2022

CIA-RDP86-00513R000723430001-1

KOCHBURA, M.Kh. [Kochehurs, M.Kh]; MISHIN, N.V. At the Kharkov Bearing Plant. Mauka 1 shyttia 9 Bo.12:17-20 1. Machal'nik byuro tekhnicheskoy informatsii Khar'kovskogo podshipnikovogo savoda (for Kechegura). 2. Otvetstvennyy sekretar' mnogetirashnoy gasety "Golog rabetnika" Khar'kovskogo podshipnikovego savoda (for Hishin). (Khanbaw-Reador industry) (Automatica) (Automation) สมาริสาราสาราสาราสารา

APPROVED FOR RELEASE: 09/18/2001

APPROVED FOR RELEASE: 09/18/2001

U. -

0.46.48

On the e	ffect of 1	nuclear radiations on the	S/743/62	2/000/001/004/008	₿.,
treatme: Russian original	nt of cas -languag	t alloys. There are 1 figure, a e Soviet, 13 Russian-language to and 1 English-language original	ranslations of E : Harries, D.,	English-language J. of Iron & Stee	el
Inst., v.	194, 196	50, 289).			
Inst., v.	194, 196 attion:	50, 289). Institut liteynogo proizvodztva, Production, AS UkrSSR).			
Inst., v.	194, 196 attion:	50, 289). Institut litevnogo proizvodetva.			•
Inst., v.	194, 196 attion:	50, 289). Institut litevnogo proizvodetva.			
Inst., v.	194, 196 attion:	50, 289). Institut litevnogo proizvodetva.			
Inst., v.	194, 196 attion:	50, 289). Institut litevnogo proizvodetva.			
Inst., v.	194, 196 attion:	50, 289). Institut litevnogo proizvodetva.			
Inst., v.	194, 196	50, 289). Institut litevnogo proizvodetva.			
Inst., v.	194, 196	50, 289). Institut litevnogo proizvodetva.			
Inst., v.	194, 196	50, 289). Institut litevnogo proizvodetva.			•

CIA-RDP86-00513R000723430001-1

KOCHEGURA, N.M., insh.; MARKOVSKIT, Ye. A., kand.tekhn.nauk Using radioisotopes for checking the density of foundry molds. Mashinostroenis no. 2:53-54 Mr-Ap '64. (MIRA 17:5)

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723430001-1

APPROVED FOR RELEASE: 09/18/2001

1 12155-66 EWT(m)/EPF(n)-2/T/EWA(d)/EWP(t)/EWF(z)/EWP(b)/EWA(h) JD/DJ	
E ALOS-00 CHILEN CHILEN CHILEN CONCHILENCON CHILENCON CHILENCON CHILENCON	
ACC NR: AP5028371 SOURCE CODE: UR/0369/65/001/005/0552/0556	
AUTHOR: Markovskiy, Ye. A.; Krasnoshchekov, H. H.; Kochegura, N. H. 45	
ORG: Institute of Foundry Problem, AN UkrSSR, Klev (Institut problem lit'ys AN	
TITLE: Changes in the antifriction and strength characteristics of structural meterials subjected to neutron irradiation	•
SOURCE: Fiziko-khimicheskaya makhanika materialov, v. 1, no. 5, 1965, 552-556	
TOPIC TACS: steel, copper, antifriction material, antifriction metal, neutron irradiation, nuclear reactor material, cast iron, irradiation effect, fabricated structural metal, metal physical property, stress relaxation	
ASSIRACT: This work studies the changes in the <u>antifriction parameters</u> of some structural metals and alloys subjected to various degrees of neutron irradiation in an operational neutron reactor. Simultaneously, the changes in some of the	
studied were steal No. 45, various types of cast iron, copper, and SB-30 lead bronze. The results obtained give grounds to conclude that the materials	- -
cess of stress relaxation under the effect of irradiation may take place not only for stressed materials but also for metastable hardened structures. An attempt Card 1/2	•

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723430001-1"

解积率

L 12165-66			· · · · · · · · · · · · · · · · · · ·
ACC NR: AP5028			
is made to explain to irradiation, is required. The indergoing a state tron irradiation	ain the time-dependent decrease in the but it is not sufficiently grounded, he work performed showed, however, that age of relative decrease in strength, of satisfactory antifriction and strengt id in friction joints. Work in this fi	Further experimental w t the materials tested, obtain under prolonged	ork after
etting of mater	should be directed toward the study of the s	. the mean realistance	and res,
etting of mater nd in special a	Should be directed toward the study a	of the wear resistance coum, at high temperatu	and res,
etting of mater nd in special m UB CODE: 11, 1	should be directed foward the study of rials under neutron irradiation, in vac media. Orig. art. has: 5 figures.	of the wear resistance coum, at high temperatu	and res,
uting of miter and in special a	should be directed foward the study of rials under neutron irradiation, in vac media. Orig. art. has: 5 figures. 8 / SUMM DATE: 130ct64 / ORIG REF: 0	of the wear resistance coum, at high temperatu	and Tee,

and he is minimum sense was here and sense was sensed of the other is a sense was and a sense was and a sense was and a sense was a

CIA-RDP86-00513R000723430001-1

APPROVED FOR RELEASE: 09/18/2001

	SOV/144-59-7-13/17
UTHORS :	Chuchalin, I.P. (Cand. Tech. Sci., Director of Scientific- Research Institute); Belityanv, Yu.N. (Assistant); Kochegurov, V.A. (Aspirant); Kninetsov, V.M. (Senior Engineer); Soustin, B.P., (Junior Scientific Worker); and Straidin, V.A. (Engineer)
litle:	Parallel Connection of Valves for Switching Large Pulse Currents
BRIODICA	L: Izvestiya vysshikh uchebnykh zavedeniy, Elektromekhanika, 1959, Nr 7, pp 94-98 (USSR)
BSTRACT	The basic requirements for satisfactory parallel operation of thyratrons, ignitrons, etc. area simultaneous firing and equal voltage drops. These two factors are considered quite separately for the circuit in Fig 1, used for switching the charge from a bank of condensers to an electromagnet producing an intense magnetic field. Fig 2 shows the simpler case of two thyratrons connected directly to strings of condensers. If T ₁ fires first C_2 will discharge more slowly than C_1 . Fig 3 shows the variation in voltages of Fig 2. The anode of the second
Card 1/3	thyratron remains positive until the instant t_1 when $ U_2 > U $. If T_2 fires a negative voltage appears at the first anode since $U+U_2 > U+U_1$. T_1 extinguishes and

CIA-RDP86-00513R000723430001-1

THE REPORT OF A DESCRIPTION OF A DESCRIP

SOV/144-59-7-13/17 Parallel Connection of Valves for Switching Large Pulse Currents the load transfers to T2. The exchange process repeats itself rapidly as shown in the oscillogram of Fig 4. To prevent the anode voltages becoming zero the circuit is modified by the introduction of the 2-core dividers shown in Fig 1. Fig 5 shows a convenient method of firing parallel-connected thyratrons. A sufficiently uniform distribution of current among the thyratrons is guaranteed by feeding their anodes through 2-winding transformers, interconnected as in the equivalent circuit of Fig 6 where the arc voltage-drops are represented by different e.m.f's. It is supposed that the latter are independent of current as are also the anode inductances. The increase in current in all the branches can be calculated as the transient arising from switching the e.m.f's across lossy inductances. The tasic differential relation is Eq (1) and the solution for a particular current, i1, is Eq (8). If it is required that the unbalanced current through any valve does not exceed a given amount then the necessary anode Card 2/3 inductance is given by Eq (14). Confirmatory results have been obtained using type IR1-15/15 thyratrons.

APPROVED FOR RELEASE: 09/18/2001

APPROVED FOR RELEASE: 09/18/2001

LUTHORS:	Razin, V. M., Candidate of Technical SOV/105-59-8-12/28 Sciences, Chuchalin, I. P., Candidate of Technical Sciences, <u>Kochegurov, V. A.</u> , Engineer
TITLE:	Design of Anode Current Dividers
PERIODICAL:	Elektrichestvo, 1959, Nr &, pp 54 - 57 (USSR)
ABSTRACT:	This is an analysis of the three-anode current divider shown by figure 1. It is assumed that the voltage drop across the gas tube at the limit of the permissible maximum current is in- dependent of the magnitude of the anode current. Hence the fol- lowing approximations can be made: (1) Neglect of the ohmic re- sistances and the core losses of the current divider coils. (2) Neglect of the influence of the anode current divider and of the tubes upon the processes in the main circuit, and (3) the magnetic leakage between the windings. This implies that each winding has the same inductivity, and that the mutual inductivi- ty is half the inductivity of one winding. The latter condition is satisfied if either the windings are sigzag connected, or, if each leg carries one winding, by providing for small air gaps. Anode current dividers must be designed as to secure ignition
ard 1/3	of each tube and a distribution of the mean and peak anode cur-

Design of Anode Current Dividers

SOT/105-59-8-12/28

rents which is uniform within a certain limit. The requirements for satisfying the first condition are investigated under the above assumptions. The formulas for the ignition. of the first, second, and third tube are given, and formula (10) is derived for the case of n banked nubes in the circuit. The system of differential equations (1%) holds for the simultaneous operation of all three tubes. Formula (15) specifies the average ourrent carried by one tube, and formula (17) the mean current deviation. The irregularities of the distribution of the average anode currents are expressed in relative units (18), whereas formula (19) gives the inductivity of the divider windings for three, and (20) for the sume, the latter when the circuit consists of a parallel branches. The control pulses arriving at the tube grids must have a very short rise time in order to reduce the ignition straying. The circuit shown in figure 2 appears to be best suited for this purpose. If the pulse repetition frequency is small, the irregularity of current distribution should be estimated not from the average value, but from the peak value. The inductivity of the divider is, for this case, given by formula (21). The authors also made experiments

Card 2/3

APPROVED FOR RELEASE: 09/18/2001

CITED BASES OF ITS ESTIMAT

RALIZE CIPPUS

CIA-RDP86-00513R000723430001-1"

Design of Anode Current Dividers

SOV/105-59-8-12/28

on a parallel operation of tubes with multi-legged anode current dividers in a simple single-phase rectifier and with twolegged anode current dividers and separate capacitors for a commutation of the discharge current of the condensers. In both cases, favorable results were obtained. Under normal operating conditions none of the tubes showed ignition failure. The oscillograms of the total current and of the tube currents are shown by figure 4: There are 7 figures and 3 Soviet references.

ASSOCIATION: Tomskiy politekhnicheskiy institut (Tomsk Polytechnical Institute)

SUBMITTED: Nay 31, 1958

Card 3/3

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723430001-1"

an high and build an and the

CIA-RDP86-00513R000723430001-1

APPROVED FOR RELEASE: 09/18/2001

NUTRIAL STREET, STREET

CIA-RDP86-00513R000723430001-1

S/169/62/000/001/081/083 D228/D302

AUTHOR: Kochagura, V. V.

TITLE: Paleomagnetic methods of rock age correlation

PERIODICAL: Referativnyy zhurnal Geofizika, no. 1, 1962, 30-31, abstract 16221 (Sov. geologiya4 no. 4, 1961, 47-59)

TEXT: The main hypotheses of paleomagnetism are discussed, and three methods are examined for the age correlation of rocks. The first method is constructed on the use of a definite scheme of migration for the earth's magnetic poles, this being drawn up from the data of paleomagnetic research. The broad application of this method at the present time is not possible on account of the too approximate and too fragmental knowledge about the history of the earth's magnetic field. The second method is a method of stratigraphically correlating sections and is based on compilation of zones with normal and reversed magnetization. This method includes the methods of correlation according to the disruptive field, magnetic susceptibility, and so forth. The described methods enable

Card 1/2

APPROVED FOR RELEASE: 09/18/2001

Paleomagnetic methods of ...

S/169/62/000/001/081/083 D228/D302

detailed differentiation and correlation to be made, but they do not permit determination of the age of rocks without introduction of other data. In the third method the degree of demagnetization of a rock is employed as the main parameter determining its age. A positive aspect of the method is that it does not require the selection of oriented specimens, and allows geologic collections and core material to be used for age measurements. For obtaining reliable conclusions about the age of a rock, however, it is necessary to measure a rather large number of specimens of this rock and to take into account the effect of a number of external factors --- for example, vibration, heating, etc. -- whose action leads to a change in the magnitude of remanent magnetization. 27 references. / Atstractor's note: Complete translation. /

Card 2/2

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723430001-1

APPROVED FOR RELEASE: 09/18/2001

YAMOY, E.N.; PREDTECHENSKIY, N.N.; POLEVAYA, N.I.; MURINA, G.A.; MIRKINA, S.L.; ISKANDEROVA, A.D.; IEFINOV, K.P.; CHEN' VUX-VET [Gh'én TG-wei]; TITOV, N.Ie.; PANTELEIEV, A.I.; KOCHEOMEA, V.V.; GIRPANOVA, O.M.; 2UYEV, A.V.; NIKOL'SKIY, Yu.I.; BURE, G.M.
Problems of the methods of geological investigations. [Trudy] VSEUEI 92191-98 '63. (MIRA 1714)

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723430001-1

十个,并且全国委任任政策局部政策的基础和基础的考虑。《 如果服装器的名称是 《 如果都是是这个人,你,你不同,你是不可以不是不能是不是是是是不是我的,我是我们能能能能能能能能。"

APPROVED FOR RELEASE: 09/18/2001

-

SOURCE:	RZh. Fizika, Abs. 1A352	
AUTHOR:	Kochegurov, V. A.; Kuznetsov, V. M.; Chuchalin, I. P.	۰,
	onic switch for the excitation of the electromagnet of an or with unipolar pulses	
ITED SOU	RCE: Isv. Tomskogo politekhn. in-ta, v. 122, 1962, 116-118	•
	S: accelerator, accelerator magnet, accelerator magnet ply, ionic rectifier, ionic controlled rectifier, unipolar	
	n pulse, pulsed capacitor charging, pulsed capacitor dis-	
excitatio Charge RANSLATI		
excitatio charge RANSLATI culsed ma	n pulse, pulsed capacitor charging, pulsed capacitor dis- ON: To increase the efficiency of an accelerator with gnet supply, it is proposed to use current pulses both to	- - -

開催用1

•

.

of pol be cui	cont arit used t ar	roll y al to e Co	led io re exc accel ompens nism w	of the nic rec ited in erate t ated by with the /. Kanur	tiller the e he par a rec rever	s, so lectr ticle tifie sal 0	conagn s. I	et W he e	inding. nergy 1 plarity	Each osses also	pulse in the is rev	can cir- versed	
4	E YC	•	03Maj			UB CO	DE:	PH,	SD		ENCL	00	• •
•)	٠	•											:*
i				,			•					-	
•												•	, e
. -													
			•	•					_			•	•
Cord	2/	2		•				•			، مچر ود، بوی زمین در این میشورده از میرودین است		

CIA-RDP86-00513R000723430001-1

APPROVED FOR RELEASE: 09/18/2001

BELLEN, Zygmunt; KOCHEL, Irena

Determination of small amounts of acetaldehyde in some organic (KEAI 10:9) solvents. Chem anal 6 no.2:195-199 '61.

1. Struszynski Analytical Department, Institute of General Chemistry, Warsaw.

(Acetaldehyde) (Solvents) (Organic compounds)

APPROVED FOR RELEASE: 09/18/2001

L 06435-67 ENT(1) IJP(0) AT SOURCE CODE: UR/0181/66/008/008/2479/2481	
The Knowland V. A.; Rashba, E. I.	
AUTHOR: Gribnikov, Z. S.; Kochelap, V. A.; Rashba, E. I.	
ORG: Institute of Semiconductors, AN UKrossy allowing hassage of strong	
CRG: Institute of Demicenter of a multitrough semiconductor during passage of strong	
ANTRADT.	
SOURCE: Fizika tverdogo tela, v. 8, no. 8, 1965, 2479-2481	
TOPIC TAGS: semiconductor band structure, semiconductor carrier	
TOPIC TAGS: semiconductor bank contacts have a multitrough band structure, and AESTRACT: Many somiconductors and semimetals have a multitrough band structure, and because of the anisotropy of the electric conductivity in each of the troughs, fluxes because of the anisotropy of the electric conductivity in each of the total cur- of electrons belonging to various troughs are oriented at an angle to the total cur- rent. If the intertrough relaxation time τ considerably exceeds the intratrough re- laxation time, the spatial distribution of the carriers can be determined from a sys- laxation time, the spatial distribution of the scattering between troughs a and β tom of associated diffusion equations in which the scattering between troughs a and β is described by terms of the type $(n_{\alpha}-n_{\beta})/\tau_{\alpha\beta}$. Under these conditions, an essential is described by terms of the type $(n_{\alpha}-n_{\beta})/\tau_{\alpha\beta}$. Under these conditions, an essential EL = $\epsilon/\epsilon L$, where $\epsilon = kT$ and ϵ_{F} respectively for a nondegenerate and a degenerate gas. EL = $\epsilon/\epsilon L$, where $\epsilon = kT$ and ϵ_{F} respectively for a nondegenerate to which an electric field inalysis of the limiting case where $E \gg EL$ is given. An infinite plate of a monopolar interval with thickness 2d (-d $\leq y \leq d$) is considered to which an electric field	
$E_L = \epsilon/eL$, where $\epsilon = kI$ and ϵ_F here $E \gg E_L$ is given. An infinite place of electric field Analysis of the limiting case where $E \gg E_L$ is given. An infinite place of electric field semiconductor with thickness 2d (-d $\leq y \leq d$) is considered to which an electric field semiconductor with thickness 2d (-d $\leq y \leq d$) is considered to which an electric field E is applied in direction Ωx . The boundary conditions for electron fluxes of each of E is applied in direction Ωx .	
Cord 1/2	• • • • • •
	1.50

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723430001-1 - CALORING TEREST HEREIT HEREITER BERKEHMENNEN WITH BOAN

NGLER

ACC NR: AP6026712 the troughs are written do tering $s_{q\beta}$. The case wher $L_3 = LE/E_L$ is analyzed by 2d $\gg L_2$ is also analyzed. is the appearance inside t which the electron concent of these points is determi balance. Orig. art. has:	e 2d is considerably means of diffusion ec A characteristic fee he plate at Eee of a rations and the elect ned by the conditions 1 figure and 2 formu	uations w iture of a singular p ric field s of the g las.	ith $Z \gg E_L$. lmost all the oints (domain a are different	The case where cases considered boundaries) at nt; the position	
SUB CODE: 20/ SUBM DATE:	0770b66/ ORIG REP	: 003			
					1
			·	:	-
	÷				

Did in the state of the state o

SERVICE

608176-67 EWT(1) IJP(0) AT	
ACC NR: AF6024888 SOURCE CODE: UR/0056/66/051/001/0206/0200	
AUTHOR: Gribnikov, Z. S.; Kochelap, V. A.; Rashba, E. I. 8	
ORG: Institute of Semiconductors, Academy of Sciences, Ukrainian SSR (Institut polu-	
TITLE: Appearance of domains in "many-valley" semiconductors during the passage of	
strong currents SOURCE: Zhurnal eksperimental'noy i teoreticheskoy fiziki, v. 51, no. 1, 1966, 266-280	
TOPIC TAGS: semiconductor band structure, semiconductor carrier, carrier density,	•
ABSTRACT: The nonequilibrium density distribution of electrons in a many-valley semi- conducting plate is analyzed for the limiting case of strong fields, which greatly disturb the carrier distribution in the valleys practically throughout the entire plate. Only many-valley semiconductors in which the intervalley scattering time is the longest relaxation time and is much longer than the characteristic times corres- ponding to all the intravalley relaxation processes are considered. The analysis shows that when a current giving rise to a strong electric field passes through a many- valley unipolar semiconducting plate, the electron currents in each of the valleys are directed at an angle to the electric field. The conditions of continuity of these currents in the interior and on the surface give rise to the splitting of the plate. into several domains with boundaries parallel to the surface of the plate. The ef-	
Card 1/2	
	W

and give ris ampere chara rise in the equal scatte vity, and pa as a rule or ensure elect of valleys; domains are plate and th	appear in many-valley un e to the splitting of pl cteristic, the appearance transverse resistivity, ring rates and unequal s artial or complete delets ally the electrons that be tric neutrality. The musi if there are fewer doma: always concentrated in the surface electron dens reder of the domains is	e of a transverse electric rectification of the cursicles of the valleys, and ion of some electron val- elong to one valley, the mber of domains is equal ins than valleys, the cl a thin layer next to one ity is greater than the governed by the angles t	that the principal title with	
domains are plate and the sequential the electric the surface depend on t surface of	aiwdys concentration he surface electron dens order of the domains is c conductivity tnesors, of the plate. The mumb he ratio of the interval the plate. The extent t cussed. It is suggested is may cause other effect as in the galvanomagnetic 2 tables. 20/ SUEM DATE: JLJa	ity is greater than the governed by the angles t corresponding to the dif per of domains and the pe ley scattering rates in to which the simplifying i in conclusion that the	equilibriu. values of that the principal axes of fferent valleys, make with ositions of their boundaries the interior and on the assumptions made are satis- splitting of semiconductors paper, as well as appreci- , has: 6 figures, 64 for-	

CIA-RDP86-00513R000723430001-1

N NO S NO ADMITS INC. 1

TRAFT WAR AND A DECEMPTOR REPORT OF THE PARTY OF THE PART 21015 s/058/61/000/005/023/050 9,2574 A001/A101 24.7900 (1144,1163,1055) Kochelayev, B,I, AUTHOR: The effect of optical oscillations on paramagnetic spin-lattice TITLE: relaxation in ionic crystals Referativnyy shurnal. Fisika, no 5, 1961, 176, abstract 5V346 (V PERIODICAL: sb, "Materialy 1-y konferentsii molodykh nauchn, rabotn, g. Kasani. Fiz.-tekhn. 1 matem. sektsiya", Kasan'. 1959, 63 - 67) The author detects the part of optical oscillations in the mechan-TEXT: ism of spin-lattice relaxation; Kronig mechanism is considered. As a crystal the linear chain of atoms of two types is taken, in whose elementary cell are con-tained; a paramagnetic atom with mass m_{d} (spin a - 3) and a non-magnetic atom with mass m_{A} : Only two-phonon processes are considered, since in single-phonon processes only audio frequencies play a part. It is assumed that $m_{\rm e}\gg$ mg. Under these conditions, in case of high temperatures (room) the contribution to the probability of relaxation transition, due to optical oscillations, is equal to the contribution from scoustic oscillations in order to magnitude. V. Strigutskiy [Abstracter's note: Complete translation.] Card 1/1

APPROVED FOR RELEASE: 09/18/2001

A STATE OF COLUMN

CIA-RDP86-00513R000723430001-1

S/031/61/000/006/001/015 B101/B201

34.7900

AUTHOR: Kochelnyev, B. I.

TITLE: Effect of optical vibrations upon the paramagnetic spinlattice relaxation in ionic crystals

PERIODICAL: Referativnyy zhurnal. Khimiya, no. 6, 1961, 13 - 14, sbstract 6104 (6804). (sb. "Materialy 1-y konferentaii molodykh nauchn. rabotn. g. Kazani, Piz.-tekhn. i matem. sektsiya", Kazan', 1959, 63 - 67)

TEXT: A study has been made of the effect of optical vibrations upon the establishment of equilibrium between a system of electron spins and crystal lattice. The author has examined the case of a one-dimensional orystal containing two atoms of different masses in its cell. An equation has been derived for the probability of relaxation transition, which shows that contributions of optical and acoustic vibrations are in the same order of magnitude. It is noted that the Debye approximation for higher temperatures (of the order of room temperature) is not sufficient for a study of relaxation processes. Abstractor's note: Complete translation.

Card 1/1

APPROVED FOR RELEASE: 09/18/2001

· 23414117月前的建筑市场开关公司 1385分子合作和

KOCHELAYEV, B. I., CAND PHYS-MATH Sol, "CERTAIN PROBLEMS OF THE THEORY OF SPIN-LATTICE INTERACTION." KHAR'KOV, 1961. (MIN OF HIGHER AND SEC SPEC ED UKSSR, KHAR'KOV ORDER OF LABOR RED BANNER STATE UNIV IN A. M. GOR'KIY). (KL, 3-61, 204). 55 535**52** 52% 253 肥

.

·24 (2) AUTHOR:	Kochelayev, B. I.	SOV/56-37-1-37/64
TITLE:		ice Relaxation of Huclear Spins in 1-reshetochnoy relaksatsii yadernykh th)
PERIODICAL:	Zhurnal eksperimental'noy Nr 1(7), pp 242 - 248 (USS	teoreticheskoy fiziki, 1959, Vol 37,
ABSTRACT :	The present paper presents spin-lattice relaxation of pole interactions at high of the spin-lattice inters is a little more convenien Kranendonk (Ref 2). The au pure ionic bond. As in the it is assumed that the rel lent crystal fields, and dipole interactions on the ed. Under these assumption us with the electric fields.	a theoretical investigation of the the nuclear spins caused by quadru- temperatures. At first, an operator stion is derived, the form of which is than the form derived by J. Van thor then investigates the case of a afore-mentioned previous paper (Ref 2), maing nuclei are contained in equiva- that the influence of magnetic dipole- e quadrupole relaxation can be neglect- as, the interaction of a single nucle- d of reflecting ions is calculated. this interaction by thermal vibrations, milividual spin states are induced. At
Card 1/4	transitions between the 1	Ultitude chen alere

- THE REPORTED BY THE PROPERTY PROFESSION PROFESSION

On the Theory of Spin-lattice Relaxation of Muclear SOV/56-37-1-37/64 Spins in Ion Crystals

> first, a rather extensive expression is written down for that part of the Hamilton function which describes the quadrupole interaction of the nucleus with the crystal field. In order to obtain the operator of the spin-lattice interaction, the components of the gradient (a tensor) of the electric field (which is formed by a shifting of ions due to thermal vibrations) must be determined. The rather extensive expression resulting after some arithmetical operations for the operator of the spin-lattice interaction is explicitly written down. The next part of the present paper deals with the time of the spin-lattice relaxation. The further calculations are carried out for orystals of the MaCl-type. The resulting expressions for the transition probability and for the relaxation times for the cases I = 3/2and I = 5/2 (rather extensive) are explicitly written down. The values T_1 calculated by these formulas (in sec) for the spin-

lattice relaxation are compiled in a table together with the corresponding experimental values. The calculation results of other authors (Refs 3,4) are also indicated:

Card 2/4

APPROVED FOR RELEASE: 09/18/2001

The last of the second s
2001 CIA-RDP86-00513R000723430001-1

.

On	the	Theory	of	Spin-lattice	Relaxation	of	Huclear	80 7 /56-37-1-37/64
Spi	ins 1	n Ion (; ry	stals				

Ion	Experiment	acc.to K.Yosida etal. (Ref 3)	acc.to Wikner and Das (Ref 4)	Present Paper
r ⁷⁹ in KBr	0.26	19•3	0.88	0.32
127 in KJ	0.039	0.24	0.27	0.077
r ⁷⁹ in LiBr	0.028	0.20	0.086	0.031

According to the results of the present papers, the Debye model is not suitable for an explanation of the relaxation effects of the spin system in the crystals at room temperature. A further more precise interpretation of the theory requires an accurate determination of the amplitudes and of the spectral density of the natural vibrations of the lattice, and the consideration of the influence exerted by the covalence on the relaxation effect. This influence of the covalence on the relaxation is only unim-

Card 3/4

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723430001-1"

"APPROVED FOR RELEASE: 09/18/2001

1. 19. BIRELENGERSCHERSCHER DE RETURNEN MIGTER - MIGTER

	portant. The relaxation time derived here the experimental one if spins of another more rapidly) are present in the substance author thanks S. A. Al'tahuler for the su for his interest in the present paper. The 15 references, 6 of which are Soviet.	kind (which can relax be investigated. The ubject suggested and
ASSOCIATION:	Kazanskiy gosudarstvennyy universitet (Ko	asan' State University)
SUBNITTED :	February 12, 1959	

KOCHE GYEV, BI

82532

S/181/60/002/007/007/042 B006/B070

AUTHOR :	Kochelayev, B. I.
ritle:	The Theory of <u>Spin-Lattice Relaxation</u> of <u>Paramagnetic Ions</u> in XY ₆ Complexes

PERIODICAL: Fizika tverdogo tela, 1960, Vol. 2, No. 7, pp. 1423-1427

TEXT: The purpose of this work was to investigate theoretically the paramagnetic spin-lattice relaxation in orystals in which a paramagnetic ion X is surrounded by six diamagnetic particles Y arranged in the form of an octahedron. In the introduction, Van Vleck's theory is discussed, and it is shown that one of the fundamental assumptions of this theory is not correct in most cases, including such as have been dealt with by Van Vleck. This assumption is that any change in the distance between X and Y is due only to acoustic Debye waves, that is to say, that the Y-particles are bound to X and the surrounding particles with forces of the same order. Spectroscopic analyses have shown that some complexes in molecular crystals retain their individual properties, and the effect

Card 1/3

94.7900

APPROVED FOR RELEASE: 09/18/2001

THE PERSONNAL PROPERTY IN THE PERSON AND THE PERSON

IPIT MARGINE AND A MARGINE A

CIA-RDP86-00513R000723430001-1

82532 S/181/60/002/007/007/042 The Theory of Spin-Lattice Relaxation of B006/B070 Paramagnetic Ions in XY6 Complexes of the crystal lattice is to be considered only as a perturbation. This is true, for example, of the complex $Cr(H_2O)_6$, which retains almost unchanged its characteristic frequency of ~-5.10³ cm⁻¹ in different compounds; relative to its neighbore, however, it oscillates with a frequency of $\sim (1 \div 5) \cdot 10^2 \text{ cm}^{-1}$. The spin-lattice interaction in such orystals is theoretically studied. For this purpose, it is assumed that the interaction is due to electric forces hetween X and Y. An expression for the spin-lattice interaction operator is derived, and its matrix elements are determined. Later, spin-lattice relaxation is investigated for high temperatures where the two-phonon processes are already of importance; formula (6) is given for the probability of relaxation transitions. The numerical data agree for potassium chrome alum. Finally, the results are discussed, and compared with those of Van Vleck, and some important differences are indicated. The ratio of spin-lattice relaxation times for alum and corundum, according to Van Vleck, for single-phonon processes is $\left(\frac{v_{alus}}{2}\right) \simeq 10^{-3}$, for two-phonon processes at Card 2/3

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723430001-1

LOCHELATET, 3.1. Longitudiaal relaxation of molear spins at superlow temperatures is a paramagnetic crystal. Ehar.eksp.i teor.fis. 38 100.1999-1000 Mr '60. (MIRA 1317) 1. Lanametiy gosudarstrongy universitet. (Buolear spin)

APPROVED FOR RELEASE: 09/18/2001

	U-111.1 April 194 The There is a state of the second secon	開發版成十月 444-14 1
24, 450 AUTHOR:	O Kochelayev, B. I.	69989 \$/020/60/131/05/018/069 B013/B007
TITLE:	NEIRTETIUM .	tions of a Crystal Upon Spin-lattice
shamman of	scattering of waves by the def the oscillations, and may cause	fects of a crystal causes small amplitude se relative shifts of the nearest atoms
which are m the author non-ideal is spin-coord ing partic as are symm only the non defect at of the reli-	used the theory by <u>I. M. Lifs</u> lattices. The operator of spin- inates and of the shift of the les. Here, only the relative si metrically arranged around a p earest particles. The single-a the point with the radius vect ative shifts of two particles expression for the influence	se relative shifts of the inclusions, he to Debye waves. In his calculations, hits (Refs 1, 2) of the oscillations of -lattice interaction is a function of the atom with spin relative to the surround- hifts of such particles must be known aramagnetic center. The author considers tom crystal lattice is assumed to have a or R [*] . An expression for the amplitude caused by a plane wave is given. There of the crystal-defects upon the spin- ises, the influence exerted by the defects of, the above-mentioned condition is
Card 1/4		

69989 8/020/60/131/05/018/069 The Influence of the Imperfections of a Crystal Upon B013/B007 Spin-lattice Relaxation nearly always satisfied. The defectiveness of the crystal is assumed to consist in the fact that in one of the atoms all interaction coefficients are replaced by a certain quantity ξ . The author then investigates, as a concrete example, the relaxation of the ion Cr^{3+} in an octahedral surrounding. The corresponding operator of spin-lattice interaction is explicitly written down. For the probability of a relaxation transition with the production of one phonon, $=\frac{2\pi}{\sqrt{2}} q_{\omega} | < p, n | \mathcal{X}_{s-1} | q, n+1 > |^2$ holds as usual. Here q_{ω} denotes the spectral density of the lattice oscillators, n - the quantum number of the oscillator, p and q - the spin levels, \mathcal{X}_{s-1} is the operator of spin-lattice interaction. After some intermediate calculations one finds: $A_{pq} = \frac{96 \pi^4}{h} \frac{a^2 \xi^2}{|\mathbb{R}_0^* - \mathbb{R}^*|^4 \Omega^2 q \sqrt{7}} \exp(h \omega / kT) - 1}{|\mathbb{R}_0^* - \mathbb{R}^*|^4 \Omega^2 q \sqrt{7}} \exp(h \omega / kT) - 1} \mathbb{V}_{pq} ; \mathbb{V}_{p,q} = \varepsilon_1^2 [|\mathbb{R}_{pq}^{(2)}|^2 + |\mathbb{R}_{pq}^{(3)}|^2] + \varepsilon_1^2 [|\mathbb{R}_{pq}^{(2)}|^2 + |\mathbb{R}_{pq}^{(3)}|^2]$ + $\epsilon_{2}^{2} \left[|\chi_{pq}^{(4)}|^{2} + |\chi_{pq}^{(5)}|^{2} + |\chi_{pq}^{(6)}|^{2} \right]$. Here ω denotes the frequency of the "spinquantum", q - the density of the crystal, and $v_1 = v_2 = v_3 = v$ holds. This Card 2/4

APPROVED FOR RELEASE: 09/18/2001

Chiefer and the state of the st

CIA-RDP86-00513R000723430001-1

The Influence of the Imperfections of a Crystal Upon Spin-lattice Relaxation

s/020/60/131/05/018/069 B013/B007

69989

transition probability depends also on the distance between the paramagnetic atom and the defect, which causes a dependence of the relaxation time T on the concentration of the paramagnetic centers. With how KkT the frequencydependence of the "spin-quantum" vanishes. Somewhat wore complicated is the case in which the paramagnetic atom itself represents the defect. The influence exerted by the orystal defects upon the spin-lattice relaxation of the nuclear spins is of especial importance. In the interval of from 14 to 20° K, the dependence of τ on T and also of their value on τ may easily be explained by two-phonon processes. However, at 2 to 4° K, τ is more than 10 times shorter in the case of a crystal powder than in that of a single crystal, nor does it depend on magnetic field strength. This may be fully explained by the above formula for Apq. For the final clarification of the influence exerted by the defects in spin-lattice relaxation, special experiments are necessary. The author thanks S. A. Al'tshuler for his advice as well as for discussing the results. A. M. Prokhorov and A. A. Manenkov are mentioned in the paper. There are 6 references, 3 of which are Soviet.

ASSOCIATION: Kazanskiy gosudarstvennyy universitet im. V. I. Ul'yanova-Lenina (Kazan' State University imeni V. I. Ul'yanov-Lenin)

Card 3/4

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723430001-1"

.

ACTURATE INVESTIGATION AND A STRATEGY AND A ST

联接 都生

24,1200	27191 s/056/61/041/002 (//44, //47, / 327) B102/B205 Kochelayev, B. I.	1
TITLE:	Relaxation absorption of sound in a paramagne	tio
PERIODICAL:	Zhurnal eksperimental'noy i teoreticheskoy fiz no. 2 (8), 1961, 423-428	ski, v. 41,
of sound in generation of present pap magnetic or lattice vib manner with Leontovich,	Al'tshuler, who developed the theory of resona a spin system, was the first to investigate the of sound waves on the spin system of a paramagne er deals with a theoretical study of sound absor ystals due to relaxation between the spin system rations. Calculations were performed in a semip the use of a method developed by L. I. Mandel's and I. G. Shaposhnikov, by which the behavior of time-dependent perturbations can be analyzed in anner. It is assumed that the paramagnetic can interacting subsystems, i. e., the spin system a	tic. The ption in para- and the thermal bhenomenological bham, M. A. of systems in a thermo- be divided into

مهرجا

THE REPORT OF THE PARTY PARTY FULL FOR THE

1e	
27151	
Belaxation absorption of sound in a B102/B205	
. e., the spin-lattice relaxation time $T \ge T_{g_1}$ where T_{g_2} is the spin-spin	:
elaxation time. In addition, the temperature of the paramagnetic is assumed not to be too low. In thermodynamic equilibrium, the spin system is characterized by $T=T_{lat}$ and by the external field H. The author con-	
iders a small crystal range, whose linear dimensions, L, are small ompared with the sound wavelength (LGA), but is large enough to be con- idered in a macroscopic manner. It is further assumed that during sound ropagation, both subsystems pass through a series of successive quilibrium states. This assumption requires a sound frequency much grea han $\omega dt/\tau_s$. The sound waves are assumed to propagate along the z-axis,	
count: u sumu cos(qs) siwt u si into tensor must be taken into count: u sumu cos(qs) siwt u si into taken into	
eviations from the equilibrium state are assumed to be small, so that alculation in linear approximation with respect to the small quantities is possible $(\{-\sigma - \sigma_0, \Theta = T - T_0, \Theta_{1,0} = T_{1,0}, -T_1\}; \sigma = \sigma(u, H, T) = \sigma(U, u)$ where	
is the free energy of the spin system in the presence of an H-field, and 2/5	
	2
PRODUCT DESCRIPTION DESCRIPTIO	

27191

3/056/61/041/002/012/028 Relaxation absorption of sound in a ... B102/B205 and σ is a generalized force. f/u = f = f' - if'', f' and f'' are real quantities. The amount of energy absorbed per unit time is given by $\vec{E} = \frac{1}{2}\omega f''(u')^2$. The amount of heat \sqrt{q} exchanged between the spin system and its neighborhood is composed of the amount of heat $dQ' = -X_1(T-T_{1-1})dt$ $-X_1(\theta-\theta_{1+1})$ dt transferred to the lattice during the time dt, and of the amount of heat $dQ'' = -dt \int div(-X_gradT) dV$ transferred to the remaining spin system. X, is the heat-conduction coefficient between spin system and lattice, and \mathcal{K}_{2} is that of the spin system. The relation $dQ^{*}=\mathcal{K}_{2}VQ^{2}\Theta$ holds for LKA(L are the dimensions of V). The lattice vibrations may be considered to be adiabatic at any point. Then, the temperature deviation of the lattice is $\Theta_{1at} = -Bu$, and one obtains $\Theta = [T(Y_{Tu})_{0} iA - B_{T}]/[C_{H} + \chi + \chi_{2}V]$, where c_H indicates the specific heat of the spin system at constant H. The following expression is thus obtained for the imaginary part of sonic susceptibility per unit volume: Card 3/5

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723430001-1

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723430001-1

ET191 Relaxation absorption of sound in a ... Bi02/B205 and 2 non-Soviet. The reference to the English-language publication reads as follows: J. H. Van Vleck. Phys. Rev., 51, 426, 1940. ASSOCIATION: Kasanskiy gosudarstvennyy universitet (Kasan' State University) SUBMITTED: February 3, 1961

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723430001-1

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723430001-1

APPROVED FOR RELEASE: 09/18/2001

•		s/181/62/004/006/027/051 B104/B112	
	;	BIUG/BITZ	•
AUTHOR:	Kochelayev, B.		
TITLE:	sound waves 11	ation of the plane of polarization of n a paramagnetic material	
PERIODICAL	Pizika tverdo	go tela, v. 4, no. 6, 1962, 1559 - 1563	
of transvers resonance r dependence the strength rotation is experimenta It should a polarizatio	se sound waves c otation of the p of the angle of of the magnetic estimated, and ally observable i also be possible on in metals. The	the resonance phenomena during the passage hrough a paramagnetic crystal reveals a lane of polarization of the waves. The rotation on the frequency of the wave and on ifield is studied. The angle of resonance it is shown that the effect must be in most salts of the metals of the iron group to observe the rotation of the plane of his appears to be of importance for the ption and dispersion of the electromagnetic ffect.	
field produ	loed by a skin e	ffect.	,
Card 1/2			

CIA-RDP86-00513R000723430001-1

APPROVED FOR RELEASE: 09/18/2001

.

	In the state of the second
•	·
	5/181/62/004/011/032/049 B108/B102
AUTHORS	Aminov, L. K., and Kochelayev, B. I.
TITLE	Spin-lattice interaction in crystals containing individual paramagnetic complexes
PERIODICAL:	Fizika tverdogo tela, v. 4, no. 11, 1962, 3273 - 3276
lattice inter atomic chain taken into ac has to be mu]	ctions accounting for the inhomogeneity of a crystal (different plexes, different binding forces) are calculated for the spin- raction Hamiltonian. The considerations are based on a bi- in which only the interactions between nearest neighbors are becount. The Hamiltonian for the Debye model of oscillations tiplied by a factor $K = \frac{1}{a(a+b)} \frac{(m_1+m_2)^2}{m_1m_2} (1 + \beta/d_c) \frac{v^2}{\omega_{ont}^2}$ for
single-phonon the distances of the neighb	a processes, and by K^2 for two-phonon processes. a and b are between the particles of one cell and the nearest particles poring cell, v is the phase velocity of the low-frequency
Card 1/2	
d.	

Spin-lattice	interaction in	S/1 B10	81/62/004/011/032/049 8/B102	
within one ce to the relaxa $\mathcal{T}^{(1)} = \mathcal{T}^{(1)}$ high (and the	11 and for particle tion times of singl K^{-2} and $T^{(2)} = T^{(2)}_{Deb}$	es of two adjacent c and two-phonon pr K ⁻⁴ . If the temp	stants for particles ells. The corrections occesses are then eratures are not too proximations agree web	
ASSOCIATION:	Kasanskiy.gosudars Lenina (Kasan' Sta	stvennyy universitet ate University imeni	im. V. I. Ul'yanova- V. I. Ul'yanov-Lenin)	
SUBMITTED	June 29, 1962	•		
		•		
				: .
Card 2/2				

105-119-52-64-714-5

. .

THE FURTHER DECEMBER STREET

如何 3 月

. .	37660	
21,2200	37660 S/056/62/042/005/025/050 B102/B104	
AUTHORS:	Aminov, L. K., Kochelayev, B. I.	
TITLE:	Additional spin-spin interaction due to phonon field effect in paramagnetic crystals	4-
PERIODICAL:	Zhurnal sksperimental'noy i teoreticheskoy fiziki, v. 42, no. 5, 1962, 1303-1306	J
an effect of is a contact gince, howev interaction using the qu stated for f interaction	spin-spin interaction in paramagnetics is normally regarded as c exchange and magnetic dipole-dipole interaction. The former interaction and the latter occurs by way of a photon field, or, the spins are also related to the phonon field, an through that field must exist. This is investigated here by through that field must exist. This is investigated here by antum field theory. The energy of spin-spin interaction is the case in which retardation can be neglected. The matrix for of paired spins is obtained through the application in second on of the bonds of the scattering matrix in which averages of state were used. It is connected with the perturbation energy tionship	
		-
er en de la servicie de la companya		

Additional spin-spin interaction ...

s/056/62/042/005/025/050 B102/B104

 $S_{ij}^{(2)} = -2\pi i U_{ij} \delta \left(\hbar \omega_{mi} + \hbar \omega_{mi} n_i \right)$, where ω represents the phonon frequencies. The energy operator of direct spin-spin interaction by the phonon field is given via

$$U_{I_{j}}^{b} = Ar_{I_{j}}^{-3} \sum_{a, b=1}^{\infty} s_{ab} \varepsilon_{a} \varepsilon_{b} F^{a}(S_{j}) F^{b}(S_{j}), \quad A = R^{b} (2\pi \rho v^{b})^{-1}; \quad (5)$$

here $F(\vec{S})$ are spin functions, \mathcal{E}_{α} characterizes the spin-phonon interaction, r_{ij} is the distance between i-th and the j-th lattice point R is the dimension of the complex examined ($\mathbb{R} \leqslant \lambda$, the phonon wavelength), ϱ is the crystal density, v is the velocity of sound and $s = f(\vec{r}/r)$, being of the order of unity. The effect of the interaction under consideration is ostimated and its effect on the shape of the paramagnetic resonance lines determined. It is shown that the part played by this interaction is an important one, $(\Delta \vee)^2$ being from 1 to 2 orders of magnitude lower than for a resonance line caused solely by magnetic dipol-dipol interaction. This additional bonding energy between the crystal ions exists and can be brought into play by the interaction of orbital spin of bound electrons via a phonon field. If the separation of energy levels is less than the Card 2/3

APPROVED FOR RELEASE: 09/18/2001

82.13

spin interaction	\$/056/62/042/005/02 B102/B104	
e, the bonding energy is isoussions.	considerable. S. A. Al'ts	huler
azanskiy universitet (Ka	izan' University)	
ecember 10, 1961		t
	iscussions. azanskiy universitet (Ka	azanskiy universitet (Kazan' University)

CIA-RDP86-00513R000723430001-1

Resonance rotation of the polarisation plane of sound in a para-magnetic. Mis. twer. tela 4 no.61179-1563 Je '62. (MIRA 16:5)

1. Kasanskiy gosudarstvennyy universitet imeni V.I.Ul'yanova-Lenina. (Polarization (Sound)) (Paramagnetism)

XOCHELAYEV, B.I. Antiferromagnetism due to spin-phonon interaction. Zhur. eksp. 1 teor. fis: 44 no.1:235-239 Ja 163. (MIRA 16:5) 1. Kasanskiy gosudarstvennyy universitet. (Huolear spin) (Magnetism)

· 《·》(·》》书》:"是是我们的,我们是我们的,我们就是我们的?" 在了这个小小,有一个小小小小,一个小小小小子,一个小小小小子的?" 我们能能能能的,我们是我们的我们就是我们的

APPROVED FOR RELEASE: 09/18/2001

HM145

L 1314-66 ENT(1)/EPF(e) 13 ACCESSION NR: AR5014398	· · · · · · · · · · · · · · · · · · ·	UR/0058/65/000/004/	0038/0038	1
SOURCE: Ref. zh. Fizika, Abs.	40285		34	
AUTHORI Koloskova, N. G.I Kor	epanov, V. D.; Koch	elavey. B. I.	3	
TITIC: Change of the	1	11,53		
TITLE: Shape of the curve for	the nuclear induct	ion signal	· · · · ·	an a
CITED SOURCE: Sb. Itog. nauch	n. konferentsiya Ka	sansk, un-ta za 196	2 s. Kasant	
Kazansk. un-t, 1963, 4-5	· · · · ·	4.55	- B. Langari -	
		•		
TOPIC TAGS: nuclear physics.	Miclean negonation			
TOPIC TAGS: nuclear physics, line	nuclear resonance,	resonance absorptio	a, resonance	
TOPIC TAGS: nuclear physics, s line				
TRANSLATION: The authors prop nuclear resonance Attricel based	on the recention	for the oscillating	decay in the	
TRANSLATION: The authors prop nuclear resonance Tighel based $7(y) = A(a^2 - y^2)^2$, where A are	on the resonance a	for the oscillating beorption line $g(v)$	decay in the in the form	
TRANSLATION: The authors prop- nuclear resonance of the based $7(v) = A(a^2 - v^2)^p$, where A am at $p = 0$ and Gaussian at $p = w$	on the resonance a d are constants.	for the oscillating beorption line $g(v)$	decay in the in the form	
TRANSLATION: The authors prop- nuclear resonance Fighal based $7(v) = A(a^2 - v^2)^2$, where A am at $p = 0$ and Gaussian at $p = -$ and $a_1 = R_2$ Yul'met'yev.	on the resonance a d are constants.	for the oscillating beorption line $g(v)$	decay in the in the form	
TRANSLATION: The authors prop- nuclear resonance (Trinal based $7(v) = A(a^2 - v^2)^2$, where A am at $p = 0$ and Gaussian at $p = 0$ and a , R. Yul'met'yev.	on the resonance a d are constants.	for the oscillating beorption line $g(v)$	decay in the in the form	
	on the resonance a a are constants.	for the oscillating beorption line $g(v)$	decay in the in the form	

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723430001-1"

L 9243-66 EWT(1)/EWA(m)-2 IJP(c) AT ACC NR: AP5022742 SOURCE CODE: UR/0181/65/007/009/2859/2850 AUTHOR: Kochelayev, B. I. ORG: Kazan State University im. V. I. Ul'yanov-Lenin (Kazenskiy gosudrestvennyy Ü	
TITLE: Spin-spin interactions through conduction electrons in semiconductors SOURCE: Fizika turnelose tale of a semiconductors	
SOURCE: Fizika twerdogo tela, v. 7, no. 9, 1965, 2859-2860 TOPIC TAGS: semiconductor theory, spin wave theory, conduction electron	
ABSTRACT: Exchange interaction of localized spins with conduction electrons leads to indirect spin-spin exchange (Kittel-Ruderman interaction). The magnitude of this ex- change decreases with distance as r^{-3} , oscillating with a period determined by the wave vector on the Fermi surface. These oscillations are due to a logarithmic singu- larity of the Fourier transform in the momentum space for spin susceptibility of the degenerate electron gas at the point $p = 2p_p (p_p$ is the wave vector of an electron on the Fermi surface). It was numbered as r^{-1} , where r^{-1} is the wave vector of an electron on	
blurring of the Fermi distribution level with momentary interaction between electrons. In this case, the relationship between indirect exchange and distance is somewhat weakened. Blurring of the Fermi distribution level when the temperature is increased	
Cord 1/2	
Cord 2/2 yw	

CIA-RDP86-00513R000723430001-1

L 2451-66 EWT(1)LUP(c) ACCESSION NR: AP5024708 UR/0056/65/049/003/0862/0866 44.55 61 AUTHOR: Al'tshuler, S. A.; Kochelayev, B. I. 44.55 58 ł 8 TITLE: Shift of the fine structure components of the Rayleight scattering line in paramagnetics 2.14.55 SOURCE: Zhurnal eksperimental'noy i teoreticheskoy fiziki, V. 49. no. 3, 1965, 862-866 Ç TOPIC TAGS: fine structure, Rayleigh scattering, paramagnetic material, spin phonon interaction, laser, paramagnetic ion ABSTRACT: The Rayleigh scattering effect was used to study the spin phonon interaction in paramagnetics, making it possible to avoid the usual experimental difficulties associated with generation of sound at phonon frequencies $(10^{10}-10^{11} \text{ cps})$, when observation of the acoustic paramagnetic resonance is impossible due to line broadening. A shift in the fine structure components of a Rayleigh line was postulated and a result of frequency coincidence of a scattering phonon and one of the divisions of spin levels of a paramagnetic ion. As an example of the postulated effect, an HgO crystal, doped with $N(2^+)$ and Fe^{2^+} (whose sy in-Card 1/2 NUMBER OF STREET, STREE

APPROVED FOR RELEASE: 09/18/2001

					لى تىلەرىپ مەكرىت تۇخىتىيە تېرىپ مەكرىپ م مەكرىپ مەكرىپ	
					•	
•		· · · · · · · · ·	•		المیں۔ مراجعہ جامع کی مصادر میں میں مربقہ میں	1
	L 2451-66			ا به منه المحمد الله الله الله الله الله الله الله الل	3	
	ACCESSION NRI A		11 known) wa	s considered.	Other 	6
	crystals contain can be observed earths with an e the shift in the of spin level po iow temperatures reduced. For the warranted, Pos	particularly we wen number of velocity of s opulations, the s, when the int his reason, the sible experiment ltaneous satura	all in cryste slectrons, an ound is propo greatest shi ensity of Ray use of a la its for obser ition of the	d also in lid ortional to the lft can be ex yleigh scatt ser as a ligh wing the scat paramagnetic as.	uids. Since he difference pected at ering is great t source is tering of resonance lin. [Y]	:1 7
				TARPENES	And a second	
	ACCOLATION &	azanskiy gosud	IIB COOK-JJ			
	ASSOCIATION: K	aranskiy gosud	e for a second second second	SUB C	ODE1 MP. EM	
	ASSOCIATION: K University) 44.	🚮 - en de de la sector a composition de la sector de la	ENCL: 00	SUB C	ODRI	
	ASSOCIATION: K University) SUBMITTED: 181	55 Kar65		SUB C	ODE1 NP. EM BESSI 4109	
	ASSOCIATION: K University) SUBMITTED: 181	55 Har65	ENCL: 00	SUB C	ODRI	
	ASSOCIATION: K University) SUBMITTED: 181 NO REF SOV: 00	55 Kar65	ENCL: 00	SUB C	ODRI	
	ASSOCIATION: K University) SUBMITTED: 181 NO REF SOV: 00	55 Kar65	ENCL: 00	SUB C	ODRI	
	ASSOCIATION: K University) SUBMITTED: 181 NO REF SOV: 00	55 Kar65	ENCL: 00	SUB C	ODRI	

17月1月期的全部保持的高速的方式

Ŧ

<u>in en re</u>

1. 21732-66 EMI	1) IJP(c) MM/GG SOURCE CODE: UR/O	020/66/166/004/0833/0835-
		· · · · · · · · · · · · · · · · · · ·
niversitet) 21, 10 TITLE: <u>Hyperfine</u>	structure of the Rayleigh line for scat	tering of light in a
SOURCE: AN SSSR. TOPIC TAGS: Para	Doklady, v. 166, no. 4, 1966, 933-835 magnetic material, hyperfine structure,	line splitting, Rayleigh
ABSTRACT: The au shows that additi Rayleigh scutteri between the spin	thor considers scattering of light in a onal splitting of each component in the ing line should take place under certain system and the phonons in the paramagne system and the phonons in the paramagne	paramagnetic crystal and fine structure of the conditions. Interaction tic crystal is discussed. Lations are generated by
oscillations. T	las are derived miles neither purely lat interaction which are neither purely lat he greatest interspersion of these oscil UDC: 535.3	in the second

	11111112ASSAINEDINE	TANK THERE THE CONTRACT OF A		a a construction of the second se		and the second second	and the state of the	19635
					1	a and the second	영양 영양	2 2
		teran in profesione and a second terano in terano in terano in terano terano interativa	na internet e consecutive de la consecu					
							· · ·	
	1 A	-	i de la companya de					
L 21738-	RECORD (127	an an a' share an	and a second					
ACC NR: A	10000044		the normal me			mlitti	n is it	•14: -
			the normal m	des coincide	- Hyperrine	and on ide	CTWS-	لتجنيه
region whe	ire the Ire	queneres	1 Daramagnet	Le resonance	in a magnes	S The		
								1
rical val	se found fo	or the spin	tting is approx e applied to a mion is determ	nalvais of B	eutron-phonoi	SCATTER.		
those use	d in this T	paper may D	a abbitter co.	Inad by the	same correla	tion rund	C1000.	
alnee the	scattering	CTOSS SEC	tion is determined for discu	and of the re	sults of this	B NOLK	orig.	
The author	r thanks S	. A. Al'tab	uler for discu	BATING CUA				
1118 ducino	6 formul	88 .					1	
ALL . UND !				ORIG REF:	004/ OT	H REF: 0	01	
		ATAM DATES	15Jun65/	OKTO VEL:	VV-1		Í	
Inim MAR	20/	PIDU NUTA					1	
SUB CODE:	20/	SUDA LAIST	•	· · · · ·				
SUB CODE:	20/	SUDA DAIS.	•	· · · · ·				•
SUB CODE:	20/		······································					-
SUB CODE:	20/			· · · · · · · · · · · · · · · · · · ·				-
SUB CODE:	20/							-
SUB CODE:	20/							-
SUB CODE:	20/							
SUB CODE:	20/							
SUB CODE:	20/							
SUB CODE:	20/							
SUB CODE:	20/							
SUB CODE: Card 2/2								

1.12.15世纪的新闻的中国的		
29549-66 EWT(1)/T IJP(0)	GD SOURCE CODE:	UR/0000/64/000/000/0078/0097
ACC NR. AT6014767	•	66
AUTHOR : Kochelevey, B. I.		677
		RI
ORG: DONE TITLE: Theory of some paramag	matic phenomena due to sp	bin-phonon interaction
TITLE: Theory of some parameter		hi abornik statey. Kasan,
Benemagnithy resona	as (Paramagnetic test	-
SOURCE: Paranagnithy 1 Izd-vo Kazanakogo univ., 1964	, 78-97	non interaction, crystal theory,
		non interaction, espect
TOPIC TAGS: electron paramag spin system, quantum mechanic	s, operator equation	· · · · · · ·
spin system, quantum		paramagnetic crystal unations
t mumber of phenos	wena which take place the	a paramagnetic crystal due to in- material and lattice vibrations the lattice acts as a thermostat mer is much greater than the lat-
teraction between the spin s	The thermal capacity of t	the lattice acts as than the lat-
are theoretically analyzed.	spin system since the form	material and lattice vibilities the lattice acts as a thermostat mer is much greater than the lat- interaction results in energy ex- s after a certain relaxation time conon gas. Continuous excitation
with respect to temperature	range. The spin-learnest	after a certain relaterion
ter over a whot any excitatio	a of the system also photos	onon gas. Continuous excitation
of the spin system results	in the mechanical expressio	ons are given for calculating in a constant field.
irreversible processes. U	lternating magnetic field	
absorption of energy in		
Card 1/2		

•

29549-66 ACC NR: AT6014787 Only that part of the absorption which is caused by spin-pnonon interaction is con- sidered. The interaction between spins and lattice vibrations gives a basis for using sound as the source for excitation of the spin system. The absorption of accustic energy in the paramagnetic material due to interaction between spins and thermal pho- nons as well as spin-spin interaction is calculated. It is shown that the polarisa- nons as well as spin-spin interaction displays resonance properties. An operator is paramagnetic crystal. This phenomenon displays resonance problems associated with derived for spin interaction through a phonon field. Some problems associated with paramagnetic resonance saturation are discussed. Orig. art. has: 68 formulas. SUB CODE: 20/ SUBM DATE: 0%Jun6%/ ORIG REF: 013/ OTH REF: 008	-03	ARTER ABORTOMENT SPECIAL	STATE FARTY MALERADO PARTY	, or · ·	· · · · ·			
paramagnetic resonance saturation are discussed. Orig: Lto data or paramagnetic resonance saturation are discussed. ORIG REF: 013/ OTH REF: 000	ACC NR: AT60147 sidered. The is sound as the so energy in the p nons as well as tion plane is a	of the absorption nteraction between urce for excitat argangmetic mate spin-spin inter rotated when a tr	ion of the spin rial due to inter- maction is calcul rensverse polari: momenon display	eraction be lated. It and acoust resonance	tween sp is shown ic wave f propert	ins and the that the passes through the second	real pho- polariza- agh the perstor is ted with	
	paramagnetic N	sonance saturati	ion are discusse	G. VI.78.				
					· · · · · ·			

CC NR: AP6029742	SOURCE CODE: UR/0053/66	/089/004/0719/0723
UTHOR: Kaganov, M. I.; Kochelayev,	B. I.; Peschanskiy, V. G.	70
RG: none		41
TLE: Twelfth All-Union Conference	on Low-Temperature Physics	E
DURCE: Uspekhi fizicheskikh nauk, v	. 89, no. 4, 1966, 719-723	
OPIC TAGS: physics conference, low lectron spectrum, EPR spectrum	temperature physics, Mossbauer e	ffect,
BSTRACT: The Twelfth All-Union Confe eld 25-29 June 1965 in Kazan ¹ , des nethods) of condensed systems at low vere presented at the conference, w 00 Soviet scientists. The introducted	lt with investigations (using res w temperatures. More than 100	reports tely

L 04697-67 CC NR: AP6029742	8
CC NR: AP6029742 Mossbauer effect; and Section 4, with resonance phenomena in metals and semiconductors.	
Electron Spectra in Non-Conducting Crystals	
Particular attention was given to investigations of the microstructure of impurity crystals involving electronic and paramagnetic resonante (EPR and NMR) methods and optical spectroscopic studies. A large body of reports was devoted to the study of the structure of the environment of rare-earth ions in	
CaFtype crystals.	
<u>M. M. Zaripov</u> , V. S. Kropotov, and L. D. Livanova reported on their discovery of the superfine structure of the EPR spectrum of the Mn^{2+} and Co^{2+} ions in MgF ₂ resulting from fluorine nuclei.	
R. A. Zhitnikov, L. V. Kolesnikov, and <u>A. L. Orbeli</u> reported on their methods for the stabilization of free atoms in molecular-type media at the	•
temperature of liquid nitrogen.	.•
S. A. Al ⁺ tshuler and R. M. Valishey discovered a ferromagnetic-type exchange coupling between Ni ²⁺ ions in zinc fluosilicate. From an analysis	
Card 2/5	

THE REAL PROPERTY AND A DESCRIPTION OF THE PARTY OF THE P

1. 04697-67 ACC NRI AP6029742

of the EPR spectra of various types of exchange pairs they determined the value of the exchange integral.

Dynamic Phenomena in Non-Conducting, Crystals

The process of equilibrium establishment in spin-systems was discussed in detail. V. A. Atsarkin found that a two-staged process of spin-lattice relaxation takes place. In such a process, the excessive heat of the spinsystem is transferred to thermal lattice oscillations by means of the rapid relaxation of the "exchange pairs." <u>S. A. Peskovatskiy</u> investigated the spin-lattice relaxation of chromium ions in ruby in the absence of an external spin-lattice field and concluded that in a wide range of chromium concentrations the "exchange pairs" do not contribute substantially to the relaxation of individual ions.

APPROVED FOR RELEASE: 09/18/2001

BOTTO A BOTTO A

Mossbauer Effect Included in the reports given in this section were studies of the aniso- tropy of the Mossbauer effect in single crystals of white tin over a wide temperature range, the inversion of the anisotropy effect and possible causes for this phenomenon, and the phenomena occurring when the Mossbauer effect is under the influence of some additional electromagnetic or sonic field. <u>Resonance Phenomena in Metals and Semiconductors</u> <u>Yu. V. Sharvin and L. M. Fisher discussed their experiments on the</u> production and observation of a focused electron beam in metal. Many of the reports were concerned with experimental investigations of the energy spectrum of conduction electrons with the aid of resonance methods. L. A. Fal'kovskiy, in a theoretical investigation of the energy spectrum of urrent carriers in bismuth in a magnetic field, showed that at an arbitrary current carriers in bismuth in a spin-splitting of the energy levels in bismuth considerably exceeds the spin-splitting of levels of free electrons.	L 04697-67	5	
Included in the reports given in this section were studies of the aniso- tropy of the <u>Mossbauer effect in single crystals</u> of white tin over a wide temperature range, the inversion of the anisotropy effect and possible causes for this phenomenon, and the phenomena occurring when the Mossbauer effect is under the influence of some additional electromagnetic or sonic field. <u>Resonance Phenomena in Metals and Semiconductors</u> <u>Yu. V. Sharvin and L. M. Fisher discussed their experiments on the</u> production and observation of a focused electron beam in metal. Many of the reports were concerned with experimental investigations of the energy spectrum of conduction electrons with the aid of resonance methods. L. A. Fal'kovskiy, in a theoretical investigation of the energy spectrum of direction of the magnetic field, the spin-splitting of the energy levels in bismuth considerably exceeds the spin-splitting of levels of free electrons.	ACC NR. AP6029742		
tropy of the <u>Mossbauer effect</u> in single causes temperature range, the inversion of the anisotropy effect and possible causes for this phenomenon, and the phenomena occurring when the Mossbauer effect is under the influence of some additional electromagnetic or sonic field. <u>Resonance Phenomena in Metals and Semiconductors</u> <u>Yu. V. Sharvin and L. M. Fisher discussed their experiments on the</u> production and observation of a focused electron beam in metal. Many of the reports were concerned with experimental investigations of the energy spectrum of conduction electrons with the aid of resonance methods. L. A. Fal'kovskiy, in a theoretical investigation of the energy spectrum of urrent carriers in bismuth in a magnetic field, showed that at an arbitrary direction of the magnetic field, the spin-splitting of he energy levels in bismuth considerably exceeds the spin-splitting of levels of free electrons.	Mossbauer Effect,		
field. <u>Resonance Phenomena in Metals and Semiconductors</u> <u>Yu. V. Sharvin and L. M. Fisher discussed their experiments on the</u> production and observation of a focused electron beam in metal. Many of the reports were concerned with experimental investigations of the energy spectrum of conduction electrons with the aid of resonance methods. the energy spectrum of conduction electrons with the energy spectrum of L. A. Fal'kovskiy, in a theoretical investigation of the energy spectrum of urrent carriers in bismuth in a magnetic field, showed that at an arbitrary current of the magnetic field, the spin-splitting of the energy levels in bismuth direction of the magnetic field, the spin-splitting of free electrons.	tropy of the <u>Mossbauer effect in single capture</u> stropy effect and possible causes temperature range, the inversion of the anisotropy effect and possbauer		
Yu. V. Sharvin and L. M. Fisher discussed their experiments on the production and observation of a focused electron beam in metal. Many of the reports were concerned with experimental investigations of the energy spectrum of conduction electrons with the aid of resonance methods. L. A. Fal'kovskiy, in a theoretical investigation of the energy spectrum of current carriers in bismuth in a magnetic field, showed that at an arbitrary direction of the magnetic field, the spin-splitting of the energy levels in bismuth considerably exceeds the spin-splitting of levels of free electrons.	field.		
Many of the reports were concerned with experimental investigations of the energy spectrum of conduction electrons with the aid of resonance methods. L. A. Fal'kovskiy, in a theoretical investigation of the energy spectrum of current carriers in bismuth in a magnetic field, showed that at an arbitrary direction of the magnetic field, the spin-splitting of the energy levels in bismuth considerably exceeds the spin-splitting of levels of free electrons.	Yu. V. Sharvin and L. M. Fisher discussed their experiments on the production and observation of a focused electron beam in metal.		
	Many of the reports were concerned with experimental investigations of the energy spectrum of conduction electrons with the aid of resonance methods L. A. Fal'kovskiy, in a theoretical investigation of the energy spectrum of ourrent carriers in bismuth in a magnetic field, showed that at an arbitrary		
Card 4/5	Card 4/5	Name (Sector Sector of Sector Se	····

.

AL PRIME REPORT

<u> </u>	The second se
ACC NRI AP6029742	
D A n	Market and a second se Second second sec
nonlineer offering, V. D. Fill	und o A -
and 210 vertices in the absorption	and U. A. Shevchenko reported
and 210 Mcps) in superconducting	and O. A. Shevchenko reported on observing of ultrasound (at frequencies of 115, 160, indium.
I. Ye. Dzyplashi	
antiferromegnetic	ed the the
is linked with a	ne meory of magnetic structures t
magnetic imme exchange interact	ed the theory of magnetic structures in
should long,	ed the theory of magnetic structures in pearance of such structures, he found, tion of conduction electrons with solution
inuer reports discussed the	rmi surface of some metals and its
investigation by means of autitie Fo	rmi surface of some metals `and its resonance and magnetoacoustic methods. Ye. Alst
the cyclotron	resonance and its
work of the conference session N.	Ye. Alatan
low-temparature interence. It was read	Ye. Alekseyevskiy summed up the lved that an all-union content
Work of the conference. It was reso low-temperature physics and enginee FSB: v. 2, no. 10]	and an all-union conference
z, no. 10]	aring be held in 1967 at Khanti
UB CODE: 20 / States	KING KOV,
20 / SUBM DATE: none	
d 5/5	
the second s	

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723430001-1 234 REE Knyazhitskaya, D Kochelayev, B.I

