

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

t	etermining on electric models the effect of the withdra hrough observation wells with the injection of liquefie	wal of oil d gases.
	auchtekh. sbor. po dob. nefti no.25:93-96 '64. . Vsesoyuznyy neftegazovyy nauchno-issledovatel'skiy ir	(MIRA 17:12) Istitut.

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

:644 1694; .154 1; 1913			
	ACCESSION NR: AT4041656 \$/2604/64/000/051/0043/0048		
	AUTHOR: Kogan, L. I.		-
•:	TITLE: Method and apparatus for recording refracted waves during the continuous movement of a seismic exploration vessel		
	SOURCE: Moscow. Vsesoyuzny*y nauchno-issledovatel'skiy institut geofizicheskikh metodov razvedki. Razvedochnaya i promy*slovaya geofizika, no. 51, 1964, 43-48		
	TOPIC TAGS: seismic wave, seismic exploration, seismic refracted wave, seismic filtering, seismograph, marine seismography, piezoelectric detector	N	
	ABSTRACT: Methods and apparatus are already available for recording reflected seismic waves during the continuous movement of a seismic exploration vessel. Since 1958, the NIHGE VNIIgeofiziki has been seeking a method of using the refracted waves under similar conditions. This article describes the method and apparatus now developed for this purpose. Emphasis is on a description of the string of ple- now developed for this purpose. Emphasis is on a description of the Enclosure). zoelectric detectors towed behind the vessel (shown in Fig. 1 of the Enclosure). was necessary to attain a high absolute sensitivity of the piezoelectric channel; was accomplished by using 20 titanium-barium pressure detectors having an this was accomplished by using 20 titanium-barium pressure detectors having an absolute sensitivity of $3.8-4.0 \mu$ v/bar. This made a high sensitivity increase absolute and made it possible to match the piezoelectric channel with the input of 1/4		
			e

<u>. 11</u>

IÌ

11

1.

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8

1 ACCESSION NR: AT4041656 the seismic station amplifier; this is very important when recording low-frequency refracted waves. The changes in specifications for the filters of the SS-26-51-D seismic station are described in detail; the maxima of the frequency characteristics of the amplifier filters were shifted into the region of low frequencies. Various components of the modified seismic station are described, and the method for shooting profiles at sea by the refracted waves method is discussed. When the rate of movement of the seismic exploration vessel is 4-5 km/hour the explosions are set off at a rate of 6 or 7 an hour. When recording is done at short distances the charges used weigh up to 50 kg and the explosions are set off at the rate of 10-12 an hour. Ways in which the productivity of such exploration work at sea can be in-creased are suggested. "The following persons participated in the development and adoption of the new method for recording refracted waves during the movement of a seismic exploration vessel: A. A. Gagel gants, S. P. Vartanov, V. Z. Zonov, B. A. Bondarenko, V. V. Bokun, P. H. Zakharov and G. S. Zolotarev". Orig. art. hast 2 formulas, 4 figures and 1 table. ASSOCIATION: (All-Union Scientific Research Institute of Geophysical Methods of Exploration) Vsesoyuzny+y neuchno-issledovatel'skiy institut geofizicheskikh . araki kusha metodov razvedki, Hoscow 6.3 . 42 £ 2/4 Card ÷. . . وريشره

APPROVED FOR RELEASE: 09/18/2001

		S Great and a second	
STATISTICS STRATEGY ST			
2-5316779			
	I	andersterd 2005 er 2009 ander	
计正式通知代表 作下口带			2226

व दस्य संग्रंभयपुर्व विष

KOGAN, L.I.; HEYMARK, V.Y., kand.fiz.-mat. nauk; PILETSKAYA, I.B.; INTIN, R.I., kand, tekhn, nauk Effect of certain small addition elements on steel crystallisation and recrystallisation processes. Probl.metalloved.i fis. met. no.[1]:225-274 149. 1. Laboratoriya fasovykh prevrashcheniy 1 Laboratoriya kristallizateli TSentral'nogo nauchno-issledovatel' skogo instituta chernoy netallurgii. (Steel alloys--Metallography) (Solidification) CIA-RDP86-00513R000723610013-8 APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

CIA-RDP86-00513R000723610013-8

A

14. 20, 0153-01

of the it

CIA-RDP86-00513R000723610013-8

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

			PRAIR AND T		n in statistication	in in state the test	an tana tana ang tang	
.	<u>rag</u>							
	1-0	, <u>n</u> n,	Lei,					
	Category		R/Solid Sta id Bodios	te Fhysic	s - Fhaso I	ransformation i	n E5	
an a n Marina	Abs Jour	: Ref	' Zhur - Fiz	1ka, No 3	, 1957, No	6618		and a second
	Author Titlo	-I-ETI	an, L.I., E out of Elem the Decompo	onto that	Form Diffi	oulty-Soluble-C	erbido e	
	Orig Fub	: Pro	bl. motello	ved. i fi	z. motrillov	. sb. 4, 1955,	251-286	
		(90 ole of car car car car car car car car car car	0 1000°) monts as Ti tho carbon bides by th bides into complished b 5%). In thi reases cons rlite and i c leads to	, the pro , V, Zr, steel, ow ess eleme eustenite y alloyin s cree, c iderebly ntormedia a sharp 1	sence of su Nb, and Ta ing to the nts. A par whon hesti g the steel ddition of the stabili to regions. solation of	treating temper ich strongly-car reduces the hard formation of qui tial transforma ng to 900 100 with manganose titanium to man ty of the auster Alloying with the peerlite au	bido-forming denability ito stable tion of these 00° can be (1.5 ganese steel nito in the titanium nd middle	
	Oard	R Ģ¥ FĮ	FOR RELI	ASE: 09	/18/2001	CIA-RDP86	-00513R000	9723610013
AND A CONTRACTOR OF A CONTRACTOR OFTA CONTRACT	- Market States of States							

 KOGAN, L.I.	
Octogory : USSR/Solid State Fhysics - Fhase Transformation in E-5 Solid Bodies	
Abs Jour : Rof Zhur - Fizike, No 3, 1957, No 6617	
Author : Taivinakiy) 5.V. Korene Dilighting R.L. Title : Redicactive Tracer Investigation of the Distribution of Chromium and Tungston During the Process of Austenite Decey	
Orig Fub : Probl. metelloved. i fiz. motollov, ab. 4, 1955, 277-295	
Abstract : The method of redioactive isotopes was used to determine the contents of Or and M in the carbide phase in steels with 1.18% C and 2.42% Or and with 1.02% C and 0.78% W respectively in the process of transformation of austenite at the tem- peratures of the penalite and intermediate regions. In the	
Frocess of decomposition in the pearlite region, the contents of the elloying elements in the carbides exceed their contents in steel by a factor of $3 - 5$ times. The results obtained prove that the decomposition of the austonite in the pearlite region is connected with the need for diffusion redistribution of the tungston. It is shown that rate of secondary diffusion	
Cerd 1 1/2	

nzzete-o-

19.7500 Translation	SOV/137-59-5-10755 From: Referativnyy zhurnal, Metallurgiya, 1959, Nr 5, p 184 (USSR)	
AUTHORS :	Kogan, L.I., Entin, R.I.	
TITLE:	On the Theory of Intermediate Austenite Transformation	a di basa Ali
PERIODICAL:	V sb.; Materialy Nauchno-tekhn, konferentsii po probl, zakalki v goryachikh sredakh i promezhutochn, prevrashcheniyu austenita, Nr 1, Yaroslavl', 1957, pp 3 - 28	
AESTRACT: Card 1/2	Information is given on results of investigations into peculiari- ties of intermediate transformation of austenite and on the nature of phase formation. It is noted that intermediate transformation is connected with a redistribution of C and $T \rightarrow A$ martensite trans- formation. Redistribution of C in the austenite precedes the $T \rightarrow A$ transformation. The higher the temperature of intermediate transformation, the sharper are the changes in the period of the residual austenite lattice, i.e., the higher is the degree of diffusion redistribution of C in the austenite. Relief formation is a characteristic feature of intermediate transformation. The maximum temperature of the intermediate transformation in the given	- / e
Card 1/2	maximum temperature of the intermediate distribution of the of	

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

Redistribution of carbon during transformation of austenite in the medium range. (Cont.) 126-2-24/30

range is accompanied by the formation of a characteristic relief on the polished surface of the cut and this indicates a regular character of the displacements of the atoms at the phase boundary and a coherence of the phases (11-13). Formation of a relief during the transformation is characteristic both for alloy and for carbon steels (11). It was also shown by Kogan(16) that even in practically carbon free iron alloys alloyed with various elements, the γ to a transformation at temperatures below 500, - 400 C can take place only as martensitic transformations'. All these data indicate that austenite transformation in the medium temperature range represents a martensite mechanism of Y to a transformation and therefore austenite transformation in the medium temperature range has to be interpreted as a combination of the processes of diffusion redistribution of carbon in the sustenite and of a martensitic γ to a transformation in sections of the austenite with reduced carbon concentrationss. In this paper experimental results are given on the character of the process of carbon re-distribution as a function of the steel composition (content of C and of alloving elements) and also the results obtained

Card 2/7

APPROVED FOR RELEASE: 09/18/2001

Redistribution of carbon during transformation of sustenite in the medium range. (Cont.) 126-2-24/30

of the changes in the carbon concentrat-ion in the austenite as a function of the temporature and duration of transformation of the sustenite in the medium temperature range. The lattice period of the austenite after its partial transformation in the medium temperature range was measured for a number of steels, the chemical compositions of which (for 12 steels) are entered in Table 1, p.361. In para'l the change of the average period of the austenite lattice as a function of transformations in the medium temperature range is: studied on steel specimens with an approximately equal chromium content (3.45, 3.15 and 3.54%) but differing carbon contents (1.44, 0.98 and 0.54%). In para.2 the same relations are studied for the steels 11873 (1.18% C, 3.58% Mn) and 4874 (0.48% C, 4.33% Mn). In para.3 the same relation was studied on the steels 30102 (0.3% C and 2.9% Al) and 79102 (0.79% C and 2.86% Al). In para.4 the changes in the lattice period of the residual austenite are compared for partial transformations in the medium temperature range for steels with approximately equal carbon contents. The authors arrive at the following con-

clusions: in the case of alloying with Cr, Mn and Ni the

Card 3/7

APPROVED FOR RELEASE: 09/18/2001

Redistribution of carbon during transformation of anstenite in the medium range. (Cont.) 126-2-24/30

degree of carbon enrichment of the residual austenite as a result of the austenite transformation in the medium temperature range depends fundamentally on the carbon content of the steel. The degree of change of the concentration of carbon in the austenite (for increasing as well as decreasing C contents) will be the higher, the higher the transfor-mation temperature in the medium range. For steels for which carbon enrichment of the residual austenite is a characteristic feature, the curves of the changes of the lattice period of the residual austenite as a function of the transformation time in the medium temperature range and the curves representing the kinetics of transformation are similar. For steels for which a decrease in the carbon content of the austenite is characteristic, the sharpest change (decrease) of the lattice period is observed before the a phase begins to separate out, i'.e'., in the initial stages of transformation'. This is obvious from the I-ray exposures taken directly at the transformation temperatures. The austenite transformation in the medium temperature range is characterised by a redistribution of the carbon in the austenite and subsequent martensitic transformation in these

APPROVED FOR RELEASE: 09/18/2001

Card 4/7

Redistribution of carbon during transformation of austenite in the medium range'. (Cont.) 126-2-24/30

austenite sections which have a reduced carbon concentration. For temperatures corresponding to the medium temp-erature range the formation of nonuniformities as regards the carbon concentration in the austenite is advantageous from the thermodynamic point of view since it brings about a reduction of the free energy of the system. The direction of the process of redistribution of carbon in the austenite at temperatures of the medium temperature range is determined by kinetic factors. In steels containing 0.3 to 0.6% C, movement of the carbon into the remaining part of the austenite may prove kinetically more advantageous than the formation of cementite, which requires a carbon concentration increase to 6'.7% and, consequently, it requires diffusion from distant spots. In steels containing 0.7 to 1% C, in which no changes of the average lattice period of the residual austenite are observed during transformation in the medium temperature range, removal of carbon from the sections with reduced concentration into the remaining part of the austenite and separation of cementite is equally likely. Interaction between the atoms of Fe, C and of the alloying elements can change appreciably the

Card 5/7

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8"

÷

Redistribution of carbon during transformation of sustenite in the medium range. (Cont.) 126-2-24/30

degree of the redistribution of C in the austenite; for instance, alloying with Si leads to a very considerable carbon enrichment of the residual austenite. Even in high carbon steel which is alloyed with Si, transformation of the austenite in the medium temperature range involves an increase in the carbon content in the residual sustenite by 0.5 to 0.6%. Thereby, the specific influence of Si is explained by the inhibition of the processes of carbide for-The higher the transformation temperature in the mation. medium temperature range, the more will the carbon content be lowered in those sustenite sections which are subsequently subjected to martensitic transformation. This conclusion is confirmed by the dependence of the degree of the change of the carbon concentration in the sustenite on the transformation temperature (for an equal degree of transformation). Self braking of the reaction in the medium range is not linked with a redistribution of the carbon and is obviously the result of the martensitic mechanism of Y to a transformations'. The influence of alloying elements on the kinetics of transformation of the austenite in the madium

Card 6/7

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

On secondary hardening of structural steels.

126-2-20/35 specimens were heated in the furnace to 1000 and 900°C respectively for six minutes and then transferred into a tin bath which was heated to 300-400°C and finally quenched in oil. Following that, one of two specimens was heated in the oil bath of the anisometer to 500-550°C and then cooled to 280°C inside the bath with the heater switched off and finally transferred to an oil bath of the same temperature in which it was cooled to room temperature. Due to such slow cooling below the martensitic point, a maximum quantity of residual austenite remained in the specimen which facilitated measuring the period of the crystal lattice. During the process of cooling, the deflection of the light beam of the anisometer was recorded and from the obtained data the cooling curves were plotted which were compared with the cooling curves obtained for a specimen of the same steel containing 100% of the magnetic phase. A bend in the cooling curve was taken as an indication of the existence of a secondary hardening. After the heat treatment the specimens were etched and investigated by means of the X-ray ionization instrument YPC-50-N at room temperature. The period of the austenite lattice 1997 - C

APPROVED FOR RELEASE: 09/18/2001

Card 2/4
CIA-RDP86-00513R000723610013-8

On secondary hardening of structural steels. 126-2-20/35 was measured before and after tempering on the line (200); the absolute error amounted to 0.0026 kX. The experi-mental results are entered in tables and graphs. It was found that secondary hardening is linked with a reduction of the carbon content and possibly also of alloying elements in the residual austenite during tempering at 500 to 550°C. A qualitative correspondence was observed between the degree of drop of the carbon concentration in the residual austenite and the intensity of secondary hardening. In structural steels a preliminary condition of secondary hardening during tempering is the occurrence of partial transformation of austenite in the intermediate range during hardening. Such hardening leads to a considerable increase in the carbon concentration of the residual austenite and, therefore, during subsequent tempering at 500 to 550°C a carbide phase may separate out from the residual austenite which will result in a reduction of the lattice period of the residual austenite. In the case of steels with a higher carbon content intermediate transformation during hardening is not a necessary condition for the separation of a carbide phase during tempering at 500 to 550°C. It is possible that Card 3/4 relaxation processes taking place during tempering play

APPROVED FOR RELEASE: 09/18/2001

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8

KOGAN LI 129-58-5-16/17 Scientific-Technical Conference on Hardening in Hot Media and Intermediate Transformation of Austenite (Yaroslavl')-14J8 by high temperature tempering; 13) A full and even a partial decomposition of the austenite in the upper region of the intermediate range causes appearance of a particular variant of irreversible temper brittleness which is characterised by a transcrystalline fracture. Doctor of Technical Sciences R. I. Entin and L. I. Kogan in their paper "On the Theory of Intermediate Transformation of Austenite" communicated experimental data on the elementary reactions, structure and composition of transformation products of austenite in the medium range. They pointed out that transformation in this range is not due to redistribution of the alloying elements in the austenite but to diffusional redistribution of carbon in . the austenite. Depending on the composition of the steel and the transformation temperature, an increase or a decrease of the carbon concentration in the residual austenite may take place, which is due to separating out of carbides. In some cases (for instance in nickel steels) the process of carbon enrichment of the residual austenite Card at a later stage of the transformation is followed by a 4/29

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

SOV/137-58-8-17683 Transformation of Austenite in the Central Region during the process of transformation, it was established that the redistribution of C in A precedes the process of the $\gamma \rightarrow \alpha$ appearance of A zones with decreased C concentration makes it possible transformation. The for martensite transformation process to occur at temperatures $>M_n$; A zones with increased C concentrations may precipitate cementite. Alloying of steel with Si significantly increases the C content in residual A. The formation of a relief in the course of ITA is an indication of martensitic character of the $\gamma \rightarrow a$ transformation. The fact that certain steels exhibit a protracted incubation period and the possibility of suppressing the process of ITA during rapid cooling indicate that both these factors are connected with processes of diffusional preparation and redistribution of C in A. The effect of alloying elements on the kinetics of the ITA is determined by the manner in which they affect the diffusion rate and the diffusion length of C. The isolation of the intermediate region on the diagram of A transformation is determined by a delay in the processes of formation of carbides and polymorphous $\gamma \rightarrow a$ transformation in the pearlite region, whenever steel is alloyed with such elements as Cr, Cr and Ni, Mo, W, carbides and polymorphous etc. As the temperature is reduced, the rates of diffusion of the alloying elements and of selfdiffusion of Fe in the A become very small and, under these conditions, the process of transformation consists in diffusional

APPROVED FOR RELEASE: 09/18/2001

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8 SOV/137-58-8-17683 Transformation of Austenite in the Central Region redistribution of C only in conjunction with martensite $\gamma \rightarrow a$ tion in regions of A with reduced C concentration. The formation of relief transformaand a change in the period of the lattice of the retained A, at the temperatures of upper and lower regions of the ITA, justify the assumption that the mechanism of transformation in the various regions is, basically, identical, M. Sh. 1. Austenite-Transformations 2. Carbon-Diffusion 3. Austenite-Structural analysis Card 3/3

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

I TATAL BETTER A LEGARATION DE LE CALENDER CALENDE SOV/24-58-6-3/35 On the Mechanism of the Isothermal Transformation of Austenite in the Intermediate Temperature Range 0.24% C, 2.10% S1, 2.94% Mn, 1.85% N1, 1.64% V; 0.23% C, 2.07% S1, 2.96: Mn, 1.83% Cr, 1.85% N1, 1.54% V. The experimental specimens were investigated by hardness measurements, and by magnetometric and X-ray diffraction techniques. Samples of forged material were chromium plated after vacuum homogenisation. They were then heated in argon to 1150°C, held at this temperature for 4 to 6 minutes and then transferred to the isothermal transformation bath which was maintained at temperatures ranging from 150 to 350 C for a period long enough to ensure the maximum possible transformation at the given temperature. The specimens were then quenched to room temperature in a 10% solution of caustic soda. The magnetometric measurements showed that the austenite did not transform isothermally at temperatures higher than 400°C. The T.T.T. curves for the two investigated steels are shown on Figs 5a and 6a. As can be seen from the graphs reproduced on Figs 5b and 6b, the proportion of the decom-posed austenite at 350, 300 and 250°C was 5, 70 and 80% Card 3/7

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8

а (ст. 1. н

AUT	HORS: Kogan, L.I., (Cand. Tech. Sci.), and Entin, R.I. (Dr. Tech. Sci., Professor) LE: Certain Level C.
TIT	Residual Austanita (Naluting the Transformation of
PER	IODICAL: Metallovedenivo i tomati
ABSI	1959, Nr 6, pp 7-13 (USSR)
	RACT: The authors investigated in detail the influence of partial intermediate transformation of austenite on the subsequent transformation at lower temperatures for the steels 53KhN3 (0.53% C; 1.1% Cr and 3.4% Ni), 6082 (0.6% C and 2.3% Si), and 120C2 (1.2% Ni), 6082
	for each of these, two temperatures (T1) of preliminary
	These temperatures were as follows: $T_1 = 405$ and 365 °C, $T_2 = 300$ and 260 °C for the steel 53KhN3; $T_1 = 400$ and
Car	preliminary transformation at the temperature T. the
	11/4 incubation period. In Figs 1-3 the influence is

a a server and a server and a server and a server a server and a

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8"

CIA-RDP86-00513R000723610013-8

地行动运行出来的考虑了,我们们们就是这些事实不能回来,但我们在这些这些中心的原因是此心的行行的方式,这个个学校会说这个学校的"你是你们还不是这些是没有的这种事实是是 第二十一章

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

Governing the Transformation of Residual Austenite Certain Lave partial intermediate transformation of austenite on subsequent transformation at lower temperatures is one of the basic causes of the difference in the kinetics of transformation of austenite under isothermal acaditions, which also applies to continuous cooling. Behaviour of the residual austenite during tempering depends to a considerable extent on the conditions of hardening of the steel and on the chemical composition. For evolving rational heat treatment regimes it is also necessary to take into consideration the features of the kinetics of transformation of residual austenite during tempering. Preliminary experiments have shown that if steel which contains a considerable quantity of residual austenite is subjected to heat treatment, the impact strength can be considerably improved by double tempering. For this purpose it is advisable to first temper the steel at temperatures corresponding to the lower part of the intermediate range and then to increase the tempering temperature to 600 - 650 °C. In the case of direct Card3/4

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

5/129/61/000/007/002/016 18.1500 8073/8535 AUTHORS : Entin, R. I., Doctor of Technical Sciences, Professor and Kogan, L. I., Candidate of Technical Sciences TITLE: Redistribution of Carbon During Intermediate Austenite Transformation PBRIODICAL: Metallovedeniye i termicheskaya obrabotka metallov, 1961, No.7, pp.7-11 TEXT: According to earlier investigations of the authors, the nature of the changes in the carbon concentration in residual austenite depends on the chemical composition of the steel. During transient transformation the carbon concentration in the residual austenite becomes highly non-uniform. metallographic investigations and from the results of measurements of the lattice parameter of the residual austenite in the case of step cooling to temperatures lower than room temperature. Measured parameters of electrolytically isolated austenite also indicate that after partial intermediate transformation the austenite will become non-uniform. Some features of the redistribution of carbon in the austenite may escape notice, since

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8

	NET CONTRACTOR DISCRIPTION TOOL	569611644197796(O)41	ne n	a tata 16232 katak	的社会的实际和科学的人种	CHRUN, LEDISO	
Redistribution of Carbon	4 4 4	5/1: E07:	29/61/0 3/E535	24188 900/007/	002/016	; ;	
The compositions of these	steels	are giv	en her	ewith ((n 42)		
Steel	C	81	Mn	Cr	Ni	Мо	
53×H3((53KhN35)	0.53	1.22	0.32	1,42	2.35	-	
52×3C21711 (52Kh352GM) 80×4 (80Kh4)	0.52 0.81	2.18		2.97	-	0.38	
			0.28	3.86	-	- -	
The selection of the stee conditions in the chamber X-ray exposures. It was the austenite in the pear transformation during coo intermediate range so as during the process of trai were vacuum annealed for etched so as to remove the the specimens were heated Card 3/6	necessar litic ra ling and to permi nsformat. 10 hours	y to en nge so also a t takin ion. S at 1150	altion sure a as to p high a g numer pecimer D*C and	s of mak high st prevent stabilit cous X-r is 0.8 x l then t	ing the ability pearlie y in th ay expo 10 x 1 hey wer	of tic tic sures .00 mm	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				e a chi c	U .	
						•	

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8"

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

VERTICAL STREAM STREAM

CIA-RDP86-00513R000723610013-8

S/032/61/027/006/015/016 B124/B203 AUTHORS: Kaminskiy, E. Z., and Kogan, L. I. TITLE: Exchange of experience Zavcdskaya laboratoriya, v. 27, no. 6, 1961, 761 PERIODICAL: TEXT: For studying the intermediate stages in conversions, the authors improved a high-temperature chamber which had been described earlier (Ref. 1: E. Z. Kaminskiy and T. I. Stelletskays. Problemy metallo-vedeniya i fiziki metallov, 2, 240 (1951)). The specimen, 1-10-100 mm, was placed in the interspace between the water-scoled copper electrodes, and electrically heated. A transparent foil of nepéonb fik-4 (Per-fol' PK-4, caprons, 50 µ thick, is stretched over the chamber window, the distance between specimen and film being 45 mm. Exposure time is 20 min. Bafere operation, the chamber is evacuated and then filled with helium... To prevent bending of the specimen during heating to high temperatures (above 900°C), a 5µ thick nickel foil is welded to the specimen. The X-ray patterns showed the nickel bands besides those of the steel investigated. By measuring the distance of the nickel bands at a certain temperature, it was also possible to calculate the Card 1/2

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

S/032/61/027/006/015/018 Exchange of experience B124/B203 distance between specimen and film. When heating the specimens to 900°C and cooling to 300 - 275°C, no iron diffuses into the nickel foil. There 18 1 Soviet-bloc reference. ASSOCIATION: Taentral'nyy nauchno-issiedovatel'skiy institut chernoy metallurgii im. I. P. Bardina (Central Scientific Research Institute of Ferrous Metallurgy imeni I. P. Bardin) Card 2/2

APPROVED FOR RELEASE: 09/18/2001

"APPROVED FOR RELEASE: 09/18/2001 CIA

CIA-RDP86-00513R000723610013-8

KAMINSKIY, E.Z.; KOGAN, L.I.: NECHVOLODOV, V.V.; LEVIT, A.M. Exchange of experience. Zav.lab. 27 no.6:769 '61. (MIRA 14:6) 1. TSentral'nyy nauchno-issledovatel'skiy institut chernoy metallurgii imeni I.P. Bardina (for Kaminsky, Kogan). 2. Vsesoyusnyy nauchno-issledovatel'skiy institut geofizicheskikh metodov razvedki (for Levit).
(Scientific apparatus and instruments)

APPROVED FOR RELEASE: 09/18/2001

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8

		a a sa	
	• • • • • • • • • • • • • • • • • • •	24050	
	18.7500	B/02C/61/138/004/010/023 B104/B203	i
• • •	AUTHOR:	Kogan, L. I and Entin, H. I.	
- - -	TITLE :	Studies of carbon concentration in the alpha phase in intermediate transformation of austenite	
	PERIODICAL:	Akademiya nauk SSSR. Doklady, v. 138, no. 4, 1961 826 - 627	
	that the aus sists of a d site transfo higher carbo temperatures	e introduction, the authors discuss recent studies stating tenite transformation in the medium temperature range con- iffusion redistribution of carbon in austenite and a marten- rmation $\gamma - \alpha$. The formation of part of the austenite with n content permits the martensite transformation $\gamma - \alpha$ at medium above the M _H point [Abstracter's notes M _H point not defined.]	t.
	shown in a p at the insta	that the redistribution of carbon is a necessary condition ation and growth of a crystals. Further, the authors had revious paper that the carbon concentration in the a-phase nt of transformation is lower than the mean carbon concen- teel (Izv. AN SSSR, OTN, no. 6 (1958)). The method used for	
1999. 1977			

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8"

CIA-RDP86-00513R000723610013-8

138/004/010/023

B104/B203

VI LAUGHTER PROPERTY AND A DESCRIPTION OF THE PROPERTY AND A DESCRIPTION OF THE PROPERTY AND A DESCRIPTION OF T

Studies of carbon concentration ...

these studies did, however, not allow a determination of the carbon concentration in the α -phase on the transformation temperature in the medium range. For this reason, the authors made X-ray studies of the α -phase directly at the transformation temperature. They studied a low-alloy carbon steel of the composition 0.23 % C, 2.1 % Si, 3 % Mn, 1.8 % Ni, 1.8 % Cr. and 1.5 % Y. The concentration of the α -phase was determined from the width of the (211) interference line. The specimens were heated in a chamber directly with eleptric current to 1150°C, held at this temperature for 5 min, and subsequently cooled down to the temperature of the isothermal. After the end of the austenite transformation determined by magnetometric measurements, the specimens were heated to 300°C; then, the X-ray pictures were taken. At this temperature, carbon is not released from the α -phase, and there is no new austenite transformation; this permitted a comparison of the line widths of the a-phase. For determining the carbon concentration in the α -phase from the width of the interference lines, the authors used a calibration curve plotted with the aid of studies of hardened steel with carbon contents of 0.05 -0.25 %. Results are given in Table 1. As can be seen, the a -phase formed in an intermediate transformation contains less carbon than corresponds Card 2/4

APPROVED FOR RELEASE: 09/18/2001

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8

The second s

	carbon content in steel. The carbon concentration in the he lower, the higher the transformation temperature. There und 5 Soviet-bloc references.	
SSOCIATIONS	Institut metallovedeniva i fiziki metallov Tsentral'nogo nauchno-issledovatel'skogo instituta metallurgii im. I. P. Bardina (Institute of Metallography and Physics of Metals of the Central Scientific Research Institute of Metallurgy imeni I. P. Bardin)	
RESENTED :	November 30, 1960, by G. V. Kurdyumov, Academician	
JBMITTED:	November 29, 1960	
		72
rd 3/4		
	이 사람들은 사람들은 것을 많은 것을 가지 않는 것이 많이 있는 것이 없는 것을 것이라. 문화	

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8"

CIA-RDP86-00513R000723610013-8

33459 s/129/62/000/001/001/011 1454 1045 1.1700 E193/E383 AUTHORS : Kogan, L.I., Candidate of Technical Sciences and Entin, R.I., Doctor of Technical Sciences, Professor TITLE: The effect of deformation of supercooled austenite on properties of hardened steels Metallovedeniye i termicheskaya obrabotka metallov, PERIODICAL: no. 1, 1962, 3 - 9 TEXT: A new method of improving the mechanical properties of steel has been developed in recent years (L.V. Smirnov, Ye.N. Sokolov and V.D. Sadovskiy - Trudy instituta fiziki metallov, no. 18, 1956.. Ref. 3; E.M. Lips, H.V. Zuilen -"Metall Progress", v.66, no. 2, 1954 .. Ref. 4), which consists of plastic deformation of supercooled austenite followed by conventional hardening and tempering treatment, and to which the term "TMO" (abbreviation of "termomekhanicheskaya obrabotka") has been ascribed in the Soviet Union. The main object of the present investigation was to study the effect of this treatment on the mechanical properties of steel 40XH 5C (40KhN5S) which was chosen for this purpose because its austenite remained stable Card 1/11

AT IN TRADUCTION TO THE CONTRACT OF A CONTRACT OF

APPROVED FOR RELEASE: 09/18/2001

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8

					33459		in instants	
	The effe	ct of deformation	S/12	29/62/0	00/001/	/001/0	11	
	at relat	ively low temperatures (and other steels used by 1, as follows:	570 - 50	5 /E 383 00 ^O C). sent a	The c uthors	omposi is giv	ltion ren	X
	Melt	Type of steel	Comp	ositio	n, %			
	No.		C	<u>Si</u>	Mn	Cr	Ni	
	1 ^{**} 2	40XH 5C (40KhN5S) 40KhN5S	0.41 0.40	1.39 1.4	0.08		4.54	
- · ·	3 ^{жн}	42XH5CMQ (42KhN5SMF)	0.42	1.85	0.25	1.86	4.15	
	4 %	31×H 5C (31KhN5S)	0.31	1.45	0.07	1.45	4.45	
*	5 ^ж	33XH5C (33KhN58)	0.33	1.35	0.04	1.60	4.25	
	ж d XX n	lenotes vacuum-melting leans that the melt conta	ined O.	48% Mo	and O.	25% V.		
	Card 2/41	6			•			
							a la la seconda de la secon Seconda de la seconda de la	
n -241,427 s Referencess					ir a larsen a serie NR GRAINT NGRA			

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723610013-8"
CIA-RDP86-00513R000723610013-8

33459

E193/E383

5/129/62/000/001/001/011

The effect of deformation ...

In the first series of experiments the effect of both conventional treatment and TMO on vacuum-melted steel 40KhN5S (Melt 1) was studied. The conventional treatment consisted of oil-quenching the steel from 850 °C and tempering it for one hour at various temperatures. TMO was carried out in the following manner: the test piece was heated in a furnace or in a salt bath to 850°C, after which it was transferred to a molten tin bath maintained at 525°C. After it had cooled to 525 °C the test piece was deformed to 70% reduction with one or two strokes of a drop hammer; it was then immediately oilor water-quenched, after which it was tempered for one hour at various temperatures between 200 and 650 °C (in some cases, rolling instead of forging was used to deform the austenite). The results of these tests (carried out on test pieces 1 mm in diameter) are reproduced in Fig. 2, where the yield strength $(\sigma_s, \text{kg/mm}^2, \text{graph a})$ and UTS $(\sigma_b, \text{kg/mm}^2, \text{graph 5})$ of steel 40KhN5S are plotted against the tempering temperature (°C), the circles (1) and dots (2) relating to speciments treated by the conventional and TMO methods, respectively. It will be seen Card 3/11/

APPROVED FOR RELEASE: 09/18/2001

1

		STATE OF A	的资源的资源 的资源
The effect of deformation	33459 \$/129/62/000/001/00 E193/E383	01/011	
that a maximum increase in yield str subjected to TMO was attained in spe Under these conditions, $\sigma_{g} = 260$ kg were occasionally attained; in thes reduction of area were, respectively hardness of steel 40KhN5S, after TMO HRC 59, i.e. 3 units higher than that by the conventional method. The import TMO, when applied to steel 40KhN5S, a pronounced; this is shown by data r check the effect of size of the test process studied, tensile specimens, in the next series of experiments. Table 3. The effects of other varian of steel 40KhN5S (melt 1) are shown if results were obtained when TMO was ap (melt 3), in which secondary hardness tempering at 450 - 525 °C. It was for Card 4/216	climens tempered at 2 mm^2 and $\sigma_b = 330$ e cases, elongation , 5 - 6 and 30 - 35% but before tempering t of the same steel rovement brought above nelted in air, was 1 eproduced in Table 2 piece on the result 5 mm in diameter, we The results are given its of TMO on the pring In Table 4. Some signified to steel 42Kh	220 °C. kg/mm ² and 6. The 1g, was hardened out by ess 8. To s of the ere used m in operties gnificant N5SMF	

APPROVED FOR RELEASE: 09/18/2001

•

i. Store

The effect of deform	8/11 8/11 E193	33459 9/62/000/001/001, / 2 383		
(o, kg/mm ²) versus s	train (c. %) diagram 05, 0.14 and 0.24% C t is stated in the c mprovement in the me subjected to TMO is resultant high plast ctures in which, the ng to the formation	owing stress s for austenite j (Curves 1-3, res oncluding remarks chanical properti associated with icity of both aus refore, local str	in spectively) that the es of their tenitic ess	
ASSOCIATION: TENIIC				
· · · ·				
				•
Card 6/14				
Card 6/14				

\$/126/62/013/005/025/031 E111/E435 L.I., Entin, R.I. Influence of stress and deformation on the kinetics of Drozdov, B.Ya., Kogan, the intermediate transformation of austenite AUTHORS : PERIODICAL: Fizika metallov i metallovedeniye, v.13, no.5, 1962, TITLE: Information on the effect of deformation of metastable austenite followed by quenching on the austenite transformation is The authors have studied the kinetics of the transformation under applied-load conditions on type 40XH5C (40KhN55) and 80×4 (80Kh4) steels. For the first, loading was carried out at 0.6 mm/min to the required stress which was then kept constant within + 1 kg/mm². The kinetics were studied at 300 and 350°C. Acceleration occurred at all the temperatures, being especially marked at tumperatures of the lower part of the intermediate region. The influence of rate of deformation was studied at 300, 400 and 525°C. This and other work shows that when conditions for thermomechanical treatment of steels are Card 1/2 APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R00072361

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

"APPROVED FOR RELEASE: 09/18/2001

APPROVED FOR RELEASE: 09/18/2001

DIVENU

•

		week the state of the state of the second state of the st	
 Produkti Suteren Anti Calif. 	<u>ette</u> et transformation et al.		The second s
	EFFERENCE AND A STREET AND A ST	I MARKAN AND AND AND AND AND AND AND AND AND A	
	的名称是 一种的方面的外的问题。		
	A REPORT AND A REPORT	在40%的4%的4%的2%的4%的4%的4%的4%的4%的4%的4%的4%的4%的4%的4%的4%的4%	
and the second secon			

. CAL THAT TATT ONDER TONS . THE THAT THE STARS OF STRARS AND DEPENDED ON THE STRATE .

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

	P6012234		SOURCE CODE:	<u>JD</u> UR/0129/66	/000/004/0019/002	ก
AUTHOR: B R. I.	ashchenko, A. P.	; Gurevich, Ya				
ORG: TSNII						8
TITLE: In	vestigation of e	teels surcept	ible to seconda	ITV bardenin		
			स्वित्तमार्थः इत्यान्त्र स्वत्यम् इत्यारथः	ತಾಪ್ರಮೊದ್ದ ಭಾಗ		2
SOURCE: M	etallovedeniye i	termicheskaya	obrabotka mita	llov. no. A	1066 10 21	
TOPIC TACS					, 1200¹, 12-51	
high temper	ature treatment	nt, thermomech	mical treatmen	t, low temp	rature treatment	
		,	MIENEVID, 44KNJ	mvrs, oukh5	IVFS /	
4ABSTRACT:	The effect of t 44Kh5MVFS, and	kermomechanical	treatment on	the properti	es of ASKhSW17	4- 102 144
hardening h	44Kh5MVPS, and as been investi	GOKLSHVPS str	ictural steels	susceptible	to secondary/	
(austenitizi	ng at 1050-110	0C For 15. 20	hergente tuelle	omecnanical	treatment i b	
with 75% re	duction, water	quenching follo	wed by refrice	550C, plast	ic deformation quid nitrogen and	
tempering)	improved the st Engthives 230-	rength of all s	teels tested.	For instance	quid nitrogen and	
elongation -	II and the	- Cite	JIEIG BCLEUGE	n 233- 260 k	g/mm ² , the	
204-246 kg	194 - 276	ha /am2	1J-JUL. Corre	sponding fig	ures for 480C wer	
sceels in	the sectordance	and a second sec	JUAL IIU	wever, 42102	NZVES and blkhsev	79
	strength can be	increased to a	a condition were	e brittle a	N2VFS and 60Kh SMV room;temperatur	e. :
The yield			UUUUL /1/11 0/0/19665	· ## 5////		
The yield Cord 1/2			UDC: 539.374	at JUUG and	about 230 kg/mm	6.

ACC NR1 AR6013665	SOURCE CODE: U	R/0058/65/000	0/010/E028/E028
AUTHOR: Kogan, L. I.; Entin, R. I.			
TITLE: The transformation of austenit	• in the intermediat	e region	
SOURCE: Ref. zh. Fizika, Abs. 10E219			
REF SOURCE: Sb. tr. In-t metalloved. metallurgii, vyp. 36, 1964, 222-226 phile transition TOPIC TAGS: Crystal growth, austenite 9052 steel, 70N3 steel	awaken	ite	
TRANSLATION: The growth rate of a-pha (at 250, 300 and 350°C) was measured in skiy apparatus. It is hypothesized the by the rate at which C is removed from tivation energy of and intermediate tra- compared to the activation energy for is related to the high stress that occu- slightly relax at intermediate tempera- growth rate of a-phase crystals is disc	n U9, 100 M, 9052 an at the growth of a-p the edge of the gro ansformation (12,000 C diffusion in auster ur in austenite durin tures. The effect o	d 70N3 steels hase crystals wing crystal. -14,500 cal/g nite (32,000 ng a transfor f alloy eleme	on the Lozin- is limited The small ac- ram-atom) as cal/gram-atom) mation and only nts on the
TRANSLATION: The growth rate of a-pha (at 250, 300 and 350°C) was measured in skiy apparatus. It is hypothesized the by the rate at which C is removed from tivation energy of and intermediate tra- compared to the activation energy for is related to the high stress that occu- slightly relax at intermediate temperar	n U9, 100 M, 9052 an at the growth of a-p the edge of the gro ansformation (12,000 C diffusion in auster ur in austenite durin tures. The effect o	d 70N3 steels hase crystals wing crystal. -14,500 cal/g nite (32,000 ng a transfor f alloy eleme	on the Lozin- is limited The small ac- ram-atom) as cal/gram-atom) mation and only nts on the

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

APPROVED FOR RELEASE: 09/18/2001

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723610013-8

8/119/62/000/012/001/009 D201/D308 AUTHOR : Kogan, L.M. TITLE: Design of ferromagnetic probes PERIODICAL: Priborostroyeniye, no. 12, 1962, 6-8 TEXT: The author considers the problems met in designing axial excitation ferromagnetic probes. The following conclusions amplitude of the analysis of the induced emf spectrum: 1) the amplitude of a given harmonic, increases with the order of this harmonic; 2) the excitation field amplitudes, corresponding to the maximum amplitudes of odd harmonics are simple ratios to these of maximum amplitudes of odd harmonics, are simple ratios to those of even harmonics; 3) the ratio of even harmonics amplitudes is directly proportional to the amplitude of the excitation field. selecting the core material it is necessary to find the incremental permeability of the core shape. A formula for the probe sensitivity G is given. Several probes, designed according to the above principles, have their parameters differing on the average by 1 to 6% Card 1/1

APPROVED FOR RELEASE: 09/18/2001

