Study of the physicochemical properties of clay minerals is a subject of investigation.

Institute of Geological Sciences of the Ukrainian Academy of Sciences.

Kiev, Nauka i nauka, 1955, 77 pp. (UDC 547.83-181.8)

I. Akademya nauk SSSR (for indexer).
KRUGLITSKIY, N.N.; OYCHARENKO, F.D.; TCHITINIK, V.Yu.; OROBCHENKO, V.I.

1. Institut obshchey i neorganicheskoy khimii AN UkrSSR.
KRUGLITSKIY, N. N.; OVCHARENKO, F. D., akademik; NICHIPorenko, S. P.;
VAGNER, G. R.

Salt resistance of dispersed argillaceous minerals. Dokl.
AN SSSR 165 no. 2:380-382 N 165. (MIRA 18:11)

1. Institut obshchey i neorganicheskei khimi AN UkrSSR.
2. AN UkrSSR (for Ovcharenko).
SALO, D.F.; ONCHARENKO, P.D.; KULISH, A.A. [Kulish, H.A.]

Hydrophobic fillers in amorphous polymers

SOURCE: Ukrainskiy khimicheskiy zhurnal, v. 32, no. 9, 1966, 979-982

TOPIC TAGS: kaolinite, filler, modified kaolinite, polymethyl-methacrylate, kaolin, amorphous polymer

ABSTRACT: Nonmodified kaolinite is an active filler for poly(methyl methacrylate) (PMMA). A study has been made of the effect of modified kaolinite on the properties of PMMA. Treatment of kaolinite with hydrolyzed polyacrylamide (HPAA) did not change the size of kaolinite particles and had no effect on their aggregation, but considerably affected the surface properties of the modified product. It was shown that introduction of small amounts of HPAA in the surface layer of the filler lowers its capacity to form hydrogen bonds with PMMA molecules, while large amounts of HPAA screen the OH surface groups of.
the filler and render it incompatible with PMMA. Thus, imparting water
repellency (even with simultaneous "organophylization") to a filler
does not necessarily increase its activity with respect to polymers
containing polar groups. Orig. art. has: 4 figures. [30]

SUB CODE: 11,07/SUBM DATE: 23Dec64/ ORIG REP: 010/ OTH REP: 062
Nuclear magnetic resonance of the protons of intercalated montmorillonite.
P. L. A. and A. A. Scherbrock.

I. Institut I. Malot, 38580 Bourgoin.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner.
RETINA: V. Yue; J. He

Aggregation: N: 487-491, 492-494 (MLA 1-21)

1. Institutional surveys: survey methodology

Effect of the nature of filler surface on rubber strengthening. Khim. prom. [Ukr.] no.2:45-48 Apr-Je '69. (MIRA 16:8)

1. Institut obschey i neorganicheskoy khimii AN UkrSSR (for Gudovich, Ovcharenko). 2. Kiyevskiy zavod "Chernoviyy gumovik" (for Chugay, Borisova, Chornous, Zakanavskaya).
OVCHAENKO, I.L., akadem., nauk., sci. secretna, nauk., prof.;
USENKO, I.S., nauk., sci. secretna, nauk., prof.;
KORABLIN, V.I., nauk., sci. secretna, nauk., prof.;
KORABLYOV, A.A., nauk., sci. secretna, nauk., prof.;
(Stone casting) Bureau of consumer goods, Kiev, Liovo
AN USSR, Acad. Sci.; (MIRA City)
2. Chlen-korrespondent AN Ukr. SSR (for Ovcharenko).
GUDOVICH, N.V.; OVCHARENKO, P.I.

Formation of organo-philic montmorillonite in ion exchange. Koll. zhur. 26 no.4:407-411 Jl-Ag '63. (MIRA 17:2)

I. Institut ob shheoy i organicheskoy khimii AN UkrSSR, Kiyev.
PANASEVICH, A.A. (Panasevych, O.O.); OVCHARENKO, F.D., akademik

Effect of exchange ions on the physicochemical properties of galloisite. Dop. AN URSR no.3:349-352 '64.

(MIRA 17:5)

1. Institut obshchej i neorganicheskoy khimii AN UkrSSR.
2. AN UkrSSR (for Ovcharenko).
OVCHARENKO, P.D.; KRUGLITSKIY, N.M.; NICHIPORENKO, S.P.; OROSHCHENKO, V.I.

New structural and mechanical criteria of suspensions used in drilling. Ukr. khim. zhur. 29 no.4; 376-382 '63.

1. Institut obshchey i neorganicheskoy khimii AN UkrSSR.
 (Drilling fluids)
 (Suspensions (Chemistry))
OVCHARENKO, F.D.; ALEKSEIEV, O.L.

Ion exchange and the electrokinetic properties of argillaceous minerals. Ukr. khim. zhur. 29 no.4:372-376 '63.

(MIRA 16:6)

1.-Institut neorganicheskoy khimii AN UkrSSR.

(Clay minerals—Electric properties)

(Ion exchange)
OVCHARENKO, F. D.; KUCOVSKII, Ye. G.

"Relationship between the colloid chemistry and crystal chemistry of clay minerals."

OVCHARENKO, Fedor Danilovich, akademik; KUKOVSKII, Yevgeniy Georgiyevich;
VICHITORENKOE, Sergey Petrovich; VDOVENKO, Sergey Petrovich;
VDOVENKO, Nadezhda Vasil'yevna; TRETINKII, Viktoriy Tur'yevich;
KRUGLITSKIY, Nikolay Nikolayevich; PANASEVICH, Aleksandr
Aleksandrovich; POKROVSKAYA, Z.S., red. izd-va; MINZHERAN, P.F.,
tekhn. red.

[Colloid chemistry of palygorskite] Kolloidnaya khimiya paly-
gorskita. Pod obshchei red. F.D.Ovcharenko. Kiev, izd-vo AN

1. AN Ukr.SSR (for Ovcharenko).
(Palygorskite) (Colloids)
OWCHARENKO, V. D., akademik; MIGHIPORRENKO, S. P., doktor tekhn. nauk

Ways for regulating the technological properties of clay raw materials. Zhur. Vakh 8 no.2:171-175 '63,
(WIRA 16:4)

1. Akademiya nauk Ukr.SSR (for Ovcharenko).

(Clay)
ADVISORS: Ovcharenko, P.D., Academician of the Academy of Sciences, UkrSSR,
 Verbavich, O.F., Doctor of Technical Sciences

TITLE: Methods for the regulation of technological properties of clay raw materials

PERIODICAL: Zhurnal vassoyuznogo khimicheskogo obshchestva imeni D.I. Mendele-
 yeva, v. 8, no. 2, 1963, 171 - 175

TEXT: The effect of the crystalline structure of clay raw minerals on their properties and the possibilities of direction of the latter are discussed and appropriate literature is cited. The manyfold properties of clay minerals are caused by the difference in their crystalline structure. The latter is also affecting the surface activity of these minerals. The most effective methods for the regulation of the properties of clay suspensions are the cation exchange - (introduction of small quantities of electrolytes and surface-active substances), the composition of the mixtures, and the mechanical treatment. The latter was investigated in the Korosten'kii farforovoy zavod (Korosten' Porcelain Factory).
Methods for the regulation of technological

and it was observed that the ceramic mass is plasticized and an anisotropic structure obtained by the orientation of the clay particles. A structure-mechanical analysis of a palygorskite paste showed a transformation from the fifth structure-mechanical type to the third (deformation parallel to the plane of orientation) and to the fourth type (vertically to the orientation plane).

Starting from the principal aspects and methods of physico-chemical mechanics a scientifically based scheme might be suggested for the regulation of properties of clay pastes and suspensions for a given technological process. A thorough change of structure and properties of clay minerals might be effected by a treatment with inorganic acids. Acid treatment of the mineral palygorskite increases the quantity of micropores with a radius 2.7 - 3 Å. This might be used for selective adsorption of gases and liquid mixtures of substances of small molecule size. Instead of an inorganic ion exchange organic ions might be exchanged with clay mineral ions and thus new materials be prepared with new properties such as hydrophobicity, swelling in organic media, etc. Corresponding investigations carried out in the authors' laboratory showed some regularities of interaction between organic substances and the surface of dispersed minerals which were used as modified fillers with a strengthening effect on rubber and
Methods for the regulation of technological ... 3/063/63/008/002/008/015
A057/A126

other polymer systems. Studies of colloid-chemical properties of minerals
showed on the other hand that for instance pyrophyllite might be used better in
its natural form as filler specially as dielectric filler for cable resins.
There are 2 figures and 1 table.
VASHCHENKO, Zakhar Markovich; OVCHARENKO, P.D., akademik, otv. red.;
DAKHNO, Yu.B., tekhn. red.

[Clays of the Ukrainian S.S.R., 1860-1960; a bibliographic
index of literature] Hlyny Ukrains'koi RSR, 1860-1960 rr.;
nauk URSR, 1963. 197 p. (MIRA 16:3)

1. Akademiya nauk Ukr. SSR (for Ovcharenko)
(Ukraine—Clay—Bibliography)

1. Presedinte al Sectiei de stiinte chimice al geologice a Academiei de Stiinte, Ucraina.
OVCHARENKO, F.D., akademik; AGABAL'YANTS, E.G.; OSTROVKAYA, A.B.

Chemical nature of the liming of clay suspensions.
Dokl. AN SSSR 147 no.1:162-165 N '62. (MIRA 15:11)

1. Institut obshchey i neorganicheskoy khimii AN Ukr SSR.
2. AN UkrSSR (for Ovcharenko).
 (Lime) (Clays)
OVCEARENKO, F.D. [Ovcharenko, F.D.], acad.

"Pirofillit*, a new filler for cable rubber. Vest. elektromash. 31 no.9:5-8 S'60.

1. Chemkorrespondent AK LSR (for Chvarenko).
 (Electric cables)
 (Electric insulators and insulation,
KURILENKO, O.D.; ONCHAELENKO, T.D.; YAKOVKINA, Ye.A.

Problems in the thermodynamics of wetting. Izv. vys. ucheb. za v., khim. i khim. teh. 5 no.1:87-90 '62. (MIRA 15:4)

(Wetting)
OVCHARENKO P.P. akademik

Substance: unknown in nature. Reaction: "zhytliu tu no, k2(5D)"?

1. AN USSR. particle, ode to know until 1970. Reaction:
nauk (4 USSR).

(approval stamp)
Activated diatomite as a rubber reinforcing agent. Dop. AN URSR
no. 4: 504-507 '61.

1. Institut obshchey i neorganicheskoy khimii AN USSR i Dnepropetrovskiy khimiko-teknologicheskiy institut. 2. Chlen-korrespondent AN USSR (for Ovcharenko).

(Diatomaceous earth)
(Rubber)

Институт химии и технологии машиностроения им. А. Н. Быкова.
ALEKSEIEV, O. L. [Aleksiev, O. L.]; OVECHARENKO, P. D., adademik

Reinforcement of the method for determining electrokinetic potential. Dop. AN URSR no. 6:763-765 '61. (MIRA 14:6)

1. Institut obshchey i neorganicheskoy khimii AN USSR.
2. AN USSR (for Ovecharenko).
 (Electromotive force)
AUTHORS: Ovcharenko, P.D., Corresponding Member AS UkrS.R., Ilkiv, M.A., H.I., and Shchyshko, Z.V.

TITLE: Use of activated diatomite for strengthening rubber

PERIODICAL: Akademiya nauk Ukrayins'koi SSR. Dopovidi, no. 4, 1961, 574 - 577

TEXT: This paper describes the effects of small additions of amines on the tensile strength of rubber. The following amines were used: 1) R₂NH₂ (Amine-2H₂), where R is the residue of maragic (C₁₆H₃₃COOH) or nonadecanic (C₁₉H₃₉COOH) acids. This is a white waxy substance melting at 52°C and soluble in benzene; 2) R₂NH₂ CH₂CH₂NH₂ (Dimine S.), where R is a mixture of residues of penta-decaneoic (C₂₀H₄₁COOH) and maragic (C₁₆H₃₃COOH) acids. This is a yellow waxy substance melting at 29-30°C, and soluble in isocyanl. Card 1/4
Use of activated diatomite ... 3.

\[\text{Arquade-2HT) a yellow substance melting at 69-70^\circ C, and soluble} \]
\[\text{in benzene and dichloroethane; 4) C}_{17}\text{H}_{25}\text{CONH}_{2} (\text{Armide-0), a white waxy substance insoluble in water but soluble in organic solvents, melting at 68-69^\circ C. The experimental results are given in Table 2. A second set of experiments was conducted by mixing the amines directly into the raw rubber preparation. The results obtained showed a considerable improvement in the tensile strength of the rubber and twofold acceleration in reaction time. Comparison of results shows that the activity of the amines deposited on the diatomite is less than the activity of the directly admixed amines. The reduced activity in the case of the activated diatomites can be explained.} \]

Card 2/4
AUTHORS: Ovcharenko, F.D., Corresponding Member AS UkrAN
Blokh, G.A., Candidate of Technical Sciences
Ol'shanskaya, L.A., Engineer and
Gudovich, N.V., Candidate of Chemical Sciences

TITLE: Pyrophillite - A New Filler for Cable Rubbers

PERIODICAL: Vestnik elektropromyshlennosti, 1960, No 9, pp 5 b

TEXT: The pyrophillite found in the Ukraine was studied as a possible dielectric filler for cable rubber. Physico-chemical tests showed that it consisted of 85% finely dispersed pyrophillite with 15% quartz and a trace of talc. The optical constants are close to those of talc. Experiments were carried out on the rubber KC-50 (KS-50) which contains 24.2% talc and 49% chalk. It was shown that replacing either or both talc and chalk by pyrophillite had no effect on the electrical characteristics. After five days soaking in water they were practically unchanged. Similar results were obtained when pyrophillite was substituted for fillers in other rubbers. Experiments were also carried out.
Pyrophyllite - A New Filler for Cable Rubbers

on the rubber KS 50 to find the effect on the physico-mechanical properties of the use of pyrophyllite instead of the other fillers. In particular, the stability after prolonged ageing at 120°C was investigated. Very similar results were obtained by using pyrophyllite. Thus, using pyrophyllite in quantities up to 50 to 60% results in satisfactory properties of the insulating rubber. The presence of rich sources of pyrophyllite in the Ukraine have therefore a substantial technical and economic value.

There are 6 tables and 2 Soviet references.

SUBMITTED May 5 1960

1. AN USSR (for Duman’skiy).
 (Clay) (Water)
NICHIPORUKHO, Sergey Petrovich, doktor tekhn. nauk; OVCHEARENKO, F.D.,
ott. red.; POKROVSKAYA, Z.S., red. izd.-va; RAKHLINA, N.P.,
tekhn. red.

[Main problems in the theory of processing and molding ceramic
materials] Osnovnye voprosy teorii protsessov obrabotki i
formovaniia keramicheskikh masse. Kiev, Izd-vo Akad. nauk USSR,
1960. 109 p. (MIRA 14:1)

1. Chlen-korrespondent AN USSR (for Ovcharenko).
(Ceramic materials)
"Physical-chemical methods of very mineral research."
(Section III)

OVCHARENKO, P.D.; MARTSIN, I.I.

Effect of chemical activation and electrodialysis on the composition and structure of montmorillonite. Dop. AN URSR no. 5: 549-554 '60. (MIRA 1): 7)

1. Institut obshchey i neorganicheskoy khimii AN USSR. 2. Chlen-korrespondent AN USSR (for Ovcharenko).
(Mon: morillonite)
OVCHARENKO, F.D.; MARTSIN, I.I.

Effect of acidic activation and electrodialysis on the lyopрcin properties of montmorillonite. Dop. AN URSR no.6:809-812 '66.

1. Institut obshchey i neorganicheskoy khimii AN USSR. 2. Chlen-korrespondent AN USSR (for Ovcharenko).

(Montmorillonite)
DUMANSKIY, Anton Vladimirovich; OVCHARENKO, F.D., ctv.red.; POPOVSKAYA, Z.S., red.isd-va; LISOVSKAYA, A.M., tekhn.red.

1. Chlen-korrespondent AN USSR (for Ovcharenko). (Colloids)
Activated Diatomite - a New filler filler

CaO 2 00. Al2O3 15.8. Na2O 2.9. Fe2O3 0.0. MgO 1.6. H2O 12.0. when added in small quantities the filler into a rubber mixture filled with natural diatomite on the nature of the filler and acceleration of vulcanization were observed. The indicated positive results should be explained as a change in the chemical nature of the diatomite surface into an organic nature, and by the possibility of the structure of natural diatomite, which is capable of interacting with organic rubber. Table 1 shows the mechanical properties of rubber filled with the use of diatomite. The results in Table 1 are the percentage of existing substances in the rubber at various regimes of vulcanization. Table 2 gives the results of the effect of adding a filler rubber vulcanize under various conditions of vulcanization. There are further more 33 articles referenced.

ASSOCIATION
Institute of Rare Metals and Chemicals of the Krasnoyarsk Branch of the Siberian Branch of the Academy of Sciences of the USSR

SUBMITTED: August 31, 1962

CART 2/3
OVCHARENKO, P.D.; BLOKH, G.A. [Blokh, E.A.]; GUDOVICH, N.V. [Hudovych, N.V.];
Ioffe, A.I.

Activated diatomite, a new filler for rubber. Dop. AN USSR
no.1:54-59 '60. (MIHA 13:6)

1. Institut obshchey i neorganicheskoy khimii AN USSR i
Dnepropetrovskiy khimiko-teknologicheskii institut. 2. Chlen-
korrespondent AN USSR (for Ovcharenko).
(Rubber) (Diatomaceous earth)
OVCHARENKO, P.D., oty.red.; KURILENKO, O.D., doktor khim.nauk, red.;
NETMARK, I.Ye., doktor khim.nauk, red.; ROTTÉR, V.A., red.;
MIKHALTUK, R.V., kand.khim.nauk, red.; MEKHLIV, A.F., red.
isd-va; MATVEYCHUK, A.A., tehkn.red.

[Natural mineral sorbents; proceedings of the conference held
June 9-12, 1958 in Kiev] Prirodnye mineral'ye sorbenty;
trudy soveshchaniya, sostolavshhegosia 9-12 iunia 1958 goda

2. Chleny-korrespondenty AB USSR (for Ovcharenko, Royter).
(Sorbents)
OVCHARENKO, P.D.; BYKOV, S.F.

Effect of various factors on hydrophilic properties of bentonites. Bent. gliny Ukr. no.1:29-38 '55. (MIRA 12:12)

1. Institut obshchey i neorganicheskoj khimii AN USSR. (Bentonite)
OVCHARENKO, P.D.; GONCHAROV, A.I.

I.nstitut obshchoy i neorganicheskoy khimi AN USSR.
(Bentonite)
OVCHARENKO, P.D.; MIKHALTUK, R.V.

Blastoplastic characteristics of diluted and concentrated bentonite suspensions. Bent. gliny Ukr. no.1:59-62 '55. (MIRA 12:12)

1. Institut obshchey i neorganicheskoy khimii AN USSR.
 (Bentonite)
OVCHARENKO, F.D.

Relationship between hydrophilic properties and structural-mechanical properties of bentonites. Bent. gliny Ukr. no.2:65-75 '58.
(MIRA 12:12)

1. Institut obshchey i neorganicheskoy khimii AN USSR.
(Bentonite)
OVCHARENKO, F.D.; GOLUVICH, N.V.

1. Institut obshchey i neorganicheskoy khimi AI USSR. (Crimea—Bentonite)
[Bentonite clays of the Ukraine] Bentonitovyje gliny Ukrainy.

(MIRA 12:11)
1. Akademiya nauk URSS, Kiev. Rada po vyvchenniu produktivnykh
syl URSS. 2. Chlen-korrespondent AN USSR (for Ovcharenko).
(Ukraine---Bentonite)
AUTHORS: "Juranenko, P.D., Krupenich, member of the Academy, Blokh, I.K., Suvorov, N.M., Lanyv, Y.I.,"

TITLE: "Pyrophyllite, a New Electrical Insulator for Cable Jacket"

ABSTRACT: "The authors made a study of the physical-chemical characteristics of Ukrainian pyrophyllite of the Zbrankov deposit, in the Zhitomir region. It was found to consist of a phyllosilicate mineral, about 1/4 quartz, with traces of talc. The structural formulas of pyrophyllite are as follows: pyrophyllite - Al2[Si4O10](OH)2, talc - Mg3[Si2O5](OH)2. The optical constants are: Ng = 1.560, Np = 1.561 (1.5)."
Pyrophyllite, a New Dielectric Filler for Cable Rubber

$N_g - N_p = 0.048 - 0.047$; of talc $N_g = 1.575 - 1.545$.
$N_p = 1.530 - 1.545$, $N_g - N_p = 0.057 - 0.045$. Chemical compositions of pyrophyllite and talc from the Ural's are as shown in Table 1. Mixtures of pyrophyllite were substituted for talc and chalk, as shown in Table 2, subjected to pressed vulcanization at 145°C for 10-60 minutes. The analysis of the results of testings showed in Table 2 indicates that the physical and mechanical properties of the rubber remained unchanged both before and after aging (4 hours long, at 70°C, in the air) and did not differ from serially-produced insulation rubber. Hence, pyrophyllite is a new effective dielectric filler for cable rubber. It is the most hydrophilic of all agrillaceous minerals. Its heat of moistening is close to zero, the value of water sorption at $P/P_a = 0.1$ is 0.2 mmol/g, the dielectric constant is 3.7, angle of dielectric losses $\tan \theta = 1.5$, $pH = 6.5$. Thermal treatment and grinding may intensify the heat of moistening, value of water sorption are...
Lyrophyllite, a New Dielectric Filler for Cable Rubber

d electric constant. There are 4 tables, 1 figure, 1 graph and 4 Soviet references.

ASSOCIATION: Institute of General and Inorganic Chemistry of the
Dnepropetrovskiy khimik tekhnologicheskiy institute
(Institute of General and Inorganic Chemistry of the
AS UkrSSR, and the Dnepropetrovsk Chemistry-Technological
Institute)

SUBMITTED: February 18, 1957

Card 3/3
Ovcharenko, Fedor Danilovich, Nikolay Grigor'evich Kirichenko, Danili Naumovich Kovalenko, and Aleksey Ignatyevich Rastrenenko

Ukrainskiye bentonity; geologiya, mineralogiya, fiziko-khimiya i primeneniye v narodnom khozyaystve (Ukrainian Bentonites; Geology, Mineralogy, Physical Chemistry, and Industrial Applications) Kiev, Izd-vo AN Ukrainskoy SSR, 1958. 98 p. 3,000 copies printed. Errata slip inserted.

Sponsoring Agency: Akademiya nauk Ukrainskoy SSR, Kiev. Soviet po izucheniyu proizvoditel'nykh sil USSR.

Resp. Ed.: P.D. Ovcharenko, Corresponding Member, Ukrainian SSR Academy of Sciences; Ed. of Publishing House: Z.S. Pokrovskaya; Tech. Ed.: V.I. Yurchishin

PURPOSE: The book is intended for engineers and technicians employed in industries using catalysts, adsorbents, fillers, and plasticizers.
Ukrainian Bentonites; Geology, Mineralogy (Cont.)

as well as for scientific workers at research institutes. It may be useful to the teaching and technical staff of vuzes, as well as in industrial laboratories, and Sovnarkhozes.

COVERAGE: The book gives the results obtained from research work in the geology, mineralogy, physics, and chemistry of Ukrainian bentonite clays and indicates how bentonites can be used in the national economy. The first section was prepared by N.G. Kirichenko, Chief Engineer on the Geological Board of the Kiev Sovnarkhoz; the second section, by D.N. Kovalenko, Candidate of Geological and Mineralogical Sciences; the third section, by A.I. Rastrenenko, Candidate of Chemical Sciences and F.D. Ovcharenko, Corresponding Member of the Academy of Sciences of the Ukrainian SSR; the fourth section, by F.D. Ovcharenko, Corresponding Member of the Academy of Sciences of the Ukrainian SSR. There are 111 references of which 110 are Soviet and 1 English.

TABLE OF CONTENTS

Foreword

Card 2/5
Geological Characteristics of Deposits

- Bentonites of Zakarpatskaya oblast'
- Bentonites of Stanislavskaya oblast'
- Bentonites of Chernovitskaya oblast'
- Bentonites of Drogobychakaya oblast'
- Bentonites of L'vovskaya oblast'
- Bentonites of Rovenskaya oblast'
- Bentonites of Ternopol'skaya oblast'
- Bentonites of Khmel'nitskaya oblast'
- Bentonites of Cherkasskaya oblast'
- Bentonites of Krymskaya oblast'

Mineralogical Characteristics of Bentonites

Card 3/5
SECTION 3

Physicochemical Properties of Bentonites

Hydrophilic properties of bentonite clays 43
Sorption and structural properties 47
Plastic-plastic properties of bentonite suspensions and pastes 59

SECTION 4

Use of Bentonites in the National Economy

Bentonite catalysts and adsorbents in the petroleum industry 68
Purification of paraffin wax with bentonite 69
Reclaiming of industrial oils 72
Refining vegetable oils 74
Drying and storage of gases with the aid of bentonites 77
Use of bentonites in foundry work 79
Use of bentonites in the manufacture of porcelain, glazed pottery and enamels 81
"Structure formation in the colloidal chemistry of clay and cement."

Name: OYCHUK, Fedor Danilovich

Dissertation: Hydrophilic Nature of Clay

Degree: Doc Chem Sci

Affiliation: not indicated

Defense Date, Place: 24 Jun 55, Joint Council of the Inst of General and Inorganic Chemistry and Inst of Organic Chemistry, Acad Sci USSR

Certification Date: 15 Sep 56

Source: BMU 6/57
DUKANSKIY, Anton Vladimirovich; VASHCHENKO, Zakhar Markovich; OVCHARENKO, F.D., doktor khim.nauk, otvetstvennyy red.; LEVBÉRO, Z.A., red. - izd-vo; RAKHLINA, N.P., techn. red.

1. Chlen-korrespondent Akademii nauk USSR (for Ovcharenko) (Bibliography--Colloids)
ABSTRACT: Several investigators have studied adsorption capacity of various types of sorbent, such as Dimick and Hopf, E. A. Brown and K. J. Becker, and many references. The authors performed a series of experiments on wetting bentonite with water and then measuring the water and water adsorption. It was established that at first the adsorption of water occurs in the more active sites, i.e., correspond to the greater energetic effects. The entry of water adsorption considerably reduces, which indicates that the water molecules are there in a stable, ordered state. The authors compared the results of their experiments with their calculations of the adsorption capacity obtained from the values of the energy constant derived from the Klotz and valentz (1971) theory and found that the results of the writer and calorimetric measurements agree well. Based on the basis of adsorption and calculations.
Ion Exchange and Hydrosol of Bentonites

Data, some thermodynamic functions of the bentonite-water system were determined. The character of the change in some thermodynamical properties of this system warranted the presumption that the bentonite surface is energetically non-homogeneous. There are graphs, a table and references, 4 of which are Soviet, and 7 American.

ASSOCIATIONS: Institute of Chemical Physics of the USSR Academy of Sciences Institute of General and Inorganic Chemistry of the USSR Academy of Sciences Institute for Hydrometallurgy of the USSR Academy of Sciences

SUBMITTED: March 10, 1966

NOTE: The last title page and names of individuals and institutions appearing in this article have been used in the transliteration.

1. Bentonite-water system.
2. Adsorption properties.
3. Water systems.
4. Thermodynamic properties. 5. Heat-
6. Adsorption.

Card 2/2
OWCHARENKO, F. D.

"Clay Hydrophilicity."

Paper distributed at the International Clay Mineralogy Congress in Brussels, Belgium, 1-5 Jul 52.

Comment: B-3,116,859.
[Bentonite clays of the Ukraine] Bentonitovye gliny Ukrainy.

1. Akademiya nauk URSR, Kiev. Nada po vyvolenniu produktivnych
 syl URSR. 2. Chlen-korrespondent Akademi nauk USSR (for Orcharenko).

(Ukraine—Clay)
OVCHARENKO, P.D., kand. khim. nauk.

Determing the plasticity of clays. Nov. v stroi. teh., no. 5:71–80
'54.

1. institut obshchey i neorganicheskoy khimii AN SSSR.

(Testing)
[Comprehensive utilization of the salt resources of the Sivash and Perekop lakes]

Berkser, Ya.S., nat.red.; Pialkov, Ya.A., red.; Otcherebnyan, P., red.;
Al'amt'iev, A.A., prof., doktor tekh.nauk., red.; Pekhovshaya,
Z.S., red. izd-vam; Purnishin, V.I., tekh.red.

1. AN Ukrainskoy SSR, Kiev. Rada po vyvchenniu produktyvnych
nyi URSR. 2. Chlen-korporant AN Ukrainskoy SSR; Institut
geologicheskikh nauk AN USSR (for Burker). 3. Kiyswhkiy ordana
Lenina politekhnicheskiy institut (for Alamt'iev).

(Sivash--Salta) (Perekop isthmus--Salta)
OVCHARENKO, P.D.; MIKHAILOUK, R.V. [Mykhaliuk, R.V.]; KURYLENKO, O.D.
[Kurylenko, O.D.]

Ion exchange and hydrophilic nature of bentonites. Dep. AN URSR
no.7:747-751 '58.
(MIRA 11:9)

1. Institut obshchey i neorganicheskoy khimii AN USSR i Kyevskiy
technologicheskiy institut pishchevoy promyshlennosti. 2. Chlen-
korrespondent AN USSR (for Ovcharenko).
(Bentonite)
OVCHARENKO, G., sywardt kapitan.

To the heights of combat skill. Sov.mor. 16 no.19:5 0 156.

(Aeronautics, Military--Study and teaching)

APPROVED FOR RELEASE: Wednesday, June 21, 2000 CIA-RDP86-00513R001238
VOROTILOV, V • OYCHAMBO, G.

Modernization of equipment and growth of labor productivity.
Sots. trud 5 no. 2: 16 F '60, (MIRA 1): (Machinery in industry)
(labor productivity)
HEKIN, S.B.; BOYAROV, A.I.; DEMINOV, I.A.; OVCHARENKO, G.I.

Automatic taper-roller sorters, Stan. i instr. 28 no. 2: 21-24
F 157.
(Roller bearings) (Sorting devices) (MLSA 10:5)
AUTHOR: Delkin, S.N., Bojarov, A.I., Deminov, I.A. and Ovcharenko, G.I.

TITLE: Automatic machine for the sorting of taper rollers (Avto-
mat dlya sortirovki konicheskikh rol'kov)

PERIODICAL: "Stanki i Instrument" (Machine tools and tools), 1967,
No.2, pp. 21 - 24 (U.S.S.R.)

ABSTRACT: A new improved taper roller sorting machine ACP - 3 which
trebles the output of its former product (MCP-2) in a smaller space, has been completed by the Leningrad Instrument Plant
Kalibr). The mechanism is illustrated by a diagrammatic sketch. The rollers are placed in a hopper and individually drop into a channel with a slot at the bottom. If the large end of the roller faces downwards, the roller slides over the slot when pushed along the channel, finally falling through a tube with the large end facing downwards. If, to begin with, the roller drops into the channel with the small end downwards, the roller, when pushed along, protrudes into the slot, until it meets a stop and topples over it to fall through, once again, with the big end downwards. A tube directs the rollers into peripheral slots in a feeding disc rotated stepwise by a ratchet mechanism. The disc carries the rollers to the measuring station where it dwells long enou...
Automatic machine for the sorting of taper rollers (cont.

for the measuring operation. This consists of pushing the roller by a pin butting against its large end into a fixed ring and pushing a moving ring against the small end of the roller. The depth of roller penetration (measure of diameter) and the distance between the two rings (measure of taper) are separated by a system of levers and transmitted to two multi-contact electric gauges. After the measuring operation, an ejector pin pushes the roller out of the fixed ring and allows it to drop into the sorting box shown in layout. This contains twelve vertical divisions of which the two extremes receive the rejects and each of the inner ten receives one diametral size group. Each diametral size column contains three taper group bins situated above each other. The rollers enter in the centre at the top of the sorting box, and are directed by a central shutter one way or another depending on whether they belong to the first or second half of the size groups. Five shutters each side of the central shutter form inclined planes along which the rollers slide until allowed to fall through into the appropriate vertical division or into the reject bin. The top and centre rows of the vertical divisions each have a row of shutters whose position determines the bin into which the roller falls as the result of its taper dimension. The

TITLE: Raising the level of measurement techniques

PERIODICAL: Stanki i instrument, no. 4, 1961, 35-36

TEXT: The article lists measuring instruments and automatic measuring process control devices being currently produced by the Zavod "Kalibr" ("Kalibr Plan"). The following items are mentioned: (1) A profilograph-profile meter, developed by "Kalibr" in cooperation with Vsesoyuznyy elektrotekhni-heskii institut im. V. I. Lenin (All-Union Electrotechnical Institute named after V. I. Lenin). It is the first Soviet instrument for measuring surface roughness according to the international roughness A technique (mean arithmetical deviation of microscopic unevenness from the mean profile line) that will be introduced in the USSR on January 1, 1962. The instrument consists of a post bearing the measuring table and electric drive, an electric measuring unit, and a recorder; all three separate units weigh 80 kg together and are transportable; the system produces 2500 readings per card 1/3
raising the level of measurement techniques

magnification, and the feeler exists pressure to move 0.1 x, i.e.
feeler type instrument according to mechanical principle and producing readings by electri
thermic means on a metalized paper diagram. It has been designed in cooperation with \textit{ENMS} and is the first of its kind in the USSR. \textit{14} inch "calipers with "super-visor"
measuring head and dial, eliminating the usual rocking for finding the real
diameter of the hole. Calipers for bores up to 10 mm in diameter have a
combination of centering and measuring ball points, and calipers for 10-
50 mm bores have a rigid centering bridge. Calipers for above 50 mm are
practical and universal, i.e. adjustable in a diameters range with the use of a
special setting device that is seen in a photographs. Scales of the measuring
heads are graduated in 0.001 mm divisions. \textit{4} Levels with 0.05 mm di-
visions per meter, for measurement of incline on flat and cylindrical sur-
faces. The levels have a micrometer head for readings and an optic system
for seeing the bubble in the amipule. \textit{5} Gage blocks of much higher ac-
curacy than previously, produced in accordance with the latest \textit{GOST}
(9036-89) standard requirements and having a cohesive force of \textit{50} kg.
\textit{6} automatic machine sorting balls 1.5 mm in diameter with an accuracy
to hundredths of one micron. It is based on measurement of electric in-
duced voltage.

Card 2/3
Raising the level of measurement techniques

...
The Labor Productivity in Concentration and Agglomeration Plants of the Vysokogorskoje Mining Administration. (Istvoditel'n st' truda na obogatitel'nykh i aglomeratcionnykh fabrikakh Vysokogorskogo gidoupravleniya)

This is a study of working processes and labor productivity improvement in the concentration and agglomeration plants in the Vysokogorskoje Mining Administration. Labor productivity was increased through improvement of mechanization and automation facilities and connection of relative sections. Systematic training and testing of workers, and the establishing of a new tariff scale was another means of increasing labor productivity. Introduction of new production methods, and equipment installed in connection with the abovementioned improvements are described in detail. There are 7 tables and 1 Soviet reference.
The Labor Productivity in Concentration and Agglomeration Plants at Vysokogorsk Mining Administration

ASSOCIATION: Vysokogorskoje rut-upravleniye Nizhne-Tagil'skogo kombinata
(The Vysokogorskoje Mining Administration of the Nizhniy-Tagil' Combine)

Card 2/2

AUTHOR: Ovcharenko, F. D.

TITLE: Interaction of Water with the Surface of Clay Minerals (Vzaimodeystviye vody s poverkhnost'yu glinistykh mineralov)

PERIODICAL: V sb: Fiz.-khim. osnovy keramiki. Moscow, Promstroyizdat, 1966, pp. 31-49

ABSTRACT: Bibliographic entry
Efficient utilization of equipment is an important potential for increasing labor productivity. Sots. #11, 13-21, N '62.

(Machinery industry—Equipment and supplies)
OYCHARENKO, G.A., red.; SHTUBIN, B.I., red.; RYASHOV, I.D., red.;

Promyshlennost' RSFSR: statisticheskii sbornik. Moskva,

1. Russia (1917– R.S.F.S.R.) TSentral'noe statisticheskoye
upravleniye. 2. Zamestitel' nachal'nika TSentral'nogo sta-
tisticheskogo upravleniya pri Sovete Ministrov RSFSR (for
RYASHOV).

(Industrial statistics)
PHASE IV BOOK EXPLOITATION

Kontrol'nye avtomaty ([Dimensional Control Automatics]) Moscow, Masny ..., 1961. 193 p. (Series Progressivnyye sredstva kontrolya razmerov v mashino-
stroyenii) Errata slip inserted. 4500 copies printed

skiy, Engineer.

PURPOSE: This book is intended for designers and technical personnel in manufac-
turing plants.

Card 11/1
ANDREEV, V.I.; OLOUL'NIKOVA, Ye.M.; OVCHARENKO, G.I.; KHASKIN, I.N.

Improving the standards of measuring equipment. Stan.1 instr. 32 no.9 33-36 1961, (MIRA 14.8)
(Measuring instruments—Technological innovations)
ANDREJEV, V.I.; BEILAIN, S.R.; BOYAROV, A.I.; DENIKOV, I.A.;
OCHARENKO, G.I.

Automatic machine for precision sorting of small bearing balls.
Stan. 1 instr. 32 no. 1:25-27 Ja '61. (MIRA 14:2)
(Sorting devices)

New recording profilometer. Stand instr. 32 no.2:16-19 F '61.
(MIRA 14:2)
(Surfaces (Technology)—Measurement)
BOTAROV, A.I.; KLETNIKOV, V.V.; NOVITSKIY, Ye.A.; OVCHARENKO, G.I.

The "Kaliber-VEI" induction profilegraph and profilometer.
Stand instr. 26 me,12:20-24 D '55. (MIRA 9:2)
(Surfaces (Technology))
Measuring Instruments

OCHARENKO, I., general-major

Communists are the initiators of new and progressive methods.
(Russia—Army—Political activity)
OVCHARENKO, I.I.

In regard to the article by P.T. Dunæv and N. Dugarova on ammonium seolite softening combined with the present sodium seolite softening of water. Sakh. prom. 33 no. 6 37 Je "59. (MIRA 12:8)

(Water—Softening) (Ion exchange)
FEDICHIKIN, I.K., prof.; OVCHARENKO, I.KH., inzh.; AVTONOMOV, B.P., inzh.;
KONOCHKIN, F.G., inzh.

Features of water intake from a river during the low-water period by port-type water intakes. Izv. vys. ucheb. zav.; energetika, no. 6: 111-114, 1963.