EL REBERRICHTERANSE VARDES STREDT DER BURGEN BRADEN BRADE VARDE VARDE VARDE VARDE VARDE VARDE VARDE VARDE VARDE

2

CIA-RDP86-00513R001653530003-5

STRIZHEVSKIY, S.S.

Planning and financial control should be improved in telecommunication (MIRA 16:3) enterprises. Vest. sviazi 23 no.3:17-19 Mr '63.

1. Starshiy ekonomist Ministerstva finansov RSFSR. (Telecommunication-Accounting)

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

STAIL HEUSEE, S.S.E.

STRUZHEVSKIY, S.YA.

Obledenenie samoletov v jolete. (Tekknika vosdushnogo flota, 1930, no. h, p. 29-44, bibliography) Title tr.: Formation of ice on aircraft in flight.

TL504.Th 1930

So: Aeronautical Sciences and Aviation in the Soviet Union, Library of Congress, 1955.

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

5632 5663

"APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5 TA FARMERINA REPORT AND A DESCRIPTION OF A MARTYNOV, A.K.; OSTOSLAVSKIY, I.V., prof., retsensent; BURAGO, G.F., prof., retsenzent; ZAKS, N.A., dotsent, retsenzent; STRIZHEVSKIY, S.Ya., dotsent, retsenzent; KOTLYAR, Ya.M., red.; ZUDAKIN, I.M., tekhn.red. [Experimental aerodynamics] Eksperimental'naia aerodinamika. Moskva, Gos.izd-vo obor.promyshl., 1950. 475 p. (MIRA 13:7) (Aerodynamics)

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

A THE FAIL AND A DESCRIPTION AND A A DESCRIPTION AND A DESCRIPTION A DESCRIPTION AND A DESCRIPTION A DESCRIPTION A DESCRIPTION A DESCRIPT

STRIZHENON IN, S. YA.

STRIZHEVSKIT, S. TA.

Nikolai Egorovich Zhukovskii--osnovopolozhnik sovremennoi aviatsionnoi nauki. Stenogramma publichnoi lektsii. Moskva, Pravda, 1951. 28 p. Title tr.: Nikolai Egorovich Zhukovskii, the founder of modern aeronautical sciences.

TL540.24558

SO: Aeronautical Sciences and Aviation in the Soviet Union, Library of Congress, 1955.

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

al al en anter de la company de la compa

.

YUR'YEV, Boris Nikolayevich, akademik; STRIZHEVSKIY, S.Ya., kand. tekhn. nauk, retsenzent; ZAYTSEVA, K.YA., Insh., ret.; PETROVA, I.A., red.isd-va; ZUDAKIN, I.M., tekhn. red.

[Aerodynamic analysis of helicopters] Aerodinamicheskii raschet vertoletov. Moskva, Oborongiz, 1956. 959 p. (MIRA 16:9)

(Helicopters--Design and construction)

APPROVED FOR RELEASE: 08/26/2000

CARDPROVED FOR RELEASE: 08/26/200 CLARDP86-00513R001653530003-5
XAKHARIN, Veniamin Alekaandrovich, kand. tekhn. nauk; KANEVSKAYA,
M.D., red.; STRIZHEVSKIY, S.Ya., red.; KOROLEV, A.V.,
tekhn. red.
[Aviation with vertical take-off] Aviatsiia vertikal'nogo valeta.
Moskva, Izd-vo DOSAAF, 1961. 69 p. (MIRA 15:4)
 (Vertically rising airplanes)

APPROVED FOR RELEASE: 08/26/2000

"APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5

STRIZHEVSKIY, Semen Yakovlevich, kand. tekhn. nauk; TURCHIN, P.Ye., red.; KHOTIMSKIY, P.M., red.; ROZHKO, K.M., red.l-leksikograf; PLAKSHE, L.Yu., tekhn. red.

[French-Russian dictionary of aviation and technical terms] Frantsuzsko-russkii aviatsionno-tekhnicheskii slovar'. Moskva, Fizmatgiz, 1963. 578 p. (MIRA 17:2)

APPROVED FOR RELEASE: 08/26/2000

er i persentan un anticipal de la construction de la construction de la construction de la construction de la c

AND ALL MARKED AND AND ADDRESS AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDR

IZAKSON, Aleksandr Mikhaylovich; NIL', N.L., doktor tekhn. nauk, retsenzent; STRIZHEVSKIY, S.Ya., kand. tekhn. nauk, dots., retsenzent; SHAVROV, V.E., kand. tekhn. nauk, retsenzent; GIL'BERG, L.A., red.

[Soviet helicopter industry] Sovetskoe vertoletostroenie. Moskva, Mashinostroenie, 1964. 310 p. (MIRA 17:6)

artificated best reading and

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5"

STRIZHEVSKIY, Sh.P.

At a leading railroad district in Transbaikalia. Avtom., telem. i sviaz' 6 no.9:21-24 S '62. (MIRA 15:9)

l. Nachal'nik Borzinskoy distantsii signalizatsii i svyazi Zabaykal'skoy dorogi. (Transbaikalia--Railroads--Signaling)

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

STRIZHEWSKIY, Sh.P.

Connection of selective networks in the automatic telephone exchanges of district-wide communication systems. Avtom., telem. i sviaz! 7 no.7:32-34 Jl '63. (MIRA 16:10)

l. Nachal'nik Borzinskoy distantsii signalizatsii i svyazi Zabaykal'skoy dorogi.

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5"

e.,

SKRAMTAYEVA, G.A., inzh., ispolnyayushchiy obyazannosti starshego nauchnogo sotrudnika. Prinimali uchastiye: KIR'YANOV, A.P.; FINKEL'SHTEYN, Ya.B.; NOSOV, F.P., STRIZHEVSKIY, V.I., kand.tekhn.nauk, nauchnyy red.; CHABROV, I.M., red.

> [Method for applying cement coatings in insulating steel pipes to be used in trenchless and jacketless pipelaying; scientific report] Tekhnologiia naneseniia tsementnoi izoliatsii na stal'nye truby dlia bestransheinoi besfutliarnoi prokladki truboprovodov; nauchmoe soobshchenie. Moskva, Otdel nauchno-tekhn.informatsii Akad.koomun. khoz., 1959. 18 p. (MIRA 13:6)

1. Glavnyy mekhanik Upravleniya po stroitel'stvu podzemnykh sooruzheniy Glavmosstroya (for Kir'yanov). 2. Nachal'nik Proizvodstvennotekhnicheskogo otdela (for Finkel'shteyn). 3. Glavnyy inzhener trubozagotovitel'nogo zavoda tresta "Mospodzemstroyanab" (for Nosov). (Protective coatings) (Pipelines)

APPROVED FOR RELEASE: 08/26/2000

STRIZHEVSKIY, V.L. [Stryzhevs'kyi, V.L.]

and sender water and the sender of the sende

.

Absorption and radiation of light by a weakly perturbed system. Ukr.fiz.zhur. 4 no.6:809-810 N-D '59. (MIRA 14 (MIRA 14:10)

1. Kiyevskiy gosudarstvennyy universitet im. T.G.Shevchenko. (Light) (Absorption of light)

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

"APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5

AUTHORS: Lisitsa, M.P. and Strizhevskiy, V.L.

Contraction of the second s

SOV/51-7-4-7/32

TITLE: On the Temperature Dependence of the Vibrational Absorption Band Intensities in Gases in the Case of Fermi Resonance.

PERIODICAL:Optika i spektroskopiya, 1959, Vol 7, Nr 4, pp 478-481 (USSR)

- ABSTRACT: Earlier studies of the temperature dependence of the intensities of two vibrations of gaseous carbon tetrachloride (Ref 1) confirmed qualitatively the correctness of Vol'kenshteyn, Yel'yashevich and Stepanov's theory (Ref 2). Complete quantitative agreement was not
 - obtained: the theory predicted a faster rise of the integral absorption with increase of temperature than was found experimentally. Among many factors which may be responsible for this difference between theory and experiment the most important is the resonance interaction between vibrational levels $E_{\nu_1+\nu_3}^{\circ}$ and $E_{\nu_1+(\nu_1+\nu_4)}^{\circ}$ (the superscript o denotes

unperturbed state). Transitions to these two levels produce bands of the vibrations studied. Allowance for this interaction was expected to produce quantitative agreement between theory and experiment. This was found to be true when the authors modified Vol'kenshteyn's et al theory by inclusion of the Fermi resonance, since this led to better agreement

Đ

ard 1/2

REFEN

APPROVED FOR RELEASE: 08/26/2000

"APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5

307/51-7-4-7/32 On the Temperature Dependence of the Vibrational Absorption Band Intensities in Gases of Fermi Resonance between the calculated and experimental values of integral absorption in the resonance doublet ν₁ + ν₃ and γ₁ + (ν₁ + ν₄) of carbon tetrachloride (table on p 481). The differences between the calculated and experimental values lay between 3.6 and 5.8%, i.e. within the experimental error, which was 10%. There are 1 table and 4 Soviet references.
SUEDITED: February 17, 1959
3ard 2/2

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

A061/A101

s/058/62/000/008/002/134

24.2000

AUTHOR: Strizhevs'kiy, V. L.

TITLE: On one particular case of the time-dependent perturbation theory

PERIODICAL: Referativnyy zhurnal, Fizika, no. 8, 1962, 13, abstract 8A99 ("Visnyk Kyïvs'k. un-tu", 1960 (1961), no. 3, ser. astron., fyz. ta khimiï, no. 2, 55 - 59, Ukrainian; summary in Russian)

TEXT: A particular case of the time-dependent perturbation theory is considered, when the wave functions of an unperturbed system are known only approximately, and the states, to which the system can pass over directly under the action of external perturbation, form a discrete spectrum (although each of these states lies in the continuous spectrum of the Hamiltonian of an isolated system). The case of a periodic perturbation, particularly of a monochromatic light wave, is investigated. Formulas determining the transition probabilities are obtained.

[Abstracter's note: Complete translation]

Card 1/1

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

Ls PEKAR, S. I.; STR IZHEVSKIY, V.Q. Theory of the effect of temperature on the dispersion and exiton absorption of light in crystals. Fiz. tver. tela 2 no.5:894-897 My 160. (MIRA 13:10) 1. Kiyevskiy gosudarstvennyy universitet. (Crystal optics)

APPROVED FOR RELEASE: 08/26/2000

82996 S/181/60/002/008/015/045 B006/B070 24,3900 Strizhevskiy, V. L. AUTHOR: Theory of Dispersion and Absorption of Light in Crystals TITLE: Fizika tverdogo tela, 1960, Vol. 2, No. 8, pp. 1806-1815 PERIODICAL: TEXT: Dispersion and absorption of light in crystals in the region of exciton absorption has been investigated many times previously. In this case the states, in which phototransition is permitted, form a discrete spectrum. In the present work, the opposite case is investigated in which such states form a continuous spectrum. Such a case is, for example, realized in the excitation of a localized exciton in a molecular crystal in which the exciton phonon coupling is not weak. In the first part of the paper, the interaction of a monochromatic electromagnetic wave with an ideal crystal is theoretically investigated, and some general relations are obtained. In the second part, the wave functions and the energy levels of a molecular crystal are investigated for the case of an arbitrary coupling between the lattice vibrations and Card 1/3

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5"

4

Theory of Dispersion and Absorption of Light in Crystals 82996 S/181/60/002/008/015/045 B006/B070

the inner excitations of the molecules when the crystal is in thermal equilibrium. Finally, in the third part, the dispersion and absorption. of light is investigated for the case of the occurrence of excitons whose coupling with the lattice vibrations is not weak. The author calculates the specific dipole moment of the dielectric polarization and obtains formulas for the refractive index and the absorption coefficient of light. It is found that the calculation of the absorption coefficient as a quantity proportional to the phototransition probability, does not always lead to correct results. In the case of a molecular crystal considered, in which excitons are produced which have non-weak coupling with the phonons, the allowed phototransitions form a continuous energy spectrum, because, for every intramolecular transition lattice vibrations are simultaneously excited. The author thanks A. S. Davydov, S. I. Pekar, and M. P. Lisitsa for interest and discussions. There are 7 Soviet

ASSOCIATION: Kiyevskiy gosudarstvennyy universitet im. Shevchenko (Kiyev State University imeni Shevchenko)

Card 2/3

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

86805

S/185/60/005/001/004/018 A151/A029

24.6100 (1043, 1395, 1138) AUTHORS: Lisitsya, M.P.; Strizhevskiy. V.L.

TITLE: On the Fermi Resonance in the Case of Carbon Tetrachloride

PERIODICAL: Ukrayins'kyy Fizychnyy Zhurnal, 1960, Vol. 5, No. 1, pp. 34 - 39

TEXT: The paper deals with the problem of the Fermi resonance in the case χ of carbon tetrachioride. Its aim is to show that for CCl₄ the existing theory is in a satisfactory agreement with the experimental data referring to the Fermi resonance. A comparison is made of the theory with the experiment: for three Fermi resonant doublets of CCl₄. It was ascertained that in the case of gaseous CCl₄ the theoretical value of the splitting χ and the intensity ratios of the resonanting component are in satisfactory agreement with the experimental data. A determination was also made of the distance Λ between the unperturbed levels, as well as of the unperturbed frequencies of the fundamental oscillations of moleculars of gaseous and liquid CCl₄. The results of the experiment together with the non-perturbed levels of an isolated molecule of CCl₄ are given in a table. A comparison of the frequencies shows that in case of the phase transition gas - liquid a general tendency appears toward a decrease of frequencies.

Card 1/2

APPROVED FOR RELEASE: 08/26/2000

"APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5

经注意的制度

Construction of the second second

86805	ł
S/185/60/005/001/004/018 A151/A029	N
On the Fermi Resonance in the Case of Carbon Tetrachloride	
observed as a rule in all molecular compounds. The data of the table give a qualitative proof for the assumption that the maxima of the fundamental absorption bands shift in the case of the mentioned phase transition (see also Ref. 8). It closing, the suthors point out that the results obtained in this work prove that it is possible to do away with the nonharmonious members of the potential energy in the case when the Fermi resonant is absent. There is 1 table and 9 references 8 Soviet and 1 German.	
ASSOCIATION: Kyyivs'kyy dershavnyy universytet im. T.H. Shevchenka (Kiyev State University imeni T.H. Shevchenko).	
SUBMITTED: July 1, 1959	
Card 2/2	

· · · .

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

Strizhevskiy, V.L.

CIA-RDP86-00513R001653530003-5

86815 S/185/60/005/001/015/018 A151/A029

· 9,4300 (3203,1043,1144)

AUTHOR.

·美诺克服装

TITLE:

On the Theory of the Temperature Dependence of Dispersion and Light Absorption in Molecular Crystals

FERIODICAL: Ukrayins'kyy Fizychnyy Zhurnal, 1960, Vol. 5, No. 1, pp. 120 - 122

TEXT: The general results pertaining to the temperature dependence of dispersion and the exciton light absorption in crystals (Refs. 1 and 2) are applied in a concrete case of molecular crystals with a weak exciton-phonon interaction. A number of formulae are given, from which a series of conclusions can be drawn (for more detailed data see Ref. 11). It follows, for instance, from Formulae (7) and (8) that μ (μ is the diffraction indicator) decreases with a rise in T (T is the temperature zone). In the case of ω , which is close to ω_0 , \mathcal{X} (\mathcal{X} is the absorption coefficient) decreases when T is raised. Within the zone of the abscrption band wings $(\omega \gg \omega_0) \varkappa \sim T$. The value g which exists in (10) depends upon ω , and therefore the shape of the absorption band is not reduced to the Lorenz', Gauss' shape or to any of the other widely known shapes. A complicated character of the dependence of \varkappa upon ω_{\star} permits one to expect more than one max-

Card 1/2

APPROVED FOR RELEASE: 08/26/2000

"APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5

86815 S/185/60/005/001/015/018 A151/A029

On the Theory of the Temperature Dependence of Dispersion and Light Absorption in Molecular Crystals

imum on the curve \varkappa (also for cubic crystals). In the case of high temperatures the presence of at least two maxima might be expected: at $\omega < \omega_0$ and at $\omega > \omega_0$. As to the integral absorption intensity, it might be expected that the closer the shape of the absorption curve to Lorenz' shape, the less this absorption is dependent on the temperature. In the case of oscillation excitations (since the width of the zone is smaller than the marginal values of oscillation frequencies) the semi-widths for various absorption bands should be values of the same order. A detailed comparison of the theory with the experiment will be made in the papers to follow. In closing, the author expresses his gratitude to 0.S. Davidov, S.I. Pekar and M.P. Lysytsya for their critical remarks and their attention to this work. There are 11 Soviet references.

ASSOCIATION: Kyyivs'kyy derzhavnyy universytet (Kiyev State University)

SUBMITTED: October 10, 1959

Card 2/2

APPROVED FOR RELEASE: 08/26/2000

"APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5 这、特别的影响 KONDILENKO, I.I.; KOROTKOV, P.A.; STRIZHEVSKIY, V.L. [Stryzhevs'kyi, V.L.] -١. Indicatrix of the Raman scattering. Ukr. fiz. zhur. 5 no.1:122-124 Ja-F '60. (MIRA 14:6) 1. Kiyevskiy gosudarstvennyy universitet. (Raman effect) angana presidente and president set. A di ant

entre de la compañía de la compañía

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

CIA-RDP86-00513R001653530003-5

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

25583 S/185/60/005/002/020/022 D274/D304 94, 2120 (1160, 1163, 1482) AUTHORS: Kondylenko, I.I., Korotkov, P.A. and Stryzhevs' V.L. TITLE: On the intensity of lines in Raman scattering PERIODICAL: Ukrayins'kyy fizychnyy zhurnal, v. 5, no. 2, 1960, The article has two objects: 1) To obtain a formula for the TEXT: frequency dependence of the intensity of lines (in gases), and to transform the obtained formula by means of the adiabatic approximation; 2) To experimentally study the frequency dependence of intensity of scattering and compare the results with theory. The author proceeds from the formula for the differential effective cross section of light quanta scattering, as given by W. Heitler (Ref. 1: Kvantovaya teoriya izlucheniya (Quantum Theory of Radiation), IIL, M., 1956) / Abstracter's note: Translation into Russian /. The formula for intensity obtained differs from that obtained earlier by Plachek. By taking the average with respect to the period of

APPROVED FOR RELEASE: 08/26/2000

25583 S/185/60/005/002/020/022 D_{274}/D_{304} On the intensity of lines... oscillation of light wave, the intensity is given by $I = \left(\frac{\omega 4}{2\pi c^{3}}\right) |P_{1}|^{2},$ where (2)where $P = \alpha E_{o}, \alpha_{xy} = \frac{1}{\hbar} \sum_{j} \frac{\omega_{lj} \omega_{jm}}{\omega \omega_{o}} \left[\frac{(\hat{s}_{y}) l_{j}(\hat{s}_{x})_{jm}}{\omega_{j} l_{-} \omega_{o}} + \frac{(\hat{s}_{x}) l_{j}(\hat{s}_{y})_{jm}}{\omega_{jm} + \omega_{o}} \right]$ (3)where 2Eo is the amplitude of the electric wave vector. $E_q.$ (3) can be transformed by the adiabatic approximation; the matrix elements of the operator S with respect to electron coordinates is expanded in powers of the displacement of nuclei from their equilibrium positions, whereas the frequencies are expanded in powers of ratios between differences of frequency-factors. After some transformations, a simplified formula is obtained for α . (α was assumed to be reduced to the principal axes). The obtained formula agrees with the results obtained by M.V. Vol'kenshteyn et al., in 1948 and 1949. An experimental study was made of the intensity of two lines of Raman scattering in liquid benzol. The method of measurement is described Card 2/3

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

25583 S/185/60/005/002/020/022 D274/D304

On the intensity of lines...

in references: I.I. Kondylenko and P.A. Korotkov (Ref. 6: UFZh, 3, 765, 1958). The results of the study are given in a table, which also contains (for comparison) theoretical data. There is good agreement between both. (A comparison with Plachek's formula shows discrepancies). A table is given which shows that intensity I vs. frequency ω might sometimes approximately be given by I = const ω^4 . Such a relationship apparently applies to the Raman spectrum of CCl₄, investigated by I.I. Kondylenko (Ref. 5: Naukovi zapysky Kyyvs'kogo derzh. un-tu, Zb. fiz. fak-tu, no. 10, v. 18, no. 3, 1959). There are 2 tables and 7 references: 6 Soviet-bloc and 1 non-Soviet-bloc.

ASSOCIATION: Kyyvs'kyy derzhavnyy universytet (Kiyev State University)

SUBMITTED: October 16, 1959

Card 3/3

APPROVED FOR RELEASE: 08/26/2000

"APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5 and the second second second second second to the second second second second second second second second second

S/051/60/008/02/005/036 E201/E391

AUTHOR:	Strizhevskiy, V.L.
TITLE:	The Effect of an Interaction with the Environment on the Fermi Resonance In Multi-atomic Molecules
PERIODICA	L: Optika i spektroskopiya, 1960, Vol 8, Nr 2,
ABSTRACT :	The effect of an interaction with the environment on the Fermi resonance in multi-atomic molecules is discussed by the author for pure substances and weak solutions. It is shown that interaction with the environment should always lead to partial equalization of the intensities of the resonating components. If a molecule with resonating levels is non-polar, then this equalization will be greater in a pure substance than in many solutions. The latter conclusion is well supported by experimental data. Acknowledgment is made to <u>M.P. Lisitsa</u> for his advice. There are 7 references.
SUBMITTEL	March 18, 1959
Card 1/1	

- 1-442-7-12-12-

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

CIA-RDP86-00513R001653530003-5

"APPROVED FOR RELEASE: 08/26/2000

s/051/60/008/04/007/032 B201/B691 Kondilenko, I.I. Korotkov, P.A. and Strizhevskiy, V.L. PERIODICAL: Optika i spektroskopiya, 1960, Vol 8, Nr 4, pp 471-476 (USSR) AUTHORS : The authors give a simple and clear derivation of Plachek's formulae (Ref 2) which give the dependence of the intensity of Reman lines 7) on the engle of observation Q and the degree of depotarization Q. The authors measured the angular dependence of the Raman line intensities The authors measured vice angular dependence of vice whence and the of carbon tetrachloride, benzene and chloroform. A coll, K, with the appropriate liquid was illuminated with two vertical mercury lamps ABSTRACT : appropriate inquire may introduce mining one of these diaphreams consistent and the set of these diaphreams consistent. the cell diaphragus A were placed; each of these diaphragus consisted of a set of metallic plates lying parallel to the direction of the of a set of metallic places lying paraller of one ulfocuton of one light beam from a lamp to the cell. The scattered light was recorded by metallic places a set of a set of the lamp the LIGHT Upon a round to coll when coll when the state of a photoelectric spectrometer DFS-4. The lamps, the diaphrages and the cell were fixed to the same base which could be ulaphirague and whe cell word tixed to one same uses which could be rotated about a vertical axis. The lamp-diaphragn-cell system was rotated and the angle of rotation measured by means of a special gonioneter. Simple graphical calculations showed that in such $_{Card} 1/2$

APPROVED FOR RELEASE: 08/26/2000

S/051/60/008/04/007/032 B201/B691

The Raman Scattering Indicatrix

rotation the volume of the liquid which takes part in scattering remains practically constant. Consequently the change in the intensity of scattered light can only be due to the angular dependence suggested by Plachek. The results obtained are listed in a table on p 474 and the effect of variation of the observation angle φ on the Raman spectrum of GCl₄ is shown in Fig 3. The results obtained agreed satisfactorily with Plachek's theory. There are 3 figures, 1 table and 6 references, 4 of which are Soviet, 1 English and 1 German.

SUEMITTED: June 29, 1959

Card 2/2

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5"

STREET, STREET,

S/051/60/C08/005/005/027 E201/E491

1 Strizhevskiy, V.L. The Temperature Dependence of Dispersion and AUTHOR 3 Absorption of Light in Molecular Crystals.) I. Theory TITLE: PERIODICAL: Optika i spektroskopiya, 1960, Vol.8, No.5, pp.623-628 Pekar (Ref.1 and 2) described a general method for calculation of dispersion and absorption of light in crystals in the exciton-absorption region at temperatures close to the This calculation was generalized by Pekar and Strizhevskiy (Ref.3) to non-zero temperatures. paper applies the results obtained in these three papers to a molecular crystal with weak exciton-phonon coupling and it deals chiefly with the temperature dependence of dispersion and absorption of light. Expressions are derived which give the temperature dependence of the refractive index and the absorption Qualitative conclusions which follow from these formulae are discussed. The paper is entirely theoretical. Acknowledgments are made to A.S.Davydov, S.I.Pekar and There are 9 Soviet references, M.P.Lisitsa for their advice. September 25, 1959 SUBMITTED : Card 1/1

APPROVED FOR RELEASE: 08/26/2000

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

CIA-RDP86-00513R001653530003-5

STRIZHEVSKIY, V. L., Cand Phys-Math Sci -- "Effect of the state apageogation and temperature upon the spectra of molecular compounds." Kiev, 1961 (Joint Academic Council of Instructors of Math, Phys, and Metal Phys, Acad Sci UkSSR). (KL, 4-61, 185)

-43-

MARTE ALCONTACT

neural states and state

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

"APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5

24 2 (111	29683 S/181/61/003/010/005/036 B102/B108
AUTHOR:	D(LTZHEAPHT)
TITLE:	Theory of Raman scattering of light in a crystalline medium
PERIODICAL	Fizika tverdogo tela, v. 3, no. 10, 1961, 2929-2938
theoretically waves by two of the total based on a ph scattering me Its shortcom other parame applying a n- calibration	ering of light in a condensed medium can be studied y in second-quantization representation of the electromagnetic different methods. The one employs the direct diagonalization Hamiltonian of the system, the other, which is used here, is henomenological description of the properties of the edium by means of the tensor of the dielectric constant, ε . Hamiltonian of the fact that ε is an unknown function of the ings are due to the fact that ε is an unknown function of the ters of the medium. The author simplified this method, hew procedure of quantization and a different potential than usually. An anisotropic non-magnetic crystal which ith the electromagnetic field of light is considered: $\widetilde{\varepsilon} = -\frac{1}{c} \frac{dA}{dt} - \nabla \varphi$, $\widetilde{H} = \text{curl } \widetilde{A}$, div $\widetilde{A} = 0$, $W = -\frac{1}{c} \int \widetilde{J} \widetilde{A} dv$;
Card 1/6	
na an a	

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

CIA-RDP86-00513R001653530003-5

29683 S/181/61/003/010/005/036 B102/B108

Theory of Raman scattering of light...

W describes the interaction between field and particles. Since the interaction problem is a self-consistent one and the field may be assumed as being smooth, W may be approximated by $\overline{W} = -\frac{1}{c} \int j A dv$, $j = \sigma E_1$ denotes the mean field-induced current density. In this any the exact Hamiltonian $\hat{H} = H_0 + U + W$ is obtained in macroscopic approximation. For this approximate Hamiltonian the steady state is described in second-quantization representation of the electromagnetic field. The terms eliminated in the transition to the approximate Hamiltonian describe the microscopic in the transition to the motion of the crystal particles, and are responsible for the scattering of light. In the second part of the paper Raman scattering of light is considered in second perturbation with

Card 2/6

APPROVED FOR RELEASE: 08/26/2000

APPROVED FOR RELEASE: 08/26/2000

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

APPROVED FOR RELEASE: 08/26/2000

Theory of Ram	an scattering of light B102,	1/61/003/010/00 /B108	
ASSOCIATION:	Kiyevskiy gosudarstvennyy univers: (Kiyev State University imeni T. (itet im. T. G. 3. Shevchenko)	Shevchenko
SUBMITTED:	February 13, 1961 (initially) March 27, 1961 (after revision)		, v
	• •	•	
	· · · · · · · · · · · · ·		
Card 6/6			

24,3500(11)	34436 S/185/61/006/006/014/030 D299/D304
AUTHORS:	Kondilenko, I.I., Pohoryerov, Hile
TITLE:	Study of intensity of overtone lines of Raman scatter- ing
PERIODICAL:	Ukrayins'kyy fizychnyy zhurnal, v. 6, no. 6, 1961, 785 - 788
tensity of h tranolecular pendence of of the excit	785 - 786 etical and experimental studies are described of the in- etical and experimental studies are described of the in- anan lines, corresponding to the first overtones of in- vibrations. Particular attention is given to the de- vibrations. Particular attention is given to the de- the intensity of the scattered light on the frequency the intensity of the scattered light on the frequency ing light. First, the problem is considered theoreti- censor α for the intensity of the lines which correspond to overtones, is expressed by $t_{2} = -\frac{e^2}{b_{WW_0}} \sum_{J} \left[\frac{2\omega_{J0}}{\omega_{J0}^2 - \omega_0^2} A_{xy}^{0} - 2 \frac{\omega_{J0}^2 + \omega_0^2}{(\omega_{J0}^2 - \omega_0^2)^2} B_{xy}^{0} + \frac{(\omega_{J0}^2 + 3\omega_0^2)}{(\omega_{J0}^2 - \omega_0^2)^3} C_{xy}^{0} \right] Q_{vv12}^2, (1)$
Card 1/3	
annan an a san anna anna an an an an an an an an an	

A STATE OF STATE OF STATE OF STATE

"APPROVED FOR RELEASE: 08/26/2000 CIA-RDP8

S/185/61/006/006/014/030 D299/D304

Study of intensity of overtone ...

(where A, B, C, g and d are given by formulas; the notations are adopted from the references). A comparison between formula (1) and the corresponding formula for the fundamental tones, shows that the frequency dependence of the overtone lines is greater than that of the fundamental lines. If the frequency of the exciting light approaches the absorption-band frequency, the intensity of the overιX tone lines increases in a greater measure than that of the fundamental lines. This was confirmed experimentally. It is noted that the stronger frequency-dependence of the intensity of overtone lines, is related to the quantity ω_0 (as compared to ω'_{j0}) in the brackets of formula (1). Experimental results showed that ω_0 cannot be neglected. A formula is obtained for the ratio between the inten-sities of the overtone- and fundamental lines. The experimental investigations were conducted by a method, described in the referen-ces. The apparatus included an automatic spectrometer (designed by the authors), a photomultiplier and the recording device DCPM - 02(PSRI-02). The integrated intensities of the overtone lines 1550cm⁻¹ CCl₄, 796 cm⁻¹ CS₂ and 1520 cm⁻¹ CHCl₃ were determined. The results Card 2/3

APPROVED FOR RELEASE: 08/26/2000

The second s

Study of intensity of overtone ...

S/185/61/006/006/014/030 D299/D304

are listed in a table, together with the corresponding values for the fundamental lines. From the table it is evident that the theoretical predictions were corroborated by experiment. In the case of CCl_4 and $CHCl_3$, agreement between theory and experiment was both qualitative and quantitative, whereas in the case of CS_2 , agreement vist bloc and 1 non-Soviet-bloc. The reference to the English-language publication reads as follows: E.D. Wilson, Astrophys. Journ.

ABSOCIATION: Kyyivs'kyy derzhuniversytet im. T.H. Shevchenka (Kyyiv State University im. T.H. Shevchenko)

Card 3/3

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5"

ιX

s/051/61/010/001/004/017 E201/E491

AUTHORS: Lisitsa, M.P. and Strizhevskiy, V.L. TITLE: The Temperature Dependence of the Intensit Vibrational Absorption Bands in Gases PERIODICAL: Optika i spektroskopiya, 1961, Vol.10, No. TEXT: The authors consider theoretical aspects of th temperature dependence of the integrated intensities o vibrational absorption bands of gases. Apart from th "Boltsmann factor" (Ref.4), the authors consider the e anharmonicity of internal molecular vibrations and the light emission on the intensity of vibrational bands. are derived which give the temperature dependence of t integrated absorption. The new formulae differ somew usual expression. Comparison of the available experi on carbon tetrachloride, bromoform, chloroform and oth molecules (Ref.1 to 3) with the new formulae showed fa agreement but further work is necessary for reliable of There are 15 references: 14 Soviet and 1 non-Soviet (12)	1, pp.48-54 e f f e ffect of ffect of Formulae he hat from the mental data her irly good conclusions.
Card 1/2	

-

4

and a second second second the second second

. •

"APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5 14. 15 . s/051/61/010/001/004/017 E201/E491 The Temperature Dependence of the Intensities of Vibrational Absorption Bands in Gases into Russian). SUBMITTED: March 30, 1960 Card 2/2

NEW THE

KONDILENKO, I.I. STRIFHEVENIY, V.L.

这次的情况的是这些学校的学校,我们就是这种的名字是我们都能能够完成的论论的没有的这些的这种形态的。"他们在这种的这个,这些是是不是是是是不是是是不是是是不是是是

Frequency dependency of the line intensities in Raman spectra. Opt. i spektr. 11 no.2:262-263 Ag '61. (MIRA 14:8) (Raman effect)

ISSUEZA SERVICESTICI I REPE

CIA-RDP86-00513R001653530003-5

TANK AND STATE OF ALL STREETS

38910 s/181/62/004/006/016/051 7000 B125/B104 24 4400 AUTHOR: Strizhev<u>skiv</u>, Quantization of an electromagnetic field in a crystal TITLE: medium with dispersion Fizika tverdogo tela, v. 4, no. 6, 1962, 1492-1495 PERIODICAL: TEXT: The author generalizes his method of quantizing an electromagnetic field in a non-gyrotropic crystal medium (V. L. Strizhevskiy, FTT, 3, 2937, 1961) for the case of spatial and frequency dispersion of the real dielectric constant tensor. Absorption is neglected. Diagonalization of the Hamiltonian $H^0 = H + U + W$ and expansion of the vector potential into Fourier series leads to the Fresnel equation of crystal optics. When dispersion of the dielectric constant tensor is taken into account, solution of the Fresnel equation yields several values ω_{ki} (i = 1,2,...) for each wave vector \vec{k} . After the respective Fourier expansion is substituted in $U + W = \frac{1}{4\pi} \int \int \mathbf{E}_{\perp} \epsilon \mathbf{E}_{\perp} dv dt + \frac{1}{8\pi} \int \mathbf{H}^2 dv,$ (3) Card 1/3

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

S/181/62/004/006/016/051 B125/B104

THE WE WINDER FREEDOM NOT AN ADDRESS OF THE OWNER

Quantization of an...

I BERNELEM HER RELEASED FROM THE REAL PROPERTY OF THE REAL PROPERTY

and integration is accomplished over space and time, new harmonic variables give the expression

 $\mathbf{A} = \sum_{\mathbf{k}i} \sqrt{\frac{4\pi\omega_{\mathbf{k}i}}{Vk} \left(\frac{\partial\omega_{\mathbf{k}i}}{\partial k}\right)_{\mathbf{a}}} \mathbf{e}_{\mathbf{k}i} (q_{\mathbf{k}i} A_{\mathbf{k}} + q_{\mathbf{k}i}^* A_{\mathbf{k}}^*).$ (12)

for the vector potential. When there is no dispersion this expression will coincide with that obtained by the author's previous method. The vector potential (12) implies the generalized formulas

$$a_{xy} = \frac{\frac{\omega_{kf}}{2\pi c^3} \sqrt{\epsilon_{sf}} |P_f|^2, \quad \mathbf{P} = \alpha E_{0i\perp}, \quad (13)}{\frac{V^{s_{i}}}{\omega_{kg}\omega_{kf}} \left(\frac{\omega_0}{\theta}\right)^{1/s} \left(\frac{\sqrt{\epsilon_{s,i}}}{c} \left(\frac{\partial \omega_{k,d}}{\partial k_0}\right)_{s_i}\right)^{1/s} \sum_{f'} \left[\frac{(j_{g'}(0))_{\xi\xi'}(j_{g'}(0))_{\xi'\xi}}{E_{f'f_s}(\mathbf{k}_{\xi_s}) - \hbar\omega_{kd}} + \frac{(j_{x'}(0))_{\xi\xi'}(j_{g'}(0))_{\xi'\xi}}{E_{f'f_s}(\mathbf{k}_{\xi_s}) - \hbar\omega_{kd}}\right].$$

for the intensity of scattered light with a given polarization per molecule or per atom.

Card 2/3

and

APPROVED FOR RELEASE: 08/26/2000

STATURATION AND A STATEMENT AND A STATEMENT AND AND A STATEMENT STATEMENT AND A STATEMENT AND A STATEMENT AND A

CIA-RDP86-00513R001653530003-5

s/185/62/007/007/005/010 1048/1248

Bobich, I.L., Kondilenko, I.I., and Strighevskiy, V.L. ANT TROP

Inventigation of the scattering power of molecules in the liquid state during Haman TITLE: scattering of light

Ukrains'kyy fizychnyy zhurnal, v.7, no.7, DEWIODICYP: 1962, 742-748

The relationship $K = \frac{I}{C}$, where I is the intensity. of the scatter d light and C the molar concentration of the scattering substance in the medium was studied using CCl₄, toluene, methanol, 1,2-dichloroethane, and the methyl esters of boric,

Card 1/3

CIA-RDP86-00513R001653530003-5

S/185/62/007/007/005/010 1048/1248

Investigntion of the ...

acetic, and formic weight as the scattering substances and various organic substances as the solvent medium. Fermi-resonance and resonance-free lines were studied by I.L. Babich et al's method [4] (Opt i spektr. 9, 677, 1962). K decreased with increasing C in the following systems: CCl₄-benzene (459 cm⁻¹), CCl₄-toluene (459 cm⁻¹), methanol-chlopoform (2994 cm⁻¹ and 2832 cm⁻¹), 1,2 -dichloroethane-chlopoform (2957 cm⁻¹ and 2870 cm⁻¹); K was practically independent of C in the systems: CCl₄-chloroform (459 cm⁻¹) and toluene-benzene (at C<8 moles/1., 786 cm⁻¹); K increased with increasing C in the systems CCl₄-methanol (459 cm⁻¹), toluene -CCl₄ (1004 cm⁻¹). K is independent of C when both components have similar molecular structures. The ratio I₁/I₂, where I₁ is the overtone and I₂ the fundamental intensity in the Fermi resonance lines

Card 2/3

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

s/185/62/007/007/005/010 1048/1248

Investigation of the...

increased with 0 in methanol-chloroform, methanol-CCl₄, methanol- H_20 , chloroform-methanol, and methyl bornte-CCl₄ systems. Here I_1/I_2 (I2938/I2838) wes >1 within the C range ~ 2 - 12 moles/i, which is the first such case reported. I_1/I_2 increases stendily which is the first such case reported. I_1/I_2 increases stendily with increasing C and, in the pure substances, the components of the Fermi resonance splitting become almost identical. The ratio I_1/I_2 decreased with increasing C in solutions methyl formate, methyl acetate, and 1,2-dichloroethane. There are 5 figures.

ASSOCIATIOM: Kievekiy universitet (The University of Kiev)

Card 3/3

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

ACCOUNT ACCESSION AND THE SHOE IN

12766 5/185/62/007/010/005/020 D234/J308 34 (111 Stryzhevs'kyy, V. L. and Khalimonova, Lysytsya, H. P., AUTHORS: I. H. Temperature dependence of the intensities of vibra-tional absorption bands of molecular liquids TITLE: Ukrayins'kyy fizychnyy zhurnal, v. 7, no. 10, 1962, ł PERIODICAL: 1090-1099 TLXT: Heasurements were made in the whole temperature range where liquid phase exists, for fundamental vibrational bands and their combinations. The liquids were CCl₄, hexaethyldisiloxane, octamethyltrisiloxane, toluene, chlorobenzene, nitrobenzene, aniline and bromobenzene. The intensity of any absorption band varies according to (1) $S_{T} = S_0 + \alpha (T - T_0),$ Card 1/2

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

N TANA I WANT CHINE IN CHINE AND A DEPENDENCE OF THE

Temperature dependence of ...

S/185/62/007/010/008/020 ____ D234/D308

the temperature coefficient being negative. For the first overtones of the vibrations, the integral absorption does not depend on temperature. Theoretical calculation (using the Frank-Condon principle) gives

 $\alpha \approx \frac{k}{2} \sum_{qj\omega} \frac{1}{2} \frac{\partial^2 s(0)}{\partial u_{qj}^2}$ (16)

and the sign of α is estimated to be negative. There are 4 figures.

ASSOCIATION: Kyyivs'kyy derzhuniversytet; Instytut napivprovidnykiv AN URSR (Kiev State University; Institute of Semiconductors, AS UkrSSR)

SUBMITTED: February 24, 1962

Card 2/2

APPROVED FOR RELEASE: 08/26/2000

	S/051/62/013/005/004/017 E039/E420
UTHORS :	Babich, I.L., Kondilenko, I.I., Strizhevskiy, V.L.
TITLE:	Intermolecular interaction and Fermi resonance in Raman spectra
PERIODICAL:	Optika i spektroskopiya, v.13, no.5, 1962, 642-648
	pretical study is made and compared with experimental effect of the interaction of molecules with the

Intermolecular interaction

s/051/62/013/005/004/017 E039/E420

A divergence from this approximation is expected when them). the interaction of separate elements of a molecule begin to play a significant role. The magnitude of this effect is indicated by the change in optical activity of the molecules when in solution due to strong interactions and the formation of associations. In the case when intermolecular interactions are absent resonance still occurs due to intramolecular effects. This effect contributes to the levelling off of the intensity ratio of the Fermi lines. As this ratio is shown to be 0.4 to 0.8 experimentally the resonance of isolated molecules is not small. In view of the simplifying assumptions made in the theory the agreement with experiment is only qualitative. There are 3 figures.

September 21, 1961 SUBMITTED:

Card 2/2

۹.

s/051/62/013/005/005/017 E039/E420

Kondilenko, I.I., Pogorelov, V.Ye., Strizhevskiy, V.L. Intensity of harmonics of Raman lines AUTHORS: PERIODICAL: Optika i spektroskopiya, v.13, no.5, 1962, 649-654 This subject has received little attention in the past and the aim of this work is to make a theoretical and experimental study of second order lines corresponding to the first harmonic of t', intramolecular oscillations. In the first part of the paper some general questions on the theory of combination scattering are answered; in the second and third parts the theory of the intensity of the harmonic lines and the comparison of theory and experiment are given. Experimental results are obtained showing the dependence of the intensity of the harmonic lines on the frequency of the exciting light. The experimental method, which involves the use of an automatic spectrometer, is as described in an earlier paper (I.I. Kondilenko and I.L. Babich. Mater. X Vsesoyuzn. Soveshch. po spektrosk. (Data of the 10th All-Union Conference on Spectroscopy) v.1, 218. Izd. L'vovsk. un-ta, 1957). The harmonic lines examined are 1550 cm⁻¹ CCl₄, 1520 cm⁻¹ CHCl₃ Card 1/2

CIA-RDP86-00513R001653530003-5

Intensity of harmonics

S/051/62/013/005/005/017 E039/E420

and 769 cm⁻¹ CS₂. For comparison the intensities of the fundamental lines 313 cm⁻¹ CCl₄, 762⁻¹ CHCl₃ and 656 cm⁻¹ CS₂ are given. It is shown that the harmonic lines exhibit a much faster increase in intensity with the frequency of the exciting light than the corresponding fundamental lines. This fact is in agreement with the theory. In the case of CCl₄ and CHCl₃ the agreement is quantitative as well as qualitative. With CS₂ the agreement is not good because the frequency of the exciting light is near the CS₂ absorption band. There are 2 tables.

SUBMITTED: September 21, 1961

Card 2/2

APPROVED FOR RELEASE: 08/26/2000

S/020/62/145/006/008/015 B181/B102

AUTHORS: Lisitsa, M. P., Strizhevskiy, V. L., and Khalimonova, I. N.

TITLE: Anomalous income Fermi resonance

PERIODICAL: Akademiya nauk SSSR. Doklady, v. 145, no. 6, 1962, 1262-1264

TEXT: The Fermi resonance in absorption spectra of multiatomic molecules was studied theoretically, paying special attention to intermolecular interaction (A. S. Davydov, Teoriya pogloshcheniya sveta v molekulyarnykh kristallakh - Theory of light absorption in molecular crystals - Kiyev, kristallakh - Theory of light absorption in molecular crystals at 1951). It has been found that the doublet lines must be polarized at right angles to one another. Measurements made in polycrystalline layers of CCl₄ showed that both lines are polarized equally. Absorption in the region of vibration from plane deformation of the symmetry B_1 with the

region of vibration from plane deformer that in the case of liquid and complex term of the same symmetry were studied in the case of liquid and crystalline iodobenzene and chlorobenzene. The intensity ratio of the two doublet lines $I_{y,1}/I_y$ is almost 1 for CCl₄, for the liquid benzenes < 0.1,

Card 1/3

APPROVED FOR RELEASE: 08/26/2000

"APPROVED FOR RELEASE: 08/26/2000 CI

CIA-RDP86-00513R001653530003-5

Anomalous intensity-distribution...

S/020/62/145/006/008/015 B181/B102

for iodobenzene crystal (T = -35 to -167°) about 10, and for crystallized chlorobenzene about 1. The anomalous intensity ratio can be explained by the results arrived at in an earlier paper (V. L. Strizhevskiy, Optika i spektroskopiya, 8, 165, 1960). If v and v' are resonance terms and if $I_{v'}/I_{v'} > 1$, then the condition $\frac{2L_{vv'}}{\delta} < -\frac{k^2-1}{k} \frac{\delta}{\delta l}$, $k \ge 1$; (1) is obtained where L_{vv} , is the matrix element of the vibration energy transfer from molecule to molecule, δ is the "natural" distance of the splitting components $k = p_{ov}^{0}/p_{ov}^{0}$, p_{ov}^{0} and p_{ov}^{0} , are the matrix elements of the dipole moment for the corresponding transitions. If $L_{vv'} < 0$ and $\delta > 0$, then $\sqrt{\left(\frac{\kappa}{\delta}\right)^2 - 1 > \frac{k^2-1}{k}}$ (2) is obtained from (1) where κ is the distance of the distance of the splitting compossible, is the cause of the anomalous intensity ratio. There are 3 figures.

Card 2/3

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5"

.

Anomalous intensity-distribution... ASSOCIATION: Kiyevskiy gosudarstvennyy universitet im. T. G. Shevchenko (Kiyev State University imeni T. G. Shevchenko) PRESENTED: April 13, 1962, by I. V. Obreimov, Academician SUBMITTED: April 10, 1962

5. 4

Card 3/3

.

NEL DE

APPROVED FOR RELEASE: 08/26/2000

"APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5"

CIA-RDP86-00513R001653530003-5

MODIFICN NO: AP4602276 MUTHORS: Verlan, E. M.; Strizhevskiy, V. L. PUTHA: Triple Fermi resonance in a carbon tetrachloride molecule MUTROE: IVUZ. Fizika, no. 5, 1963, 113-117 POPIO TAGS: carbon tetrachloride, Fermi resonance, oscillatory energy level interaction, resonance interaction, fundamental Fermi resonance doublet, degenerate resonance level, COI₄ absorption band, oscillatory absorption band ABSTMACT: A theoretical study has been made of the Fermi triple levels in carbon tetrachloride represented by $2\nu_3; \nu_4 + \nu_3 + \nu_4$ and $2(\nu_4 + \nu_4)$. Of these ν_1 is fully symmetric, whereas ν_3 and ν_4 are triply degenerate. The wave function of the perturbation system is written as $\Psi^* = C_1^* \varphi^* + C_3^* Z^* + C_3^* z^*$. The potential energy term is represented by a cubical function of the normal coordinates, and the system of linear homogeneous equations is given by Cord 1/2

APPROVED FOR RELEASE: 08/26/2000

ACCESSION NO: AP4002276

1

$$\sum_{\kappa=1}^{3} \left[(E^{\alpha} - E^{0}_{\kappa}) \delta_{i\kappa} - V^{\alpha}_{i\kappa} \right] C^{\alpha}_{\kappa} = 0; \ i = 1, 2, 3$$

$$\alpha = A_{1}, E, F_{2}.$$

The solution of the characteristic equation then yields respectively 1590, 1566, and 1534 for the three energy levels considered. These results show reasonably good agreement with the experimental values reported by M. P. Lisitsa, V. N. Malinko (Opt. i spektr., 4, 455, 1958). "The authors are grateful to M. P. Lisitsa for evaluating the analysis." Orig. art. has: 11 equations and 1 table.

ASSOCIATION: Kiyevskiy gosuniversitet imeni T. G. Shevchenko (Kiyev State University)

SUBMITTED: 28Feb62	DATE ACQ: 02Dec63	ENCL: 00
SUB CODE: PH	NO REF SOV: 008	OTHER: 001

Card 2/2

APPROVED FOR RELEASE: 08/26/2000

13355-63 ACCESSION NR:	EWT(1)/BDS/EEC(b)~2 AP3001265	2 AFFTC/ASD IJP(C) S/0181/63/005/006/15	11/1513	
	nevskiy, V. L.	•	56 55	
combination sca	imation of the polarizab attering of light in cry	I I	ination of	
TOPIC TAGS: c	ombination scattering, w	rave function, tensor of		
1962). The temprevious work vibration stat vibration coor formulas (1) a	nsor of combined scatter is here presented as a m es, on the one hand, and dinates, on the other. nd (2). The author find	previous work (FTT, 3, 29 ing of light in a crystan matrix element between in 1 some tensor depending of These tensors are represent is an analysis of the ter E. M. Verlan participate Drig. art. has: 6 formula	itial and final only on the sented in nsor of polari- ed in making	
the analyses o	1 Olio brogone babaaa			•

ACCESSION NR: AP3001277	s/0181/63/005/006/1595/1600/0
	n, E.M.; Korotkov, P.A.; Strizhevskiy, V.L. 55
	tion scattering of light in a crystalline medium
SOURCE: Fizika tverdogo tela, v.	5, no. 6, 1963, 1595-1600
TOPIC TAGS: combination scatteri material	ng, indicatrix, Si, O, optic axis, crystalline
indicatrix) of combination scatter theory and in experimental work. previous works (V. L. Strizhevski The experimental work is basicall Kondilenko, P.A. Korotkov, and V. The authors obtained general form crystal. Vibrations of h66 cm ⁻¹ gation of the indicatrix in a cry	ed the conditions of dependence (of the bring of light in crystalline material both in The theoretical expressions are derived from y, FTT, 3, 2929, 1961, and FTT, 4, 1492, 1962). y similar to previous work on liquids (I. I. L. Strizhevskiy, Opt. i. spektr., 11, 169, 1961). mulas determining the indicatrix in any arbitrary in quartz were first used in experimental investi- vstal in the angular interval of 40-140°. The ory. The authors show that a study of the indica- may serve as a method of investigating oriented

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

ı

determined the angle formed by proved to be 55°, which corres 54° hit. There are disadvantage Chief of these is the presence	thod (with a few simplifying as the Si-O bond with the optic a ponds satisfactorily with the a ges to the system, however, limi of parameters in the formulas ombination scattering. Furtherm always capable of experimental	ctual value of ting its usefulness. that are unknowns	
art. has: 1 figure, 1 table,	and 13 formulas.		
ASSOCIATION: Kiyevskiy gosuda State University)	arstvenny*y universitet im. T.G.	Sucremento (MEST	
SUBMITTED: 11Jan63	DATE ACQ: OLJu163	: UL: 00	
	NO REF SOV: 009	OTHER: OOL	
SUB CODE: PH		•	- - .
SUB CODE: PH		1	
SUB CODE: PH			

H

L 33171.66 EWT(1) IJP(c) WW/GG ACC NR: AR6016218 SOURCE CODE: UR/0058/65/000/011/D072/D072 AUTHOR: Strizhevskiy, V. L. TITLE: Contribution to the theory of nonlinear transformation of light by a medium SOURCE: Ref. zh. Fizika, Abs. 11D563 REF SOURCE: Tr. Komis. po spektroskopii. AN SSSR, t. 3, vyp. 1, 1964, 400-404 TOPIC TAGS: light dispersion, piezoelectric property, tensor, light transmission, optic property, optic crystal ABSTRACT: A theory is developed of nonlinear optical effects in a medium in which, under the influence of a monochromatic light wave of frequency $\omega_1, \omega_2, \ldots$ penctrating translation to those of the piezoelectric tensor. General formulas are obtained, ties similar to those of the piezoelectric tensor. General formulas are obtained, which make it possible to calculate the intensities of the harmonics for an arbitrary which make it possible to relate the properties of the tensor β with the micropara- which makes it possible to relate the properties of the tensor β with the micropara- which makes it possible to relate the properties of the tensor β with the micropara- which makes it possible to relate the properties of the tensor β with the micropara- which makes it possible to relate the properties of the tensor β with the micropara- which makes it possible to relate the properties of the tensor β with the micropara- which makes it possible to relate the properties of the tensor β with the micropara- which makes it possible to relate the properties of the tensor β with the micropara- which makes it possible to relate the properties of the tensor β with the experimental data. [Translation of abstract] SUB CODE: 20
LS Card 1/1

CIA-RDP86-00513R001653530003-5

CONTRACTOR SERVICES INCOME INCOME IN A STREET OF THE SERVICES OF T

1 41-1-1

s/0181/64/006/002/0393/0401

ACCESSION NR: AP4013494

AUTHOR: Strizhevskiy, V. L.

TITLE: Theory of nonlinear transformation of light by matter

.31 FF

SOURCE: Fizika tverdogo tela, v. 6, no. 2, 1964, 393-401

TOPIC TAGS: light, light transformation, nonlinear light transformation, incident angle, dispersion, dispersion ratio, dielectric constant, anisotropic nonmagnetic dielectric, crystallographic analysis

ABSTRACT: The author has made a theoretical study of some aspects of nonlinear transformation of light by matter (such as ratio of the intensity of harmonics to the incident angle, ratio of the intensity to the crystal orientation. In a phenomenological examination, he has shown the general dispersion ratio for the tensor of nonlinear dielectric constant for any order. His theory applies to an anisotropic normagnetic dielectric medium. A general method for finding the amplitude of the harmonics in a crystal and in a vacuum under conditions of first-order effects is presented. As an example, he examines the transmission of ordinary light through a plane-parallel plate of a class D₃ crystal with nonlinear properties. A

۰, ۱

154 5571 477 5 178 5 150

Cord 1/2

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

ACCESSION	NR :	AP4013494
-----------	------	-----------

9.8° 9.64

٠,

comparison of theory with experiment is favorable for the theory. The author also makes a microtheoretical evaluation of the first-order nonlinear effects for any crystalline medium. The presence of angular dependence and other dependent relations in nonlinear effects leads to the belief that in the near future the study of these effects will become one of the important sources of information on the structures and properties of matter, for example, a method of crystallographic Orig. art. has: 2 figures, 1 table, and 27 formulas.

ASSOCIATION: Kiyevskiy gosudarstvenny*y universitet im. T. G. Shevchenko (Kiev . State University)

SUBMITTED: 22Jul63 SUB CODE: PH	DATE ACQ:	03Mar64	ENCL: 00
COP COPPI DH	NO REF SO		ENCL: 00 OTHER: 009
rd 2/2	.		i ;

APPROVED FOR RELEASE: 08/26/2000

s/0051/64/016/001/0169/0171

ACCESSION NR: AP4011505

.

AUTHOR: Strizhevskiy, V.L.

TITLE: On interference effects in laser systems

SOURCE: Optika i spektroskopiya, v.16, no.1, 1964, 169-171

TOPIC TAGS: laser, interference, laser oscillation, interference rings

In Films

ABSTRACT: Some of the features of interference effects that may obtain in laser systems are considered in this paper. For simplicity it is assumed that the excess population of the upper levels remains constant, an assumption justified by the fact that in many cases the excess population is a relatively slowly varying function of time. The specific case analyzed is a lase system with the active medium in the form of an isotropic rod with mirrored ends, one of which is partially transparent, and transparent side walls. It is demonstrated that under certain conditions, in addition to the intense central spot, interference rings may appear. It is noted that interference rings have actually been observed by some experimen-Some factors that may be responsible for broadening of the rings are considered briefly. "The authors thank I.I.Kondilenk and I.S.Gorban' for useful discussions." Orig.art.hast 22 formulas.

· ; -

.

Card 1/2

ACC TIR: AR6025775 SOURCE CODE: UR/0058/66/0	20/004/1000/1 z= 1
AUTHOR: Kondilenko, I. I.; Korotkov, P. A.; Strizhevskiy, V. L.	E.
TITLE: On the use of Raman spectra for the study of oriented systems	t_{ω} /
SOURCE: Ref. zh. Fizika, Abs. 4D526 REF SOURCE: Tr. Komis. po spektroskopii. AN SSSR, t. 3, vyp. 1, 1964	. 574-581
TOPIC TAGE: Raman spectrum, optic crystal, light polarization, quart	z crystal
ABSTRACT: A theoretical study was made of the indicatrix and of the p effects in Raman spectra in arbitrary anisotropic crystals. General is obtained for the intensity of the scattered light as a function of the angle, polarization, and the macroparameters (dielectric constant) and meters of the medium. It is shown that it is possible to determine to of the bonds inside the crystal. An experimental study was made of the in a quartz crystal. Experiment and theory are in satisfactory agreen lation of abstract]	e scattering d micropara- he orientatic he indicatrix
SUB CODE: 20	
Card 1/1 5b	

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

"APPROVED FOR RELEASE: 08/26/2000

LJP(c)/AS(mp)-2/AFWL/ EWT(1)/EWT(m)/EPF(c)/EEC(t) Pr-4 L 12902-65 RAEM(a)/ESD(gs)/ESD(t) GG/RM S/0051/64/017/004/0528/0531 ACCESSION NR: AP4047174 AUTHORS: Kondilenko, I. I.; Strizhevskiy, V. L. B TITLE: Vibration symmetry and intensity in Raman spectra SOURCE: Optika i spektroskopiya, v. 17, no. 4, 1964, 528-531 TOPIC TAGS: Raman spectrum, vibration symmetry, light intensity, toluol, benzene, chloroform, carbon tetrachloride ABSTRACT: The purpose of this paper was to obtain a qualitative interpretation of some features of the intensity distribution of allowed Raman-scattering lines, by taking account of the symmetry properties of the molecules. The Raman-scattering tensor is used in the form derived by the authors previously (with P. A. Korotkov, Opt. i spektr. v. 9, 26, 1960). The stable configurations are distinguished from the unstable ones with the aid of the Jahn-Teller rule. The conditions under which the fully symmetrical vibrations Card 1/2

APPROVED FOR RELEASE: 08/26/2000

"APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

T. 12002 6r			· · · ·	
ACCESSION	NR: AP4047174	4		
predominat analyzed. elements o pending wh states app The theoret for toluol, found to be	e over the nor These make it f the Raman-sc ether the mini ear in the sam tical predicti	n-fully-symmetrical ones possible to ascertain cattering tensor increas and of the first and exc point or in different ons are compared with t oroform, and carbon tet ve agreement. Orig. ar	when the diagonal e or decrease, de- tited electronic points of Q-space. he experimental data	
ASSOCIATION	I: None	•		
SUBMITTED:	06Nov63		ENCL: 00	
SUB CODE:	OP,IC	NR REF SOV: 008	OTHER: 002	
		· .		
ard -2/2	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

2.3% 引起在的资源需要的通信的公式是通信和资源的资源的通信的公式的公式的公式的公式的 2.631316.644.98

L 40921-65 EEC-1/EED-2/EEO-2/EWT(d)/EWT(1) PE-4/Pac-4	
<u>L 40921-65</u> EEC-1/EED-2/EWT(d)/EWT(1) FE-4/Fac-4 8/0057/65/035/003/0546/0556	
ACCESSION NR: AP5007308 33	
AUTHOR: Deryugin, I.A.; Strizhevskiy, V.L.; Kuts, P.S.	
TITLE: Investigation of the operation of ultrahigh frequency Faraday effect de-	
TITLE: Investigation of the operation of ultilange includes 21 vices under conditions of variable magnetization 21	
vices under committees of variable a c	
SOURCE: Zhurnal tekhnicheskoy fiziki, v.35, no.3, 1965, 546-556	
TOPIC TAGS: Faraday effect modulator, ferrite, pulsed magnetic field, relaxation	
TOPIC TAGS: Faraday effect monutator, located, l process, relaxation time	
the state of the Faraday ("fect de-	
ABSTRACT: This paper is concerned with pulsed operation of uhf Faraday effect de- vices, in particular of uhf modulators consisting of a ferrite rod within and co-	
vices, in particular of uni modulators (benefit in the an external solenoid. The auth-	
axial to a cylindrical waveguide and magnetized by an external solution shape due ors have previously discussed the distortion of the magnetic field pulse shape due ors have previously discussed the distortion of the magnetic field pulse shape due	
to the skin effect in the waveguine wars the the anotical mart of the pre-	
fizyky khimyii, matematyky ta astronomic, the magnetization induced in the	
sent paper they calculate the time dependence of the magnetilation and Bloch equa- ferrite by the distorted magnetic field pulse by solving the relevant Bloch equa- ferrite by the distorted magnetic field pulse by solving the relevant Bloch equa-	,]
ferrite by the distorted magnetic field pulse by solving the foldent by Ferrite tion (F.Bloch, Phys.Rev. 70, 460, 1946) and present the results graphically. Ferrite	-
	یکی ایکی ایک کاملی کو
Card 1/2	
	ų

2

L 40921-65 ACCESSION NR: AP5007306

modulators were constructed in silver and lanthanum waveguides of various sizes and wall thicknesses with ferrites of different grades; these were operated with (approximately) squar magnetic field pulses of various lengths, and the shapes of the corresponding output pulses were determined. The results are presented graphically and are discussed at some length, although a quantitative comparison with the theory was not possible because the relaxation times of the ferrites used were not known. It is concluded that uhf Faraday effect devices can be successfully operated with magnetizing pulses as short as 1 microsec. "Student <u>I.Zaritskiy participated</u> in the present work." Orig.art.has: 8 formulas, 10 figures and 3 tables.

ASSOCIATION: Kiyevskiy gosudarstvennyy universitet im.T.G.Shevchenko (Klev State University)

	SUBMITTED: 12Jun64	ENCL: 00		SUB CODE:	EC , EM	
	NR REF SOV: 003	OTHER: 006			-	
2007	Card 2/2 p.3		rangen and an an art a wear			

APPROVED FOR RELEASE: 08/26/2000

DERYUGIN, I.A.; STRIZHEVSKIY, V.L.; KUTS, P.S.

Superhigh-frequency Faraday devices under variable magnetization. Zhur. tekh, fiz. 35 no.3:546-556 Mr '65. (MIRA 18:6)

1. Kiyevskiy gosudarstvennyy universitet imeni Shevchenko.

CC NR: AP6011576	SOURCE CODE: UR/0051/0	
THOR: Strizhevskiy, V. L.	•	39 B
G: none		
TLE: On the spectral comp fects 74	position of generation in the case of	f nonlinear optical
URCE: Optika i spektrosko	opiya, v. 20, no. 3, 1966, 516-519	
PIC TAGS: nonlinear optic	cs, laser, laser theory, second harmo	onic
ric and magnetic <u>fields of</u> he electric and magnetic fi eakly nonlinear optical pro- ponics are expressed in term arameters of the problem and s then confined to the case instants of time have a Gauss or the case of laser emissis ppropriate correlation func- btained agree with those gives and the experimen- tion of the experimen-	writes down an equation for the inter- exciting radiation in terms of the inter- ields, when the radiation penetrates operties. The spectral components of ns of products of coefficients deter- nd the Fourier components of the indu- e of noise-like sources, in which the ssian or normal distribution. This a ion. The intensity is then obtained ctions. In the case of the second ha iven by R. H. Pantell (Proc. IEEE v. ental data are not yet reliable enoug uthor thanks <u>S. A. Akhmanov</u> for fruit 20Aug65/ ORIG REF: 005/ OTH REF:	Fourier components of a medium with f the resultant har- mined by the specific uction. The analysis e fields at different approximation is valid with the aid of the armonic, the results 52, 607, 1964). The gh to permit a compari- tful discussions. Orig [02]

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

是对于建筑

_	
	L 22622-66 <u>EWT(1)</u> LJP(c) <u>GG</u> <u>ACC NR: AP6004931</u> <u>AUTHORS: Obukhovskiy, V. V.; Strizhevskiy, V. L.</u> ORG: <u>Kiev State University</u> (Kiyevskiy gosudarstvennyy universitet) <u>ORG: Kiev State University</u> (Kiyevskiy gosudarstvennyy universitet) <u>TITLE: Relation between the nonlinear dielectric constant</u> and the Green's functions <u>TITLE: Relation between the nonlinear dielectric constant</u> and the Green's functions <u>SOURCE: Zhurnal eksperimental'noy i teoreticheskoy fiziki, v. 50, no. 1, 1966, 135-</u> <u>SOURCE: Zhurnal eksperimental'noy i teoreticheskoy fiziki, v. 50, no. 1, 1966, 135-</u>
	139 TOPIC TAGS: dielectric constant, Green function, electromagnetic radiation, environment of the system of the system. While spatial tensor in terms of the system. While spatial tensor is function of the system. While spatial tensor is dispersion of the dielectric constant is disregarded, generalization of the theory to include dispersion is not difficult. The results make it possible to employ methods
	Card 1/2

of qu posse	antum fiel	ld theory to Linear proper	study the ties. Ori	propagation c .g. art. has:	24 formulas	•	
- SUB (CODE: 20/	SUBM DATE:	30Jun65/	ORIG REF: (03/ OIH REF	: 002/	
	ie.		ï	,			
•				ι.			
					· · · ·		
	2/2 <u>El</u> u)						

APPROVED FOR RELEASE: 08/26/2000 CIA-RDP86-00513R001653530003-5"

are a rear and a second second second second second rear and a second rear and the second second second second

Cost & All Merry Bar

<u>L 45219-66</u> E:T(1) • ACC NR: AP6027904 SOURCE CODE: UR/0369/66/005/001/0119/0122	2
AUTHOR: Korsak, K. V.; Strizhevskiy, V. L.	
ORG: none TITLE: Microtheory of producing a difference frequency based on the nonlinear photoconductivity effect of semiconductors during excitation by two laser source	28
with close frequencies SOURCE: Zhurnal prikladnoy spektroskopii, v. 5, no. 1, 1966, 119-122 TOPIC TAGS: photoconductivity, difference frequency, laser excitation ABSTRACT: The problem of <u>photoconductivity</u> to a continuous spectrum under effect of two monochromatic electromagnetic waves with near frequencies is so by methods of microscopic theory. It is shown that the probability of finding the system in an excited state and the concentration of excited electrons in the irra- medium contains, besides the usual constant term, interference terms changing	adiated
Cord 1/2 UDC: 535.14	

ACC NR: AP6027	904		Ć
of these terms dec	puency $\omega = \omega_1 - \omega_2$. Winter where where the set of	th increasing ω , the is the inverse lifeti	relative contribut me of the excited [DW]
SUB CODE: 20/	SUBM DATE: 03May65/	ORIG REF: 001/	OTH REF: 01
hs			
Card 2/2			

V. L. es of the difference frequency gene	
es of the difference frequency gene	
ffects	ration based
adnoy spektroskopii, v. 5, no. 5, 1	966, 685-687
optics, frequency generation, harm	nonic generation
cial features of the difference free re discussed theoretically in terms fect in a dielectric or semiconduct he intensity of radiation at a subh ed to calculate the generation powe lasers operating at 6934 Å and 694 rea respectively with beam cross se 10^{-3} w). The possibility of increa pumping frequencies approach the a ystal absorbs at the difference free	of the non- tor crystal. A harmonic fre- er of a laser 13 Å at room ections of asing the gen- absorption bands
UDC:535.14	
	optics, frequency generation, harm cial features of the difference free re discussed theoretically in terms fect in a dielectric or semiconduct he intensity of radiation at a subh ed to calculate the generation power lasers operating at 6934 Å and 694 rea respectively with beam cross set 10^{-3} w). The possibility of increas pumping frequencies approach the a ystal absorbs at the difference free

28394 M

5 it (1997

- -

ACC TAR AP6031960 AUTHOR: Strizhevskiy, V. L. ORG: none TITLE: A practical method of computing the nonlinear optical effects in a plane parallel plate SOURCE: Optika i spektroskopiya, v. 21, no. 3, 1966, 347-356 TOPIC TAGS: nonlinear optics, laser induced effect, nonlinear effect, plane parallel plate, resonator theory, laser theory, CRYSTAL OPTIC PROPERCY; mowefunction or RADINTION ABSTRACT: Within the framework of phenomenological theory, an investigation was made of the generation of optical harmonics (sum and difference frequencies of the first induced by high-intensity monochromatic radiation. Expressions were obtained for the induced by high-intensity monochromatic radiation. The expressions derived can be used axes and wave vectors of the exciting radiation. The expressions derived can be used axes and wave vectors of the exciting radiation. The expressions derived can be used axes and wave vectors of the exciting radiation. The expressions derived can be used axes and wave vectors of the exciting radiation. The expressions derived can be used axes made of the synchronism case, i.e., when the wave vector of the stimulated and natural waves approach each other, for which the general formulas were transformed and further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation fur	L 46748-66 ENT(1)/T ACC NR: AP6031960	IJP(c) SOURCE CODE:	UR/0051/66/021/003/0347/0356
ORG: none TITLE: A practical method of computing the <u>nonlinear optical effects</u> in a plane parallel plate SOURCE: Optika i spektroskopiya, v. 21, no. 3, 1966, 347-356 TOPIC TAGS: nonlinear optics, laser induced effect, nonlinear effect, plane parallel plate, resonator theory, laser theory, <i>CRYSTAL OPTIC PROPERCY</i> , mowofullowarnet, <i>RADIATIOAJ</i> ABSTRACT: Within the framework of phenomenological theory, an investigation was made of the generation of optical harmonics (sum and difference frequencies of the first induced by high-intensity monochromatic radiation. Expressions were obtained for the induced by high-intensity monochromatic radiation. The expressions derived can be used axes and wave vectors of the exciting radiation. The expressions derived can be used in a staural waves approach each other, for which the general formulas were transformed and natural waves approach each other, for which the general formulas were transformed and for the first harmonic in a class C ₆ crystal. Orig. art. has: 2 figures and 41 formulas. State CODE: 20/ SUBM DATE: 13Feb65/ ORIG REF: 001/ OTH REF: 005/ ATD PRESS: 5089 [YK]	-ACC-NR: -AP6031960		لية الم <u>ن</u>
ORG: none TITLE: A practical method of computing the <u>nonlinear optical effects</u> in a plane parallel plate SOURCE: Optika i spektroskopiya, v. 21, no. 3, 1966, 347-356 TOPIC TAGS: nonlinear optics, laser induced effect, nonlinear effect, plane parallel plate, resonator theory, laser theory, <i>CRYSTAL OPTIC PROPERCY</i> , mowofullowarnet, <i>RADIATIOAJ</i> ABSTRACT: Within the framework of phenomenological theory, an investigation was made of the generation of optical harmonics (sum and difference frequencies of the first induced by high-intensity monochromatic radiation. Expressions were obtained for the induced by high-intensity monochromatic radiation. The expressions derived can be used axes and wave vectors of the exciting radiation. The expressions derived can be used in a staural waves approach each other, for which the general formulas were transformed and natural waves approach each other, for which the general formulas were transformed and for the first harmonic in a class C ₆ crystal. Orig. art. has: 2 figures and 41 formulas. State CODE: 20/ SUBM DATE: 13Feb65/ ORIG REF: 001/ OTH REF: 005/ ATD PRESS: 5089 [YK]	AUTHOR: Strizhevskiy, V.	<u>L.</u>	6
parallel place SOURCE: Optika i spektroskopiya, v. 21, no. 3, 1966, 347-356 TOPIC TAGS: nonlinear optics, laser induced effect, nonlinear effect, plane parallel plate, resonator theory, laser theory, CRY STAL OPTIC PROPERT: moveCuRCUMATIC Plate, resonator theory, laser theory, CRY STAL OPTIC PROPERT: moveCuRCUMATIC ABSTRACT: Within the framework of phenomenological theory, an investigation was made of the generation of optical harmonics (sum and difference frequencies of the first of the generation of optical harmonics (sum and difference frequencies of the first induced by high-intensity monochromatic radiation. Expressions were obtained for the induced by high-intensity monochromatic radiation. The expressions derived can be used axes and wave vectors of the exciting radiation. The expressions derived can be used axes and wave vectors of the exciting radiation. A detailed analysis to solve the problems in terms of simple algebraic operations. A detailed analysis to solve the synchronism case, i.e., when the wave vector of the stimulated and was made of the synchronism case, i.e., when the wave eapplied to the case of generation further simplified. As an example, the results were applied to the case of generation of the first harmonic in a class C ₆ v crystal. Orig. art. has: 2 figures and 41 formulas. OF the first harmonic in a class C ₆ v Crystal. ORIG REF: 005/ ATD PRESS: 5089 [YK] UDC: 621.375.9:535.01			tical affects in a plane
parallel place SOURCE: Optika i spektroskopiya, v. 21, no. 3, 1966, 347-356 TOPIC TAGS: nonlinear optics, laser induced effect, nonlinear effect, plane parallel plate, resonator theory, laser theory, CRY STAL OPTIC PROPERT: moveCuRCUMATIC Plate, resonator theory, laser theory, CRY STAL OPTIC PROPERT: moveCuRCUMATIC ABSTRACT: Within the framework of phenomenological theory, an investigation was made of the generation of optical harmonics (sum and difference frequencies of the first of the generation of optical harmonics (sum and difference frequencies of the first induced by high-intensity monochromatic radiation. Expressions were obtained for the induced by high-intensity monochromatic radiation. The expressions derived can be used axes and wave vectors of the exciting radiation. The expressions derived can be used axes and wave vectors of the exciting radiation. A detailed analysis to solve the problems in terms of simple algebraic operations. A detailed analysis to solve the synchronism case, i.e., when the wave vector of the stimulated and was made of the synchronism case, i.e., when the wave eapplied to the case of generation further simplified. As an example, the results were applied to the case of generation of the first harmonic in a class C ₆ v crystal. Orig. art. has: 2 figures and 41 formulas. OF the first harmonic in a class C ₆ v Crystal. ORIG REF: 005/ ATD PRESS: 5089 [YK] UDC: 621.375.9:535.01	TITLE: A practical metho	d of computing the <u>nonlinear</u>	optical effection
TOPIC TAGS: nonlinear optics, laser induced effect, nonlinear OPERT; mowoful connerted plate, resonator theory, laser theory, CRYSTAL OPTIC PROPERT; mowoful connerted plate, resonator theory, laser theory, CRYSTAL OPTIC PROPERT; mowoful connerted plate, resonator theory, laser theory, CRYSTAL OPTIC PROPERT; mowoful connerted plate, mowoful connerted plate, within the framework of phenomenological theory, an investigation was made ABSTRACT: Within the framework of phenomenological theory, an investigation was made of the generation of optical harmonics (sum and difference frequencies of the first intensity monochromatic radiation. Expressions were obtained for the induced by high-intensity monochromatic radiation. Expressions derived can be used axes and wave vectors of the exciting radiation. The expressions derived can be used axes and wave vectors of the exciting radiation. The expressions derived can be used was made of the synchronism case, i.e., when the wave vector of the stimulated and natural waves approach each other, for which the general formulas were transformed and further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation further simplified. As an example, the results were applied to the case of generation furt			
natural waves approach. As an example, the results were approach as: 2 figures and 41 formilles. further simplified. As an example, the results were approach as: 2 figures and 41 formilles. of the first harmonic in a class C _{6v} crystal. Orig. art. has: 2 figures and 41 formilles. of the first harmonic in a class C _{6v} crystal. Orig. art. has: 2 figures and 41 formilles. SUB CODE: 20/ SUBM DATE: 13Feb65/ ORIG REF: 004/ OTH REF: 005/ ATD PRESS: 5089 [YK] UDC: 621.375.9:535.01	TOPIC TAGS: nonlinear of plate, resonator theory, <i>RADIATION</i> ABSTRACT: Within the fra of the generation of opt order) in a plane-parall induced by high-intensit intensity of radiation i axes and wave vectors of to solve the problems in was made of the synchron	amework of phenomenological t ical harmonics (sum and diffe el crystal plate with nonline y monochromatic radiation. n a vacuum for the case of a the exciting radiation. The terms of simple algebraic of hism case, i.e., when the way	theory, an investigation was made erence frequencies of the first ear optical properties which were Expressions were obtained for the n arbitrary orientation of crystal e expressions derived can be used operations. A detailed analysis re vector of the stimulated and heral formulas were transformed and
	further simplified. As of the first harmonic in SUB CODE: 20/ SUBM DA	ar any ample, the results were	applies and 41 formulas.

CONTRACTOR ACCOUNTS AND AND A

MainLife , and, then repetricial); MainLife), L.V. (Imerropetrovsk); PAVYDOVA, Sele (Improve trovsk)

Analysis of the outbreak of Botkin's disease accodated with parenteral infection in one of the children's institutions of neuropetrovsk. Vop.med.virus. no.9:192-194 464. (MIRA 18:4)

APPROVED FOR RELEASE: 08/26/2000

THE PARTY OF THE P

CIA-RDP86-00513R001653530003-5"

Alexandress and the second second

DASHEVSKAYA,; JOHTNATA, A.TS.; STRIZHKO, L.V.

Significance of some methods of laboratory diagnosis of epidemic hepatitis. Lab. delo no.2:87-90 '65. (MIRA 18:2)

1. Virusologicheskoye otdeleniye laboratorii (zaveduyushchiy I.1 Bhuits) Enepropetrovskoy gorodskoy sanitarno-epidemiologicheskoy stantsii (glavnyy vrach N.A. Gulyanitskiy).

APPROVED FOR RELEASE: 08/26/2000

577 - A 175 A 4

"APPROVED FOR RELEASE: 08/26/2000

OBRAZTSOV, A.L.; STRIZHIKOZA, Z.I.; CHAZOV, V.N.

Experimental burning of natural gas without sufficient air supply. Gaz. prom. 6 no.12:27-28 '61. (MIRA 15:2) (Gas, Natural) (Gas burners)

APPROVED FOR RELEASE: 08/26/2000

	1 9926	
1 1600	S/226/62/000/003/004/014 I003/I203	
AUTHOR	Aksenov, G. I., Minayev, Ye. M. and Strizhikova, Z. I.	
TITLE	Microstructural investigation of metal powder particles	
PERIODICAL	Poroshkovaya metallurgiya, no. 3, 1962, 24-30	
permits the invest of preparation of type which can be of their preparati	nethod of preparation of samples for a microstructure study of single grains of powders tigation of their dimensions, shape and structure, in a condition unaltered by the process the cross-section, using epoxide resins with hardeners of the polyethylene-polyamine hardened at room temperature. The structure of the powders is affected by the methods on and subsequent treatment. Microstructures of iron and stainless steel powders, after are shown There are 5 figures.	
ASSOCIATION	Kuibyshevskiy aviatsionnyy institut (Kuibyshev Aviation Institute)	\mathbf{N}
SUBMITTED	November 9, 1961	X
Card 1-1		
.		
		Part (the second

OBRAZTSOV, A.L., inzh.; STRIZHIKOZA, S.I., inzh.; CHAZOV, V.N., inzh.

Roasting to magnetize bog iron ores in a fluidized bed with products from the incomplete combustion of natural gas. Gor. zhur. no.8:63-65 Ag '62. (MIRA 15:3)

1. Krasnodarskiy filial Vsesoyuznogo neftegazovogo nauchnoissledovatel'skogo instituta (VNIINeft'). (Iron ores) (Magnetic separation of ores)

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5"

.

MASAIRI, P.S.; STRIZHIUS, ZR.N.; SLADKOVA, V.N.

Werenermanism of the brittle fracture of large samples. Avism. star. 17 no.12:1-7 D '64 (MIRA 18: (::IFA 18:2)

1. Institut elektrosvarki im. Ye.O. Patena AN UKrSSR.

"APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5

ACC NO. A07010715

SOURCE CODE: UR/0020/66/171/006/1348/1351

AUTHOR: Lakein, I. N. (Corresponding Member AN SSSR); Strizhko, V. S.; Fedotov, Yu. S.

ONG: none

TITLE: Effect of diluents on the extraction of rare-earth elements by carboxylic acids

SOURCE: AN SSSR. Doklady, v. 171, no. 6, 1966, 1348-1351

TOPIC TAGS: lanthanum, praseodymium, neodymium, gadolinium, carboxylic acid, aliphatic alcohol

SUB CODE: 11, 07

AUSTRACT: The authors studied some peculiarities in the reaction of diluents with aliphatic synthetic acids of the $C_7 - C_0$ fraction in the extraction of lanthanum, praseodymium, neodymium and gadolinium. The role of the diluents depends essentially on the proton affinity, as well as the ability to form addition compounds with the acid molecules through hydrogen bonds of varying strength and polarity. Carboxylic acids and alcohols posses donor-acceptor properties with respect to hydrogen. Extraction is considerably less affected by diluents which are only proton acceptors in an acid-base reaction. Nonpolar diluents have the least effect. The diluents studied are listed in the UCC: 542.61 0930 J936

APPROVED FOR RELEASE: 08/26/2000

CIA-RDP86-00513R001653530003-5"

ACC NR: AP7010715

following order as to their effect on extraction equilibrium and their ability to form hydrogen bonds: heptyl alcohol, decyl alcohol, isoamyl acetate, metaxylene, dichlorodiethyl ether, carbon tetrachloride, kerosene. Orig. art. has: 3 figures, 11 formulas and 1 table. [JPRS: 40,36]

Card 2/2

APPROVED FOR RELEASE: 08/26/2000

APPROVED FOR RELEASE: 08/26/2000

LAPITSKIY, A.V.; STRIZHKOV, B.V.; VIASOV, L.G.

Some thermodynamic constants of alkali metal metaniobates and metatantalates. Vest. Mosk un. Ser. 2:Khim. 15 no.4:25-27 Jl-Ag '60. (MIRA 13:9)

International Conference in the property of the property of the second second second second second second second

1. Kafedra radiokhimii Moskovskogo universiteta. (Alkali metal tantalates) (Alkali metal niobates)