Investigations of a Magnette Trap.

778 2 30V, 57-30-3-3/15

Fig. 1. Diagram of the experimental set-up: (1) electron gun; (2) collector; (3) resonator.

The energy of the injected electrons could be varied 1-2 Key. Magnetic field H between the stopper: was between 200-300 groups. Experiment showed it was sufficient to have $H_c/H_c = 2-3$. Space modulation $H_c/H_c = 0$

was nonleved by a system of opposing coils. L was 5-7 cm, number of periods n = 5. The modulating magnetic field was 20-30 gauss; the vacuum chamter was 9 cm diam; the distance between the stoppers, 100 cm. The electron gau was producing a tubular electron beam 3.0 cm diam, and the electron current could reach 100 ma. Working pressure in the system was maintained at 2.10⁻⁶ mm H;. The authors detected accumulation of electrons by shift in resonant frequency of the measuring space resonator in Fig. 1. A 10¹⁰ cm³

Card 5/11

Sugar Store

APPROVED FOR RELEASE: 08/23/2000 CIA-RDF

Investigations of a Nagnetic Trup

APPROVED FOR RELEASE: 08/23/2000

```
77836
sov/57-30-3-3/15
```

Hg of hydrogen in the chamber. Charges were trapped only when condition (2) was satisfied. Figure 2 shows the relation between space-charge potential and magnitude of the injection current.

Fig. 2. Relation between potential at a distance of 2.5 cm from axis and magnitude of injected current. $P = 2 \cdot 10^{-6}$ mm Hg.

Card 6/11

Investigations of a Magnetle Trap

77836 SOV/57-30-3-3/15

The authors also measured potential along axis of the system by a probing electron beam modulated at 200 c/see for easier detection, and potential was deduced from the beam energy ness sary to get it through the trap to the collector. It sults along the axis agree with Fig. 2. The negative space charge accumulated in the trap can be used as a potential well for ions, and Fig. 4 shows decrease of negative potential because of filling of the well by positive ions.

Card 7/11

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8

APPROVED FOR RELEASE: 08/23/2000 CIA

Investigations of a Magnetic Trap

77836 sov/57-30-3-3/15

The electron beam probe was also used to measure radial component of the honcompensated space charge field because of electron plasma. The effect of beam drift in crossed E_p and H_0 field was observed by a fluores-

cent acreen placed inside the trap. Figure 5 shows that the radial field component builds to considerable magnitude. It is, however, difficult to explain the trapping mechanism for the particles. The injected electrons should be showed down by the space charge fleld and should, therefore, come out of phase with the magnetic field of the system. At the same time, experiment showed space modulation of magnetic field continues to play an important role; in absence of that field plasma disappears. The authors conclude that their notions about the trapping mechanism based on analysis of the single-particle motion are completely inadequate and additional investigations are needed before one could explain the influence of a space modulated magnetic field on a partially noncompensated plasma. The presence of crossed electric

Card 9/11

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8"

自己不由于现代的是

CIA-RDP86-00513R001550730002-8

77836 sov/57-30-3-3/15

Fig. 5. Average value of radial component of space charge field of plasma in the trap at a distance of 2.5 cm from axis as function of injection current. Field was measured through asymuthal drift of probing beam. $P=3\cdot10^{-6}$ mm Hg.

Card 10/11

-FINESHARE FURNER

Investigations of a Reput to The

77830 201/57-50-3-3/15

and supartic fields seems to ereate conditions for the referition of particles resulting from the ionization of the gas by the electron beam. These particles may acquire energies in the mentioned fields comparable to those of the injected electrons. Using the system described in the present paper the authors hope it is possible to investigate properties of a partially noncompensated, fairly hot plasma. There are 5 figures; and 4 Soviet references.

ASSOCIATION: Physico-Technical Institut AS UKESSR, Khar'kov (Filiko-tekhnicheskiy institut AN USSR, Khar'kov)

SUBMITTED: October 27, 1969

Cand 11/11

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550730002-8"

۰. 77833 9.3150, 24.2120 SOV/57-30-3-5/15 Stud Adkey, K. D., Toler, V. T., Benardy, N. I., Ballyev, I. I., Donnerv, V. A., Dugay, Yu. P. AUTHORS: Investigations of Ion Cycletron Resonance in TITLE: a Dense Flasma Zhurnal tekhnicheskoy fiziki, 1960, Vol 30, Nº 3, PERIODICAL: pp 283-288 (USSR) The heating up of plasma under ion cyclotron rescnance, where the ions acquire directly the energy ABSTRACT: of the electric field, is a process which one eculd hope to utilize for attaining high ionic temperatures. Theory developed by Stix (see gef) indicated that at plasma densities of 1014 cm and more, one could generate and thermalize so-called ion cyclotron waves. The authors, therefore, investigated the ion cycletron resonance in hydrogen plasmas of density 1012-1017 cm under impulse conditions, using a device described on Fig. 1. Card 1/ 11

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550730002-8"

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8

Investigations of Ion Cycletron Resonance in a Dense Plasma

77839 507/57-30-3-5/15

Caption to Fig. 1. Diagram of the experimental setup: (1) discharge tube; (2) triggering device; (3) triggering coheme; (4) detector; (5) generator of 10 mc; (6) cselllegraph ENO-1.

A straight discharge represents the source of the plasma inside a 60-cm-long tube, 6 cm in diam. The discharge was generated by means of 800 μ sec square potential impulses. Discharge current could go up to 500 a and was regulated by means of ballast resistance R_1 . The discharge tube was along the axis of a 70-cm-long sclenoid, 20 cm in diam. Its magnetic field reached the maximum value up to 10^4 oersted in $4.7 \cdot 10^{-3}$ sec. The coil was fed by means of a battery of condensers with a maximum stored energy of 40,000 joules at potentials up to 5 kv. The uniformity of the magnetic field over a length of 45 cm was not worse than 1%. Four sections of three-turn each, connected in antiphase, served as

Card 3/11

CIA-RDP86-00513R001550730002-8 "APPROVED FOR RELEASE: 08/23/2000 Investigations of Ion Cyclotron Resonance 77839 sov/57-30-3-5/15 in a Dense Plasma the coll for introducing the high-frequency power into the plasma. Axial periodicity of the electromagnetic wave was 11 cm. The inductivity (1 μ H) of the coll together with the C and C_{0} capacitance constituted a resonance circuit with a Q-factor of 270, and was driven by a 1 kw generator supplying a continuous range of ℓ -12 mc oscillations. Ion cyclotron resonance was observed through the change in potential across the reconant circuit which was transmitted through the capacitance C to a germanium detector, and then to the amplifler of the vertical deflections of the oscillograph ENG-1. The triggering circuit enabled a buildup of the discharge at all values of the magnetic field. Density of the plasma was deduced by L. A. Dushin and V. I. Konenko from the condition of transmission of millimeter waves. Tests showed that the relation between the resonant peak and the generator frequency follows the law ω_{ci} = eH/me for plasma densities n $\leq 10^{10}$ em⁻³. Card 4/11 CONTRACTOR AND INCOME. a anter a construction of the second states of the second states of the second states and the second states of t

CIA-RDP86-00513R001550730002-8

Investigations of Ion Cyclotron Recommende in a Dense Flassa 77839 SOV/57-30-3-5/15

Figures 3 and 4 show that the optimum conditions for absorption of the high frequency power by the plasma are determined by the density of the neutral and coarged particles. Measurements of the half-widths of the resonant curves show strong interactions between the accelerated ions and neutral atoms.

Card 4/11

Fig. 3. (Caption on Card 6/11)

CIA-RDP86-00513R001550730002-8

Investigations of Ion Cyclotron Resonance is a Dense Flasma 77839 sov/57-30-3-5/15

Fig. 3. Resonant absorption of h-f power versus hydro on pressure at constant discharge current. The absolute represents pressure in μ Hg; the condinate chows amplitude of resonant absorption in relative units.

Fig. 4. Resonant absorption of h-f power versus discharge current in hydrogen at 7.5 μ Hz pressure. The abscissa represents current in asperes; the ordinate is sume as on Fig. 3.

Card 6/11

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8

Investigations of Ion Gyeloteon Lebonnie In a Dense Flasma

77839 Sov/57-50-3-5/15

Shallar results were obtained by Dubova and others (results to be published in Atomnaya energiya) at FTI AN USSR (FTI AS UKESSR) investigating the cyclotron resonance under stationary conditions in a FIG source of plasmi, fed by means of a generator of a few hundredths of a milliwatt. That work showed also that the Coulomb collisions have little influence on the consumption of energy by resonant ions. The authors investigated also the relationship between the power absorption and frequency, the displacement of the resonant peak and the intensity of the discharge current, and the relationship between the resonant absorption of the power and the time after the discharge current was cut off (see Fig. 9). Since this time is related to the density of the plasma, the curve testifies that there exists in optimum density of the plasma for absorption of power.

Card 7/11

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8

Investigations of Ic: Cyclotron Resonance in a Dense Plasma

Fig. 9. Resonant absorption of h-f power versus time after cutting off discharge current. Pressure 15 μ Hg; discharge current 250 a.

At densities higher than the optimum one, the autients suspond that a kind of h-f field screening effect of the plasma occurs. The authors also observed that with the increase of plasma density, an asymmetry of the regionant absorption peak appears

Card 8/11

SHIP IN SHIPS

APPROVED FOR RELEASE: 08/23/2000

THE PERSON AND THE PERSON

CIA-RDP86-00513R001550730002-8

Investigations of large of the presence of the second states of the second seco

1999) 1997 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997

and the discretion field of with a higher recommentative. There explain this adjunctor is a secare of a part of the set i wer into the prepariton of ionic part that the set of isolate the theory cannot be attended on this the preparate cannot be attended in the reparate conditions of the theory. The actuality determined by the prepariton at an isolate the field of the adjunctor does of the data. The actuality determined on the theory of the data. The actuality determined on the theory of the data. The data field of a value of entry base of the data. The data is a same of entry is and the exlicit determined on the adjunctor of the peak which are stained discussing the adjunctor V-CO. The actuality of the second the stellarator V-CO. The actuality has been been been at the data the first power beneficied by a place with densities above entry is thereined a place with densities above entry of the second the place with densities above entry of the second the place with densities above entry of the second the place with densities above entry of the second the place with densities above entry of the second the place of their the second the place of the second the second the entry of the second the place of their the second the place of particles and the second the entry of the second the place of the second the second the entry of the second the place of the second the second

Card 9, 11

A TRACE MARRIED

APPROVED FOR RELEASE: 08/23/2000

Investigations of the Greistree Wessacher In a Dense Flagen 775**3**9 Sov.(57-30-3-5/15

word a tany is populate to near plasmas with densities and the matches also the problem with there also the theory product littles for keeping the parameter

 $\gamma \sim \frac{\lambda}{m}$. Since the lympic plasma

Here the stable plane we strike there λ -length strike postform of the excitation will; τ_{1} - ion

real transfer. While the lependence on $\mathbb{T}_{1}^{\overline{1}}$ is quite

Weak, a reduction of λ is a half allows the increase of density up one order of matritude. In addition, a condition λ corresponds to a content of power according time W ~ 1 λ^{c} . The reduction of λ

persents, transford, a perv attractive possibility, and the Settors inhuider it a matter of expediency to contact applementant intertipation of this problem. There are a figures; and a methodores, a Soviet, 3 7.3. The T.S. colleges of year K.S.W. Champion.

Card 10, 11

77839 sov/57-30-3-5/15 Investigations of Ion Cyclotron Resonance in a Dense Plasma Proc. Phys. Soc., 70, 446 B, 212, 1957; T. N. Stix, R. W. Palladino, Proc of 1958 Gen. Conf. A (15, p 360); T. N. Stix, Proc. of 1958 Gen. Conf. A (15, p 361). Physico-Technical Institute AS UkrSSR, Khar 'kov ASSOCIATION: (Fiziko-tekhnicheskiy institut AN USSR, Khar'kov) October 22, 1959 SUBMITTED: Card 11/11

CIA-RDP86-00513R001550730002-8

s/058/63/000/001/015/120 A062/A101

24 6730

Olnel'nikov, K. D., Grishayev, I. A., Grizhko, V. M., Pisun, A. N., APPH PC: Lykov, A. I., Kitayevskiy, L. Kh.

2 30 MeV energy linear travelling-wave electron accelerator 1111 1 ::

FRS1 4 ROLL Referativnyy zhurnal, Fizika, no. 1, 1963, 39 - 40, obstract 1A374 (In collection: "Elektron, uskoriteli," Tomsk, Tomskiy un-t, 1961, 3 - 1)

The authors describe a 30 MeV linear electron accelerator designed at the Equie -technical Institute of the Academy of Sciences of the Ukrainfan this, the assignator consists of two sections connected with each other - the Infection methon and the main section (with a constant wave phase speed); the terator fitte wein section is 2.8 m, the value ka = 2.48 (k - wave vector, a -- resemble method). The two sections are energized by one klystron power ampliflor, control by a magnetron generator. The power dissipated in the main section and in the output load is all My (in the load 3.3 Mw): the field intensity is then if W/es. The accelerating system is composed of scparate resonators; the

Cant 1/1

APPROVED FOR RELEASE: 08/23/2000

"你们是是到1334年期最终没有的情况也是我们要要不是我们是不能的。"

V7. s/057/61/031/002/014/015 B124/B202 26.2311 Nazarov, N. I., Yermakov, A. I., Tolok, V. T., and AUTHORS: Sinel'nikov, K. D. Propagation of ion cyclotron waves in a plasma TITLE: Zhurnal tekhnicheskoy fiziki, v. 31, no. 2, 1961, 254-255 PERIODICAL: TEXT: The experiments were made by means of a device similar to that described in Ref. 1. Gas discharge took place in a 1.6 m long glass tube with a diameter of 60 mm, in an axially magnetic field with a field intensity of up to 15 kilooersteds. The magnetic field attained its maximum value within 10^{-2} sec, it dropped by 2.7 times within $3 \cdot 10^{-2}$ sec. Hydrogen in the pressure range from 10^{-4} to 10^{-2} mm Hg serv d as working gas. The high-frequency energy was fed into the plasma by means of an induction coil usually used in cyclotron heating. It consisted of six parts connected in phase opposition. The axial periodicity of the h.f. magnetic field in the coll was 16 cm. The load current circuit consisting of this coil and vacuum condensers had the quality factor 310. The current circuit Card 1/1

APPROVED FOR RELEASE: 08/23/2000

89168 s/057/61/031/002/014/015 b124/b202

Propagation of ion cyclotron ...

was fed by an h.f. generator with quartz stabilization and a power of 80 km. The duration of pulses varied between 10^{-5} and 10^{-2} sec, the working frequency of the generator varied from 3 to 30 Mcps. The absorption of the h.f. power by the plasma in the region of ion-cyclotron resonance was determined by measuring the voltage in the current circuit as well as from the change of the electron density during discharge, and from the intensity of the hydrogen spectral line Hg. With given parameters of the h.f. current circuit about 5 kw were introduced into the plasma in the region of ion-cyclotron resonance. Owing to the resulting high degree of ionization of the gas no plasma formation by direct electrode discharge was necessary. In this case, experiments could be made also at low hydrogen pressures (up to 2.10⁻⁴ mm Hg). The upper curve in Fig. 1 shows the change of load of the h.f. current circuit in the region of ion-cyclotron resonance, the lower curve shows the intensity of the Hg line. The duration of pulses of the h.f. generator is about 3 msec. After 0.5 msec hydrogen is intensively ionized. The upper curve of Fig. 2 shows a curve analogous to that in Table 1, the lower one shows the curve of the amplitude change of the h.f. (wave) signal at the electrode. The signal occurred only when the h.f. current circuit was loaded in the region of

Card 2/A

APPROVED FOR RELEASE: 08/23/2000

Propagation c	f ion cyclotron S/057/61/031/002/014/015 B124/B202	f
signal at the results obtain form of ion-o the experimen B-66 (V-66) (waves. Both figures show that the amplitude of the wave probe mainly depends on the degree of plasma ionization. The ed prove the penetration of h.f. energy into the plasma in the yclotron waves. The mentioned data also prove the results of ts of T. Stiks et al. in the stellarators B-65 (V-65) and Refs. 2, 3). Besides, also waves shorter than the cyclotron served in the magnetic fields. The working pressure in this	10
	mm Hg. Under the experimental conditions of the authors	
such waves we occurrence ha	re observed only at pressures exceeding 8.10 ⁻² mm Hg. Their s hitherto not been explained. There are 2 figures and	X
such waves we occurrence ha 3 Soviet-bloc	re observed only at pressures exceeding 8.10 ⁻² mm Hg. Their s hitherto not been explained. There are 2 figures and	X -
such waves we	re observed only at pressures exceeding 8.10 ⁻⁹ mm Hg. Their s hitherto not been explained. There are 2 figures and references. Fiziko-tekhnicheskiy institut AN USSR, Khar'kov (Institute of Physics and Technology of the AS UkrSSR, Khar'kov)	20
such waves we occurrence ha 3 Soviet-bloc ASSOCIATION:	re observed only at pressures exceeding 8.10 ⁻⁷ mm Hg. Their s hitherto not been explained. There are 2 figures and references. Fiziko-tekhnicheskiy institut AN USSR, Khar'kov (Institute	20
such waves we occurrence ha 3 Soviet-bloc ASSOCIATION:	re observed only at pressures exceeding 8.10 ⁻⁹ mm Hg. Their s hitherto not been explained. There are 2 figures and references. Fiziko-tekhnicheskiy institut AN USSR, Khar'kov (Institute of Physics and Technology of the AS UkrSSR, Khar'kov)	20
such waves we occurrence ha 3 Soviet-bloc ASSOCIATION:	re observed only at pressures exceeding 8.10 ⁻⁹ mm Hg. Their s hitherto not been explained. There are 2 figures and references. Fiziko-tekhnicheskiy institut AN USSR, Khar'kov (Institute of Physics and Technology of the AS UkrSSR, Khar'kov)	20
such waves we occurrence ha 3 Soviet-bloc ASSOCIATION: SUBMITTED:	re observed only at pressures exceeding 8.10 ⁻⁹ mm Hg. Their s hitherto not been explained. There are 2 figures and references. Fiziko-tekhnicheskiy institut AN USSR, Khar'kov (Institute of Physics and Technology of the AS UkrSSR, Khar'kov)	20

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550730002-8"

的。日本的社會理論

.

	COMPACTIVITY DELL DESIGNATION REPORT OF AND	
	89169	· · ·
	S/057/61/031/002/015/015 B124/B202	
26.23. AUTHORS:	Volkov, Ya. F., Tolok, V. I., and Oldel date ,	
TITLE:	Study of the electrodeless discharge in a magnetic trap with additional azimuthal magnetic field	
PERIODICAL:	Zhurnal tekhnicheskoy fiziki, v. 31, no. 2, 1961, 255-258	
the diameter leads to a l plasma heati initial magn the plasma c ments were m explain the fields. The accompanies	lasma can be heated by a fast magnetic trap. In such a system, $$ of the plasma cylinder is shortened during compression, which ooser connection between coil and plasma in experiments of ng by means of ion-cyclotron resonance. The presence of an letic field Hy may prevent a strong shortening of the radius of cylinder without changing the degree of compression. Experimede with the field Hy to obtain a hollow plasma cylinder and to interaction between the plasma and such a system of magnetic eathors also studied gamma radiation which almost always such discharges. The discharge of two condenser batteries formation of a three-phase field with the voltage $E_{y_1} = 30 \text{ v/cm}$, with a period of 20 and 270 msec, respectively, with an axial	
		5

CIA-RDP86-00513R001550730002-8

89169

S/057/61/031/002/015/015 B124/B202

Study of the electrodeless...

magnetic field intensity $H_z = 5$ koe and a mirror ratio of 2:1. A further condenser battery was discharged above a rod which lies in the axis of the system thus producing a field Hq; discharge current I = 20 ka. Fig. 2,a,b,v, g shows the "SFR-graphs" in argon, which indicate that Hy causes no plasma compression; the plasma exists in the form of two coaxial cylinders one of them bordering the rod (Fig. 2,a,b). The drift along the axis Z (Fig. 2, v, ϵ) is caused by the force acting upon the ions as a result of their motion relative to the axis in the field Hq. With changed sign of Hq also the direction of drift is reversed. The same holds for the hydrogen plasma. X-radiation was studied under the following conditions: 1) Antiparallel connection of coils without occurrence of gamma radiation; ?) parallel connection of coils in the presence of Hy; under these conditions gamma radiation had an energy of about 50 kev and a mean intensity of 20 mr/discharge. Gamma radiation was observed in argon in the pressure range $p = 5 \cdot 10^{-4} - 5 \cdot 10^{-3} \text{ mm Hg and in hydrogen at}$ $p = 2 \cdot 10^{-3} - 3 \cdot 10^{-2}$ mm Hg. Fig. 3, a, b shows the oscillograms of the magnetic field, the shf signal ($\lambda = 4$ mm), and of gamma radiation. By means of a lead collimator the author shows that radiation in the region

Card ?/3

APPROVED FOR RELEASE: 08/23/2000

性的化和自动

5

0

5

Ũ

5

Ö

15541451515-55

tudy of the	electrodeless		S/057/61/0 B124/B202	031/002/015/015	
of the minim $Q_2 = 3 v/or$ cions; 3) pro- presence of preases up to ls formed is increasing by formation of amounts to a K-rays shows between the	um of the magn no gamma radi rallel connect He changes the o about 100 ke shifted to the the plasma. approximately 2 that the emis mirrors. The	ation of the coi ation of the coi character of by; the pressur he high-vacuum tion occurs eve The intensity 2.5 r/discharge ssion from the glass tube whi	ls in the preser gamma radiation; e region in whice by one order of ry half period h of gamma radiati . The photograp rod has its originate ch is inserted pointersity by 7-		n a X
There are 2	figures and 1 September 10,	Soviet-bloc re	Ierence.	•	2
					•
Card 3/52					

SINEL'NIKOV, K.D.; SAFRONOV, B.G.; AZOVSKIY, Yu.S.; ASEYEV, G.G.; VOYTSENYA, V.S.
Studying the magnotic properties of a plasma behind a strong shock wave front. Zhur.tekh.fiz. 31 no.8:893-898 Ag '61. (MIRA 14:8)
1. Fiziko-tekhnicheskiy institut AN USSR, Khar'kov. (Plasma (Jonized gase)--Magnetic properties) (Shock waves)

APPROVED FOR RELEASE: 08/23/2000

SINEL'NIKOV, K.D., akademik, otv. red.; LABINOVA, N.M., red.; LIEEHMAN, T.R., tekhn. red.
[Reports on plasma physics and problems of controlled thermonuclear synthesis] Fizika plazmy i problemy upravliaemogo termoiadernogo sinteza; doklady. Kiev, Izd-vo Akad. nauk USSR, 1962. 175 p. (MIRA 15:6)
1. Konferentsiya po fizike plazmy i probleme upravlyayemykh. termoyadernykh reaktsiy. 1st, Kharkov, 1959. 2. Akademiya nauk USSR (for Sinel'nikov). (Plasma (Ionized gases)) (Thermonuclear reactions)

APPROVED FOR RELEASE: 08/23/2000

SINEL'NIKOV, K.D., ekademik, otv. red.; LAMINOVA, N.M., red.; LIHERMAN, T.R., tekhn. red.

· . . .

[Plasma physics and the problems of controlled thornonuclear synthesis; reports]Fizika plazmy i problemy upravliaemogo termoiadernogo sinteza; doklady. Kiev, Izd-vo Akad. nauk USSR, 1962. 175 p. (MIRA 15:10)

1. Konferentsiya po fizike plazmy i probleme upravlyayenykh termoyadernykh reaktsiy. 1st, Kharkov, 1959. 2. Akademiya nouk Ukrainskoy SSR (for Sinel'nikov).

(Plasma (Ionized gases)) (Thermonuclear reactions)

APPROVED FOR RELEASE: 08/23/2000

٠

	•	
	S/781/62/000/000/019/036	
	Sinel'nikov, K. D., Safronov B. G., Azovskiy Yu. S., Aseyev, G. G.,	
AUTHORS:	Sinel'nikov, K. D., Sarronov Voytsenya V. S. Study of magnetic properties of a plasma behind the front of a strong	•
TITLE:	Study of magnetic properties of a period terrovadernogo sinteza;	2
SOURCE:	shock wave Fizika plazmy i problemy upravlyayemogo termoyadernogo sinteza; Fizika plazmy i probleme upravlyayemykh doklady I konferentsii po fizike plazmy i probleme upravlyayemykh doklady I konferentsii, po fizike plazmy i probleme upravlyayemykh termoyadernykh reaktsiy. Fiztekh. inst. AN Ukr. SSR. Kiev, Izd-vo termoyadernykh reaktsiy. Fiztekh. inst. AN Ukr. SSR. Kiev, and	. • •
	All UKr. Son, 10001	
TEXT: Kantorow	tz (rei. 3. or atronger (with Mach human setup consisted of a which	
jimit of	17 in the cited paper. In of organic glass, placed in a homogeneous or inhomogeneous	
nagnetic shock wa	ical shock-wave see the shock wave travel in the passage of the so set as to make the shock wave travel in the shock of the shock field. The change in magnetic probe, and the velocity of the shock we was registered with a magnetic probe, and the velocity of the shock	
Card 1/	3	

CIA-RDP86-00513R001550730002-8

Study of magnetic properties of a plasma behind... S/781/62/000/000/019/036

wave in the probe region was registered with two photomultipliers whose entrance slits were spaced 5-6 cm apart. The principal measurements were made in air at an initial pressure 0.2 mm Hg, It was found during the course of the experiments that the magnetic probes had a higher resolution than the photomultipliers.

Figures are presented showing oscillograms of the probe and photomultiplier signals, the dependence of the probe signal amplitude on the magnetic wave and on the velocity of the shock wave, and the emf induced in the probe when a plasma disc moves in a magnetic field relative to the probe.

The principal conclusions are that in the case of strong shock waves the distribution of the conductivity behind the front of the shock wave cannot be determined with the aid of this procedure, inasmuch as the half-width of the conductivity zone behind the front of the shock wave greatly decreases with increasing Mach number. In the case of the work of Shao et al, this procedure can be used, but the results must be approached with caution, since only the eddy currents were taken into account and thermal diamagnetism was completely ignored. Certain preliminary experiments were also made to determine the polarization of the plasma behind the front of the shock wave, showing that when a shock wave

Card 2/3

1

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8

Study of magnetic properties ...

S/781/62/000/000/019/C36

moves in a homogeneous transverse field it becomes polarized in a plane perpendicular to the magnetic field. Attempts to measure the polarization voltage as a function of the magnetic field intensity have led to values only half as large as the theoretical voltage, and the reason for this is not yet clear. There are seven figures and four references, all to Western literature.

Card 3/3

APPROVED FOR RELEASE: 08/23/2000

	n	•	
• • t		8/861/62/000/000/005/022 B125/B102	
AUT HORS 1	Sinel'nikov, K. D., Zeydlits, Shutskever, Ya. S. (Deceased), Faynberg, Ya. B., Lyubarskiy,	G. Ya.	
TITLE:	The physical bases of the inje	ector of the 10-Bev proton	
SOURCE	Teoriya i raschet lineynykh u tekhn. inst. AN USSR. Ed. by '		
synchrotro particles intervals standing synchroni	b linear accelerator discussed he on of the OIYaI. It furnishes a in short pulses. The pulses are of time. The resonator, contain waves. It needs only a relativel zing several generators feeding to bility and radial stability of the screening tubes and nets. The in us phase 20°. The generator wave	separated by-relatively is ing screening tubes, excite y small r-f power and it all the accelerator. Simultaneo he accelerated bunch is achi-	lows of us eved nd the

CIA-RDP86-00513R001550730002-8

The physical bases of the...

S/861/62/000/000/C05/022 B125/B102

the accelerator have the length $L_k = c\beta_k T$, where $T = \lambda/c$, and the mean effective field strength in all the gaps of the resonator is 19.9 kv/cm. The phase focusing effect is accompanied by radial defocusing. The critical phase $\Psi_{\rm S~MAX}$ lies between 54° and 71°; in the present case, $\Psi_{\rm S~MAX} > 2\varphi_{\rm S}$. The utilization factor of the current injected should be increased by inserting a clystron-type buncher between injector and injecting accelerator. During one period of the r-f oscillations, the energies absorbed by a particle of phase Ψ and by the synchronous particle are different. The first term of

the final particle energy at the accelerator output is the energy calculated, and the second term is the deviation from it. The relative energy spread is $0.3 \cdot 10^{-2}$ in the case considered here. Supplementary investigations are necessary to determine the spread in energy due to radial oscillations; in particular, the way the accelerating field E_g depends on the radius must be

studied. The capture angle calculated for $\varphi_{\rm H}$ = 20° has a minimum at φ = 30°.

Currents of less than 10 ms have but little effect on capture during acceleration. Furthermore, the effect of the space charge on the radial stability of the accelerator discussed here is insignificant. The angle of

Card 2/3

APPROVED FOR RELEASE: 08/23/2000

 AUTHORS: Sinel'nikov, K. D., Faynberg, Ya. B., Zeydlits, P. M. TITLE: A possible modification of the linear and cyclic methods of acceleration SOURCE: Teoriya i raschet lineynykh uskoriteley, sbornik statey. Fiztekhn. inst. AN USSR. Ed. by T. V. Kukoleva. Moscow, Gosatomizdat, 1962, 109 - 113 TEXT: A type of accelerator combining the advantages of cyclic and linear accelerators is discussed. It is a linear accelerator bent to a nonclosed ring or another non-closed curve. The accelerated particles are kept in their trajectories of constant or variable radius by a magnetic field. Radial and axial stability is attained in the way customary for cyclic accelerators. Phase stability can be achieved using the dependence of the revolution period of the accelerated particles on their frequency. High energies can be attained in systems of large radius and comparatively moderate field strength (~1 kgauss for 1 Bev). The condition of phase stability is R²/_φ = evu²_H N²k/ε where Ω is the frequency of the phase Gard 1/3 	ан 1730	出875 S/861/62/000/006/022 B125/B102	• • • • 1 •
acceleration SOURCE: Teoriya i raschet lineynykh uskoriteley, sbornik statey. Fiz tekhn. inst. AN USSR. Ed. by T. V. Kukoleva. Moscow, Gosatomizdat, 1962, 109 - 113 TEXT: A type of accelerator combining the advantages of cyclic and linear accelerators is discussed. It is a linear accelerator bent to a nonclosed ring or another non-closed curve. The accelerated particles are kept in their trajectories of constant or variable radius by a magnetic field. Radial and axial stability is attained in the way customary for dyclic accelerators. Phase stability can be achieved using the dependence of the revolution period of the accelerated particles on their frequency. High energies can be attained in systems of large radius and comparatively moderate field strength (~1 kgauss for 1 Bev). The condition of phase stability is $\Re^2_{\phi} = eV \omega_H^2 N^2 k/\epsilon_s$ where \Re_{ϕ} is the frequency of the phase	•	Sinel'nikov, K. D., Faynberg, Ya. B., Zeydlits, P. M.	•
tekhn. inst. AN USSR. Ed. by T. V. Kukoleva. Moscow, Gosatomizdat, 1962, 109 - 113 TEXT: A type of accelerator combining the advantages of cyclic and linear accelerators is discussed. It is a linear accelerator bent to a nonclosed ring or another non-closed curve. The accelerated particles are kept in their trajectories of constant or variable radius by a magnetic field. Radial and axial stability is attained in the way customary for cyclic accelerators. Phase stability can be achieved using the dependence of the revolution period of the accelerated particles on their frequency. High energies can be attained in systems of large radius and comparatively moderate field strength (~1 kgauss for 1 Bev). The condition of phase stability is $\Re_{\phi}^2 = eV\omega_{H}^2 N^2 k/\epsilon_{g}$ where \Re_{ϕ} is the frequency of the phase	TITLE:		
accelerators is discussed. It is a linear accelerator bent to a nonclosed ring or another non-closed curve. The accelerated particles are kept in their trajectories of constant or variable radius by a magnetic field. Radial and axial stability is attained in the way customary for cyclic accelerators. Phase stability can be achieved using the dependence of the revolution period of the accelerated particles on their frequency. High energies can be attained in systems of large radius and comparatively moderate field strength (~ 1 kgauss for 1 Bev). The condition of phase stability is $\Omega_{\phi}^2 = eV \omega_{H}^2 N^2 k/\epsilon_{g}$ where Ω_{ϕ} is the frequency of the phase	SOURCE :	tekhn. inst. AN USSR. Ed. by T. V. Kukoleva. Moscow,	1-
	accelerator ring or and their traje Radial and accelerator revolution energies ca moderate fi stability i	s is discussed. It is a linear accelerator bent to a nonclosed ther non-closed curve. The accelerated particles are kept in ctories of constant or variable radius by a magnetic field. axial stability is attained in the way customary for cyclic s. Phase stability can be achieved using the dependence of the period of the accelerated particles on their frequency. High n be attained in systems of large radius and comparatively eld strength (\sim 1 kgauss for 1 Bev). The condition of phase	. •
			u Strengthere in 1
医学们的 化化学 化化学 化化学化学 化化学化学 化化学化学 化化学化学 化化学化学 化化学化学化学化学化学化学化学化学化学

CIA-RDP86-00513R001550730002-8

s/861/62/000/000/006/022 B125/B102

A possible modification of the...

oscillations and N is the number of the periods of the linear accelerator. The frequency of the generator can be kept constant by varying the structural period of the linear accelerator. The advantages of such accelerators are simplicity of injecting and extracting particles, considerable increase of the beam current, constancy of the generator frequency and of the magnetic field strength. The energy gained per revolution is of the same order of magnitude as the total energy. The magnetic field is a function of radius and angle. When the quasistationarity condition $\Omega_{\phi}^2/\omega_{\rm H}^2 \ll 1$ is fulfilled and when the magnetic field strength and the number N of the periods of the accelerating system very slowly, $\omega_{\Gamma} = N\omega_{H}$ is the condition of synchronism between particle and wave. The generator frequency, therefore, is significantly higher than the revolution frequency of the particle. The radial deviations Δr_1 for radial-phase oscillations and Δr_2 for free radial oscillations can be diminished significantly to $\Delta r_1 = 1-6$ cm and $\Delta r_2 = 1-5$ cm. Rather large variations in momentum and in amplitude of the phase oscillations then correspond to small radial variations. Near the end of acceleration, the amplitude of the radial oscillations decreases by Card 2/3

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8

34211 s/057/62/032/002/019/022 B124/B102

24.6730 AUTHORS:

Tolok, V. T., and Sinel'nikov, K. D.

A feasible method for plasma injection into closed magnetic TITLE: traps

Zhurnal tekhnicheskoy fiziki, v. 32, no. 2, 1962, 248 - 249 PERIODICAL:

TEXT: The injection of plasma into a stellarator system is performed in two steps, i. e., introduction (Fig. 1) and forcing through (Fig. 2). Single-turn coi. 1 induces an alternating magnetic field H. which, if directed opposite to the basic field H , leads to the formation of a system of opposed magnetic fields having two annular slits in the basic retarding magnetic field. In order to eliminate the action of turn 1 cn coil 2, which produce the basic field H , the latter are equipped with metallic shields. Plasma injection is performed through the annular ϵ lits. When the sign of H~is changed, the slits disappear, and magnetic pressure on the plasma is increased to $(H + H)^2 \leq \frac{(H + H)^2}{8\pi}$, whereby the plasma is forced through

Х

Card 1/2

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8 "APPROVED FOR RELEASE: 08/23/2000 SHARE STREET WAR DISCHAREN -SINELNIKOV, K.D. s/057/62/032/005/003/022 B102/B104 (3423) 24.6714 Mazarov, N. I., Yermakov, A. I., Lobko, A. S., Bondarev, V. A., Tolok, V. T., and Sinel'nikov, K. D. 24.6740 AUTHORS: Examination of ionic cyclotron waves Zhurnal tekhnicheskoy fiziki, v. 32, no. 5, 1962, 536-540 TITLE: PERIODICAL: TEXT: The authors continued previous experiments (ZhTF, 31, 254, 1961) 7 on the excitation and propagation of ionic cyclotron waves. apparatus schematically shown in Fig. 1, a powerful h-f discharge in hydrogen and deuterium was studied in a range near ionic cyclotron resonance, and the conditions of forced resonance excitation of ionic cyclotron waves and of their propagation along the magnetic field were determined. Polarization and attenuation of these waves was also measured. The discharge took place in a tube of molybdenum glass (2 \pm long, 60 mm thick) arranged in a solenoid which created a quasiconstant Esgnetic field. The arrangement was such that two field regions were present; one for resonance excitation and another for the damping of the ionic cyclotron waves. The overall length of the coil was Card 1/3 ٦ مر ۱

APPROVED FOR RELEASE: 08/23/2000

C.

STS TANK

		2	
	Examination of ionic cyclotron waves $S/257/62/032/025/003/022$ Bi02/Bi02 1.5 m. The field was created by discharging a capacitor bank with a total capacity of 2.25 $\cdot 10^{-2}$ f, which could be charged up to 5 kv. The field reached 20-25 kilogauss within 5 msec. The exciting electronagnetic field had a wavelength of 16 cm. The resonance circuit had a quality factor of 400 with an 80-kw generator (3-30 Kc/sec), and the maximum voltage in the circuit was 30 kv. Hydrogen of 10 ⁻² $\cdot 10^{-4}$ mm Hg was blown through the evacuated (1 $\cdot 10^{-6}$ mm Hg) discharge tube, and after a long- time aging of the system with h-f discharges, voltage and probe-signal oscillograms were recorded. At the moment of resonance load, the generated wave starts traveling along the constant magnetic field were magnetic-field distribution and phase variation along the free ion in the polarization vector rotated in the same sense as did the free ion in the polarization of magnetic fields equal to that of the cyclotron waves. Damping was found to set in only at a certain distance with various field $u = H_{eyclotron}^{-1}$ cyclotron damping becomes more effective. There are Card 2/5	Ţ	
5			

CIA-RDP86-00513R001550730002-8 "APPROVED FOR RELEASE: 08/23/2000 and and a second and a second and a second second and a กรรม เอกระสุขาวกระ ราวมากกรัฐ Ŀ . s/057/62/032/005/003/322 B102/B104 Examination of ionic cyclotron waves 8 figures. ASSOCIATION: Fiziko-tekhnicheskiy institut AN USSR (Physicotechnical Institute AS UkrSSR) Khar'kov June 3, 1961 SUBMITTED: ず . ۱ Card 3/5 ل .

APPROVED FOR RELEASE: 08/23/2000

helical win developed b energii im. Kurchatov) three-turn stellaratou	L1365 S/057/62/032/010/003/010 B104/B102 Zykov, V. G., Il'yenko, B. P., Lats'ko, Ye. M., Stepanenko, I. A., Ternopol, A. M., Tolok, V. T., and Sinel'nikov, K. D. Investigation into the properties of magnetic surfaces in systems with a helical magnetic field Zhurnal tekhnicheskoy fiziki, V. 32, no. 10, 1962, 1190-1196 Shapes of the magnetic surfaces in systems with stabilizing super studied by the wethod of the preceding electron beau y F. V. Karmanov and P. A. Cheremykh at the Institut atomnoy Y. V. Kurchators (Institute of Atomio Energy iseni I. V. and by injecting plasma clouds into a right cylinder with solid or by injecting thes into the curvilinear section of a cold. In the experiments with the preceding electron beam a model. In the experiments with the preceding electron beam a te plasma clouds special targets were used, superifically the plasma particles. If no current flows in the helical the electron beam forms econeentric circles can the fluorescent	

CIA-RDP86-00513R001550730002-8

8/057/62/032/010/003/010 B104/B102

Investigation into ...

...

screen. As the amperage in the helical winding increases, the circles degenerate to triangles, whose sides later bend inward. The largest and smallest radii of the separatrices measured as functions of I_{hel}/H_z , and

the distortions of the magnetic surfaces caused by deviations of the magnetic axis from the geometric axis, are in agreement with theoretical results. The cross sections of the plasma clouds were studied as functions of I_{bel}/H_z in clouds completely filling the cross section of the tube, and

in clouds partially acreened by diaphragms. In the former case two types of particles were distinguished, one type remaining trapped in the central -part of the cloud bounded by a separatrix, the other escaping from the confinement region. In the second case all plasma particles remained in the confinement region if the radius of the separatrix exceeded that of the che continument region it the radius of the separatrix exceeded that of the clouds, but if it was smaller the same result was obtained as in the first case. The separatrix is a function of the confining induction and of the amperage in the helical windings. This agrees with the theory. The magnetic surfaces in the curvilinear chamber of a stellarator model was magnetic suffaces in the curvillear changer of a statisfator model was studied by the same methods, yielding practically the same results with; the electron beam as those obtained with the right cylinder. It is only in the Card 2/3

APPROVED FOR RELEASE: 08/23/2000

Γ

111

<pre>Investigation into initial stage of the discharge that th walls of the vacuum chamber (diameter tore (mean radius of curvature 42 cm). ties and small densities the plasma pe magnetic field. There are 8 figures. SUBMITTED: November 29, 1961 Fig. 1. Experimental arrangement (ri. Legend: (1) coils producing the magn mirror field; (2) coils producing the field; (3) mouthpiece for 3-cm waves; conic plasma gun; (5) electric probac fluorescent ecreen; (7) helical windi </pre>	sht (4) (4) (5) (5) (5) (5) (5) (6) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7	X
	T.	

CIA-RDP86-00513R001550730002-8

SINEL'NIKOV, K.D., akademik, otv. red.

[Plasma physics and problems of controlled thermonuclear synthesis; reports] Fizika plazmy i problemy upravliaemogo termoiadernogo sinteza; doklady. Kiev, Izd-vo AN USSR, 1963. 366 p. (MIRA 17:5)

1. Konferentsiya po fizike plazny i problemam upravlyayemogo termoyadernogo sinteza. 3d, Kharkov, 1962. 2. Akademiya nauk Ukr.SSR.

APPROVED FOR RELEASE: 08/23/2000

SINEL'NIKOV, K.D., akademik, ov.red.; KADASHEVICH, O.A., tekhn.red. [Reports of the Conference on Plasma Physics and the Problem of Controlled Thermonuclear Synthesis] Doklady Vorol konferentsii po fizike plazmy i probleme upravliaemogo termoiadernogo sinteza. Kiev, Izd-vo Akad.nauk USSR. No.2. (MIRA 16:7) 1963. 343 p. 1. Konferentsiya po fizike plazmy i probleme upravlyayemogo termoyadernogo aintesa. 2d, Kharkov, 1960. (Plasma (Ionized gases)) (Thermonuclear reactions)

CIA-RDP86-00513R001550730002-8

5/2781/63/000/003/0164/0168 ACCESSION NR: AT4036054 AUTHORS: Nazarov, N. I.; Yermakov, A. I.; Tolok, V. T.; Sinel'nikov, K. D. TITLE: Investigation of instability in the cyclotron method of i plasma heating 1 SOURCE: Konferentsiya po fizike plasmy* i problemam upravlyayemogo termoyadernogo sinteza. 3d, Kharkov, 1962. Fizika plazmy* i problemy* upravlyayemogo termoyadernogo sinteza (Plasma physics and problems of controlled thermonuclear synthesis); doklady* konferentsii, no. 3, Kiev, Izd-vo AN UkrSSR, 1963, 164-168 TOPIC TAGS: cyclotron resonance phenomena, plasma instability, plasma heating, plasma ion oscillation, plasma decay, microwave plasma, gyromagnetic resonance ABSTRACT: To clarify the question of the effectiveness of plasma heating by ion cyclotron waves and to study the influence of the Card 1/5

APPROVED FOR RELEASE: 08/23/2000

an and a second state of the second state of the second state of the second second second second second second

ACCESSION NR: AT4036054

level of the high-frequency power on the plasma heating in the ion gyroresonance region, an experiment was performed with a setup described in detail elsewhere (ZhTF v. 32, No. 5, 1962). The results of the tests indicate that there exist two distinctly different modes of plasma behavior, one in which the plasma exists for a relatively long time, and one in which the plasma begins to decay even before the termination of the high-frequency power pulse. A radical decrease in the lifetime of the plasma occurs at a definite critical power level supplied to the plasma, and the smaller the pressure the smaller the critical power. The critical power depends on the cleanliness of the system and increases for a poorly preconditioned system. This dependence on the pressure and on the purity of the system suggests that the observed instability is due to the appearance of ion currents with large directional velocities. At the present time the nature of the observed instability cannot be reconciled with the existing theory. "In conclusion the authors thank Ya. B. Faynberg and V. I. Kurilko for interest in the work and for a

2/5 Card

APPROVED FOR RELEASE: 08/23/2000

			•
ACCESSION NR:	AT403605 4	,	,
discussion of t and Ye. S. Khok 5 figures.	he results, thlov for hel	and also A. L. Lobko, V. Ip with the experiment.	A. Bondarev, Drig. art. has:
ASSOCIATION: N	lone		
SUBMITTED: 00	4 	DATE ACQ: • 21May64	ENCL: 02
SUB CODE: ME	•	NR REF SOV: 003	OTHER: 002
•	•		
			•
	•		
•:	· ·		· ·

CIA-RDP86-00513R001550730002-8

CIA-RDP86-00513R001550730002-8

S/2781/63/000/008/0232/0236 ACCESSION NR: AT4036065 AUTHORS: Sinel'nikov, K. D.; Safronov, B. G.; Padalka, V. G.; Demidenko, I. I. TITLE: Visual study of plasmoids SOURCE: Konferentsiya po fizike plazmy* i problemam upravlyayemogo termoyadernogo sinteza. 3d, Kharkov, 1962. Fizika plazmy* i problemy* upravlyayemogo termoyadernogo sinteza (Plasma physics and problems of controlled thermonuclear synthesis); doklady* konferentsii, no. 3, Kiev, Izd-vo AN UkrSSR, 1963, 232-236 TOPIC TAGS: plasmoid, plasmoid acceleration, toroidal drift instability, plasma research, plasma magnetic field interaction, plasma diffusion ABSTRACT: Apparatus is described for visual observation of the shape of a plasmoid moving in electric and magnetic fields. The apparatus Card . 1/4

APPROVED FOR RELEASE: 08/23/2000

Ì.

ACCESSION NR: AT4036065

described can be used successfully even for plasmoids with relative-ly low ion concentration $(10^8--10^9 \text{ cm}^{-3})$ which are difficult to investigate by their waves (for example, high speed photography and spectroscopy). The instrument (called "plasmoscope" by A. V. Zharinov) is based on accelerating the plasma electrons between grids and causing them to induce glow of a luminor on a flat glass. The techniques required for the preparation of the plasmoscopes are described. The apparatus was used to investigate the entry and passage of a plasmoid in a longitudinal homogeneous magnetic field and in a field of toroidal configuration, using a source of the Bostick type and a discharge from 1 microfarad capacitor at 4 kV. The plasmoid velocity was $(7--8) \times 10^4$ m/sec. The broadening of the plasmoid in the homogeneous-field region may be due to differences in the angle at which the plasmoid enters the gradient field near the solenoid. In the case of toroidal configuration, it is assumed that the magnetic field compensates for the plasma polariza-The length of the toroidal part of the field must not exceed tion.

Card 2/4

ACCESSION NR: AT4036065

the length of the plasmoid for such a model, and as the plasma moves along the helical solenoid the plasmoid passes through it only so long as its length exceeds the length of the helix. Otherwise a strong drift of the plasmoid is observed and the plasma does not get through. An experiment was performed to ascertain the effect to which the toroidal configuration can clear the plasmoid of the "tail" of heavy ions. The results indicate the feasibility of such a cleaning method. Orig. art. has: 6 figures.

ASSOCIATION: None

SUBMITTED:	00	DATE ACQ: 21May64	ENCL: 01
SUB CODE:	ME	NR REF SOV: 001	OTHER: 001
- -			
Card 3/4			••••••••••••••••••••••••••••••••••••••

CIA-RDP86-00513R001550730002-8

APPROVED FOR RELEASE: 08/23/2000

你这些话你比如你是这些你们来说你就能是这些你?""你们,我们就是我们的我们就是我们知道这些不能与我们的心心,你是不是这些好,你是你没吃了?"

CIA-RDP86-00513R001550730002-8

s/2781/63/000/003/0262/0273 ACCESSION NR: AT4036069 AUTHORS: Zy*kov, V. G.; Stepanenko, I. A.; Tolok, V. T.; Sinel'nikov, K. D. TITLE: Investigation of plasma capture in a magnetic trap SOURCE: Konferentsiya po fizike plazmy* i problemam upravlyayemogo termoyadernogo sinteza. 3d, Kharkov, 1962. Fizika plazmy* i problemy* upravlyayemogo termoyadernogo sinteza (Plasma physics and problems of controlled thermonuclear synthesis); doklady* konferentsii, no. 3. Kiev, Izd-vo AN UkrSSR, 1963, 262-273 TOPIC TAGS: plasmoid, plasma source, plasmoid plasma interaction, magnetic trap, plasma confinement, Coulomb repulsion for e plasma ABSTRACT: The first reports are presented of experiments on the coninjection finement of a plasma in a trap with bucking fields, with simultaneous 1/4 Card

APPROVED FOR RELEASE: 08/23/2000 CIA

ACCESSION NR: AT4036069

injection of plasma in the opposite direction. The apparatus consists of a cylindrical vacuum chamber 20 cm in diameter made of stainless steel and placed inside the field-producing coils. Each coil is connected to buck the neighboring one, so that three traps with sharp-angle magnetic field geometry are produced, with a 15.6 cm distance between magnetic gaps. Conical plasma guns were used. The plasma was injected into the apparatus pumped out to $6.6 \times 10^{-4} \text{ n/m}^2$. The central trap was the principal one and the outer ones served for injection of the plasma into the central trap. Double electrostatic probes were used to measure the ion density, the electron temperature, and the time dependence of the density. The plasma propagation in the trap was investigated by using targets of photographic paper, the surface of which burned out after several impacts by the plasma. The apparatus and the probes are described in detail. The interaction of the opposing plasma streams is confirmed by several of the results of the investigations. Estimates also show that Coulomb interaction exists between the plasmoid particles. It is

2/4Card

APPROVED FOR RELEASE: 08/23/2000

ACCESSION NR: AT4036	069	·
pointed out that both and this affects the a 12 figures.	the apparatus and the method ccuracy of the final results.	are preliminary Orig. art. has:
ASSOCIATION: None		
SUEMITTED: 00	DATE ACQ: 21May64	ENCL: 01
SUB CODE: ME	NR REP SOV: 003	OTLER: 003
		٠

4.1

ACCESSION NR: AT4036070	s/2781/63/000/003/0273/0282
	panenko, I. A.; Tolok, V. T.; Sinel'nikov
K. D. TITLE: Injection of plasma opposing magnetic fields	through an annular gap of a trap with
termoyadernogo sinteza. 3d,	zike plazmy* i problemam upravlyayemogo Kharkov, 1962. Fizika plazmy* i prob- idernogo sinteza (Plasma physics and ionuclear synthesis); doklady* konferen- N UkrSSR, 1963, 273-282
a mag alacmoid plasm	na source, plasmoid plasma interaction, nement, plasma injection
magnetic trap, plasma contin	
	educing the particles lost when a plasma hrough one of the axial magnetic mirrors,

NERSTANDER AND THE THE THE AND THE AS THE AND A CONTRACT AND A

ACCESSION NR: AT4036070

the authors investigated the injection of plasma through the annular gap in the magnetic field from sources distributed around the gap periphery. The report describes the first experiments in which injection was investigated both in a stationary gap in the magnetic field, as well as in the gap existing during a certain time ("magnetic valve"). To simplify the initial experiments, the injection gap was produced by a constant field, with the coils connected to buck each other. A 20-cm diameter and 180-cm long cylindrical stainless steel vacuum chamber was used. Eight conical plasma guns were distributed uniformly around the periphery of the chamber in the magnetic gap plane. The synchronization circuit permitted simultaneous switching of all eight guns or a fraction of them. The plasmoids injected by each gun had a density 2 x 10^{14} cm⁻³ and a velocity of 3×10^4 m/sec. The working vacuum was 6.6×10^{-4} n/m². The maximum magnetic field intensity, equal to 2×10^5 A/m, was located 40 cm away from the magnetic gap. The experiments have shown that a plasma injected into a gap between opposing magnetic fields moves subse-

Card 2/4

APPROVED FOR RELEASE: 08/23/2000

ACCESSION NR: AT4036070

quently along the system axis. A strong interaction was observed between the opposing plasma streams, even in the absence of external magnetic fields. The nature of this interaction, and the time of confinement of the plasma in the trap when such an injection method is used, will be investigated in the future. Orig. art. has: 9 figures.

ASSOCIATION: None

SUBMITTED: 00	DATE ACQ: 21May64	ENCL: 01
SUB CODE: ME	NR REF SOV: 002	OTHER: 002

Card 3/4

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8"

19. July 10. 1

CIA-RDP86-00513R001550730002-8

APPROVED FOR RELEASE: 08/23/2000

DUSHIN, L.A. [Dushyn, L.O.]; KONONENKO, V.I.; KOVTUN, H.I.; SKIBENKO, A.I. [Skybenko, A.I.]; SINEL'NIKOV, K.D. [Synel'nykov, K.D.]; TOLOK, V.T.
Study of a plasma using a microwave interferometer. Ukr. fiz. zhur. 8 no.7:740-746 Jl '63. (MIRA 16:8)
1. Fiziko-tekhnicheskiy institut AN UkrSSR, Khar'kov. (Plasma (Ionized gases)) (Interferometry)

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8"

. :**#**

SINEL'NIKOV, K.D.; AZOVSKIY, Yu.S.; GUZHOVSKIY, I.T.; PANCHENKO, V.Ye.; SAFRONOV, B.G. Interaction of plasma bunches with an axially symmetric magnetic Interaction of plasma bunches with an anti-field. Zhur. tekh. fiz. 33 no.10:1159-1168 0 ^{*63.} (MIRA 16:11)

e. 647 17.20

ي مستد : 10 مو

ACCESSION NR: AP4041992	\$/0057/64/034 /007/1183/1190
UTHOR: Demidenko, I.I.; Padalka, V.G.;	Safronov, B.G.; Sinel'nikov, K.D.
TITLE: Interaction of plasma bursts wi	th a transverse magnetic field
SOURCE: Zhurnal tekhnicheskoy fiziki, v	.34, no.7, 1964, 1183-1190
TOPIC TAGS: plasma, plasma-magnetic fie	ld interaction, plasmoid, plasma source
investigated experimentally. The plasma a 3-microfarad capacitor bank through a and traveled at 2.3 x 10 ⁶ cm/sec down from the plasma gun the drift tube inte 10 cm in diameter, in which an approxim strength up to 725 oe was maintained wi was observed with magnetic probes, a sh (a fluorescent screen which is photogra	s on meeting a transverse magnetic field was bursts were produced by 15 ^{-k} v discharges of conical plasma gun with plastic walls, an 8-cm-diameter copper drift tube. At 70 cm presected, at right angles, a second copper tube ately uniform axial magnetic field of a th a solenoid. The behavior of the plasmas hielded electric probe, and a "plasmascope" aphed when the plasma impinges upon it). Mass were also performed. When a plasma burst en-
tered the transverse magnetic field, a	portion of it passed through the field in

CIA-RDP86-00513R001550730002-8

ACCESSION NR: AP4041992

the original direction with reduced velocity, and a portion of it was "captured" by the field and traveled down the side tube in both directions along the lines of force. The captured plasma moved virtually parallel to the lines of force (the shadow image of a grid of 8-mm-diameter holes on 8-mm centers was quite sharp at 30 cm and it traveled with a considerably greater velocity than the original plasma burst. The velocity of the captured plasma increased with increasing magnetic field, and amounted to 6.3 x 10⁶ cm/sec in a field of 450 00. The portion of the plasma traversing the magnetic field suffered a displacement perpendicular both to the field and to the direction of motion. It is suggested that this displacement is due to drift resulting from a longitudinal polarization of the plasma. The plasma consisted chiefly of H⁺, C⁺, O⁺, Fe⁺, C²⁺, O²⁺, and O³⁺. Most of the heavy ions traversed the transverse field, and only H⁺ and C⁺ were found in the captured portion. The mechanism of the capture and acceleration of the plasma by the transverse magnetic field is discussed very briefly; it is not understood. The authors assert that a pure hydrogen plasma is much more easily captured by a transverse magnetic field can the impure plasmas investigated in the present work, and they call for further investigation of the role of the heavy ions in this process. Orig.art.has: 10 figures and 2 tables.

2/3

Card

APPROVED FOR RELEASE: 08/23/2000

Ac	CCESSION NR: AP4041992		
As	SSOCIATION: none		
្ទែនប	迅 NITTED: 22Ju163	ATD PRESS: 3081	ENCL: 00
St	/B CODE: ME	NR REF SOV: 003	OTNER: 002
	,		
-			
ه_ ۲۰۰۰		•	
	d 3/3		

ł

CCESSION	NR: AP4042928	S/0057/64/034/008/1417/1423
UTHOR: Z . T.; Sin	y*kov, V. G.; Sin: cl'nikov, K. D.	itsa, N. G.; Stepanenko, I. A.; Tolok,
TITLE: In magnetic f		teraction of plasma fluxes in a transverse
SOURCE: Z	hurnal tekhniches	koy fiziki, v. 34, no. 8, 1964, 1417-1423
COPIC TAGS Elux collí		ization, plasma interaction, plasma
tions of t of fast op of their d carried out W	he possibility of posed plasma flux irected motion in ith apparatus cons	a continuation of experimental investiga- complete slow-down and thermalization es in order to convert the kinetic energy to thermal energy. The investigation was isting of a plasma source, a plasma guide,
a magnetic electric p in diamete	screen, 8 magnet robe, and a colle r, was placed in	ic coils, a vacuum chamber, a double ctor probe. The chamber, which was 20 cm a longitudinal magnetic field produced rrent generator. The field could be
ard 1/2	• .	

EMT(1)/EMG(k)/EM.(m)/EPA(sp)-2/EPF(c)/EPA(w)-2/EEC(t)/T/EEC(b)-2/Pf-4/P1-4/Po-4/Pr-4/Pz-6/Pab-24 IJP(c)/AEDC(b)/ASII(p)-3 l, 6728**-65** $\overline{EWP(q)/EWP(b)/EWA(m)}$ -2 RAEN(a)/SSD/AFWL/AFETR/ESD(gs)/ESD(t) AT/JD/HM \$/0020/64/157/006/1335/1337 ACCESSION NR: AP4044877 AUTHORS: Demidenko, I. I.; Padalka, V. G.; Safronov, B. G.; Sirel' nikov, K. D. (Academician AN UkrSSR) Energy spectra of a plasma interaction with a transverse TITLE: 18 magnetic field SOURCE: AN SSSR. Doklady*, v. 157, no. 6, 1964, 1335-1337 TOPIC TAGS: plasma source, plasma magnetic field, plasma trapping, plasma charged particle distribution, plasma axial inhomogeneity, plasmoid ionic component ABSTRACT: This is a continuation of earlier tests by the authors (ZhTF v. 34, No. 7, 43, 1964), and its purpose is a detailed analysis of the ionic component of a plasma produced by a conical source . and traveling in a magnetic field. The experimental setup for studying the interaction between plasmoids and a transverse magnetic シ 1/3 Card

APPROVED FOR RELEASE: 08/23/2000
"APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8

L 6728-65 ACCESSION NR: AP4044877

field was the same as used by the authors before, and the mass analyzer employed was that described by A. A. Kalmy*kov et al (pribory* i tekhn. eksp. No. 5, 142, 1963). The results indicate that the ability of the plasma ions to penetrate through the transverse magnetic field increases with increasing m/Z (m -- ion mass, Z -- charge) and with decreasing ion energy. The plasma captured by the magnetic field contains much more hydrogen than the plasma. ejected from the source. With increasing intensity of the magnetic field, the energy spectrum of the hydrogen ions of the plasma passing through the field shifts towards lower energies, whereas the energy spectrum of the protons of a plasma moving along the magnetic field shifts towards the higher energies. The results suggest that the density of the leading front of the plasma, where the higher-energy hydrogen ions are situated, is not high enough so that when the plasma enters the transverse magnetic field the front part of the plasmoid becomes detached. There is no broadening of the plasma pulses after passing through the magnetic field, and the perpendicu-

Card 2/3

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8"

"APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550730002-8 L 6728-65 ACCESSION NR: AP4044877 lar ion velocity is very rapidly transformed into longitudinal velocity. Orig. art. has: 2 figures. ASSOCIATION: Fiziko-tekhnicheskiy institut Akademii nauk UkrSSR (Physicotechnical Institute, Academy of Sciences, UkrSSR) ENCL: 00 21Feb64 SUBMITTED: **OTHER:** ' 001 NR REF SOV: 003 SUB CODE: ME 3/3 Card **达**有 百 00

		D.; Rutkevich, B.	i	\mathcal{B}
OHG: no		tion of a plasma in	a magnetic field	
SOURCE: Kiev, Ma	AN UkrSSR. Issl ukova dumka, 196	edovaniye plazmenny 5, 5-16	rkh sgustkov (Study	of plasma clusters).
TOPIC TH constant	GS: plasma inje , plasmoid, plas	ction, plasma charg ma magnetic field		le collision, dielectr
energy, of the o density meters o	and of the momen ielectric tensor of the energy of f a plasma injec	tum, the authors co , the field energy orbital motion of ted transversely in the plasma along	density, the plasmo the electrons and t nto a magnetic field the magnetic field, but also to the el	r of particles, of the elocity, the component velocity, the flux he ions, and other par . Special attention i and it is shown that fect of the electric
this ef: fields 1	hich result from	the distortion of	the magnetic field gures and 41 formula	at the point where the

e tatav

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550730002-8"

		111: Ury Cover/05/000/010/0121/0020
MUMOL: Demidetho, I. I.; nikov, K. D. OMD: Done TITLE: Possible occurrence	Lomino, H. S.; Fadelka, V.	G.; Safronov, B. G.; Sinel'- G/ G+1 asma captured by a transverse
magnetic field SCURCE: AN UKrSSR. Issle Kiev, Naukova dumka, 1965, TOPIC TAGS: plasma contai ABDTMACT: This is a conti transverse magnetic field ditions in the carlier inv in the glasma, the authors mold passes through a diap from the point of injection tance from the injection p	dovaniye plazmennykh sgustk 21-26 nment, plasma instability, nuation of earlier investig (ZhTF, 1964, v. 34, 1183 an estigations were such that show that such instabilit. Show that such instabilit. Show that such installed an on of the plasma in the magnitude of the plasma in the magnitude of the plasma in the magnitude of the plasmoid has a stability of the plasmoid has a stabil	cov (Study of plasma clusters). plasmoid, plasma injection gations of plasma captured by a nd elsewhere). Although the con- no instabilities could develop ics can develop after the plas- t a sufficiently large distance netic field. At the large dis- ufficiently large ratio of longi- ble density gradient. The in-
 stability begins to develop 	op in the region of manimum	plasma density, and the inhomo- plasmoid stimulates the develop- favor of classifying this as a

and the second sec

	1994, 1995,275,877,979 1994, 1995,275,877,979	n an	ANGUNARA MINI		1744.1283-1418	ISADER MURICIA	serie a	*	:
							·····		
ACC NA:	Anaroj	le At			-		· · · · · · · · · · · · · · · · · · ·		
trie aig lie alajh	hragn v 1747m va	type of insta Lasma rotatio as replaced t s grounded, ; the phenomena	y a netalli	e but ungrou	ty was nded di	observed wi aphragm. V	ien the Then the	dielec	-
SUB CODE:	20/	SUBM DATE:	11Nov65/	ORIG REF:	005/	OTH REF:	005		n - P (a - A da campangangan
Card 2/2.	ldh			·			_	. A	
	- And a state of the						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-

•• .

...

.

54.4

٠

JP(c) AT S/0057/65/035/001,	/0062/0071	
CESSION MR: RESOURCES	56	
UTHOR: Zykov, V.G. / Stepanenko, I.A. / Tolok, V.T. / Sinel'nikov, K.D.	41B	
ITLE: Investigation of the capture of plasma?in a magnetic trap with	opposing	1. 1. 1. 1.
ields	4	•
OURCE: Zhurnal tekhnicheskoy fiziki, v.35, no.1, 1965, 62-71	i. • •	
	teraction	.
OPIC TAGS: plasma confinement, magnetic mirror, cusp field, plasma in	a three-cus	
BSTRACT: The authors have investigated the confinement of plasma by hagnetic field produced in a 20 cm diameter stainless steel cylinder by angs disposed as shown in Enclosure 01. The maximum magnetic field at the chamber in the cusps was 1200 Ce. Hydrogen plasma was injected at of the cusps by four conical plasma guns equally spaced about the period of the cusps by four conical plasma guns measured with probes, and the	a three-cus y four wind- the wall of one or more phery. The e magnetic	
BSTRACT: The authors have investigated the confinement of plasma by magnetic field produced in a 20 cm diameter stainless steel cylinder b angs disposed as shown in Enclosure 01. The maximum magnetic field at	a three-cus y four wind- the wall of one or more phery. The e magnetic r attention the central	
BSTRACT: The authors have investigated the confinement of plasma by agnetic field produced in a 20 cm diameter stainless steel cylinder b ings disposed as shown in Enclosure Ol. The maximum magnetic field at the chamber in the cusps was 1200 Ce. Hydrogen plasma was injected at of the cusps by four conical plasma guns equally spaced about the peri- tion density and electron temperature were measured with probes, and the properties of the plasma were studied with a magnetic probe. Particula	a three-cus y four wind- the wall of one or more phery. The e magnetic r attention the central	

L 27602-65

ACCESSION NR: AP5003238

central cusp the magnetic field did not tend to confine it to this region. The magnetic field did, however, tend to confine to the central region plasma that was injected at one of the side cusps (e.g. Z_2), and this tendency was markedly increased (the decay time increased from 30 to 55 microsec) when plasma was injected at both side cusps (Z_2 and Z_{-2}) simultaneously. This behavior is ascribed to interaction between the opposing plasma streams entering the central region from the two sides. The maximum density reached by the plasma on the axis in the Z_0 plane when it was simultaneously injected at all three cusps was 7.5 x 1014 cm⁻³. In all cases the electron temperature (approximately 4.5 eV) was independent of time. "In conclusion the authors express their gratitude to <u>A.P.Dolgom</u> for his technical assistance with the measurements." Orig.art.has: 12 figures.

ASSOCIATION: Fizichesko-tekhnicheskiy institut AN UkrSSR, Khar'kov (Physicotechnical' Institute, AN UkrSSR)

SUBMITTED: 13Jan64	ENCL: 01	SUB CODE: ME
NR REF SOV: 004	OTHER: 002	
•		
Card 2/3		

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8"

L 26966-65 EWT(1)/EPA(sp)-2/T/EEC(t)/EPA(w)-2/EWA(m)-2 Pz-6/Po-4/Pab-10/Pi-4	
IJP(c) AT ACCESSION NR: AP5003252 S/0057/65/035/001/0154/0156	•
AUTHOR: Demidenko, I. I./ Lomino, N.S./ Padalka, V.G./ Safronov, B, G. /Sinel'nikov, K.D.	
TITLE: On possible development of instabilities in a plasma captured by a trans- verse magnetic field 2	1
SOURCE: Zhurnal tekhnicheskoy fiziki, v.35, no.1, 1965, 154-156	
TOPIC TAGS: plasma, plasma instability, transverse magnetic field, longitudinal magnetic field	
ABSTRACT: The development of instabilities in plasma bursts trapped by a trans- verse magnetic field and traveling parallel to it were investigated. The apparatus and the peculiarities of the capture and propagation of the plasma bursts have been previously described by four of the present authors (ZhTF 34,1183,1964). In the pre- sent experiments the plasma bursts passed through a 1.5 cm diameter circular aper-	
ture in a screen located 30 cm from the point of capture and were observed at tart ous distances from the screen with a "plasmascope". When the screen was of dielec-	
dense side of the plasma, grew, and reached the wall of the chamber after the plas-	
Card 1/2	

() (SIE) (S

"APPROVED FOR RELEASE: 08/23/2000

ANTIGATING DATA ANTIGATING ANTIGATING ANTIGATING ANTIGATING ANTIGATING ANTIGATING ANTIGATING ANTIGATING ANTIGAT

L 26966-65 ACCESSION NR: AP5003252

ma burst had traveled some 60 cm from the screen. This instability is assumed to be of the Rayleigh-Taylor type and due to the rotation of the plasma, its inhomogeneity, and the presence within it of a net negative charge. When the screen was of metal and grounded, the development of this instability was almost entirely suppressed. Experiments were also performed with a screen containing a 4 mm wide slot instead of a circular aperture. In this case the instability did not develop. The failure of flute instability to develop in the plasma sheets that passed through the slot is discussed briefly. Orig.art.has: 4 figures.

ASSOCIATION: Fiziko-tekhnicheskiy institut AN UkrSSR, Khar'kov (Physicotechnical Institute, AN UkrSSR)

SUBMITTED: 14	Aug64	ENCL: 00	SUB CODE: ME,E	M .
NR REF SOV: 00	4	OTHER: 005		
				1
				e
Card 2/2		ومرجع ومرجع والمرجع وال		
	2 - 1.2 Mark 1999 1997 19			

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8"

•,

1503 Post

	DN MR: AP5012046	UR/005 7/65/035/005/0823/0826
AUTHOR:	Demidenko, I.I.; Lomino, N.S.; Pada	1ka.V.G.; Safronov, B.G.; Sinel'nikov, K.D.
TITLE:	Investigation of some properties magnetic field	of a plasma captured by a transverse 71 50 8
SCURCE:	Zhurnal tekhnicheskoy fiziki, v.	35, no. 5, 1965, 823-826 B
TOPIC T	AGS: plasma trapping, plasma magne injection	etic field, plasma polarization, plasma
1335, 1	964) that a portion of the plasma	and (ZhTF, 34, 43, 1964; DAN SSR, 157, Injected into a transverse magnetic field al to it. They have continued their in-
vestiga	tion of this phenomenon (which is to that previously employed, but dinal magnetic field is maintained	not understood) with an apparatus larger. In the present apparatus the in a 12 cm diameter, 300 cm long drift
longitu	of the cantured plasma could be fo	ed at the center of the drift tube, the llowed for 120 cm. The polarization of
tube; W	tured plasma was observed with pro	bes. After a decrease of 20 to 50% In

	DEPENDENCE (ERSERVER)				-
· · · · ·				• •	
L 52020-65 ACCESSION NR: AP5012046	,		• •••••		
the first 30 or 40 cm, the from the injection point. crossed fields (the electr field) was observed with t (L.I.Yelizarov and A.V.Zha shorting out the plasma po found, in accord with the 8, 157, 1962), to inhibit has: 2 formulas and 3 fig ASSOCIATION: Fiziko-tekho	The expected drift of the aid of a slotted arinov, Nucl. Fus., S plarization with a co findings of D.A.Bake the transverse motio gures.	of the capt rization an plastic dia uppl., 2, 6 pper disk w r and J.F.H n of the ca	ured plasma in the d the applied mag phragm and a "pla 99, 1962). The e vas investigated; (ammel (Phys. Rev. aptured plasma. C	e netic smascope" ffect of this was Letters, brig. art.	
Institute, AN 833R)		•		ł	
SUBMITTED: 18May64,	ENCL:	-00	SUB CODE:	ME .	
NR REF SOV: 004	OTHER:	002			
				· ·	
	•				
Card 2/2711B					
					а.

ACC NR	-66 ENT(1)/T I. AP6002450		CE CODE: U	IR/0057/65/	035/012/2232	/2234	
AUTHOR:	Akshanov, B.S.; Ma	rinin, V.G.; St	rel'tsov,A.	I.; Sinel'n	ikov,K.D.	52	
ORG: non	8	· ·				B	
TITLE;	Injection of	charged partic	les into a	magnetic m	irror trap		an a
SOURCE:	Zhurnal tekhniches	koy fiziki, v. :	35, no. 12,	1965, 223	2-2234		
TOPIC TAG i njection	S: magnetic mirro: y nonhomogeneous =m	r, cusped magne	tic field, magnetic fi	charged pa leld intens	rticle, part ity, magnet	ie trap	
ABSTRACT: the autho	This 'brief comm rs, K.D.Sinel'niko	unication" is a v and B.S.Aksha	continuati nov (Sb. * F	lon of anot 'izika plaz	her paper by my i problem	two of y uprav-	
lyayemogo a method	termoyadernogo sin was proposed for in ng them first to p	nteza, No, 4, j 27, 997, 5 njecting charge	p. 103, Izd d particles	i, AN USSR, s into a ma	Kiyev, 1965 gnetic mirro), in which r system	
which for K.D.Sinel particles	ms one of the mirry 'nikov, N.A.Khizhny of the second mag	ors of the trap yak, et al.(Ibi) netic mirror in	d. It is sh d. p. 388) the case o	own that a for penetr of equal ma	criterion g ation by the gnetic field	iven by injected strength	
in the tw	o mirrors becomes; and injection rad	more stringent ius) provided to in the first.	he magnetic	: field str	ength in the	second	
of energy	greater than that						

conical cusp	5002450 lly by inj ped field, thod of pa s ratio of	and reasonable rticle injectio the field stre	agreement wa n will bo rea	t energies into s found. It is sonably efficient erly chosen. O	nt in	strong fi	CT C	
SUB CODE:	20	SUBM DATE:	10 May 65	ORIG. REF:	002	OTH REF:	000	
							·	
							•••	
Card 2/2	GR							

· ·	
L 16930-66 EWT(1)/T IJP(c) ACC NR: AT6002496 SOURCE CODE: UR/3137/64/000/070/0001/0013	
	63 BH 1
ORG: none <u>21, 1995</u> <u>TITLE: Injection of particles through an acute-angled magnetic trap into a mirror trap increasing fields of the mirrors</u>) with
SOURCE: <u>AN UkrSSR. Fiziko-tekhnicheskiv institut.</u> Doklady, no. 70, 1964. Inzhek chastits v zerkal'nuyu lovushku s narastayushchim polem v probkakh cherez magnitnuyu lovushku ostrougol'noy geometrii, 1-13	siya 1
TOPIC TAGS: magnetic mirror machine, particle trapping, magnetic trap computer Calculation, charged particle ABSTRACT: The authors investigate the passage of charged particles injected through end slit parallel to the axis of the magnetic field through an acute-angled <u>magnetic trap</u> A general introduction of magnetic mirror effect is followed by a theoretical study of effect of acute-angled field geometry on the eccentricity of particles passing through th zero field plane, and the filling of an increasing field mirror trap by particles passing	an ai the
Card 1/2.	2

O

Ę

L 16930-66

Card 2/2

Southern Barrier

ACC NR: AT6002496

through the acute-angled trap. The paper gives 1) the conditions for the passage of particles with large and small displacement of the particle rotation center from the magnetic axis; and 2) the results of the numerical calculations of the trap filling carried out on the UMShN electronic computer. Curves presented depict the conversion of longitudinal into transverse velocity as a function of the injection-to-final-radius ratio, and as a function of the initial radial velocity, and particle trapping during a slow field increase. The results show that the method for particle trapping presented is technologically feasible. Acute-angled traps with higher field harmonics are not studied. Orig. art. has: 21 formulas and 8 figures.

SUB CODE: 20 / SUBM DATE: none / ORIG REF: 002

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8"

ACC NR: AT5028589	
	SOURCE CODE: UR/0000/65/000/000/0388/04
AUTHOR: <u>Sinel'nikov, K. D.</u> N. S.; Zeydlits, P. M.; Yamn	(Academician AN UkrSSR); <u>Khizhnyak, N. A.; Repalov</u> , hitskiy, V. A.; Azovskaya, Z. A.
ORG: none	
TITLE: Investigation of the	charged particle motion in picket fence magnetic tr
sinteza (Physics of plasma a	zike plazmy i problemam upravlyayemogo termoyadernogo Fizika plazmy i problemy upravlyayemogo termoyaderno nd problems of controllable thermonuclear synthesis) Kiev, Naukova dumka, 1965, 388-402
TOPIC TAGS: magnetic trap, a cle trajectory, particle moti	relativistic particle, plasma charged particle, parti
ABSTRACT . The properties of	charged particle motion in magnetic traps of the "pi " (with negative field curvature) types are considered

► ¹¹

•

vab	of the field with the expressions are method for determined for determined with the extent of a region throw tion of transmicles, and here relative to the initial relative to the initial relative trajector tivistic part quire very source of the code of the c	ions, retaining the vanish thin magnetic coils vanish easily generalized to othe e derived for two extreme ermining the fields in the Application of the Lagra the utilization of the cy or derivation of a potential regions of particle confi- ogh which particles can ess nitted and reflected parti- ce mass, play a strong rol- he initial particle parame- the behavior of particles imilar to that of those in radial separation of the for- ories are graphed. The di- ticles for which presently trong fields. Orig. art.	cases of extended and throat area of the transition of the transition of the transition of the transition of the transition of the transition of the transition of the transition of transit	of a given radius of the charged parti- nate of axisymmetric moves and determines hat there always exists eria and a classifica- bradius of the parti- tional classification d. In particular, it ion opposite to the sys- e axis, excepting that greater. Representa- neralized to the rela- confinement schemes re-
	dance Asil a	DATE - 20May6	orig Ref: 002	

L 18839-66 EWT(1) IJP(c) GS ACC NR: AT5028590 SOURCE CODE: UR/0000/65/0	000/000/0403/0410
AUTHOR: <u>Sinel'nikov, K. D.</u> (Academician AN UkrSSR); <u>Akshanov, B.</u>	<u>s.</u> 49 B+/
ORG: none	
TITLE: Experimental investigation of charged particle motion in p netic traps 20,99,5 7	bicket fence mag-
SOURCE: Konferentsiya po fizike plazmy i problemam upravlyayemogo	termovadernogo
<u>sinteza, 4th, Kharkov, 1963.</u> Fizika plazmy i problemy upravlyayemo	ogo termoyadernogo
sinteza, 4th, Kharkov, 1963, Fizika plazmy i problemy upravlyayemo sinteza (Physics of plasma and problems of controllable thermonucl doklady konferentsii, no. 4. Kiev, Naukova dumka, 1965, 403-410	ogo termoyadernogo ear synthesis);
sinteza (Physics of plasma and problems of controllable thermonucl	ear synthesis);
sinteza (Physics of plasma and problems of controllable thermonucl doklady konferentsii, no. 4. Kiev, Naukova dumka, 1965, 403-410 TOPIC TAGS: magnetic trap, electron gun, particle trajectory, pla electron reflection ABSTRACT: The main objective of the experiment was to study the t	ear synthesis); sma injection,
sinteza (Physics of plasma and problems of controllable thermonucl doklady konferentsii, no. 4. Kiev, Naukova dumka, 1965, 403-410 TOPIC TAGS: magnetic trap, electron gun, particle trajectory, pla electron reflection ABSTRACT: The main objective of the experiment was to study the t injected electrons with the help of luminescent screens inserted i	ear synthesis); sma injection, rajectories of nto the trap re-
sinteza (Physics of plasma and problems of controllable thermonucl doklady konferentsii, no. 4. Kiev, Naukova dumka, 1965, 403-410 TOPIC TAGS: magnetic trap, electron gun, particle trajectory, pla electron reflection ABSTRACT: The main objective of the experiment was to study the t	ear synthesis); sma injection, rajectories of nto the trap re- c trap formed by arively long du-
sinteza (Physics of plasma and problems of controllable thermonucl doklady konferentsii, no. 4. Kiev, Naukova dumka, 1965, 403-410 TOPIC TAGS: magnetic trap, electron gun, particle trajectory, pla electron reflection ABSTRACT: The main objective of the experiment was to study the t injected electrons with the help of luminescent screens inserted i gion. Experimental study of the electrons injected into a magnetic two opposing fields (cusp geometry) has shown that a plasma of rel	ear synthesis); sma injection, rajectories of nto the trap re- c trap formed by arively long du-

. 1

						•
L 18839-60						•
ACC NR: AT502859	0					0
of observed trajectrons. This techninjection of electron position relative tion and region of consequently plotte pendence of the action and transmission from the tion to the axis is scribed in this we has: 12 figures.	nique led to the trons into magnetic to the magnetic f trapping. The ted as a functic diabatic partic for various rade resulting spite in order to obt	ne solution netic traps. ic axis has ne critical of on of the ra- les on the lial position ral trajecto tain optimum	of several pr It was foum a strong effe energy of the adial positio injection ene ns of the inj pries must be tranning. S	oblems ass d that the ct on the reflected n of the i rgy and th ector were controlle ome evneni	ociated wi electron plane of r particles njector. eir reflec also stud d in their mente (not	th the gun eflec- was The de- tion ied. It rela- de-
	SUBM DATE:	20May65/	ORIG REF:	003/	OTH REF:	001
SUB CODE: 20/						
SUB CODE: 20/						
SUB CODE: 20/	· .				·	
SUB CODE: 20/ Card 2/2	· .					

ŀ . . ł

	8 <u>37-66</u> EWT(1) AT5028592	107(0)	GS SOURCE CODE: UR/0000/65/000/000/0431/0441
AUTHOR:	Borovik, Ye. S.	; Busol, F.	I.; Sinel'nikov, K. D. (Academician AN UKrSSR)
ORG: no	one		
TITLE:	Computation of f	illing a <u>GVL</u>	<u>-2 magnetic trap with plasma</u>
SOURCE:	Konferentsiva p	o fizike pla	zmy i problemam upravlyayemogo termoyadernogo
sinteza	. 4th, Kharkov, 1	963. Fizika	plazmy i problemy upravlyayemogo termoyadernogo
sinteza	(Physics of plas	ma and probl	ems of controllable thermonuclear synthesis);
doklady	konferentsii, no	. 4. <u>Kiev</u> , N	laukova dumka, 1965, 431-441
			magnetic trap, Coulomb collision, strong mag- c mirror, ion density
40000400		£ £1114==	magnetic mirror configuration of small volume,
formed l netic th	by very strong ma rap of the GVL-2	gnetic field device descr	l, is studied. The system considered is a mag- bibed in Borovik, Te. S., Busol, F. I., Kova-
lenko, v tem has	V. A., Yuferov, V a mirror ratio w	. B. and Ski hich can be	benko, Ye. I., p. 421, Konferentsiya. The sys- varied from 1.5 to 4. To predict the ion den-
Card 1/2	2		

AUTHOR: <u>Sinel'nikov, K. D.; Khizhnyak, N. A.; Repalov, N. S.; Zeydlits, P. M.;</u> Yamnitskiy, V. A.; Azovskaya, Z. A. ORG: none TITLE: Injection of particles into a mirror trap with an increasing field through a magnetic cusp configuration SOURCE: AN UKrSSR. Magnitnyye lovushki (Magnetic traps). Kiev, Naukova dumka, 1965, 5-18 TOPIC TAGS: Magnitude for the plasma injection, particle trajectory, Model of the second dumka, 1965, 5-18 ABSTRACT: The behavior of a plasma in a magnetic mirror trap formed by particles in- jected through a cusp configuration is studied. The particles selected for investi- gation are those which at injection have curvature radius of less than 71% of the Lar mor radius, i. e. those which proceed without reflection into the magnetic mirror re- gion. The eccentricity of the particle trajectory (passing through the zero field plane) due to the cusp configuration is analyzed. Two competing processes become evident; one tends to establish an E-layer as in the Astron machines and another tends to fill the axial region of the mirror trap. The analysis is further extended to deter- mine the accumulation in the magnetic mirror trap of particles passing through a	L 23580-66 EPF(n)-2/EWT(1)/ET ACC NR: AT6008838	C(f)/EWG(m) IJP(c) AT/GS	
Yamnitskiv, V, A.; Azovskava, Z. A. ORG: none TITLE: Injection of particles into a mirror trap with an increasing field through a magnetic cusp configuration SOURCE: AN UkrSSR. Magnitnyye lovushki (Magnetic traps). Kiev, Naukova dumka, 1965, 5-18 TOPIC TAGS: Magnitation ABSTRACT: The behavior of a plasma injection, particle trajectory, module ABSTRACT: The behavior of a plasma in a magnetic mirror trap formed by particles in- jected through a cusp configuration is studied. The particles selected for investi- gation are those which at injection have curvature radius of less than 71% of the Lar- mor radius, i. e. those which proceed without reflection into the magnetic mirror re- gion. The eccentricity of the particle trajectory (passing through the zero field plane) due to the cusp configuration is analyzed. Two competing processes become evid- dent; one tends to establish an E-layer as in the Astron machines and another tends to fill the axial region of the mirror trap. The analysis is further extended to deter- mine the accumulation in the magnetic mirror trap of particles passing through a	ACC NR: AIDUU8838	SOURCE CODE: UR/0000/	22/000/000/0002/0018
TITLE: Injection of particles into a mirror trap with an increasing field through a magnetic cusp configuration SOURCE: AN UkrSSR. Magnitnyye lovushki (Magnetic traps). Kiev, Naukova dumka, 1965, 5-18 TOPIC TAGS: TOPIC TAGS: Magnitumer trap, plasma injection, particle trajectory, ABSTRACT: The behavior of a plasma in a magnetic mirror trap formed by particles injected through a cusp configuration is studied. The particles selected for investigation are those which at injection have curvature radius of less than 71% of the Larmor radius, i. e. those which proceed without reflection into the magnetic mirror region. The eccentricity of the particle trajectory (passing through the zero field plane) due to the cusp configuration is analyzed. Two competing processes become evident; one tends to establish an E-layer as in the Astron machines and another tends to fill the axial region of the mirror trap. The analysis is further extended to determine the accumulation in the magnetic mirror trap of particles passing through a	AUTHOR: Sinel'nikov, K. D.; Khizh Yamnitskiy, V. A.; Azovskaya, Z. A	nyak, N. A.; <u>Repalov, N. S.</u> ; Z	তন্ত্র
magnetic cusp configuration SOURCE: AN UKrSSR. Magnitnyye lovushki (Magnetic traps). Kiev, Naukova dumka, 1965, 5-18 TOPIC TAGS: Trap, plasma injection, particle trajectory, Magnetic micro ABSTRACT: The behavior of a plasma in a magnetic mirror trap formed by particles in- jected through a cusp configuration is studied. The particles selected for investi- gation are those which at injection have curvature radius of less than 71% of the Lar mor radius, i. e. those which proceed without reflection into the magnetic mirror re- gion. The eccentricity of the particle trajectory (passing through the zero field plane) due to the cusp configuration is analyzed. Two competing processes become evident; one tends to establish an E-layer as in the Astron machines and another tends to fill the axial region of the mirror trap. The analysis is further extended to deter- mine the accumulation in the magnetic mirror trap of particles passing through a	ORG: none		Ø7/
5-18 TOPIC TAGS: Trap, plasma injection, particle trajectory, modele mixed ABSTRACT: The behavior of a plasma in a magnetic mirror trap formed by particles in- jected through a cusp configuration is studied. The particles selected for investi- gation are those which at injection have curvature radius of less than 71% of the Lar- mor radius, i. e. those which proceed without reflection into the magnetic mirror re- gion. The eccentricity of the particle trajectory (passing through the zero field plane) due to the cusp configuration is analyzed. Two competing processes become evi- dent; one tends to establish an E-layer as in the Astron machines and another tends to fill the axial region of the mirror trap. The analysis is further extended to deter- mine the accumulation in the magnetic mirror trap of particles passing through a	TITLE: Injection of particles int magnetic cusp configuration	o a mirror trap with an increas	sing field through a
ABSTRACT: The <u>behavior of a plasma</u> in a <u>magnetic mirror trap</u> formed by particles in- jected through a cusp configuration is studied. The particles selected for investi- gation are those which at injection have curvature radius of less than 71% of the Lar mor radius, i. e. those which proceed without reflection into the magnetic mirror re- gion. The eccentricity of the particle trajectory (passing through the zero field plane) due to the cusp configuration is analyzed. Two competing processes become evid dent; one tends to establish an E-layer as in the Astron machines and another tends to fill the axial region of the mirror trap. The analysis is further extended to deter- mine the accumulation in the magnetic mirror trap of particles passing through a		ushki (Magnetic traps). Kiev, H	Naukova dumka, 1965,
jected through a cusp configuration is studied. The particles selected for investi- gation are those which at injection have curvature radius of less than 71% of the Lar mor radius, i. e. those which proceed without reflection into the magnetic mirror re- gion. The eccentricity of the particle trajectory (passing through the zero field plane) due to the cusp configuration is analyzed. Two competing processes become evi- dent; one tends to establish an E-layer as in the Astron machines and another tends to fill the axial region of the mirror trap. The analysis is further extended to deter- mine the accumulation in the magnetic mirror trap of particles passing through a	TOPIC TAGS:	njection, particle trajectory,	magnetic minon
mor radius, i. e. those which proceed without reflection into the magnetic mirror re- gion. The eccentricity of the particle trajectory (passing through the zero field plane) due to the cusp configuration is analyzed. Two competing processes become evi- dent; one tends to establish an E-layer as in the Astron machines and another tends to fill the axial region of the mirror trap. The analysis is further extended to deter- mine the accumulation in the magnetic mirror trap of particles passing through a	jected through a cusp configuratio	n is studied. The particles se	elected for investi-
plane) due to the cusp configuration is analyzed. Two competing processes become evi- dent; one tends to establish an E-layer as in the Astron machines and another tends to fill the axial region of the mirror trap. The analysis is further extended to deter- mine the accumulation in the magnetic mirror trap of particles passing through a	mor radius, i. e. those which proc	eed without reflection into the	e magnetic mirror re-
fill the axial region of the mirror trap. The analysis is further extended to deter- mine the accumulation in the magnetic mirror trap of particles passing through a	plane) due to the cusp configurati	on is analyzed. Two competing	processes become evi-
	fill the axial region of the mirro	r trap. The analysis is furthe	er extended to deter-
Card 1/2	······································		•
	Card 1/2		

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001550730002-8"

-

	23580		# ,						·
CC	NR: A	T60088	38						0
/ i ist	nto tr ance c	cansvers	d having only se particle en trajectory fro onstruction of	ergy is dete m the magnet	ermined as a tic axis. Th	function on the number of	of the init of particle	ial rac s trapp	lial oed
agn C C	etic f ompone	field co ents wou	onfiguration of uld trap parti g. art. has:	s used. It cles with br	is estimated roader initia	l that a fi	leld with h	igh har	mon-
JB	CODE :	20/	SUBM DATE:	200ct65/	ORIG REF:	002/	OTH REF:	000	
			•			•••			
				a ● • -					
						•			
	2/2	PB		•					
ard	2/2								i

nin andrennen neuren neuren neuren neuren er einer eine

ACC HRI A	NT6008839	SOURCE CODE: UR/0000/65/000	
THOR: A	Akshanov, B. S.; Volkolupov, Y	fu. Ya.; Sinel'nikov, K. D.	•71
G: none	2	4	B+1
TLE: In rror tra	nvestigation of i <u>njection and</u> ap	confinement of charged particle	es by a magnetic
3-27		i (Magnetic traps). Kiev, Naukov	•
OPIC TAGS con gun,	5: magnetic trap, "mirror tamp ionization, charged particle	, plasma confinement, plasma in	njection, elec-
nto <u>magné</u> irected f irror tra s added t he main t how that	Etic mirror traps is accomplis flow of particles which pass t ap. At the opposite end of th to provide a reflecting barrie trap. The injected beam was s the beams are sufficiently in trap. Another beam of low int	experiments in which the injection shed using a circular electron get through the magnetic cusp configue the mirror trap, an additional st er for those particles which car studied by the use of luminescer intense to cause ionization of the tensity was used for probing the se led to the conclusion that alm	guration into the trong field coil n pass through nt screens which ne atoms in the plasma and the
ard 1/2			2

N MIRAN CA

et Thursday

L 23581-66 ACC NR: AT6008839					0
ed particles stag termined by the sa nating modulation retical prediction was also found that ionization) which electron trapping development of beau	ame technique. The on the probing be ns of the mechanis at plasma duration creates a plasma was due not only	tese results were am. The results m converting lin time correspond of about 8.10 ¹¹ to ionization an	of these exp ear flows int is to the burn cm ⁻³ . It is id charge exch	eriments con o spiral one out time (co concluded th	firm theo- s. It mplete at beam
SUB CODE: 20/	SUBM DATE: 2000		ÆF: 004/	OTH REF:	000
			۰		
		• .			
00					

ACC NR: AT6008840	SOURCE CODE: UR/0000/65/00	0/000/0027/0035
AUTHOR: Akshanov, B. S.; V	/olkolupov, Yu. Ya.; Sinel'nikov, K. D.	26
ORG: none	٤,	B+1
TITLE: Confinement of char fields	ged particles pulse-injected into a trap w	ith stationary
SOURCE: AN UkrSSR. Magnitn 27-35	yye lovushki (Magnetic traps). Kiev, Nauko	va dumka, 1965,
	ielectron gun, plasma injection, Mirror, المعرفة در	elonged particle
using high power electron g	ection of charged particles into <u>magnetic</u> uns in which the accelerating potential, a	mplitude and
coils and field configurati	produce square, half-sine, and sawtooth wa on (for injection through a cusp into a ma re shown in figure 1. Probing electron be	gnetic mirror
seconds and depends on such	how that plasma confinement time is in the parameters as initial density, injection screen surrounding the plasma gives evide	pulse time and
jected beam strikes the wal	at critical energies. Plasma confinemen the plasma are increasingly delayed as th	t time and the
Card 1/2		2

"APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001550730002-8

