| | | | | | Line of o | , | & | 95 | # | 121 | 627 | ន | 87 | 25.7 | . 281 | 902 | • | . & | Lta . | ħ | 239 | | \$2 | 9 2 | డ | |---------------------------|----------------------------|--|--|--|--|---|--|--|---|---|--|---|---------------------|---------------------------------|---|---|-----------------------------|--|---|--|------------------------------|------------------|---|---------------------|---| | SOV/2355 | | breatstonny shorth o rabotath desgraftichestop fathi'teta Mosborskopo gendarstwannogo universiteta po Methumarodinon genditiesatoan godu, file o (Gollachino of Information on Mois Done by the Googlechyly Department of the Britainsticoal Geophysical Hear, Hr. 1) Rascor, 1950. 295 p. Errata ally inserted, 800 copies printed. | | scientists particularly those | scribes the activities of the Geography Department lifty in connection with International Complyical Yes in connection with International Complyical Yes in the Neura Elevent Education, the Education Expedition, and the Anternic Expedition. Additional article Assertion of Additional Activities and the Anternic Expedition. | | T'brus'y | 8 | and Symbols | be Spore- | to Study- | Dathing | | * | the Soils | | | | nding of the | CHECAL PROBLEMS OF CLACIOLOUY AID THE STUT OF PERALTHOST | rt Arma in the | | Sermiles | | -g g | | | .: | togo fakuliteta
togu geofizichet
by the Geograph
al Geophysical
800 copies priu | | tists, partic | t the Geogra
ntarnational
g with a spa
ition, the K
dition. Add | nirtide
Theres | tion is Prie | and Pressing Processes | Contests | ication of t | Malogy Geed
Off | of the | Ice Melting | Soils and Grounds | pditions of | actoo | . HOLL | on the Bork of the
physical Year | Madista, A.P. Preliminary Results of the Salamagraphic Sounding of the forestic Show Over Darling the First Soviet Antarctic Expedition of Andare of Stissows, 1938, 1955-57. | ID THE STUDY | the Persetrost | | Wethod of Collecting Ice | er na | aphy of 2bown | | PEASE I BOOK EXPLOITATION | y fakul'tet | idgrafichesk
erhdunarodu
1 Work Done
Internation | 'n | erth ecteut | tion with Interpretation of the Expediture Expediture of the Expediture of the Expediture of the second of the second of the Expediture of the second | FLIRIS EXPENITUOS
k on Mount Elbrus | the fast Diaciation in | w and Press | I.A. Lappo. | Tata on the Application
are | it and Notho
los Cowers
er REFERENTE | n on the Work of the
stoal Year | of Bnow and | Status of R | othermal Co. | Pathiay R | NUCT. EUPID) | 15 g | f the Seism
t Soviet An | LACTOLDOY A | | | fethod of Co | f a Freshvater Pirm | Stratign | | PEASE (BOO | Geografichaskiy fakul'tet. | rabotakh Geegraficheshogo freitata po Methdunaroduncus Growston on Weish Doe by this ity for the International, George ally inserted, 800 c | Mery. Ed.: G. E. Tushinskiy, Professor | COUR; This book is intended for earth interested in glacial phenomena. | ribes the expression of yearth of the Mount E. and the Antiectology and | Sulfactological Work on Mount Elvus | me of the l | tions of Snov
Elbrus | 3 | nary Data o | Heat, M.Ya. Bracks-Control Equipment and Methodology
ing the Indpendure of the Elbrus Ice Cowers
IN I.G.Y. ERIKINT KIRKITTOS | SERBOTA KIM. Preliminary information on the Waterion for the International Geophysical Year | aditions o | Study of the Moisture Status of | Erruching, W.V. The Problem of Sydrothermal Conditions
of the Eniblay Mountain Pange | The Mirst Clacier in the Khibiny Begion | THE L.G.Y. PACT. EUPIDITION | Chachkalow, B.S. Frelininary Informal
Paris Expedition of the International | Recults on the Pars | DELEMENT OF G | Glacial-Geological Zoning of | RESEARCE HETRODS | | Drilling of | Cabbeeva, K.M., and G.K. Dushinskiy, Stratigraphy of Bouldestor of the Characteristics of Fatural Pogion Compleme | | | Universitat. Geo | Informateionnyy shorulk o rabi
gondarsivennogo university
No 1 (Oblistichn of Inform
mant of hosow University:
Boscow, 1998, 298 p. Erri | f. Tushinski | book is in
in glacial | This book describe that the tist divided into \$\frac{1}{2}\$. These are: the problems in Electrical and problems in Electrical sections. | tents
Olacto | Shcherbakovs, Ye.M. Traces of
[Norst Elbrus District] | Rubtseva, K.M. Chearwations of
the Southern Slope of the Elbrus | Brynkhanov, A.V., L.R. Zaytov,
of Large-Scale Glacier Negs | Trabbina, Ya.S. Frelisinary In-
Follen Wethod on Ribrus Claciers | ature of the | Preliminary
- Internation | Climatic Cocditions | Study of the | . The Prob) | be Paret Gla | • | o Preliate | Preliminary
Cover Diriginoss, USSR | CHIRCAL PR | The Glacial- | RESEAR | Example, A.M., and Yo.S. Transl.
for the Spore-Polish Analysis | Machanical Drilling | Characteri | | ą | Moscow. Univer | prestsionny
pendarsive
io 1 (Colle
ment of Nos
foscor, 195 | P. Ed.: 0. | FURTOER: This | COVERACE: This book describes on State University The work is divided in pedition. These are it is hard Expedition, discuss problems in glucompany such article. | Table; of Contents
Tushinskiy, 0.K. Olac | cherbakova, | abtaeva, Kal | rukhanov, A.
Large-Scalu | STATE OF | Che Talpe | tion for the | Puranov, V.P. | Grosov, K.N. | chlov, V.V | Arov, V.F. T | | ir Expediti | time A.P. arctic Bow demy of Sci | | PEDOV. A.L. T | | the Spore- | Kapiten, A.P. | tor of the | | 35,43 | ŝ | q | i | 2 | 8 | , a | €S. | 25 | # % | 糖 | द्यव | ä | 2 | SI O | អ៊ីទ | Ž | | ē Z | - M 2 2 | | | | ää | a y | 4 3 | | | | ···· | | | | | 4 | ~ | | | · | | - : | | | | | | | -, | | | | | | LYTKINA, M.B.; TROSHKINA, Ye.V. Cord 16B used in tires. Khim. volok. no.2:36-38 162. (MIRA 15:4) 1. Nauchno-issledovatel skiy institut shinnoy promyshlennosti. (Tire fabrics) LYTKINA, M.B.; YAMINSKAYA, Ye.Ya.; YEVSTRATOV, V.F.; TROSHKINA, Ye.V. Basic properties required of automobile tire cords. Kauch.i rez. 19 no.3:9-13 Mr '60. (MIRA 13:6) 1. Nauchno-issledovatel'skiy institut shinnoy promyshlennosti. (Tire fabrics) APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756730004-8" SOV/124-58-1-1460 Translation from: Referativnyy zhurnal, Mekhanika, 1958, Nr 1, p 178 (USSR) Yaminskaya, Ye. Ya., Troshkina, Ye. V., Kargin, V. A. AUTHORS: On the Role of Friction Forces in the Fatigue Strength of Cotton TITLE: String (O roli sil treniya v ustalostnoy prochnosti
khlopkovogo korda) Kauchuk i rezina, 1957, Nr 5, pp 25-27 PERIODICAL: Bibliographic entry ABSTRACT: Card 1/1 CIA-RDP86-00513R001756730004-8" **APPROVED FOR RELEASE: 03/14/2001** YAMINSKAYA, Ye.Ya.; TROSHKINA, Ye.V.; KAROIN, V.A. Importance of friction force in fatigue strength of cotton cord. Kauch.i rez. 16 no.5:25-27 My '57. 1. Nauchno-iseledovatel'skiy institut shinnoy promyshlennosti. (Friction) (Gordage--Testing) LYTKINA, M.B.; YAMINSKAYA, Ye.Yd.; TROSHKINA, Ye.V. Properties of cord made from extrastrong "Meryl" viscose fibers and its applications. Khim.volok. no.2:37-40 '63. (MIRA 16:5) and its applications. Khim.volok. no.2:37-40 '63. (MIRA 16:5) and its applications. (Rayon) (Tire fabrics) TROSHKO, A.I., fel'dsher Organization of vaccination centers in a rural locality. Fel'd. i akush. 28. no.6:45-47 Je'63. (MIRA 16:8) 1. Zavaduyushchiy Lyashkovskim fel'dshersko-akusherskim punktom Vitebskoy oblasti. (VITEBSK PROVINCE--VACCINATION) SILAYEV, A.B.; STEPANOV, V.M.; YULIKOVA, Ye.P.; TROSHKO, Ye.V.; LEVIN, Ye.D. Chemistry of polymyxin M. Part 1: Qualitative amino acid analysis and analysis for end groups. Zhur. ob. khim. 31 no.1:297-305 Ja '61. (MIRA 14:1) 1. Moskovskiy gosudarstvennyy universitet. (Polymyxin) BOTVINIK, M.M.; TROSHKO, Ye.V. Paper chromatography of amino acid esters and their detection in a form of hydroxamates. Part 2. Zhur.ob.khim. 32 no.5:1389-1390 My '62. (MIRA 15:5) 1. Moskovskiy gosudarstvennyy universitet. (Amino acids) (Hydroxamic acid) (Paper chromatography) BOTVINIK, M.M.; TROSHKO, Ye.V. Determinations of esters of acylated peptides by means of the hydroxamic reaction. Zhur.ob.khim. 33 no.12:3813-3819 D '63. (MIRA 17:3) 1. Moskovskiy gosudarstvennyy universitet imeni Lomonosova. BOTVINIK, M.M.; TROSHKO, Ye.V.; GORSHKOVA, T.A. Determination of amino acid esters by the hydraxamic reaction. Part 1. Zhur.ob.khim. 32 no.5:1382-1389 My '62. (MIRA 15:5) 1. Moskovskiy gosudarstvennyy universitet. (Amino acids) (Hydroxamic acid) KHOKHLOV, A.S.; SILAYEV, A.B.; STEPANOV, V.M.; YULIKOVA, Ye.P.; TROSHKO, Ye.V.; LEVIN, Ye.D.; MAMIOFE, S.M.; SINITSYNA, Z.T.; CHI CHAN-TSIN [Ch'1h Ch'ang-Ch'ing]; SOLOV'YEVA, H.K.; IL'INSKAYA, S.A.; ROSSOVSKAY, V.S.; DMITRIYEVA, V.S.; SEMENOV, S.M.; VEYS, R.A.; BEREZINA, Ye.K.; RUBTSOVA, L.K. A new type of polymyxin, polymyxin M. Antibiotiki 5 no.1:3-9 Ja-F '60. (MIRA 13:7) 1. Vsesoyuznyy nauchno-issledovatel skiy institut antibiotikov i laboratoriya khimii belka i antibiotikov khimicheskogo fakul teta Moskovskogo ordena Lenina gosudarstvennogo universiteta imeni M.V. Lomonosova. (POLYMIXIN) TROSHKOV, A.A., kand.med.nauk Surgery for radiation ulcers. Kaz.-med.zhur. 40 no.2:73-75 Mr-Ap '59. (MIRA 12:11) 1. Iz kliniki fakul'tetskoy khirurgii (zav. kafedroy - prof. V.I.Akimov) L'vovskogo meditsinskogo instituta i 5-y gorodskoy bol'nitsy (glavvrach - I.I.Khoma). (X RAYS--PHYSIOLOGICAL EFFECT) APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756730004-8" TROSHKOV, A.A., kandidat meditainskikh nauk Free autoplasty of perforated skin in surgical treatment of elephanthiasis of the foot. Ortop.travm. i protez. no.3:40-43 (MLRA 8:10) ky-Je '55. 1. Is kafedry fakulitetskoy khirurgii (zav.prof. V.I.Akimov) Stanislavskogo meditsinskogo instituta. (ELEPHANTHIASIS, leg. surg.skin transpl.) (SKIN TRANSPLANTATION, in various diseases, elephanthiasis of leg. free autoplasty of perf.skin) (LEG, diseases, elephanthiasis, surg.,skin transpl.) APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756730004-8" Particular in the second of th 21345 S/132/60/000/012/002/004 A054/A130 3.9100 (1041,1121) AUTHOR: Troshkov, G. A. TITLE: The problem of estimating the magnetic and the gravitational anomalies of three-dimensional bodies PERIODICAL: Razvedka i okhrana nedr, no. 12, 1960, 28 - 32 TEXT: In order to simplify the calculation of three-dimensional anomalous fields, a method is proposed (based on the idea of S. V. Shalayev) to reduce the three-dimensional fields to two-dimensional ones. By introducing into Laplace's equation for three-dimensional bodies a new function $$U_1 = \int_{-\infty}^{+\infty} U(x, y, z) dy = U(x, z)$$ (2) the equation is written as follows: $$\triangle U_1 = \frac{\lambda^2 U_1}{\partial x^2} + \frac{\partial^2 U_1}{\partial y^2} + \frac{\lambda^2 U_1}{\partial z^2}$$ (3) as Card 1/9 $$\frac{9 \lambda_5}{9 50^1} = 0$$ (4) 21345 8/132/60/000/012/002/004 A054/A130 The problem of ... it follows that $$\frac{\partial^2 U_1}{\partial x^2} + \frac{\partial^2 U_1}{\partial z^2} = 0 \tag{5}$$ Formula (5) corresponds with Laplace's equation for two-dimensional problems. With the aid of function (2) the reduction of three-dimensional anomalies to two-dimensional ones in the case of the pointed pole is obtained as follows: the formula of the vertical component of the magnetic field, Z, is $$Z = \frac{mh}{(x^2 + y^2 + h^2)^{3/2}}$$ (6) (m = magnetic mass, h = the depth of location of the pole). When integrating (6) according to (2) we obtain: $$Z_{1} = \int_{-\infty}^{+\infty} \frac{mh}{(x^{2} + y^{2} + h^{2})^{3/2}} dy = \frac{2mh}{x^{2} + h^{2}},$$ (7) This equation is in agreement with the formula of the vertical component Z for the line of poles, while the numerical value of h remains the same as for pointed Card 2/9 21.3145 \$/132/60/000/012/002/00¹4 1.05¹4/A130 The problem of ... poles. The reducing method for spherical beds is: $$Z = \frac{M(2h^2 - x^2 - y^2)}{(x^2 + y^2 + h^2)^{5/2}}$$ (8) (M = magnetic moment, h = the depth of the centre of the sperical bed). By integrating (8) according to (2), we obtain: $$Z_1 = \int_{-\infty}^{+\infty} \frac{M (2h^2 - x^2 - y^2)}{(x^2 + y^2 + h^2)^{5/2}} dy = \frac{2M (h^2 - x^2)}{(x^2 + h^2)^{1/2}}$$ (9) The equation corresponds with the formula of the vertical component Z for a horizontal cylinder, with the same parameter h as for a spherical bed. The reducing method for a vertical prism sunk to infinite depth is as follows: the formula of the vertical component of the magnetic field Z is: Card 3/9 21345 \$\\/132\/60\/000\/012\/002\/00^{\\\}4 \\\05^{\\\}4\/130 The problem of ... $$Z = \sigma \left[\arctan \frac{x+b}{h} \cdot \frac{l+y}{\sqrt{(x+b)^2 + (y+l)^2 + h^2}} - \arctan \frac{x+b}{h} \cdot \frac{l-y}{\sqrt{(x+b)^2 + (l-y)^2 + h^2}} - \arctan \frac{x-b}{h} \times \frac{l+y}{\sqrt{(x-b)^2 + (y+l)^2 + h^2}} + \arctan \frac{x-b}{h} \cdot \frac{l-y}{\sqrt{(x-b)^2 + (l-y)^2 + h^2}} \right], (10)$$ (6 = magnetic density, 2b = the width of the prism at axis x, 2l = the length of the prism at axis y, h = the depth to the upper edge of the prism). By integrating (10) according to y within infinite limits, we obtain the formula of the vertical component Z for a vertical layer with the same 2b, h parameters as for prism y: Card 4/9 21345 8/132/60/000/012/002/004 A054/A130 The problem of ... $$Z_{1} = \sigma \int_{-\infty}^{+\infty} \left[\operatorname{arctg} \frac{x+b}{h} \frac{l+y}{v(x+b)^{3} + (l+y)^{3} + h^{3}} - \operatorname{arctg} \frac{x+b}{h} \frac{l-y}{\sqrt{(x+b)^{3} + (l-y) + h^{2}}} - \operatorname{arctg} \frac{x-b}{h} \frac{l+y}{\sqrt{(x-b)^{3} + (y+l)^{3} + h^{3}}} + \operatorname{arctg} \frac{x-b}{h} \frac{l-y}{\sqrt{(x-b)^{3} + (l-y)^{3} + h^{3}}} \right] dy = 2\sigma \left[\operatorname{arctg} \frac{x+b}{h} - \operatorname{arctg} \frac{x-b}{h} \right].$$ When calculating (2), we use the formula of the parallelogram: $$U_1 = \Delta y \sum_{n=1}^{\infty} U_1 \tag{12}$$ $(\Delta y = constant distance between the points along the line of parallel axis y; n = number of points selected for calculation; U = potential function, cor-Card 5/9$ 21345 S/132/60/000/012/002/004 A054/A130 The problem of ... responding with H, Z, H_X , Z_X , $\triangle g$, U_A , U_{XZ} (Abstracter's note: g = V), U_{AX} , U_{XZX} . Formula (12) can be made more convenient for calculations. The distance $\triangle y$ between points having a U_1 value can be expressed by the length of the interval of integration according to $\Delta y = \frac{2L}{n} (13)$ (2L = the length of the integration interval according to axis y). Substituting the above value for Δy in (12) we obtain: $U_1 = \Delta y \sum_{l=1}^{n} U_l = \frac{2L}{n} \sum_{l=1}^{n} U_l = 2LU_{cp},$ (14) где $U_{cp} = \frac{\Sigma U_l}{n}$. Where $U_{aver} = \frac{\sum U_1}{n}$ (Abstracter's note: subscript cp has been changed into aver [average]). In practice the integration method is as follows: the field of anomalies will be covered by a system of parallel profiles arranged perpendicularly to axis y, and at a distance of Δ y from each other. The curve U is plotted for each profile. Next, all the profiles are combined into one and from the corresponding curves of Card 6/9 21345 S/132/60/000/012/002/00¹4 A05¹4/A130 The problem of three-dimensional anomalies an average curve is plotted, which corresponds with a two-dimensional body having a section equal to the projection of the three-dimensional body on the x, o, z surface. Depending on the mutual location of the surveying profiles in relation to the strike of anomaly, there are several possibilities: 1) the profiles intersect the anomaly perpendicularly to the strike and are parallel. In this instance integration gives a curve for defining the elements of the bedding of the body in cross section which is perpendicular to the strike of the anomaly; 2) the surveying profiles intersect the anomaly in the strike direction and are parallel. In this case a curve is obtained for defining the elements of the bedding of the body in cross section, parallel to the strike of the anomaly; 3) the surveying profiles intersect the anomaly at a certain angle to the strike direction and are parallel; 4) the surveying profiles intersecting the anomaly are not parallel. (2) would have to be integrated within infinite limits, which is practically impossible, however, the error arising when integrating with finite instead of infinite limits must be corrected. relative error for the pointed pole is corrected by the following
formula: $\frac{\Delta Z}{Z} = 1 - \frac{L/h}{\sqrt{1 + (L/h)^2}}$ (15) Card 7/9 X 21345 The problem of.... S/132/60/000/012/002/004 A054/A130 (2L = the length of the profile of integration on axis x). The correction for a spherical bed is carried out by the following formula: $$\frac{\Delta Z}{Z} = 1 - \left[\frac{2 (L/h)}{\sqrt{(L/h)^2 + 1}} \right] - \frac{(L/h)^3}{\sqrt{(L/h)^3 + 1}}$$ (16) The relative error for a vertical prism $L/h = \frac{1}{4}$ does not exceed this value either. The method recommended has been confirmed by calculations and by reference to graphs for the three mentioned cases. There are 2 figures. ASSOCIATION: Leningradskiy filial VNIIGeofizika (The Leningrad Branch of VNIIGeophysics) Card 8/9 281,00 8/169/61/000/007/032/104 A005/A101 Troshkov, G.A. TITLE: On the problem of interpreting magnetic and gravitational anomalies of three-dimensional bodies PERIODICAL: Referativnyy zhurnal.Geofizika, no.7, 1961, 23-24, abstract 7A2O5 ("Razvedka i okhrana nedr", 1960, no. 12, 28 - 32) TEXT: To simplify calculations, a method is proposed of reducing threedimensional field anomalies to two-dimensional ones. The method consists in the integration of any harmonic function along one of the coordinate axes, e.g. y, yielding a new function, which satisfies the Laplace equation on a plane (xz), The numerical integration of the anomalous field is performed and, as a result, an anomaly is obtained corresponding to a two-dimensional body having the same parameters in the plane (xz) as the unknown body. The method is applicable to individual magnetic and gravitational anomalies. M, Artem'yev Abstracter's note: Complete translation] Card 1/1 CIA-RDP86-00513R001756730004-8" APPROVED FOR RELEASE: 03/14/2001 (MIRA 14:10) TROSHKOV, G.A.; SHALAYEV, S.V. Use of the Fourier transform for solving an inverse problem of gravity and magnetic prospecting. Prikl.geofiz. no.30:162-178 161. (Gravity prospecting) (Magnetic prospecting) 5/169/62/000/009/020/120 D228/D307 AUTHORS: Troshkov, G. A. and Shalayev, S. V. TITLE: Application of the Fourier conversion for solving the inverse problem of gravity and magnetic prospecting PERIODICAL: Referativnyy zhurnal, Geofizika, no. 9, 1962, 25, abstract 9A159 (In collection: Prikl. geofizika, no. 30, M., 1961, 162-178) The authors examine the possibility of using the Fourier TEXT: type conversion $$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{-i\omega x} d\omega$$ and Card 1/3 CIA-RDP86-00513R001756730004-8" APPROVED FOR RELEASE: 03/14/2001 S/169/62/000/009/020/120 D228/D307 Application of the Fourier ... $$S(\omega) = \int_{-\infty}^{\infty} f(x)e^{i\omega x} dx$$ for preliminarily transforming initial curves for the purpose of the quantitative geologic interpretation of gravity and magnetic data. Here f(x) is the material or complex function, satisfying the conditions that guarantee the convergence of the integrals; the S(ω) is the Fourier conversion of the function f(x); and ω is the material variable. Expressions of the Fourier conversions S(ω) are derived for two-dimensional bodies, whose vertical and transverse sections are bounded by an arbitrarily broken line with an infinite number of links (beds, scarps, and other angularly shaped bodies). A method of determining a disturbing body's position from the Fourier conversion is given on the grounds of the correlations of the correlations of the correlations of the correlations. obtained. Some specific cases are considered: a thick bed, a thin bed, and a vertical scarp. Special pallets, guaranteeing the cal- Card 2/3 Application of the Fourier ... S/169/62/000/009/020/120 D228/D307 culation of the Fourier conversion $S(\omega)$, are given. A practical example of the determination of the disturbing body's depth (from the curve Z_a) is cited by way of illustration. In it the value, calculated for the depth with an accuracy of up to 6.6%, coincides with the data of drilling. It is pointed out that the method described was carried out over 50 magnetic and gravity anomalies. / Abstracter's note: Complete translation. / Card 3/3 Semiautomatic device for assembling roller bearings. Biul.tekh.-ekon. Semiautomatic device for assembling roller bearings. Biul.tekh.-ekon. inform.Gos.nauch.-issl.inst.nauch.i tekh.inform. 12 no.9:20-21 3 '65. (MIRA 18:10) Use of phosphacol for primary glaucoma in dispensary practice. Oft.zhur. 14 no.3:156-160 59. (MIRA 12:6) 1. Iz kafedry glaznykh bolezney (zav. - prof.A.M.Rodigina) L'vovskogo meditsinskogo instituta. (GIAUCOMA) (PHOSPHORIC ACID) APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756730004-8" TROSHKOVA, G.N. Petrography of coals in the Medzhigeyskoye deposit of the Ulug-Khem Basin. Geol. i geofiz. no.5:62-72 160. (MIRA 13:9) 1. Krasnovarskove geologicheskove upravleniye. (Ulug-Khem Basin--Coal geology) # TROSHNEV, N.F. Nomograms for controlling hydraulic hammer in water pipes. Stroi.truboprov. 10 no.10:25-26 0 '65. (MIRA 18:10) 1. Giprospetsgaz, Leningrad. TROSHUNEV, A. Biffectiveness of short-term credit in construction. Fin. SSSE 18 no.11:59-61 H '57. 1. Zamestitel' upravlyayushchego L'vovskoy kontoroy Prombanka. (Construction industry--Finance) (Banks and banking) SIDOROV, V.A.; MOROZOVA, N.V.; TROSMAN, G.M.; ZAYTSEVA, N.P.; ALEKSANDROV, K.N. Using stabilized polyamide films in agriculture. Biul. tekh.-ekon. inform. Gos. nauch.-issl. nauch. i tekh. inform. 17 no.9:67-69 S '64 (MIRA 18:1) # "APPROVED FOR RELEASE: 03/14/2001 CIA-RI CIA-RDP86-00513R001756730004-8 TROSHCHENKO, A. T. "Phenylized Oxcoarbocyanines", Zhur. Obshch, Khim., 9, No. 12, 1939. Kazakh State "University imeni S. M. Kirov, Chair of Organic Chamistry. Received 17 March 1939. TRêport &-1614, 3 Jan 1952. Troshchenko, A. T. sov/79-28-8-43/66 AUTHOR: TITLE: Investigation of Acridine Derivatives (Izucheniye proizvodnykh akridina) I. Synthesis of 1-Nitro-2-Methoxy-9-Chloroacridine (I.Sintez 1-nitro-2-metoksi-9-khlorakridina) PERIODICAL: Zhurnal obshchey khimii, 1958, Vol. 28, Nr 8, pp. 2207 - 2213 (USSR) ABSTRACT: In spite of their technical significance, many theoretically possible acridine derivatives have hitherto escaped notice. Their synthesis could furnish general rules regarding the dependence of various properties of the acridine compounds on their ___ structure. The authors were interested in the synthesis of undescribed nitro-methoxy derivatives of acridine having both substituents in the orthoposition. A possible way of the synthesis of such acridine derivatives is the cyclization of the 3'-nitro-4'-methoxy-diphenyl amine-2carboxylic acid (I) which ought to give two isomers, the 1-nitro-2-methoxy acridine (II) and the 2-methoxy-3-nitroacridine (III). The above acid was formed only by condensation of 2-nitro-4-amino anisole with o-chloro penzoic acid, and Card 199 CIA-RDP86-00513R001756730004-8" APPROVED FOR RELEASE: 03/14/2001 Investigation of Acridine Derivatives. I.Synthesis of 1-Nitro-2-Methoxy-9-Chloroacridine sov/79-28-8-43/66 not, as expected, with a anthranilic acid (difficult purification of the resinified final product !). The cyclization of the formed 3'-nitro-4'-methoxy-diphenyl amine-2-carboxylic acid by means of phosphorus oxychloride gave the 1-nitro-2methoxy-9-chloroacridine, which has hitherto not been described. It was proved that only one of the possible two isomers is formed in this cyclization. For the verification of the structure of this isomer the 4-methoxy-5nitro-diphenyl amine-2-carboxylic acid, also hitherto unknown, was synthesized and converted into 2-methoxy-3nitro-9-chloro acridine. There are 1 figure and 5 references, 3 of which are Soviet. ASSOCIATION: Leningradskiy tekhnologicheskiy institut imeni Lensoveta (Leningrad Technological Institute imeni Lensovet) SHEMITTED: June 26, 1957 Card 2/3 CIA-RDP86-00513R001756730004-8" APPROVED FOR RELEASE: 03/14/2001 Interaction Between Vinyl Acetylene and Diazomethane 20-119-2-28/60 binding and that from it 3-ethyl pyrazoline forms. The structure of this matter was proved by the following methodu: 1) by means of the mercury method (ref 9) 97.8 % of acetyler. hydrogen (acetylene end grouping) were found in this matter. 2) A considerably intensive band of the conjugated acetylene and grouping (2100 cm-1) was observed in the infrared spectrum, moreover, an intensive band of CH oscillations of acetylene hydrogen (3280 cm⁻¹), and finally the frequency around 1700 cm-1 (ref 1) characteristic of acetylenes. The frequencies characteristic of the vinyl group in the range between 900 and 100 cm-1 lacked in the spectrum. A considerably intensive band 1526 cm-1 corresponded to the double binding. In order to solve the position of the double binding in the cycle the authors recorded the infra-red spectrum of pyrazoline In this case a higher frequency 1585 cm-1 corresponds to the double bindings. Due to this reason a conjugation of the double and the acetylene binding takes place in the produced ethinyl pyrazoline since reduced values of the infra-red frequencies correspond to these two bindings. Thus, it was Card 2/3 TROSHCHENKO, A.T.; KOBRIN, V.S. Chemical composition of Saussures frolovii, idb. Part 1: Saussurol, triterpene alcohol. Khim.prirod.socd. no.4: 256-262 165. (MIRA 19:1) 1. Novosibirskiy institut organicheskoy khimii Sibirskogo otdeleniya AN SSSR. Submitted March 1, 1965. YUODVIRSHIS, A.M.; TROSHCHENKO, A.T. Synthesis of A-primveroside methyl saltaylate (monotropitesing). Izv. SO AN SSSR no.3 Ser. khim. nauk no.1:145-149 (65. (MIRA 16:8) 1. Novosibirskiy institut organicheskey khimii Sibirskoge otdeleniya AN SSSR. APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756730004-8" CHISTOF WOON, V. N.; TROSHCHENKO, A. T.; PETROV, A. A. splittion of benzonitrile oxide to unsaturated companies. Part 5: Addition of benzonitrile oxide to iscalkonylance and cyloalkenylacetylenes. Thur. ob. Khim. 34 no.6:1891-1896 (Mink 17:7) Je '64. Leningradskiy tekhnologicheskiy institut imeni lennoveta. CHISTOKLETOV, V.N.;
TROSHCHENKO, A.T.; PETROV, A.A. Addition of benzonitrile oxide to unsaturated compounds. Part 4: Condensation of benzonitrile oxide with substances containing a vinylacetylene grouping. Zhur. ob. khim. 33 no.8:2555-2559 (MIRA 16:11) Ag '63. 1. Leningradskiy tekhnologicheskiy institut imeni Lensoveta. CHISTOKLETOV, V.N.; TROSHCHENKO, A.T. Addition of benzonitrile oxide to unsaturated compounds. Report No.2: Addition of benzonitrile oxide to diene hydrocarbons and halo derivatives of unsaturated hydrocarbons. Izv. SO AN SSSR no.3 Ser. khim. nauk no.1:147-151 '63. (MIRA 16:8) 1. Leningradskiy tekhnologichenyi institut im. Lensoveta i Novosibirskiy institut organicheskoy khimii. (Benzonitrile) (Hydrocarbons) Addition of benzinitrile oxide to unsaturated compounds. Part 3: Interaction of benzonitrile oxide with vinylacetylenes substituted in a vinyl group in 5-position. Zhur.ob.khim. (MIRA 16:3) 33 no.3:789-793 Mr 163. 1. Leningradskiy tekhnologicheskiy institut imeni Lensqueta. (Benzonitrile) (Butenyne) APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756730004-8" CHISTOKLETOV, V.N.; TROSHCHENKO, A.T.; PETROV, A.A. Reactions of vinylacetylene and its homologues with benzonitrile oxide. Dokl. AN SSSR 135 no.3:631-633 N '60. (MIRA 13:12) 1. Leningradskiy tekhnologicheskiy institut im.Lensoveta. Predst. akad. B.A.Arbuzovym. (Butenyne) S/020/60/135/003/031/039 B016/B054 AUTHORS: Chistokletov, V. N., Troshohenko, A. T., and Petrov, A. A. TITLE: Interaction of Vinyl Acetylene and Its Homologues With Benzonitrile Oxide PERIODICAL: Doklady Akademii nauk SSSR, 1960, Vol. 135, No. 3, pp. 631 - 633 TEXT: The authors report on their experiments to clarify the mode of addition of benzonitrile oxide to enin hydrocarbons. Further, they tried to produce, in this way, crystalline derivatives suitable to identify enin hydrocarbons. The experiments showed that benzonitrile oxide can be only added to the double bond of a) vinyl acetylene, b) vinyl-methyl acetylene, and c) vinyl-ethyl acetylene. 3-phenyl-5-ethinyl-2-isoxa-zoline (I) is formed in case a), 3-phenyl-5-methyl-ethinyl-2-isoxa-zoline (II) in case b), and 3-phenyl-5-ethyl-ethinyl-2-isoxazoline (III) in case c), according to the following scheme: Card 1/3 Interaction of Vinyl Acetylene and Its Homologues With Benzonitrile Oxide s/020/60/135/003/031/039 B016/B054 $$c_{6}H_{5} - c = N - O + CH_{2} = CH - C = C - R \rightarrow CH_{2} - CH - C = C - R$$ $$c_{6}H_{5} - C = O$$ where R=H (I), CH₃-(II), or C₂H₅-(III). The structure of the resulting substances (I)-(III) was determined by the following methods: on the basis of infrared spectra; by the mercury method in the case of substance (I). The same 3-phenyl-2-isoxazoline-5-carboxylic acid was obtained from all three substances by oxidation with alkaline potassium permanganate solution. The authors think it probable that benzonitrile oxide (like diazomethane, Ref.1) is added as a nucleophilic reagent to the double bond of enin hydrocarbons. All three substances synthesized are crystalline and well suited to identify the initial enin hydrocarbons. The reaction mentioned at the beginning may also serve as a passable method of producing isoxazolines with acetylene radicals. There are 1 figure and 6 references: 2 Soviet, 1 US, and 3 Italian. Card 2/3 Study of the chemical composition of Suplement and Description of Superior YUODVIRSHIS, A.M. [Juodvirsis, A.]; TROSHCHENKO, A.T. Synthesis of ~ primeveroside methylsalicylate, Khim, prirod. (MIRA 18:12) soed. no.5% 302-306 '65. 1. Novosibirskiy institut organicheskoy khimii Sibirskogo otdeleniya AN SSSR. Submitted April 19, 1965. APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756730004-8" COLOVUSHKIN, M., inzh.; TROSHCHENKO, L., inzh.; ZAGORODSKIY, L., inzh. Practices in the removal of underwater rocks. Rech. transp. 23 no.12:35-37 D'64. (MIRA 18:6) GOLUBEVA, A.; TROSHCHENKO, M., tekhnolog New developments in dry cleaning. Prom. koop. 12 no.8:11 Ag '58. (KIRL 11:9) 1. Glavnyy inzhener moskovskoy fabriki "Khimchistka" No.2 (for Golubeva) 2. Moskovskaya fabrika "Khimchistka" No.2 (for Troshchenko). (Cleaning and dyeing industry) IL'YASHUK, Nikolay Davidovich; TROSHCHENKO, Mariana Aleksandrovna; GOLUBEVA, Aneta Mikhaylovna; ZLATOVILOV, R.S., TRUSOV, N.S., tekhn. red. [Technology of the chemical cleaning and dyeing of garments] Tekhnologiia khimicheskoi chistki i krasheniia odezbdy. Moslva. Gosbytizdat, 1963. 185 p. (MIRA 17:2) FROSHEMEINADY N.A. # PHASE I BOOK EXPLOITATION sov/6512 Ksenzuk, Feofan Andreyevich, and Nikolay Alekseyevich Troshchenkov Prokatka i otdelka polosovoy nerzhaveyushchey stali (Rolling and Finishing of Stainless Steel Strips) Moscow, Metallurgizdat, 1963. 205 p. Errata slip inserted. 2500 copies printed. Ed. of Publishing House: V. M. Gorobinchenko; Tech. Ed.: L. V. Dobuzhinskaya. PURPOSE: This book is intended for engineering personnel, foremen, and skilled workmen of rolling shops which produce stainless steel sheets and plates. It may also be useful to designers of planning organizations and students at schools of higher education. COVERAGE: The book describes the process of making stainless steel sheets and plates. Characteristics of hot and cold Card 1/# # sov/6512 Rolling and Finishing (Cont.) rolling mills for stainless steel are presented, and methods of preparation of ingots and slabs for rolling are reviewed. The book gives a classification of stainless steels with a description of their basic properties and the dependence of these properties on conditions of heat treatment and cold rolling. Modern technology of cold rolling, heat treatment, and pickling of strips is discussed. Various types of defects and methods of preventing them are outlined. No personalities are mentioned. There are 98 references, mostly Soviet. TABLE OF CONTENTS: 5 Introduction Classification, Properties, and Application 7 8 Ch. I. of Stainless Steels 1. Chromium steels 9 2. Chromium-nickel steels Card 2/ ACCESSION NR: AT4014063 S/3072/63/000/000/0080/0088 AUTHOR: Ksenzuk, F. A.; Troshchenko, N. A.; Tilik, V. T. TITLE: Technological lubricants for cold rolling of sheet and thin plate SOURCE: Fiz.-khim. zakonomernosti deystviya smazok pri obrabotke metallov davleniyem. Moscow, Izd-vo AN SSSR, 1963, 80-88 TOPIC TAGS: cold rolling, rolling mill, jubricant beef tallow, castor oil, palm oil, mineral oil, sţainless steel ABSTRACT: The usually applied 2% emulsion of standard emulsol for cold rolling of sheets is not satisfactory, causing high contact pressure between metal and rolls, enhancing formation of carbon deposit and thus preventing eventual tinning, and not permitting rolling of sheets thinner than 0.25 mm. Therefore, other technological lubricants have been tried, such as refined cottonseed oil, hydrogenated sperm oil, palm oil, beef tallow, castor oil, and hydrogenated vegetable oils. Best results in rolling have been obtained with beef tallow and castor oil. However, beef tallow has caused clogging of drain pipes, due to its high melting point. For the same reason hydrogenated sperm oil has proven to be inadequate. Cotton- Card 1/4 ACCESSION NR: AT4014063 seed oil has been ruled out for its high cost. Palm oil and castor oil have been accepted as best and have been the basic lubricants for sheet rolling during the last three years. However, these oils also have substantial deficiencies. Palm oil is oxidized considerably after storage times above six months, and consequently loses its effectiveness as lubricant; also, it is an imported item. With castor oil, it is difficult to obtain uniform sheet thickness in rolling; furthermore, it is a scarce product. Hydrogenated sunflower-seed oil has been proposed and tried as lubricant for sheet rolling (lubricant PKS-1) and has been found to be nearly equivalent to palm oil. It has been found that by application of effective technological lubricants on one-unit rolling mills, the production can be raised by 30-40% because of reduction of number of passes from 3 to 2. On three-unit rolling mills, rolling of sheets can be done down to a thickness of 0.20 to 0.22 mm; also, an intermediate anneal can be abolished in rolling of No.28 and 32 sheets. Furthermore, it has been found that failures of rolls and bearings are reduced, and the quality output of timplate is raised up to 95%. However, lubricant PKS-1 is made from raw food material. Therefore, since 1960 a search for new technological Card 2/4 ACCESSION NR: AT4014063 lubricants has been under way. Mineral oils of various viscosities, mineral oils with addition of different fatty acids and vegetable oils, and, for comparison, pure vegetable oils have been tested on a one-unit rolling mill. It has been found that lubricants of higher viscosity correspond to higher stretching coefficients in rolling. The best of the tested mineral lubricants has been cylinder oil No.6. However, difficulties have been experienced in spreading this viscous lubricant on the work. Therefore, preference has been given to cylinder oil No.24 (viscosin), which is equivalent to PKS-1 with respect to stretching of sheet and power requirement but approximately 40 times less expensive. However, the surface quality of sheets has been different when using viscosin or PKS-1. With PKS-1 a shiny smooth surface has been produced, while with viscosin the finished surface has been dull, with white spots from rolled-in oil which sometimes made complete degreasing difficult. It has been concluded that high viscosity mineral oils can be advantageously used as technological lubricants in cold rolling of thin sheets and plates, instead of expensive oils of vegetable or animal origin. For manufacture of cold rolled stainless sheets of 0.8-1.4 mm thickness, strips 1.5-1.8 mm thick have been subjected to intermediate heat treatment and pickling, and then rolled to final thickness. Spindle oil has been used as the lubricant. Under such conditions a great amount of rework was needed and the sheet quality was low. والمها المراجع
والمراجع والمرا Cord 3/4 ACCESSION NR: AT4014063 Instead of the above procedure, cold rolling of stainless steel strips of 0.7;0.8; 0.9;1.0;1.2;1.3; and 1.4 mm from prerolled sheet 3 mm thick without intermediate heat treatment has been adopted. Such rolling has been made possible by using polished rolls and P-28 oil and viscosin, as lubricants. Total reduction of sheet thickness without preliminary heating has been increased from 50-55 to 77%, not only for austenitic but also for steels of lower plasticity, such as austenitic-ferritic, austenitic-martensitic, and ferritic-martensitic stainless steels without occurrence of edge tearing. The number of passes for rolling 0.8 and 1.0 mm thick strips has been reduced from 14 and 12 to 11 and 9, respectively; surface quality has improved, and driving power and pressure on rolls have not been excessive. Production has been increased by 70%, by applying higher speed with fewer passes. For rolling of 1.5-2.5 thick stainless strips, spindle oil has been retained as the lubricant. The use of high viscosity mineral lubricants, such as viscosin, has proved adequate also for cold rolling of thin (0.35 mm) transformer steel sheets. Orig. art. has: 11 tables. SUBMITTED: 00 DATE ACQ: 19Dec64 ENCL: 00 SUB CODE: MM IE NO REF SOV: 004 OTHER: 000 Card 4/4 KSENZUK, F.A.; TSELOVALINIKOV, V.M.; TILIK, V.T.; TROSHCHENKOV, N.A. Increasing the output of a continuous three-bigh cold rolling mill. Met.i gornorud. prom. no.6:27-29 N-D '63. (MIRA 18:1) KSENZUK, F.A., inzh.; KHUDAS, A.L., inzh.; TROSHCHENKOV, N.A., inzh.; GAMERSHTEYN, V.A., inzh.; AKIMOV, E.P., inzh.; IOFFE, M.M., inzh.; VEKLICH, M.I., inzh.; ANTIFENKO, V.G., inzh.; TILIK, V.T., inzh.; FILONOV, V.A., inzh. [deceased]; BORISENKO, V.G., inzh. At the "Zaporozhstal'" plant. Stal' 23 no.6:554, 562, 572, 575 Je '63. (MIRA 16:10) TOKAR', I.K.; CHAMIN, I.A.; Prinimali uchastiye: BOYKO, M.V.; CHUB, G.F; GAMERSHTEYN, V.A.; YASHHIKOV, D.I.; FILONOV, V.A.; TROSHCHENKO, N.A.; SAMOYLOV, I.D.; ZAYTSEV, V.V.; KOLOMATSKIY, V.D. Efficient lubrication for the rolling of thin sheet iron. Metallurg 6 no.8:22-24 Ag '61. 1. TSentral'nyy nauchno-issledovatel'skiy institut chernoy metallurgii (for Tokar', Chamin, Zaytsev, Kolomatskiy). 2. Zavod "Zaporozhstal'" (for Boyko, Chub, Gamershteyn, Yashnikov, Filonov, Troshchenko, Samoylov). (Metalworking lubricants) (Sheet iron) APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756730004-8" Participation of the property TROSHCHENKO, T.K. AUERMAN, L.Ya. professor, TROSHCHENKO, T.K. Conference on the problems of baking in Detmold (West Germany). Khleb. 1 kond. prom. 1 no.1:46-48 '57. 1. Moskovskiy tekhnologicheskiy institut pishchevoy promyshlennosti (for Auerman). 2. Ministerstvo promyshlennosti prodovol'etvennykh tovarov USSR (for Troshchenko). (Detmold, Germany-Baking) TROSHCHENKO, V. N. Cand Geol-Min Sci - (diss) "Mercury deposits of the northern limits of the Chuyskaya Steppe (Gornyy Altay)." Tomsk, Pub. Tomsk Univ, 1961. 19 pp; (Ministry of Higher and Secondary Specialist Education RSFSR, Tomsk Order of Labor Red Banner Polytechnic Inst imeni S. M. Kirov); 150 copies; price not given; (KL, 7-61 sup, 226) ### TROSHCHENKO, V.N. Some characteristics of the geology and genesis of mercury deposits in the northern margin of the Gornyy Altai. Geol. rud.mestorozh. no.5:56-68 162. (MIRA 15:12) 1. Tomskiy politekhnicheskiy institut imeni S.M. Kirova. (Altai Mountains-Mercury ores) (Altai Mountains-Geology, Structural) sov/170-59-6-16/20 15(2) Artamonov, A.Ya., Radomysel'skiy, I.D., Troshchenko, V.T. AUTHORS: TITLE: Investigation of the Effect of Electromechanical Treatment on the Strength of Metal Ceramic Materials on a Silicon Carbide Base Inzhenerno-fizicheskiy zhurnal, 1959, Nr 6, pp 100-103 (USSR) PERIODICAL: ABSTRACT: The ordinary mechanical working of materials based on silicon carbide is rather difficult in view of their considerable hardness. There- fore, the authors studied a possibility of applying electromechanical working and its effect on the strength of metal ceramic materials. The specimens were prepared by the powder metallurgy method with impregnation and divided into 6 portions, one of which was left without working and the other five were subjected to electromechanical working with different degrees, of fineness on a special installation. The effect of treatment on the strength was investigated by statical bending with a concentrated force, and the results are presented in Table 1 and Figure 3. It is shown that the working affects the strength of the silicon carbide specimens considerably, and the latter Card 1/2 sov/170-59-6-16/20 Investigation of the Effect of Electromechanical Treatment on the Strength of Metal Ceramic Materials on a Silicon Carbide Base can be increased by as much as 55% as compared with the specimens not subjected to working. There are: 1 photo, 1 diagram, 1 graph, 1 table and 1 American reference. ASSOCIATION: Institut metallokeramiki i spetsial'nykh splavov, AN USSR (Institute of Metal Ceramics and Special Alloys of the AS UkrSSR), Kiyev. Card 2/2 CIA-RDP86-00513R001756730004-8" **APPROVED FOR RELEASE: 03/14/2001** PHASE I BOOK EXPLOITATION SOV/5303 THE STREET STREET STREET STREET, STREET STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, Nauchno-tekhnicheskoye soveshchaniye po dempfirovaniyu kolebaniy. Kiyev, 1958. /Wearin/attalli - Trudy Nauchno-tekhnicheskogo soveshchaniya po dempfirovaniyu kolebaniy, 17 19 dekabrya 1958 g. (Transactions of the Scientific and Technical Conference on the Damping of Vibrations, Held 17 19 December, 1958) Kiyev, Izd-vo AN UkrSSR, 1960. 178 p. 2,000 copies printed. - Sponsoring Agency: Akademiya nauk Ukrainskoy SSR. Institut metallokeramiki i spetsial'nykh splavov. - Editorial Board: I. N. Frantsevich, G. S. Pisarenko (Resp. Ed.), G. V. Samsonov, V. V. Grigor'yeva, and A. P. Yakovlev; Ed. of Publishing House: I. V. Kisina; Tech. Ed.: A. A. Matveychuk. PURPOSE: This book is intended for mechanical engineers, metallographers, physicists specializing in metals, designers, aspirants, and scientific workers. Card 1/7 Transactions of the Scientific (Cont.) SOV/5303 GOVERAGE: The book contains 27 articles dealing with principal results of theoretical and experimental investigations of energy dissipation in mechanical vibrations carried out in the Soviet Union from 1956 to 1958. Problems of energy dissipation in materials and factors affecting it are discussed. Purportedly new methods of experimental investigation of damping of vibrations are presented. Attention is given to the recently developed nonlinear theory of calculating vibrations in elastic systems, taking energy dissipation into account. Attempts to analyze internal energy dissipation in materials using methods of mathematical statistics are discussed. Some articles deal with engineering problems in dynamics, in which damping is claimed to play a highly substantial part. Aspirant N. I. Mukhin, of the Kiyev Polytechnic Institute, is mentioned. References accompany some of the articles. TABLE OF CONTENTS: Pisarenko, G. S. Survey of Studies, Made in Kiyev, of Damping of Vibrations 3 Card 2/3 | Transactions of the Scientific (Cont.) SOV/530 | 3 | |---|----------------------| | Pisarenko, G. S. Longitudinal Vibrations of a Rod, Taking Into Account Hysteresis Losses | 1 | | Pisarenko, G. S. Longitudinal Vibrations of Spiral Springs, Taking Into Account Energy Dissipation in Material | 2 | | Pisarenko, G. S., and N. I. Shchepetkina [Candidate of Tech-
nical Sciences]. Transversal Vibrations of Stepped Rods, Tak-
ing Into Account Hysteresis Losses | | | Pisarenko, G. S., and N. I. Shchepetkina. On the Calculation of Hysteresis Losses in Vibrating Plates | 3 [,]
46 | | Vasilenko, N. V., [Aspirant]. Bending-and-Torsional Vibration of Rods, Taking Into Account Energy Dissipation in Material | | | Froshchenko, V. T., [Candidate of Technical Sciences]. Application of Methods of Mathematical Statistics to the Analysis of Energy Dissipation in Material | 71 | | Card 3/7 | 11 | APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756730004-8" | TROSHCHENKO, V.T. | | |---|--| |
Scattering of energy in a material. Fiz.tver.tela 2 no.6: (MIRA 13:8) 1060-1069 Je '60. | | | l. Institut metallokeramiki i spetsial nykh splavov AN USSR, Kiyev. (Vibration) | | | | | | | | | | | | | | | . يو. | | | | | | .نچ. | | · s/124/61/000/009/055/058 D234/D303 Troshchenko, V.T. AUTHOR: Applying the methods of mathematical statistics to analyzing the process of energy dissipation in a TITIE: material Referativnyy zhurnal. Mekhanika, no. 9, 1961, 48, abstract 9 V437 (Tr. Nauchno-tekhn. soveshchaniya PERIODICAL: po dempfirovaniyu kolebaniy, 1958, Kiyev, AN USSR, 1960, 71-83) An attempt is made to find the dependence for characteristics of damping properties of a material on the basis of the assumption that energy dissipation in the material is caused, in the first place, by microplastic deformations, using methods of mathematical statistics for taking these deformations into account. Influence of some structural factors on these characteristics is considered, such as the dimensions of the specimen, the form of the Card 1/2 Applying the methods... S/124/61/000/009/055/058 D234/D303 stressed state, etc. The author finds: 1) An analytic expression for the energy dissipated by the volume unit of the material during a cycle of vibration; 2) relations for relative cyclic viscosity in different forms of stressed state. It is shown that the energy dissipated in the material during one cycle of vibration depends essentially on the structural properties of the material, dimensions of the specimen, form of stressed state. Abstracter's note: Complete
translation Gard 2/2 69973 s/170/60/003/01/18/023 B022/B007 18.6000 AUTHOR: Troshchenko, V. T. TITLE: Some Questions Relating to the Strength of Powder-metallurgical Materials on a Silicon Carbide Basis PERIODICAL: Inzhenerno-fizicheskiy zhurnal, 1960, Vol. 3, No. 1, pp. 103 - 107 TEXT: In the present paper, the use of the statistical theory of strength in calculating brittle powder-metallurgical materials (silicon carbide) is dealt with. Equation (1,2) by W. Weibull (Refs. 2,4) on brittle strength is mentioned. The tests were carried out at normal (20°C) and high (1200°C) temperatures on silicon carbide samples, which had been produced according to different technological methods, and had a certain similarity to silicates. The photograph of the microsection of a silicon carbide material is shown (Fig. 1), from which its phase-composition may be seen. The results of the tests carried out on 6 silicon-carbide mixtures with different phase compositions for the purpose of determining the brittle strength F are given (Table 1). The curves for the change of the strength F of the samples as dependent on the working volume $v^{1/3}$ were Card 1/2 Some Questions Relating to the Strength of Powdermetallurgical Materials on a Silicon Carbide Basis s/170/60/003/01/18/023 B022/B007 determined on the basis of the results of bending tests by the application of a concentrated force (Fig. 2). The experimental (F) and theoretical (F*) results for various kinds of state of stress are compared (Table 2). The results obtained show good agreement between experimental data and those obtained according to W. Weibull's calculation formulas. The sensitivity to stress concentrations is calculated and the experimentally obtained quantities q are compared to the calculated values q_r (Table 3). On the basis of the results obtained it may be said that the laws in the destruction of brittle powder-metallurgical materials on a basis of silicon carbide have a statistical character, and that for their sufficiently accurate determination the formulas of the statistical theory of strength by W. Weibull may be used. T. Kontorova and Ya. Frenkel' (Ref. 1) as well as G. Neyber (Ref. 5) are mentioned. There are 2 figures, 3 tables, and 5 references, 3 of which are Soviet. ASSOCIATION: Institut metallokeramiki i spetsial nykh splavov AN USSR, g.Kiyev (Institute of Powder Metallurgy and Special Alloys of the AS UkrssR, City of Kiyev) Card 2/2 1.9600 aiso 2807 S/032/60/026/012/020/036 B020/B056 AUTHORS: Gryaznov, B. A. and Troshchenko, V. T. TITLE: A Method of Determining the Fatigue Limit PERIODICAL: Zavodskaya laboratoriya, 1960, Vol. 26, No. 12, pp. 1398-1401 TEXT: In the present paper, the results obtained by an investigation are given, which was carried out to determine the applicability of the method of increasing stress for determining the fatigue limit of austenite steel of increasing stress for determining the fatigue limit of austenite steel of 1812 (EI612) at normal and high temperature (630°) as well as of a number of cermets whose fatigue values were widely spread. Steel and cermets on the basis of iron powder with a porosity of 19-22% were subjected to a on the basis of iron powder with a porosity of 19-22% were subjected to a symmetric cycle of torsions in the device of the type By-8 (VU-8). The symmetric cycle of torsions in the device of the type By-8 (VU-8). The which water was conveyed into a container fastened to the sample. The which water was conveyed into a container fastened to the sample. The which water was conveyed into a container fastened to the sample. The motor and a starter. Testing the cermets on the basis of chromium carbide motor and a starter. Testing the cermets on the basis of chromium carbide and silicon carbide was carried out in the apparatus of the type ym -2 and silicon carbide was carried out in the apparatus of the type ym -2 and silicon carbide was carried out in the apparatus of the type ym -2 and silicon carbide was carried out in the apparatus of the type ym -2 and silicon carbide was carried out in the apparatus of the type ym -2 and silicon carbide was carried out in the apparatus of the type ym -2 A Method of Determining the Fatigue Limit S/032/60/026/012/020/036 B020/B056 by investigating the fatigue strength of steel EI612 and of the cermets according to the usual method are given in Fig. 3. Fig. 4 shows the results obtained by investigating the same materials in the case of increasing stress. In tests carried out with symmetric stress cycle, the preliminary of least squares was used. The results obtained by using various methods of determining the fatigue limit are given in a table. From this table and from the Figs. 3 and 4 it follows that when using the method of increasing and also at increased temperature. The saving of time made possible by this method is about 40% for steel EI612 in comparison to the statistical methods. There are 4 figures, 1 table, and 4 references: 1 Soviet, 1 French, ASSOCIATION: Institut metallokeramiki i spetsial nykh splavov Akademii nauk USSR (Institute of Powder Metallurgy and Special Alloys of the Academy of Sciences UkrSSR) Card 2/2 THE SECRETARY DESCRIPTION OF THE SECRETARY PROPERTY AND PROPE PISARENKO, Georgiy Stepanovich [Pysarenko, H.S.]; TROSHCHENKO, Valeriy Trofimovich; FRANTSEVICH, I.M. [Frantsevych, I.M.], akademik, otv. red.; REMENNIK, T.K., red.izd-va; LIBERMAN, T.R., tekhn. red. [Statistical theory of strength and its application to ceramic metal materials] Statystychni teorii mitsnosti ta ikh zastosuvannia do metalokeramichnykh materialiv. Kyiv, Vyd-vo Akad. nauk URSR, 1961. 104 p. (MIRA 15:3) 1. Akademiya nauk USSR (for Frantsevich). (Ceramic metals) (Strength of materials) TROSHCHENKO 33544 3/123/62/000/002/004/012 A004/A101 15,2610 AUTHORS: Troszczenko, W. T., Griaznow, B. A. TITLE: Some problems concerning the fatigue strength of ceramic materials PERIODICAL: Referativnyy zhurnal, Mashinostroyeniye, no. 2, 1962, 25, abstract 2A54 ("Wytrzymałość zmęczeniowa tworzyw i elementów metalowych". Warszawa, 1961, 57-60, Polish) The authors present the results of investigations of the effect of temperature, mechanical working, presence of notches and also of the stress sign on the fatigue strength of ceramic materials on the base of chromium carbide (85% Cr_3C_2) and silicon carbide (49, 22% SiC). The specimens on the Cr_3C_2 base had the following composition (in %): Ni - 15.3, C - 9.4, Cr - 71.35. They were manufactured by pressing the powder mixture and subsequent sintering in a hydrogen atmosphere at 1,300°C. Static and fatigue tests were carried out on the rough specimens, ground by the mechanical and electrolytic method. The specimens on the SiC base were made from graphite of the corresponding dimensions and shape and then impregnated with Si in a hydrogen atmosphere. The specimens were heated in the machines by resistance currents. The temperature was measured Card 1/2 3/123/62/000/002/004/012 A004/A101 Some problems concerning the fatigue strength ... with optical pyrometers. The tests on the MM-2 (IM-2) machine were carried out at a loading frequency of 50 cps. The 1M-5 (1I-5) machine is intended for pure bending tests with simultaneous tension or compression, at a frequency of 400 cps. The stresses in the specimens were determined from the magnitude of the specimen oscillation amplitude, rated with a microscope. During the tests on the IM-2 machine, the cycle asymmetry attained 0.15, this value being 0.8 on the 1I-5 machine. It was found that a considerable scattering of the fatigue test results could be observed in ceramic materials. The authors recommend to use statistical methods in processing the experimental results. The inflection of the fatigue strength curve in the semilogarithmic coordinates occurs at a base of 106 cycles. The fatigue strength depends on the temperature and surface state of the specimens. In ceramics on the base of Cr3C2, the fatigue limit is considerably lowered if stress raisers are present. The fatigue strength abruptly decreases if axial tensile stresses act on the specimens, and increases in the presence of axial compressive stresses. During cyclic loading, in most of the cases the fracture has no two clearly expressed zones (fatigue and brittle fracture zones). The mentioned zones could be only observed in fractures of SE specimens at high temperatures and considerable axial compressive stresses. There are 9 figures. [Abstracter's note: Complete translation] G. Mekhed Card 2/2 TROSHCHENKO, V.T. Brittle strength of ceramic metal materials. Porosh.met. 1 (MIRA 15:5) no.6:62-69 N.D '61. 1. Institut metallokeramiki i spetsial'nykh splavov AN UkrGSR. (Geramic metals—Brittleness) 3851). \$/123/62/000/011/007/011 A052/A101 15,2400 AUTHORS: A Artamonov, A. Ya., Radomysel'skiy, I. D., Troshchenko, V. T. TITLE: The effect of machining on the strength of brittle sintered materials PERIODICAL: Referativnyy zhurnal, Mashinostroyeniye, no. 11, 1962, 39, abstract 11B227 ("Poroshk. metallurgiya, no. 5, 1961, 65 - 68, English summary) TEXT: The effect of machining on the strength of sintered materials on chromium carbide and silicon carbide base was investigated. Sintered materials on silicon carbide base were tested for strength prior to machining (afterelectromechanical processing), whereby a surface layer 0.5 - 0.6 mm thick was removed, and also after applying to the machined surface a silicon carbide layer. Sintered materials on chromium carbide base (9.4% C, 71.35% Cr, 15.3% Ni and 3.95% others) were subjected to static (pure bending) and fatigue tests prior to machinothers) were subjected to static (pure bending) and electromechanical ing immediately after sintering, abrasive disk grinding and electromechanical processing. It is established that the electromechanical processing as well as the silicon impregnation process increase the static strength of sintered materials. Card 1/2 The effect of machining on the
strength of ... S/123/62/000/011/007/011 A052/A101 rials on silicon carbide base prepared by the method of impregnation. Electromechanical processing of sintered materials on chromium carbide base does not reduce the static and fatigue strength, whereas abrasive grinding even under soft conditions reduces considerably both strength characteristics. Such a reduction of strength is caused by the formation in the process of grinding of a large number of superficial microcracks 5 - 10 mm wide (?) and up to 50 mm deep (?). The formation of these cracks is connected obviously with the heating of local surface sections which can produce considerable thermal stresses. It is pointed out that the strength of ground samples is similar to that of the samples with stress concentrators. The microcracks weaken the samples in the same way as the stress concentration of sintered materials on chromium carbide base is 0.4. There are 5 references and 2 figures. E. Spivak [Abstracter's note: Complete translation] Card 2/2 S/114/61/000/004/004/006 E194/E435 AUTHORS: Pisarenko, G.S., Corresponding Member AS UkrSSR, Troshchenko, V.T., Candidate of Technical Sciences, Kaplinskiy, L.A., Engineer and Gryaznov, B.A., Engineer TITLE: An Investigation of the Fatigue Strength of Steel 1X13 (1Kh13) in Variable Bending With Static Tension PERIODICAL: Energomashinostroyeniye, 71961, No.4, pp.29-31 Analysis of turbine blade breakages shows that they are TEXT: mostly due to fatigue. In most laboratory fatigue tests certain factors are not allowed for, including the presence under service conditions of appreciable tensile stresses due to centrifugal The present work describes an investigation of the influence on the fatigue strength of steel 1Kh13 in bending of a constant tensile stress which imitated the influence of centrifugal force. The tests were carried out at temperatures of 100 and 400°C on steel 1Kh13 with different kinds of heat treatment. The specimen geometry is shown in Fig.1. The heat treatment and the mechanical properties of the material is shown in table 1, where the second column gives the heat treatment Card 1/94