ACCESSION NR: AP4024995 A sharp maximum at Yb corresponds to a large atomic radius and indicates a bivalent state in this element. "The authors express their thanks to P. I. Kripyakevich for his discussions of the work." Orig. art. has: 1 figure and 2 tables. ASSOCIATION: L'vovskiy gosudarstvenny*y universitet (Lvov State University) SUBMITTED: 04Jul63 DATE ACQ: 16Apr64 'ENCL: 00 SUB CODE: NM, SS NO REF SOV: 001 OTHER: 005 Card 2/2	÷			
bivalent state in this element. "The authors express their thanks to P. I. Kripyakevich for his discussions of the work." Orig. art. has: 1 figure and 2 tables. ASSOCIATION: L'vovskiy gosudarstvenny*y universitet (Lvov State University) SUBMITTED: OLJUL63 DATE ACQ: 16Apr64 'ENCL: 00 SUB CODE: MM, SS NO REF SOV: 001 OTHER: 005	ACCESSION NR: APLO2	4995		
SUBMITTED: O4Jul63 DATE ACQ: 16Apr64 ENCL: 00 SUB CODE: MM, SS NO REF SOV: 001 OTHER: 005	bivalent state in th Kripyakevich for his	is element. "The authors express their thank	s to P. I.	`
SUB CODE: MM, SS NO REF SOV: OOL OTHER: OO5	ASSOCIATION: L'VOVS	kiy gosudarstvenny*y universitet (Lvov State	University)	
	SUBMITTED: 04Jul63	DATE ACQ: 16Apr64	'ENCL: OO	
Gard 2/2	SUB CODE: MM, SS	NO REF SOV: OOL	OTHER: 005	
ard 2/2		and the second		
ard 2/2				
ard 2/2	,			
.ara 2/2				
and the second	.ara 2/2			

.

:

(market) (market) (h)	s/0078/64/009/003/0665/0670
CCESSION NR: AP4019490	I.; Kuz'ma, Yu.B.; Kovalik, D.A.
UTHORS: Glady*shevskly, Ie.	1., at moture of the compounds in
	crystal structure of the compounds in systems
courser. Zhurnal neorg. khimi	1, v. 9, no. 3, 1964,665-670
TOPIC TAGS: rhenium iron sil system, rhenium nickel silic structure, ternary intermete	icon system, rhenium cobart size stal con system, phase equilibrium, crystal allic compound, x ray analysis, micro- allic phase, phase, Re6Fe6Si, Re6C05.7 ^{S1} 1.3
ABSTRACT: Preliminary phase systems Re-Fe-Si, Re-Oo-Si that Fe, Oo and Ni form ter systems with Re and Si. Th	analyses of the alloystaken to verify and Re-Ni-Si were undertaken to verify mary intermetallic compounds in ternary, e phase equilibria at 8000 were studied in e chase equilibria at 8000 were studied in ections were constructed from x-ray and
microstructure data (figs. of the beta-manganese structure formed in the Re-Fe syst	ections were constructed from 1014 mpound 1, 2 and 3). A new intermetallic compound ture type (gamma' phase a = 6.43 ± 0.01A) ture type (gamma' phase a = 6.43 ± 0.01A) em near Re3Fe2. The existence of ternary
Card 1/5	

	R.	
*••	· · · · · · · · · · · · · · · · · · ·	
ACCESSION NR: AP401	9490	
established in Re-F c = 25.69 \pm 0.05A; FeSi and Re ₅ Si ₃ . R 0.005A; $c/a = 5.507$ Compounds of the W ₆	nds of the W ₆ Fe ₇ type structure (e-Si and Re-Co-Si. Re ₆ Fe ₆ Si (a = $c/a_i = 5.50$) exists in equilibrium $e_6Co_5 7Si_1 = 3$ (a = $4.633 \pm 0.002A_i$;) is in equilibrium with $Co_2Si_1 = 0$ Fe ₇ type structure are absent in has: 1 table and 3 figures.	$= 4.67 \pm 0.01A;$ with Fe ₃ Si, c = 25.514 \pm JoS1 and Re ₅ Si.
ASSOCIATION: L'VOVE	kiy ordena Lenina gosudarstvenny	y universitet im.
ASSOCIATION: L'VOVE I. Franko (L'VOV Sta	kiy ordena Lenina gosudarstvenny	by universitet im. ENCL: 03
ASSOCIATION: L'VOVS I. Franko (LVOV Sta SUBMITTED: 08Jan63	kiy ordena Lenina gosudarstvenny te University)	•
	kiy ordena Lenina gosudarstvenny te University) DATE ACQ: 31Mar64	ENCL: 03
ASSOCIATION: L'VOVS I. Franko (LVOV Sta SUBMITTED: 08Jan63	kiy ordena Lenina gosudarstvenny te University) DATE ACQ: 31Mar64	ENCL: 03
ASSOCIATION: L'VOVS I. Franko (LVOV Sta SUBMITTED: 08Jan63	kiy ordena Lenina gosudarstvenny te University) DATE ACQ: 31Mar64	ENCL: 03
ASSOCIATION: L'VOVS I. Franko (LVOV Sta SUBMITTED: 08Jan63	kiy ordena Lenina gosudarstvenny te University) DATE ACQ: 31Mar64	ENCL: 03

CIA-RDP86-00513R000928010

"APPROVED FOR RELEASE: Monday, July 31, 2000

CIA-RDP86-00513R000928010

APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R000928010(

er vert same

AUTHORS: Kuz 'ma, Y		vskiy, Ye. I.	
TITLE: The Mn-Co-S	i system		
SOURCE: Zhurnal ne	org. khimii, v.	9, no. 3, 1964, 674-681	•-
Mn sub 5 Si sub 3, beta manganese tran	MnSi, Mn sub 3 Sition, MnCo sub	on system, manganese silicon ganese cobalt system, Mn sub Si sut 5, Mn sub 6 Si, alpha b 3, Co sub 2 Si, Co sub 3 Si MnCoSi, Mn sub 2 CoSi, Mn sub l structure	- -
and Co-Si binary sy system was construct melts (fig. 1). The Mn Si, Mn Sia, MnSi	stems. The 8000 ted from x-ray a following comp Mn_Si a comp	was to determine the phase system and in the Mn-Si, Mn- C isothermal cross section of and microstructure data for 1 pounds exist in the Mn-Si sys pound containing 18 at.% Si (ith a compound praviously ide	the 85 tem:
Card 1/3			

APPROVED FOR RELEASE: Monday, July 31, 2000

CIA-RDP86-00513R000928010(

CIA-RDP86-00513R000928010

ACCESSION NR: AP4019492

as having 14 at.% Si. Silicon lowers the transition temperature from alpha- to beta-manganese. In Mn-Co melts annealed from 400C, there are two intermediate compounds approximating MnCo₂ in composi-tion. The Co-Si system has two phases consisting of Co₂Si and a solid solution based on Co; Co₂Si does not exist. In the ternary on components and double compounds. Seven ternary intermediate compounds were found and their areas of homogeneity determined; compounds were found and their areas of homogeneity determined; (MnCoSi), R', U, λ_i (MnCo₁ 34-1.25 Si₀.66-0.75), S (Mn₂CoSi), X (Mn₃Co₂Si) and H(MnCo₂Si). The crystal structure of Mn₂Si and the r-phase were found to be of the same structure type as the R-phase (space group C_{3i} -R3). For Mn₆Si a = 10.874 ± 0.005A, c = 19.177± 19.126 ± 0.010A, c/a = 1.778. Orig. art. has: 5 tables and 3 figures. ASSOCIATION: L'vovskiy ordena Lenina gosudarstvenny*y universitet im. I. Franko (Lvov State University) SUBMITTED: 21Feb63 ۱. 1 DATE ACQ: 31Mar64 ENCL: 01 SUB CODE: CH NR REF SOV: 014 Card 2/3 OTHER: 013 h

APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86

CIA-RDP86-00513R000928010(

CIA-RDP86-00513R000928010

ander han men eine einen eine Aussie eine einen eine eine eine eine eine	
1 കൊല്ല ക്കും പ്രത്യാനം മറ്റ് പറത്	
ACCESSION NR: APADE3570	s/uc78/64/009/008/1898/1904
Auruos, Kutima, Yu. B.; Cledyesheve	ekter Ye. I.; Cherkashin, Ye. Ye.
[1][[] (1)] · ··································	
SOURCE - Thurnel neorganichesboy khi	imili v 9, no. 8, 1964, 1898-1904
ToP() la commangamente nicket statu allow manapapa nickal silienn comm	
n n n n n n n n n n n n n n n n n n n	- trasser secretlines alloys,
"你们就去了,你们们不会了,你们们就是你是我想要不知道?"	no se the pasis of the
·····································	
· · · · · · · · · · · · · · · · · · ·	
化结合 化化合物化合物化合物合物合物合物合物合物合物合物合物合物合物合物合物合物合物	
the second of the second se	WARN T HET IN BIJOYS CODIALNING

APPROVED FOR RELEASE: Monday, July 31, 2000

CIA-RDP86-00513R000928010(

"APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R000928010 - and - and a size S. M. March ACCESSION NRI AP4043576 incontitions - I gametic ordana Lenian Gosudarstvanay*y Universitet and the second in an training and the state of the state of the SNGL € − SNGL € ------ 011 07HER1 004 ్రైజిన సంజరణం సార్కెట్ APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R00092801 ------

THE REAL PROPERTY OF

Benadelin (S. 1997), C. 19		
TTURD, K., ma Y. B. I Jakh V. I. Statistic I.	The Company And The State	
	· · · · · · ·	
	· · · · · ·	
 A state of the second seco		
and the period of the second		
	· · · · · · · · · · · · · · · · · · ·	
j ¹ c		
.		

CIA-RDP86-00513R000928010

L 23875-65			ϵ	
ACCESSION NR: AT5002772			\bigcirc	
and the second sec	an an an taon an	مرا ومعالية ومدينية ما الأراث التي التي المراكد المراكد المراكد والمراكد المراكد المراكد المراكد الم	d emperatures.	
			•*	
ASSOCIATE No mono				
SUBMITTED: 05Aug64	INCL.	SIB TAPE MM	5	
NO REF SOV: 000	OTHER: 001			
ard $2/2$				

مريبة يتجدون وتشعيب بالمرجب

L 23612-65 EWT(n)/EWP(t), ACCESSION NR. AT5002773)/HW/JG/MLK 000/64/000/000/0170/0170	
AUTHOP (Halyabevski) Ye	a. L.' Kuzima, Y., S		
TITLE: House marvais it in	e ternáry systemus filosoficos	11 SI (=+/	
(Rhenium); trudy soveschanly 57 TOPIC, TAGS: rhenium; rhen cobait silicide, nickel silicide alloy microstructure 4	2. Moscow, Izd-vo Naulo, 1 num alloy, ternary rbanium , alloy phase analysi/, xray 1/ al and microstru (aral analys	alloy, iron containing alloy, structural analysis, rhonium	
ABSTRACT: X-ray structure transformations and crystal (structures of the phases in th	e avalems ke - re - di,	
transformations and orvatal	structures of the phases in the	o systems Re - Fe - Si, boC. In the first two systems,	

11

64 000 008 1070 1	0~2	
KIN, Y. IH.	Ĺ	
ana an <mark>a t</mark> ito a a	al i constanta en a	
		1
. ·	en de la composition	
	ЖіУ _І У. І н.	Kiya Yaan L

<u>- 51872-65</u> B#:	ə (47 m) 5 m	, Sabie Lin	. t "			
A TEXT AND T					1 a 4 1 ⁷² 4	
	e de Arres					
1. <u>1</u> .						
	triv ¹ a v ∓					
1	• • •		. •			
ADDIRAULI INIS W	ork 18 part of an	INVESTIGATION	1 OI THO MOI	aturgical p	roperties_or_	
metals belonging	ork is part of an to the groups IV, and Mo-C are disc	V, and VI of	the periodi	c table. Th	e simple sys-	
metals belonging teme Zr-Mo, Zr-C,	to the groups IV, and Mo-C are disc states of the	V, and VI of cussed, with s	the poriodi special empt	o table. The set of th	e simple sys-	
metals belonging teme Zr-Mo, Zr-C, The T	to the groups IV, and Mo-C are disc show of the set	V, end VI of cussed, with s	the poriodi special empt	o table. The set of th	e simple sys-	
metals belonging teme Zr-Mo, Zr-C,	to the groups IV, and Mo-C are disc	V, end VI of cussed, with s	the poriodi special empt	o table. The set of th	e simple sys-	
metals belonging teme Zr-Mo, Zr-C,	to the groups IV, and Mo-C are disc show of the set	V, end VI of cussed, with s	the poriodi special empt	o table. The set of th	e simple sys-	
metals belonging teme Zr-Mo, Zr-C,	to the groups IV, and Mo-C are disc	V, end VI of cussed, with s	the poriodi special empt	o table. The set of th	e simple sys-	

515-20 F 45

ويتبيين المروس ويراسي تواليتينين وا			 	والمتحقيقة والمتشار المشارسة
				2
101072-65				
A T B C 1 M MORE	N			
	and the second		والالتي المحمل	
1997 - 19				
$N^{*} = \frac{1}{2\pi i T} \sum_{i=1}^{n} \frac{1}{i} \sum_{$				
				Ì
Card 2/2				-
· · · · · · · · · · · · · · · · · · ·		•••••••••••••••••••••••••••••••••••••••	 	i

L 51872-65 A VESSION NRI APSOG276 University) SUMMITTIE: 204-65

THOR: Kuz'ma, Yu. B.; Lakh, V. I.; Voroshilov, Yu. V.; Stadnyk, B. I. TLE: The zirconium-cobalt-boron system PURCE: AN SSSR. Izvestiya. Neorganicheskiye materialy, v. 1, no. 7, 1965, 12-1114 PIC TAGS: zirconium alloy, cobalt alloy, boron alloy, zirconium compound, balt compound, boron compound, thermometry STRACT: The object of the study was to establish the phase equilibria in the -Co-B system and to determine whether alloys of this system can be used as new terials in thermometry. Samples of Zr-Co and Zr-Co-B were prepared by sintering wder mixtures. The phase compositions were determined by the x-ray powder chnique. In the Zr-Co system, phase analysis showed the presence of the com- unds Zr ₆ Co ₂₃ , ZrCo ₂ , ZrCo ₂ , ZrCo ₂ , and Zr ₄ Co ₂ , the crystal structures of which re determined. An isothermal section at 800C was plotted for the Zr-Co-B stem. Two ternary compounds exist in this system: a T phase Zr ₂ Co ₂ B ₆ with e face-centered cubic structure of W ₂ Cr ₂₁ C ₆ (a = 10.597 Å), and a P phase of the	CESSION NR: AP5022261	UR/0363/65/001/007/1112/1114 546.831+546.73+546.27	39 38 B	
DURCE: AN SSSR. Izvestiya. Neorganicheskiye materialy, v. 1, no. 7, 1965, 12-1114 PIC TAGS: zirconium alloy, cobalt alloy, boron alloy, zirconium compound, balt compound, boron compound, thermometry STRACT: The object of the study was to establish the phase equilibria in the -Co-B system and to determine whether alloys of this system can be used as new terials in thermometry. Samples of Zr-Co and Zr-Co-B were prepared by sintering wder mixtures. The phase compositions were determined by the x-ray powder chnique. In the Zr-Co system, phase analysis showed the presence of the com- unds Zr ₆ Co ₂₃ , ZrCo ₂ , ZrCo ₂ , ZrCo ₂ , and Zr ₄ Co ₂ , the crystal structures of which re determined. An isothermal section at 800C was plotted for the Zr-Co-B stem. Two ternary compounds exist in this system.	THOR: Kuz'ma, Yu. B.; Lakh, V.	I.; Voroshilov, Yu. V.; Stadnyk, B. I.	B	
STRACT: The object of the study was to establish the phase equilibria in the -Co-B system and to determine whether alloys of this system can be used as new terials in thermometry. Samples of Zr-Co and Zr-Co-B were prepared by sintering wder mixtures. The phase compositions were determined by the x-ray powder chnique. In the Zr-Co system, phase analysis showed the presence of the com- unds Zr_6Co_{23} , $ZrCo_2$, $ZrCo_3$, Zr_2Co_3 , and Zr_4Co_3 , the crystal structures of which re determined. An isothermal section at 800C was plotted for the Zr_2Co_3 and Zr_4Co_3 because the presence of the combunds stem. Two ternary compounds exist in this system:	URCE: AN SSSR. Izvestiva, Neor		•	
terials in thermometry. Samples of Zr-Co and Zr-Co-B were prepared by sintering wder mixtures. The phase compositions were determined by the x-ray powder chnique. In the Zr-Co system, phase analysis showed the presence of the com- unds Zr ₆ Co ₂₃ , ZrCo ₂ , ZrCo ₂ , ZrCo ₂ , ZrCo ₂ , and Zr ₄ Co ₂ , the crystal structures of which re determined. An isothermal section at 800C was plotted for the Zr-Co-B stem. Two ternary compounds exist in this system:	vatt compound, Boron compound, t	hermometry		
	terials in thermometry. Samples wder mixtures. The phase compos chnique. In the Zr-Co system, p unds Zr ₆ Co ₂₃ , ZrCo ₂ , ZrCo, Zr ₂ Co re determined. An isothermal se stem. Two ternary compounds exi	ether alloys of this system can be used as of Zr-Co and Zr-Co-B were prepared by sin itions were determined by the x-ray powden hase analysis showed the presence of the c , and Zr4Co, the crystal structures of whi ction at 800C was plotted for the Zr-Co-B at in this system.	a new ntering COM LCh	

e

.

		•
L 2786-66		
ACCESSION NR: AP502226	61	2
points than ZrB ₂ , form solid solution, and for metry. Orig. art. has:	n ZrCo3B. These ternary phases have much lower a low-melting eutectic (m. p. below 1200C) wit r this reason cannot be used as new materials i : 1 figure and 1 table. y gosudarstvennyy universitet im. I. Franko (Lv	h the Co-base n thermo-
SUBMITTED: 23Feb65	ENCL: 00 SUB CODE: MI, IC	
NO REF SOV: 003	OTHER: 003	
		1
		1

[] 新星期

APPROVED FOR RELEASE: Monday, July 31, 2000

CIA-RDP86-00513R000928010(

CIA-RDP86-00513R000928010

4

FEDOROV, T.F.; KUZ MA, Yu.B.

Phase equilibrium in the system zirconium - chromium - carbon. Porosh. met. 5 no.3:75-79 Mr '65. (MIRA 18:5)

1. Institut metallurgii imeni Baykova AN SSSR, Moskva i L'vovskiy ordena Lenina gosudarstvennyy universitet imeni Franko.

GLASYSHEVEFIY, YO. T.; KUZ MA. Yu.B.

MogFrCi, NbgCoSi, NbgNiSi compounds and their crystal structures. Thur, strukt, khim, 6 no.1:70-74 Ja-F 465.

(MIRA 18:12)

1. L'vovskiy gosudarstvennyy universitet imeni Iv. Franko. Submitted November 25, 1963.

KUZ 'MA, Yu.B.; FEDOROV, T.F.

BURNY CONTRACTOR OF THE PROPERTY OF THE PROPER

Phase equilibrium in the system molybdenum - chromium - carbon. Porosh.met. 5 no.11:62-65 N 165.

(MIRA 18:12) 1. L'vovskiy ordena Lenina gosudarstvennyy universitet imeni I.Franko i Institut metallurgii imeni A.A.Baykova, Submitted January 24, 1965.

APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R000928010(

100

(A) <u>L 13268-66</u> EWT(m)/EPF(n)-2/EWP(j)/T/EWP(t)/EWP(b)/EWA(c)/ETC(m) ACC NR: AP6001476 IJP(c) DS/JD/WW/JG/ SOURCE CODE: UR/0226/65/000/012/0063/0068 AUTHOR: Fedorov, T. F.; Kuz'ma, Yu. B.; Skolozdra, R. V.; Popova, N. H. ORG: <u>L'vov State University</u> (L'vovskiy gosuniversitet im. I. Franko); A. A. Baykov Institute of Metallurgy (Institut metallurgii im. A. A. Baykova)	
TITLE: Phase equilibria in the ternary systems Zr-Co-C and Nb-Fe-C SOURCE: Poroshkovaya metallurgiya, no. 12, 1965, 63-68	
TOPIC TAGS: phase equilibrium, ternary alloy, zirconium, cobalt, carbon, niobium, iron, X RAY HWALYSIS, TERNARY ALLOY ABSTRACT: Specimens of the investigated alloys of the Zr-Co-C and Nb-Fe-C systems annealed at 800 and 1050°C, respectively, were examined by means of X-ray and micros- copic analyses. The phase equilibria of these systems, as established by phase ana- lysis, are shown in Figs. 1 and 2, respectively. ZrC is in an equilibrium with all the compounds of the Zr-Co system as well as with Co and Zr. For the alloys located in two-phase and three-phase regions the lattice constants of binary compounds do not change, which indicates an insignificant solubility of Co in ZrC and of C in binary compounds of the system Zr-Co. X-ray structural and microscopic analyses of 42 alloys revealed no ternary compounds in the Nb-Fe-C system. NbC at 1050°C is in an equilibri- um with the phase NbFe ₂ , the µ-phase, α -Fe and Nb ₂ C, while the carbide Nb ₂ C is in Card 1/4	

"APPROVED FOR RELEASE: Monday, July 31, 2000

CIA-RDP86-00513R000928010

9.95 A.S

eq of sc	uilii - a hmidt	oriu Ind'	INS OATOD			e. No trace E the Nb-Fe Tron Steel Is: 4 figur	1085.	ib ₃ C ₂ item p 194,	could roves 2, 15	be d the 59, 1	iscov inval: 960) j	ered. Idity phase	(The of G diag	abse old- gram	of	
SU	B COL	B:	11, 20/	SUEM	DATE:	29Mar65/	ORIG	REF :	007/	OTH	REF:	013	·			
	÷.,					•										
• •									· · · ·					. ;	••••	
							•									
							•									
																ŀ
		ſ	X.				;									ŀ
	ird 4		/ 4													

\$E-111

相關机械的

L 23585-66 $EWT(m)/EWP(e)/T/EWP(t)$ IJP(c) JD/JG
ACC NR: AP6012772 SOURCE CODE: UP/0226/66/022 (act to
AUTHOR: <u>Gladyshevskiy</u> , Ye. I.; Fedorov, T. F.; Kuz'ma, Yu. B.; '38 Skolozdra, R. V.
ORQ: Lyoy Order of Lenin State United and B
ORG: Lvov Order of Lenin State University im. Iv. Franko (L'vovskiy ordena Lenina gosuniversitet); Institute of Metallurgy im. A. A. Baykov
TITLE: The system molybdenum-iron-boron
SOURCE: Poroshkovaya metallurgiya, no. 4, 1966. 55-60
TOPIC TAGS: molybdenum compound, boron compound, ternary compound, isothermal cross section
ABSTRACT: The system Mo-Fe-B has been investigated by x-ray and micro-
The ternary compound (Mo, Fe)B has a CrB-type structure (the lattice constants are similar to those of the high-temperature modification of MoB). The compound MoFe ₂ B ₄ has a Ta ₃ B ₄ -type superstructure (in the lattice
Card 1/2

L 23585-66 ACC NR: AP6012772 + 0.005 Å, b = 12.70 + 0.01 Å, c = 2.984 ± 0.005 Å). Iron was found to have a stabilizing effect on the high-temperature modification of MoB. Orig. art. has: 3 figures and 3 tables. [Based on author's abstract] [AM] SUB CODE: SUEM DATE: 05May65/ ORIG REF: 002/ OTH REF: 004 11, 07/ , Card

	Contraction and the state of th
L 20035-00 EWT(m)/T/EWP(t) IJP(c) JD/JG	ADA SECURI FRANKISKI SECONSKI SKO
ACC NR: AP6011349 SOURCE CODE: UR/0226/66/000/003/0075/0077	
AUTHOR: Gorshkova, L. V.; Fedorov, T. F.; Kuz'ma, Yu. B.	
ORG: Institute of Metallurgy im. A. A. Baykov (Institut metallurgii)	
L'vov State University im. I. Franko (L'vovskiy gosudarstvennyy universitet)	1
85 h.] 85 h.] h.]	
TITLE: <u>Rhenium-chromium-carbon</u> system	
SOURCE: Poroshkovaya metallurgiya, no. 3, 1966, 75-77	
TOPIC TAGS: alloy, ternary alloy, rhenium alloy, chromium containing alloy, carbon containing alloy	<i>u</i>
ABSTRACT: A series of alloys of the Re-Cr-C system has been investi- gated and the isothermal section of the ternary diagram of the system at 1300C has been plotted (see Fig. 1). Alloys were melted from 99.96%-pure) rhenium, $99.97%$ -pure chromium, and spectrographically pure graphite powders. It was found that $Cr_{23}C_6$ chromium carbide, formed at 1518C, dissolves up to 20 at% Re. The solubility of rhenium in other chromium carbides (Cr_7C_3 and Cr_3C_2) and that of carbon in the σ -phase of the Re-Cr system is insignificant. The solubility of chromium and carbon in ternary rhenium-base solid solution is not higher than that of these components in binary systems Re-Cr and Re-C. Cord 1/3	2
	a anna seasanna

APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R000928010(

HS THE

L 23055-01 ACC NR: AP60						· · · · ·
No ternary co of transition systems is ge considerably attributed to that of Mo or of Mo, W, or H	mpounds in the metal in Cr23C nerally high. higher than tha the smaller at W (1.39 and 1. le atoms in Cr2 rstructure of thanks to Ye. 1 igures.	t of Mo and omic radius 40 A). In a	W (~15 at%) of Re (1.37	$\begin{array}{c} \text{Ity} (\sqrt{20} \text{ at%}) \\ \text{This can b} \\ \text{Å) as compar} \end{array}$	Re) is	
		The second se	ひんじ ギバケ ちくこう		LHOFA .	
.						
<u> </u>						

ACC NR: AP6020964	SOURCE CODE: UR/0226/66/000/006/0073/0076	24
MI-0020304	SOURCE CODE: 0R/0220/00/000/00/00/00/3/00/0	63
AUTHOR: Kuz' ma, Yu	u. B.; Lakh, V. I.; Stadnyk, B. I.; Voroshilov, Yu. V	. В
	f Lenin" State University im. Iv. Franko, Design Bure	au
	rskiy ordena Lenina gocudarstvennyy universitet, KB	
"Termopribor")	21 .1 .1	
TITLE: X-ray diffract	tion study of the system niobium-tungsten-boron	
	······································	
SOURCE: Poroshkovay	ya metallu r giya, no. 6, 1966, 73-76	
TOPIC TAGS: niobium	, tungsten, boron, x ray diffraction analysis, phase	
equilibrium, lattice con	nstant, n iobium containing system, tungsten containing	
System, boron containi	ing Bystem ALLOY SYSTEM, URYSTAL LATTIC	e
	r deals with x-ray analyses of the system niobium-tung	
	libriums were established for the first time at 1500°C a	
are snown in an isotner	rmal cross-section view of the system in the original a	rticle.

ACC NR:	AP60209	64				$\langle \varsigma' \rangle$
constant	s of Nb ₂ I	d in the original 3 ₂ and of NbB as 3 figures. [Bas	s a function	e authors show chan of tungsten dissolu rs' abstract]	tion. Orig.	tice art. [AM]
SUB CO	DE: 11/	SUBM DATE:	12Mar66/	ORIG REF: 001/	OTH REF:	007/
			·			
<u>_</u>						
Card 2/2	2	•				

APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R000928010(

的词母

豊い 長つ	ACC NR. AP6009577 (N) SOURCE CODE: UR/0225/65/060/011/0062/0465	
	AUTHOR: Kuz'ma, Yu. B.; Fedorov, T.F. 54	
	ORG: L'voy State University im. L. Franko (L'voyskiy ordena Lealina gosuniversitet im. I. Franko); Institute of Metallurgy im. A. A. Baykov (Institut metallurgii im. A. A. Baykova)	
	TITLE: Phase equilibria in the molybdenum-chromium-carbon system	
	SOURCE: Poroshkovaya metallurgiya, no. 11, 1965, 62-65	
	TOPIC TAGS: phase composition, ternary alloy, molybdenum, chromium, carbon, powder metal	
	ABSTRACT: Mixtures of the powders of Cr, Mo and spectrally pure graphite were sintered	
	THE THE AND AN A COUL WHICH WHICH LINED TOTOD TO AND	
8	and metallographic analysis of cast, annealed and supported (from larger)	
1		
1 7	containing 20-50 at. % Mo, 20-4 at. % Cr and 60-46 at. % C of a phase (the ω -phase) with a cubic face-centered structure of the NaCl type (a = 4, 24-4, 27 Å). The carbide Mo ₂ C dissolves to	
	Cord 1/3	

"APPROVED FOR RELEASE: Monday, July 31, 2000

CIA-RDP86-00513R000928010

INTERNAL TRANSPORTATION AND THE PROPERTY AND THE PROPERTY OF THE REPORT OF THE REPORT OF THE PROPERTY AND THE P

法物策

			a second s			0	i
solution of	Cr in Mo	carbide $Cr_{23}C_6$, to a ordered distribut $2^{2}Cr$, the high-temp Cr_7C_3 . Orig. art.	on. The o	-pnase is in a xagonal carbi			
UB CODE	11,20	/ SUBM DATE:	24Jan65/	ORIG REF:	001/ OTH RE	F: 003	
					•		
		ĩ					
	· •						
							(1) 【1)
						i	

	CONTRACTOR OF THE OWNER
$L_{16919-66} E MT(m)/EVP(t)/ETI IJP(c) JD/JG$	
ACC NR: AP6030734 SOURCE CODE: UR/0021/66/000/008/1025/1027	
AUTHOR: Kuz'ma, Yu. B.; Uhrin, N. S Ugrin, N. S. 31	-
ORG: Lvov Government University (L'vivs'kiy derzhavniy universitet)	
TITLE: Crystal structures of some compounds of rare-earth metals with cadmium	
SOURCE: ANUKRRSR. Dopovidi, no. 8, 1966, 1025-1027	
TOPIC TAGS: compound crystal structure, x ray diffraction analysis, rare earth metal rare earth metal compound, cadmium containing compound	
ABSTRACT: Alloys of terbium, holmium, and erbium with 40, 50, and 60 at% of cadmium, and alloys of thulium and lutecium with 40 at% of cadmium were prepared and subjected to x-ray diffraction analysis. The following compounds were identified in the alloys: (TbCd, HoCd, ErCd, TuCd, LuCd all five with $C_{\rm g}$ Cl-type crystal structure) and TbCd ₂ , HoCd ₂ , ErCd ₂ all three with a (AlB ₂ or CeCd ₂ type crystal structure). Orig. art. has: 3 tables. [TD]	
SUB CODE: 20/ SUBM DATE: 29Apr65/ OTH REF: 004/	
Card 1/1 afs	

.

合語明語

ACC NR: AP6023916	SOURCE CODE: UR/0363	/66/002/007/1218/1224
AUTHOR: Kuz'ma, Yu. B.	; Chepiga, M. V.; Plakhina, A. M.	45 _B
ORG: L'vov State Unive	rsity im. Iv. Franko (L'vovskiy gosudarstv	vennyy universitet)
TITLE: Phase equilibri	a in the systems $\frac{Cr-Co-B_1}{27}$ $\frac{Mn-Fe-B_1}{27}$ and $\frac{Mn-Fe-B_2}{27}$	-Со-В
SOURCE: AN SSSR. Izv.	Neorg materialy, v. 2, no. 7, 1966, 1218	8-1224
TOPIC TAGS: phase equi iron compound, manganes	librium, metal phase system, chromium comp e compound, cobalt compound	pound, boron compound,
in the Inorganic Chemis khimii L'vovskogo unive of two transition metal pounds formed. The syst tural analysis and in p. of these systems at 800 $W_2Cr_{21}C_6$ -type structure dissolves up to 30 at. 9 and (Mn, Fe)B was confin	nstitutes a part of systematic investigativity Department of L'vov University (Kafedresitets), concerned with the phase diagrams is with boron and the crystal structures of tems Cr-Co-B, Mn-Fe-B, and Mn-Co-B were start by microstructural analysis, and the for were plotted. The compound $Cr_2Co_{21}B_6$ (a = 10.471 Å), exists in the Cr-Co-B system of Cr. The presence of continuous solid sormed in the Mn-Fe-B system. A ternary compression (a = 10.518-10.641 Å) is formed in the	ra neorganicheskoy s of ternary systems f the ternary com- tudied by x-ray struc- isothermal sections (τ phase), having a stem. The boride Co ₂ B blutions (Mn , Fe ₂)B mound (τ phase) with
Card 1/2	UDC: 541,123,3	

ACC INT 1	AP6023916			Ċ
1stence of	homogeneity of f (Mn, Co) ₂ B and and 2 tables.	the $ au$ phase is loca (Mn, Co)B solid so	ated between 10 and 4 olutions was confirme	0 at. % Mn. The ex- d. Orig. art. has:
SUB CODE:	11/ SUBM DATE	140ct65/ ORIG 1	REF: 010 / OTH REF:	004
			*	
Card 2/2	hs			' \

APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R000928010(

<u>L 47091-66 EWT(m)/EWP(+)/ETI, IJP(c) JH/JD/WA/Ha/JG</u> ACC NR: AP6030767 (A) SOURCE CODE: UR/0363/66/002/009/1581/1585
ACC NR: AP 6030767 (A) SOURCE CODE: UR/0363/66/002/009/1581/1585 AUTHOR: Markiv, V. Ya.; Matushevskaya, N. F.; Rozum, S. N.; Kuz'ma, Yu. B. 53
ORG: Lvov State University im. I. Franko. (L'vovskiy gosudarstvennyy universitet)
TITLE: Study of aluminum-rich alloys of the $\frac{2r-Ni-Al}{r_7}$ system
SOURCE: AN SSSR. Izvestiya. Neorganicheskiye materialy, v. 2, no. 9, 1966, 1581-1585
TOPIC TAGS: aluminum alloy, aluminum compound, nickel containing alloy, zirconium containing alloy, aluminum nickel zirconium alloy, alloy phase composition
ABSTRACT: Ninety-nine aluminum-rich alloys of the Zr-Ni-Al system containing up to 33 at% Zr and up to 75 at% Ni have been melted from high-purity components and their phase composition and crystal structure investigated. On the basis of obtained results, an isothermal (800C) section of the ternary diagram was plotted. Five ternary compounds were identified in the alloys: ZrNi ₂ Al (a = 6.123 Å) and
ZrNi _{0.5} -0.2Al _{1.5} -1.8 (a = 7.355-7.444 Å) with respective structures of MnCu ₂ Al and MgCu ₂ type; Zr Ni Al (a = 12.08 Å) with a cubic structure; ZrNiAl (a = 6.93Å; c = 3.47 Å; c/a = 0.50) with a hexagonal lattice; and ZrNiAl ₄ , whose structure has i not been determined. Orig. art. has: 3 figures and 3 tables. [TD]
SUB CODE: 11, 20/ SUBM DATE: 06Dec65/ ORIG REF: 007/ OTH REF: 014/
Card 1/1 hs UDC: 546.3-19-831-74-621

APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R000928010(

PHONE SHIP

后全国高兴

00892-67 EMP(e)/EWT(m)/T/EWP(t)/ETI	LJP(c) JD/WW/HW/JG
ACC NR: AP6021616	SOURCE CODE: UR/0021/66/000/006/0772/0774
THOR: <u>Kuz'ma, Yu. B.;</u> Lakh, V. I.; Vo k, B. T.	oroshylov, Yu. V Voroshilov, Yu. V.; <u>Stad-</u>
C: L'vov State University (L'vivs'kyy	y derzhavnyy universytet) 55 B
TLE: Crystal structure of the compound	nds $Zr_2Ni_{21}B_6$ and $Zr_2Co_{21}B_6$
URCE: AN UkrRSR. Dopovidi, no. 6, 196	56, 772-774
STRACT: The authors study phase equil: fteen alloys were studied in each of th , 80-55 at.% Ni(Co) and 15-25 at.% B. nium (99.5% Zr), nickel (99.9% Ni), col re thoroughly mixed and pressed into br a vacuum furnace at 1200°C for two-hou vacuum arc furnace and subjected to hom les at 800°C for 120 hours. X-ray diff ed throughout the study. The analysis	m alloy, nickel alloy, cobalt alloy, boron metallic compound, increase $c_{1/2} + c_{1/2} + c_{$
ard_ 1/2	

ACC NR: AP6021616	0	
space group $Fm + 3m + O_h^5$; for $Zr_2Ni_{21}B_6 a = 10.628 \pm 0.005 A$, and for $Zr_2Co_{21}B_6$	6 a=10.597±	·
0.005 A. The compound $Zr_2Ni_{21}B_6$ has a region of homogeneity located on isoconcentrate at a zirconium concentration of 5-15 at.%. Increasing ration from 5 to 15 at.% and reducing the Ni concentration from 75 to 6 reases the lattice constant of the τ -phase from 10.609±0.005 A to 10.70 he existence of a second ternary compound was discovered in the Zr-Co-B composition similar to ZrCo ₃ B. This article was presented for publica ician V. M. Svyechnikov. Orig. art. has: 1 table.	the 20 at.% the Zr concen- 5 at.% in- 2±0.005 A. system with	•
UB CODE: 20/1/ SUBM DATE: 30Nov64/ OTH REF: 001		
	1	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1

953155

$\frac{1}{ACC} \frac{1}{NR_{1}} \frac{EWT(m)}{EWF(t)} \frac{1}{ETI} \frac{1}{IJP(c)} \frac{WH}{JD}$ $ACC \frac{1}{NR_{1}} \frac{AP6029828}{AP6029828} $ (A) SOURCE CODE: UR/0363/66/002/008/1516/1520	
AUTHOR: Kosolapova, T. Ya; Fedorus, V. B.; Kuz'ma, Yu. B. 22	
ORG: Institute of Matorials Science Problems, Academy of Sciences, UkrSSR (Institut problem materialovedeniya Akademii nauk UkrSSR)	
TITLE: Reactions of <u>carbides</u> of transition metals with their oxides	
SOURCE: AN SSSR. Izvestiya. Neorganicheskiye materialy, v. 2, no. 8, 1966, 1516-1520	
TOPIC TAGS: transition metal oxide, carbide	
ABSTRACT: The reactions of oxides of titanium, zirconium, hafnium, vanadium, niobium and chromium with their carbides were studied in the range of 1000-2000°C (at 100°C intervals) at 10^{-3} mm Hg by using chemical and x-ray analysos. The formation of in- tormediate products was studied manometrically in cortain reactions. In the TiO ₂ -TiC and ZrO ₂ -ZrC systems at 1000-2000°C, the reaction proceeds up to the formation of NC_XO_{1-X} oxycarbides. No reaction is observed in the HfO ₂ -HfC system in this tempera- ture range. Carbides of group V metals, VC and NbC, react with the corresponding oxides to form the metals via stages of formation of lower oxides and carbides. The formation of chromium by the reaction of Cr ₃ C ₂ with Cr ₂ O ₃ is already observed at 1200°C. A rise in temperature leads to an increase in the yield of pure chromium, reaching 96% in the vicinity of the melting point of chromium. It is concluded that	
Card 1/2 UDC: 546.261+541.45	

and a second second second second state in the second second second second second second second second second s

和我们在学生

UEM DATE: 110ct65/ ORIG REF: 011	atoms form	h carbides is du ing these oxides	and carbid	les. Author	s thank G.	ronic structure c <u>V. Samsonov</u> for Orig. art. has:	useful re-	
	SUB CODE:	07/1/ SUBM DATE:	110ct65/	ORIG REF:	011	•		
		• •	•			1		
ſ							•	
٠. ٠							•	
٩	·.	· .		•			.	
٠								
	·			1				-
	•			•			•	
		, ,			•			
	Card 2/2	11· 01-			3			

ACC	NR1	<u>-07</u> NP60	29829)/ LWL((A)	195(0	V WII/ S	WW/JD/J OURCE CO	G DDE: U	r/0363/	66/002	/008/1	521/152	3	
AUT	HOR:	Koso	Lapova	<u>, T.)</u>	la.; Foc	lorus,	V. B.; 1	Kuz'ma,	Yu. B.	; Kotly	ar, Yo	. Yo.	37		
ORG prol	: Ir olom	nstitu mator	to of ialovo	Matori doniya	als So Akadon	lonco P nii naul	c UkrSS	Acadom	y of So	ioncos	, UkrS	SR (In	stitut		
TIT	ue: 1 <u>car</u>	Natur bidos	o of t - 1	ho rea	ction o	of <u>ziro</u>	onium di	Loxido W	ith tit	canium,	niobi	um and ~7	chro-	-	Ň
soui	CE:	AN S	$\frac{\gamma}{3}$	zvosti	ya. Noc	organic	noskiyo	matoria	ly, v.	2, no.	8, 19	66, 15	21-1523		
TOP: bide	IC TA), ca	GS: rbido	ziroon	ium co	mpound	, titan:	lum comp	oound, n	iobium	compou	nd, chi	romium	cár-		
TiC ider (Co	syst syst tifi 5600	ng by om bo od as	means gins a a com vith l	of ph t 1300 plex o attice	ase che °C, and xycarbi consta	omical a 1 at 19(ide of i ant a =	and x-ra 00-2000 the appr 4.43 Å	or Cr ₃ ay analy C resul coximate The r	ts in t compos	The rea the for sition	ction : mation (Zr _{0,3}) a ZrOn	in the of a Tio 7)	ZrO2- phase		
form anal in n	.ns a 10d i Jysis 11xtu	n add: basec res o:	ition i on t H2O2	At abo to a c he dif and c	ut 1900 omplex ferent itric e)-2000 °(oxide c solubil cid was	C, a con of the t lities c s elabor	plox ca ppe (Nb of zirco ated. ZrC and	rbide c y ^{Zr} i-y) nium di The rea	of the O ₂ . A .oxide	type () chemic and nic of ZrO	Nb, Zr ₁ cal ph obium	-x)C is ase carbide		
Card		/2						X; 541					 •		
											•				

いた日本で

		9313-0	67		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	unicaus aparts and are			*****		-			
	1		AP6029829 Darbide Cr		is conclu	Ided that the IV, V and	he diff	erence in	the natu	re of th	ne r	/		
-	Sams	on of electr onov f 3 tab	or useful	n carbide Icture of L romarks	s of group the metal and sugge	IV, V and atoms for stions dur:	VI met ning th ing the	als is due e carbides course of	to the c . Author this wor	lifferer s thank k. Ori	G.	in V. art.		
		•	-		•	OBIG REF:		• 1 •				•.		
											•			
				•	•	• .		• •			• •	•	- -	
						•					· · ·			
							, , , , , , , , , , , , , , , , , , ,					. -		
	⊆્ય્યં_	2/2,	• }			•					•	-	*·	

ACC NR: AP6036787 (N) . SOURCE CODE: UR/0363/66/002/011/1975/1979	
AUTHOR: Kuz'ma, Yi. B.; Nych, O. V.; Skolozdra, R. V.	
ORG: L'vov State Univeristy (L'vovskiy gosudarstvennyy universitet im. Iv. Franko)	
TITLE: Molybdenum-cobalt-boron system	
SOURCE: AN SSSR. Izvestiya. Neorganicheskiye materialy, v. 2, no. 11, 1966, 1975-1979	
TOPIC TAGS: molybdenum cobalt boron system, molybdenum cobalt alloy; boron containing alloy, ternary alloy, alloy phase diagram, alloy crystal structure, sintered alloy	
ABSTRACT: Experiments have been made to determine the phase equilibria in the Mo-Co- B system and the crystal structure of the Mo-Co-B ternary compounds. A series of Mo-Co-B alloys were prepared from component powders by cold compacting and vacuum	
sintering at 1500C. Alloys containing more than 50 at swele then remeried at an inconsummable electrode arc furnace. On the basis of the results of physicochemical nonconsummable electrode arc furnace of the Mo-Co-B system at 800C was plotted (see Fig. 1).	
Five ternary phases were indentified in the system at the temperature integrating $a Mo_2 Co_{21} B_6$ compound (the τ -phase) with a cubic lattice of the $W_2 Cr_{21} C_6$ type; an	
structure; a Mo ₂ CoB ₂ compound characterized by the no nib ₂ type income of MoB) with the a (Mo ₁ Co)B phase (a cobalt-stabilized high-temperature modification of MoB) with the CrB-type rhombic structure with the lattice parameters almost identical with those	
Card 1/3 UDC: 546.3-19-77-73-27	

CIA-RDP86-00513R000928010

ACC NRi AP of the MoB At the MoCo		MoCo ₂ B sition,	4 compound a ternary CoB binary	with a compou	rhombic and was id ands and a	struct entified (Mo ₁ Co)	ture of the d which was B ternary p	Ta ₃ B, type. in hase. Orig.	
rt. has:	2 figures	and 1	table.		······	•	•		
SUB CODE: ATD PRESS:	11/ SUBM 5108	DATE:	03Jan66.	ORIC F	EF: 005/	OTH RI	EF: 006/	a de la companya de l Nome de la companya de	
i	•					· .			
· ·	•	•		•				•	
•				. •				••	
	•								
				•					
•	۰.		•					•	24
Card <u>3/3</u>	<u>.</u>	/	· · · · · · · · · · · · · · · · · · ·						ر بال د

APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R000928010(

法存在

HE TRUE HE BOOM

Livov) RG: none PITLE: X-ray structural analysis of the system Nb-Ni-Al SOURCE: AN SSSR. Izvestiya. Metally, no. 6, 1966, 127-133 POPIC TAGS: alloy phase diagram, metal phase system, x-ray analysis, niobium, nicke aluminum BSTRACT: The phase diagrams of the binary system Nb-Ni at 900C and of the ternary system Nb-Ni-Al at 800 and 900C respectively were investigated. The study supplement the results of Ye. N. Pylayeva, Ye.1. Gladyshevskiy, and P. I. Kripyakevich (Kristallicheskaya struktura soyedineniy NI ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, 8, No. 7). The phase composition was determined by x-ray analysis. In addition, the prystal structure of the compounds NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The experimental results are presented in graphs and tables (see Fig. 1). It was found that at 900C Ni dissolves up to 11 at.% of Nb, and it was confirmed that the system		ACC NR: AP6036445	SOURCE CODE: UR/0370/66/000/006/0127/013
TTLE: X-ray structural analysis of the system Nb-Ni-Al SOURCE: AN SSSR. Izvestiya. Metally, no. 6, 1966, 127-133 COPIC TAGS: alloy phase diagram, metal phase system, x-ray analysis, niobium, nicke aluminum BESTRACT: The phase diagrams of the binary system Nb-Ni at 900C and of the ternary system Nb-Ni-Al at 800 and 900C respectively were investigated. The study supplement the results of Ye. N. Pylayeva, Ye.1. Gladyshevskiy, and P. I. Kripyakevich Kristallicheskaya struktura soyedineniy Ni ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, 3, No. 7). The phase composition was determined by x-ray analysis. In addition, the prystal structure of the compounds NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The experimental results are presented in graphs and tables (see Fig. 1). It was found that at 900C Ni dissolves up to 11 at.% of Nb, and it was confirmed that the system	TITLE: X-ray structural analysis of the system Nb-Ni-Al SOURCE: AN SSSR. Izvestiya. Metally, no. 6, 1966, 127-133 TOPIC TAGS: alloy phase diagram, metal phase system, x-ray analysis, niobium, nicke aluminum ABSTRACT: The phase diagrams of the binary system Nb-Ni at 900C and of the ternary system Nb-Ni-Al at 80O and 900C respectively were investigated. The study supplement the results of Ye. N. Pylayeva, Ye.1. Gladyshevskiy, and P. I. Kripyakevich (Kristallicheskaya struktura soyedineniy Ni ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, 3, No. 7). The phase composition was determined by x-ray analysis. In addition, the crystal structure of the compounds NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The experimental results are presented in graphs and tables (see Fig. 1). It was found that at 900C Ni dissolves up to 11 at.% of Nb, and it was confirmed that the system	AUTHORS: Markiv, V. Ya. (L'vov); (L'vov)	Matushevskaya, N. F. (L'vov); Kuz'ma, Yu. B.
COURCE: AN SSSR. Izvestiya. Metally, no. 6, 1966, 127-133 COPIC TAGS: alloy phase diagram, metal phase system, x-ray analysis, niobium, nicke aluminum BESTRACT: The phase diagrams of the binary system Nb-Ni at 900C and of the ternary system Nb-Ni-Al at 800 and 900C respectively were investigated. The study supplement the results of Ye. N. Pylayeva, Ye.l. Gladyshevskiy, and P. I. Kripyakevich Kristallicheskaya struktura soyedineniy Ni ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, 3, No. 7). The phase composition was determined by x-ray analysis. In addition, the crystal structure of the compounds NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The experimental results are presented in graphs and tables (see Fig. 1). It was found that at 900C Ni dissolves up to 11 at % of Nb, and it was confirmed that the system Nb-Ni is homogeneous in the region of 5060 at % Nb. as stated by W. Jeitschko,	SOURCE: AN SSSR. Izvestiya. Metally, no. 6, 1966, 127-133 TOPIC TAGS: alloy phase diagram, metal phase system, x-ray analysis, niobium, nicke aluminum ABSTRACT: The phase diagrams of the binary system Nb-Ni at 900C and of the ternary system Nb-Ni-Al at 800 and 900C respectively were investigated. The study supplement the results of Ye. N. Pylayeva, Ye.1. Gladyshevskiy, and P. I. Kripyakevich (Kristallicheskaya struktura soyedineniy Ni ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, 3, No. 7). The phase composition was determined by x-ray analysis. In addition, the crystal structure of the compounds NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The experimental results are presented in graphs and tables (see Fig. 1). It was found that at 900C Ni dissolves up to 11 at % of Nb, and it was confirmed that the system Nb, Ni is homogeneous in the region of 50-50 at % Nb, as stated by W. Jeitschko,	ORG: none	
COPIC TAGS: alloy phase diagram, metal phase system, x-ray analysis, niobium, nicke aluminum BSTRACT: The phase diagrams of the binary system Nb-Ni at 900C and of the ternary system Nb-Ni-Al at 800 and 900C respectively were investigated. The study supplement the results of Ye. N. Pylayeva, Ye.l. Gladyshevskiy, and P. I. Kripyakevich Kristallicheskaya struktura soyedineniy Ni ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, 3, No. 7). The phase composition was determined by x-ray analysis. In addition, the crystal structure of the compounds NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The axperimental results are presented in graphs and tables (see Fig. 1). It was found that at 900C Ni dissolves up to 11 at.% of Nb, and it was confirmed that the system	TOPIC TAGS: alloy phase diagram, metal phase system, x-ray analysis, niobium, nicke aluminum ABSTRACT: The phase diagrams of the binary system Nb-Ni at 900C and of the ternary system Nb-Ni-Al at 800 and 900C respectively were investigated. The study supplement the results of Ye. N. Pylayeva, Ye.l. Gladyshevskiy, and P. I. Kripyakevich (Kristallicheskaya struktura soyedineniy Ni ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, 3, No. 7). The phase composition was determined by x-ray analysis. In addition, the crystal structure of the compounds NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The experimental results are presented in graphs and tables (see Fig. 1). It was found that at 900C Ni dissolves up to 11 at % of Nb, and it was confirmed that the system	TITLE: X-ray structural analysis	of the system Nb-Ni-Al
BSTRACT: The phase diagrams of the binary system Nb-Ni at 900C and of the ternary bystem Nb-Ni-Al at 800 and 900C respectively were investigated. The study supplement the results of Ye. N. Pylayeva, Ye.l. Gladyshevskiy, and P. I. Kripyakevich Kristallicheskaya struktura soyedineniy Ni ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, 3, No. 7). The phase composition was determined by x-ray analysis. In addition, the crystal structure of the compounds NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The axperimental results are presented in graphs and tables (see Fig. 1). It was found that at 900C Ni dissolves up to 11 at % of Nb, and it was confirmed that the system	aluminum ABSTRACT: The phase diagrams of the binary system Nb-Ni at 900C and of the ternary system Nb-Ni-Al at 800 and 900C respectively were investigated. The study supplement the results of Ye. N. Pylayeva, Ye.1. Gladyshevskiy, and P. I. Kripyakevich (Kristallicheskaya struktura soyedineniy Ni ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, 3, No. 7). The phase composition was determined by x-ray analysis. In addition, the crystal structure of the compounds NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The experimental results are presented in graphs and tables (see Fig. 1). It was found that at 900C Ni dissolves up to 11 at % of Nb, and it was confirmed that the system Nb Ni is homogeneous in the region of 5060 at % Nb, as stated by W. Jeitschko,	SOURCE: AN SSSR. Izvestiya. Meta	lly, no. 6, 1966, 127-133
bystem Nb-Ni-Al at 800 and 900C respectively were investigated. The study supplement the results of Ye. N. Pylayeva, Ye.1. Gladyshevskiy, and P. I. Kripyakevich Kristallicheskaya struktura soyedineniy Ni ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, No. 7). The phase composition was determined by x-ray analysis. In addition, the crystal structure of the compounds NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The experimental results are presented in graphs and tables (see Fig. 1). It was found that at 900C Ni dissolves up to 11 at.% of Nb, and it was confirmed that the system when it is because in the region of 5060 at.% Nb. as stated by W. Jeitschko,	system Nb-Ni-Al at 800 and 900C respectively were investigated. The study supplement the results of Ye. N. Pylayeva, Ye.1. Gladyshevskiy, and P. I. Kripyakevich (Kristallicheskaya struktura soyedineniy N1 ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, 3, No. 7). The phase composition was determined by x-ray analysis. In addition, the crystal structure of the compounds NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The experimental results are presented in graphs and tables (see Fig. 1). It was found that at 900C Ni dissolves up to 11 at % of Nb, and it was confirmed that the system Nb Ni is homogeneous in the region of 5060 at % Nb, as stated by W. Jeitschko,		metal phase system, x-ray analysis, niobium, nicke
	H. Holleock, H. Nowotny, F. Benesovsky (Phasen mit aufgefuellten Ti2Ni-Typ M. Chemi	system Nb-Ni-Al at 800 and 900C r the results of Ye. N. Pylayeva, Y (Kristallicheskaya struktura soye 3, No. 7). The phase composition crystal structure of the compound experimental results are presented that at 900C Ni dissolves up to J	espectively were investigated. The study supplement e.l. Gladyshevskiy, and P. I. Kripyakevich dineniy Ni ₃ Nb i Ni ₃ Ta. Zh. neorg. khimii, 1958, a was determined by x-ray analysis. In addition, th is NbNi ₂ Al and Nb(Ni, Al) ₂ were determined. The ed in graphs and tables (see Fig. 1). It was found 1 at.% of Nb, and it was confirmed that the system on of 5060 at.% Nb. as stated by W. Jeitschko,

"APPROVED FOR RELEASE: Monday, July 31, 2000

CIA-RDP86-00513R000928010

APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R000928010(

3.000

ompound N	b(Ni,Al)2	e compound NoNi2A has a MgZn, stru Orig. art. has:	icture (a -	4.870 - 5.1	16 <u>+</u> 0.003	946 Å), and Å, C = 7.90	2 -
.278, <u>+</u> 0. SUB CODE:	005 A/•	SUBM DATE: 031	-	ORIG REF:		OTH REF:	
•	•	· · ·				· ·	
•	•	•			. ·		
•		•	• •		•		
	•	•	; ; ,		•		
• • •		5				·	-

830 R

ACC NR:	AP7000013	(A)	SOURCE CODE:	UR/0080/66/039/011/-395/24	00
AUTHOR:	Makarenko,	, G. N.; Kripyakevic		Yu. B.; Kosolapova, T. Ya.	
ORG: I vedeniy	nstitute of	Materials Science H : L'vov State University		R (Institut problem materia anko (L'vovskiy gosudar-	10-
TITLE:	Preparation	of rare earth sesq	uicarbides		
SOURCE: Zhurnal prikladnoy khimii, v. 39, no. 11, 1966, 2395-2400					
TOPIC TAGS: lanthanum compound, cerium compound, praseodymium compound, neodymium compound, neodymium					
with car sponding these co ler dica dicarbid fragment carbides	bon in a vac oxides show nditions bec rbides. It es with the s with spect of lantham	cuum and in argon a red that the prepar- cause their formation is shown that the corresponding meta	nd reaction of the ation of sesquicar on is superseded b four sesquicarbide ts in argon, and a graphite. The ext	preparation of lanthanum, eduction of the metal oxides e dicarbides with the corre- rbides is impossible under by the formation of the stab es can be formed by reacting also by arc melting of metal istence of isostructural oxy ce composition LaCO and PrCO	-
Card 1/2			UDC: 546.65.2	261	
England State State	804209743574338882575185	and the and the second	area della	alan kanan kan Manan kanan kana	

s/137/62/000/010/028/028 A052/A101 AUTHOR: Kuźma, Zygmunt Spectrographic determination of Ga and Pb in In-Ga, In-Pb and TITLE: In-Ga-Pb alloys Referativnyy zhurnal, Metallurgiya, no.10, 1962, 8 - 9, abstract PERIODICAL: 10K46 ("Chem. analit." (Polska), v. 7, no. 1, 1962, 227 - 238, Polish; summary in English) The method is applicable to the analysis of In-alloys mainly to TEXT: In-Ga alloys containing 0.5% Ga, In-Pb alloys containing 10% Pb and In-Ga-Pb alloys containing 8 - 10% Pb and 0.2 - C.5% Ga. 100 mg of the 2-component alloy or 200 mg of the 3-component alloy are dissolved in 5 ml HNO_3 (1 : 1) and the solution is diluted to 10 ml. Thereafter 3 series of standard solutions for In-Pb, In-Ga and In-Pb-Ga alloys are prepared. To use In as an internal standard, its content in each series must be the same. For the analysis a spark-type $M\Gamma$ -3 (IG-3) generator (C = 0.005 μ F and L = 0.55 mhy) is used. When spectrographing two drops of the solution are applied to the flat electrode butt. As Card 1/2

APPROVED FOR RELEASE: Monday, July 31, 2000

CIA-RDP86-00513R000928010(

Spectrographic determination of... the analytic pair the lines Ga 2943,64 - In 2710.27, Pb 2614.18 - In 2710.27 are selected. Analytic curves are plotted in coordinates W - 1gC for Ga and 5 - 1gC for Pb. The root-mean-square error of determination is < 44% for Ga and ±3.5% for Pb. L. Vorob'yeva [Abstracter's note: Complete translation]

CIA-RDP86-00513R000928010

"APPROVED FOR RELEASE: Monday, July 31, 2000

"APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513 CIA-RDP86-00513R000928010

ACCESSION NR: AP4016603	P/0053/64/000/001/0009/0018	
AUTHOR: Kuzma, Zygmunt		
TITLE: Instrumental metho semiconductor technology	ods for analyzing certain indium alloys used in	
SOURCE: Przeglad elektron	niki, no. 1, 1964, 9-18	
TOPIC TAGS: instrumental mean relative error, spec	analysis, indium alloy, semiconductor manufacture, trographic specimen, sensitivity	
in determing the added commanufacture, the initial a	usses spectrographic and spectro-photometric analysis mponents in indium-base alloys used in semiconductor sample being 10-200 mg of the alloy. The mean relative he possibility of analyzing 0.2-10 mg. samples is	
considered. There are see "Spectrographic specimens,	ctions on: "Freparation of sample for analysis," ," "Conditions: agitations, recordings of spectrum.	:
of Si in In-Si and In-Ga-	aphio plate and pair of analytic lines," "Determination Si alloys," "Spectrophotometric determination of Cd and alloys," "Determination of gallium in In-Ga-Cd alloy,"	•
Card 1/2		
	and the second	÷.,

APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R000928010(

R .

"APPROVED FOR RELEASE: Monday, July 31, 2000

CIA-RDP86-00513R000928010

1913			
	ACCESSION NR: AP4016603		
	and "Comparison of the sensitivity of the analytic methods discussed." Taking into account the requirements as to the size of the sample and the accuracy of the determinations (mean relative percentual error). the author regards as appropriate the choice of methods proposed by him for solving this kind of analytic problems in the semiconductor industry. "The author expresses his sincere thanks to mgr. inz. Henryk Hoffman and remarks." Orig. art. has: 5 tables and 6 graphs.		
	ASSOCIATION : Fabryka Polprzewodnikow "TEWA", Warsaw ("TEWA" Semiconductor Factory)		
6.1			•
1.11	SUEMITTED: 30Jul63		
	SUEMITTED: 30Jul63 DATE ACQ: 05Mar64 ENCL: 00	1	
	SUEMITTED:30Jul63DATE ACQ:05Mar64ENCL:00SUB CODE:0ENO REF SOV:001OTHER:006		
	SUB CODE: OF NO PER SOLL AND		
	SUB CODE: OF NO PER SOLL AND		

LEEEDINSKIY, N.F.; OKTYAER'SKIY, P.Ya.; SMIRNOV, D.V.; VINLGRADOV, N.I.; KU2'MAK, B.S.; ELYAKHMAN, L.S.; RYASHCHENKO, B.R.; POLOZOV, V.R.; SHALGIN, G.N.; MARKIN, A.A.; IGNAT'IEVA, E.P.; VORTILOV, V.A.; KUYUEV, A.I., dota., otv.red.; KARPOVA, L.A., red.; YELIZAROVA, N.A., tekhn. red.
[Hiddent potentials for increasing labor productivity in the national exercised protocoditel'nosti truda v narodnom khoziajistve. Leningrad, Iad-vo Leningr. univ., 1962. 223 p. (MIRA 16:2)
1. Leningrad. Universitet.
(Labor productivity)

CIA-RDP86-00513R000928010

HATTAL STATES CLUMPATICAL THEORY PRODUCTION STATES OF THE STATES AND A THE

"APPROVED FOR RELEASE: Monday, July 31, 2000

e te l'estatuation

CONTRACTOR AND ADDRESS OF A CONTRACT REPORT OF A CONTRACT OF

C Strike

USSR/Mathematics - Hydrodynamics Nov/Dec 52 "One Representation for the Solution of the Basic Integro-Differential Equation of a Wing," G. Ye. Kuzmak, Moscow "Priklad Matemat i Mekhan" Vol 16, No 6, pp 715 718 The familiar integro-differential expression for the circulation around a wing, namely the gamma function $T(\Theta)$ involving the function $b(\Theta)$ pro- portional to the wing chord, and the alpha func- tion $\mathscr{I}(\Theta)$ representing the geometric angle of attack, is represented in the form of an infinite orthonormal series (that is, terms from an orthonormal system). Submitted 26 Jul 52.			
Integro-Differential Equation of a Wing," G. Ye. Kuzmak, Moscow "Priklad Matemat i Mekhan" Vol 16, No 6, pp 715 718 The familiar integro-differential expression for the circulation around a wing, namely the gamma function $T(\Theta)$ involving the function $b(\Theta)$ pro- portional to the wing chord, and the alpha func- tion $\mathcal{A}(\Theta)$ representing the geometric angle of attack, is represented in the form of an infinite orthonormal series (that is, terms from an orthonormal system). Submitted 26 Jul 52.	•	USSR/Mathematics - Hydrodynamics Nov/Dec 52	
The familiar integro-differential expression for the circulation around a wing, namely the gamma function $T(\Theta)$ involving the function $b(\Theta)$ pro- portional to the wing chord, and the alpha func- tion $\mathcal{A}(\Theta)$ representing the geometric angle of attack, is represented in the form of an infinite orthonormal series (that is, terms from an orthonormal system). Submitted 26 Jul 52.		Integro-Differential Equation of a Wing," G. Ye.	
the circulation around a wing, namely the gamma function $T(\Theta)$ involving the function $b(\Theta)$ pro- portional to the wing chord, and the alpha func- tion $\mathcal{A}(\Theta)$ representing the geometric angle of attack, is represented in the form of an infinite orthonormal series (that is, terms from an orthonormal system). Submitted 26 Jul 52.		"Priklad Matemat i Mekhan" Vol 16, No 6, pp 715 718	
		the circulation around a wing, namely the gamma function $\mathbf{T}(\Theta)$ involving the function $\mathbf{b}(\Theta)$ pro- portional to the wing chord, and the alpha func- tion $\boldsymbol{\sphericalangle}(\Theta)$ representing the geometric angle of attack, is represented in the form of an infinite orthonormal series (that is, terms from an	

"APPROVED FOR RELEASE: Monday, July 31, 2000

CIA-RDP86-00513R000928010

KUZMAK, ME. Kuzmak G.E. On a representation of the solution of the bill basic integro-differential equation of a wing. Akad. Nauk SSSR. Prikl. Mat. Mch. 16, 715-718 (1952). Mathematical Reviews (Russian) En utilisant les critères de N. Bary [C. R. (Doklady) Acad. Sci. URSS (N.S.) 37, 83-87 (1942); ces Rev. 4, 272] Vol. 14 No. 7 July - August, 1953 Mechanics. d'A. prouve que le système de fonctions: . 1 $f_{\bullet}(\vartheta) \coloneqq \left(1 + \frac{\sin n\theta}{\epsilon c n b(\vartheta)}\right) \sin n\vartheta, \quad n = 1, 2, \cdots, \infty,$ [où c est une constante positive, b(0) est une fonction don-née] est complet chaque fois que pour tout n on a: $\int_0^{\infty} [f_n(\theta)]^2 d\theta < \frac{4}{\pi} \left[\int_0^{\infty} f_n(\theta) \sin n\theta d\theta \right]^2.$ Ce résultat est utilisé pour former le développement suivant les $f_*(\theta)$ de la solution de l'équation intégro-différentielle de l'aile. J. Krastchenko (Grenoble). 10 1/22/54

"APPROVED FOR RELEASE: Monday, July 31, 2000

62.6

CIA-RDP86-00513R000928010

の時代のないの

USSR/Mathematics - Orthogonal functions	FD- 1426	
Card 1/1 : Pub. 64 - 4/9		
Author : Kuzmak, G. Ye. (Moscow)		
Title : Concerning a system of functions		
Periodical : Mat. sbor., 35 (77), pp 461-468, Nov-Dec 1954		
Abstract : In this work the author considers the following system of function po (x) = go f (x); p _{2m-1} (x) = g _{2m-1} [1+f(x) /m].sin mx; p _{2m} (x)=g _{2m} [1+f (x)/m].cos mx (m = 1,2,), where g _n is determined from the normalization condition of the functions: f ^{2m} p ² n (x) dx=1 (n=0,1) A system of this form is encountered in the theory of air foils of span in the solution of the integro-differential equation for circ (in this case the function f (x) depends upon the form and span of One reference (N. K. Bari, "Complete systems of orthogonal function sbor., 14 (56), 51-108, 1944).	,2,). finite sulation	T.
Institution :		
Submitted : October 27,1953		

ATT S

KUZMAK, G. Ye. Transactions of the Third All-union Mathematical Congress (Cont.)_{Moscow}, Jun-Jul '56, Trudy '56, V. 1, Sect. Rpst., Izdatel'stvo AN SSSR, Moscow, 1956, 237 pp. Of Solutions of Some Differential Equation of Non-linear 219-220 Mention is made of Krylov, N. M. and Bogolyubov, N. N. Glasko, V. B. (Moscow). On the Relationship of Figenvalues and Eigenfunctions of Certain Boundary Problems of Small 220 Goryainov, A. S. (Moscow). Electromagnetic Wave Diffraction on an Infinite Cylinder. 220-221 Mention is made of Fok, V. A. Kuzmak, G. Ye. (Moscow). Asymptotic Solutions of Some Non-linear Differential Equations of Secondary Order With Variable Coefficients. 221-223 Card 74/80

1. STATE

MARK (C.M.
AUTHOR: Kuzmak, C.Y.e. (Moscow) 40-21-2-14/22
TITLE: Asymptotic Solution of a Non-Linear Differential Equation
of Second Order (Asimptoticheskog resheniye odnogo neliney-
nogo differentsial'nogo uravneniya vtorogo poryadka)
PERIODICAL: Prikladnaya Matematika i Mekhanika, 1957, Vol 21, Nr 2,
pp 262-271 (USSR)
ABSTRACT: The author determines the first terms of the asymptotic ex-
sustained the solutions of

$$\frac{d^2y}{dt^2} + a(t)y - b(t)y^3 = 0$$
, $t = t$:
Nor small ϵ (although this was made already several times).
In this connection only the method is new. In this non-li-
net case the author uses the method of comparison equations
(cf.e.g.s. Bordonytsin [Ref 3] elaborated for the linear
theory. As a comparison equation he uses
 $\frac{2^2 gnu}{2u^2} + (1 + y) snu - 2y sn^3 u = 0$.
Card 1/2

年初時間

.

.

AUTHOR: Kuzmak, G.Ye. (Zhukovskiy) SOV/41..10-2-3/13
TITLE: On the Theory of Nonautonomous, Quasi-Linear Systems With
Several Degrees of Freedom (K teorii neavtonomnykh kvaziliney-
nykh sistem so mnogimi stepenyami svobody)
PERIODICAL: Ukrainskiy matematicheskiy zhurnal, 1958, Vol 10.Nr 2,
pp 128-146 (USSR)
ABSTRACT: The author considers the system

$$(1) \qquad \frac{dx}{dt} + \sum_{l=1}^{p} a_{jl}x_l = \epsilon f_j [x_1, \dots, x_p, v_{p+1}(t), \dots, v_n(t), \xi]$$

 $j = 1, 2, \dots, p$
The investigation of such systems is carried out according to
Krylov and Bogolyubov by series expansions, i.e. the solutions
and certain auxiliary functions are expanded into series in
terms of ℓ . The author usually serve as auxiliary functions.
The author deviates from this scheme inasmuch as he applies for
the choice of the auxiliary functions the formal transfor-
Card 1/2

On the Theory of Nonautonomous, Quasi-Linear Systems 50V/41-10-2-3/13 With Several Degrees of Freedom mations which were used by Birkhof [Ref 4] for the investi- gation of canonical systems. The method has certain advantages it can be only applied, however, to such nonautonomous systems which can be reduced to autonomous systems with a larger number of variables. As examples for the application of the method the author considers two equations of second order. There are 6 references, 4 of which are Soviet, 1 American, and 1 English. SUBMITTED: May 15, 1956 1. Differential equations 2. Transformations (Mathematics) 3. Harmonic functions		
 Substitution of calonical systems. The method has certain advantages it can be only applied, however, to such nonautonomous systems which can be reduced to autonomous systems with a larger number of variables. As examples for the application of the method the author considers two equations of second order. There are 6 references, 4 of which are Soviet, 1 American, and 1 English. SUBMITTED: May 15, 1956 1. Differential equations 2. Transformations (Mathematics) 3. Harmonic functions 	On the Theor With Several	y of Nonautonomous, Quasi-Linear Systems SOV/41-10-2-3/13 Degrees of Freedom
 Differential equations 2. Transformations (Mathematics) Harmonic functions 		it can be only applied, however, to such nonautonomous systems which can be reduced to autonomous systems with a larger number of variables. As examples for the application of the method the author considers two equations of second order. There are 6 references. A of which are Societ 1 to a
3. Harmonic functions	SUBMITTED:	
Card 2/2		 Differential equations 2. Transformations (Mathematics) Harmonic functions
Card 2/2		
	Card 2/2	

AUTHOR 8	Kuzmak, G.E.	SO V/20-120-3-5/67
TITLE :	Slowly Variáble Parameters (A	With one Droree of Freedom and Asimptotich, skiye resheniya uravne- blebatel'noy sistemy s odnoy stepen'yu
PERIODICAL:	Doklady Akademii nauk SSSR,19	958, Vol 120,Nr 3,pp 461-464 (USSR)
ABSTRACT:	The author considers the equa	
	(1) $\frac{d^2 \mathbf{y}}{dt^2} + \boldsymbol{\epsilon} \mathbf{f}(\boldsymbol{\tau}, \mathbf{y}) \frac{d \mathbf{y}}{dt} + \mathbf{F}$	
	(2) $\frac{d^2 y}{dt^2} + \xi f(\tilde{c}, y) \frac{dy}{dt} + a_0(\tilde{c}) +$	$a_1(\tilde{c})y + a_2(\tilde{c})y^2 + a_3(\tilde{c})y^3 = 0$
	time. Under the assumption the solution, the author calculat comparison equations due to I	and $\tau = \xi t$ is the so-called slow hat (1) possesses an oscillating tes according to the method of borodnitsyn [Ref 1], expressions gate the solution of (1) with the $0 \leq t \leq T' \leq t$
Card 1/3	CARCINGER C ON THE INTELVAL	

The Asymptotic Solutions of the Equations of Motion SOV/20-120-3-5/67 of a Nonlinear Oscillatory System With one Degree of Freedom and Slowly Variable Parameters

$$\psi^{2}(\mathbf{t}) \frac{\partial^{2} \mathbf{y}_{0}}{\partial \omega^{2}} + \mathbf{F} (\mathbf{r}, \mathbf{y}_{0}) = 0$$

serves as a comparison equation. As asymptotic formulas for the solution of (!) and its derivative the author obtains

$$y_{o}(t) = y_{o}(\tilde{t}, \omega)$$
, $\left(\frac{dy}{dt}\right)_{o} = \varphi(\tilde{t}) \frac{\partial y_{o}}{\partial \omega}$

where

 $\omega = \omega_0 + \begin{cases} t \\ t \\ t \\ t \end{cases}$ (Et) dt and ω_0 denotes an arbitrary

constant. The function $\varphi(\tilde{\iota})$ is a momentary oscillation frsquency and is obtained from a certain differential equation. The special case (2) is considered in detail. There are 6 references, 5 of which are Soviet, and 1 French.

PRESENTED: January 16, 1958, by A.A. Dorodnitsyn, Academician

Card 2/3

1642

"APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-I

CIA-RDP86-00513R000928010

AUTHOR:	Kuzmak, G. Ye.	SOV/20-121-1-9 55
TITLE:	Asymptotic Solutions of the Motion Equati System With One Degree of Freedom and Wit Parameters (Asimptoticheskiye resheniya u dissipativnoy sistemy s odnoy stepenyu sv izmenyayushchimisya parametrami)	h Slowly Variable ravneniya dvizheniya
PERIODICAL:	Doklady Akademii nauk SSSR, 1958, Vol 121	, Nr 1, pp 37-40 (USSR)
ABSTRACT:	The author considers the equation	
	(1) $\frac{d^2y}{dt^2} + f(\tau, \frac{dy}{dt}) + \varepsilon F(\tau, y) =$	0
	with the small parameter T_{c} and with the s	low time $ au = \mathcal{E}t$. It is
	assumed: a) $f(\tau, 0)$, b) $\frac{\partial f}{\partial (\frac{dy}{dt})} \ge \Delta > 0$, c) let f be in G:
	$0 \leq \left \frac{dy}{dt} \right \leq \mathbf{w}_t, \ 0 \leq \tau \leq \tau_o \text{ analytic in } \frac{dy}{dt} ,$	
	Besides let f vanish in G only for $\frac{dy}{dt} = 0$, d) let $F(\tau, y)$ be
	defined in $0 \leq y \leq w$, $0 \leq \overline{C} \leq \overline{C}_0$, analyti	c in y and continuous in \overline{c} .
Card $1/3$	The w _t and w are constants.	

Asymptotic Solutions of the Motion Equations of a Dissipative 30V/20-121-1-9, 55 System With One Degree of Freedom and With Slowly Variable Parameters

(1) is compared with
(2)
$$\varphi^{2}(\tau) \frac{\partial^{2} y_{0}}{\partial \omega^{2}} + f[\tau, \varphi(\tau) \frac{\partial y_{0}}{\partial \omega}] = 0,$$

where $\varphi(\tau) = \frac{\partial f(\tau, y)}{\partial y}\Big|_{y=0}^{y}$, so that
 $y_{0}(\tau, \omega) = B_{0}(\tau) + A[\tau, e^{-\omega - c(\tau)}],$
where $B_{0}(\tau)$ and $c(\tau)$ are arbitrary while
 $A[\tau, e^{-\omega - c(\tau)}] = \sum_{n=1}^{\infty} B_{n}(\tau)e^{-n}[\omega + c(\tau)]$
is determined from (2).
Theorem: If f and F satisfy the conditions a), b), c), d) and if
 $B_{0}(\tau)$ and $c(\tau)$ are obtained from the conditions

$$(\mathcal{T})B_{0}^{\prime}(\mathcal{T}) + F[\mathcal{T},B_{0}(\mathcal{T})] = 0,$$

Card 2/3

14月29日

PRESENTED: February 22, 1958, by A.A.Dorodnitsyn, Academician SUBMITTED: February 22, 1958 1. Mathematics	System With Parameters	Solutions of the Motion Equations of a Dissipative SOV/20-121-1-9/55 n One Degree of Freedom and With Slowly Variable $c(\tau) = \int_{0}^{\tau} \frac{\varphi(\tau) - F_{y}[\tau, B_{0}(\tau)] - f_{yy}(\tau, 0) F[\tau, B_{0}(\tau)]}{\varphi(\tau)} d\tau + \ln \left \frac{B_{1}(\tau)}{B_{1}(0)} \right ,$ then on the time interval $t \sim 1/\varepsilon$ for $ \varepsilon \leq \varepsilon_{0}$ the functions $y_{0}(t) = y_{0}(\tau, \omega)$ and $\left(\frac{dy}{dt}\right)_{0} = \varphi(\tau) \frac{\partial y_{0}}{\partial \omega}, \tau = \varepsilon t, \omega = \int_{0}^{t} \varphi(t) dt,$ approximate the solution of (1) and its derivative with the exactness 1/ ε .
		There are 2 Soviet references. February 22, 1958, by A.A.Dorodnitsyn, Academician February 22, 1958
	Card 3/3	1. Mathematics

ST. CHINAE

ų,

AUTHOR:	Kuzmak, G. Ye.	SOV/20-125-5-10/61
TITLE:	Equation (O vychislenii as:	Asymptotic Solutions Which Covres- ogral Curves of the "Standard" Imptoticheskikh resheniy, sont- /m integral'nym krivym "stalonnogo"
PERIODICAL:	(00000)	1959, Vol 125, Nr 5, pp 992 - 995
ABSTRACT:	The present paper deals with	The equation $\frac{d^2y}{dt^2} + \mathcal{E}f(\tau,y)\frac{dy}{dt} +$
	suitable selection of the a into the solution of the "	a small parameter and $\tau = \xi t$ the per (Ref 1) it was shown that by rbitrary functions of τ (which ente tandard" equation
	$\varphi^{2}(\tau) \frac{\partial^{2} y_{0}}{d \omega^{2}} + F(\tau, y_{0}) = 0)$	it is possible to cause the funct- = $\varphi(\tau) - \frac{\partial y_0}{\partial \omega}$ at $0 \le t \le \tau_0/\varepsilon$ to ap- first-mentioned equation and its
	ions $y_0(t) = y_0(\tau, \omega), \left(\frac{dy}{dt}\right)$	$= \varphi(\tau) \frac{\partial g_0}{\partial \omega} \text{ at } 0 \leq t \leq \tau_0 / \varepsilon \text{ to ap-}$
Card 1/4	proach the solution of the	first-mentioned equation and its

On the Calculation of the Asymptotic Solutions Which SOV/20-125-5-10/61 Correspond to the Non-closed Integral Curves of the "Standard" Equation

derivative, in which case $\omega = \omega_{c} + \int_{t}^{t} \varphi(\epsilon t) dt$ holds. In some

cases (especially if the phase plane of the equation 2^2

 $\varphi^2(\tau) \frac{\partial^2 y_0}{d\omega^2} + F(\tau, y_0) = 0$ is periodic with respect to y_0 , also an investigation of the processes at $0 \le t \le \tau_0/\xi$ is of in-

terest. These processes are near the non-closed integral curves. It is of particular importance to investigate these processes which are connected with the transition (or non-transition) of the non-oscillation process into an oscillation process. For the purpose of carrying out such an investigation it is necessary to be able to form some approximated notions concerning the solution for the domain V, which is represented by a figure. The present paper aims at extending the method of calculating the asymptotic solutions suggested in the aforementioned earlier paper to the case mentioned. This problem is

Card 2/4

化可加带用力量

E.

On the Calculation of the Asymptotic Solutions Which SOV/20-125-5-10/61 Correspond to the Non-closed Integral Curves of the "Standard" Equation

A VERNAR TO DE VERNARD A CONSTRUCTION OF A DESCRIPTION

investigated on the basis of the following conditions: a) the functions $f(\tau, y)$ and $F(\tau, y)$ are sufficiently smooth at $0 \le \tau \le \tau$ and $0 \le y \le T_y$, and have the period T_y with respect to y, in which case this period does not depend on τ . b) $f(\tau, y)$ is an even function of y, but $F(\tau, y)$ is an odd function. The author first describes some properties of the solutions of the "standard equation" which are aperiodic with respect to ω , and then proves the following theorem: If the functions $f(\tau, y)$, $F(\tau, y)$ satisfy the (above mentioned) conditions a and b, if the function $y(\tau)$ is determined from the equation

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left[\varphi(\tau) \int_{0}^{\tau} \frac{\partial y_{0}}{\partial \omega}^{2} \mathrm{d}\omega \right] + \varphi(\tau) \int_{0}^{\tau} f(\tau, y_{0}) \left(\frac{\partial y_{0}}{\partial \omega} \right)^{2} \mathrm{d}\omega = 0 \text{ in such}$$

Card 3/4

CITY STOR

a manner that at $0 \leq \tau \leq \tau_0$ the relation $\varphi(\tau) \geq 0$ holds, and if the arbitrary functions entering into the "standard" equation are defined in such a manner that $y_0(\tau, 0) = 0$ holds and that

APPROVED FOR RELEASE: Monday, July 31, 2000 CIA-RDP86-00513R000928010(

NEW AND DESCRIPTION OF THE PARTY OF THE PART

On the Calculation of the Asymptotic Solutions Which SOV/20-125-5-10/61 Correspond to the Non-closed Integral Curves of the "Standard" Equation the "period" $\mathtt{T}_{\zeta_{2}}$ does not depend on τ_{7} the function $\tilde{y}(t) = y_0(\tau,\omega) + \xi y_1(\tau,\omega)$ satisfies the equation $\frac{d^2y}{dt^2} + \mathcal{E}f(\tau,y)\frac{dy}{dt} + F(\tau,y) = 0 \text{ at } 0 \leq t \leq \tau_c/\mathcal{E} \text{ and } 0 \leq \mathcal{E} \leq \mathcal{E}_c$ with an accuracy of up to terms of the order of ragnitude \mathcal{E}^2 . The author then investigates the example, which is of practical importance, $\frac{d^2y}{dt^2} + \mathcal{E}f(\tau)\frac{dy}{dt} + g(\tau)$ sin y and also the case in which the function $g(\tau)$ in the initial instant of time $(t = t_0)$ is very small and then increases rapidly. There are 1 figure and 2 Soviet references. PRESENTED: January 9, 1959, by A. A. Dorodnitsyn, Academician SUBMITTED: January 2, 1959 Card 4/4

S/020/60/132/03/17/066 B014/B011

AUTHOR: Kuzmak, G. Ye.

TITLE:

On the Problem Concerning the <u>Spatial Motion</u> of an Axisymmetric Solid Body Around a Fixed Point Under the Action of Moments Slowly Changing With Time

PERIODICAL: Doklady Akademii nauk SSSR, 1960, Vol. 132, No. 3, pp. 549-552

TEXT: The motion of a body under the action of the restoring moment $M_z(\tau, \Theta)$ is investigated in the present paper. This moment is assumed to be dependent on the "slow" time $\tau = \varepsilon t$ (ε is a small parameter, t de-

notes time), on the angle of nutation Θ and on small damping moments. The angular velocity is described by three equations of same effect. The author restricts himself to the solution of the more difficult part of the problem: the determination of the nutation angle Θ and the precession rate λ . The differential equation system (1) is written down for the determination of these quantities, and the system is solved by making use of the method of "standard" equations. By this method the

Card 1/3

PERSONAL DEPARTMENTS

On the Problem Concerning the Spatial S/020/60/132/03/17/066 Motion of an Axisymmetric Solid Body Around B014/B011 a Fixed Point Under the Action of Moments Slowly Changing With Time

的形式的

author understands the way of expressing the solution of the equations considered by solutions of simpler equations. By equations (2) he gives the standard equation system and assumes that the solution $\theta_0(\tau,\omega)$ determined by this system has the properties $\Theta_0(\tau, \omega + T_\omega) = \Theta_0(\tau, \omega) + \begin{cases} 0\\ 2\pi \end{cases}$; $\Theta_0(\tau, -\omega) = \pm \Theta_0(\tau, \omega)$. The general solution of the system (2) depends on four arbitrary functions. Under the premises established above for the solution, one of these arbitrary functions vanishes, and furthermore, any of the remaining three arbitrary functions can be expressed by the other two. Equations (9) are given for the computation of the last two arbitrary functions. The author thus obtains relations to calculate functions $\widetilde{\Theta}(t)$ and $\widehat{\lambda}(t)$, which satisfy the system of equations (1) with an accuracy of ϵ^2 with $0 \leq t \leq \tau_0^2/\epsilon$. Here, the functions $\widetilde{\Theta}(t) = \Theta_0(\tau,\omega) + \epsilon \Theta_1(T,\omega), \quad \widetilde{\lambda}(t) = \lambda_0(\tau,\omega) + \epsilon \lambda_1(\tau,\omega) \text{ hold}. \text{ In such}$ formulas, the terms with E, which are small oscillating additive terms Card 2/3

而完全的

