

APPROVED FOR RELEASE: 06/20/2000

GERSHGORN, M.A.; SVIRIDENKO, F.F.; KAZARNOVSKIY, D.S.; KRAVTSOVA, I.P.; POPOVA, A.N.; FRADINA, M.G.; Prinimali uchastiye: IUKASHOV, G.G.; HUDOL'SKIY, N.L.; SLEPKANEV, N.P.; PLISKANOVSEIY, S.T.; CUREAREV, Ya.S.; BUL'SKIY, M.T. [deceased]; ARKHANGEL'SKIY, Yu.N.; SHAROV, B.A.; VISTOROVSKIY, N.T.; RAKHANSKIY, B.I.; SAPOZHKOV, V.Ye.; RYABININ, N.G.; KARAKULINA, R.R.; FADEYEVA, A.M.; ZVENEV, D.A.

> Improving the production of high-strength rails by alloying them with granulated ferrochromium in the ladle. Stal: 25 no.5:408-411 My '65. (MIRA 18:6)

1. Ukrainskiy nauchno-issledovatel'skiy institut metallov i zavod "Azovstal!".

APPROVED FOR RELEASE: 06/20/2000

"APPROVED FOR RELEASE: 06/20/2000

"APPROVED FOR RELEASE: 06/20/2000

APPROVED FOR RELEASE: 06/20/2000

States with a second second

ing ten bet

RHABINI	IN, P.
	AID P - 3147
Subject	: USSR/Miscellaneous
Card 1/1	Pub. 135 - 9/20
Author	: Ryabinin, P., Lt. Col. of the Tech. Serv.
Title	: Periscope for training pilots in aircraft gunnery
Periodical	: Vest. vozd. flota, 10, 51-52, 0 1955
Abstract	: The use of a periscope for direct observation of the action of the pilot or a gunner in flight is suggested by the author. The periscope adapted for aircraft of the type UTI-MIG-15 is described and its diagram given.
Institutio	on : None
Submitted	: No date

不同的 计算法性 计计算法 化化学学系 化可加强化 的复数的 网络网络白色的复数 计分子的 网络人名 网络加加斯 网络加加斯 医胆液的现在分词 经外的公司 经

e ta işê

			us	in	g s	tai 82	ve nda 21 (0i	.rd D	tv 160		a	nd	th	ree	? t 3-3	he ect	ro io	nal	ry- l ti (Tu	uri	oo b	it	9	. Ne (1	ril eft MIR	. 1	khç	z.	- 38	ds			
																										-			• •				
								•																					•				-
																					÷.									1 . 			
														÷														÷.					
												11			с. н													1					
	÷.,					•							1.	,							an a Second		ан. С		· .			1	5. js				
	÷ .																							•					- 21 - 21				
																																12	1
-																												1					
																					۰.												
																					18			1				-,			de la c		
		-																				1											. ÷ 1
													19							•	5									l d			
											۰.																. j						
						1							1		121										- 13 		$\frac{1}{2}$						
			•			·•				-						4					1.				Se								
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1																					č.	1999 - A						· . ·				
		- 1						1				- E	2																		•		5
													- 199 2 - 19 2 - 19			یہ زند								× +			- 11						1
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -								e.												je.												÷.,	• •
																														1			1

"APPROVED FOR RELEASE: 06/20/2000

 $\sigma =$

26-5-96 B

KISAROV, V.M.; KOLMAKOV, O.A.; RYABININ, S.I.; Prinimala uchastiye YEMEL'YANOVA, G.A. Recovery of benzene from absorption gases by means of by-products of phenol manufacture via cumene. Khim.prom. no.9:691-692 S (MIRA 15:11) '62. (Benzene) (Gases) (Phenol) ÷., en verst geschut die die zuer die soler 现在新疆外海门里

APPROVED FOR RELEASE: 06/20/2000

NF AT

APPROVED FOR RELEASE: 06/20/2000

APPROVED FOR RELEASE: 06/20/2000

"APPROVED FOR RELEASE: 06/20/2000 CIA-RDP86-00513R001446230002-9 RKAEININ, S.N., Candlech Ddi -- (diss) "Study of dynatic "Construction arising in tachine: in when kinematic chains break." Livov, 1958, 13 pp with diagrams (Min of digner Education UkSER. Livov Polytechnic inst) 100 copies (KL, 23-58, 107) - 76 -

APPROVED FOR RELEASE: 06/20/2000

"APPROVED FOR RELEASE: 06/20/2000

SOV/4201

PHALE I BOOK EXPLOITATION

L'vov. Politekhnicheskiy institut

ENABININ, S.N.

Mekhanika (Mechanics) L'vov, 1959. 69 p. (Series: Its: Doklady, tom 3, vyp. 1/2) 900 copies printed.

Editorial Board: A.I. Andriyevskiy, Doctor of Technical Sciences, Professor; Ya.P.Berkman, Honored Scientist and Technologist UkrSSR, Doctor of Chemistry, Professor; K.B. Karandeyev, Corresponding Member, Academy of Sciences USSR and Academy of Sciences UkrSS R, Doctor of Technical Sciences, Professor; M.S. Komarov (Resp. Ed.), Doctor of Technical Sciences, Professor; V.I. Kuznetsov, Doctor of Geology and Mineralogy; B.F. Levitskiy (Deputy Resp. Ed.), Candidate of Technical Sciences, Docent; V.B. Porfir'yev, Member, Academy of Sciences UKrSSR. Doctor of Geology and Mineralogy, Professor; V.A. Tikhonov (Resp. Secretary), Candidate of Technical Sciences, Docent; Tech. Ed.: T. Veselovskiy.

PURPOSE: This booklet is intended for scientific workers and engineers.

COVERAGE: The booklet contains 12 articles on vibrations, impact stresses, transmission and slider-crank mechanisms, fluid mechanics, and strength of reinforcedconcrete beams. No personalities are mentioned. References follow several of the articles.

Card 1/3

APPROVED FOR RELEASE: 06/20/2000

1.1

	sov/4201	
Mechanics	5017	
TABLE OF CONTENTS:		
Glushchenko I.P. Natural Vibrations of S Force Characteristics	Single-Mass Systems With Nonsymmet	rical 3
<u>Ryabinin, S.N.</u> Impact Stresses in the K Drive System	inematic Chain of an Elastic	9
Shats, Ya Yu. Relationship Between Gene Ratios-in a Regular Single Uniaxial Tran	ral and Individual Transmission smission	15
Tsviyak, P.B. Problem of Investigating	a Space Slider-Crank Mechanism	18
Tsviyak, P.B. Plotting of a Diagram of Crank Mechanism by Methods of Descriptiv	Accelerations of a Space Slider- e Geometry	35
Tsviyak, P.B. Graphic Method of the Syn According to a Given Space Trajectory	thesis of a Mechanism	31
Bazilevich, A.I., and B.F. Levitskiy. A of Noncompressible Liquid and Liquid Con	nalogy Between the Pressure Motion taining Gas in a Porous Medium	n <u>3</u> 8
Card 2/3		

Med	chanics SO	w/4201		
	azilevich, A.I. Calculating Normal Sections of Stepped Beds creams	of Mountain	41	
Baz	zilevich, A.I. Reservoirs for Protecting Bottom Lands From	Flooding	45	
Kli the	imenko, F.Ye. Taking Into Account the Action of a Transvers ne Carrying Capacity of the Cross Section of a Beam in Bendin	e Force on g	55	
Vai Ber	Limenko, F. Ye. Investigating the Work of Reinforced-Concret ariable-Section Elements in the Vicinity of the Maximum Momen ending	t During	r	
	radyuk, I.I. Carrying Capacity of Prestressed Reinforced-Con Lements in Bending	icrete	65	
AVA	AIIABLE: Library of Congress			
		AC/pw	/gmp -60	
Car	rd 3/3			

<u>- भूग</u>स्य र

2363

	TITLE:	Investigation of the Dynamic Phenomena Arising in Machines through the Interruption of the Kinematic Chain (Issledovaniye dinamicheskikh yavleniy, voznikayushchikh
		v mashinakh pri razryve kinematicheskikh tsepey)
	PERIODIC	AL: Vestnik Mashinostroyeniya, 1959, Nr 3, p 88 (USSR)
	ABSTRACT	L'Author's summary of a dissertation submitted to the L'vov Polytechnic Institute (L'vovskiy Politekhnicheskiy
		Institut) for the attainment of the Degree of Canalate
		of Technical Sciences. The dynamic forces in the links
		of a kinematic chain of two, three and four mass system in
-		the event of intermintion or nartial Weakening of the
		the event of interruption or partial weakening of the kinematic driving train have been established. Expressions
		the event of interruption or partial weakening of the kinematic driving train have been established. Expressions
		the event of interruption or partial weakening of the kinematic driving train have been established. Expressions for determining the maximum values of the dynamic forces under certain conditions of loading have been derived.
	Card 1/1 USCOMM-DC	the event of interruption or partial weakening of the kinematic driving train have been established. Expressions for determining the maximum values of the dynamic forces under certain conditions of loading have been derived.
		the event of interruption or partial weakening of the kinematic driving train have been established. Expressions for determining the maximum values of the dynamic forces under certain conditions of loading have been derived.
		the event of interruption or partial weakening of the kinematic driving train have been established. Expressions for determining the maximum values of the dynamic forces under certain conditions of loading have been derived.
		the event of interruption or partial weakening of the kinematic driving train have been established. Expressions for determining the maximum values of the dynamic forces under certain conditions of loading have been derived.
		the event of interruption or partial weakening of the kinematic driving train have been established. Expressions for determining the maximum values of the dynamic forces under certain conditions of loading have been derived.
		the event of interruption or partial weakening of the kinematic driving train have been established. Expressions for determining the maximum values of the dynamic forces under certain conditions of loading have been derived.

-54189

 AUTHOR: Ryabinin, S.N. TITLE: On the Dynamic Phenomena Accompanying Disengagement of the Kinematic Linkage of an Elastic Drive System (O dinamicheskikh yavleniyakh, voznikayushchikh pri razryve kinematicheskoy tsepi privodnoy uprugoy sistemy) PERIODICAL: V sb.: Nekotoryye vopr. dinamiki mashin. L'vov, un-t, 1956, pp 42-60 ABSTRACT: A solution is found for the dynamic problem of an elastic four-body system, to which various of the mechanisms of complex machinery can be reduced. A case is examined wherein the disengagement of the kinematic linkage of a mechanism makes it possible to study separately two two-body elastic systems. A numerical example is given. V.A. Zinov'yev Mechanical drivesMathematical analysis 		JSSRi
 Kinematic Linkage of an Elastic Drive System (O dinamiche- skikh yavleniyakh, voznikayushchikh pri razryve kinematiches- koy tsepi privodnoy uprugoy sistemy) PERIODICAL: V sb.: Nekotoryye vopr. dinamiki mashin. L'vov, un-t, 1956, pp 42-60 ABSTRACT: A solution is found for the dynamic problem of an elastic four-body system, to which various of the mechanisms of com- plex machinery can be reduced. A case is examined wherein the disengagement of the kinematic linkage of a mechanism makes it possible to study separately two two-body elastic systems. A numerical example is given. 	AUTHOR: Ryabinin, S.N.	
 1956, pp 42-60 ABSTRACT: A solution is found for the dynamic problem of an elastic four-body system, to which various of the mechanisms of complex machinery can be reduced. A case is examined wherein the disengagement of the kinematic linkage of a mechanism makes it possible to study separately two two-body elastic systems. A numerical example is given. V.A. Zinov'yev 	Kinematic Linkage of an Elastic Drive System (O dinamich skikh yavleniyakh, voznikayushchikh pri razryve kinematic	e- :
four-body system, to which various of the mechanisms of com- plex machinery can be reduced. A case is examined wherein the disengagement of the kinematic linkage of a mechanism makes it possible to study separately two two-body elastic systems. A numerical example is given. V.A. Zinov'yev		
	four-body system, to which various of the mechanisms of c plex machinery can be reduced. A case is examined where the disengagement of the kinematic linkage of a mechanism makes it possible to study separately two two-body elastic	om- in
1. Mechanical drivesMathematical analysis 2. Mechanics		yev
	1. Mechanical drivesMathematical analysis 2. Mechanics	

PLYASHKEVICH, A.M.; PLANOVSKIY, A.N.; ENLATOV, S.N.; RYABININ, V.A. ZELINSKAYA, L.G.
Study of caffeine extraction in the column extractor with adve plates. Med. prom. 17 no.6632-36 Je¹63 (MIRA 17:4)
1. Vsesoyuznyy nauchmo-issleciovatel'skiy khimiko-farmatsev-ticheskiy institut imeni S. Ordzhonikidze i Moskovskiy institut khimicheskogo mashinostroyeniya.

APPROVED FOR RELEASE: 06/20/2000

1965

- 17	YADININ , 1	Viti 112-3-5419	
	Translation	from: Referativnyy Zhurnal, Elektrotekhnika, 1957, Nr 3, p.52 (USSR)	
	AUTHOR:	Ryabinin, V.E.	
	TITLE:	Effect of Rotor Rim on Power Output of a Uniflow Turbi (Vliyaniye oboda rabochego kolesa na energeticheskiye kachestva pryamotochnoy turbiny)	ne
	PERIODICAL:	Tr. Vses. ni in-ta gidromashinostr., 1956, Nr 19, pp. 41-56	
			÷ 1
	ABSTRACT:	Bibliographic entry.	
	ASSOCIATION	Bibliographic entry. : All-Union Scientific Research Institute for Construct of Hydraulic Machinery (Vses n1 in-t gidromashinost	;ion ro).
· · · · · · · · · · · · · · · · · · ·		· All-Union Scientific Research Institute for Construct	ion ro).
	ASSOCIATION	· All-Union Scientific Research Institute for Construct	ion ro).
	ASSOCIATION	· All-Union Scientific Research Institute for Construct	ion ro).
	ASSOCIATION	· All-Union Scientific Research Institute for Construct	ton ro).
	ASSOCIATION	· All-Union Scientific Research Institute for Construct	ton ro).
	ASSOCIATION	· All-Union Scientific Research Institute for Construct	ion ro).

n age a

EXAP

 $\nabla T \mathcal{D}$

	1.	VISTELYUS	, A. B.	; MI	KLUKI	:0_M#	KLAY, A	. D.	RYABIN	<u>IN, V, N</u>	<u>[</u> •		
ż	2.	USSR (60	0)				. ¹						
	4.	Limestone	-Tuarkj	r			×				an an an saint An an		
	7.	Devonian 90 No. 2,	limesto 1953.	ones	from	the	red-col	lored	strata	of Tuark	vyr, Dokl	. AN SSSR	
					• .								
								-					
	9.		int of	Buee	afan	Acces	ssions.	Libr	ary of C	ongress	. April.	1953. Uncl.	

THE REAL

注意推制制作

88

 15-1957-3-2663 Translation from: Referativnyy zhurnal, Geologiya, 1957, Nr 3, p 24 (USSR) AUTHOR: Ryabinin, V. N. TITLE: Upper Devonian Stromatoporoids of Timan (Verkhnedevon-skiye stromatoporoidei Timana) PERIODICAL: Tr. Vses. neft. n-1, geol-razved. in-ta, 1955, vol 90, pp 5-90 ABSTRACT: The author describes 26 species and 2 varieties from the families Actinostromidae (11 species and 1 variety of the genera Actinostromia and Clathrodictyon, 3 of the species and 1 variety of the genera Stromatoporeidae (12 species and 1 variety of the genera Stromatoporeidae (3 new species of the genera Hermatostroma and Amphipora). Preliminary study was also made on calcareous microalgal nodular forms of on-colitic (rolled) and stromatolitic types. The groups of identified stromatoporeid species permit determination 	ante Maria de Carlos de Carlos Maria de Carlos de Car	
p 24 (USSR)AUTHOR:Ryabinin, V. N.TITLE:Upper Devonian Stromatoporoids of Timan (Verkhnedevon- skiye stromatoporoidei Timana)PERIODICAL:Tr. Vses. neft. n-1, geol-razved. in-ta, 1955, vol 90, pp 5-90ABSTRACT:The author describes 26 species and 2 varieties from the families Actinostromidae (ll species and 1 variety of the genera Actinostroma and Clathrodictyon, 3 of the species and the variety being new), Stromatoporidae (l2 species and the variety of the genera Stromatopora, Stro- 		15-1957-3-2683
 TITLE: Upper Devonian Stromatoporoids of Timan (Verkhnedevon-skiye stromatoporoidei Timana) PERIODICAL: Tr. Vses. neft. n-i, geol-razved. in-ta, 1955, vol 90, pp 5-90 ABSTRACT: The author describes 26 species and 2 varieties from the families Actinostromidae (ll species and 1 variety of the genera Actinostroma and Clathrodictyon, 3 of the species and the variety being new), Stromatoporidae (l2 species and 1 variety of the genera Stromatopore, Stromatoporella, and Parellelopora, 5 species and the variety new), and Idiostromidae (3 new species of the genera Hermatostroma and Amphipora). Preliminary study was also made on calcareous microalgal nodular forms of on-colitic (rolled) and stromatolitic types. The groups of 	Trans la tion	from: Referativnyy zhurnal, Geologiya, 1957, Nr 3, p 24 (USSR)
TITLE: Upper Devonian Stromatoporoids of Timan (Verknhedevone skiye stromatoporoidei Timana) PERIODICAL: Tr. Vses. neft. n-1, geol-razved. in-ta, 1955, vol 90, pp 5-90 ABSTRACT: The author describes 26 species and 2 varieties from the families Actinostromidae (ll species and l variety of the genera Actinostroma and Clathrodictyon, 3 of the species and the variety being new), Stromatoporidae (l2 species and l variety of the genera Stromatopora, Stromatoporella, and Parellelopora, 5 species and the variety new), and Idiostromidae (3 new species of the genera Hermatostroma and Amphipora). Preliminary study was also made on calcareous microalgal nodular forms of on-colitic (rolled) and stromatolitic types. The groups of	AUTHOR :	Ryabinin, V. N.
PERIODICAL: Tr. Vses. neft. n-i, geol-razved. in-ta, 1955, vol 90, pp 5-90 ABSTRACT: The author describes 26 species and 2 varieties from the families Actinostromidae (ll species and 1 variety of the genera Actinostroma and Clathrodictyon, 3 of the species and the variety being new), Stromatoporidae (l2 species and 1 variety of the genera Stromatopora, Stromatoporella, and Parellelopora, 5 species and the variety new), and Idiostromidae (3 new species of the genera Hermatostroma and Amphipora). Preliminary study was also made on calcareous microalgal nodular forms of on-colitic (rolled) and stromatolitic types. The groups of	TITLE:	Upper Devonian Stromatoporoids of Timan (Verknnedevon- skiye stromatoporoidei Timana)
families Actinostromidae (11 Species dictyon, 3 of the the genera <u>Actinostroma</u> and <u>Clathrodictyon</u> , 3 of the species and the variety being new), Stromatoporidae (12 species and 1 variety of the genera <u>Stromatopora</u> , <u>Stro-</u> <u>matoporella</u> , and <u>Parellelopora</u> , 5 species and the vari- <u>matoporella</u> , and <u>Parellelopora</u> , 5 species of the genera ety new), and Idiostromidae (3 new species of the genera <u>Hermatostroma</u> and <u>Amphipora</u>). Preliminary study was <u>Hermatostroma</u> and <u>Amphipora</u>). Preliminary study was also made on calcareous microalgal nodular forms of on- colitic (rolled) and stromatolitic types. The groups of	PERIODICAL:	Tr. Vses. neft. n-i, geol-razved. in-ta, 1955, vol 90, pp 5-90
n en el ser en la ser el ser el ser el ser en ser en el ser e La ser el ser		families Actinostromidae (11 species and clathrodictyon, 3 of the the genera Actinostroma and Clathrodictyon, 3 of the species and the variety being new), Stromatoporidae (12 species and 1 variety of the genera Stromatopora, Stro- matoporella, and Parellelopora, 5 species and the vari- ety new), and Idiostromidae (3 new species of the genera Hermatostroma and Amphipora). Preliminary study was Hermatostroma and Amphipora nicroalgal nodular forms of on- also made on calcareous microalgal nodular forms of on-

医膀胱 酒 的复数经济生产主义的分子外生活的 化合物的 化

3 .

										15-	1957-3	3-268	3
	÷					· · ·				10-	2001	-	
· · · ·	·	Dovon	ien S	Strom	atoporc	oids of	Timan	•	1				t in sector
L. L	Ibber	Devon	Tan								-	and	
		0 6 6 6 6	0.00	of H	he form	na tions	within the the U	1 the 1	imits	OIa	SLage	of	e e e e e e
· ·		OI THE	age			nre la t	te the U	Jpper D)evonia	n sec	t10 11	01	
1		make 1	t po	93101		an rec	te the U zions.	The I	zhma	bed	s, ac	corai	ng
		Timan	with	tnat	OT ON	101 105	······································			n c	orres	pona	τo
		to dis	COVE	ries –	OI NCU	Luos or c			he woo	tern	slope	ort	ne
		the lo	ower	part	or rue	L L a S m		· TTIAL + O		B Pha	ire Sĺ	milar	
		IInals.	. Th	e str	omatop	OPOLUS	01 0110	0.00	0	Devor	ilan f	ield.	
- 1 - C		to the	nse O	r tne	Chuao	••		·	noon fr	wind i	n Fra	sniar	1
		ես եա						e yev v	10011 - 4				
		but no	one o	f the	30 108	BIT LO	ung nav		+ - n	1 6001	NV SDE	cies	
		but no	one o	r the	30-108	PTT LOI		re chai	racter	ized t	V SDE	cies	
		but no	one o its.	r the	Siracha	a BTT 101	beds a		ant of	the	y spe Frasn	cies nian	
		but no deposi which	one o its. have	r the The been	Siracha recog	a nized	beds and the location of the	upper 1 Urals.	part of The	the	y spe Frasn	cies nian	
		but no deposi which	one o its. have	r the The been	Siracha recog	a nized	beds and the location of the	upper 1 Urals.	part of The	the	y spe Frasn has 2	ecies nian 25	
		but no depos which rocks table	one o its. have	r the The been	Siracha recog	a nized	beds a	upper 1 Urals.	part of The	the	y spe Frasn has 2	cies nian	
	Card	but no deposi which	one o its. have	r the The been	Siracha recog	a nized	beds and the location of the	upper 1 Urals.	part of The	the	y spe Frasn has 2	ecies nian 25	
	Card	but no depos which rocks table	one o its. have	r the The been	Siracha recog	a nized	beds and the location of the	upper 1 Urals.	part of The	the	y spe Frasn has 2	ecies nian 25	
	Card	but no depos which rocks table	one o its. have	r the The been	Siracha recog	a nized	beds and the location of the	upper 1 Urals.	part of The	the	y spe Frasn has 2	ecies nian 25	
	Card	but no depos which rocks table	one o its. have	r the The been	Siracha recog	a nized	beds and the location of the	upper 1 Urals.	part of The	the	y spe Frasn has 2	ecies nian 25	
	Card	but no depos which rocks table	one o its. have	r the The been	Siracha recog	a nized	beds and the location of the	upper 1 Urals.	part of The	the	y spe Frasn has 2	ecies nian 25	
	Card	but no depos which rocks table	one o its. have	r the The been	Siracha recog	a nized	beds and the location of the	upper 1 Urals.	part of The	the	y spe Frasn has 2	ecies nian 25	
	Card	but no depos which rocks table	one o its. have	r the The been	Siracha recog	a nized	beds and the location of the	upper 1 Urals.	part of The	the	y spe Frasn has 2	ecies nian 25	
	Card	but no depos which rocks table	one o its. have	r the The been	Siracha recog	a nized	beds and the location of the	upper 1 Urals.	part of The	the	y spe Frasn has 2	ecies nian 25	
	Card	but no depos which rocks table	one o its. have	r the The been	Siracha recog	a nized	beds and the location of the	upper 1 Urals.	part of The	the	y spe Frasn has 2	ecies nian 25	

5. Fe ()

		15-57-4-4187
•	Translation	from: Referativnyy zhurnal, Geologiya, 1957, Nr 4, p 22 (USSR)
	AUTHOR:	Ryabinin, V. N.
	TITLE:	Carboniferous and Permian Paleoaplysinids in the Urals and Timan (O kamennougol'nykh i permskikh paleoaplizi- nakh Urala i Timana)
	PERIODICAL:	Tr. Vses. neft. ni. geol-razved. in-ta, 1955, Nr 90, pp 331-349.
	APSTRACT: Card 1/2	Paleoaplysinids are found as convolute, broadly cylindrical tubes or as broken plates two to seven millimeters thick, commonly very close and parallel to each other. Conical or rounded prominences occur on the surfaces of the plates. Accumulations of paleo- aplysinid plates locally form continuous masses in the reef bodies. They are common in the Carboniferous and Permian rocks of the Urals and of Timan. Paleoaply- sinids have been described under the terms <u>Palaeoaply-</u> sina Krot., 1888; <u>Mezenia</u> Stuck., 1895; and <u>Uralotiminia</u>

APPROVED FOR RELEASE: 06/20/2000 CIA-RDP86-00513R001446230002-9"

AN AREA IN AN AREA IN A REAL OF A RE

"APPROVED FOR RELEASE: 06/20/2000

raine graphyche unterna ment ment in sener.

15-57-4-4187 Carboniferous and Permian Paleoaplysinids in the Urals (Cont.) Riab., 1913. They have been variously referred to the rugose corals, to the order Stromatoporoidea, and to the order Tubulariae. A study of the original forms of P. I. Krotov, A. A. Stuckenberg, and V. N. Ryabinin and of a great number of specimens from the Carboniferous and Permian deposits of the Urals and of Timan has shown that the paleoaplysinids belong to the one genus <u>Palaeoaplysina</u> Krot, which is in the order Tubulariae, Hydrozoa. The author concludes by giving some admonitions on the collecting of paleoaplysinids and on methods of studying them. The paper contains six tables. I. I. Ch. Card 2/2

APPROVED FOR RELEASE: 06/20/2000

APPROVED FOR RELEASE: 06/20/2000

APPROVED FOR RELEASE: 06/20/2000

"APPROVED FOR RELEASE: 06/20/2000

L 183

APPROVED FOR RELEASE: 06/20/2000

"APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9

APPROVED FOR RELEASE: 06/20/2000

: ; ;

L 31283-65 EWT(1)/EWA(h) Peb	
ACCESSION NR: AP5005351 S/0109/65/010/002/0358/0360	
AUTHOR: Ryabinin, Yu. A.	15
TITLE: Method for cutting down the minimum duration of pulses circulation delayed-feedback system	ng in a
SOURCE: Radiotekhnika i elektronika, v. 10, nc. 2, 1965, 358-360	
TOPIC TAGS: <u>feedback theory</u> , delayed feedback ABSTRACT: The circulation of pulses in a system consisting of series-co	
linear, nonlinear, and delay units was considered by Yu. I. Neymark, et a (Rad. i elektronika, 1958, 3, 11, 1348) with these assumptions: the linear	al. r unit is
described by a transient response $\varphi(t)$, the nonlinear unit characteristic c approximated by a unit-step function, and the delay unit is a linear disper- quadripole. The present short article considers the same problem in the when the clipping (cutoff) level of an n-th pulse in the nonlinear unit depend	sionless case
Card 1/2 "	

analisa negaratana

CIA-RDP86-00513R001446230002-9

APPROVED FOR RELEASE: 06/20/2000

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9

		Grystallization of basalt at the pressure of 25 kilobars and temperatures from 800° to 1300°. Sov. geol. 8 no.8:26-31 Ag (MIRA 18:10) '65.	
		l. Institut fiziki Zemli AN SSSR i Institut geologii rudnykh mestorozhdeniy, petrografii, mineralogii i geokhimii AN SSSR.	
			-
			1
		이 같은 것 같은	i.
	•	이 같은 것 같은	6
	•		
			÷.
		가지 않는 것 같은 것 같	
	•	- 「「」「「」」をついて、「」」「「」」、「」」、「」」、「」」で、「」」、「」」ではないなどです。	
	1	그는 것 같아요. 이렇게 하는 것 같아요. 그는 것 같아요. 이렇게 하는 것 같아요. 물건을 많은 것	
1. Sec. 1. Sec			

RYABININ, YURIY Nikolayevich

(h) and L. V. Shubnikov, <u>Physikalische Zeitschrift der Sowjetunion</u>, 1934, Vol 6, pp 557-568, <u>Magnetization Cycle of Superconducting Lead</u>.

"By 2 different methods the magnetization cycle of polycryst. Pb was plotted at 4.24°K. On first magnetization the induction B remains nil up to the crit. field $H_k = 550$ gausses, where it rises abruptly to $B_k = H_k$ as the metal passes from the superconducting to the ordinary state ($\mu = 1$). For stronger fields B = H. The backward path of B is also discontinuous at H_k , but the process is markedly hysteretic and at H = 0 the residual B is 18% of B_k . Further changes of H give a perfectly sym. cycle."

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9

APPROVED FOR RELEASE: 06/20/2000

RIABININ, U. N.

「「和東阿爾爾爾特的社会」とないます。」

*Magnetic Properties of Supraconducting Metals and Alloys. I. V. Shubnikoy, V. I.KHotkevich, U. D. Shepelev, and U. N. Riabinin (Zhurnal <u>Eksperimentalnoy; Teoreticheskoy Fiziki (J. Exper. Theoret, Physics</u>), <u>Sksperimentalnoy; Teoreticheskoy Fiziki (J. Exper. Theoret, Physics</u>), 1937, 7, (2), 221-237).- (In Mussian) Measurements were carried out on polycrystalline lead and mercury, on single crystals of lead and tin, and polycrystalline lead-bismuth, lead-indium, and mercury-cadmium alloys, on lead-thallium, lead-bismuth, lead-indium, and mercury-cadmium alloys, and the results are shown graphically. In solid-solution alloys induction depends on field strength up to a certain value of which (H_{K1}) the permeability is practically nil; as the field strength is further increased the permeability also increases and approaches unity at a value H_{K2} . The value ($H_{K2}-H_{K1}$) increases with increasing concentration of solute metal. These phenomena cannot be explained by hysteresis effects, since they can be obtained both in an increasing and in a decreasing field, the hysteresis effect being quite small. - N.A.

THE REAL PROPERTY AND THE PROPERTY OF THE PROPERTY OF THE

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9"

Includes and the second second second second

APPROVED FOR RELEASE: 06/20/2000 CIA-RDP86-00513R001446230002-9"

(花)(空)

						5/20/20					01446230002-9
RYAD	3ININ	, Yu	1. N.	•							
								: : :			
		e a j									
,	Kislo	rod, 1	1945,	Nr 2,	The Pump	o for Reg	asifica	tion of	<u>Liquic</u>	Oxygen.	
										n an an Thairte	
		÷.									
							-				
-	•										
				-						· · · ·	
				•	· •						
	na na si Tangan sa										

RYABININ, YU.N.

M. I. Blat, S. E. Bresler, and <u>(e*)</u>, <u>Zhurnal Tekhnicheskoi Fiziki</u>, 1945, Vol 15, Nr 12, pp 916-923, <u>A New Method of Preservation of Liquefied Gases</u>

(Institut Khimicheskoi Fiziki Akademii Nauk S.S.S.R.).

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9

Ð

Res Print Print

P. T. Riumin and(e*), <u>Kislorod</u> , 1946, Nr 4, pp 35-41, <u>Friction and Wear</u> of <u>Metals in the Presence of Liquid Gases</u> .	RYABININ, YU	N.					
F. T. Riumin and <u>(e*)</u> , <u>Kislorod</u> , 1946, Nr 4, pp 35-41, <u>Friction and Wear</u> of <u>Metals in the Presence of Liquid Cases</u> .				•			
P. T. Riumin and <u>(e*)</u> , <u>Kislorod</u> , 1946, Nr 4, pp 35-41, <u>Friction and Wear</u> of <u>Metals in the Presence of Liquid Gases</u> .			anta 1997 - Santa Santa 1997 - Santa Santa Santa Santa				
of Metals in the Presence of Liquid Gases.	p T. Riumin ar	nd,	<u>Kislorod</u> , 1	<u>.946,</u> Nr 4,	pp 35-41,	Friction and	<u>Wear</u>
	of Metals i	n the Presence of	Liquid Gase	3 3 .			
						· · ·	

237428

CIA-RDP86-00513R001446230002-9

APPROVED FOR RELEASE: 06/20/2000

Ger 14

Doc Fhysicomath Sci RYABININ, YU. N. Dissertation: "Investigation of the Properties of Cases Under Superhigh Pressures and at High Temperatures." 15/12/50 Inst of Chemical Physics, Acad Sci USSR SO Vecheryaya Moskva Sum 71

APPROVED FOR RELEASE: 06/20/2000

TU REAL

Comm	"Prod	uctic ." Zh	on of V lur. Ek	/ery H (sptl.	igh 1 T	Pres eore	sur t.	es and Fiz.,	1 Te 23,	mpe) No	4, 4	es 61	by (19	the (52)	Met •	noa	01	Mar	ana	010		
Combr	000	•														·					1 .	
																1						
• • •																		۰.				
																				•		
B-79	661, 16	5 Nov	54				÷						÷									•
t kan s													-							: <u>}</u> -	8 - D	
		1																				· .
													1									
· · ·																						
								· · ·											• [•	- ¹ .		
				-							· ·											
																					gerste s	
																				1977 1977 - 1		
																				an An ta		
										1	11 C							1.		- 12 - 1 2		
	$\mathcal{M} = \sum_{i=1}^{n} \mathcal{M}_{i}$		5 - 2 - 5	e e e e e	1		(1,2,3)	ê ter est		÷.	÷						1				_	

APPROVED FOR RELEASE: 06/20/2000 CIA-RDP86-00513R001446230002-9"

1.51

CIA-RDP86-00513R001446230002-9

CIA-RDP86-00513R001446230002-9

RYABININ YU, N. 1 Optical properties of gases at high temperatures and super high pressures. Yu. N. Ryabhin, N. N. Sobolev, A. M. Markevich, and I. T. Tummi. Zhen, Ekspul, 3 Terret, Fiz. 23, 564-75(1052); Science Abitr, 56A, 690-70(1053).— The luminescence of A heated to a temp, of several thousand degrees by the method of adiabatic compression has been degrees by the method of adiabatic compression has been studied. It was established that the observed line and band studied. It was established that the observed line and band studied are produced mainly by the luminescence of N, spectra are produced mainly by the luminescence of N, which is an impurity in A, and by NO and OII produced during the adiabatic compression from other impurities, during the adiabatic compression from other impurities is of the continuous spectrum increases faster than that of the discrete spectrum. It is shown that in the ultraviolet the discrete spectrum. It is shown that in the ultraviolet the continuous procession the Wien formula with a single color temp. The color temp, of A is measured in its single color temp. The color temps. from 4000° to 900°K. to 5500 kg/sq. cm. and temps. from 400° to 900°K. R, D. H is said USSR. 141 4410 1. Wat- Chem. Physics, AS UISR CARACTER STATES AND ADDRESS OF AD

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9

APPROVED FOR RELEASE: 06/20/2000

CIN

RYABININ, Yu. N.; MARKEVICH, A. M.; and TAMM, I. I.

"Formation of Nitric Oxide in the Adiabatic Compression of Air Mixtures," (Obrazovaniye okisi azota pri adiabaticheskom szhatii vozdushnykh smesey), Dok. AN SSSR, Vol 45, No 1, pp 111-113, 1954

Translation - D 178251 - 22-3-55

in management

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9

RYABININ, Ya. N. The role of freezing in the reaction of methane oridation and decomposition at high temperature and very high pres-sures. Yu. N. Rynbinin, A. M. Markevich, and I. I. Tamm. *DoBitody Athen. Nauke* S.S.S.R. 94, 1121-4(1954).— The freezing discussed was the rapid cooling of a reaction mixt. to permit the isolation of the high-temp. intermedi-ate reaction products. A very rapid cooling of the prod-ucts is essential for the quality of the products obtained, and this was possible with the aid of an available adiabatic app. in which the gas compression and expansion could be performed in exceedingly short time intervals (C.A. 47, 3063d). The gaseous mixt. at atm. pressure was com-pressed to several thousand atms. and expanded back to atm. presser. The max. pressure increase takes place in only 4 × 10⁻⁹ sec. during which time the gas temp, can rise at e the rate of 10⁶-10⁷ degrees/sec. Natural gas (94% CH, 3% higher hydrocarbons, 3% Nj, mixed with air, O, or A (80% A. 14% Ni) was studied, and among the different products detected were NH, CH₂O, soot, NO, CH₂, and HCN. CH₄ was found stable at temps. below 1700°K.: above 1700°K. CH₄ begins to decompose with deposition of soot, and forms C₄H₂. With N₂-contg. A temps. upwards of 2900°C, were reached, and HCN was found in the prod-incts. 2 62 CH 1 3 3 ncts. •

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9

APPROVED FOR RELEASE: 06/20/2000

the list statement of

编制组织出版 建合成 网络拉利 制造运行 经 计字符 上示的 三十字 经公司 计分子 医子宫炎	14992 D. 6
Category : USSR/Atomic and Molecular Physics - Physics of high pressure	D-6
Abs Jour : Ref Zhur - Fizika, No 1, 1957, No 911	
Author : Ryabinin, Yu.N. Inst : Laboratory of Superhigh-Pressure Physics, USSR Acad. of Sciences Title : Volume Elasticity of Elements at Superhigh Pressures.	
Orig Pub : Fiz. Metallov i metallovideniye, 1956, 2, No 2, 229-230	
Abstract : Using Bridgeman's experimental data for the relationship V = f(p), values of the volume-compression modulus were calculated over the pressure interval of 5,000 10,000 kg/cm ² for 51 elements. It we tablished that in the case of elements that have no polymorphous to tablished that in the case of pressures, the volume compression	CLATET-
pressure interval of),000 tables of elements that have no polymorphous tablished that in the case of elements that have no polymorphous transitions in the tested interval of pressures, the volume compression K increases linearly with pressure. It is shown that for elements polymorphous transitions, the volume compression modulus may either decrease, or remain unchanged during the transition. In the first the modulus varies linearly with the pressure. An analysis of the modulus on the pressure in the case of all the elements in of the modulus on the pressure in the case of all the modulus made it possible to detect previously-unnoticed jumps in the modu changes in the slope of the function $K = f(p)$, occurring in the all	modulus s having r increase, two cases, he dependence hvestigated ulus or
tablished that in the travel of pressures, the volume completions tions in the tested interval of pressure. It is shown that for elements K increases linearly with pressure. It is shown that for elements polymorphous transitions, the volume compression modulus may either decrease, or remain unchanged during the transition. In the first decrease, or remain unchanged during the pressure. An analysis of the the modulus varies linearly with the pressure. An analysis of the the modulus varies linearly with the case of all the elements in	modulus s having r increase, two cases, he dependence hvestigated ulus or

CIA-RDP86-00513R001446230002-9

D-6 Category : USSR/Atomic and Molecular Physics - Physics of high pressure Abs Jour : Ref Zhur - Fizika, No 1, No 911 change in volume for Zr, graphite, Tl, K, Mg, Mn, and Th. Such a change in elasticity may be proof that superhigh pressures cause in the above elements certain internal transformations, occurring without a noticeable change in volume. The coefficients of the equation of state V = f(p) and of the equation of the modulus K = f(p) are determined and it is shown that the values of V and K calculated from these equations are in good agreement with the experimental values. The atomic volumes of the elements are calculated and it is shown that under superhigh pressure they diminish in conformity with the periodic structure of the electron shells of the atoms. Calculations show that at a pressure of 5000,000 kg/cm^2 the atomic volumes already display a weak periodic dependence on the atomic number. The values of the modulus of volume compression are calculated and their variation under the influence of pressure is shown. : 2/2 Card

APPROVED FOR RELEASE: 06/20/2000

- VHIA	ABININ YUN R	YABININ, PUN	
SUBJECT AUTHOR TITLE PERIODICAL By means of will hardly order to be solved to en about from is placed. by the poss purpose it pinges vert pressures of shock wave obtain still ure in the an ampule w	USSR / PHYSICS <u>RJABININ, JU.N.</u> On Tests carried of a Substance. AL Zurn.techn.fis,26 Issued: 1 / 1957 of the static method, dly be possible to obt be able to compress a co employ a dynamic met com all sides on the co ed. Maximum pressure is possibility of producin it is possible to use vertically upon the sur es of up to 350 000, 3 ave propagated along t still higher pressures the cylindrical shock le which is put into a	CARD 1 / 2 out in Connection with the fasc. 12, 2661-2666 (1) also if alloys of excess ain pressures of much mo substance up to higher hod in the course of whi ntainer in which the mat limited not by the stree g high pressure all rour detonating explosives. If face of the metal wall, 0 000, and 475 000 kg.cm it is possible to make rave. For this purpose t cylindrical metal conta pressure P _d which is pro	the Dynamic Compression

APPROVED FOR RELEASE: 06/20/2000 CIA-RDP86-00513R001446230002-9"

SATELIKI

carried out following ex	is, <u>26</u> , fasc.12, 2661-26 in such a manner that t mination. When P_d was usually remained intact m ⁻² . Considerable inter	more than 550 000 kg or at $P_d = 300 000$ kg or	ce was conserved cm ⁻² , all cylin m ⁻² , and somet	og which
470 000 kg.c take place w compression carried out properties of Tests were of magnesium ca with a graph from graphi Only after	within the material dury had been worked out in and several results with of substances subjected carried out with mineral arbonate, yellow sulphus hite rod served the pur te. These experiments, BUNDY, HALL, STRONG, an n 1955 and found that t	ng compression. After its essential features th respect to reversib to the effect of shock salts, lead nitrate, r, and hydrocarbon. Ex pose of the synthetic which were carried out d WENTORF succeeded in he process of crystall that, on the occasion	s, investigati le modificatio k waves were o copper sulpha periments carr production of in 1953/1954, carrying out ization took) of the rapid	ons were ns of the btained. te, ied out diamonds failed. this place compression to produce
	nthetically because of	the lack of sufficient	, , , , , , , , , , , , , , , , , , ,	
rather slow carried out diamonds sy	nthetically because of attice.	the lack of sufficient	, .Ime .o	
rather slow carried out diamonds sy	nthetically because of attice.	the lack of sufficient	,	

CIA-RDP86-00513R001446230002-9

WCHS !

an international and the second states of the secon

RYABININ		CARD	1	12		PA		255	
SUBJECT AUTHOR	USSR / PHYSICS RJABININ, JU.N. The Sublimation of				the F	Sffect	of	8	
· · · · · · · · · · · · · · · · · · ·	Strong Shock Wave.	fasc. 2. 289-2	291	(1956))				
PERIODICAL	Dokl.Akad.Nauk, 10 Publ. 7 / 1956	reviewed 9 / 19	150		~ 10	able t	o al	bsorb	

The question is examined as to what energies a substance is able to absorb if compressed up to different ultrahigh pressures. In the case of isothermal compression of 1 gram-mol (58,46 g) NaCl crystals at room temperatures of from 1 to 1,000.000 kg/cm², 81 kilo calories are used. (The corresponding sublimation heat amounts to about 18° C 57,1 kilo calories). In the substance compressed in this manner an elastic energy of 3,5 eV per mol is contained. In the case of compression along the HUGONIOT adiabates the energy concentra-

ted in the substance is even greater. When a strong shock wave passes along the substance, the compression of the Bubstance on the front of this wave develops along a HUGONIOT adiabate, but Bubstance on the front of this wave develops along a HUGONIOT adiabate, but expansion develops along a POISSON adiabate. Therefore the energy of the body is greater on the occasion of expansion. The stronger the compression of the body on the wave front, the larger will be this difference in energy. It may body on the wave front, the larger will be this difference in energy. It may be that the energy contained by the body after very strong compression is be that the energy contained of part of the molecules.

be that the energy continuation of part of the molecules. sufficient for the sublimation of part of the molecules. For the verification of these deliberations the pressure caused on the occasion of the detonation of explosives as well as its amplification by a

马的 机电子机

APPROVED FOR RELEASE: 06/20/2000

12221.4

	TYTTY TYTY T
-	Beresnev, B.I., Vereshchagin, L F., Ryabinin, Yu. N. (Moscow).
	Certain features of the rheological behaviour of metals pressed through a die by means of a liquid under high pressure (without a plunger). (Ob osobennostyakh reologicheskogo novedeniya metallov, pressuyemykh zhidkost'yu).
	ICAL:"Izvestiya Akademii Nauk, Otdeleniye Tekhnicheskikh Nauk" (Bulletin of the Ac.Sc., Technical Sciences Section), 1957, No.5, pp.48-55 (U.S.S.R.)
	CT: Pressing of metals in the cold state can be effected either by means of a plunger pressing against the work or by means of fluid under high pressure. The first method is at present very widely used but owing to the very high friction forces between the material and the die walls it cannot be applied to metals with high yield points. This obstacle can to a certain extent be eliminated by using the second method, namely, pressing by means of the hydrostatic pressure of a liquid. The here described experiments were carried out by the Laboratory of Super-high Pressure Physics of the Ac.Sc. (Laboratoriya Fiziki Sverkhvysokikh Davleniy AN SSSR) and represent one of the first attempts to obtain

Certain features of the rheological behaviour of metals pressed through a die by means of a liquid under high pressure (without a plunger). (Cont.)

angle for aluminium and copper, whilst Fig.7 shows the dependence of the pressing pressure on P on the magnitude of the entering angle of the die. Graphs, Figs. 8-10 give theoretically calculated values, which are compared with experimental results. Compared to the process of pressing metals through dies by means of a plunger, pressing of dies by applying hydraulic pressure has the following advantages: the total pressing pressure is considerably reduced since there are no losses caused by friction in the cylindrical part of the die; the resulting reduction in the total required pressing force also leads to a reduction of the friction coefficient between the metal and the die; the reduction in the friction coefficient between the metal and the die leads to a considerable reduction of the optimum entering angle as compared to the optimum entering angle in the case of pressing by means of a plunger. There are 10 figures and 9 references, all of which are Slavic.

Card 3/3

SUBMITTED: March 1, 1957. ASSOCIATION: Laboratory of Super-high Pressure Physics of the Ac.Sc. (Laboratoriya Fiziki Sverkhvysokikh Davleniy AN SSSR) AVAILABLE:

APPROVED FOR RELEASE: 06/20/2000

	Ryabinin, Yu. N., Livshits, L. D., 57 -10-18/33 Vereshchagin, L. F.
TITLE:	Plasticity of Brass at Superhigh Pressures (Plastichnost' latuni pri sverkhvysokikh davleniyakh)
PERIODICAL:	Zhurnal Tekhn. Fiz., 1957, Vol. 27, Nr 10, pp. 2321-2325 (USSR)
<u>A BS'TRACT</u> :	The mechanical properties of brass were investigated at pressures up to 30 000 kg/cm ² . The appearance of the break as well as the micro section surface showed that the plasticity of brass increa- ses essentially under pressure. The plastic deformation degree of the torn patterns can be expressed quantitatively by the value of the true deformation: $A=ln(S_0/S_p).S_0$ is the cross section be- fore the experiment and S_p the cross section at the rupture loca- tions. It was evident that the occurring saturation of the pla- sticity curve which is characteristic of brass is not the result of defects of the material. The experiments also confirm that the plasticity curve changes into a saturation. This takes place at 4000 kg/cm ² . The actual deformations occurring in the case of breaking of the patterns were somewhat smaller than the theoreti- cal ones. It was shown that the plasticity increases essentially up to a pressure of 3000 kg/cm ² and approaches then, as already

APPROVED FOR RELEASE: 06/20/2000 CIA-RDP86-00513R001446230002-9"
- seenus mys sin

HI HANG

	pendence of author dete	the plas ermined. T	ticity o here are	n pressu 3 figur	res and	detecte 5 Slavi	d, as th c refere	e nces.
ASSOCIATION:	Laboratory boratoriya Moskva)	for the P fiziki sv	hysics (erkhvyso	of Superh okikh dav	nigh Pre Vleniy A	ssures kademii	AN USSEM Nauk SS	óscow(La- SR,
SUBMITTED:	March 2, 19	957						
AVAILABLE:	Library of	Congress	-					
						· .		
Card 2/2								
						· · · · ·		

RY	ABININ,	V[l], N.
A T	UTHORS ITLE	Likhter, A.I., <u>Ryabinin, Yu.M.</u> , veresnenagin, Burv Phase Diagram of Cerium. (Fazovaya diagramma tseriyaRussian) (Fazovaya diagramma tseriyaRussian)
P	ERIODICAL	Zhurnal Eksperim.1 Teoret. The p - T diagram of a 99.8 % chemically pure cerium preparation The p - T diagram of a 99.8 % chemically pure cerium preparation The p - T diagram of a 99.8 % chemically pure cerium preparation
A	BSTRACT	magnired in the temperature
		lowing points were found: $T^{O}C$ $p(kg/cm^2)$
1.1		+94,5 11100
		+20 8100
		+17 7600
		+4 3550
		line in the - D - T diagram is a survey
		The phase equilibrium line in the grad. line with the inclination 43 kg/cm ² .grad.
		There are 1 table, J induited and
	ASSOCIATION	For Martinum Pressures, ANUDDA.
	SUBMITTED	Varch 26, 1957
	AVAILABLE	Library of Congress.
	Card 1/1	

APPROVED FOR RELEASE: 06/20/2000 CIA-RDP86-00513R001446230002-9"

AUTHOR: TITLE: PERIODICAL:	Gas Mixtures. (Obrazovaniye sin	under Strong Adiabatic Compression of nil'noy kisloty pri sil'nom adiabati-
ABSTRACT: Card 1/2	In the authors' previous works oxide was investigated by high possible to obtain yields of up thousandths parts of a second, pressure of 8000 - 9000 kg/cm by which higher temperatures w fuels (methane, H., CO), the s yield up to more than 3 % by i combustion. Under these circum possible and was studied on th ations point to the face that is shifted in the case of this HCN, which is similar to what Now HCN formation in nitrogen- and acetylene, was investigate	the reaction of the forming of nitrogen adiabatic compression. It was also up to 1% from pure air within some ten at a compression of up to 700 and a . By dilution of the mixture with argon, were attained, or by the addition of authors were able to increase the nitrogen increasing the temperature by means of matances the production of HCN is also his occasion. Thermodynamic consider- with a rise of temperature the equilibrium a reaction in favor of the formation of is the case with the formation of NO. -hydrocarbon mixtures, i.e. methane, a. Only considerable additions of

7.5.Q)

ENTINE

 AUTHORS:R: abinin, Yu. N. Vereshchagin, L. F., Balashov, D. B. and Livshits, L. D. TITLE: Equipment for_Mechanical Studies of Metals at Pressures up to 30 000 kg/cm (Apparatura dlya mekhanicheskikh issledo- vaniy metallov pri davleniyakh do 30 000 kg/cm²) PERIODICAL: Pribory i Tekhnika Eksperimenta, 1958, Nr 2, pp 79-85 (USSR) ABSTRACT: A description is given of an apparatus which produces a hydrostatic pressure of up to 30 000 kg/cm² in a liquid en- closed in a chamber 13 mm in diameter and 40-70 mm long. The principle of the device is illustrated in Fig.1. The high pressures are produced within a chamber drilled in a conical metallic body. In order to be able to withstand pressures greater than 20 000 kg/cm² this conical member is supported by a close fitting female cone. Experiments have shown that the best angle of this cone is 5³. The same value was used by Bridgman (Refs.1 and 5). The multiplicator is also of the type described by Bridgman in Refs.5 and 6. The multiplicat- or is shown diagrammatically in Fig.3. The apparatus was designed for experiments on various specimens placed within the pressurised region. The force applied to the specimens Card 1/2^s measured by a "compressimeter" described by Bridgman in 	SOV	/120-53-2-20/37
 vanty metallov pri davleniyakh do 30 000 kg/cm²) PERIODICAL: Pribory i Tekhnika Eksperimenta, 1953, Nr 2, pp 79-85 (USSR) ABSTRACT: A description is given of an apparatus which produces a hydrostatic pressure of up to 30 000 kg/cm² in a liquid enclosed in a chamber 13 mm in diameter and 40-70 mm long. The principle of the device is illustrated in Fig.1. The high pressures are produced within a chamber drilled in a conical metallic body. In order to be able to withstand pressures greater than 20 000 kg/cm² this conical member is supported by a close fitting female cone. Experiments have shown that the best angle of this cone is 5°. The same value was used by Bridgman (Refs.1 and 5). The multiplicator is also of the type described by Bridgman in Refs.5 and 6. The multiplicator is shown diagrammatically in Fig.3. The apparatus was designed for experiments on various specimens placed within the pressurised region. The force applied to the pressurised region. 	AUTHORS: Reabinin, Yu. N. Vereshchagin, L. F., Bal Livshius, L. D.	ashov. D. B. and
 PERIODICAL: Pribory i Tekhnika Eksperimenta, 1958, Nr 2, pp 79-85 (USSR) ABSTRACT: A description is given of an apparatus which produces a hydrostatic pressure of up to 30 000 kg/cm² in a liquid enclosed in a chamber 13 mm in diameter and 40-70 mm long. The principle of the device is illustrated in Fig.1. The high pressures are produced within a chamber drilled in a conical metallic body. In order to be able to withstand pressures greater than 20 000 kg/cm² this conical member is supported by a close fitting female cone. Experiments have shown that the best angle of this cone is 5⁰. The same value was used by Bridgman (Refs.1 and 5). The multiplicator is also of the type described by Bridgman in Refs.5 and 6. The multiplicator is shown diagrammatically in Fig.3. The apparatus was designed for experiments on various specimens placed within 	vaniy metallov pri davleniyakh do 30 000 kg/	cheskikh issledo-
closed in a chamber 13 mm in diameter and 40-70 mm long. The principle of the device is illustrated in Fig.1. The high pressures are produced within a chamber drilled in a conical metallic body. In order to be able to withstand pressures greater than 20 000 kg/cm ² this conical member is supported by a close fitting female cone. Experiments have shown that the best angle of this cone is 5°. The same value was used by Bridgman (Refs.1 and 5). The multiplicator is also of the type described by Bridgman in Refs.5 and 6. The multiplicat- or is shown diagrammatically in Fig.3. The apparatus was designed for experiments on various specimens placed within the pressurised region. The force applied to the or various specimens placed within	PERIODICAL: Pribory i Tekhnika Eksperimenta 1052	Nr 2, pp 79-85
	closed in a chamber 13 mm in diameter and 40- principle of the device is illustrated in Fig pressures are produced within a chamber drill metallic body. In order to be able to withst greater than 20 000 kg/cm ² this conical member by a close fitting female cone. Experiments the best angle of this cone is 5°. The same by Bridgman (Refs.1 and 5). The multiplicate type described by Bridgman in Refs.5 and 6. or is shown diagrammatically in Fig.3. The a designed for experiments on various specimens the pressurised region. The force applied to	in a liquid en- -70 mm long. The g.l. The high led in a conical tand pressures er is supported have shown that value was used or is also of the The multiplicat- apparatus was s placed within

125

14. J - B - B

Equipment 30 000 kg/cm	SOV/120-58-2-20/37 for Mechanical Studies of Metals at Pressures
apparat at high stretch are 8 d	The pressure was measured by a manganin manometer. The tus has been used to investigate the behaviour of steel pressures. Fig.8 shows photographs of steel specimens hed to breaking point under various pressures. There liagrams, no tables and 10 references, of which 3 are h, and the rest Soviet.
(Labora	Laboratoriya Fiziki sverkhvysokikh davleniy AN SSSR atory of Ultra-high Pressure Physics of the Academy of es USSR)
SUBMITTED: Ju	ıly 25, 1957.
Card 2/2	1. MetalsMechanical properties 2. MetalsPressure 3 High pressure equipmentApplications

11.66

网络卫星

AUTHOR:	Ryabinin, Yu.N. SOV/126-6-5-20/43
TITLE:	Application of Super-hard Alloys (Super C bides) in High- pressure Vessels (Primeneniye sverkhtverdykh splavov v sosudakh vysokogo davleniya)
PERIODICAL	L: Fizika Metallov i Metallovedeniye, 1958, Vol 6, Nr 5, pp 893 - 899 (USSR)
ABSTRACT: Card1/4	In recent years several papers (Refs 1 - 3) have been published on the properties of meterials at high pressures. Various authors (Refs 4-9) have described apparatus which they used in individual experiments but no data are available on the physical and mechanical properties of cemented carbides and on the strength of vessels (piezometers) produced from such cermets. The author of this paper aimed at collecting literary data on the necessary mechanical and physical properties of cermets, evaluating the permissible pressures in piezometers and summarising the experimental results available as regards manufacture and operation of individual assemblies and components from such materials, with particular emphasis on applications in high-pressure apparatus. In the best steel piezometers, pressures of

· 出行對和國權和關鍵理論和考古部當一部分(出现和和行為)。25年4月2日,如在19月2日,4月21日,24月2日

CIA-RDP86-00513R001446230002-9

SOV/126-6-5-20/43 Application of Super-hard Alloys (Super Carbides) in High-pressure Vessels up to 30 000 kg/cm² can be produced; for obtaining higher pressures it is necessary to use tungsten carbides, which are very hard but also very brittle. Therefore, it is necessary to select a correct grade of the carbide and to know exactly the physical and mechanical properties of the material. Although it would seem that the higher the hardness of the carbide the larger is the pressure which the piezometer can withstand, this is not so since the brittleness of the material has to be considered. In Figure 1 the dependence is graphed of the compression strength on the hardness for tungsten carbides containing a cobalt binder. In Figure 2 the dependence is graphed of the compression strength on the percentual content of cobalt in the tungsten carbide. It can be seen from these that the values given by various authors differ little and the same applies for other data on the properties of carbides. After reviewing the available (literary) data on the properties of carbides, the author calculates the maximum permissible pressures in the pistons and in the cylinder walls of piezometers produced Card2/4

APPROVED FOR RELEASE: 06/20/2000

SOV/126-6-5-20/43 Application of Super-hard Alloys (Super Carbides) in High-pressure Vessels from such carbides. It follows from the derived relations, Eq (5), that provided the material of the piezometer is not stressed beyond the elastic range, the permissible pressure inside the cylinder will be the higher the higher the permissible tangential stress on the inner diameter of the cylinder, the higher the ratio of the outer to the inner diameter and the higher the external pressure. No practical advantage is gained by increasing the ratio of the outer to the inner diameter above 4 to 5. The permissible pressures in a piezometer with a diameter ratio of 3 or 5 can be up to 45 000 kg/cm² in the case of the external pressure being the atmospheric pressure and up to 100 000 kg/cm² if the hydrostatically maintained pressure equals 30 000 kg/cm². The possibility of obtaining such pressures in this way in perometers made of carboloy was first proved by Bridgeman. It can be assumed that the real maximum permissible pressures in piezometers can be higher than those calculated since the calculations were made for infinitely long cylinders. Card3/4 一 他都想得我的好话。但我们把我

APPROVED FOR RELEASE: 06/20/2000

en sens

SEANARY F ******

5-2-

2	DOM (126 6 5 20 //13
	SOV/126-6-5-20/43
	f Super-hard Alloys (Super Carbides) in High-pressure
Vessels	이 가지 않는 것 같아요. 이 가지 않는 것 같아. 이 가지 않는 것 같아. 이 나라 말했다. 하는 것 같아. 나라 말했다. 나라 말했다. 나라 말했다. 나라 나라 나라 말했다. 나라 나라 나라 나라 나라 나라 나라 나라 말했다. 나라
t: o. i. d d T	xperience gained with apparatus made of carbides shows hat the pressures which should be attainable on the basis f data for a given carbide are not always attained. This s due to various factors, e.g. fatigue of the material ue to having been subjected earlier to higher stresses, eficiencies in manufacture, sintering and design. here are 7 figures and 23 references, 6 of which are oviet, 1 French, 2 German and 14 English.
ASSOCIATION:	
	(Laboratory of Physics of Very High Pressure,
	Ac.Sc.USSR)
SUBMITTED:	March 6, 1957 (initially)
	1055 (after remining)
	August 5, 1957 (alter revision)
	August 5, 1957 (after revision)
	August 5, 1957 (alter revision)
Card 4/4	August 5, 1957 (alter revision)
Card 4/4	August 5, 1957 (alter revision)
Card 4/4	August 5, 1957 (alter revision)
Card 4/4	August 5, 1957 (alter revision)
Card 4/4	August 5, 1957 (alter revision)
Card 4/4	August 5, 1957 (alter revision)
Card 4/4	August 5, 1957 (alter revision)

的形式和

AUTHORS:	SOV/136-58-8-14/27 Beresney b.I., Vereshchagin, L.F. and Ryabinin, Yu.N.
TITLE;	Installation for Drawing and Kolling Metals in Freely Rotating Rolls in a Liquid under High Hydrostatic Pressure (Ustanovka dlya volocheniya i prokatki v svobodno vrashcha- yushchikhsya valkakh metallov v zhidkosti pod vysokim gidrostaticheskim davleniyem).
PERIODICAL	: Tsvetnyye Metally, 1958, Nr.8, pp.61-63 (USSR)
ABSTRACT:	Eridgeman(nef.1) on the basis of investigations of the effect of pressure on metal properties proposed and carried out preliminary experiments on the rolling and drawing of metals under hydrostatic pressure. Bridgeman (Ref.1) and also the authors, working in the Laboratoriya fiziki sverkh- vysokikh davleniy AN SSSR (Laboratory of Super-High Pressure Physics of the AS USSR) (Ref.4), extended the technique and noted the improvement of metal properties. Special installations (Fig.1) have been used to compare the two methods of deformation and served as the basis for an installation produced by the authors for drawing or rolling (idler rolls) metals in hydrostatic pressures up to 10,000 kg/cm ² (Fig.2). The liquid is supplied by a laboratory

CIA-RDP86-00513R001446230002-9

- 24-1

SOV/136/58-8-14/27 Installation for Drawing and Kolling Metals in Freely Rotating Kolls in a Liquid under High Hydrostatic Pressure. compressor rated at 3.8 litres/hour at 10,000 kg/cm². The conversion from drawing to rolling is simply effected. The more important parts are made of heat-treated alloy steels. The installation has been used for experiments on the pressure drawing and rolling to various degrees of deformation, but the authors do not give their results. There are 2 figures and 6 Soviet references. 1. Metals--Processing 2. Rolling mills--Design 3. Pressure--Metallurgical effects 4. Water--Applications Card 2/2

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9

RYABININ, Yn. M. "The Results of Researches on Plasticity." report presented at the Conference on Investigation of Mechanical Properties of Hon-Metals, by the Intl. Society of Pure and Applied Physics and the AS USSR, at Leningred, 19-24 May 1958. (Vest, Ak Mauk SSSR, 1958, no. 9, pp. 109-111)

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9"

APPROVED FOR RELEASE: 06/20/2000 CIA-R

派派等 開始了 Table 700

THE STREET

·参考1833

SOV/24-58-10-28/34
AUTHORS: Beresnev, B. I., Vereshchagin, L. F., Ryabinin, Yu. N. (Moscow)
TITLE: Role of the Medium in the Extrusion of Metals by Means of a Liquid under High Pressure (Rol' sredy pri vydavlivanii met- allov zhidkost'yu vysokogo davleniya)
PERIODICAL: Izvestiya Akademii nauk SSSR, Otdeleniye tekhnicheskikh nauk, 1958, Nr 10, pp 144-146 (USSR)
ABSTRACT: Bridgman carried out experiments on extruding copper and steel with a liquid under pressures of up to 12 000 atm. He stated that he did not succeed in finding an optimum regime for this process and, as a result of that, at very high pressures the metal came out of the die in individual bits instead of continuously. Similar work carried out in the Very High Pressure Physics Laboratory of the Academy of Sciences, USSR, has shown that the correct selection of the medium which transmits the pressure determines to a consider- able extent not only the magnitude of the pressure necessary for effecting flow of the metal but also the quality of the metal after deformation. Information gained during these experiments is reported in this paper. The authors studied
Card 1/4

"APPROVED FOR RELEASE: 06/20/2000 CIA-RDP86-00513R001446230002-9 an example of the second se

例 第1章 Same Piter Fire Piter in a service

- P. P. P.

		SOV/24-58-10-2	
Role o under 1	f the Medium in the Extrusion of High Pressure		
	the influence of various media, for transmitting the pressure a pressure necessary for producin this purpose aluminium was extra cone angle $\alpha = 40^{\circ}$. The red at 0.773. The method was the ier work (Ref.2). The following	nd as a fubricant of ng equal deformations ruded through a die w fuction was maintaine same as that describe ng results were obtai	. For ith a d constant d in earl-
	Liquid transmitting pressure P	ressure at which the Low of metal begins kg/cm ²	Surface quality
	Hypoid lubricant Transformer cil Transformer oil + kerosene	3750 5500 6500	Bad Satis- factory
	(0.5+0.5) Transformer oil + kerosene + oleic acid (0.49+0.49+0.02)	6450	
Card 2/4	Kercsene Gasoline Methylated spirits Ethyl alcohol	6900 6900 6075 6450	

通知書

under High Pressure <u>Table (continued)</u> Liquid transmitting pressure Pressure at which the flow of metal begins P. kg/cm ⁻ Water Water + a layer of hypoid lubricant applied to the surface of the specimen On the basis of the obtained results, the following conclus- ions are arrived at: 1) The pressure necessary to produce a flow of the metal as well as the surface quality of the deformed metal are greatly dependent on the fluid used. 2) It was found that plating of the specimen with a thin layer	Role o	f the Medium in the Extrusion	. of Metals by Means of	a Liquid
Water + a layer of hypoid lubricant applied to the surface of the specimen 5000 Excellent On the basis of the obtained results, the following conclus- ions are arrived at: 1) The pressure necessary to produce a flow of the metal as well as the surface quality of the deformed metal are greatly dependent on the fluid used	under	Table (continued)	flow of metal begins	
ions are arrived at: 1) The pressure necessary to produce a flow of the metal as well as the surface quality of the deformed metal are greatly	- - - - -	Water + a layer of hypoid lubricant applied to the		
		ions are arrived at: 1) The pressure necessary to well as the surface quality dependent on the fluid used	produce a flow of the of the deformed metal	e metal as are greatly

· ··· ·,

REPRESENT SETS A RENT ME MORE THE INCOME.

Sov/24-58-10-28/74
Role of the Medium in the Extrusion of Metals by Means of a Liquid under High Pressure
of a tin-lead solder reduces considerably the pressure necessary for extrusion.
3) Optimum conditions of extrusion were determined, by means of which a high surface quality can be obtained, namely, by applying a thin layer of hypoid lubricant on a specimen which is extruded by means of water.
4) It was found that if the wrong liquid is applied this can lead not only to damage of the surface of the extruded metal but also to its complete destruction. There are 1 table, 1 figure and 6 Soviet references.
SUBSOCIATION: Laboratoriya fiziki sverkhvysokikh davleniy AN SSSR, Institut fiziki metallov, AN SSSR (Laboratory of Physics of Very High Pressures, Academy of Sciences USSR, Institute of Metal Physics, Academy of Sciences USSR, Source 1 Physics, Academy of Sciences USSR, Source 1 Physics, Academy of Sciences USSR, Institute of Metal Physics, Academy of Sciences USSR, Source 1 Physics, Academy of Sciences USSR, Source 1 Physics, Academy of Sciences USSR, Institute of Metal Physics, Academy of Sciences USSR, Source 1 Physics, Academy of Sciences USSR, Institute of Metal Physics, Academy of Sciences USSR, Institute of Metal Physics, Academy of Sciences USSR).

APPROVED FOR RELEASE: 06/20/2000

"APPROVED FOR RELEASE: 06/20/2000 CIA-RDP86-00513R001446230002-9 法追称了教师副师教的接受,是在于是中国大学的选择问题的专行。1997年19月1日,中国人们的大学的一个中国

制度开

	•		hie	, B.I.; VERESHCHAGIN, L.F.; RYABININ, Yu.N. Extrusion of pipes and parts of complex profile by liquid under high pressure. Inzhfiz.zhur. no.ll:105-109 N '58. (MIRA 12:1)									• • •	•••						
			l. Mot	Lab skva	orat	oriya Insti			verkhy i meta ion (Me			vlen SR, (iy 3• ²	AN SSS Werdlo	K, G. VSK.	•				•
																	•			: :
									4											. '
																				ł.
																	•			
																			1.1.1.1.1	÷
																				ł
																				i.
	Ч÷.																			
	· . `																			_
1										1. S.										

198-

如何实际。

		sov/ 57-29-7-3/35
	AUTHORS :	Ryabinin, Yu. N., Livshits, L. D., Vereshchagin, L. F.
· · ·	TITLE:	On the Change of the Electric Conductivity of Silicon at Superhigh Pressure (K voprosu ob izmenenii elektroprovodnosti kreaniya pod sverkhvysokim davleniyem)
*	PERIODICAL:	Zhurnal tekhnicheskoy fiziki, 1958, Vol. 28, Nr 7, pp. 1382 - 1386 (USSR)
	AESTRACT :	First it is shown that the results obtained by P.W.Bridgman
· · ·	ABSTRACT:	
	ABSTRACT:	(Refs 2 and 8) are not constant and, to a certain extent, un-
•	ADDINACI:	
• • • •	ABSTRACT:	(Refs 2 and 8) are not constant and, to a certain extent, un- certain. A measurement of the electric conductivity of silicon of the p-type in dependence on the pressure is repeated. A silicon monocrystal, produced according to the method of Chokh-
	ABSTRACT:	(Refs 2 and 8) are not constant and, to a certain extent, un- certain. A measurement of the electric conductivity of silicon of the p-type in dependence on the pressure is repeated. A silicon monocrystal, produced according to the method of Chokh- ral'skiy athe State Institute of Rare Metals was used as sample.
	ABSTRACT:	(Refs 2 and 8) are not constant and, to a certain extent, un- certain. A measurement of the electric conductivity of silicon of the p-type in dependence on the pressure is repeated. A silicon monocrystal, produced according to the method of Chokh- ral'skiy atte State Institute of Rare Metals was used as sample. It had the form of a parallel epiped with 9,8 x 5,8 x 4,0 mm.
		(Refs 2 and 8) are not constant and, to a certain extent, un- certain. A measurement of the electric conductivity of silicon of the p-type in dependence on the pressure is repeated. A silicon monocrystal, produced according to the method of Chokh- ral'skipatheState Institute of Rare Metals was used as sample. It had the form of a parallel epiped with 9,8 x 5,8 x 4,0 mm. A Wheatstone bridge of the type MKL -49 was used for the measurement of the electric resistance. A multiplier (analo-
	ABSTRACT:	(Refs 2 and 8) are not constant and, to a certain extent, un- certain. A measurement of the electric conductivity of silicon of the p-type in dependence on the pressure is repeated. A silicon monocrystal, produced according to the method of Chokh- ral'skipatheState Institute of Rare Metals was used as sample. It had the form of a parallel epiped with 9,8 x 5,8 x 4,0 mm. A Wheatstone bridge of the type MKL49 was used for the measurement of the electric resistance. A multiplier (analo- gous to that of Bridgman) which was developed in the laboratory
		(Refs 2 and 8) are not constant and, to a certain extent, un- certain. A measurement of the electric conductivity of silicon of the p-type in dependence on the pressure is repeated. A silicon monocrystal, produced according to the method of Chokh- ral'skiyatheState Institute of Rare Metals was used as sample. It had the form of a parallel epiped with 9,8 x 5,8 x 4,0 mm. A Wheatstone bridge of the type MKL-49 was used for the measurement of the electric resistance. A multiplier (analo- gous to that of Bridgman) which was developed in the laboratory of the authors was used for the measurement of the sample re-
	Card $1/3$	(Refs 2 and 8) are not constant and, to a certain extent, un- certain. A measurement of the electric conductivity of silicon of the p-type in dependence on the pressure is repeated. A silicon monocrystal, produced according to the method of Chokh- ral'skipatheState Institute of Rare Metals was used as sample. It had the form of a parallel epiped with 9,8 x 5,8 x 4,0 mm. A Wheatstone bridge of the type MKL49 was used for the measurement of the electric resistance. A multiplier (analo- gous to that of Bridgman) which was developed in the laboratory
		(Refs 2 and 8) are not constant and, to a certain extent, un- certain. A measurement of the electric conductivity of silicon of the p-type in dependence on the pressure is repeated. A silicon monocrystal, produced according to the method of Chokh- ral'skiyatheState Institute of Rare Metals was used as sample. It had the form of a parallel epiped with 9,8 x 5,8 x 4,0 mm. A Wheatstone bridge of the type MKL-49 was used for the measurement of the electric resistance. A multiplier (analo- gous to that of Bridgman) which was developed in the laboratory of the authors was used for the measurement of the sample re-

CIA-RDP86-00513R001446230002-9

化的现在

On the Change of the Electric Conductivity of Silicon at Superhigh Pressure

SOV/57-28-7-3/35

started with the determination of the amount of the temperature factor of the electric resistance a at atmospheric pressure. They show that the sample resistance does not change in the case of an alteration of the current polarity and is independent of the amount of amperage in the region of $0,2 \stackrel{\bullet}{\longrightarrow} 10 \text{ mA}$. The specific sample resistance at 20° amounted to 18,4 ohm cm. The measurement of the sample resistance was carried out gradually up and down under pressure. It was found that the electric resistance of silicon is reduced with increasing pressure. It was shown that pure silicon of the p-type has the same effect sign as germanium of the patype and selenium (Ref 2, 5 resp.). No such great hysteresis of the silicon resistance by the pressure was observed as in the case of Bridgman. It is pointed out that the electric resistance in the case of silicon of the p.type is to a great extent influenced by the chemical purity, the composition of the admixture, the thermal and mechanical pretreatment. S. A. Ratenberg put the silicon crystal at the authors' disposal. N.I.Chetverikov helped to produce the contacts. There are 2 figures and 10 references, 3 of which are Soviet.

Card 2/3

APPROVED FOR RELEASE: 06/20/2000

CIA-RDP86-00513R001446230002-9"

والالخ

ASSOCIATION: Laboratoriya fiziki sverkhvysokikh davleniy AN SSSR Moskva (Laboratory of the Physics of Superhigh Pressures, AS USSR, Moscov SUBMITTED: October 20, 1957 1. SiliconConductivity))
)
1. SiliconConductivity	
i bere de la companya de la company De la companya de la c	
	en en la la Persona
a baran baran da karan karan da karan d Maran da karan da kar	
Card 3/3	

1-13-16 B

HERESNEV, B.I.; VERESHCHAGIN, L.F.; RYABININ, Yu.N. Equipment for metal drawing and rolling in freely rotating rolls with liquids under high hydrostatic pressure. TSvet. met. 31 no.8:61-63 Ag '58. (Drawing (Metalwork)) (Deformation (Mechanics)) (HIBA 11:9) 建石市,在深刻建正、当早早加速

APPROVED FOR RELEASE: 06/20/2000

制制的的

•	5(4) AUTHORS:	SOV/76-32-10-3/39 Markevich, A. M., Tamm, I. I., Ryabinin, Yu. N.
	TITLE:	The Formation of the Formaldehyde in an Adiabatic Compression of Methane-Oxygen Mixtures (Obrazovaniye formal'degida pri adiabaticheskom szhatii metano-kislorodnykh smesey)
	PERIODICAL:	Zhurnal fizicheskoy khimii, 1958, Vol 32, Nr 10, pp 2242-2246 (USSR)
	ABSTRACT: Card 1/3	The authors employed a method suggested already earlier (Ref 1). The methane used contained 1-2% of higher hydrocarbons. The most interesting part of the adiabatic cycle, within which the pressure increases to some hundreds and thousands of kg/cm ² , lasts only some ten-thousandths of a second. The velocity of the temperature change of the compressed gas is therefore also $10^{6}-10^{7}$ degree/second, so that a rapid drop of temperature in the expansion of chemically active gas mixtures leads to a high degree of hardening (Ref 2); thus, the reaction may be fixed at an intermediate stage. In the paper by M. S. Furman and D. S. Tsiklis (Ref 7) the formation of formaldehyde in an adiabatic compression of methane-oxygen mixtures was qualita-

134

The Formatic Oxygen Mixtu	50V/76-32-10-3/39 on of the Formaldehyde in an Adiabatic Compression of Methane- ares
	tively determined. The present experiments show that the character of the reaction of the mixture depends first of all on the oxygen content. Mixtures with more than 15% O ₂ ignite under the
	deposition of soot. It is characteristic that the ignition does not take place at the maximum pressure but a little later when the mixture has expanded. Only with an oxygen content of less than 15% was it possible to interrupt the reduction in order to obtain an intermediate product. The reaction products of the compression have an unpleasant, sharp smell and contain formaldehyde as well as other intermediate products which form an intense fog with air. At a low compression $(300-350 \text{ kg/cm}^2)$ and a low content of formaldehyde this formation of fog is not observed. In mixtures of natural gas and oxygen the formaldehyde formation begins at lower compressions than in pure methane, due to the increase of the oxygen content. The maximum content of formaldehyde $(2, 2\%)$ is obtained at an oxygen content of 6 and
	9%, and at a pressure of about 3000 kg/cm ² ; it remains constant
Card 2/3	up to 7000 kg/cm ² . Mixtures with 12% 0 ₂ have a different re-

報題

时27 4538

ASSOCIATION: Akauemiya nauk SSSR, Institut khimicheskoy fiziki, Moskva (Moscow, Institute of Chemical Physics, AS USSR) SUBMITTED: November 28, 1956	* * 1	Oxygen Mixture		aracter. h are Sov	There are iet.	6 figures, 1	table, and	19 refe	rences,
SUBMITTED: November 28, 1956		ASSOCIATION:	Akauemiya (Moscow,	nauk SSS Institute	R, Institu e of Chemi	t khimicheskoy cal Physics,AS	fiziki, M S USSR)	oskva	
	-	SUBMITTED:	November	28, 1956					
		· · ·	·						
Card 3/3	•	Card 3/3	: : .						

20

AF 2 41

PHASE I HOOK EXPLOITATION	SOV/3548	
Ryabinin, Yuriy Nikolayevich Gazy pri bol'shikh plotnostyakh i vysokikh temperaturak and High Temperature) Moscow, Fizmatgiz, 1959. 71 p		
and High Temperature/ Hoscow, Frinted. problemy fiziki) 5,000 copies printed. Preface: L.F. Vereshchagin, Professor, Director of the High Pressures, Academy of Sciences USSR; Ed.: V.A.	- Physics of Physics of	
 PURPOSE: The booklet is intended for physicists and expertises of gases under high pressures and at high t perties of gases under high pressures and at high t be useful to chemists, since the method described c be useful to chemists of chemical reactions occurring the kinetics occurring the kinetics occurring the kinetics occ	ngineers studying the cro- emperatures. It may also an also be applied in ng in ges mixtures at hig	
temperatures. COVERAGE: This is a publication in the series, "Conter The author describes a special unit in which gases of a piston "shoot" in a closed cylinder. The pro-	mporary Problems of Flyst	s" .
Cerd 1/3		

455.67

Gase	s at i	ligh	(Cont	.)							SOV	/3548	
Ch.	111.	Elec	etric	Conduc	tivity	of Adi	abati	cally	Compr	essed			40
Ch.	IV. 1	he S	State	of Den:	se Gase	s at H	igh 1	ſempera	ture				59
	Lograp				•								69
AVAII	LABLE:	Li	brary	of Cor	gress								
					: :			· .					
									i.				
Card	3/3				•					:	·		
													TM/1sb 5-16-60
					a.								

0.555