting materials the purest electrolytic iron, refined palladium and cobalt, and a carbon content not higher than 0.01% were used. The cooling curves were plotted using a Kurnakov recording pyrometer. The form of the liquidus and solidus curves of the sections shows that in the ternary system Fe-Co-Pd a continuous series of solid solutions form. The crystals of the solid solutions were ascertained by a micro-structural determination.	PERIOD	
Card 1/2	ABSTRA	system, alloys were studied which had a constant palladium content of 10-90 atoms % and varying iron and cobalt contents. As the starting materials the purest electrolytic iron, refined palladium and cobalt, and a carbon content not higher than 0.01% were used. The cooling curves were plotted using a Kurnakov recording pyrometer. The form of the liquidus and solidus curves of the sections shows that in the ternary system Fe-Co-Pd a continuous series of solid solutions form. The crystals of the solid solutions were ascertained by a
	Card 1,	

5(3), 18(6) AUTHORS:	SOV/156-5)-2-15/48 Pyatnitskiy, V. N., Grigor'yev, A. T., Sokolovskaya, Ye. M.
TITLE:	On Transformations in Solid Phase in Alloys of the System Silver - Zinc in the Range of the Solid a-Solution (O pre- vrashcheniyakh v tverdom sostoyanii v splavakh sistemy serebro - tsink v oblasti a-tverdogo rastvora)
PERIODICAL:	Nauchnyye doklady vysshey shkoly. Khimiya i khimicheskaya tekhnologiya, 1959, Nr 2, pp 280-283 (USSR)
ABSTRACT :	Investigations by other authors (Refs 1-10) pointed out anomalies in the system silver - zinc which are more close- ly investigated by the present paper. The method of differen- tial thermal analysis, the measurement of the electric resis- tance at high temperature and its temperature coefficient, as well as hardness are applied. The differential curves of thermal analysis show each of them two heat effects at low and at high temperature (Fig 1) pointing out endothermal transforma- tions in the α -range and which are caused by stable phase transitions. Figure 2 gives the phase diagram and table 1 the temperatures at which the effects set in. The phase diagram shows that at long annealing Ag_3 forms which has two modi-
Card 1/2	fications: a ₁ at low and a ₂ at high temperature. The curves

CIA-RDP86-00513R00051681

主义的复数形式

.

sov/156-59-2-15/48 On Transformations in Solid Phase in Alloys of the System Silver - Zinc in the Range of the Solid a-Solution electric resistance - temperature (Fig 3) of the alloys with 17.6 - 36.0% by atom 2n confirm the formation of $Ag_{z}2n$ and facilitate a more accurate determination of the transformation temperature (Table 2). The differences between the values of the thermal analysis and the measurement of resistance are explained by the different rates of heating. The hardness of annealed alloys (Table 3, Fig 4) shows in the range of 25% by atom Zn a broad, flat minimum which is also indicative of Ag₃Zn. The minimum at 31% by atom Zn might indicate the limit of the solubility of zinc in silver at low temperature. The temperature coefficient of the electric resistance shows a maximum at 25% by atom zinc which is also explained by the formation of Ag₃Zn. There are 4 figures, 4 tables, and 12

references, 2 of which are Soviet, and 1 Polish.

"APPROVED FOR RELEASE: Thursday, July 27, 2000

PRESENTED BY: Kafedra obshchey khimii Moskovskogo gosudarstvennogo universiteta im. M. V. Lomonosova (Chair of General Chemistry, Moscow State University imeni M. V. Lomonosov)
SUBMITTED: November 28, 1958
Card 2/2

THE PROPERTY SALES

18(6) AUTHORS:	Grigor'yev, A. T., Kuprina, V. V., SOV/78-4-3-24/34 Nedumov, N. A.
TITLE:	The Phase Diagram of the System Chromium - Tantalum (Diagramma sostoyaniya sistemy khrom - tantal)
PERIODICAL:	Zhurnal neorganicheskoy khimii, 1959, Vol 4, Nr 3, pp 651-654 (USSR)
ABSTRACT :	The system chromium - tantalum was investigated by the method of thermal and microscopic analysis. As initial product tantalum was used in a purity of 99.4 $\%$ and chromium in a purity of 99.68 %. Chromium diffuses extremely slowly in tantalum alloys. In order to attain the equilibrium a longer treatment at higher temperature is necessary. In the system the chemical compound Cr_2Ta is formed, which melts
	at 2,020 ⁰ without decomposing. The chemical compound Cr ₂ Ta dissolves the individual components to a hardly recognizable extent. It was found that the chemical compound Cr ₂ Ta forms
Card 1/2	a eutectic with solid solutions of chromium in tantalum at 1,980° and 75 % tantalum. With solid solutions of tantalum

COLUMN TO THE

1212 A.S. 4144

le fuase pi	agram of the System Chromium - Tantalum $S07/78-4-3-24/34$ in chromium it forms a eutectic mixture at 1,700° and 34 % tantalum. The solubility of tantalum in chromium amounts at a eutectic temperature to~10 %. This value agrees well with the values given in publications. The cooling curve of the alloy was plotted corresponding to the chemical compound Cr_2Ta . The first thermal effect at 2,020° corresponds to the
	crystallization of the alloy from the liquid state. The second effect at 1,805° points to the transformation of the modification of $\operatorname{Cr}_2\operatorname{Ta}$ from $\int \longrightarrow \xi$. Based upon the results
	the phase diagram chromium - tantalum was plotted and is given in figure 4. There are 4 figures and 2 references.
UBMITTED:	July 2, 1958
ard 2/2	

LINE CONTRACTOR

18(3) AUTHORS:	Kuprina, V. V., Grigor'yev, A. T. SOV/78-4-3-25/34
TITLE:	Investigation of the System Iron - Palladium (Issledovaniye sistemy zhelezo - palladiy)
PERIODICAL:	Zhurnal neorganicheskoy khimii, 1959, Vol 4, Nr 3, pp 655-661 (USSR)
ABSTRACT:	The system iron - palladium was investigated by micro- structural and differential-thermal analysis, determination of the electric resistance and hardness. The hardness of the alloys was determined in softened and hardened samples at 1,000°, 900°, 800°, 750°, 700°, and 600°. Microstructural analysis was carried out on the same sample. The electric resistance was determined at 25° and 100° by means of the potentiometer PPTN-1. Based upon the microstructural and differential-thermal analysis the diagram was plotted and is given in figure 1. This system contains two chemical com- pounds: PdFe and Pd ₂ Fe. The solubility of palladium at 800°
Card 1/2	in & iron is not more than 5 atom %. Y iron mixes with palladium to an unlimited extent. In the case of alloys with 40 atom % palladium a polymorphic transformation occurs at

CIA-RDP86-00513R00051681

Investigation of the System Iron - Palladium

SOV/78-4-3-25/34

low temperatures caused by the transition of ∞ iron into % iron. Hardness in hardened alloys with 40-80 atom %palladium is characterized by a minimum. In the case of higher temperatures the minimum in hardened alloys is more intensive. As an explanation for the minimum the formation of martensite and the stabilization of the % phase are mentioned. The chemical compound Pd₃Fe occurs in the case of low temperatures as

PdFe. The curves of the specific electric resistance at 25° and 100° and of the temperature coefficient show marked singular points of the chemical compound PdFe in the hardened alloy. In the case of softened alloys the curve of hardness shows a weakly marked minimum. The section of the curve limiting the chemical compounds leads to the formation of a eutectic point at 65 atom % palladium. There are 5 figures, 3 tables, and 10 references, 4 of which are Soviet.

SUBMITTED: September 30, 1958

Card 2/2

ENERGY POINT

TITLE:	Conversions in the Solid State of the Alleys of Iron With Cobalt and Palladium (Prevrashcheniya v tverdom sostoyanii v splavakh zheleza s kobal'tom i palladiyem)
PERIODICAL:	Zhurnal neorganicheskoy khimii, 1959, Vol 4, Nr 7, pp 1606-1612 (USSR)
ABSTRACT:	An investigation was carried out of alloys in the cross section of the phase diagram parallel to the iron-cobalt side with a palladium content of 2, 5, 10, 20, 30, 40 and 50 at% Pd by the method of the differential thermal analysis and examination of the microstructures. The results obtained are shown in a table and in figure 1. The analysis of the thermograms $(F_{150}, 2,3)$ proven that in the majority of cases of investigated alloys a conversion in the solid state occurs within the range of between 700 and 900°, which is accompanied by considerable thermal effects. A comparison between the data of the thermal analysis and those of the microstructures showed that these effects cor- respond to the temperature of transition from the heterogeneous range into the range of the solid y-solutions. With an increase
Card $1/2$	range into the range of the solid j-scrutions, with an instant

THE REAL PROPERTY.

CIA-RDP86-00513R00051681

Conversions in Palladium	307/78-4-7-23/44 in the Solid State of the Alloys of Iron With Cobalt and in the palladium content the curves separating the range of the mechanical mixture from that of the homogeneous solid solution become increasingly higher, pass through a flat minimum, and then decline sharply. An eutectoidal decay in the system Fe ~ Pd, in the case of alloys that are rich in iron, leads to a broad three-phase range $a - V - V_1^{-1}$ (V_1^{-1} = solid solution in the compound PdFe). Figure 5 shows the microstructures of the hardened or annealed alloys. With a content of 2 at% Pd the ordered range a_1 enters into the two-phase range $(a+2)$, where it is conserved until about 46 at% Pd is attained. The range of the ternary solid Y-solutions, in the case of alloys rich in cobalt, as well as in that of alleys containing more than 50 at% Pd, is conserved right down to room temperature. There are 5 flgures, 1 table, and 13 references, 3 of which	
SUBMITTED:	January 28, 1959	
Card 2/2		
		たない。

a la sure

WWW.SE ST

5(2),18(7) AUTHORS:	SOV/78-4-9-18/44 Pyatnitskiy, V. N., Grigor'yev, A. T., Sokolovskaya, Ye. M., Lysova, Ye. V.
TITLE:	On Transformations in Solid State in the Alloys of the System Silver - Cadmium in the Range of the Solid & -Solution
PERIODICAL:	Zhurnal neorganicheskoy khimii, 1959, Vol 4, Nr 9, pp 2039-2042 (USSR)
ABSTRACT:	The above system was chosen in expectance of an analogy to the solid solutions Cu-Zn, Au-Zn, and Au-Cd, which exhibit transformations in the solid state. Thermal analysis was applied together with the determination of the hardness of annealed alloys hardened by quenching. Alloys containing $2 - 40$ atoms Cd were investigated. Thermal analysis was carried out by means of a PK-52 pyrometer. Thermal effects indicating transformations in the solid \ll -solution occurred as shown in figure 1. Results are given in table 1, the phase diagram in figure 2. Compounds formed were $Ag_{3}Cd$ at 370° , $Ag_{2}Cd$ at 450° , and another below 700° containing $4 - 8$ atoms Cd, the composition of which is being investigated. The hardness of the annealed alloys is given in
Card 1/2	investigated. The hardness of the dimension the region table 2 and figure 3. One wide minimum in the region

CIA-RDP86-00513R00051681

On Transformations in Solid State in the Alloys of SOV/78-4-9-18/44 the System Silver - Cadmium in the Range of the Solid α -Solution 25 - 33 atom **%** Cd replaces the two minima expected for Ag₃Cd and Ag_2Cd , thus indicating formation of a sutsectic. The hardness of the alloys heated to 300 and 550° and quenched with solid carbon dioxide (Table 3, Fig 4) reveals that at 300° the minima in the regions 25 - 33 atom % and 4 - 8 atom % Cd are maintained whereas at 550° only the latter is preserved and still found at 650°. The heat capacity and electric resistance of these alloys at high temperatures are being investigated at present. There are 4 figures, 3 tables, and 7 references, 2 of which are Soviet. ASSOCIATION: Moskovskiy gosudarstvennyy universitet im. M. V. Lomonosova Kafedra obshchey khimii (Moscow State University imeni M. V. Lomonosov, Chair of General Chemistry) SUBMITTED: October 9. 1958 Card 2/2
CIA-RDP86-00513R00051681

5(2) AUTHORS:	SOV/78-4-9-38/44 Grigor'yev, A.T., Guseva, L.I., Sokolovskaya, Ye.M., Maksimova, M.V.
TITLE:	On Polymorphous Transformations of Chromium in Alloys With Tantalum
PERIODICAL:	Zhurnal neorganicheskoy khimii, 1959, Vol 4, Nr 9, pp 2168-2169 (USSR)
ABSTRACT:	The cooling curve for liquid chromium determined by N. A. Nedumov (Ref 4) exhibits, in the vicinity of the very distinct maximum corresponding to the crystallization temperature, a second maximum which relates to the transition of chromium into another modification at 1815°. By means of microscopic, thermal, and X-ray analyses the chromium-tantalum alloy was investigated in the range rich in chromium after hardening; The location of the solidus and the limits of solubility of Ta in Cr were checked. 1830° was found to be the temperature of transition between the modifications ε and O . In contrast with the data obtained by N. Grant (Refs 1, 2) it was found that immediately after freezing chromium does not possess a face-centered but a cubic body-centered
Card $1/2$	

CIA-RDP86-00513R00051681

,#

CONTRACT

A	2308, 1471, 1456	84308 5/189/60/000/004/004/006
18.1150		B002/B060
AUTHORS :	Grigor'yev, A. T., Sokolovskaya, Y Sokolova, I. G., Pavlov, V. N., Ma	ASTIOVAL MY TO
TITLE:	High-temperature Modifications of Diagram of the System Chromium - M Rich in Chromium	N /
PERIODICAL:	Vestnik M <u>oskovskogo universitet</u> a. No. 4, pp. 23 - 24	
showed that of zones of mixe their origin 1650°C ($\delta \rightleftharpoons \gamma$ found on the analysis of	dy of the binary system chromium - r due to the phase transformations of ed crystal formation and three two- in the transformation points of ch:), and 1300°C ($\gamma \rightarrow \beta$). These transfor heating and cooling curves of chromithe the chilled samples gave the follow dy centered cubic crystal with a = , and for 13% Mo it has the constan	phase zones (Fig. 2), having romium: $1830^{\circ}C$ ($\epsilon \neq \delta$), rmation points are also mium iodide (Fig. 1). X-ray ing results: The ϵ -modifica- 2.887 + 3 kX; the δ -phase
Card $1/2$		
	LINEAR LINEAR AND AND A LINEAR AND	
14		

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681 84308 High-temperature Modifications of Chromium and S/189/60/000/004/004/006 the Phase Diagram of the System Chromium -B002/B060 Molybdenum in the Region Rich in Chromium o/a = 1.604; the γ -phase is a body-centered cubic crystal with a lattice constant similar to the ε -phase; the β -modification is probably a facecentered cubic crystal. Results obtained from studies of the systems Cr. Mo, Cr-W, Cr-Nb, Cr-Ta, Cr-Fe, Cr-Ni, Cr-Co, Cr-Fe-Ni, and Cr-Co-Ni, were communicated to the konferentsiya po zharoprochnym metallam i splavam (Conference on Heat-resistant Metals and Alloys) in April, 1958, and April, 1960, as well as to the VIII Mendeleyevskiy s"yezd (8th Mendeleyev Congress) in March, 1959. There are 2 figures and 2 non-Soviet references. ASSOCIATION: Kafedra obshchey khimii (Chair of General Chemistry). Kafedra neorganicheskoy khimii (Chair of Inorganic Chemistry) SUBMITTED: April 2, 1960 Card 2/2

中国运行和建定的

12. 1280 Authors:	69024 Grigor'yev. A. T., Sokolovskaya, Ye. M., S/078/60/005/04/021/040 Zergarova, M. I., Maksimova, M. V. B004/B016	
TITLE:	Investigation of Alloys of the Palladium - Silver - Chromium System	
PERIODICAL:	Zhurnal neorganicheskoy khimii, 1960, Vol 5, Nr 4, pp 894 - 901 (USSR)	
ABSTRACT:	The authors briefly refer to data available in publications on the binary systems Pd - Ag, Ag - Cr, and Pd - Cr and in this connection mention Ye. Ya. Rode (Ref 3), V. G. Kusnetsov (Ref 4), V. A. Nemilov et al. (Ref 5), and A. T. Grigor'yev et al. (Ref 7). To investigate the phase diagram of the ternary system Pd - Ag - Cr alloys of seven sections were prepared with a palla- dium content between 20 and 80% increasing by 10% each time. Furthermore, the sections with 35.65 and 75% palladium were in- vestigated. Thermal analysis was made by means of an N. S. Kurnakov recording pyrometer. The results are given in table 1 and illustrated in figure 2. The hardness test was car- ried out by impressing a steel ball of a diameter of 10 m with a load of 250 kg into the annealed specimens (Table 2, Fig 3). The microstructure (Figs 4,5) was investigated on samples etched	
Card 1/2	by an alcoholic bromine solution. Electrical resistance at	
ng mang katikang pang pang pang katikang mang pang pang pang pang pang pang pang p		

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681 69024 8/078/60/005/04/021/040 Investigation of Alloys of the Palladium - Silver -B004/B016 Chromium System 25 and 100° was determined by the potentiometric method (Table 1, Fig 6). Therefrom the temperature coefficient of electrical resistance was calculated (Table 1, Fig 7). On the basis of the resultant data the phase diagram (Fig 1) was plotted. The region of decomposition occurring in the Ag - Cr system likewise exists in the ternary system and reaches up to about 42% Pd. The largest part of the diagram consists of a region of mechanical mixing. A sutsctic point is assumed to be near the Ag in the Ag - Cr system, which is connected with the eutectic point of the Pd - Cr system by the line of the double sutsctic. Part of the diagram in the palladium corner consists of a solid solution resulting from the binary system Pd - Cr and adjoining the system Pd - Ag as a narrow zone. There are 7 figures, 2 tables, and 9 references, 4 of which are Soviet. ASSOCIATION: Moskovskiy gosudarstvennyy universitet im. M. V. Lomonosova Kafedra obshchey khimii (Moscow State University imeni M. V. Lomonosov, Chair of General Chemistry) SUBMITTED: January 31, 1959 Card 2/2 \mathcal{T} 1.11月1日日日

IEDEN 3669 M

6-01-2 6954/	
S/078/60/005/05/19/037 B004/B016	
18.1200	
AUTHORS: Grigor'yev, A. T., Sokolovskaya, Ye. M., Altunina, L. N.,	
KARTIBOVA, M. V.	
TITLE: Investigation of Alloys in the System Palladium - Copper - Chromium	
PERIODICAL: Zhurnal neorganicheskoy khimii, 1960, Vol. 5, No. 5, pp. 1112-1118	
TEXT: In the introduction the authors give a survey of publications dealing with the binary component systems of the ternary system Pd - Cu - Cr. They refer to papers by V. A. Nemilov et al. (Ref. 12) and A. A. Rudnitskiy (Ref. 13). Fig. 1 gives the phase diagrams of the binary systems (adjacent to the resultant diagram of the ternary system). The ternary system was investigated in nine sections with a Pd content of between 10 - 90 wt% Pd increasing by 10% each time. The thermal analysis was made by means of an N. S. Kurnakov pyrcmeter (Fig. 2). Further the microstructure of the alloys was investigated, which were annealed at 800-1,000 and hardened, as well as etched with alcoholic bromine solution (Figs. 3, 4). Their Brinell hardness was determined (Fig. 5), the electric resistance measured at 25 and 100 (Fig. 6), and its temperature coefficient determined (Fig. 7). The experimental data are also summarized in a table. The phase diagram is given in Fig. 1. The range of disintegration in the liquid state, which is observable in the system Cu-Cr, is also maintained in the phase diagram of the ternary system Card 1/2	

CIA-RDP86-00513R00051681

GATE 64541 s/078/60/005/05/19/037 Investigation of Alloys in the System Palladium -B004/B016 Copper - Chromium and reaches up to 35% Pd. The major part of the diagram is occupied by a mechanical mixture with a binary eutectic line which connects the eutectic points of the systems Cu-Cr and Pd-Cr. In the Pd corner there is a range of solid solution which originates from the system Pd-Cr and is adjacent to the system Pd-Cu as a narrow strip. The range of solid solution increases with increasing temperature. There are 7 figures, 1 table, and 14 references, 3 of which are Soviet. Moskovskiy gosudarstvennyy universitet im. M. V. Lomonosova ASSOCIATION: Khimicheskiy fakul'tet Kafedra obshchey khimii (Moscow State University imeni M. V. Lomonosov, Chemical Department, Chair of General Chemistry) SUBMITTED: February 20, 1959 Card 2/2

त्मराय मुख्य गण्ड सुरुद्धा हे स्वयं । जन्म स्वयं स

.

GRIGOR'YEV, A.T.; SOKOLOVSKATA, Ye.M.; SIMAHOV, Yu.P.; SOKOLOVA, I.G.; FAYLOV, V.I. High-temperature modifications of chromium and the structural diagram of the system chromium - molybdenum in the region rich in chromium. Vest. Mosk un. Ser. 2: Ehim. 15 no.4:23-24 Jl-Ag '60. (MIRA 13:9) 1. Eafedra obshchey khimii 1 kafedra neorganicheskoy khimii Moskovskogo universiteta. (Chromium) (Molybdenum)

CIA-RDP86-00513R00051681

CIA-RDP86-00513R00051681

的过去分词

Investigation of the Iron - Palladium -Silver System S/078/60/005/011/001/025 B015/B060

were then etched in an alcoholic bromine solution and the microstructure was examined (Fig. 9, microphotographs, Table 2, compositions of alloys at which layers separate in the liquid phase). The investigation results supplied show that the region of layer separation observed in the binary system iron - silver extends far into the ternary system and reaches into the middle of the diagram up to a content of about 57 atom% of palladium. In the palladium corner of the diagram there is the region of solid solutions which in the form of two narrowing bands at the opposite sides of the diagram reaches into the region palladium - silver and palladium iron. Between the region of solid solutions and that of layer separation there is the heterogeneous field with the eutectic line. The latter starts from pure silver near the boundary to the solid solution and then draws away toward the center of the heterogeneous region (Fig. 1). Investigations of the hardness of cross sections showed that the transition from one phase region to another is in most cases characterized at the hardness curve by intersecting curve branches. In contrast therewith, the boundaries of the phase regions may not be determined on the basis of the curves of electrical resistance and respective temperature coefficient.

Card 2/3

这种意义的 经资格合置

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681 a gruagsaga egyalen unerene a 87337 S/078/60/005/011/025/025/XX B015/B060 1645, 1454 18 1235 Grigor'yey, A. T., Sokolovskaya, Ye. M., Maksimova, M. V., AUTHORS: Sokolova, I. G., Nedumov, N. A. Polymorphous Conversions of Chromium in Alloys With Tantalum TITLE: Zhurnal neorganicheskoy khimii, 1960, Vol. 5, No. 11, PERIODICAL: pp. 2640-2642 TEXT: The authors have established in Refs. 1-5 that chromium appears in five modifications in its alloys. In addition to data from Refs. 1, 2, the present article presents the results of a study on the polymorphism of chromium in the constitution diagram Cr - Ta in the chromium-rich region. The specimens prepared in previous experiments (Refs. 1, 2) with 0.2 to 12 wt% Ta were examined. In doing so, the authors applied the thermal method by recording the heating and cooling curves on N. A. Medumow's device, and the differential heating curves of annealed alloys (up to 1350°C) by a NK-52 (PK-52) pyrometer. Microhardness was measured, and X-ray analyses were made. The constitution diagram (Fig. 1) was drawn on the basis of microstructural determinations (Fig. 2) and thermal analyses (Table). The Card 1/2

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681(

 δ-, and ε-modifications as a and δ+ε which proceed from modifications: 1830°C (ε = α) about 930°C (β = α). Four e the region of the Cr - Ta con and 775°C, which are caused h solid solutions. X-ray data of yielded by previous investiges 5 Soviet references. ASSOCIATION: Moskovskiy gos khimii (Moscow Chemistry) SUBMITTED: June 6, 1960 		<u>_</u>	
 δ-, and E-modifications as a and δ+E which proceed from modifications: 1830°C ($\varepsilon \rightarrow \alpha$). Four ϵ the region of the Cr - Ta con and 775°C, which are caused h solid solutions. X-ray data of yielded by previous investigates 5 Soviet references. ASSOCIATION: Moskovskiy gos khimii (Moscow Chemistry) SUBMITTED: June 6, 1960 	Chromium in	57337 5/078/60/005/011/025/025/XX B015/B060	- N.
and 775 C, which are caused is solid solutions. X-ray data of yielded by previous investige 5 Soviet references. ASSOCIATION: Moskovskiy gos khimii (Moscow Chemistry) SUBMITTED: June 6, 1960	well as four tweether points of $\pi \delta$, 1650°C ($\delta = \frac{1}{\epsilon}$	tions formed by the α -, β -, γ -, co-phase regions $\alpha+\beta$, $\beta+\gamma$, $\gamma+\delta$, autual transition of the chromium $\rightarrow \gamma$), about 1300°C ($\gamma \rightarrow \beta$), and	
khimii (Moscow Chemistry) SUBMITTED: June 6, 1960	by the eutectoi of the individu		
	sudarstvennyj u w State Univers	niversitet, Kafejra obshchey ity, Department of General	
Card 2/2			

CIA-RDP86-00513R00051681

		· · ·
	S/078/60/C05/011/018/025 B015/B060	
AUTHORS :	Grigor'yev, A. T., Ye Yuy-Pu, Sokolovskaya, Ye. M.	i
TITLE:	Constitution Diagram of the Chromium - Cobalt System in the Chromium-rich Region	
PERIODICAL:	Zhurnal neorganicheskoy khimii, 1960, Vol. 5, No. 11, pp. 2642 - 2644	
stated that chromium pol diagram in t annealed and analyses wer hardness. Th 900°C for 19 320 h, at 50 to cool down	ntinuation of earlier papers (Refs. 1-6), where it has been in chromium alloys chromium has five modifications, the ymorphism was studied here by drawing the Cr - Co constitution he chromium-rich region. The microstructure of specimens hardened at different temperatures was examined, thermal e carried out, and hardness was measured along with micro- e specimens were annealed in argon at 1000°C for 20 h, at 0 h, at 800°C for 190 h, at 700°C for 310 h, at 600°C for 0°C for 450 h, and at 400°C for 360 h, and were then allowed slowly to room temperature. The hardening took place at in earlier described (Ref. 2) furnaces, or at 1300°-900°C in	\checkmark
an a		

CIA-RDP86-00513R00051681

· 建筑 建铬化石

Constitution Diagram of the Chromium - Cobalt S/078/60/005/011/018/025 B015/B060 System in the Chromium-rich Region water. On the strength of data of microstructural analysis, a number of two-phase regions were determined on the constitution diagram (Fig. 1) $(\alpha + \beta, \beta + \gamma, \gamma + \delta, \delta + \varepsilon)$ proceeding from the chromium ordinate and shifting toward lower temperatures with decreasing chromium content. At 1700°C the following phase regions were observed with rising cobalt content: δ-solid solution (99.1 at% Cr), mechanical mixture of solid solutions δ and ϵ (needle-shaped crystals from 97.5 at% Cr down), a very narrow region of homogeneity. The 5-phase does not form any corresponding alloy. Examination at the other hardening temperatures indicated the solid γ -solution, the mechanical mixture $\gamma + \delta$, the solid δ -solution and the mixture $\delta + \epsilon$. As contrasting with other constitution diagrams on chromium base there occurs no sutsctoid dissociation in the β -region, and the region is conserved down to low temperatures. The results of thermal analysis confirmed those obtained from microscopic examinations. The thermal effects (Table) at 1090° and 1080°C upon the curves of the alloys with 77.3 and 86.5 at% Cr correspond to the eutectoid horizontal, i.e., to the dissociation of the solid γ -solution, whereas the break at 1140°C (77.4 at% Cr) corresponds to the second eutectoid line, i.e., tc the dissociation of the solid &-solution. The thermal effects observed at Card 2/3CONSTRUCTION OF CONTRACTOR DE LA CONTRACTÓRIA DE LA

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681(

۰.

"APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681 化二氯化氯 计数量 计多数数字变形 正正的 叶叶叶和 Constitution Diagram of the Chromium - Cobalt S/078/60/005/011/018/025 B015/B060 System in the Chromium-rich Region 600-700°C could not be clarified. Measurements of microhardness showed that alloys of the same composition, but hardened from different phase regions, have different degrees of hardness. There are 2 figures, 1 table, and 7 references: 6 Soviet and 1 US. ASSOCIATION: Moskovskiy gosudarstvennyy universitet, Khimicheskiy fakul'tet (Moscow State University, Department of Chemistry) June 6, 1960 SUBMITTED: . Card 3/3 .

FEARTHAT FIAT

•	30340	
18 1235	S/189/61/000/006/001/005 D228/D304	
AUTHORS:	Grigor yev, A.T. and Sokolovskaya, Ye.M. Solid-state transformations in chromium and its alloys	
PERIODICAL:	No. 6, 1961, 2-15	
state trans brittleness nitely unde tical appli tions of ch investigati been carrie splavov Kaf	authors discuss their own and other data on solid- formations in chromium and its alloys. The increased of such materials the cause of which is not defi- rstood at present generally hinders their prac- cation, so the question of the allotropic modifica- romium is of great interest. In recent years the on of chromium and its binary and ternary alloys has ed out at the Laboratoriya khimii metallicheskikh Tedry obshchey khimii MGU (Laboratory of the Chemistry	X
Card 1/4		•

BEATERS BEATERS - THE TANK

CIA-RDP86-00513R00051681

30349 S/189/61/000/006/001/005 D228/D304

Solid-state transformations ...

of Metal Alloys, Department of General Chemistry, Moscow State University) by A.T. Grigor'yev et al. Their experimental t-chniques included thermal, microscopic, and X-ray analyses; hardness determinations; and electroresistance measurements. Equipment designed by N.A. Nedumov (Ref. 27: Zh.fiz.khimii, 34, no.1, 184, 1960) was employed to ascertain the transformation temperatures. By constructing structural diagrams for binary alloys of the system Gr - Ni the authors detected 5 homogeneous regions: α , β , χ , δ , ϵ . In accordance with N.S. Kurnakov's principle (Ref. 31: Vvedeniye v fiziko-khim. analiz / Introduction to physico-chemical analysis 7, Izd. AN SSSR, 1946) these monophase regions represent solid solutions formed on the base of modifications of chromium with body-centered cubic, face-centered cubic, and hexagonal structures. On quenching different alloys two-phase regions were observed at the following Ni concentrations and temperatures: $4\% - 1700^\circ$; 1%-1500°; and 13%-1500°. They are believed to be due to the polymorphic

Card 2/4

Charles I Represent to the line of the second se

CIA-RDP86-00513R00051681

30340 s/189/61/000/006/001/005 D228/D304

Solid-state transformations ...

conversion of the δ , χ , and β forms to the respective ϵ , δ , and χ modifications. The two-phase regions ϵ + δ , δ + χ , and χ + β were also detected in binary Cr - W alloys. Here the eutechtoid decomposition of the solid solutions \mathcal{E} , \mathcal{S} , and \mathcal{C} with eutechtic points at 1320 (47% W), 1150 (16% W), and 1050 (12% W) re-spectively - is observed on the structural graph at the inter-section of the three regions with the binodal curve; this is correspondented by data with for the structure of allows where corroborated by data cited for the structure of alloys whose composition corresponds to these points. Analogous results were obtained by the authors when studying binary alloys of Cr with Nb, Ta, Mo, Fe, and Go. Their data for the ternary systems Cr - V - Mo and Cr - Fe - Ni, in which 3 three-phase and 4 two-phase regions occur, also confirm the main conclusions deduced from the investigation of binary systems, the existence of fire from the investigation of binary systems: the existence of five From the investigation of clinary systems: the existence of f polymerphic modifications of chromium $-\alpha$, β , β , δ , β - with approximate transition temperatures of 930 for α -7 β , 1320

Card 3/4

"中国的"合品是一些"专家"。

CIA-RDP86-00513R00051681

CIA-RDP86-00513R00051681

"APPROVED FOR RELEASE: Thursday, July 27, 2000

21122 s/153/61/004/001/001/009 4016, 1145, 1555 B110/B203 18 7500 Kuprina, V. V., Grigor'yev, A. T. AUTHORS: Polymorphous $a \rightleftharpoons \gamma$ conversion in alloys of iron with TITLE: cobalt and palladium Izvestiya vysshikh uchebnykh zavedeniy. Khimiya i PERIODICAL: khimicheskaya tekhnologiya, v. 4, no. 1, 1961, 7-10 TEXT: The authors studied the limits of polymorphous $\alpha \rightleftharpoons \gamma$ conversion in Fe - Co - Pd alloys. The transition from binary to ternary systems has been described in publications. According to earlier investigations carried out by the authors, the conversion temperature in the Fe - Pd system drops with increasing Pd content until the intersecting point with the curve limiting the range of the chemical compound PdFe (phase γ_1). The intersecting point represents the eutectic (620°C and 40 at% Pd). In the present paper, the authors studied cross sections of tempered and hardened Fe - Co alloys with a constant Pd admixture of 2, 5, 10, 20, 30, 40, 50 at% by differential thermoanalysis (I) and microstructural Card 1/7

RBCCLAREN

Polymorphous a ry conversion analysis (II). To obtain complete conver alloys were long annealed in an induction	21122 S/153/61/004/001/001/009 B110/B203 rsion in solid state, the furnace under a BaCl, layer,	Y
and then suddenly cooled in ice water from to study microstructure; the annealing ing annealing temperature (1000°C: 250 800°C: 800-600 hr; 750°C: 500-880 hr; 750-1000 hr). In method (I), the heating recorded with a ΠK -52 (FK-52) Kurnakov couple (Fig. 1). Here, conversion takes Pd admixtures between 700 and 900°C. The to the transition temperature from the h range of solid γ -solutions, as is shown thermal analysis and the microstructure temperatures above and below the convers alloys, the eutectic decomposition occur to a wide three-phase range ($\alpha + \gamma + \gamma_1$)	om 1000, 900, 800, 750, 700, 600°C time was increased with decreas- hr; 900°C: 250-300 hr; 700°C: 800-500 hr; 6C0°C: g curves of tempered alloys were pyrometer and a Pt-PtRh thermo- place in solid state with any e heat effect observed corresponds eterogeneous range to the by a comparison of results of of alloys suddenly cooled from ion points. In strongly ferriferous ring in the Fe - Pd system leads in the ternary system. The b two-phase (a + y) is character-	
ized by additional thermal effects on th	le differential heating curves.	
Card 2/7		
HEATER AND	and in the test of a test of a second s	

ì

78.8225(3534

		21122	
Polymorphous o	ant γ conversion	S/153/61/004/001/001/009 B110/B203	•
(n method (II)	, the same alloys were etc	hed with alcoholic Br ₂ solution.	•
When cooling an alloy of 50 at% Fe, 45 at% Co, and 5 at% Pd from 1000°C (A) and 900°C (B) it was found that the conversion took place with con- siderable heat effect at 960°C. Typical solid solutions appeared in (A), whereas the a-phase was observed in (B). Increasing Pd content lowers the conversion points (with 20 at% Pd, solid solutions still existing at 900°C, two phases being observable only at 800°C), and produces highly disperse structure of the a-phase separated. There are 3 figures, 1 table, and 11 references: 2 Soviet-bloc and 9 non-Soviet-bloc. The three references to English-language publications read as follows: M. Hansen, Constitution of binary alloys. N. Y., Toronto, London, 1958; R. Hyltgren, Nature 142, 395 (1938); W. C. Ellis, Trans. ASEE, 29, 415 (1941).			X
ASSOCIATION:	Kafedra obshchey khimii (Moscow State University imeni	
SUBMITTED:	April 18, 1959		
Card 3/7		•	
第3日ははまたをおけるでは、「「」」			
	In method (II) When cooling a (A) and 900°C siderable heat whereas the a- the conversion at 900°C, two disperse struct disperse struct three reference M. Hansen, Con R. Hyltgren, H	When cooling an alloy of 50 at% Fe, 45 a (A) and 900°C (B) it was found that the siderable heat effect at 960°C. Typical whereas the a-phase was observed in (B). the conversion points (with 20 at% Pd, s at 900°C, two phases being observable on disperse structure of the a-phase separa 1 table, and 11 references: 2 Soviet-bl three references to English-language pub M. Hansen, Constitution of binary alloys R. Hyltgren, Nature 142, 395 (1938); W. (1941). ASSOCIATION: Moskovskiy gosudarstvenny Kafedra obshchey khimii (M. V. Lomonosov, Departme SUBMITTED: April 18, 1959	S/153/61/004/001/001/009 Bolymorphous and y conversion In method (II), the same alloys were etched with alcoholic Br ₂ solution. When cooling an alloy of 50 at; Fe, 45 at; Co, and 5 at; Pd from 1000°C (A) and 900°C (B) it was found that the conversion took place with con- siderable heat effect at 960°C. Typical solid solutions appeared in (A), whereas the a-phase was observed in (B). Increasing Pd content lowers the conversion points (with 20 at; Pd, solid solutions still existing at 900°C, two phases being observable only at 800°C), and produces highly disperse structure of the a-phase separated. There are 3 figures, 1 table, and 11 references: 2 Soviet-bloc and 9 non-Soviet-bloc. The three references to English-language publications read as follows: M. Hansen, Constitution of binary alloys. N. Y., Toronto, London, 1958; R. Hyltgren, Nature 142, 395 (1930); W. C. Ellis, Trans. ASES, 29, 415 (1941). ASSOCIATION: Moskowskiy gosudarstvennyy universitet im. M. V. Lomonosova, Kafedra obshchey khimii (Moscow State University imeni M. V. Lomonosov, Department of General Chemistry) SUBMITTED: April 18, 1959

21754 18.1235 1496,1454, abo 1418 8/078/61/006/005/013, B121/B208	
8/078/61/006/005/013	
8. 1235 1496 11 11 august 10 B121/B200	/015
AUTHORS: Grigor'yev, A. T., Sokolovskaya, Ye. M., Nedumov, N. Maksimova, M. V., Sokolova, I. G., and Ye Yuy Pu	l.,
TITLE: Polymorphous conversion of chromium and the phase diag the system chromium - nickel in the range of concentra chromium	gram of ited
PERIODICAL: Zhurnal neorganicheskoy khimii, v. 6, no. 5, 1961, 1248 - 1251	1/
TEXT: The alloys of chromium with nickel were studied in the range concentrated chromium by microscopic, thermal and X-ray analyses. mal analyses were made by recording the heating and cooling curves alloys hardened at 1200°C by means of a WK-52 (PK-52) pyrometer. The phase diagram of the system chromium - nickel in the range of trated chromium was drawn on the basis of microstructural and then yses; it is schematically presented in Fig. 1. Five homogeneous of the solid solutions of \propto , β , π , δ , and ε modifications of chro	Ther- s of the concen- mal anal- s ranges
C ard 1/4	

en feur ein Abrich Sternen under Provinsieren und verhalten eine bei der

CIA-RDP86-00513R00051681

21754 **5/078/61/006/005/013/015** B121/B208

Polymorphous conversion of ...

were found which are separated by diphase ranges $\alpha + \beta$, $\beta + r$, $T + \delta$, and &+E. Four sutsciold conversions occur at 850, 960, 1140, and 1220°C. X-ray analysis indicated that the solid solution ϵ of the alloy with 17 %nickel has a body-centered cube with $a = 2.879 \pm 3$ kX. In the alloy with 13 % nickel, hardened at 1400°C, with the solid solution $\varepsilon + \delta$ the hexagonal lattice of the solid solution of δ with the parameters a = 2.514 kX, c = 6.445 kX, and $\frac{c}{a} = 1.62$ was found in addition to the body-centered cube of the solid solution of $\boldsymbol{\xi}$. The alloys with the phases $\boldsymbol{\alpha}$ + $\boldsymbol{\beta}$ and $\boldsymbol{\beta}$ have a face-centered cube. Alloys with 17 \$ nickel, hardened at 900°C and more, have a face-centered cube. The results obtained are in good agroement with the data in Refs. 1 - 6 (Ref. 1: A. T. Grigor'yev, L. N. Guseva, Ye. M. Sokolovskaya, M. V. Maksimova. Zh. neorgan. khimii, 4, 2168 (1959). Ref. 2: A. T. Grigor'yev, Ye. M. Sokolovskaya, Yu. P. Simanov, I. G. Sokolova, V. N. Pavlov, M. V. Maksimova. Vesten. MGU, no. 4, seriya II, khimiya, 23 (1960). Ref. 3: A. T. Grigor'yev, Ye. M. Sokolovskaya, Yu. P. Simanov, I. G. Sokolova, M. V. Maksimova, L. I. Pyatigorskaya. Zh. neorgan. khimii, 5, 2136 (1960). Ref. 4: A. T. Grigor'yev, Ye. M. Soko-lovskaya, M. V. Maksimova, I. G. Sokolova, N. A. Nedumov. Zh. neorgan. Card 2/4

APPROVED FOR RELEASE: Thursday, July 27, 2000 CIA-RDP86-00513R00051681(

۰.