

Subdivision of Lower Famennian deposits of the Khoper-Buzuluk interfluve. Dokl. AN SSSR 146 no.1:193-194 S '62. (MIRA 15:9)

ê

1. Nauchno-issledovatel'skiy institut neftyanoy i gazovoy promyshlennosti. Predstavleno akademikom D.V. Nalivkinym. (Khoper Valley-Geology, Stratigraphic) (Buzuluk Valley-Geology, Stratigraphic)

APPROVED FOR RELEASE: 08/23/2000

们不是非可能的自己的问题。

CIA-RDP86-00513R001549210014-4

SKLOVSKIY, A.M.; VOLOKH, A.G.; KARFOV, P.A.; KONDRAT'YEVA, M.G.; LYASHENKO, A.I.; FEDOROVA, T.I.; SHEVCHENKO, V.I.
Devonian sediments of the western part of the northern Caspian oil. and gas-bearing basin. [Trudy] NiLneftegaza no.10:127-181 '63. (MIRA 18:3)
1. Nauchno-issledovatel'skava laboratoriya geologicheskikh kriteriyev otsenki perspektiv neftegazonosnosti; Vsesoyuznyy nauchno-issledovatelskiy geologorazvedochnyy neftyanoy institut; Nizhnevolzhskiy nauchnoissledovatel'skiy institut geologii i geofiziki i Volgogradskiy nauchno-issledovatel'skiy institut neftyanoy i gazovoy promychlennosti.

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

PANOV, D.I.; SHEVCHENKO, V.I.

Stratigraphy of Lower and Middle Jurassic sediments in the southern slope of the Greater Caucasus in the Mount Kazbek region. Dokl. AN SSSR 155 no.1:92-95 Mr '64. (MIRA 17:4)

1. Moskovskiy gosudarstvennyy universitet im. M.V.Lomonosova. Predstavleno akademikom N.M.Strakhovym.

APPROVED FOR RELEASE: 08/23/2000

Platform, DOK1.	sediments in the AN SSSR 160 no.4	,	art of the S. (MTRA	18:2)	
	edovatel'skiy ins d. Submitted May 2	titut neftyanoj	y i gazovoy	promystle	n-
10201, 10180610					· :
					:

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

CIA-RDP86-00513R001549210014-4

TARANENKO, V.P.; SHEVCHENKO, V.I.

Effect of fluctuations of an electron beam in the transit channel of a traveling-wave tube on its power and efficiency. Radiotekh. i elektron. 10 no.7:1269-1281 Jl ⁴65. (MIRA 18:7)

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

L_3806-66 EWT(1)/EWA(h) J₩ ACCESSION NR: AP5017663 34. Sec. 6 UR/0109/65/010/007/1269/1281 621.385.632.01 AUTHOR: Taranenko, V. P.; Shevchenko, V. I. TITLE: Effect of ripples of the electron beam in the drift channel of a TW tube upon its power and efficiency SOURCE: Radiotekhnika i elektronika, v. 10, no. 7, 1965, 1269-1281 TOPIC TAGS: <u>TW tube</u>, electron beam 25 ABSTRACT: Based on J. R. Pierce's relation for the beam ripples and L. A. Vaynshteyn's nonlinear equations for the TW tube (Rad. i elektronika, 1957, 2, 7, 883), new nonlinear equations and initial conditions are developed which permit estimating the effect of the electron-beam outline on the power and efficiency of a TW tube. The new equations were numerically solved on a digital computer for a set of parameters typical of operation of a TW tube. It is found that: (1) The beam-radius ripples reduce the maximum output and maximum efficiency of the Card 1/2

APPROVED FOR RELEASE: 08/23/2000

· · · · · ·

같은 것 같은 것 같은 것 같은 것은 것은 것을 받는 것 같은 것 같은 것 같은 것 같은 것을 알려야 했다. 같은 것 같은 것	
L 3806-66 ACCESSION NR: AP5017663	
TW tube; this reduction is higher for higher ripples; (2) Reduction of the saturation power is higher in the case of a thin (ha = 0.5) beam than in the case of a sturation power is higher in the case of a thin (ha = 0.5) beam that is the case of a wide	
a wide (ha = 1.5) beam, for the same ripple factor, (3) in the higher for higher α rippled beam, the rise of r-f electric field along the tube is higher for higher α .	
which is due to a higher efficiency of interaction between in the nodes of the wave in the beam loops; (4) The repulsion forces increasing in the nodes of the rippled beam affect the electron bunching; the maximum value of the first current harmonic decreases which, in turn, affects the TW-tube efficiency. Orig. art.	
harmonic decreases which, in turn, allects the 1. has: 7 figures and 32 formulas.	
ASSOCIATION: nons	
SUBMITTED: 20Apr64 ENCL: 00 NCL: 00 SUB CODE: EC	
NO REF SOV: 006 OTHER: 001	
Card 2/2	

HER AND SHE FEEL

CIA-RDP86-00513R001549210014-4

L 2841-66 EWT(1)/ETC/EPF(n)-2/EWG(m)/EPA(w)-2TIP ACCESSION NR: UR/0185/65/010/009/0960/0968 AP5024126 4415t 58 D.: Shevchenko, V. I. AUTHOR: Shapiro, \mathcal{B} TITLE: Induced scattering of Langmuir oscillations in a plasma within a strong magnetic field 21:44,55 SOURCE: Ukrayins'kyy fizychnyy zhurnal, v. 10, no. 9, 1965, 960-968 TOPIC TAGS: plasma oscillation, magnetic field plasma effect, plasma electron oscillation, electron scattering ABSTRACT: The present paper studies the nonlinear scattering of Langmuir oscillations on electrons of a plasma in a strong magnetic field. The linear damping of the oscillations is assumed negligibly small. After solving the kinetic equation by means of successive approximations over the oscillation amplitudes, the authors formulate an increment expression for the quantities defining the rate of change in spectral density of oscillations as a consequence of the scattering process. They show also that in contradistinction to the uni-dimensional spectrum case the change in the total energy of plasma oscillations in the strong magnetic field occurs in the lowest order in $k^2 \lambda_{De}^2$ (k $\lambda_{De} \ll 1$ for Langmuir oscillations.) Oscillation.amplitudes for which the nonlinear energy dissipation becomes substan-Card 1/2

APPROVED FOR RELEASE: 08/23/2000

•					
L 2841-66					
ACCESSION	NR: AP5024126				71
tial are a	lso found. "The autho has: 23 formulas.	rs thank Ya. B. F	aynberg for va 445इ	luable remarks	."
ASSOCIATION Institute,	I: Fizyko-tekhnichnyy AN Ukr SSR)	instytut AN URSR	, Khar'kov (Ph	vsics-Engineer	ing
SUBMITTED:	22Sep64	ENCL: 00	SU	CODE: ME, NI	
NO REF SOV:	008	OTHER: 000			
•		•			
-					
		•			

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

L 07H0L-67 EMT(1) IJP(c) GD/AT ACC NR: AT602057: (N) SOURCE CODE: UR/0000/55/000/000/0156/0164 AUTHOR: Shapiro, V. D.; Shevchenko, V. I. ORG: none TITLE: On the induced dispersion of Langmuir oscillations of a plasma in strong mag- netic field SOURCE: AN UkrSSR. Vysokochastotnyye svoystva plazmy (High frequency properties of plasma). Kiev, Naukovo dumka, 1965, 156-164 TOPIC TAGS: plasma oscillation, plasma resonance, plasma magnetic field ABSTRACT: Nonlinear interaction of wave harmonics in the long wavelength range of the spectrum is investigated for the conditions of a strongly magnetized plasma. The line- ar damping of the waves is considered small due to the small number of resonance par- ticles and all oscillations are along the field lines. The mathematical description of the system employs a set of equations for the electron and ion distribution functions and for the electric field. The system is analyzed in the second and third approxima- tion starting with linear solutions. The initial one-dimensional spectrum remains nearly uniform under the action of dispersive effects and is seen to correspond within a cosine factor to the one-dimensional model: The interaction between waves leads to pumping of energy from the higher frequency part of the spectrum to the lower. The Card 1/2			
AUTHOR: Shapiro, V. D.; Shevchenko, V. I. DRG: none TITLE: On the induced dispersion of Langmuir oscillations of a plasma in strong mag- netic field SOURCE: AN UkrSSR. Vysokochastotnyye svoystva plazmy (High frequency properties of plasma). Kiev, Naukovo dumka, 1965, 156-164 TOPIC TAGS: plasma oscillation, plasma resonance, plasma magnetic field ABSTRACT: Nonlinear interaction of wave harmonics in the long wavelength range of the spectrum is investigated for the conditions of a strongly magnetized plasma. The line- ar damping of the waves is considered small due to the small number of resonance par- ticles and all oscillations are along the field lines. The mathematical description of the system employs a set of equations for the electron and ion distribution functions and for the electric field. The system is analyzed in the second and third approxima- tion starting with linear solutions. The initial one-dimensional spectrum remains nearly uniform under the action of dispersive effects and is seen to correspond within a cosine factor to the one-dimensional model. The interaction between waves leads to pumping of energy from the higher frequency part of the spectrum to the lower. The	<u>L 07404-67 EWT(1) IJP(c) GD/AT</u> ACC NR: AT6020579 (N) SOURCE CODE: UR/0000/65/000/000/0156/0164		
DRG: none TITLE: On the induced dispersion of Langmuir oscillations of a plasma in strong mag- netic field SOURCE: AN UKrSSR. Vysokochastotnyye svoystva plazmy (High frequency properties of plasma). Kiev, Naukovo dumka, 1965, 156-164 TOPIC TAGS: plasma oscillation, plasma resonance, plasma magnetic field ABSTRACT: Nonlinear interaction of wave harmonics in the long wavelength range of the spectrum is investigated for the conditions of a strongly magnetized plasma. The line- ar damping of the waves is considered small due to the small number of resonance par- ticles and all oscillations are along the field lines. The mathematical description of the system employs a set of equations for the electron and ion distribution functions and for the electric field. The system is analyzed in the second and third approxima- tion starting with linear solutions. The initial one-dimensional spectrum remains a cosine factor to the one-dimensional model. The interaction between waves leads to pumping of energy from the higher frequency part of the spectrum to the lower. The	4/		••
NITLE: On the induced dispersion of Langmuir oscillations of a plasma in strong magnetic field SOURCE: AN UKrSSR. Vysokochastotnyye svoystva plazmy (High frequency properties of plasma). Kiev, Naukovo dumka, 1965, 156-164 TOPIC TAGS: plasma oscillation, plasma resonance, plasma magnetic field ABSTRACT: Nonlinear interaction of wave harmonics in the long wavelength range of the spectrum is investigated for the conditions of a strongly magnetized plasma. The linear damping of the waves is considered small due to the small number of resonance particles and all oscillations are along the field lines. The mathematical description of the system employs a set of equations for the electron and ion distribution functions and for the electric field. The system is analyzed in the second and third approximation starting with linear solutions. The initial one-dimensional spectrum remains nearly uniform under the action of dispersive effects and is seen to correspond within a cosine factor to the one-dimensional model. The interaction between waves leads to pumping of energy from the higher frequency part of the spectrum to the lower. The			
SOURCE: AN UkrSSR. Vysokochastotnyye svoystva plazmy (High frequency properties of plasma). Kiev, Naukovo dumka, 1965, 156-164 TOPIC TAGS: plasma oscillation, plasma resonance, plasma magnetic field ABSTRACT: Nonline r interaction of wave harmonics in the long wavelength range of the spectrum is investigated for the conditions of a strongly magnetized plasma. The line- ar damping of the waves is considered small due to the small number of resonance par- ticles and all oscillations are along the field lines. The mathematical description of the system employs a set of equations for the electron and ion distribution functions and for the electric field. The system is analyzed in the second and third approxima- tion starting with linear solutions. The initial one-dimensional spectrum remains nearly uniform under the action of dispersive effects and is seen to correspond within a cosine factor to the one-dimensional model. The interaction between waves leads to pumping of energy from the higher frequency part of the spectrum to the lower. The	TITLE: On the induced dispersion of Langmuir oscillations of a plasma in strong mag-		
TOPIC TAGS: plasma oscillation, plasma resonance, plasma magnetic field ABSTRACT: Nonline r interaction of wave harmonics in the long wavelength range of the spectrum is investigated for the conditions of a strongly magnetized plasma. The line- ar damping of the waves is considered small due to the small number of resonance par- ticles and all oscillations are along the field lines. The mathematical description of the system employs a set of equations for the electron and ion distribution functions and for the electric field. The system is analyzed in the second and third approxima- tion starting with linear solutions. The initial one-dimensional spectrum remains nearly uniform under the action of dispersive effects and is seen to correspond within a cosine factor to the one-dimensional model. The interaction between waves leads to pumping of energy from the higher frequency part of the spectrum to the lower. The	COURCE, AN UMPSSR, Vysokochastotnyye svoystva plazmy (High frequency properties of		
spectrum is investigated for the conditions of a bing of a small number of resonance par- ar damping of the waves is considered small due to the small number of resonance par- ticles and all oscillations are along the field lines. The mathematical description of the system employs a set of equations for the electron and ion distribution functions and for the electric field. The system is analyzed in the second and third approxima- tion starting with linear solutions. The initial one-dimensional spectrum remains nearly uniform under the action of dispersive effects and is seen to correspond within a cosine factor to the one-dimensional model. The interaction between waves leads to pumping of energy from the higher frequency part of the spectrum to the lower. The	TOPIC TAGS: plasma oscillation, plasma resonance, plasma magnetic field		
	spectrum is investigated for the conditions of a small number of resonance par- ar damping of the waves is considered small due to the small number of resonance par- ticles and all oscillations are along the field lines. The mathematical description o the system employs a set of equations for the electron and ion distribution functions and for the electric field. The system is analyzed in the second and third approxima- tion starting with linear solutions. The initial one-dimensional spectrum remains nearly uniform under the action of dispersive effects and is seen to correspond within	£	
		- FALC-4	i Na si se si si si

L OTHOH-E		<u>ġ</u>							0	•		
	_	e energy by p equency waves	lasma partic . Orig. art	les is consid . has: 19 fo	erably s rmulas.	maller	than 3	loss	of	•		
SUB CODE:		SUBM DATE:			006/	отн	REF:	001				
					• •							
											N	
							5					and the second
												manda Ular A A
												a har blir tr
					·							and days in the
Card 2/2	pla			· · · · · · · · · · · · · · · · · · ·								
),									

CIA-RDP86-00513R001549210014-4

SHEVORENNO, VI

Shevchenko, V. I. -- "Amides of Sulfuric Acid. Esters of Arysulfonan idoposporic Acids." Cand Chem Sci, Dnepropetrovsk Matallurgical Inst, Dnepropetrovsk 1953. (<u>HEFERATIVNYY</u> <u>ZHERNAL--REDITYA</u>, No 1, Jan 54.)

Source: SUM 168, 22 J 1y 1954

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

USSR/Chemistr	. 1. 7	
Card 1/1	The second se	
Authors :	Kirsanov, A. V.; and Shevchenko, V. I.	
Title :	Dialkyl ethers of arylsulfonamidephosphoric acids	
Periodical :	Zhur. Ob. Khim. 24, Ed. 5, 882 - 887, May 1954	
Abstract :	Described is a new method for the derivation of dialkyl ethers of arylsulfonamidephosphoric acids from chloranhydrides of these acids and sodium alcoholates. The authors obtained dimethyl, diethyl and di-n- sodium solities of di-n-butyl	
	butyl ethers of aryisulfonamide acids and sodian. The dialkyl ethers of ethers and described their chemical properties. The dialkyl ethers of arylsulfonamidephosphoric acids obtained from dichloroanhydrides differ in no way from the dialkyl ethers through other methods. Two USSR references. Tables	
institution:	butyl ethers of aryisulfonamide acids and sodian. The dialkyl ethers of ethers and described their chemical properties. The dialkyl ethers of arylsulfonamidephosphoric acids obtained from dichloroanhydrides differ in no way from the dialkyl ethers through other methods. Two USSR references. Tables	

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

CIA-RDP86-00513R001549210014-4

SHEVCHENKO SV.I USSR/Organic Chemistry - Synthetic Organic Chemistry, E-2 Abst Journal: Referat Zhur - Khimiya, No 19, 1956, 61602 Kirsanov, A. V., Shevchenko, V. I. Author: Institut on: None Acid Chlorides of Aromatic Acid Esters of Arylsulfonimido-Title: phosphoric Acids Original Zh. obshch. khimii, 1956, 26, No 1, 250-254 Periodical: There is described the reaction of the sodium salt of the chlor-Abstract: amide of benzene sulfonic acid with acid chlorides and di-acid chlorides of the esters of phosphorous acid as a result of are formed, with good yields, the following acid chlorides (or di-acid chlorides) of aromatic esters of phenyl sulfonimidophosphoric acid (I) (listing the yield in 4): $C_{cH_5}SO_2N = PCl_2(OC_{6H_5})$ (II) (oil; 92.9); $C_{6H_5}SO_2N = PCl(OC_{6H_5})_2$ (III) (MP 66-69°; 90.1); $C_{6H_5}SO_2N = PCl(O-O-C_{6H_4}CH_3)_2$ (IV) (oil; 94.3); $C_{6H_5}SO_2N =$ $PCl(O-m-C_{6}H_4GH_3)_2$ (V) (oil; 96.5); $C_{6H_5}SO_2N = PCl(OC_{6}H_4CH_3-p)_2$ (VI) Card 1/2

Cł

Den statute de la companya de la com La companya de la comp	NHPUNITER, W. C.		
enner rei H	E NIA I		
USSR/Organic Che	mistry - Synonese		
Author:	Kirsanov, A. V., and Difference		
1	None Reaction of Trichlorophosphazosulfones	2 504-510	
Original Periodical: Abstract:	Zh. obshch. khimii, 1956, Vol 26, No The reaction of ArSO ₂ N = PCl ₃ (I) wit different mechanisms and depends on t different mechanisms of the reaction.	the nature of the atom in I	uí 1 and re-
	on the conditions of the reattain the acts faster with the alcohol than the initially, an unstable molecular com	e remaining childrand pound with HCl is formed whice 0.8 gms-equiv HCl to form 	h, at
APPRO	acts faster with molecular com initially, an unstable molecular com after 60-90 minutes at 5-9°, evolves ArSO ₂ N = PCl ₂ (OR) (II); the reaction VEQ. The reaction is of CH1, the following/mc2/2090 is of CH ₃ Cl + ArSO ₂ N =: PCl ₂ (OH). A large	carried out without evolut. IS carried out without evolut. II (R = CH3) + HCl CIA-KDP86-00513R001549	
Ce Card 1/3			
		and the first of the second second	

CIA-RDP86-00513R001549210014-4

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

79-28-4-52/60 /Shevchenko, V. I., Derkach, G. I. AUTHORS: Dimethyl Esters From Aryl Sulfon-N-Methyl-Amidophosphoric TITLE: Acids (Dimetilovyye efiry arilsul'fon-N-metilamidofosfornykh kislot) Zhurnal Obshchey Khimii, 1958, Vol. 28, Nr 4, pp. 1085-1087 (USSR) PERIODICAL: In recent times a great number of diesters of aryl sulfonami-ABSTRACT: dophosphoric acids were produced (Ref 1). It is, however, probably not proved that they have amido-like structure (formula I). However, it is not excluded either that the compounds of type (I) are in equilibrium with a phosphorazo form (formula II). $\operatorname{Arso}_{2}\operatorname{NH-PO(OR)}_{2} \xrightarrow{} \operatorname{Arso}_{2}\operatorname{N=P(OR)}_{2}(\operatorname{OH})$ (II)(I) The structure of these diesters can hardly be explained by chemical methods. Also for the explanation by physical methods compounds of structures (I) and (II) as samples are necessary in any case. A great number of compounds of structure Card 1/4

APPROVED FOR RELEASE: 08/23/2000

79-28-4-52/60 Dimethyl Esters From Aryl Sulfon-N-Methyl-Amido phosphoric Acids (II are known (Refs 1, 2), while compounds of the structure (I) are unknown. Therefore, it was of interest to alkylate the silver and sodium salts of the diesters of aryl sulfonamidophosphoric acids. It could be expected in this case that either phosphorazo compounds or esters of the N-alkylated aryl sulfonamidophosphoric acids would form because some cases were known in which alkylation of silver and sodium salts took place in one case with nitrogen and in the other with oxygen. The authors investigated methylation of silver and sodium salts of aryl sulfonamidophosphoric acid and dimethyl esters. Methylation of sodium salts was unsuccessful. The sodium salts remained unchanged after long heating with me thyl iodide on a boiling water bath, while they were converted into ill-smelling compounds with dimethyl sulfate. On the other hand, silver salts easily react with methyl iodide under formation of dimethyl esters of the aryl-sulfon-N-methylamidophosphoric acids: $\operatorname{Arso}_{2}\operatorname{Nag-PO(OCH_{3})_{2}+CH_{3}J} \longrightarrow \operatorname{AgJ+Arso}_{2}\operatorname{N(CH_{3})-PO(OCH_{3})_{2}}$ (III)Card 2/4

APPROVED FOR RELEASE: 08/23/2000

. 79-28-4-52/60 Dimethyl Esters From Aryl Sulfon-N-Methyl-Amidophosphoric Acids

By this method compounds of the formula III were produced for $Ar= o-toluyl_{,} \ll$ -maphthyl and β -maphthyl. These compounds react neutrally and are insoluble in alkalies. If boilt for a long time in aqueous alcoholic hydrochloric acid the compounds of formula III are hydrolized under formation of the corresponding N-methyl-aryl-sulfonamides which proves their structure.

$$\operatorname{Arso}_{2} \operatorname{N}(\operatorname{CH}_{3}) - \operatorname{PO}(\operatorname{OCH}_{3})_{2} + \operatorname{H}_{2} \circ \xrightarrow{\operatorname{H}} \operatorname{Arso}_{2} \operatorname{NHCH}_{3}$$

The N-methyl derivatives easily solve in methyl iodide, acetone, benzene, and boiling alcohol while they are difficultly soluble in petroleum ether, and insoluble in water. The compounds of formula III with $Ar = \infty$ and β -naphthyl are crystallized compounds with melting points at 91° and 82°, respectively. The melting points of the isomeric trimethyl esters are at 84 - 85° and 93 - 94°, respectively (Ref 1). The compound (III) with Ar = o-toluyl could not be obtained in pure form. The reaction product formed a thick, oily liquid which cannot be distilled without decomposition. The mentioned reactions as well as the crystalline form and

Card 3/4

Ref and

APPROVED FOR RELEASE: 08/23/2000

APPROVED FOR RELEASE: 08/23/2000

TITLE:	Phenyl-dichloro-phosphazo-sulfonaryls (Fenildikhlorfosfazo- sul'fonarily)
PERIODICAL:	Zhurnal obshchey khimii, 1959, Vol 29, Nr 3, pp 1005-1008 (USSR)
ABSTRACT:	Kirsanov, A. V. (Ref 1) succeeded in synthesizing phosphazo- acyls according to the scheme $AcNH_2 + PCl_5 \rightarrow 2Hc1 + AcN=PCl_3(I)$.
	He and his assistants made use of the reaction (I) (Ref 2) and obtained a series of new phosphoric acid derivatives of various kind. This reaction was, however, not exploited for the synthe- sis of organophosphorous compounds in which the phosphorus atom is linked with the carbon atom. The assumption that the phosphazo reaction is bound to proceed not only with PCl ₅ , but
Card 1/3	as well with tetrachloro-alkyl- and tetrachloro-aryl-phosphorus compounds, trichloro-dialkyl- and trichloro-diaryl-phosphorus compounds and dichloro-trialkyl- and dichloro-triaryl-phosphorus compounds was confirmed experimentally. The authors succeeded in obtaining the phenyl-dichloro-phosphazo-sulfonaryls ac- cording to the scheme

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

1

SHERE HE WAS

CIA-RDP86-00513R001549210014-4

507/79-29-3-54/61

Phenyl-dichloro-phosphazo-sulfonaryls

新生物的

 $\operatorname{ArSO}_2^{\operatorname{NH}_2} + \operatorname{C}_6^{\operatorname{H}_5\operatorname{PCl}_4} \longrightarrow 2\operatorname{HCl} + \operatorname{ArSO}_2^{\operatorname{N}=\operatorname{P}(\operatorname{C}_6^{\operatorname{H}_5})\operatorname{Cl}_2}$ (II) in the case of the reaction of the phenyl-phosphorus-tetrachlorides with the sulfo acid amides of the aromatic series. The obtained compounds are either crystalline or dense viscous liquids which decompose also during the vacuum distillation. They react easily with amines, alcohols, phenolates, and hydrolyze with water to aryl-sulfonamido-phenyl-phosphinic acids according to the scheme (III). The phenyl-dichloro-phosphazo-sulfonaryls may be synthesized as well according to the second phosphazo reaction (IV) (Refs 3,4). With and without solvent not quite pure, crystalline products (by-products) are obtained. The phenyl-dichloro-phosphazo-sulfonphenyl could be obtained according to scheme (IV) (yield 75%) and identified. The phenyldichloro-phosphazo-sulfonaryls of the type $ArSO_2N=P(C_6H_5)Cl_2$ which were obtained according to scheme (I) are given in the table. There are 1 table and 4 references, 3 of which are Soviet.

Card 2/3

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

s/079/60/030/05/32/074 B005/B016 Shevchenko, V. I., Stratiyenko, V. T. Esters of Aryl-sulfonimido-phenyl-phosphinic Acids AUTHORS: Zhurnal obshchey khimii, 1960, Vol. 30, No. 5, pp. 1561-1565 TITLE: TEXT: The authors of the present paper investigated the reactions of PERIODICAL: phenyl-dichloro-phosphazo-sulfonaryls (I) with sodium alcoholates and sodium phenolates. In the reaction of compounds (I) with sodium alcoholates, either dialkyl esters of aryl-sulfonimido-phenyl-phosphinic acids (II) or sodium salts of the monoalkyl esters of aryl-sulfonamido-phenylphosphinic acids (III) are formed in dependence on the quantitative ratio of the initial substances. The reaction scheme is given. Under certain reaction conditions which are indicated the compounds (II) can be obtained easily and in good yield. In Table 1, 14 compounds of type (II) (ArSO2N= =P(C_6H_5)(OAlk)₂) are listed. They are neutral substances which do not react with water. In alcoholic solutions they are readily hydrolyzed by aqueous acids or bases. On alkaline hydrolysis the compounds (III) result. Cara 1/3

APPROVED FOR RELEASE: 08/23/2000
CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4 in the second state of the Esters of Aryl-sulfonimido-phenyl-phosphinic s/079/60/030/05/32/074 Acids B005/B016 aryl-sulfonamido-phenyl-phosphinic acids $(V)(ArSO_2NHPO(C_6H_5)(OC_6H_5))$ by alkaline saponification of the compounds (IV). Table 5 shows 6 compounds of this type. In an experimental part all conversions accomplished are described in detail. The 5 tables mentioned give yields, melting points, and empirical formulas of each compound. Table 1 further contains the percentage contents of alkoxy groups for the compounds (II), Table 4 the nitrogen contents of the compounds (IV), and the Tables 2, 3, and 5 the results of titration with sodium hydroxide for each of the compounds. For the compounds (II), (III), (IV), and (V), appearance and solubility in the common organic solvents are also given, A. V. Kirsanov (Ref. 4) is mentioned in the present paper. There are 5 tables and 4 Soviet references. ASSOCIATION: Dnepropetrovskiy metallurgicheskiy institut (Dnepropetrovsk Institute of Metallurgy) SUBMITTED: March 21, 1959 Card 3/3

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

 1582.5 S/137/62/000/004/128/201 A060/A101 AUTHORS: Shevchenko, V. I., Alpatov, Ye. P. TITLE: Electrolytic etching of metallographic sections with direct observation of the exposed microstructure PERIODICAL: Referativnyy zhurnal, Metallurgiya, no. 4, 1962, 82, abstract 41496 (V sb. "Proiz-vo trub" no. 5, Khar'kov, Metallurgizdat, 1961, 150- 154) TEXT: For exposing the microstructure of chemically stable high-alloy and heat-resisting alloys of particular effectiveness is the method of electrolytic etching based upon the nonuniform anodic dissolution of various structural constituents of the metal and its cumulative dissolution along the grain bound- aries. The authors have designed an adapter for the metal microscope, which allows one to carry out electrolytic etching on the whole investigated surface of the section with direct observation of the exposed microstructure. The direct observation of the electrolytic etching process eliminates underetching and overetching of sections and guarantees a high-quality exposure of the micro- structure. A diagram of the designed set-up and the description of its principle 	-2672 (PATT 118-27-021-24-26-27-24-26-26-27-24-26-26-27-24-26-26-27-24-26-26-26-26-26-26-26-26-26-26-26-26-26-	un den en e	<u>/////////////////////////////////////</u>	
 AUTHORS: Shevchenko, V. I., Alpatov, Ye. P. TITLE: Electrolytic etching of metallographic sections with direct observation of the exposed microstructure PERIODICAL: Referativnyy zhurnal, Metallurgiya, no. 4, 1962, 82, abstract 41496 (V sb. "Proiz-vo trub" no. 5, Khar'kov, Metallurgizdat, 1961, 150-154) TEXT: For exposing the microstructure of chemically stable high-alloy and heat-resisting alloys of particular effectiveness is the method of electrolytic etching based upon the nonuniform anodic dissolution of various structural constituents of the metal and its cumulative dissolution along the grain boundaries. The authors have designed an adapter for the metal microscope, which allows one to carry out electrolytic etching on the whole investigated surface of the section with direct observation of the exposed microstructure. The direct observation of the electrolytic etching process eliminates underetching direct observation of the microscope in the micro- 		s/137/	/62/000/004/128/201 1101	
 vation of the exposed microstructure PERIODICAL: Referativnyy zhurnal, Metallurgiya, no. 4, 1962, 82, abstract 41496 (V sb. "Proiz-vo trub" no. 5, Khar'kov, Metallurgizdat, 1961, 150- 154) TEXT: For exposing the microstructure of chemically stable high-alloy and heat-resisting alloys of particular effectiveness is the method of electrolytic etching based upon the nonuniform anodic dissolution of various structural constituents of the metal and its cumulative dissolution along the grain bound- aries. The authors have designed an adapter for the metal microscope, which allows one to carry out electrolytic etching on the whole investigated surface of the section with direct observation of the exposed microstructure. The direct observation of the electrolytic etching process eliminates underetching 		Shevchenko, V. I., Alpatov, Ye. P.		
 PERIODICAL: Referativnyy zhurnal, Metallurgiya, no. 4, 1962, 82, abstract 41496 (V sb. "Proiz-vo trub" no. 5, Khar'kov, Metallurgizdat, 1961, 150- 154) TEXT: For exposing the microstructure of chemically stable high-alloy and heat-resisting alloys of particular effectiveness is the method of electrolytic etching based upon the nonuniform anodic dissolution of various structural constituents of the metal and its cumulative dissolution along the grain bound- aries. The authors have designed an adapter for the metal microscope, which allows one to carry out electrolytic etching on the whole investigated surface of the section with direct observation of the exposed microstructure. The direct observation of the electrolytic etching process eliminates underetching 		Electrolytic etching of metallographic sections v vation of the exposed microstructure	with direct obser-	
heat-resisting alloys of particular effectiveness is the method of curcular etching based upon the nonuniform anodic dissolution of various structural constituents of the metal and its cumulative dissolution along the grain bound- aries. The authors have designed an adapter for the metal microscope, which allows one to carry out electrolytic etching on the whole investigated surface of the section with direct observation of the exposed microstructure. The direct observation of the electrolytic etching process eliminates underetching	PERIODICAL:	Referativnyy zhurnal, Metallurgiya, no. 4, 1962, (V sb. "Proiz-vo trub" no. 5, Khar'kov, Metallurg	82, abstract 41496 gizdat, 1961, 150-	
	etching bas constituent aries. The allows one of the sect direct obse	ing alloys of particular effectiveness is the meth- ed upon the nonuniform anodic dissolution of vario s of the metal and its cumulative dissolution alon, authors have designed an adapter for the metal mi to carry out electrolytic etching on the whole inv ion with direct observation of the exposed microst rvation of the electrolytic etching process elimi	us structural g the grain bound- croscope, which estigated surface ructure. The nates underetching osure of the micro-	r
				•

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

CIA-RDP86-00513R001549210014-4

s/137/62/000/004/128/201

A060/A101

Electrolytic etching of metallographic ...

of operation are given. The set-up is designed for electrolytic etching of sections in nonagressive media. The exposed microstructure may be investigated and photographed with enlargements up to 450 x, without taking it out of the electrolyte. Photographs of microstructure obtained in the process of electrolytic etching are appended. Besides its use in high-quality exposure of microstructure, the proposed method may be useful in investigating various structural constituents of complicated alloys. The study of microstructure without extracting the section from the electrolyte is particularly expedient to carry out in cases when the contact of the etched surface with air, and the rinsing introduce alterations in the exposed microstructure.

G. Tolmacheva

[Abstracter's note: Complete translation]

Card 2/2

APPROVED FOR RELEASE: 08/23/2000

	26 389 S/032/61/027/008/012/020 B103/B203	
Method of cathodic visualization	B1057 B205	
of ground sections of high-alloy steels. Ca	athodic etching was conducted	
in a 400 cm ³ bath so that the polished secti in the electrolyte at a distance of 10 - 20 stainless-steel plate) lying on the bottom. was used as a d-c source. The ground section electrolytically. For distinct visualization	mm above the anode (polished A B(A-6M(VSA-6M) rectifier ons were previously polished	
density of 150 - 200 a/dm^2 had to be applied	d to the cathode for 1 - 2 min;	
current densities below 100 a/dm^2 within 1 m grades: $1X18H9T(1Kh18N9T)$ and $X25T(Kh25T)$ of class). The structure visualized in this we anodic treatment with respect to distinctness structure of the following high-alloy steels	f the austenite and ferrite ay was not inferior to the ss. The authors also studied the	
$(Kh20N14S2), \exists \mu 847(EI847) = X16H15M3B(Kh16N1)$	15M3B), ∋N853(EI853) = X16(2H62	
(Kh16S2MB2), JN888(EI888) = X13H14F(4B(Kh13M a chemical and an electrolytic treatment in	N14GS4B), and others. Hitherto,	-
recommended for etching these steels, which, guaranteed satisfactory visualization of the	, however, had not always	•
Card 2/4		
	•	

The second s

CIA-RDP86-00513R001549210014-4

Method of cathodic visualization ...

26389 S/032/61/027/008/012/020 B103/B203

variety of procedures disturbed the metallographic studies. Anodic etching rendered visible the microstructure of bimetal specimens of high-alloy steels only with difficulty since these steels have different electric resistances. Thus, only the structure of one of these steels became visible while the structure of the other one had to be chemically visualized, in addition. The authors' method visualizes the microstructure of bimetal specimens of steels of different classes (e. g., EI847 - EI853) which hitherto had not been possible with other etching methods. The structure visualized in the manner described may be studied with a light or electron microscope. In the latter case (with the use of titanium replicas), the replicas can be more easily separated from ground sections treated by the cathodic method than from those treated by the anodic method. The relief of the section surface in the former case has no deep boundary grooves such as are formed in anodic etching. The titanium replicas were separated in the reagent by N. M. Popova (Zavodskaya laboratoriya, XI, 10, 887 (1945)). There are 4 figures and 7 references: 5 Soviet-bloc and 2 non-Soviet-bloc.

Card 3/4

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4"

1.5

 "APPROVED FOR RELEASE: 08/23/2000"
 CIA-RDP86-00513R001549210014-4

 26389
 \$/032/61/027/008/012/020

 Method of cathodic visualization...
 \$/032/61/027/008/012/020

 ASSOCIATION:
 Ukrainskiy nauchno-issledovatel'skiy trubnyy institut

 (Ukrainian Scientific Research Institute of Pipes)
 Y

APPROVED FOR RELEASE: 08/23/2000

APPROVED FOR RELEASE: 08/23/2000

PURISHING TO STATE

CIA-RDP86-00513R001549210014-4

28288 1.1900 also 1057, 1160 s/076/61/035/010/006/015 B101/B110 Shevchenko, V. I., and Alpatov, Ye. N. (Dnepropetrovsk) AUTHORS: Structural etching in electrolytic polishing TITLE: Zhurnal fizicheskoy khimii, v. 35, no. 10, 1961, 2280-2284 PERIODICAL: TEXT: The authors studied the structural etching in electrolytic polishing of stainless steel 1X18H9T (1Kh18N9T) of the austenite class, and X25T (Kh25T) of the ferrite class. Their principal aim was the inhibition of structural etching. The surface of steel samples was directly examined under 450-fold magnification during electropolishing. Pictures were taken by a $\exists_{\text{CHNT}} - C$ (Zenit-S) photocamera. Electropolishing took place with an anodic current density $D_{g} = 55-65 \text{ a/dm}^2$ (V = 2.5-3.0 v). No gas was formed. The following results were recorded at $D_{g} = 50 \text{ a/dm}^2$: Etching appeared after current was turned on. Anode surface was dark. yellowish passivated film formed, grinding traces were smoothed, anode structure became visible, relief edges of crystallites became prominent. This current density was not sufficient to effect dissolution of relief edges. The structural relief vanished at $D_{\mu} = 60 \text{ a/dm}^2$. If Card 1/2

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

28288

B101/B110

s/076/61/035/010/006/015

Structural etching in ...

 $D_a = 55-60 a/dm^2$ was used from the beginning, the anode structure did not become visible. If polishing is briefly (2-3 sec) interrupted by turning off the current, it will continue without structural changes on the anode surface once the current is turned on again. Thus, anode passivation is not eliminated by a brief interruption of the polishing process. Structural etching was not observed until current was turned off for an appreciable length of time. Kh25T ferrite steel was electropolished with $D_a = 60-65 a/dm^2$. The same results were obtained as with austenite steel. The conclusions reached by S. I. Krichmar, V. P. Galushko (Zh. fiz. khimii, $\frac{30}{578}$, 1956) to the effect that structural etching was inhibited in the limit current region during electrolytic polishing were thus confirmed. There are 3 figures and 7 references: 5 Soviet and 2 non-Soviet.

SUBMITTED. February 19, 1960

Card 2/2

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

KIRSANOV, A.V. [Kirsanov, O.V.], akademik; SHTEPANEK, A.S.; SHEVCHENKO, V.I. Reaction of diphenyl phosphorus trichloride and diphenyl phosphorus dichloride with urethan. Dop. AN URSR no.1:63-65 '62. (MIRA 15:2) 1. Institut organicheskoy khimii AN USSR. 2. AN USSR (for Kirsanov. (Phosphorus organic compounds) (Carbamic acid)

APPROVED FOR RELEASE: 08/23/2000

SHEVCH	HENKO, V.I.; SHTEPANEK, A.S.; KIRSANOV, A.V.	
	Ester's of diphenylchloro- and triphenylphosphazo carbonic acid. Zhur.ob.khim. 32 no.8:2595-2600 Ag 162. (MIRA 15:9)	
	 Institut organicheskoy khimii AN Ukrainskoy SSR. (Phosphazo compounds) (Carbonic acid) (Esters) 	

APPROVED FOR RELEASE: 08/23/2000

: <u>27-1-65</u>	ENT(d)/ENT(1)/EEC(b)-2/ENA(h)) Pn-4/Pac-4/Peb/Pi-4/Pj-4	AFWL/	
	R: AP4047248	S/0142/64/007/004/0517/0)523	
	1rav'yev, V. V.; Shevchen		25	
TITLE: Two	-stage collector potential de	epression in O-type <u>TW</u> and I	BW_tubes	
SOURCE. IV	UZ. Radiotekhnika, v. 7, n	10, 4, 1964, 517-523	1	
SOURCE. IV	ULI Radiotokiling	• ·	1	
		W tube, O type tube efficiency	7	
TOPIC TAGS	: O type tube, TW tube, BV Based on recent (1953-62)	W tube, O type tube efficiency American findings, a calcula O-type tubes with a 2-stage	tion method	
TOPIC TAGS ABSTRACT: of the maxim depression is	: O type tube, TW tube, BW Based on recent (1953-62) um possible efficiencies of offered. The load efficien $\eta = \frac{\eta_a}{1 - \chi_1 z_{1m}(1 - p_{1m}) - \chi}$	W tube, O type tube efficiency American findings, a calcula O-type tubes with a 2-stage icy of the tube is given by: $\frac{1}{2} (\alpha_{2m} - \alpha_{1m})(1-p_{1m})$	collector	
TOPIC TAGS ABSTRACT: of the maxim depression is	: O type tube, TW tube, BW Based on recent (1953-62) um possible efficiencies of offered. The load efficien $\eta = \frac{\eta_a}{1 - \chi_1 z_{1m}(1 - p_{1m}) - \chi}$ the electronic efficiency:	W tube, O type tube efficiency American findings, a calcula O-type tubes with a 2-stage acy of the tube is given by:	tion method collector	
TOPIC TAGS ABSTRACT: of the maxim depression is	: O type tube, TW tube, BW Based on recent (1953-62) um possible efficiencies of offered. The load efficien $\eta = \frac{\eta_a}{1 - \chi_1 z_{1m}(1 - p_{1m}) - \chi}$ the electronic efficiency:	W tube, O type tube efficiency American findings, a calcula O-type tubes with a 2-stage acy of the tube is given by: $\frac{(\alpha_{1m}-\alpha_{1m})(1-p_{1m})}{\alpha_{1m}}$	tion method collector	

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

20.98

L 13791-65 ACCESSION NR: AP4047248 normalized electron kinetic-energy losses. On the strength of the above formula, curves of the maximum possible efficiencies for single- and 2-stage collector depression are plotted, and the realizability of high-efficiency tubes is discussed. Orig. art. has: 7 figures and 10 formulas. ASSOCIATION: none SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011	2120201.2001000000000000000000000000000			A NUMBER OF THE OWNER OF THE	
ACCESSION NR: AP4047248 normalized electron kinetic-energy losses. On the strength of the above formula, curves of the maximum possible efficiencies for single- and 2-stage collector depression are plotted, and the realizability of high-efficiency tubes is discussed. Orig. art. has: 7 figures and 10 formulas. ASSOCIATION: none SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011					
ACCESSION NR: AP4047248 normalized electron kinetic-energy losses. On the strength of the above formula, curves of the maximum possible efficiencies for single- and 2-stage collector depression are plotted, and the realizability of high-efficiency tubes is discussed. Orig. art. has: 7 figures and 10 formulas. ASSOCIATION: none SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011					
ACCESSION NR: AP4047248 normalized electron kinetic-energy losses. On the strength of the above formula, curves of the maximum possible efficiencies for single- and 2-stage collector depression are plotted, and the realizability of high-efficiency tubes is discussed. Orig. art. has: 7 figures and 10 formulas. ASSOCIATION: none SUBMITTED: 22May63 ENGL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011				L. L.N.S.A.	
ACCESSION NR: AP4047248 normalized electron kinetic-energy losses. On the strength of the above formula, curves of the maximum possible efficiencies for single- and 2-stage collector depression are plotted, and the realizability of high-efficiency tubes is discussed. Orig. art. has: 7 figures and 10 formulas. ASSOCIATION: none SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011	T 10201 CC				
normalized electron kinetic-energy losses. On the strength of the above formula, curves of the maximum possible efficiencies for single- and 2-stage collector depression are plotted, and the realizability of high-efficiency tubes is discussed. Orig. art. bas: 7 figures and 10 formulas. ASSOCIATION: none SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011					
formula, curves of the maximum possible efficiencies for single- and 2-stage collector depression are plotted, and the realizability of high-efficiency tubes is discussed. Orig. art. has: 7 figures and 10 formulas. ASSOCIATION: none SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011	ACCESSION NR: AP40472	; 40		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
formula, curves of the maximum possible efficiencies for single- and 2-stage collector depression are plotted, and the realizability of high-efficiency tubes is discussed. Orig. art. has: 7 figures and 10 formulas. ASSOCIATION: none SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011					-
formula, curves of the maximum possible efficiencies for single- and 2-stage collector depression are plotted, and the realizability of high-efficiency tubes is discussed. Orig. art. has: 7 figures and 10 formulas. ASSOCIATION: none SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011	normalized electron kinet	c-energy losses. On the sti	rength of the above		
collector depression are plotted, and the realizability of high-efficiency tubes is discussed. Orig. art. has: 7 figures and 10 formulas. ASSOCIATION: none SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011	formula, curves of the ma	ximum possible efficiencies	for single- and 2-stage		
discussed. Orig. art. has: 7 figures and 10 formulas. ASSOCIATION: none SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011	collector depression are p	lotted, and the realizability	of high-efficiency tubes in	3	
ASSOCIATION: none SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011	discussed. Orig. art. ha	s: 7 figures and 10 formulas	i e		
SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011					
SUBMITTED: 22May63 ENCL: 00 SUB CODE: EC NO REF SOV: 007 OTHER: 011	ASSOCIATION: DODA		-		
SUB CODE: EC NO REF SOV: 007 OTHER: 011	ASSOCIATION. none	م در سرم د مند از ماین می در در در از ماند و در از مرکز از مرکز از م	and strategy and a second s		
SUB CODE: EC NO REF SOV: 007 OTHER: 011	arm 1 (1997) D	n na statistica engli e l'anne e la consensa d'alla da cala constante de la serie de la serie de la serie de la La constante de la constante de	ENCL: 00		
SUB CODE. EC	SUBMITTED: 22May03		Davoga ee		
SUB CODE. EC			0777777.011		
Card 2/2	SUB CODE: EC	NO REF SOV: 007	OTHER: OII		
Card 2/2					
Card 2/2					
Card 2/2				ł	
Card 2/2			·		
Card 2/2				i	
Card 2/2		•			
Card 2/2					
Card 2/2					
Card 2/2					
	Card 2/2				0
					- · · ·

4.2°					RM		
	L 52794-65	Sat(=)/ep	F(c)/EMP(j)/	T/ Pc-4/Pr-4			
	ACCESSION NR	: AP5016190		UR/	0079/64/034/012/	3954/3955	
	AUTHOR: Shey	chenko, V.	I.; Stratiyen	ko, V. T.; Pinch	uk, A.M.	22	
	TITLE: Triph	enylphospha	zosulfonylary	19 /			
	SOURCE: Znur	nal obshche;	y khimii, v.	34, no. 12, 1964	, 3954-3955		
	TOPIC TAGS: amide	organic pho	sphorus compo	und, organic sul	fur compound, ch	nloride, organi	ic C
	phosphorus fonylaryls trichloride	dichloride in 89-94% y and triphe	on <u>arenesulf</u> ield. The r nylphosphoru	es place under emides to form eaction rates o s dichloride wi has 1 formula a	triphenylphosp f diphenylphosp th arecesulfam	horus	
i de fator	ASSOCIATION	Institut o	rganicheskoy	khimii Akademii ences, Okrainian	nauk Tkrainskoy	SSR (Institut	<u>e</u>
	SUBMITTED:	OSep63	۱.	ENCL: 00	SUB CO	DE: OC, GC	
	NO REF SOV:	003		OTHER: CO1	JPRS		

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

13.4 C4365C2

L 52797-65 ENT(m)/EPF(c)/ENP(j) Pc-4/Pr-4 RM ACCESSION NR: AP5016191 UR/U079/64/034/012/3955/3958 29 AUTHOR: Shevchenko, V. I.; Pinchuk, A. M.; Kozlove, N. Ya. TITLE: Mixed diarylchlorophosphines 1 SOURCE: Thurnal obshchey khimii, v. 34, no. 12, 1964, 3955-3958 TOPIC TAGS: phosphinic acid, chloride, organic phosphorus compound, chlorinated				
AUTHOR: Shevchenko, V. I.; Pinchuk, A. M.; Kozlove, N. Ta.			20	
SOURCE: Thurnal obshchey khimii, v. 34, no. 12, 1964, 3955-3958	•		B	
			1 - / 1	
organic compound	TOPIC TAGS: phosphinic acid, c organic compound	nloride, organic phosphorus compound, chlor		li i i i i i i i i i i i i i i i i i i
Abstract: Mixed diarylchlorophosphines were prepared on the basis of the comparatively readily available mixed diarylphosphinic acids or their chlorides. In the reaction of diarylphosphinic acids or their chlorides with phosphorus pentachloride, diaryldichlorophosphonium	the comparatively readily ave their chlorides. In the read	ilable mixed diarylphosphinic acids or tion of diarylphosphinic acids or their		
herachlorophosphorates, [Ar2PCl2]Pcl6, are formed in almost quantitative yield, upon heating with diarylphosphinic acid chlorides, they give diaryltrichlorophosphorus. The diaryltrichlorophosphorus compounds and hearyldichlorophosphonium herachlorophosphorates are not reduced by methyl	herachlorophosphorates, [Arg] yield, upon heating with dian diaryltrichlorophosphoras.	Cl ₂]Pcl ₆ , are formed in almost quantitat ylphosphinic acid chlorides, they give "he diaryltrichlorophosphorus compounds a	and	
inclusion of the diaryldichlorophosphonium hexachlorophosphorates with red phosphorus	nic acid chlorides, methyl ch	ion results in the formation of diarylph loride, and phosphorus trichloride. Red	nosphi- Nuction	
Cord	Cord ./2			

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

16.212 16.212

	/R RLLLASL. 00/23/2000		
	forophosphines. Nitro-subst epared by this method (only arylphosphinic acids are iso y 50% yield). Orig. art. has	CUN CHINITICO AT AVA	
LARGE TITON. To ditut and	anicheskoy khimii Akademii na demy of Sciences, Ukrainian S	uk Ukrainskoy SSR (Institu SR)	te
SUBMITTED: 30Sep63	ENCL: 00	SUB CODE: OC, GC	
NO REF SOV: OOL	OTHER: 003	JPRS	
رور Card 2/2			

	alloys -140	
TITLE: <u>Deformation</u> and recrystallization of <u>a-titanium</u> SOURCE: AN SSSR. Izvestiya. Metally, no. 2, 1965, 13 TOPIC TAGS: titanium alloy, <u>stainless steel</u> , metal defor zation, metal <u>mechanical property</u> ABSTRACT: The authors aim was to determine the relative rolling of the a-Ti alloys; commercial purity Ti, TiAl2 neutral elements, TiAl22Zr2.5 and TiAl2.5Sn3. A paralle out for comparison with Kh18N10T stainless steel. Roll tended to reductions of 90 per cent for the pure Ti and others 50, 40, 55 and 30 percent respectively. The reduction observed (from the surface) twins coincided with the let The pure Ti strain-hardened more quickly than the stain	. 1. (Dnepropetrovsk) & alloys -140	
SOURCE: AN SSSR. Izvestiya. Metally, no. 2, 1965, 13 TOPIC TAGS: titanium alloy, <u>stainless steel</u> , metal defe zation, metal <u>mechanical property</u> ABSTRACT: The authors aim was to determine the relative rolling of the a-Ti alloys; commercial purity Ti, TiAl2 neutral elements, TiAl22Zr2.5 and TiAl2.5Sn3. A paralle out for comparison with Kh18N10T stainless steel. Roll tended to reductions of 90 per cent for the pure Ti and others 50, 40, 55 and 30 percent respectively. The reduction observed (from the surface) twins coincided with the let The pure Ti strain-hardened more quickly than the stain	-140	
zation, metal mechanical property ABSTRACT: The authors aim was to determine the relative rolling of the a-Ti alloys; commercial purity Ti, TiAl2 neutral elements, TiAl22Zr2.5 and TiAl2.5Sn3. A paralle out for comparison with Kh18N10T stainless steel. Roll tended to reductions of 90 per cent for the pure Ti and others 50, 40, 55 and 30 percent respectively. The red observed (from the surface) twins coincided with the le	mation motal necrustall	
rolling of the a-Ti alloys; commercial purity Ti, TiAl2 neutral elements, TiAl22Zr2.5 and TiAl2.5Sn3. A paralle out for comparison with <u>Kh18N10T</u> stainless steel. Roll tended to reductions of 90 per cent for the pure Ti and others 50, 40, 55 and 30 percent respectively. The red observed (from the surface) twins coincided with the le The pure Ti strain-hardened more quickly than the stain	rmation, metal recrystall	
tended to reductions of 90 per cent for the pure Ti and others 50, 40, 55 and 30 percent respectively. The red observed (from the surface) twins coincided with the le The pure Ti strain-hardened more quickly than the stain	5, TiAl5 and α alloys wit l investigation was carri	h ed
observed (from the surface) twins coincided with the le The pure Ti strain-hardened more quickly than the stain	stainless steel and for t	he
	sening in reduction limit ess and the α -alloys even	• * *
Card 1/2		

THE REAL PROPERTY AND A DRIVE OF THE OWNER.

7

and a strength of the state of the strength of

為結理

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

	जान्त्रम् २ २३२	n an			
		L 55853-65 Accession NR: AP5013116	·		
5 2 C 2 C	, •	duced 20 per cent and annealed to gi ed alloys. Alloying with aluminum i	ncreases both the oaset (temperature and the	
		range of recrystallization, in the v alloys studied, Sn and Zr do not exh behavior. Hot hardness measurements	icinity of 75 and 100°C m ibit a noticeable effect	respectively for the on recrystallization	
	:	ture corresponded to the recrystalli tables.	zation range. Orig. art.	. has: 4 figures, 2	
त्र त्र के किन्द्र 		ASSOCIATION: none .	۰ ن	• • • •	
, All		SUBMITTED: 10Dec63	ENCL: 00	SUB CODE: MM	
		NO REF SOV: 004	OTHER: 000		
	-		· ·		
	دی	Card 2/2		· · · · · · · · · · · · · · · · · · ·	_

L 58362-65 ENT(r	n)/EWA(d)/T/EWP(t)/EwP(z)/EWF		1
ACCESSION NR: AP5	013157	P(b)/EWA(c) IJP(c) MJH UR/0129/65/000/00	05/0038/0043
		669.295:620.186.5	29
AUTHOR: Alferova,	N. S.; Shevchenko, V. I.		27
TITIE: Peomotall	ization of alpha Ti allow		× 8
TITLE. Recrystall	ization of alpha-Ti alloys		
SOURCE: Metallove	deniye i termicheskaya obrab	otka metallov, no. 5, 196	5, 38-43
TOPIC TAGS: t <u>itan</u>	ium, recrystallization, nonf	errous metal alloy, metal.	lography
ለፀርጥወለርጥ፣ ጥክል ከውል።			
allovs used had var	rystallization properties of rying Al, Zr, and Sn content:	a-alloys of Ti were stud:	led. The
varving amounts af	ter appropriate treatment, and	nd appealed at temperature	eu by
respective polymor	phic transformation temperation	ures. The progress of rec	crystalliza-
tion was followed h	by x-ray and metallographic a	analysis. Data are given	showing the
effect of deformat.	ion and alloying on the annea	aling temperature. Grain	size was
Maxima were observe	nd the average grain diameter ed for low deformations. Mic	r was plotted against & re	eduction.
tared. Three dimen	nsional graphs are given for	all of the allows Crain	ata are com-
information and ann	nealing temperature were plot	tted for alloys in the hot	-worked.
is respect and an	nnealed states. All curves a	are similar in appearance	with maxima

NEX NEITER

CIA-RDP86-00513R001549210014-4

L 58362-65 ACCESSION NR: AP5013157 for critical degrees of cold working, after which the grain size gradually demeases. At higher annealing temperatures, grain growth was generally observed. in alloyed materials, this increase was insignificant when compared to unalloyed The Marchess vs. annealing temperature was also plotted for all of the metals. Seftening was followed graphically, and the effects of alloying were most apparent. Wilhad a much lower recrystallization temperature and also nad a much lower final hardness when compared with the other materials (HV-160 vs. HV- from 230 to 280 for alloyed metals). Orig. art. has: 6 figures, 1 table. ASSOCIATION: none SUB CODE: MM ENCL: 00 SUBMITTED: CO OTHER: 000 NO REF SOV: 000 Card 2/2

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

• • • • • •		VEPA(2122 P844/F240	LESSTOLLEL	
1	4F5012051	UR/0057/6	5/035/005/0865/0874	
	dze, D.G.; Shevchenko, V		्र इ.	
TITLE: On the	e nonlinear theory of low	-frequency oscillations	excited in a plasma	
	l tekhnicheskoy fiziki, v	v. 35, no. 5, 1965, 865-	874	
TOPIC TAGS: pl instability, pl	lasma beam interaction, no lasma wave, ion temperate	onlinear system, plasma ure, ion beam, plasma	heating, plasma	
the other of the plasma by with	Shapiro and K.N.Stepanor f the present authors, his charged particle beams The present paper re basis the emittation of	(ZhETF, 42, 1515, 1962; presents a continuation	44, 613, 1963; ZhTF, of this earlier work. mency oscillations is	
	ion beam in the presence i carillations at harmon graloping instability, i is treated in a hydroiv	e of a magnetic field, a lass of the ion Larmor fi www.ch the ion beam rea	requency. The initial mains essentially	
Card 1/2				
		مەم يې مەربىي بىرى يې مەم يې		

1	:		·.	
ACCESSION N	R: AP5012051		~	
which is a m	the energy lost by the	distribution functions. T apersion levelops in th The exposition rests heav is calculated, and it is f he beam can appear as ther r gratitude to Ya.B.Faynbe ssistance with the work.	ily on the earlier work ound that a considerabl mal energy of the plass org and V.D.Shapiro for	e
Ţ.			2	
ASSOCIATIO	Mt none			
QUIN LITTED:	16Jul64	ENCL: 00	SUB CODE: ME, NP	
		OTHER: CO1	ATD PRESS: 3257	
	j;			
un i 2/2			. <u></u> <u></u>	

"APPROVED FOR RELEASE: 08/23/2000 CIA

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

(1) $\mu_{m}m(n)$ (π) $\frac{\text{LiP}(n)}{(n)}$		1494) - T
$\frac{1.5377-66}{UR/0149/65/000/005/0122/0127} 48$	4,1	
L 5377-66 EWI (M)// MJW/JD/HW 0R/014970570307057		
$\mathbf{e}_{\mathbf{r}}$, $\mathbf{e}_{\mathbf{r}}$		
AUTHOR: <u>Alferova</u> , N. S.; <u>Shevchenko</u> , V. I		
AUTHOR: <u>Alferova</u> , N. S.; <u>Shevchenko</u> , $\psi_{1,5}$ $\psi_{1,5}$ TITLE: Effect of alloying on the deformability and recrystallization of α - <u>titanium</u> $\frac{44,55}{77}$		
TITLE: Effect of alloying on the		
TITLE: Effect of deformability, metallurgiya, no. 5, 1965, 122-127 SOURCE: IVUZ. Tevetnaya metallurgiya, no. 5, 1965, 122-127		
SOURCE: IVUZ. Tsvetnaya metallurgiya, not o, TOPIC TAGS: titanium base alloy, <u>aluminum</u> containing alloy, deformability, metal TOPIC TAGS: titanium base alloy, <u>aluminum</u> containing alloy, deformability, metal		
TOPIC TAGS: titanium base functure 27 recrystallization grain structure 27		
investigation of the relative the alloys in-		
ABSTRACT: The results of an investigation of the relative deformability of u in alloys in cold state during longitudinal strip rolling are presented. The alloys in vestigated were: the binary alloys TiAl2,5 and Tial5 and the ternary alloys vestigated were: the binary alloys TiAl2,5 and Tial5 and the ternary alloys vestigated were: the binary alloys TiAl2,5 and Tial5 and the ternary alloys		
wootigated were and anticities commercial yours of an anticited		
TIA122r2,) and Internal in industrial vacuum and imorphic trans-		
I formation of the difference found to be over a same s and		
besting at the late of the sho sligve TIAL() interstation with that Al		
heating at the rate of 10 deg/min, were roughly TiAl2,5, TiAl5, TiAl2272,5, and heating at the rate of 10 deg/min, were roughly TiAl2,5, TiAl5, TiAl2272,5, and for commercial-purity Ti and for the alloys TiAl2,5, TiAl5, TiAl2272,5, and for commercial-purity Ti and for the alloys TiAl2,5, TiAl5, TiAl2272,5, and for commercial-purity Ti and for the alloys TiAl2,5, TiAl5, TiAl2272,5, and for commercial-purity Ti and for the alloys TiAl2,5, TiAl5, TiAl2272,5, and for commercial-purity Ti and for the alloys TiAl2,5, TiAl5, TiAl2272,5, and for commercial-purity Ti and for the alloys TiAl2,5, TiAl5, TiAl2272,5, and for commercial-purity Ti and for the alloys TiAl2,5, TiAl5, TiAl2272,5, and for commercial-purity Ti and for the alloys TiAl2,5, TiAl5, TiAl2272,5, and the for commercial-purity Ti and for the alloys TiAl2,5, TiAl5, TiAl5, TiAl2272,5, and TiAl2583, respectively, which is in satisfactory agreement with the theory that Al TiAl583, respectively, which is in satisfactory agreement with the theory that Al TiAl583, respectively, which is in satisfactory agreement with the theory that Al TiAl583, respectively, which is in satisfactory agreement with the theory that Al TiAl583, respectively, which is in satisfactory agreement with the theory that Al TiAl583, respectively, which is in satisfactory agreement with the theory that Al TiAl583, respectively, which is in satisfactory agreement with the theory that Al TiAl583, respectively, which is in satisfactory agreement with the theory that Al TiAl583, respectively, which is in satisfactory agreement with the theory that Al TiAl583, respectively, which is in satisfactory agreement with the theory that Al TiAl583, respectively, which is in satisfactory agreement with the theory the theory the theory the theory the theory theory theory the theory the theory theor		
TiAl5Sn3, respectively, which is in satisfies on Ti varieties, while 21 and 02 TiAl5Sn3, respectively, which is an α -stabilizer with respect to its effect on Ti varieties, while 21 and 02 TiAl5Sn3, respectively, small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of the point relatively small quantities exert virtually no effect on the position of th		
Card 1/3 09010.300	a la tradition de la companya de la	
and a second	SB 1.47	

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

-94-7

· · · ·
44 -94		
	L 5377-66 ACC NR: Ap5027099 of polymorphic transformation. Strips of the investigated alloys were subjected to single and multiple reduction by cold rolling in a four-high mill at the fixed rate of 0.96 m/sec, with deformation resistance being determined during the rolling. Commercial Ti was found to display the highest plasticity: its single reduction reached 75% and multiple reduction, 90%, whereas the maximum reduction of α -alloys of Ti was much lower, amounting to 55, 50, 40, and 30%, respectively for the alloys TiAl22r2,5, TiAl2,5, TiAl5, and TiAl5Sn3. As the Al content increases, deformability during cold rolling decreases markedly. Tin also somewhat reduces the deformability (for TiAl5Sn3 alloy, as compared with TiAl5 alloy). Zirconium, on the other hand, has no effect on deformability. As for recrystallization in the investigated alloy, it was determined for strips with equiaxial grain structure of the α -phase, by means of radiometallographic and microstructural examinations. It was found that alloying Ti with Al leads to a rise in the recrystallization temperature of the al- loys and in the temperature range of primary recrystallization, displaces the cri-	
	tical point of deformation in the direction of higher values of reduction by rol- ling, and retards cumulative recrystallization. Alloying Ti.with extra amounts of Zr and Sn does not appreciably affect these features of the recrystallization process. Orig. art. has: 2 figures, 1 table.	
	ASSOCIATION: Vsesovuznyv nauchno-issledovatel'skiy trubnyy institut (All-Union	•
	44,57	
	2/3	

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

ACC NR: AP	5027099				: 		بند (10 المار). براجع المراجع براجع المراجع المراجع		Ó	
Scientific]	Research	Tubing	Institute	e)						
SUBMITTED:	22Jun64			ENCL:	00	ទប	B CODE:	m, ss		
NO REF SOV:	002			OTHER:	000					•
	et Algen an g									
	•									
		· ·								
· · · · ·				ning Second						
								ų.		
PC -		e di Anna an								
Card 3/3										

	R AP60126	$\frac{(j)}{EWT(\underline{n})}$		COUDON	1000 mm /			n
					CODE: UR/OO	79/65/035/0	02/0363/0364	
AUTHOR	: <u>Shevcher</u>	<u>iko, V. I.;</u> S	tratiyenko), V. T.; Pi	nchuk, A. M.		27 .	
ORG: UkrSSR	Institute o	of Organic che		. –		icheskoy ki	D 11mii AN	
TITLE:	•	tolylchloroph			1 Contraction of the second se	•		
SOURCE	: Zhurnal	obshchey khir	nii, v. 35	, no. 2, 19	5, 363-364			
TOPIC 1 organic	MGS: amin phosphoro	e, alcohol, h us compound,	nydrolysis chlorinat	, chemical : ed organic (eaction, org	anic sulfur	compound	
Cold wa of aren	ter and no	-p-tolylchlor and other co ist air slowl mides of phen	y hydroly y hydroly	ontaining an 20 these ary	active hydro ls with the f	ogen atom.		
[JPRS]	CULE IS IS	5°, and the r	eaction t	ime is 0.15	hours. Orig	art. has:	2 tables.	
	E: 07 /	SUBM DATE:	13Dec63 ,	/ ORIG REF:	001 / 0TI	IREF: OOL		
SUB COD		•		•				2
SUB COD								
SUB COD						·		

<u>L 25785-66</u> EWP(j)/EWT(m ACC NR: AP6015921)/T IJP(c) RM Source	CODE: UR/0286/65/0	0/015/0031/0031	
		가슴다는 그 날씨가 가지?	47	
INVENTOR: Kirsanov, A. V.	; Shevchenko, V. I.; Tka	ch, V. P.		
ORG: none		4		
		Conti	Picata No.	
TITLE: Method for obtain	ing trially loxyphosphaze	SULLONVLAPVIS-COLUL		
173227, Class C 07f				
SOURCE: Byulleten' izobr	eteniy i tovarnykh znako	ov, no. 15, 1965, 31		
TOPIC TAGS: polymer, org			pound, organic	
nitrogen compound	anto huorhor an ori't and			
_		hosphazosulfonvlaryls	distinguished	
by the fact that trichlor allyl alcohol in the pres sodiumchloramide with tri	sence of tertiary bases	or by reaction of are	nosulionic actu whazosulfonylaryl	8
sodiumchloramide with tri for the preparation of po	lally phosphite. Ine u	29 OI UITATTATAAAl		
_				
SUB CODE: 07 / SUBM DA	TE: 27Dec61			

6-92.0 785

ACC NR:	AP6019326 SOURCE CODE: UR/0079/65/035/008/1	1487/1488
. AUTHOR	Shevchenko, V. I.; Stratiyenko, V. T.; Pinchuk, A. M.	24 B
ORG: J AN Ukre	Institute of Organic Chemistry, AN UkrSSR (Institut organicheskoy khimi	12 1
TITLE:	Phenylbenzylethylphosphazosulfonylaryls	
SOURCE :	Zhurnal obshchey khimii, v. 35, no. 8, 1965, 1487-1488	
ABSTRAC	AGS: sulfonic acid, organic azo compound, chlorinated organic compound synthetic process, cyclic group T: Phenylbenzylethylphosphazosulfonylaryls (A) can be ed by oxidative introduction of an ArSO ₂ N= group into pheny	
DOUTAT	ethylphosphine by means of Na salts of sulfonic acid chlo- s or by means of sulfonic acid azides:	
	$\frac{\text{ArSO}_2 \text{NNaCl} + P(\text{Ph})(\text{CH}_2 \text{Ph})\text{Et} \rightarrow \text{NaGl} + \text{ArSO}_2 \text{N}=P(\text{Ph})(\text{CH}_2 \text{Ph})\text{Et} (A) ;}{\text{ArSO}_3 \text{N}_3 + P(\text{Ph})(\text{CH}_2 \text{Ph})\text{Et} \rightarrow \text{N}_2 + A}$	
By usi	ng these reactions, compounds A with $Ar = Ph$, p-MeC ₆ H _L ,	
o-MeC6	Hy, and d-C10H7 were prepared. They were crystalline sub-	
stance has: 1	s melting at $107-8^\circ$, $102-3^\circ$, $125-6^\circ$, and $105-6^\circ$, resp. Orig. formula and 1 table. (JPRS7)	art.
Cord 11/1	: 07 / SUEM DATE: 08Jun64 / ORIG REF: 001 / OTH REF: 002	

542-917

CIA-RDP86-00513R001549210014-4

AUTHOR: Shevehenko, V./I.; Pinchuk, A. M.; Kir	sanov, A. V.		39
RG: Institute of Organic Chemistry, AN UkrSS IN UkrSSR)	<u>R (</u> Institut orga	anicheskoy khi	lmii B
TTLE: Mixed triarylphosphazosulfonylaryls N			
SOURCE: Zhurnal obshchey khimii, v. 35, no. 8,	1965, 1488-149	1. je <u>1</u> . je 1. j	
OPIC TAGS: organic synthetic process, chromat organic sulfur compound, organic azo compound, MIXed triarylphosphazosulfony	organic phosphor	rus compound	
ESTRACT: Mixed triarylphosphazosulfon I) were prepared by the following five	reactions:		
Arso ₂ NCl ₂ + Cl ₂ PAr'Ar''Ar''' 2Cl ₂ Arso ₂ NH ₂ + Cl ₂ PAr'Ar''Ar''' 2HCl			
Arso ₂ NCl ₂ + PAr'Ar''Ar''' Cl ₂ + ;	<u>[</u>]		
Arso ₂ NNaCl + PAr'Ar''' NaCl -	+ <u>I;</u>		
Arso ₂ N ₃ + PAr'Ar''Ar''' N ₂ + I		-	

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4"

ACC NR: AP6019	327			· · · · · · · · · · · · · · ·	· · · · · · · ·	24	0
$Ar = p-ClC_{-}$	$\mu, Ar''' = p$	-MeOC_H. :	Ar = p - 0	NC-HL A	riit. =		
	$Ar = p - 0_2 NC_6 H$						
	$= p - \text{NeC}_{6}H_{4},$						
I Ar - B-Ca	substances wi H ₇ , Ar' = Ar'	th sharp	metting p	OINUS, ex	cept for		
	= Ph, Ar''						
		· · · · · ·	- T		T '		
ibe separated	s solids. No into isomers	ne oi the a either b	e compound by fractio	s syntnes nel arvet	1200 COUL Allizatio	Q	
100 Doparate		, otomot r	03 IIG010	THAT OT 300	artrauto	41 ·	이 집에 다 같이 한 것이 하는 것이 한 것이 없다.
or by chrome	tography. Ori	g. art. has	s: 6 formul	as and 1 ta	ble. /JPR	5/12.11	
or by chrome	tography. Ori	g. art. has	s: 6 formul				
or by chrome	tography. Ori / SUEM DATE:	g. art. has	s: 6 formul				
or by chrome	tography. Ori	g. art. has	s: 6 formul				
or by chrome	tography. Ori	g. art. has	s: 6 formul				
or by chrome	tography. Ori	g. art. has	s: 6 formul				
or by chrome	tography. Ori	g. art. has	s: 6 formul				
or by chrome	tography. Ori	g. art. has	s: 6 formul				
or by chrome	tography. Ori	g. art. has	s: 6 formul				
or by chrome	tography. Ori	g. art. has	s: 6 formul				
or by chrome	tography. Ori	g. art. has	s: 6 formul				
or by chrome	tography. Ori	g. art. has	s: 6 formul				

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

ACC NR	AP6019328 SOUR	CE CODE: UR/0079/65/035/008/1492/1496
AUTHOR:	Shevchenko, V. I.; Pinchuk, A. M.	32 3/
ORG: In AN UkrSS	stitute of Organic Chemistry, AN UkrSSR	(Institut organicheskoy khimii B
	fixed diarylmethoxy- and diarylaroxypho	sphazosulfonylaryla
SOURCE:	Zhurnal obshchey khimii, v. 35, no. 8,	1965, 1492-1496
TOPIC TA phosphor	S: organic synthetic process, sulfonious compound, chlorinated organic compound	c acid, organic azo compound, organic
with ar sulfoni	Mixed diarylchlorophosphazosu (I) were synthesized by reaction ene sulfonic acid dichloroamides o acid amides with diaryltrichlop pounds I were obtained: I (Ar	n of diarylchlorophosphines or by reaction of arene cophosphorus. The follow-
I (Ar = I (Ar =	Ph, $Ar' = p-BrC_{6}H_{4}$; I ($Ar = Ph$ $Ar' = p-ClC_{6}H_{4}$); I ($Ar = p-ClC_{6}H_{6}$)	1. $Ar' = p-MeOC_{6}H_{4}$; I_{L} , $Ar' = p-BrC_{6}H_{L}$;
p-MeC6H	$p-ClC_{6}H_{4}$, $Ar^{*} = p-MeOC_{6}H_{4}$; I ($Ar = Ar^{*} = p-BrC_{6}H_{4}$); I ($Ar = Ar^{*} = p-BrC_{6}H_{4}$); I	$(Ar = p - 0_2 NC_6 H_{4}, Ar' =$
p-ClC ₆ H Card 1/3	(4); I (Ar = $p - O_2 NC_6 H_4$, Ar' = $p - H_4$	$\frac{3rC_{6}H_{4}}{UDC: 547.558}$

. 1	L 29285-66 ~ ACC NR; AP6019328	-
	ϕ_{i}	
	$p-O_2NC_6H_4$, Ar' = $p-MeC_6H_4$; I (Ar = $p-O_2NC_6H_4$, Ar' = $p-MeOC_6H_4$);	
	$I (Ar = p-MeC_6H_4, Ar' = p-ClC_6H_4); I 9Ar = p-MeC_6H_4, Ar' =$	
	$p-BrC_{H_{ll}}$; I (Ar = $p-MeC_{H_{ll}}$, Ar' = $p-MeOC_{H_{ll}}$); I (Ar = $1-C_{1,0}H_{2}$)	
	$Ar' = p-BrC_{6}H_{\mu}$; I (Ar = 1-C ₁₀ H ₇ , Ar' = p-MeOC ₆ H _µ); I (Ar =	
	I-C _{10H₇} , Ar' = p-MeC ₆ H ₄). Compounds I were very viscous liquids	
	or brittle vitreous solids. By treating esters of mixed diaryl- phosphinous acids with Ne salts of chloramides of arene sulfonio	,
	acids or by replacing Cl in compounds I with a methoxy group or	
	aryloxy groups, diarylmethoxy- and diarylaroxyphosphazosulfonyl-	
	aryls ArSO2N=P(Ph)(Ar')OR(II) were prepared. The following con-	
	pounds II were prepared: II (Ar = Ph, Ar' = $p-BrC_{6}H_{4}$, R = Me);	
	II (Ar = Ph, Ar' = p-BrC ₆ H ₄ , R = Ph); II (Ar = Ph, Ar' =	
	$p-BrC_{6}H_{4}$, $R = 1-C_{10}H_{7}$; II (Ar = Ph, Ar' = $p-MeC_{6}H_{4}$, $R = Ph$);	
	II (Ar = Ph, Ar' = p-MeC ₆ H ₅ , R = 1-C ₁₀ H ₇); II (Ar = p-ClC ₆ H ₄ ,	
	$Ar' = p - BrC_6H_4$, $R = Ph$; II ($Ar = p - ClC_6H_4$, $Ar' = p - BrC_6H_4$,	
	$R = 1-C_{10}H_7$; II (Ar = p-ClC ₆ H ₄ , Ar' = p-MeC ₆ H ₄ , R = 1-C ₁₀ H ₇);	
	II (Ar = $p-O_2NC_2H_4$, Ar' = $p-BrC_2H_4$, R = Me); II (Ar = $p-O_2NC_2H_4$	
	Ar' = $p-BrC_{6H_{4}}$, B = Ph); II (Ar = $p-0_2NC_{6H_{4}}$, Ar' = $p-BrC_{6H_{4}}$,	
	Card 2/3	

date in the <u>L 29285</u>_66 AP6019328 ACC NR $\begin{array}{l} R = 1 - C_{10}H_{7}; \text{ II } (Ar = p - 0_{2}NC_{6}H_{4}, Ar' = p - MeC_{6}H_{4}, R = 1 - C_{10}H_{7}; \\ \text{II } (Ar = 1 - C_{10}H_{7}, Ar' = p - BrC_{6}H_{4}, R = Me); \text{ II } (Ar = 1 - C_{10}H_{7}, \\ Ar' = p - BrC_{6}H_{4}, R = Ph); \text{ II } (Ar = 1 - C_{10}H_{7}, Ar' = p - BrC_{6}H_{4}, \\ R = 1 - C_{10}H_{7}). \end{array}$ a crystalline form (one of the three theoretically possible race-mic isomers) and a liquid form (eutectic mixture of racemic isomers.) The authors thank A. V. Kirsanov for his help and advice. Orig. art. has: 7 formulas and 2 tables. [JPRS] SUB CODE: 07 / SUEM DATE: OGAug64 / ORIG REF: 005 <u>Card</u>_3/3

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4"

- <u>L</u>	25595-66 EWT(m)/EWP(j) WW/RM	
A	CC NR: AP6016695 SOURCE CODE: UR/0079/65/035/009/1598/1602	
A	UTHOR: Shevchenko, V. I.; Kornuta, P. P.; Kirsanov, A. V. #2	
01	RG: Institute of Organic Chemistry, AN UkrSSR (Institut organicheskoy khimii	1. 1
(A)	N UkrSSR)	
T	ITIE: Phosphorylation of 1-cyanocarboxylic acids	
S	OURCE: Zhurnal obshchey khimii, v. 35, no. 9, 1965, 1598-1602	
T C	OPIC TAGS: phosphorylation, phosphorus chloride, organic nitrile compound, hlorination, IR spectrum, chloride, organic azo compound	
	BSTRACT: The reaction of phosphorus pent, hloride with 1-cyanocarboxylic acids of the AlkCH(CN)COOH type was studied in an effort to expand the imits of application of the phosphorylation of nitriles. The direction	
:0	of the reaction and vield of the final products depend on the quantitative	
r	atio of the reagents and on the volume of the alkyl radical; the reaction lirection is dependent to a lesser degree on the temperature. At a 1:1	
m	polar ratio of 1-cvanocarboxylic acid and phosphorus pentachloride, the	
а	cid chloride is formed readily and rapidly. The acid chlorides formed	
r	react with phosphorus pentachloride as typical secondary nitriles, forming mixture of phosphorylation products and the chlorides of 1-chloro-1-cyano-	
a	arboxylic acids. At a 1:2 molar ratio of the 1-cyanocarboxylic acid and	
c	Card 1/2 UDC: 546.185+547.468	

11 79 79

	na se a construir de la constru La construir de la construir de
L 25595-66	7
ACC NR: AP6016695	
phosphorus pentachloride, the phosphorylation products obtained are t phosphorus pentachloride, the phosphorylation products obtained are t phosphorus pentachloride, the phosphorylation products obtained are t	m
antachloride, the phosphorylation produces detale at a l	3 ratio.
phosphorus penteautication 2-chlorocarboxy-2-alkylvingle, while at a 2	ablama
the phosphorylation products are trichlorophosphazo-1,1,2-titenties incre carboxyalkyls. As the molecular weight of the alkyl radical is incre carboxyalkyls. As the molecular weight is sharply reduced, while t	asea,
the phosphorylation products weight of the alkyl radical is increased carboxyalkyls. As the molecular weight of the alkyl radical is incre the yield of the phosphorylation products is sharply reduced, while t the yield of the phosphorylation products increases (from 15% for 1-cyanopropionic atom	acid
the yield of an products increases (from 10% for 1 of helogen atom	s into
carboxyalkyls. As the analysis of the phosphorylation products is sharply reduced, while the yield of the phosphorylation products increases (from 15% for 1-cyanopropionic of the chlorination products increases (from 15% for 1-cyanopropionic of the cyanopropionic) (from 15% for 1-cyanopropionic) (fr	hoaphory
the yield of the phosphorylation increases (from 15% for 1-cyanopropromite of the chlorination products increases (from 15% for 1-cyanopropromite to 62% for 1-cyanoisovaleric acid). The introduction of halogen atom to 62% for 1-cyanoisovaleric acid). The introduction of halogen atom to 62% for 1-cyanoisovaleric acid).	but wroni-
of the chlorination products acid). The introduction of halogen atom to 62% for 1-cyanoisovaleric acid). The introduction of halogen atom the methyl group of isobutyronitrile sharply increases the yield of p the methyl group of isobutyronitrile to 80% for 2-chloroisc lation products, from 40% for isobutyronitrile to 80% for 2-chloroisc lation products, from 40% for isobutyronitrile to 80% for 2-chloroisc action products, from 40% for isobutyronitrile to 80% for 2-chloroisc lation products, from 40% for isobutyronitrile to 80% for 2-chloroisc action products action action action action action action action action products action act	- the second sec
alation products, from 403 for isobudy to the same influence as the child	rometry
the methyl group of isobudy for isobutyronitrile to 80% for 2-chloroday lation products, from 40% for isobutyronitrile to 80% for 2-chloroday trile. The chlorocarboxy group exerts the same influence as the chlor trile. The chlorocarboxy group exerts the same influence as the chlor group. Trichlorophosphazo-1-chloro-2-chlorocarboxy-2-methylvinyl was group. Trichlorophosphazo-1-chloro-2-chlorocarboxy-2-methylvinyl was	the only
group. Trichlorophosphazo-1-chloro-2-chlorocarboxy-2-methylving unsaturated phosphazo compound isolated in the individual state; the unsaturated phosphazo compounds were converted without isolation to	other
group. Trichlorophosphane compound isolated in the individual state, the unsaturated phosphazo compounds were converted without isolation to unsaturated phosphazo compounds were converted without isolation of pho- unsaturated phosphazo compounds were converted without isolation to unsaturated phosphazo compounds were converted without isolation of pho- unsaturated pho- sphazo converted without isolation of pho- unsaturated pho- sphazo converted without isolatin	richloro-
unsaturated phosphazo compounds were converted without isolation of unsaturated phosphazo compounds were converted without isolation of pho- phosphazo-1,1,2-trichloro-2-chlorocarboxyalkyls by the action of pho- phosphazo-1,1,2-trichlorocarboxyalkyls by the action of pho- phosphazo-1,1,2-trichlorocarboxyalk	anhomis
unsaturated phosphazo comparellorocarboxyalkyls by the action of pho	mla react
phosphazo-1,1,2-trichloro-2-chlorocaroxya	
unsaturated phosphazo compounds of phosphazo-1,1,2-trichloro-2-chlorocarboxyalkyls by the action of phosphosphazo-1,1,2-trichloro-2-chlorocarboxyal pentachloride. Trichlorophosphazo-1,1,2-trichlorophosphonylmonoimi with acetic acid, forming dichlorides of N-dichlorophosphonylmonoimi with acetic acid, forming dichlorides of the reaction products	UOBTKAT-
beth acetic acid, forming dichlorides of heritan the reaction products	are d18
with according a gridge. The infrared spectra of one according	
pentachloride. Trichiorophospherides of N-dichlorophosphonyinonolini with acetic acid, forming dichlorides of N-dichlorophosphonyinonolini chloromalonic acids. The infrared spectra of the reaction products cussed. Orig. art. has: 3 tables. [JPRS]	
Cussed. Orige at the installation of the second sec	
SUB CODE: 07 / SUHM DATE: 15Aug64 / ORIG REF: 006	
SUB CODE: 07 / SUHM DATE: 1 JAUGO / CILCO	
그는 것 같은 것 같	방법 · · · · · · · · · · · · · · · · · · ·
그는 그는 그는 것 같은 것 같	
그는 그는 그는 그는 방법에 있었다. 같이 그는 물건적인 사람들 감독을 받는 것을 많이 집했다.	
[1] · · · · · · · · · · · · · · · · · · ·	
Card 2/2 1	

519C)

L 27767-66 -EWP(j)/EWT(m)/ETC(m)-6/T IJP(c) RM/WW ACC NR: AP6018498 SOURCE CODE: UR/0079/65/035/011/1970/1973 AUTHOR: Shevchenko, V. I.; Kornuta, P. P.; Kirsanov, A. V. ORG: Institute of Organic Chemistry, AN UkrSSR (Institut organicheskoy khimii AN UkrSSR)	
ACC NR: AP6018498 SOURCE CODE: UR/0079/65/035/011/1970/19/3	
AUTHOR: Shevchenko, V. I.; Kornuta, P. P.; Kirsanov, A. V.	
Ord: Institute of Organic Chemistry, AN UNICAL (Institute organication) 43	
Source: Thurnal obshchey khimil, v. 35. no. 11. 1965, 1970-1973	
TOPIC TAGS: phosphorylation, organic nitrile compound, phosphorus chloride,	
a mheanhanta agid aming	
ABSTRACT: Isobutyronitrile was used as a model for a detailed study of the reaction of secondary nitriles with phosphorus pentachloride. Secondary nitriles	
of the CH ₃ (Alk)CHCN type react with phosphorus pentachloride at 20° to form a	
mixture of 1-chloronitriles and phosphorylation products. The reaction does not	2.
take place at 0-5°. In the presence of excess nitrile, only 1-chloroisobuty-	
ronitrile and trichlorophosphazo-1-chloro-2,2-dimethylvinyl are formed; in the presence of excess phosphorus pentachloride, only 1-chloroisobutyronitrile and	
trichlorophoaphaze-1.1.2-trichloro-2-methylvinyl are formed. If the reaction is the light	
conducted at 70° or above. only 1-chloroisobutyronitrile is formed. Trichloro-	
phosphezo-1,1,2-trichloroalkyls of the CH3(Alk)CC1C12N=PC13 type are colorless	
crystalline or liquid substances, readily soluble in most organic solvents; they	
are readily decomposed by atmospheric moisture and react vigorously with amines, alcohols, are hydrolyzed by water at 20° with the formation of 1-chloronitriles	
and phosphoric acid, and decompose at 1504200° into phosphorus pentachloride and	
Inchloronitriles. The thermal stability of phospharo-compounds of this type	
decreases in the series of Alk: CH2C1 > CH2C1	
and 1 formula. (JPRS) SUB CODE: 07 / SUBM DATE: 03Aug64 / ORIG REF: 005 / OTH REF: 003	
SUB CODE: 07 / SOBA DAID: 0005: 547.491	

L <u>31808-66</u> EWT(m)/EWP(j) RH/WW ACC NR: AF6021676 SOURCE CODE: UR/0079/66/036/003/0467/0469 AUTHOR: Shovchenko, V. I.; Kukhar', V. P.; Kirsanov, A. V. <u>39</u> O.G.: Institute of Organic Chemistry. AN UkrSSR (Institut organicheskoy khimi B AU UkrSSR) TTTLE: Phosphorylation of 2-alkoxypropionitriles [SOURCE: Zhurnal obshchey khimii, v. 36, no. 3, 1966, 467-469 TOPIC TAGS: phosphorylation, organic nitrile compound, reaction rate, organic azo compound, reaction mechanism, reaction temperature ABSTRACT: 2-Alkoxypropionitriles react at 100 ⁰ with phosphorus pentoxide simultaneously at the alkoxyl and nitrile groups, or only at the nitrile group. With increasing molecular weight of the alkyl radical, the reaction rate at the alkoxyl group is sharply reduced, while the reaction rate at the nitrile group remains essentially unchanged. 2-Methoxypropionitrile splits off the methoxyl group, and trichlorophosphazo-1,1,2,2,3-pentachloropropyl is formed; 2-ethoxypropionitrile gives a mixture of trichlorophosphaze-1,1,2,2,3- pentachloropropyl and trichlorophosphazo-1,1,2,2-tetrachloro-3-ethoxypropyl. 2-Propoxy-, ald 2-phenoxypropionitriles react only at the nitrile group, to form trichlorophosphazo-1,1,2,2-tetrachloro-3-ethoxypropyl. 2-phenoxypropyls, respectively. Trichlorophosphazo-1,1,2,2-tetrachloro-3- Cord 1/2 UDC: 547.491	"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549	}210014 -4
ACC NR: AF6021676 SOURCE CODE: UR/0079/66/036/003/0467/6.669 AUTHOR: Shovchenko, V. I.; Kukhar', V. P.; Kirsanov, A. V. ORG: Institute of Organic Chemistry. AN UkrSSR (Institut organicheskoy khimii B AN UkrSSR) TIPLE: Phosphorylation of 2-alkoxypropionitriles SOURCE: Zhurnal obshchey khimii, v. 36, no. 3, 1966, 467-469 TOPIC TAGS: phosphorylation, organic nitrile compound, reaction rate, organic azo compound, roaction mechanism, reaction temperature ABSTRACT: 2-Alkoxypropionitriles react at 100° with phosphorus pentoxide simultaneously at the alkoxyl and nitrile groups, or only at the nitrile group. With increasing molecular weight of the alkyl radical, the reaction rate at the alkoxyl group is sharply reduced, while the reaction rate at the nitrile group remains essentially unchanged. 2-Methoxypropionitrile splits off the methoxyl group, and trichlorophosphazo-1,1,2,2,3-pentachloropropyl is formed; 2-ethoxypropionitrile gives a mixture of trichlorophosphazo-1,1,2,2,3- pentachloropropyl and trichlorophosphazo-1,1,2,2-tetrachloro-3-ethoxypropyl. 2-propoxy-, 2-butoxy-, and 2-phenoxypropionitriles react only at the nitrile group, to form trichlorophosphazo-1,1,2,2-tetrachloro-3-alkoxy- and -3-phenoxypropyls, respectively. Trichlorophosphazo-1,1,2,2-tetrachloro-3-	L 31808-66 $EWT(m)/EWP(1)$ RM/WW	
ORG: Institute of Organic Chemistry, AN UkrSSR (Institut organicheskoy khimi B AN UkrSSR) TITLE: Phosphorylation of 2-alkoxypropionitriles (SOURCE: Zhurnal obshchey khimii, v. 36, no. 3, 1966, 467-469 TOPIC TAGS: phosphorylation, organic nitrile compound, reaction rate, organic azo compound, roaction mechanism, reaction temperature ABSTRACT: 2-Alkoxypropionitriles react at 100° with phosphorus pentoxide simultaneously at the alkoxyl and nitrile groups, or only at the nitrile group. With increasing molecular weight of the alkyl radical, the reaction rate at group remains essentially unchanged. 2-Methoxypropionitrile splits off the methoxyl group, and trichlorophosphazo-1,1,2,2,3-pentachloropropyl is formed; 2-ethoxypropionitrile gives a mixture of trichlorophosphaze-1,1,2,2,3- pentachloropropyl and trichlorophosphazo-1,1,2,2-tetrachloro-3-ethoxypropyl. 2-Propoxy-, 2-butoxy-, and 2-phenoxypropionitriles react only at the nitrile group, to form trichlorophosphazo-1,1,2,2-tetrachloro-3-alkoxy- and -3-phenoxypropyls, respectively. Trichlorophosphazo-1,1,2,2-tetrachloro-3-	ACC NR: AP6021676 SOURCE CODE: UR/0079/66/036/003/0467	70469
SOURCE: Zhurnal obshchey khimii, v. 36, no. 3, 1966, 467-469 TOPIC TAGS: phosphorylation, organic nitrile compound, reaction rate, organic azo compound, reaction mechanism, reaction temperature ABSTRACT: 2-Alkoxypropionitriles react at 100° with phosphorus pentoxide simultaneously at the alkoxyl and nitrile groups, or only at the nitrile group. With increasing molecular weight of the alkyl radical, the reaction rate at the alkoxyl group is sharply reduced, while the reaction rate at the nitrile group remains essentially unchanged. 2-Methoxypropionitrile splits off the methoxyl group, and trichlorophosphazo-1,1,2,2,3-pentachloropropyl is formed; 2-ethoxypropionitrile gives a mixture of trichlorophosphaze-1,1,2,2,3- pentachloropropyl and trichlorophosphazo-1,1,2,2-tetrachloro-3-ethoxypropyl. 2-Propoxy-, 2-butexy-, and 2-phenoxypropionitriles react only at the nitrile group, to form trichlorophosphazo-1,1,2,2-tetrachloro-3-alkoxy- and -3-phenoxypropyls, respectively. Trichlorophosphazo-1,1,2,2-tetrachloro-3-	ORG: Institute of Organic Chemistry, AN UkrSSR (Institut, organicheskoy khimij	38 B
TOPIC TAGS: phosphorylation, organic nitrile compound, reaction rate, organic azo compound, reaction mechanism, reaction temperature ABSTRACT: 2-Alkoxypropionitriles react at 100° with phosphorus pentoxide simultaneously at the alkoxyl and nitrile groups, or only at the nitrile group. With increasing molecular weight of the alkyl radical, the reaction rate at the alkoxyl group is sharply reduced, while the reaction rate at the nitrile group remains essentially unchanged. 2-Nethoxypropionitrile splits off the methoxyl group, and trichlorophosphazo-1,1,2,2,3-pentachloropropyl is formed; 2-ethoxypropionitrile gives a mixture of trichlorophosphaze-1,1,2,2,3- pentachloropropyl and trichlorophosphazo-1,1,2,2-tetrachloro-3-ethoxypropyl. 2-Propoxy-, 2-butexy-, and 2-phenoxypropionitriles react only at the nitrile group, to form trichlorophosphazo-1,1,2,2-tetrachloro-3-alkoxy- and -3-phenoxypropyls, respectively. Trichlorophosphazo-1,1,2,2-tetrachloro-3-	TITLE: Phosphorylation of 2-alkoxypropionitriles	
ABSTRACT: 2-Alkoxypropionitriles react at 100° with phosphorus pentoxide simultaneously at the alkoxyl and nitrile groups, or only at the nitrile group. With increasing molecular weight of the alkyl radical, the reaction rate at the alkoxyl group is sharply reduced, while the reaction rate at the nitrile group remains essentially unchanged. 2-Methoxypropionitrile splits off the methoxyl group, and trichlorophosphazo-1,1,2,2,3-pentachloropropyl is formed; 2-ethoxypropionitrile gives a mixture of trichlorophosphaze-1,1,2,2,3- pentachloropropyl and trichlorophosphazo-1,1,2,2-tetrachloro-3-ethoxypropyl. 2-Propoxy-, 2-butoxy-, and 2-phenoxypropionitriles react only at the nitrile group, to form trichlorophosphazo-1,1,2,2-tetrachloro-3-alkoxy- and -3-phenoxypropyls, respectively. Trichlorophosphazo-1,1,2,2-tetrachloro-3-	SOURCE: Zhurnal obshchey khimii, v. 36, no. 3, 1966, 467-469	
With increasing molecular weight of the alkyl radical, the reaction rate at the alkoxyl group is sharply reduced, while the reaction rate at the nitrile group remains essentially unchanged. 2-Methoxypropionitrile splits off the methoxyl group, and trichlorophosphazo-1,1,2,2,3-pentachloropropyl is formed; 2-ethoxypropionitrile gives a mixture of trichlorophosphaze-1,1,2,2,3- pentachloropropyl and trichlorophosphazo-1,1,2,2-tetrachloro-3-ethoxypropyl. 2-Propoxy-, 2-butoxy-, and 2-phenoxypropionitriles react only at the nitrile group, to form trichlorophosphazo-1,1,2,2-tetrachloro-3-alkoxy- and -3-phenoxypropyls, respectively. Trichlorophosphazo-1,1,2,2-tetrachloro-3-	compound, reaction mechanism, reaction temperature	10
pentachloropropyl and trichlorophosphazo-1,1,2,2-tetrachloro-3-ethoxypropyl. 2-Propoxy-, 2-butcxy-, and 2-phenoxypropionitriles react only at the nitrile group, to form trichlorophosphazo-1,1,2,2-tetrachloro-3-alkoxy- and -3-phenoxypropyls, respectively. Trichlorophosphazo-1,1,2,2-tetrachloro-3-	With increasing molecular weight of the alkyl radical, the reaction rate at the alkoxyl group is sharply reduced, while the reaction rate at the nitrile group remains essentially unchanged 2 Nothermania it is	
-J-phenoxypropyis, respectively. Trichlorophosphazo-1,1,2,2-tetrachloro-3-	2-ethoxypropionitrile gives a mixture of trichlorophosphaze-1,1,2,2,3-pentachloropropyl is formed; pentachloropropyl and trichlorophosphaze-1,1,2,2-tetrachloro-3-ethoxypropyl. 2-Propoxy-, 2-butexy-, and 2-phenoxypropionitriles react only at the nitrile group, to form trichlorophosphaze-1,1,2,2-tetrachlore 2 allore at the	
<u>UDC: 547.491</u>	-J-phenoxypropyis, respectively. Trichlorophosphazo-1,1,2,2-tetrachloro-3-	
	<u>UDC: 547.491</u>	

cial is a m	L 07403-67 EWT(1) IJP(c) GD/AT ACC NR: AT6020580 (N) SOURCE CODE: UR/0000/65/000/000/0164/0177 449		
	AUTHOR: Lominadze, D. G.; Shevchenko, V. I. $B+/$		~
	ORG: none. TITLE: On the nonlinear theory of low frequency oscillations excited by an <u>ion beam</u>		
Ξ	<u>in a plasma</u> SOURCE: AN UkrSSR. Vysokochastotnyye svoystva plazmy (High frequency properties of plasma). Kiev, Naukovo dumka, 1965, 164-177		
	TOPIC TAGS: plasma oscillation, plasma beam interaction		
	TOPIC TAGS: plasma oscillation, I ABSTRACT: The possibility of heating the ion component of a plasma by beam instabili- ties is investigated in the nonlinear approximation for the case of plasma with elec- tron temperature much higher than that of the ions. The first phase of development of tron temperature much higher than that of the ions. The first phase of development of the instability is traced out and most unstable branches of the oscillation are de- the instability is traced out and most unstable branches of the oscillation (quasi-linear termined. Three regimes, namely, excitation of low frequency oscillations (quasi-linear the instability is detail. The	-	
	hations (hydrodynamic phase), and low frequency waves are investigated in details phase) and short wavelength, and low frequency waves are investigated in details change in macroscopic plasma and beam parameters (thermal energy, directed velocity) change in macroscopic plasma and beam parameters (thermal energy, directed velocity) change in macroscopic plasma and beam parameters (thermal energy, directed velocity) change in macroscopic plasma and beam parameters (thermal energy, directed velocity) change in macroscopic plasma and beam parameters (thermal energy, directed velocity)	e	-
	are derived. It is possible to prove the state reached by the plasma and the set quasilinear phase and determine the state reached by the plasma and the sult of quasilinear relaxation when a strong magnetic field is superimposed on the Cord 1/2		
क्षण्यस्य			

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

ACC NR:	AT602	0580								0		
lasma. I nd leads 5 formula	to enl	eral, hanced	it is 1 diffu	found that sion of io	the beam ons across n	energy magneti	is shifted c field li	to trans nes. Or	sverse (ig. art)	energy has:		
UB CODE:	20/	SUBM	DATE:	19Nov65/	ORIG REF:	003/	OTH REF:	001				
								5				
									•			
							· .					
									•			
ard 2/2	2										1	

ACC NR. AP7000242 SOURCE CODE: UR/0079/66/036/004/0730/0735 MUTHOR: Shevchenko, V. I.; Kornuta, P. P.; Bodnarchuk, N. D.; Kirsanov, A. V. DRG: Institute of Organic Chemistry, AN UkrSSR (Institut organicheskoy khimii NN UkrSSR) "Phosphorylation of Nalonodinitrile by Phosphorus Pentachloride" Mosoow, Zhurnal Obshchey Khimii, Vol 36, No 4, 1966, pp 730-735 Abstract: Malonodinitrile and phosphorus pentachloride, regard- less of the quantitative ratio, react at 80° and above to form acyclic trichlorophosphazo-l-chloro-, and 1.2-dichloro-2-coyano- vinyls. At 20-25°, they yield cyclic 1,1,3,5-tetrachloro-, and 1,1,3,4,5-pentachloro-1,2,6-phosphadtazines, isomerio to the acyclic phosphazo-compounds. The latter are readily converted to cyclic Isomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanorinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and erhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are coloriess crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and anines, undergo acidolysis, and erhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are coloriess crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic Card 1/2					
NUTHOR: Shevchenko, V. I.; Kornuta, P. P.; Bodnarchuk, N. D.; Kirsanov, A. V. PRG: Institute of Organic Chemistry, AN UkrSSR (Institut organicheskoy khimii "Phosphorylation of Nalonodinitrile" by Phosphorus Pentachloride" Mosoow, Zhurnal Obshchey Khimii, Vol 36, No 4, 1966, pp 730-735 Abstract: Malonodinitrile and phosphorus pentachloride, regard- less of the quantitative ratio, react at 80° and above to form acyclic trichlorophosphazo-1-chloro-, and 1,2-dichloro-2-cyano- vinyls. At 20-25°, they yield cyclic 1,1,3,5-tetrachloro-, and 1,1,3,4,5-pentachloro-1,2,6-phosphadiazines, isomeric to the acyclic lasomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and enhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	L 04349-67 EWP(j)/EWT(m)]	
DRG: Institute of Organic Chemistry, AN UkrSSR (Institut organicheskoy khimii N UkrSSR) "Phosphorylation of Malonodinitrile by Phosphorus Pentachloride" Mosoow, Zhurnal Obshchey Khimii, Vol 36, No 4, 1966, pp 730-735 Abstract: Malonodinitrile and phosphorus pentachloride, regard- less of the quantitative ratio, react at 80° and above to form acyclic trichlorophosphazo-1-chloro-, and 1,2-dichloro-2-oyano- vinyls. At 20-25°, they yield cyclic 1,1,3,5-tetrachloro-, and 1,1,3,4,5-pentachloro-1,2,6-phosphadiazines, isomeric to the acyclic isomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and erhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	ACC NR: AP7000242	SOURCE CODE: U	JR/0079/66/036/004/07 30/07	35	
"Phosphorylation of Malonodinitrile by Phosphorus Pentachloride" Mosoow, Zhurnal Obshchey Khimii, Vol 36, No 4, 1966, pp 730-735 Abstract: Malonodinitrile and phosphorus pentachloride, regard- less of the quantitative ratio, react at 80° and above to form acyclic trichlorophosphazo-l-chloro-, and 1,2-dichloro-2-oyano- vinyls. At 20-25°, they yield cyclic 1,1,3,5-tetrachloro-, and 1,1,3,4,5-pentachloro-1,2,6-phosphadiazines, isomerio to the acyclic phosphazo-compounds. The latter are readily converted to cyclic Isomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and enhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	WTHOR: Shevchenko, V. I.;	Kornuta, P. P.; Bodnarchuk, N	. D.; Kirsanov, A. V.	25 B	•
"Phosphorylation of Malonodinitrile by Phosphorus Pentachloride" Moscow, Zhurnal Obshchey Khimii, Vol 36, No 4, 1966, pp 730-735 Abstract: Malonodinitrile and phosphorus pentachloride, regard- less of the quantitative ratio, react at 80° and above to form acyclic trichlorophosphazo-l-chloro-, and 1.2-dichloro-2-cyano- vinyls. At 20-25°, they yield cyclic 1,1,3,5-tetrachloro-, and 1,1,3,4,5-pentachloro-1,2,6-phosphadiazines, isomeric to the acyclic phosphazo-compounds. The latter are readily converted to cyclic isomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and erhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic		memistry, AN UkrSSR (Institut	organicheskoy khimii		
Moscow, Zhurnal Obshchey Khimii, Vol 36, No 4, 1966, pp 730-735 Abstract: Malonodinitrile and phosphorus pentachloride, regard- less of the quantitative ratio, react at 80° and above to form acyclic trichlorophosphazo-l-chloro-, and 1.2-dichloro-2-cyano- vinyls. At 20-25°, they yield cyclic 1,1,3,5-tetrachloro-, and 1,1,3,4,5-pentachloro-1,2,6-phosphadiazines, isomeric to the acyclic phosphazo-compounds. The latter are readily converted to cyclic isomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and erhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic		η	· · · · ·		
Abstract: Malonodinitrile and phosphorus pentachloride, regard- less of the quantitative ratio, react at 80° and above to form acyclic trichlorophosphazo-l-chloro-, and l.2-dichloro-2-cyano- vinyls. At 20-25°, they yield cyclic l,l,3,5-tetrachloro-, and l,l,3,4,5-pentachloro-l,2,6-phosphadiazines, isomeric to the acyclic phosphazo-compounds. The latter are readily converted to cyclic isomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols. and amines, undergo acidolysis, and exhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	"Phosphorylation of Mal	onodinitrile by Phosphor	us Pentachloride"		
less of the quantitative ratio, react at 80° and above to form acyclic trichlorophosphazo-l-chloro-, and 1,2-dichloro-2-oyano- vinyls. At 20-25°, they yield cyclic 1,1,3,5-tetrachloro-, and 1,1,3,4,5-pentachloro-1,2,6-phosphadiazines, isomeric to the acyclic phosphazo-compounds. The latter are readily converted to cyclic isomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and erhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	Mosoow, Zhurnal Obshche	7 Khimi1, Vol 36, No 4,	1966, pp 730-735		•
acyclic trichlorophosphazo-l-chloro-, and 1,2-dichloro-2-cyano- vinyls. At 20-25°, they yield cyclic 1,1,3,5-tetrachloro-, and 1,1,3,4,5-pentachloro-1,2,6-phosphadiazines, isomeric to the acyclic phosphazo-compounds. The latter are readily converted to cyclic isomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and exhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	Abstract: Malonodinitr	lle and phosphorus penta	chloride, regard-		
vinyls. At 20-25°, they yield cyclic 1,1,3,5-tetrachloro-, and 1,1,3,4,5-pentachloro-1,2,6-phosphadiazines, isomeric to the acyclic phosphazo-compounds. The latter are readily converted to cyclic isomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and exhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	less of the quantitative	e ratio, react at 80° an	above to iorm		
1.1.3.4.5-pentachloro-1.2.6-phosphadiazines, isomeric to the acyclic phosphazo-compounds. The latter are readily converted to cyclic isomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and exhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	rinvla. At 20-25°, the	vield cvclic 1.1.3.5-t	etrachloro-, and		
acyclic phosphazo-compounds. The latter are readily converted to cyclic isomers under the action of hydrogen chloride at 20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and exhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	1.1.3.4.5-nentachloro-1	.2.6-phosphadiazines, is	omeric to the		
20-25°. The structures of the reaction products were confirmed by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and exhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	acvalic phosphazo-compo	unds. A The latter are re	adily converted		
by infrared spectra. The trichlorophosphazocyanovinyls are viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and exhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	to cyclic isomers under	the action of hydrogen	cnioride at		
viscous light yellow liquids, which are readily hydrolyzed by atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and exhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	20-25°. The structures	of the reaction product	novinyls are		
atmospheric moisture, react vigorously with water, alcohols, and amines, undergo acidolysis, and exhibit typical properties of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	viscous light vellow 11	uids, which are readily	hydrolyzed by	.	
of unsaturated compounds, such as the addition of chlorine and bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	atmospheric moisture, r	eact vigorously with wat	er, alconols,		
bromine. The phosphadiazines are colorless crystalline substances, which are slowly hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	and amines, undergo aci	dolysis, and exhibit typ	of chloring and	·	÷.
hydrolyzed by atmospheric moisture and react readily with water, alcohols, and organic	of unsaturated compound	s, such as the addition	UI UNITURING and		
Card 1/2 UDC: 547.461.3 092.3 0782	hydrolyzed by atmospharic mo	isture and react readily with	h water. alcohols. and org	anic	
		UDC: 547.461.3	1923 07	82	

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

<pre>clipsclip.provides.prov provides.p</pre>	
L 1036-67 EMP(1)/EMT(m) RM SOURCE CODE: UR/0079/66/036/007/1260/1262	
WERNOR. Shevehenko, V. I.; Kukhar', V. P.	
020: Institute of Organic Chemistry, AN UkrSSR (Institut organicheskoy knimil	
TITLE: Gmega, omega'-bistrichlorophosphazo-alpha, alpha, beta, beta, alpha', alpha', - beta', beta'-octachloroalkenes	
SOURCE: Zhurnal obshchey khimii, v. 36, no. 7, 1966, 1260-1262	
TOPIC TAGS: organic nitrile compound, phosphorus chloride, phosphorylation	
ABSTRACT: Dinitriles of higher omega, omega'-dibasic carboxylic acids, beginning with glutarchitrile, react with phosphorus pentachloride at both nitrile groups simultaneously, forming omega, omega'-bistrichlorophosphazo-	X
cyclic phosphorylation products could be obtained, for could the reaction be conducted on only one mitrile group. The phosphazo-compounds with an odd number of mathylene groups were difficult to crystallize and molted at a temperature	
lower than their closest homologs with an oven number of methylene groups. Bistrichlorophosphasocetachloroalkenes were readily hydrolyzed by atmospheric meisture and reacted readily with amines, closhele, and coids. The reaction	-
with acetic acid yielded dichlorides of N,N'-bisdichlorophosphonyl-alpha, alpha, alpha', alpha'-tetrachloro-omega, omega'-bisiminocarboxylic acids. Orig. art.	- 1
has: 2 tables. [JPRG: 38,970] SUB CODE: 07 / SUEX DATE: 25Jun65 / ORIG REF: 004 UDC: 547.412.76	t
Cert 1/2 0925 -301.5	

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549210014-4"

CC NR1 AN5027772	Monograph	URY
erkach, Grigoriy Illario sil'yevich; Shevchenko,	onovich; Zhmurova, Irina Niko Veniamin Isaakovich; Shtepa	layevna; Kirsanov, Aleksandr nek, Alla Stanislavovna
hosphazo compounds (Fosi illus., biblio. (At he organicheskoy khimii) 2	ad of title: Akademiya nauk	o "Naukova dumka," 1965. 283 p. Ukrainskoy SSR. Institut
)PIC TAGS: organic phos	phorus compound, nitrogen com	mpound, organic azo compound
ield and a discussion of he nomenclature employed ith data on the chemistr p to 1 January 1964, and t the present time. It nd students interested i orking in the field of p erent class of compounds	the problems connected with is that first proposed by A y of phosphazo compounds, put presents lists of the phosph is intended for scientists, n modern progress in organic hosphor-organic compounds. I , for which the authors give st of compounds, and an approx	blished in the scientific press hazo compounds that are known industrial workers, teachers, chemistry, especially those Sach chapter deals with a dif- the method of preparation, the
 1. Introduction 2. Phosphazosulfonyl 3. Phosphazocarbacyl 	8 16	
ard 1/2		<u>.</u>

	N:5027772			· · · · · · · · · · · · · · · · · · ·	· .	
Ch. 4. P	hosphazo derivative	of phosphor	to ootd	. 16h		•
	hosphazo derivative hosphazohydrocarbon		TC ACIA	. 104		
сь. б. р	nosphazohydrides -	- 225				
Ch. 7. 11	nosphazoamides nosphazines 238	235		<· · ·		•
Ch. 9. Pl	10sphazides 258	J				
Ch. 10. 1	Phosphazo compounds	of various t	урев 26	i3		
Ch. 11. ()n the nature of th	e nitrogen-ph	iosphorus bo	ond in phosphazo compo	unds 265	-
SUB CODE:	07/ SUBM DATE:	10Apr65/	ORIG REF:	222/ OTH REF: 31	9	
	· · · · · · · · · · · · · · · · · · ·					
1		•				
· · · ·	· · :					-
					•	
N	•		•		•	
•			1	•		
				1	• •	
				•		<u> </u>
			•		•	<u> </u>
•		н 1997 - Эл	: •		•	<u> </u>
			•			-

ACC NR: AP7005106 SHEVCHENKO, V. I., BODNARCHUK, N. D., Institute of Organic Chemistry, Academy
SHEVCHENKO, V. I., BODNARCHUK, N. D., Institute of Organic Chemistry, Academy
of Sciencos Ukrainian SSR (Institut organichoskoy knimil na okrosky
"Phosphorylation of Acetonitrile and Chloroacetonitrile"
Moscow, Zhurnal Obshchey Khimii, Vol 36, No 9, 1966, pp 1645-1649
Abstract: The structure and mechanism of formation of the complex compounds
<u>CoHoCloNPJ</u> and CoHCI10 NF2, resulting from the formation of these complexos one mole of nitrile reacts with three moles of PCIG. The complex obtained from acetonitrile has the composition CoHCl13NP3
and that obtained from chloroacetonitrile, C ₂ Cl ₁₁ NP ₃ . Thus, at 20°C,
acetonitrile and chloroacetonitrile react with PCL to form hexachlorophosphorates
of trichlorophosphazo-1-chloroviny1-2-trichlorophosphonium and trichlorophosphazo-
1,2-dichlorovinyl-2-trichlorophosphonium. The latter is reduced with red phosphorus or methyldichlorophosphite to trichlorophosphazo-1,2-dichlorovinyl-
2 dichlorophosphine The berachlorophosphorate of trichlorophosphazo-1,2=
dichlorovinyl-2-trichlorophosphonium reacts with sulfur dioxide to form trichloro- phosphazo-1,2-dichlorovinyl-2-phosphonic acid chloride, which on chlorination,
changes into thigh a concerning a second s
shieride The latter is hydrolyzed by water to form dichloroacetic acid. A. V.
Kirsanov collaborated. Orig. art. has: 5 formulas. [JPRS: 38,970] UDC: 547.292'39.2
Card 1/2 0926 1624

CIA-RDP86-00513R001549210014-4

23 52

ACC NR: AP7000243 SOURCE CODE: UR/0079/66/036/004/0735/0738			
AUTHOR: Shevchenko, V. I.; Kukhar', V. P.			
ORG: Institute of Organic Chemistry, AN UkrSSR (Institut organicheskoy khimii AN UkrSSR)			
TITLE: Reactions of <u>dinitriles of succinic</u> and fumaric acids with phosphorus pentachloride			
Moscow, Zhurnal Obshchey Khimii, Vol 36, No 4, 1966, pp 735-738	. '		
Abstract: Dinitriles of succinic, fumaric, and chloromaleic acids react with phosphorus pentachloride in boiling chlorobenzene	•	•	
pyrrolenine. The structure of the latter was confirmed by infrared spectra. It is extremely stable to the action of halogens	. •		
and halogen compounds of phosphorus. It reacts readily with			
acids. It reacts with benzonesultamide according to die historiet			
phazosulfonylphenyl, which is readily hydrolyzed by atmospheric			
acid or sulfur dioxide, the original iminopyrrolenine is readily converted to 2,3,4-trichloro-5-imino-N-dichlorophosphonylpyr-			
rolenine. / JPRS: 37,177			
Card 1/2 UDC: 547.461.4	578	4	

ACC NRI A	P70002	43									<u></u>	<u>-</u>] :	
TOPIC TAGE	S: pho d orga	ospho: anic	rus ch compou	lori nd	de,	orgai	nic ni	trile	compo	ound,	fumar	ic aci	ld,		•		
SUB CODE:					Nay	65 /	ORIG	REF:	003	/ OT	I REF:	002	•	•	•		
•			•							. 1	•				•		
		•	• •						• •	ŗ	•				••••		
•							•				•				•		
			•				· ·		,	`		•		•	•		:
				-									•	•			
							•			<u>ج</u>		а. — Ала А			•	¹	
. •	,							:.		ŗ		•				·	
Card 2/2		÷	•	•								•			•		

CIA-RDP86-00513R001549210014-4

sov/32-25-4-26/71 Akimova, Ye. P., Shevchenko, V. I., Alpatov, Ye. N. 18(7)Scale for the Valuation of Inclusions of the Titanium-nitride AUTHORS: Type in Rolled Steel (Shkala dlya otsenki vklyucheniy tipa TITLE: nitridov titana v stal'nom prokate) Zavodskaya Laboratoriya, 1959, Vol 25, Nr 4, pp 444-445 (USSR) Highly alloyed steels with small admixtures of titanium are PERIODICAL: much in use at present. Titanium energetically binds the nitrogen dissolved in the steel, and forms nitrides which are very ABSTRACT: hard but poorly plastic. Evenly distributed inclusions of this kind do not deteriorate the quality of the steel; but in practice, these inclusions can often be observed as lines and strips which may lead to destructions in rolling. A special scale with five marks was developed for the valuation of these linear nitride inclusions (Figure). Every group of marks has two standard samples characterized by a certain degree of distribution of the inclusions. The nitride lines consist of individual inclusions with an average diameter between 3 and 10 μ . The standard samples were fixed after determining the surface of all nitride inclusions visible in a micrograph; the nitride inclusions were divided into 3 groups (3, 5 and 10μ). Card 1/2

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4"

CIA-RDP86-00513R001549210014-4

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549210014-4"

COP PORT 25.0