"APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8

CIA-RDP86-00513R001756920003-8

TSARENKO, V., inzh. Rollow the example of outstanding engineers. HTO 5 no.2:8 F '63, (MIRA 16]3 ! 1. Chlen nauchno-tekhnicheskogo obshchestwa Gomel'skogo zavoda sel'skokhozyaystvennogo mashinostroyeniya. (Engineers)

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

CIA-RDP86-00513R001756920003-8

USSR / Fa	erm Animals. Honey Bee	
	Ref Zhur-Biol., No 3, 1958, 12203	Q-7
	Tsarenko V. P.	
	The Technique Used by I. S. Filatov and t ency of Strengthening Bee Families (O met I. S. Filatova i tselesoobraznosti podsil pchelinykh semey)	he Expedi- ode raboty ivaniya
Orig Pub:	Pchelovodstvo, 1957, No 5, 21-23	
	The author argues that the strengthening of families is expedient not only for the sal menting the number of bees but also for in ing, into a poor family, the bees distingu- their energy and efficiency which character families. However, if the weak family doe prove, it should be culled.	ke of aug- ntroduc- uished by
Card 1/1		

nyangan interpretation and

2

Ţ	1.1	rqq	-66
- Er	<i>U</i> 1.	2	-00

Ŧ

.

ACC NRI AP6018552

2/2

Card

satisfy exactly the zero boundary conditions on the two ohmic contacts. The threshold field and the frequency of these oscillations turn out to be governed by the same formulas as obtained in the earlier paper for an infinitely long sample. The threshold fields for the almost-natural oscillations is smaller than the threshold field for the true natural oscillations. If the field is smaller than critical, damped oscillations can be excited by applying to the sample an alternating field. These arise when the ohmic contacts are weakly injecting. The impedance of the sample in the latter case is investigated and it is found that it exhibits resonant properties near the frequency of the natural oscillations in the case of a short sample or near the frequency of almost-natural oscillations for the long sample. For the short sample the resonance is manifest by a single dip, whereas for a long sample it is manifest by a packet of waves. The authors thank L. E. Gurevich and V. I. Perel' for useful discussions. Orig. art. has: 3 figures and 45 formulas. OTH REF: 001 SUBM DATE: 22Nov65/ ORIG REF: 002/ SUB CODE: 20/

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

CIA-RDP86-00513R001756920003-8

	The second s			•• ••	17
AUTHOR	Tsarenko, V. T	.; Bagrov, G.	V.; Borzenko,	<u>v. v.</u>	12 1
ORG: r	one				
TITLE: control	Semiconductor wa for shf power s	aveguide atter stabilization	uator with con 25	ibinational elect	ric
SOURCE	IVUZ. Radiotel	chnika, v. 9,	no. 1, 1966, 6	3-70	
TOPIC T junctio		attenuator, mi	lcrowave power	stabilization, p	n
semicon of wave	T: A description ductor attenuator guides operating on	for regulating the 3-cm wavel	on of the shf ength. The se	output power lev miconductor atte	rel n-
3, and the rip	s shown in the fi rectifying contac ple of the attent the wafer thickn	ct 4 form a di lation-frequen	stributed p-n cy characteris	junction. To re tic and the init	duce ial
field 1 either	n the semiconduct perpendicular to de (see Fig. 1).	or (i.e., 0.6 or parallel t	mm). The waf the the longitud	er may be mounte inal axis of the	d
tacts 1	and 2, and a fie	ld is created	, causing the	flow of current	I _f
Cord 1/3		-UDC: 621.37	2.8539		

CIA-RDP86-00513R001756920003-8

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

ACC cond does of r	usnongo o	ple. Test by more th	results indi an 3 db in a e operating		UCV DOMA	The	9
teri E _T . atte spee coup diff	stic S _V = The maxim nuator may d shf powe lers. The erential.	d 20-30 µs da/dIf (a, num dynamic y be effect er level re two contro Orig. art.	ec for E _T = attenuation range of th ively used is gulation, sh ol signals as has: 4 fig	2v/cm. The) was 300 e attenuato n automatic f detectors re the error gures and 2	attenuatio 600 per amp r was 20 db systems rec and direct r signal and formulas	200-220 µsee n charac- for optimum The luiring high- ional its	-
ATD P	PRESS: 427	9	2: 04Feb65/	ORIG REF:	005/ OTH	REF: 006	
Card 3	13 100						

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

ACC NR: AP6003566		0
warification of the proce	ng the stabilizer parameters is given. An e edure showed a difference between the theor racteristics of 0.06 db. Orig. art. has: 2 e.	etical and experi-
SUB CODE: 09 / SUBM	M DATE: 25Jan65 / ORIG REF: 003	
		-
		F
Card 2/2 DC	•	

VALITOV, R.A.; DOMANOVA, Ye.A.; TSARENKO, V.T.

Device for stabilizing the power of microwave oscillations in a wide frequency range. Radiotekh. i elektron. 8 no.10:1793-1795 0 '63. (MIRA 16:10)

CLASS FACTOR MARK

4

APPROVED FOR RELEASE: 03/14/2001

S ALL COMPANY OF THE OWNER OWNER OF THE OWNER OWNE

CIA-RDP86-00513R001756920003-8"

- (Failed)

"APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8

ARAR THAT IN A REPORT OF A A STATE OF THE STATE AND A STATE OF THE STAT attendator

"APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8

GEAN

. ...

ACCESSION NR: AP4040755 S/0142/64/007/002/0253/0256 AUTHOR: Valitov, R. A.; Domanova, Ye. A.; Tsarenko, V. T. TITLE: Waveguide broadband power stabilizer SOURCE: IVUZ. Radiotekhnika, v. 7, no. 2, 1964, 253-256 TOPIC TAGS: waveguide element, standing wave ratio, microwave equip- ment, power stabilizer NBSTRACT: A stabilizer is described, capable of maintaining the load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level at 3.5% when the			
 ACCESSION NR: AP4040755 AUTHOR: Valitov, R. A.; Domanovn, Ye. A.; Tsarenko, V. T. TITLE: Waveguide broadband power stabilizer SOURCE: IVUZ. Radiotekhnika, v. 7, no. 2, 1964, 253-256 TOPIC TAGS: waveguide element, standing wave ratio, microwave equipment, power stabilizer ABSTRACT: A stabilizer is described, capable of maintaining the load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load germanium-slab attenuator with a rectifying p-n junction. The input measuring element is a gas-discharge junction. Whenever The input measuring element is a gas-discharge junction. Whenever and the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal the waveguide. The accuracy of the apparatus is estimated at 3.5% when the 			
 ACCESSION NR: AP4040755 AUTHOR: Valitov, R. A.; Domanova, Ye. A.; Tsarenko, V. T. TITLE: Waveguide broadband power stabilizer SOURCE: IVUZ. Radiotekhnika, v. 7, no. 2, 1964, 253-256 TOPIC TAGS: waveguide element, standing wave ratio, microwave equipment, power stabilizer ABSTRACT: A stabilizer is described, capable of maintaining the load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within a rectifying p-n junction. trolled germanium-slab attenuator with a rectifying p-n junction. Whenever The input measuring element is a gas-discharge junction. Whenever the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level, an error signal level. The accuracy of the apparatus is estimated at 3.5% when the 	-		and the second
AUTHOR: Valitov, R. A.; Domanova, Ye. K., Lange and C. S. Market Mark		• • • • • • • • • • • • • • • • • • • •	8/0142/54/007/002/0253/0256
TITLE: Waveguide broadband power stabilities SOURCE: IVUZ. Radiotekhnika, v. 7, no. 2, 1964, 253-256 TOPIC TAGS: waveguide element, standing wave ratio, microwave equipment, power stabilizer ABSTRACT: A stabilizer is described, capable of maintaining the load power constant within several per cent in a frequency range of 20%. The stabilizer is made broad-band by using an electrically controlled germanium-slab attenuator with a rectifying p-n junction. The input measuring element is a gas-discharge junction. Whenever the waveguide power deviates from the minimum level, an error signal the waveguide power of the germanium slab and restores the power level. The accuracy of the apparatus is estimated at 3.5% when the	ACCESSION	I. NR: AP4040755	Ye. A.; Tsarenko, V. T.
SOURCE: IVUZ. Radiotekhnika, v. 7, no. 2, 1964, 250 detection TOPIC TAGS: waveguide element, standing wave ratio, microwave equip- ment, power stabilizer ABSTRACT: A stabilizer is described, capable of maintaining the load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load germanium-slab attenuator with a rectifying p-n junction. trolled germanium-slab attenuator with a rectifying p-n junction. The input measuring element is a gas-discharge junction. Whenever The waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the minimum level. The accuracy of the apparatus is estimated at 3.5% when the	AUTHOR:	Valitov, R. A.; Do	manovu, 100 milizer
TOPIC TAGS: waveguide element, standing wave fatto, microward ment, power stabilizer ABSTRACT: A stabilizer is described, capable of maintaining the load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power constant within several per cent in a frequency range of load power destabilizer is made broad-band by using an electrically con- load germanium-slab attenuator with a rectifying p-n junction. The input measuring element is a gas-discharge junction. Whenever The input measuring element is a gas-discharge junction. Whenever the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the germanium slab and restores the power modifies the admittance of the germanium slab and restores the power level. The accuracy of the apparatus is estimated at 3.5% when the	TITLE:	Waveguide broadban	$\frac{1}{2} power gtabilizer}{2} = \frac{1}{2} power gtabilizer}{2} $
Ment, power stand ABSTRACT: A stabilizer is described, capable of maintaining the load power constant within several per cent in a frequency range of 20%. The stabilizer is made broad-band by using an electrically con- trolled germanium-slab attenuator with a rectifying p-n junction. The input measuring element is a gas-discharge junction. Whenever The input measuring element is a gas-discharge junction. Whenever the waveguide power deviates from the minimum level, an error signal the waveguide power deviates from the germanium slab and restores the power modifies the admittance of the germanium slab and restores the power level. The accuracy of the apparatus is estimated at 3.5% when the	SOURCE:	IVUZ. Radiotekhni	ika, v. ,, hor wave ratio, microwave equip-
The input measured deviates from the minimum the waveguide power deviates from the minimum modifies the admittance of the germanium slab and restores the power modifies the admittance of the germanium slab and restores the power level. The accuracy of the apparatus is estimated at 3.5% when the	ABSTRAC load po 20%. T	T: A stabilizer i wer constant withi he stabilizer is m germanium-slab at	s described, capable of maintaining the n several per cent in a frequency range of hade broad-band by using an electrically con- ttenuator with a rectifying p-n junction. ttenuator with a rectifying p-n junction.
Card 1/3	The 100		-tog from the minimum
	Card 1	/ 55	

"APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8

n ann aige agus a

ACCESSION NR: AP4040755	
input power drops by 10 dB from not less than 2 the stabilizer can be used as an attachment to a the klystron type with mechanical automatic tuning signal is additionally modulated in amplitude at frequency. Orig. art. has: 4 figures and 5 form	sweep generator of ng provided the fm
ASSOCIATION: None	
SUBMITTED: 13Aug63 .	ENCL: 03
SUB CODE: EC NR REF SOV: 004	OTHER: 000
Ca. 2/ 5	

na server a la característica de server de la característica de la característica de la característica de la c

CIA-RDP86-00513R001756920003-8

C

VALITOV, Rafkat Amirkhanovich, prof.; TARASOV, Vladislav Lukich; SHISHKIN, Leonid Adrianovich; TSARENKO, Viktor Timofeyevich; FILONENKO, Sergey Nikonovich; DOMANOVA, Yelena Alekseyevna; BARKANOV, Bikolay Arsent'yevich; SYTYY, Gennadiy Fedorovich; KURILOVA, T.M., red.; TROFIMENKO, A.S., tekhn. red.

STREET, STREET

[Measurement of transistor parameters] Izmereniia parametrov poluprovodnikovykh triodov. Khar'kov, Izd-vo Khar'kovskogo Gos. univ. im. A.M.Gor'kogo, 1960. 193 p. (MIRA 14:8) (Transistors)

3

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

PARTICIPATION CONTRACTOR PARTICIPATICA PARTICA PARTICIPATICA PARTICIPATICA PARTICIPATICA PARTICA PARTICIPATICA PARTICIPATICA PARTICIPATICA PARTICA PARTICIPATICA PARTICIPATICA PARTICIPATICA PARTICA PARTICIPATICA PARTICA PARTICA PARTICA PARTICIPATICA PARTICIPATICA PARTICA PARTICA PARTICA PARTICA PARTICA PA

CIA-RDP86-00513R001756920003-8

ALL FROM THE DEPENDENCE OF THE REPORT OF THE PROPERTY OF THE PROPE

STATES AND A STATES

POLULYAKH, Konstantin Stepanovich: LEYKIN, A.Ya., retsenzent; SKORIK, Ye.T., retsenzent; CHMELINIY, B.I., retsenzent; TSARENKO, V.T., otv. red.; TRET 'YANOVA. A.N., red.; ALEKSANDROVAL G.P., tekhn. red. [Electronic resonance measuring devices] Elektronnye rezonansnye izmeritel'nye pribory. Khar'kov, Izd-vo Khar'kovskogo gos. univ. im.A.M.Gor'kogo, 1961. 138 p. (MIRA 14:12) (Electronic measurements) (Radio measurements)

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

20年中中国語 法許許法律性

-

'n

・ 地理型和作为 サキザギャン酸 使使的出现的 多年定

CIA-RDP86-00513R001756920003-8

VALITOV, H.A.; TSARENKO, V.T.; MIDINGO, YELAL

Experimental study of the frequency characteristics of the second frequency gas-discharge detectors. Izv, vys. which is the second of the 7 no.5:995-998 164.

1. Khar'kovskiy gosudarstvennyy universitet.

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

CIA-RDP86-00513R001756920003-8

DOROKHOV, Aleksandr Petrovich; KOROBKINA, Galina Stepanovna; STARODUBTSEV, Viktor Aleksandrovich; TSARENKO, Vladimir Timofeyevich; VOLKOV, A.A., retsenzent; OGORODNEYCHUK, I.F., retsenzent; RUDENKO, V.S., retsenzent; TETEL'BAUM, Ya.I., retsenzent; FILONENKO, S.N., dots., otv. red.; NESTERENKO, A.S., red.

> [Principles of industrial electronics] Osnovy promyshlennoi elektroniki. [By] A.F.Dorokhov i dr. Khar'kov, Izd-vo Khar'kovskogo univ., 1964. 214 p. (MIRA 17:8)

APPROVED FOR RELEASE: 03/14/2001

的现在分词建立的现在分词

自动理解性

CIA-RDP86-00513R001756920003-8"

"APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8

<u>1. 25830-66HWT(1)/EEC(k)-</u> CC NR: AP6015151	Z/T/EWA(h) LJP(c) SOURCE CODE: UR/0142/66/0	09/002/0241/0243
UTHOR: <u>Tsarenko, V. T.; Maly</u>	shenko, L. Ye.	43 B
RG: none		
ITLE: The use of semiconduct	or diodes in uhf energy modulation	I in the lo-cm range
OURCE: IVUZ. Radiotekhnika,	v. 9, no. 2, 1966, 241-243	
OPIC TAGS: uhf, waveguide el		
odulating uhf energy in the 1	ed with commercial-type D403 semic O-cm range are discussed. In the wring the transmission period, neg	ative characteristics
re observed, i.e., low contro	olled attenuation (not exceeding /	reaching 2. A
nodulator based on a twin T-ju is required, is also investiga	inction waveguide, in which no res ated. It was found that the modul the reflection of energy but with	ation of the uhf its absorption. The
odulator systems considered c	can be used as smooth electrically Orig. art. has: 3 figures.	controlled atenuators []
SUB CODE: 09/ SUBM DATE: 23	3Jan65/ ORIG REF: 004/ OTH REF:	002/ 002/ 000
Cord 1/1-	UDC: 621,396,326	

CIA-RDP86-00513R001756920003-8

TSARENKO, Ya.A. Labor on guard for peace. Mekh.sil'.hosp. 10 no.12:3-4 D '59. (MIRA 13:3)
1. Predsedatel' kolkhosa "Pershe travnya," Popilnyanskogo rayona, Zhitomirskog oblasti. (Popel'nya District--Collective farms)

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

"APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8

TSARENKO, Ye. G., Cand. Agri. Sci. (diss) "Local Variety of Winter Wheat of Western Oblasts of Ukraine as Initial Selection Material," Leningrad, 1961, 25 pp. (All-Union Acad. Agri. Sci. All-Un. Inst. Plant Raising) 150 copies (KL Supp 12-61, 280).

家的情報是没有

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8"

র্বে চের্বা পাহর প্রদা রক্ষাস্থর বাস্ত্র চা

. .

THE CONTRACTOR OF THE STATE OF

SHAVLOVSKIY, G.M.; TSARENKO, Ye.M.; FIKTASH, I.S.

Characteristics of flavine synthesis by the yeast Candida tropicalis var. rhagii. Dokl. AN SSSR 142 no.4:940-943 F '62. (Mun.4 15:2)

1. L'vovskiy gosudarstvennyy universitet im. I. Franko. Predstavleno akademikom V.N.Shaposhnikovym. (RIBOFLAVINE) (CANDIDA TROPICALIS)

19.2

APPROVED FOR RELEASE: 03/14/2001

a karan di Yezhan karan karan karan karan di karan di Karan di Karan karan di Karan karan karan karan karan ka Karan kar Karan kar

CIA-RDP86-00513R001756920003-8"

"APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8

191112-200

A survey of the second sec second sec

AUTHORS:Lantratory is first Lantratory is first<	5(4) AUTHORS:	SOV/76-33-5 20/3) Lantratov, M. F., Tsarenko, Ye. 7.
(US:R) ABSTRACT: The electromotive force (EMF) of the concentration cells $K \mid glass \mid K-Tl$ for solutions with 12.6 to 95 atom? Tl was measured in the temperature range of 475-525°C. The design of the measuring cell (Fig 1) was the one described in of the measuring cell (Fig 1) was the one described in (637'SiO ₂ : 29% B ₂ O ₃ : 3% Al ₂ O ₅ , 4% Ma ₂ O and 5% K ₂ O). The tem- (637'SiO ₂ : 29% B ₂ O ₃ : 3% Al ₂ O ₅ , 4% Ma ₂ O and 5% K ₂ O). The tem- perature was measured with a chromel/aluminum thermocouple via a potentiometer PP while the (EMF) was determined by means of a potentiometer PPTV-1. The thermodynamic properties of the liquid K-Tl solutions were calculated from the (EMF) values the liquid K-Tl solutions were calculated from the (EMF) values the liquid K-Tl solutions were calculated from the (EMF) values the liquid K-Tl solutions were calculated from the (EMF) values obtained for the concentration cells potassium (electrolyte	TITLE:	Solutions. The System rotalistan
K glass K-T1 for both tone range of 475-525°C. The design measured in the temperature range of 475-525°C. The design of the measuring cell (Fig 1) was the one described in references 2. 3. 11. The electrolyte was glass 35-5K (6875 SiO ₂ : 2975 B ₂ O ₃ : 375 Al ₂ O ₅ , 475 Na ₂ O and 575 K ₂ O). The tem- (6875 SiO ₂ : 2975 B ₂ O ₃ : 375 Al ₂ O ₅ , 475 Na ₂ O and 575 K ₂ O). The tem- (6875 SiO ₂ : 2975 B ₂ O ₃ : 375 Al ₂ O ₅ , 475 Na ₂ O and 575 K ₂ O). The tem- (6875 SiO ₂ : 2975 B ₂ O ₃ : 375 Al ₂ O ₅ , 475 Na ₂ O and 575 K ₂ O). The tem- via a potentiometer PP while the (EMF) was determined by means of a potentiometer PPTV-1. The thermodynamic properties of of a potentiometer PPTV-1. The thermodynamic properties of the liquid K-T1 solutions were calculated from the (EMF) values the liquid K-T1 solutions were calculated from the (EMF) values obtained for the concentration cells potassium (electrolyte	PERIODICAL:	
$C_rd 1/3$ (N _K and N _{T1} = atomic fraction of polytich componente) - in-	ABSTRACT :	K glass K-T1 for notations range of 475-525°C. The design measured in the temperature range of 475-525°C. The design of the measuring cell (Fig 1) was the one described in references 2. 3. 11. The electrolyte was glass 35-5K (6375 SiO ₂ · 295° B ₂ O ₃ : 35° Al ₂ O ₃ , 45° Na ₂ O and 55° K ₂ O). The tem- (6375 SiO ₂ · 295° B ₂ O ₃ : 35° Al ₂ O ₃ , 45° Na ₂ O and 55° K ₂ O). The tem- perature was measured with a chromel/aluminum thermocouple perature was measured with a chromel/aluminum thermocouple via a potentiometer PP while the (EMF) was determined by means of a potentiometer PPTV-1. The thermodynamic properties of the liquid K-T1 solutions were calculated from the (EMF)-values obtained for the concentration cells potassium (electrolyte obtained for the concentration cells potassium (lectrolyte
	C-rd 1/3	$(N_{K} \text{ and } N_{T1} = \text{ atomic fraction of solution componentary})$

and an end of the second second states and the second second second second second second second second second s

CIA-RDP86-00513R001756920003-8

Investigation of the Thermodynamic Properties of Liquid Metallic Solutions The System Potassium-Thallium

> properties calculated were activity, activity coefficient, partial molar free energies and excessive free energies for K and T1 at 525°C, as well as the integral values of the molar free energies ΔF of the excessive free energies ΔF of the mixture entropy ΔS of the excessive mixture entropy ΔS^* , and the mixture heat ΔH (Table 2). The activity of K exhibits a complex dependence on the composition. Alloys with O show a positive deviation from Raoult's law while solutions 25 A175 TL with less than 25 At% TI deviate in the negative direction. These deviations are increased by lower temperatures. A similar ly complicated matter are the isotherms of the activity co efficient of K. This behavior of liquid K Tl solutions is con sidered to be due to a strong reaction taking place between K and TI whereby structural groups of metallic compounds form in the solution. The integral curves of A.F. ΔF^* , ΔS^* and ΔH exhibit extremes at N_K = 0.4 Δ H = 3550 cal, Δ F = 2680 cal. $\Delta \mathbf{F}^* = 1510$ cal and $\Delta \mathbf{S}^* = 2.44$ cal/degree. Since the values ΔH are for all compositions greater than the respective values for ΔF^* , K-Tl solutions may not be regarded as "regular"

Card 2/3

(A) In the set of t

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

CIA-RDP86-00513R001756920003-8

the second s

STATE OF THE PARTY OF THE PARTY

	ones (Ref 13). The shift of the extreme value away from the one which would correspond to the most stable K-Tl compound is explained by the fact that there are in the liquid alleys compounds richer in Tl side by side with the K-Tl compound. There are 4 figures, 2 tables, and 13 references. 5 of which are Soviet.
ASSOCIATION:	Leningradskiy elektrotekhnicheskiy institut im. V. I. Ul'yanov; (Lening) (Leningrad Electrotechnical Institute imeni V. I. Ul'yanov (Lenin))
SUBMITTED:	January 31, 1958
Card 3/3	

CIA-RDP86-00513R001756920003-8

5 2610

S/080/60/033/007/007/020 A003/A001

THE STATEMENT DESCRIPTION OF THE PARTY OF TH

AUTHORS: Lantratov, M. F., Tsarenko, Ye. V.

TITLE: An Investigation of <u>Thermodynamic Properties</u> of <u>Liquid Metal</u> Solutions in the <u>Potassium-Mercury</u> System

PERIODICAL: Zhurnal prikladnoy khimii, 1960, Vol. 33, No. 7, pp. 1539-1546

TEXT: The thermodynamic properties of liquid alloys of potassium with mercury were investigated within the temperature range of $250-350^{\circ}$ C and within the concentrations $N_{\rm K} = 0.04992 - 0.898$ by the emf method. The thermodynamic properties were calculated from the emf values (E) and the temperature coefficients of emf(($\frac{1}{CT}$) of the concentration circuits: K | solid electrolyte containing K + | K ($N_{\rm K}$) - Hg ($N_{\rm Hg}$), where $N_{\rm K}$ and $N_{\rm Hg}$ are the atomic percentage of potassium and mercury, respectively. Equations were presented for the calculation of the partial values of the isobaric-isothermal potential and the excess potential of potassium, for the partial molar entropy of mixing and the excess entropy of the mixture, for the partial molar heat of the mixture, etc. The emf was measured by a $\Pi\PiTB-1$ (PPTV-1) potentiometer. It was shown that the activity of potassium depends on the composition of the alloy. In solutions

Card 1/2

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

CIA-RDP86-00513R001756920003-8

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

LANTRATOV, M.F.; TSARENKO, Ye.V.

TANA NGRATINI AN'

Thermodynamic properties of liquid metallic solutions of the systems Na - Ga and K - Ga. Zhur.prikl.khim. 34 no.ll:2435-2441 N '61. (MIRA 15:1) 1. Leningradskiy elektrotekhnicheskiy institut imeni V.I.Ul'yanova

(Lenina).

(Gallium alloys)

APPROVED FOR RELEASE: 03/14/2001

I HERE THE PARTY OF A THE ATTACK THE AT

CIA-RDP86-00513R001756920003-8"

and the second se	
LANTRATOV, M. F., TSAR	NKO. Ye.Y.
Thermodynamic Zn - Bi and K My 160.	properties of the liquid metallic solutions of - Cd systems. Zhur.prikl.khim. 33 no.5:1116-1128 (MIRA 13:7)
1. Leningrads	ciy elektrotekhnicheskiy institut im. V.I. Ul'ya-
	smuth) (Potassium) (Cadmium)
alternation of the state of the	

CIA-RDP86-00513R001756920003-8

LANTRATOV, M.F.; TSARENKO, YO.V.

Thermodynamic properties of liquid metallic solutions in the system potassium - mercury. Zhur.prikl.khim. 33 no.7: (MIRA 13:7) 1539-1546 J1 60. (Potassium-mercury alloys)

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8"

"APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8

"APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8

的复数 化法定管理 网络古拉拉拉拉拉拉拉拉拉拉拉拉拉拉

CIA-RDP86-00513R001756920003-8 THE CONTRACT THE REPORT OF THE PARTY OF THE

s/120/62/000/005/002/036 E032/E314

Kazanskiy, G.S., Mikhaylov, A.I., Myznikov, K.P. **AUTHORS:**

TITLE:

and Tsarenkov, A.P. Methods of varying the time of interaction of the

beam with the target in the 10.GeV proton synchrotron Pribory i tekhnika eksperimenta, no. 5, 1962,

PERIODICAL: 19 - 24

Experiments designed for the proton synchrotron at the Joint Institute for Nuclear Studies require the availability TEXT: of secondary-particle pulses of different lengths. Secondary particles are produced by bombarding an internal target and the time of interaction of the beam with the target determines the length of the secondary-particle pulse. The authors give in this paper a brief summary of the various methods used to alter the beam-target time of interaction. The methods for increasing \cdot the time of interaction are as follows: 1) resonance build-up of oscillations in which the resonance is excited artificially by modulating the accelerating voltage in such a way that the particles leave the phase-stability region. Particles leaving Card 1/3

TERMINEN PERMINANT CONTRACTOR AND DESCRIPTION OF THE PERMINANT
والورجا المتحاج والمحاج والمحاج والمحاج

S/120/62/000/005/002/036 E032/E314

Methods of varying

the acceleration process are deflected by the variable magnetic field onto the target and the time of interaction with the target is adjusted by adjusting the modulation amplitude. In this way, the length of the secondary-particle pulses can be increased to 250 ms. 2) Slow reduction in the amplitude of the accelerating voltage. This method is also based on the removal of the accelerated particles from synchronism by reducing the region of phase stability. The method has been discussed theoretically by V.I. Kotov and L.L. Sabsovich (PTE, 1957, no. 6, 19). However, an empirical approach was found to be more suitable. 3) Slow variation in the frequency of the accelerating voltage. A change in this frequency produces a change in the radius of the equilibrium orbit. This effect has been considered theoretically by M.S. Rabinovich (Tr. FIAN SSSR, 1958, 10, 23). The rate at which the beam is displaced onto the target is proportional to Linear variation in the the rate of change in the frequency. frequency was found to be inadequate and a special feedback system which controls the relation between the frequency and the magnetic field was developed, using the radial beamposition indicator reported by F.A. Vodop'yenov et al Card 2/3

·建立的新闻和"自己的"。在1997年1月1日,在1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

CIA-RDP86-00513R001756920003-8

Methods of varying

S/120/62/000/005/002/036 E032/E314

(Proceedings of the International Conference on High Energy Accelerators and Instrumentation, CERN, Geneva, 1959). The methods used to reduce the beam-target interaction time were as follows: a) reduction in the radial dimensions of the beam during the acceleration process. In this method the width of the beam was reduced by slowly varying the frequency of the accelerating voltage; b) instantaneous change in the phase of the accelerating voltage. Here, the time of interaction was reduced by increasing the rate of displacement of instantaneous equilibrium orbits; c) rapid variation in the frequency of the accelerating voltage. This method has the considerable advantage that it gives rise to very little change in the output intensity (low particle losses). With a frequency variation of 1.8 Mc/s/s, the time of interaction can be reduced to 2 μ s. This corresponds to the interception of 70% of the original beam by the target. There are 8 figures. ASSOCIATION:

SUBMITTED: Card 3/3

CHERNEL AN INCLUDE THE PARTY OF A DECK OF A DECK

自己的问题,我们还有这些关键。 第二十一章

Ob"yedinennyy institut yadernykh issledovaniy (Joint Institute for Nuclear Studies) December 9, 1961

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

era Bhf ar for the sourt of the second second

CIA-RDP86-00513R001756920003-8

45137 s/089/63/014/002/003/019 B102/B186 Kazanskiy, G. S., Kuznetsov, A. B., Mikhaylov, A. I., 24.6730 Rubin, N. B., TBBrenkov, A. P. Investigation of the beam formation of accelerated particles AUTHORS : in the proton-synchrotron by means of induction electrodes Atomnaya energiya, v. 14, no. 2, 1963, 153 - 158 TITLE: TEXT: The beam formation process in the first stage of acceleration at the proton-synchrotron of the Ob"yedinennyy institut yadernykh issledovaniy (Joint Institute of Nuclear Research) in Dubna was studied with the help of electrostatic signal electrodes (Vodop'yanov, Kuzmin, et al., Proc. Intern. Conf. High-Energy Accelerators and Instrumentation, CERN, Geneva, 1959, p. 470, 477; Kazanskiy et al., Preprint OIYaI, B-50-819, Dubna, 1961). These electrodes are broad copper plates arranged to form two systems on These electrodes are broad copper places allanged of form the systems of either side of the beam. The plates of one system are arranged symmetri-cally to the mid-plane of the magnet (vertical electrodes), and those of the other percentional therets (redial electrodes). The signal V(m) inthe other perpendicular thereto (radial electrodes). The signal $V(\phi)$ induced in the vertical electrodes is proportional to the change in the Cara 1/4

APPROVED FOR RELEASE: 03/14/2001

s/089/63/014/002/003/019

B102/B186

Investigation of the beam...

azimuthal charge density in the flying bunch: $V(\varphi) \simeq \frac{Q(\varphi)}{C} \frac{1}{\pi} 2\pi$, where 1 is the electric length of the electrodes, C the capacitance of the plates relative to the earth, and π the perimeter of the equilibrium orbit. $V(\gamma)$ is led to an integrator which yields $V_{mean} = 14/\pi C$, Q being the charge of the accelerated bunch. For the proton-synchrotron of the OlYal the sensitivity of the vertical electrodes, $\alpha = C/el$, was 1.10¹² protons/v; π = 208 m, 1 = 0.5 m, C = 400 µµcf. If the output voltage V (cf. Fig. 1) is measured and the amplification factor K is known, the number of protons in the bunch, N = V out α/K , is determined. The signal U(φ) of the radial electrodes records the horizontal deviation of the beam from the equilibrium radius; the radial sensitivity is $2\dot{v}/cm$. The electrode installation has a pass band of 0.1 - 3 Mc which allows a distortion-free recording of V(p) and $U(\phi)$ and their amplitude modulation. A consideration of the motion of the particles along the phase trajectories taking account of the free oscillations shows that the amplitude structure of the beam must be observed during 100 - 150 μ sec after the switching-on of the accelerating

voltage; the beam formation takes place during the first 1 - 1.5 msec. The

Card 2/4

GHAMMAN

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

CIA-RDP86-00513R001756920003-8

Investigation of the beam ...

S/089/63/014/002/003/019 B102/B186

radial phase oscillations of the beam are accompanied by the oscillations of the azimuthal density with the frequencies Ω and 2Ω , where Ω is the angular frequency of the phase oscillations. The amplitudes of these oscillations depend on $\Delta M/b$, ΔM being the initial energy spread and b the radial separatrix half-dimension. If $\Delta M/b = 1$, the oscillation with the frequency 2Ω vanishes; if $\Delta M/b \ll 1$, the damping of these oscillations takes more rapid is the damping. The same is true for the oscillations of the charge center. To the signal modulation with 40 - 50% depth observed at the synchrotron there corresponds a total initial energy spread of $\sim 1.5\%$.

SUBMITTED: April 4, 1962

Card 3/4

ſ

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

CIA-RDP86-00513R001756920003-8

SAME STEADED SEAT IN BOARD

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8

· · · · · · · · · · · · · · · · · · ·		
of the frequency of the acceleration out.	and the terms of the equipation making the second	
	The second se	
ADC & 84 T 1 174 117797		
1 Provension	·· .	
	• •	
Cord 2/2 .		
-		

APPROVED FOR RELEASE: 03/14/2001

KAZANSKIY, G.S.; TSARENKOV, A.P.

Control of a beam of accelerated particles during irradiation of thin targets in a synchrotron of the Nuclear Radiation Testing Plant. Zhur. tekh. fiz. 35 no.33414-415 Mr '65.

.

(MIRA 18;6)

APPROVED FOR RELEASE: 03/14/2001

4.

CIA-RDP86-00513R001756920003-8"

PETERSO

CHARLES CONTRACTOR OF CONTRACTOR

KAZANSKIY, G.S.; MIKHAYLOV, A.I.; TSARENKOV, A.P.

Stabilizing the intensity of particle beams in an OIIAI proton-synchrotron. Zhur. tekh. fiz. 35 no.4:623-629 Ap '65. (MIRA 18:5)

APPROVED FOR RELEASE: 03/14/2001

an malanting in the state of th

上。建築建設建設的工作的分析的原因中心的工作的

CIA-RDP86-00513R001756920003-8"

AUTHORS:	Nasledov, D. N., Patrakova, A. Ya., 57-28-4-16/39 Tsarenkov, B. V.
TITLE:	Etching Media for Gallium Arsenide (Travitel' dlya arsenida galliya)
PERIODICAL:	Zhurnal Tekhnicheskoy Fiziki, 1958, Vol. 28, Nr 4, pp. 779-781 (USSR)
ABSTRACT :	The purpose of etching is here formulated in the following manner: A layer deformed during mechanical treatment shall be removed in a manner that the intact monocrystal appears and that the micropollution at the surface of the constructed device is also removed. The experiments showed that the etch- ing reagent with the following composition is useful for this purpose: 50 mL 5% NaOH + 10 ml 30% H2O2. This chemical etch- ing reagent is used by the authors in the production of electron-hole transitions in gallium-arsenide. Here poly- crystalline samples as well as monocrystals of electron-gallium -arsenide were investigated. On the basis of these experiments the following is stated: 1.) Etching during 5 minutes entirely removes the deformed surface-layer of the monocrystal and does not produce any new formations at its surface. 2.) Etching

Etching Media	for Gallium Arsenido		57-28-4-16/39	
	lets distinctly appe polycrystalline samp crystals. 3.) Etchin	ar the boundaries be les and the etch pat g guarantees the pro educes the leakage c he electronograms we	tween the crystals in tern of the individual duction of reliable urrent of the electron- re obtained by V.A.	
ASSOCIATION:	Leningradskiy fizikc (Leningrad Physical-			
SUBMITTED :	December 12, 1957			
Card 2/2				

	17.	· · ·	323	000 200 200	666		
(4) PHALK I FEAN ANDALEARDAN DAYJEA Edentya nauk Ukralnakoy DDH. Instanc firthi Doalaktridheaky LDH. Instanc firthi Doalaktridheakye i uptish shys yatentya y tredy pervosa versoyustas. Jevententya po ideoredahkakh i Stitheakin yatentyan Youluprovahikakh, s. Kirev, 20-26 soodustasi fransationa Df Day Mira Dohfernes on Photos Asten- soodustasi fransationa Df Day Mira Dohfernes on Photos Asten- ation Dottona Fransationa Df Day Mira Dohfernes on Photos Asten- ation Dottona Fransationa Df Day Mira Dohfernes on Photos Asten- ation Dottona Fransationa Df Day Mira Dohfernes on Photos Asten- ationa Data Astenda Day Mira Dohfernes on Photos Astenda Data Astenda Day Mira Dohfernes on Photos Astenda Data As	•,000 oppies minimus in unantornation to ray vv. 1959. 403 p. Littomal Sponsoring Agency: Akidumiya nauk SGOR, Frezidium. Kanisiya po poluprovodnikam. Gr Publiahing House: I. V. Kisinni Foch. Ed.: A. Matworhuki of Shistone. Set This book is introduct for selontiata in the field of seal- selence. The solid store for selontiata in the field of seal- conductor physics, solid store for entertain to and seudents in severe. The solid store of higher treanded seudents in thereities and institutes of higher treanded to the field of seal- severeties and institutes of higher treanded transmitted of seal- conductor.	Which the collection contains roports and information builetine (the later are indicated by astructurant are the Piret All- build Conference on Optical with Proceedenter Physica Seat- exact schoology at a considered; photoschouterty photos physics not schoology at considered; photoschouterty photos physics botts forces, optical propertie, photoschouterty photos at the photostators, the actions of hird and corpused at realistics the properties of thin fills and corpused at the attention the properties of thin fills and corpused by the attention the properties of thin fills and corpused by the attention the properties. Due to the attention by E. T. Sternam, References and discussion follow each article.		k	ec 171		
unv,sled luprovodni tovlektri tomena in Tomena in Tomena in	•,000 dogle printed in definitent.) Klyev, 1959. 403 [ditional Spranching Aronovi Mandernduntaria) Klyev, 1959. 403 [ditional Spranching Aronovi Manderly a nauk SGGR, Frezidium. Constative po polyprovodnikam of Publiahing Huuses I. V. Mainni Tech. Eli A. Matewyth of Solmes. Frezidium. SGR, Leader Law, te. Lashkarev, Academician, Ukrainian SGR, Leader L'OMER. This book is intended for solmatician Ukrainian SGR, Leader L'OMER. This book is intended for monthly and semiconductor watewates and institute of fugher technical spulation of semicandalizing in the Physics and technical application of semicandalizing in the Physics and Solmatice of Augustantian (Manders Augustantes).	ation b Pirst owens 1 ctor ph photoe r radia antic and articie	Photoelectric and Optical Thenomena (Cont.) 300/3140 Komberin, Y. Ye. Peculiarities of the Spectral Distribution of Contents: Enotoelectric Mifect in Semiconductors (Theses) Additive Mith. A. I. and A. L. Missiev. The Problem of the District Mothelman of Spectral Semistivity Maxima of Mastifier Photoelectric Cells	Derrytk, P. G. A Phenomenon Accompanying the Photoelectro- motive Porce Erfect in Cajdo suburconcoron Fachorizarinc CELLS AND Fachorizistors suburconcoron Fachorizarincov, A Gallium Arsenide Pageonetriv Cell	Silion Photoelectrie		
Lk1 Lk1 v Dolu po Toto ference	<pre>//I// ////////////////////////////////</pre>	L Inform at the at the at the at the at the catter the the at the at the	Pactaelectric and Optical Thencaena (Cont.) 309/ Kotherin, Y. Ye. Peculiarities of the Spectral Distrib of Condeniar Fhotoelectric after in Saatconductor (T Magnitum J. I., and J. L. Replay. The Problem Contacton Machiniam of Spectral Sensitivity Marias Magnitier Photoelectric Cella	HOTOHI LIUTUL	11100		
Peak AddatcAtCM EM. Instruct Clotk M. MALYO YAVING K. Avainenalyo y V. Paluprovanikaka, Victo an Optical P Sie Mrat Conteria	ya nauk ya nauk i Tech. ietan, tetan, ibut te nteal e	rr cy cy cy releated a and a a a a a a a	Photoelectric and Optical Thenomena (Cont.) <u>Cotherin</u> , Y. Te. Feculiarities of the Spec <u>of Contents</u> Thotoelectric Effect in Semico <u>Leftrestint</u> , I., and A. <u>L. Nusin</u> y. T <u>Rectric Thotoelectric</u> Cells metifier Photoelectric Cells	nying i Dia 200			
f Adias Instr Instra deverator outuprov fic and	Machdum Akhdum Kiaina Acadom Acadom Acadom Acadom Acadom Acadom Acadom	ns ropo astructure problem : photi : hard and com ind com ind com	nomena es of t fect in <u>frac</u> ectral	Accompany This can	Chelnokov.		•
N. L. P.C.W. DY. LOR. J. LOR. J. J. L. L. L. J. L.	cnoy: cnoy: odnikam hkarev, hkarev, tuten c vaice a	contal ted by ted by ted of proper films o K. B. *	cal Pha Liariti tric Mr nd A o Cellis		and V. To.		
24(4) [HAJA RALE [HAJA] Meddenlya nauk Ukralnakoy Poboalaktridneskiye 1 upti trudy pervogo vezenyuzi seytürya 1957 k (Potoo edonteori Transaction	 ,000 oppies printed. In Junit Additional Sponsoring Agenoy: A Kalisiya po poluprovodnikám, Kalisiya po poluprovodnikám, Kalisiya po poluprovodnikám, Besp. Bu. V. Ve. Lashknrev, of Stience. Ve. Lashknrev, of Stience. This book is intended orductor Physics, solid state universities and instituten of universities in the physics an conductor. 	lection indication and a sociate and a sociate and a sociate and the sociate a	nd Opt1 . Pecu otoelec is I = echinis	BATTYLK, F. G. A Prenomenon Adcompany motive PONCE Effect in Ca ₃ Sb [*] isoucconnucton Probolizativic CELLA isoucconnucton Probolizativic CELLA Profession D. M., and B <u>. Y. Tahtrukev</u> .	X., and	•	
24(4) [1] Akedeniya nauk Ukrain Mebelakriya 1 Errigy pervogo vaco 1 CPICIARAKIA Pari Berubiya 1957 K (1997) Berubiya 1957 K (1993)	opies p Sponso Sponso Sponso Spis	The solution of the solution o	ctric a , V. Ye Alaer Ph akiy, A akion M	P. G. Srce kr ICOMDUC . D. M.	o h. T . 16		
24(4) Meadomiya Potoelektr Potoelektr Ertefy p L cptic morther Potochter	4,000 a Mddittonal Kondisti Barp, R of Joise of Joise of Joise anducto devidual	Cide the lat tion for tion for the lat tion for the lat tion of the tion of th	botosle ozhevin r Conde be Pura	LITTLE	Tachterloh, Cells Card 13/16		
ñ à 2		S S S S S S S S S S S S S S S S S S S	er mlo ⊲tanat		ս կա		
	C. C	······································					Ĺ

24.7700 24(7) AUTHORS: <u>Nasledov, D. N., Tsarenkov, B. V.</u> TITLE: The Spectral Characteristics of <u>GaAs</u> <u>Photoelements</u> / PERIODICAL: Fizika tverdogo tela, 1959, Vol 1, Nr 9, pp 1467 - 1470 (As the spectra of these photoelements had not been hitherto studied sufficiently nor systematically, the authors of the present paper investigated the dependence of the spectral characteristics of GaAs photoelements on the Cd- and Zn diffusion temperature in the formation of the p-n junction and on the etching. Polycrystalline n-Gake plates (electron concentration: <10 ¹⁷ cm ⁻³ , mobility <2000 cm ² /v.sec) served as initial material. p-n junction was brought about by the diffusion of the acceptor impurities (Cd or Zn) from the gas phase into the pre-evacuated and melted ampul. The ciffusion side of the plate was ground and the depth of the p-region was controlled with a probe. The spectral characteristics were taken with illumination of the p-surface in perpendi- cular to the p-n junction plane and the darkened electrode. W		57402
AUTHORS: <u>Nasledov, D. N., Isultimoty</u> TITLE: The Spectral Characteristics of <u>GaAs</u> Photoelements / PERIODICAL: Fizika tverdogo tela, 1959, Vol 1, Nr 9, pp 1467 - 1470 (do ABSTRACT: As the spectra of these photoelements had not been hitherto studied sufficiently nor systematically, the authors of the present paper investigated the dependence of the spectral characteristics of GaAs photoelements on the Cd- and Zn diffusion temperature in the formation of the p-n junction and on the etching Polycrystalline n-GaAs plates (electron concentration: <10 ¹⁷ cm ⁻³ , mobility 2000 cm ² /v.sec) served as initial material. p-n junction was brought about by the diffusion of the acceptor impurities (Cd or Zn) from the gas phase into the pre-evacuated and melted ampul. The ciffusion conditions are illustrated in a table. After diffusion, one side of the plate was ground and the depth of the p-region was controlled with a probe. The spectral characteristics were taken with illumination of the p-surface in perpendi- cular to the pro- junction plane and the darkened electrode. W		50V/181-1-9-26/31
PERIODICAL: Fizika twerdogo tela, 1959, Vol 1, Nr 9, pp 1467 - 1470 (ABSTRACT: As the spectra of these photoelements had not been hitherto studied sufficiently nor systematically, the authors of the present paper investigated the dependence of the spectral characteristics of GAAs photoelements on the Cd- and Zn diffusion temperature in the formation of the p-n junction and on the etching. Polycrystalline n-GaAs plates (electron concentration: < 10 ¹⁷ cm ⁻³ , mobility < 2000 cm ² /v.sec) served as initial material. p-n junction was brought about by the diffusion of the acceptor impurities (Cd or Zn) from the gas phase into the pre-evacuated and melted ampul. The ciffusion, one conditions are illustrated in a table. After diffusion, one side of the plate was ground and the depth of the p-region was controlled with a probe. The spectral characteristics were taken with illumination of the p-surface in perpendi- cular to the p-n junction plane and the darkened electrode. W	24(7) Authors :	Nasledov, D. N., Tsarenkov, B. V.
ABSTRACT: As the spectra of these photoelements had not been hitherto studied sufficiently nor systematically, the authors of the present paper investigated the dependence of the spectral characteristics of GAAs photoelements on the Cd- and Zn diffusion temperature in the formation of the p-n junction and on the etching. Polycrystalline n-GaAs plates (electron concentration: $< 10^{17}$ cm ⁻³ , mobility $> 2000 \text{ cm}^2/\text{v.sec}$) served as initial material. p-n junction was brought about by the diffusion of the acceptor impurities (Cd or Zn) from the gas phase into the pre-evacuated and melted ampul. The ciffusion conditions are illustrated in a table. After diffusion, one side of the plate was ground and the depth of the p-region was controlled with a probe. The spectral characteristics were taken with illumination of the p-surface in perpendi- evaler to the p-n junction plane and the darkened electrode. W	TITLE :	The Spectral Characteristics of GaAs Photoelements
studied sufficiently nor systematically, of the spectral present paper investigated the dependence of the spectral characteristics of GaAs photoelements on the Cd- and Zn diffusion temperature in the formation of the p-n junction and on the etching. Polycrystalline n-GaAs plates (electron concentration: <10 ¹⁷ cm ⁻³ , mobility <2000 cm ² /v.sec) served as initial material. p-n junction was brought about by the diffusion of the acceptor impurities (Cd or Zn) from the gas phase into the pre-evacuated and melted ampul. The ciffusion conditions are illustrated in a table. After diffusion, one side of the plate was ground and the depth of the p-region was controlled with a probe. The spectral characteristics were taken with illumination of the p-surface in perpendi- were taken with illumination plane and the darkened electrode. W	PERIODICAL:	Fizika tverdogo tela, 1959, Vol 1, Nr 9, pp 1467 - 1470 (db. 1
		As the spectra of these photoelements had not been hitherto studied sufficiently nor systematically, the authors of the present paper investigated the dependence of the spectral characteristics of GaAs photoelements on the Cd- and Zn diffusion temperature in the formation of the p-n junction and on the etching. Polycrystalline n-GaAs plates (electron concentration: $<10^{17}$ cm ⁻³ , mobility <2000 cm ² /v.sec) served as initial material, p-n junction was brought about by the diffusion of the acceptor impurities (Cd or Zn) from the gas phase into the pre-evacuated and melted ampul. The ciffusion conditions are illustrated in a table. After diffusion, one side of the plate was ground and the depth of the p-region was controlled with a probe. The spectral characteristics

ųľ. 14.2.04

277-11-11建筑的高速的新生产的多少。

CIA-RDP86-00513R001756920003-8

.....

The Spectral Characteristics of GaAs Photoelements 67402 507/181-1-9-26/31 Measurements were made before etching and after 15-sec etching at room temperature with 5% NaOH + 30% H₂O₂ (5 : 1). The results are shown in two diagrams. The curves show the spectral distribution of the short-circuit current referred to one equal amount of incident photons. The wavelength limit $\lambda_{1/2}$ was determined at 0.91 μ , and the width of the forbidden zone was calculated to be \approx 1.35 ev. The following was established; the rise in the diffusion temperature of Cd in the range $760 - 960^{\circ}$ C and of Zn in the range $520 - 620^{\circ}$ C increases the steep slope of the spectral characteristic in the shortwave range and shifts the maximum into the longwave range; etching decreases the steep slope and shifts the maximum into the shortwave range. Some further details are discussed in this connection. It is finally mentioned that the graduate student S. P. Bardeyeva took part in the investigation. There are 2 figures, 1 table, and 9 references, 3 of ASSOCIATION: Leningradskiy Fiziko-tekhnicheskiy institut AN SSSR (Leningrad Institute of Physics and Technology of the AS USSR) SUBMITTED: Card 2/2L

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8

and the second state of th

CONTRACTOR NEEDS IN CONTRACTOR

S/058/62/000/004/057/160 A058/A101

AUTHORS: Nasledov, D. N., Tsarenkov, B. V.

TITLE: Gallium arsenide phototubes

PERIODICAL: Referativnyy zhurnal, Fizika. no. 4, 1962, 22, abstract 4G184 (V sb. "Fotoelektr. i optich. yavleniya v poluprovodnikakh". Kiev, AN USSR, 1959, 335-338)

TEXT: The authors give the preliminary results of working out a method for producing p-n junctions in gallium arsenide to prepare phototubes on their basis.

[Abstracter's note: Complete translation]

Card 1/1 ·

APPROVED FOR RELEASE: 03/14/2001

2

Ì

N......

9,4160	82909 S/120/60/000/02/040/052 E192/E482
AUTHOR:	Tsarenkov, B.V.
TITLE :	A Circuit for the Oscillographic Display of the Current-Voltage Characteristics of Photodiodes
PERIODICAL:	Pribory i tekhnika eksperimenta, 1960, Nr 2, pp 144-145 (USSR)
ABSTRACT :	A detailed circuit diagram of the device is shown in Fig 1. A sinusoidal voltage having the frequency of 50 c/s is applied to the circuit from an autotransformer through a separator transformer TP. The voltage from the photodiode and the current from the resistance R ₀ which is proportional to the current flowing through the photodiode are applied to the horizontal and vertical deflection plates of the oscillograph, respectively. An oscillogram of the voltage-current characteristic with two coordinate axes is obtained by means of a polarized relay which is operated at the frequency of 200 to 300 c/s by means of an audio generator. When the moving spring 1 (see Fig 1) is in contact with the fixed point 2, the horizontal deflection system
Card 1/3	is shorted and a portion of the vertical coordinate

CIA-RDP86-00513R001756920003-8

in a standard the standard standard standard states and states and states and states and states and states and

82909 S/120/60/000/02/040/052 E192/E482

A Circuit for the Oscillographic Display of the Current-Voltage Characteristics of Photodiodes

> is traced. During the transition of the spring 1 from one state to the other, a portion of the voltagecurrent characteristic is traced. When the spring 1 is in contact with the fixed point 3, the vertical deflection system is shorted and the horizontal axis is traced. The switching frequency of the relay is higher than the supply frequency for the circuit. It is therefore possible to obtain a continuous display of the characteristic. The resistance R_1 (see Fig 1) limits the current through the photodiode during its conduction in the forward direction, The current and voltage axes are calibrated by sinusoidal voltage by using a valve voltmeter V which is connected to the horizontal or the vertical deflection systems of the oscillograph by means of the key K_{4} . The results obtained with the circuit are illustrated in Fig 2, The author expresses his gratitude to D.N.Nasledov for his interest in this work and to N.S.Yakovchuk for

Card 2/3

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

STA RECEIPT

的形式 编制的第三人

WIRE AND AND ADDRESS

CIA-RDP86-00513R001756920003-8

APPROVED FOR RELEASE: 03/14/2001

<u>ense</u>twi

CIA-RDP86-00513R001756920003-8

86431 5/181/60/002/011/015/042 9,4300 (3203,:043,1143) B006/B056 Smirnova, N. N., and Tsarenkolin Bartin Nasledov, D. N., AUTHORS: The Temperature Dependence of the Main Parameters of GaAs TITLE: Point-contact Diodes Fizika tverdogo tela, 1960, Vol. 2, No. 11, pp. 2762-2769 PERIODICAL: TEXT: The authors produced point-contact diodes from n-type GaAs single crystals (conductivity at room temperature: 15 - 30 ohm-1.cm-1; concentration: $n_n = 5 \cdot 10^{16} - 10^{17} \text{ cm}^{-3}$; mobility: $\mu_n \simeq 2000 \text{ cm}^2/\text{v} \cdot \text{sec}$), and first give a brief description of the production method. The volt-ampere characteristics of the GaAs diodes were measured within the range of $-196 - +300^{\circ}C$ (Figs. 1, 2), and the main parameters are given in Table 2. The oscilloscopic characteristics were recorded by a "characteriograph" described in Ref. 6. The direct branches of the volt-ampere characteristics are described by the empirical formula $I_{dir} = I_{o} \left\{ \exp \left[\frac{q(v_{dir}^{-1} dir^{r} s)}{\beta kT} \right] - \frac{1}{2} \right\}.$ The factor $I_{o} \sim \exp(-\Delta E/kT)$ ($\Delta E \simeq 0.7 \text{ ev}$); β is a dimensionless factor which decreases with rising Card 1/4

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8

86431 s/181/60/002/011/015/042 The Temperature Dependence of the Main B006/B056 Parameters of GaAs Point-contact Diodes temperature (cf. Table 2); r_g is the internal series resistance of the $\mathtt{U}_{ ext{dir}}$ is the direct voltage drop on the diode. The experimental diode, and results are shown in five diagrams. The direct current in the diode depends on recombination processes occurring in the volume-charge region, the base layer, and on the surface, and also on the ohmic resistance of the base layer. $I_{dir} = I_0 \exp(qU_c/\beta kT)$ and $I_{dir} \sim \exp[(\Delta E - qU_0/\beta)/kT]$, where ΔE is the activation energy. An analysis of the statistical volt-ampere characteristics in the temperature range concerned showed that: 1) the temperature dependence of the differential conductivity at U_{o} , of the factor I in the empirical formula for the direct current and the reverse current at -1v is exponential in the range of 373-573 K; the exponents coincide; 2) β decreases with rising temperature and is greater than 2 at -196°C; 3) the section voltage decreases with increasing temperature; the temperature coefficient coincides with the temperature coefficient of the contact potential difference calculated for a symmetrical p-n junction, whereas the absolute value of U_{sec} is smaller than the calculated value of U_{calc} ; 4) at a constant voltage, the direct current rises within the range of Card 2/4เมื่อ เพื่อสาราร์ มากระโรร เพราะราชาน สาราร์ เป็นสาราร์ เป็นเป็น

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

	SEMPLE	ersen stene	443-694883	999-996 	in a start and				a sansa san shi kura. A
				1994-277 422 283 54	NICAN LEADER				
							8	36431	
•	•								
•	Para	ameters	of GaA	s Poir	nt-cont	f the Ma act Diod	63	S/181/60/002/011/015/042 B006/B056	
	inc	reases,	after	which	it dr	nocisti	vity of t	range of 0.7 - 1 v it first c to the temperature depend- he diode. There are 5 figures, nd 1 Australian.	X
	•	OCIATION	: Fi (I	, ,, _	tekhni ute of	abaarin	inctitut	AN SSSR Leningrad nology of the AS USSR,	
	SUB	MITTED:	Ju	ne 9,	1960		•		
	ſ.	• • •	•	Таблиц	a 2		, 	Legend to Table 2: 1) r ex-	
	τ.	1	A	79.	Uorc.	<i>I</i> _{up.} (+1 =),	Iofp. (-1 =).	pressed in ohms; 2) U _{sec} in v, I _{dir} at +1v in a;	
	•C	•		он 1	2	3	<u> </u>	4) I_{rev} at -1v in a.	i i
	-196 20 300	$2.5 \cdot 10^{-15} \\ 3.6 \cdot 10^{-10} \\ 4 \cdot 10^{-5}$	3.2 • 1.7 • 1.55 •	38 20 29	0.93 0.67 0.34	0.005 0.0185 0.0275	4.2 · 10 ⁻⁸ 1.8 · 10 ⁻¹		•2
	Car	ra 3/4	1	1 •	·			, 	
		<u>a pada kozarci i d</u>				CONTRACT OF STREET	zanilijska nasilog za		

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8"

CIA-RDP86-00513R001756920003-8

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8

20802

9,4300 (1043,1143,1150)

s/181/61/003/003/029/030 B102/B205

26.2537 AUTHORS: Burdukov,

Burdukov, Yu. M., Imenkov, A. N., Nasledov, D. N., and Tsarenkov, B. V.

TITLE: Alloyed GaAs junction diodes

PERIODICAL: Fizika tverdogo tela, v. 3, no. 3, 1961, 991-994

TEXT: This is the continuation of Refs. 1-9 which the authors published in FTT with the exception of Ref. 9 (C. T. Sah, R. N. Noyce, W. Shockley, Proc. IRE, 45, 9, 1228, 1957). The diodes studied were made from thin plates of n-type GaAs single crystals which had been grown by the method of Chokhral'skiy. Their resistivity was 0.02 ohm.cm, their electron concentration $\lesssim 10^{17}$ cm⁻³, and their mobility 3500 cm²/v.sec at room temperature. The p-n junction was obtained by introduction of molten zinc or from the eutectic Au-Zn alloy. Lead served as non-rectifying base contact. The area of the p-n junction was equal to S = 0.005 cm². The volt-ampere characteristics of such a diode at 25 and 300°C are shown in a figure. They were recorded by the "characteriograph" described in Ref. 10 (Tsarenkov, PTE, No. 2, 144,

Card 1/6

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

CIA-RDP86-00513R001756920003-8

20802 **s/181/61/003/003/029/030 B102/B205**

a state to the state was described and the second second second second second second second second second second

Alloyed GaAs ...

1960). The most important results were the following: 1) The direct branch of the diode characteristic at voltages below the cutoff voltage can be described by the formula $I_{dir} = I_0 [\exp(qU_{dir}/\beta kT) - 1]$ (1). I_{dir} is the direct current density, U dir the direct voltage drop on the diode, and β a dimensionless factor. I_0 increases with rising temperature. Within the range of nitrogen temperatures to room temperature, $I_0(T)$ is a weak function (weaker than at higher temperatures). At room temperature, $I_0 \simeq 10^{-8} - 10^{-7}$ a/cm², and at 300°C, $I_0 \simeq 10^{-5} - 10^{-4}$ a/cm². β decreases with rising temperature within the range of $-196-+300^{\circ}C$. At nitrogen temperatures, $\beta \simeq 7 - 12$; at room temperature, 2 - 3; and on a further change in temperature, it approaches a value \$2. The direct branches of the voltampere characteristics of several diodes have two exponential sections: $I_{dir}' = I_{o1} \exp(qU_{dir}'/\beta_1 kT) \text{ and } I_{dir}'' = I_{o2} \exp(qU_{dir}'/\beta_2 kT);$ $U_{dir}^{\prime} < U_{dir}^{\prime\prime}$, $I_{o1} \ge I_{o2}^{\prime}$, $\beta_1 > \beta_2$. I_{o1}^{\prime} and I_{o2}^{\prime} increase with temperature (I_{o2}^{\prime}) faster than I_{01} ; at 200-300°C, $I_{01} \simeq I_{02}$, $\beta_1 \simeq \beta_2$. The occurrence of two Card 2/6

APPROVED FOR RELEASE: 03/14/2001

12

CIA-RDP86-00513R001756920003-8"

CIA-RDP86-00513R001756920003-8

I CONTRACTOR OF THE OWNER AND THE OWNER OF THE OWNER OWNER OF THE OWNER O

20802

S/181/61/003/003/029/030 B102/B205

Alloyed GaAs ...

exponential sections of the direct branch is related to the surface properties of the diode. By a change of the composition of the etching agen., one of them disappears, and in formula (1) $I_{02} = I_{02}$ and $\beta_{2}\beta_{2}$. The existence of

two sections and the disappearance of one section by surface treatment is ascribed to the fact that the surface of gallium arsenide has an inverse layer. The cutoff voltage of the direct branch is lower than the contact voltage calculated according to Shockley's junction theory, and drors with increasing temperature. The temperature coefficients of the two voltages are almost equal. The curvature G_8 of the linear section of the direct branch calculated from the data of the diode with a base 0.5 mm thick amounted to

 $\sim 10^3 \text{ a/v} \cdot \text{cm}^2$. The differential resistance at zero voltage can be exactly calculated from the formula $R_0 = \beta kT/qI_0$. $R_0(T)$ is nearly inverse to $I_0(T)$.

 R_o of diodes with two exponential sections of the direct branch is much smaller than R_o of diodes with only one section. The reverse branch of the characteristics at voltages lower than the breakdown voltage can be described by the empirical formula $I_{rev} = AU_{rev}^n$, where $n \leq 1$; I_{rev} increases with temperature. The breakdown voltage also increases with temperature, which is

Card 3, 6

的國家醫療的社会

APPROVED FOR RELEASE: 03/14/2001

el Herite Marian

e lo l

CIA-RDP86-00513R001756920003-8

20802 s/181/61/003/003/029/030 B102/B205 Alloyed GaAs ... taken as an indication of the electric character of breakdown in low-voltage GaAs diodes. There are 1 figure and 11 references: 9 Soviet-bloc and 2 non-Soviet-bloc. Fiziko-tekhnicheskiy institut AN USSR Leningrad (Institute of ASSOCIATION: Physics and Technology, AS USSR, Leningrad) September 23, 1960 SUBMITTED: Legend to Fig.: Ordinate unit 4 ma, abscissa unit 1 v (left-hand diagrams) or 0.25 v (right-hand diagrams). Card 4/6ารจะการสารสารสาร www.exau STREET, STREET

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8

253 STORM 2 REAL PRINK

36893 24.611 S/181/62/004/004/038/042 B102/B104 27,7000 AUTHORS : Nasledov, D. N., Rogachev, A. A., Ryvkin, S. M., and Tsarenkov, B. V. Recombination radiation of gallium arsenide TIPLE: IERIODICAL: Fizika tverdogo tela, v. 4, no. 4, 1962, 1062-1065 TEXT: Monocrystalling n-type InAs plates with an electron concentration of 410^{17} cm⁻³ were used to study the intrinsic recombination radiation. A p-n junction of $\approx 0.1 \text{ cm}^2$ was produced by diffusion of Zn or Cd into the InAo plate. The nonequilibrium carriers were excited by pulsed injection through the junction. The radiation was observed in parallel to the p-n junction plane. At 77°K the emission spectrum has a narrow peak at 1.47 ev (optical self-absorption edge) and two maxima at lower energies which are in connection with recombination via impurity levels. One of these levels is 0.2 ev distant from the middle of the forbidden band, the other 0.25 ev from a band edge. The relative height of all maxima depends on the current density through the p-n junction. At less Card 1/2

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8

s/181/62/004/004/038/042 B102/B104 Recombination radiation of gallium ... than 1a/cm² only impurity radiation is observed, then intrinsic radiation arises and increases rapidly, and between 10 and 100 a/cm^2 the relative height of the maxima remains constant. The results can be explained by assuming volume-charge recombination at weak currents and injection at high currents. At above 10 a/cm² the emission intensity increases linearly with the current density through the p-n junction and decreases only above $\sim 10^3$ a/cm². The forbidden band width is temperature-dependent according to the law (1.51-5.6.10⁻⁴T) ev. The intrinsic emission line narrowing observed at high current densities can be explained by inverse band filling (production of states with "negative temperature") or by assuming that the injected carriers cause degenerate filling of one band only. The latter possibility is more probable. There are 2 figures. ASSOCIATION: Fiziko-tekhnicheskiy institut im. A. F. Ioffe AN SSSR, Leningrad (Physicotechnical Institute imeni A. F. Ioffe AS USSR, Leningrad) January 11, 1962 SUBMITTED: Card 2/2

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8"

"APPROVED FOR RELEASE: 03/14/201 CIA-RDP86-00513R001756920003-8
"Have a second a second

APPROVED FOR RELEASE: 03/14/2001

"APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8 157 1**12**11 [5] GUTKIN, A.A.; NASLEDOV, D.N.; SEDOV, V.Ye.; TSARENKOV, B.V. Photoelectric solar energy converters using GaAs. Radiotekh. i elektron. 7 no.12:2095-2096 D '62. (MIRA 15:11) 1. Fiziko-tekhnicheskiy institut im. A.F. Ioffe AN SSSR. (Photoelectric cells) (Solar batteries) 目 與國際 如何 如何 的复数 网络

APPROVED FOR RELEASE: 03/14/2001

"APPROVED FOR RELEASE: 03/14/2001 CI

and a state of the

CIA-RDP86-00513R001756920003-8

C. C. C. Lawrence and the second statements

EWA(1)/ENG(k)/EWP(q)/EWT(m)/BDS AFFTC/ASD/ESD-3/SSD L 14978-63 AT/JD/WG/IJP(C) PX-4/82-4 \$/0120/63/000/004/0187/0188 ACCESSION MR: AP3004916 AUTHOR: Gutkin, A. A.; Rogachev, A. A.; Sedov, V. Ye.; Tsarenkov, B. V. Low-inertia gallium arsenide light-generating diode TITLE: え v SOURCE: Pribory 1 tekhnika eksperimenta, no. 4, 1963, 187-188 TOPIC TAGS: gallium arsenide light generator, light-generating diode, gallium arsenide diode, carrier injection luminescence, injection luminescence, gallium arsenide laser, laser, carrier, luminescence, injection ABSTRACT: A light-generating diode made of single crystal n-type gallium arsenide diffused with p-type zinc has been constructed and tested. Light emission was produced at room temperature by applying a pulsed current with pulse duration of 1-10 µsec across the p-n junction. The obtained light spectrum showed two maxime centered at 0.95 and 1.3 μ . The time constant was less than 5 x 10⁻⁸ sec. At a maximum injection current of 20 amp the efficiency of the generator was about 0.1%. The authors hope to increase the photon flix several times by constructional refinements and the use of higher quality material. The author acknowledges that while the present article was being prepared for printing, the journal Card 1/2

APPROVED FOR RELEASE: 03/14/2001

		م معرفها المالي المالي الم		1
L 14978-63 ACCESSION HR: AP30049	16		4	É.
Electronics (July 1962 U. S.) of a gallium ar at <u>liquid-nitrogen</u> tem <u>Ry*vkin</u> for their binte ASSOCIATION: Fiziko-t	, 13, 7; 1962, 27, 24) d senide light-generating peratures. "The authors rest in the work." Orig ekhnicheskiy institut AF	thank D. N. Nasledo g. art. has: 4 figur	ov and <u>S. M.</u> res.	1
AN SSER) SUBMITTED: 14Sep62	DATE ACQ: 2	28Aug63 ·	ENCL: 00	
SUBMITTED: 14Sep62		•	OTHER: 00	L
SUB CODE: PH	NO REF SOV:	001		
SUB CODE: PH	no ref sov:			
SUB CODE: PH	no ref sov:			
SUB CODE: PH	NO REF SOV:			

C. S. COLORISH PROPARATION STRATEGY AND AND AND AND

TSARENKOV, B.V. 23 May AID Nr. 975-15 ELECTRICAL BREAKDOWN OF GaAs p-n JUNCTIONS (USSR) Nasledov, D. N., and B. V. Tsarenkov. Fizika tverdogo tela, v. 5, no. 4, Apr 1963, 1181-1188. A stuck of electrical discharge in GaAs junction diodes has been made with monocrystalline specimens of n-type gallium arsenide with 5.10¹⁶ to 10¹⁷ cm⁻³ electron concentration and 3000 to 3500 $\text{cm}^2/\text{v-sec}$ electron mobility. The specimens were doped with Cd or Zn impurities. The thickness of the player was 10-20 μ after Cd diffusion and 20-100 μ after Zn diffusion. The breakdown voltage was under 10 v at room temperature. Results show that the breakdown voltage and the critical field increase almost linearly with temperature in the range from 77 to 540°K. With constant temperature the breakdown voltage increases with increasing critical width of the volume charge layer during breakdown, while the critical field decreases. It is [BB] shown that the breakdown mechanism is impact ionization. Card 1/1 124 4 654

APPROVED FOR RELEASE: 03/14/2001

.....

ard 1/2		
,	1.50 - 1,00 2x	$\tilde{r} = q n_i \frac{kT}{qE_m} \frac{1}{\tau_0} e^{\frac{qU}{1kT}},$
BSTRACT: T transition h ampere chara characterist	he lifetime of current car as been determined from the cteristics, under condition ics of a diode could be con ey (Proc. IRE, 45, 1228, 1 and to predict the lifetime	riers in a space charge layer of GaAs-p-n- = straight portion of the statistical volt- ns when the experimental volt-ampere mpared quantitatively with theory. The Sah- = 957) equation for the volt-ampere character- $=$ T_0 , i.e.,
OPIC TAGS:	opace charge, p n transitint density	ion, volt ampere characteristic, vacuum
ounces Fig	ka tverdogo tela, v. 6, no	5. 3, 1964, 776-779
JTHORS: IVa	ime of current carriers in	space charge layer of GaAs-p-n-transitions
CESSION NR:	nova, Ye. A.; Nasledov, D.	N.; Tsarenkov, B. V.
	up1010827	s/0181/64/006/003/0776/0779

-

- 多特兰斯公司于国际协会的现在分词研究和

a sector and sector and sector and a sector of

of 1 amp/cm ² , nor on tempera estimated to lie between 10 to R. F. Kazarinov and V. I	from two vacuum diodes (Nos. 58 and 1 on the nonequilibrium carriers up ature in the interval 293 to 545K. -9 and 10-8 sec. "The authors exp . Stafeyev for their help." Orig. cheskiy institut im. A. F. Ioffe A titute AN SSSR) DATE ACQ: 31Mar64 NO REF SOV: 003	oress their gratitude art. has: 4 formulas,
· · ·		•

"APPROVED FOR RELEASE:	03	/14	/200)1
enare and the total energy and services and services and the latter latter of the service of the service of the	$p_{1,1} = p_{1,2}$		445.55	÷ .

CIA-RDP86-00513R001756920003-8

CREW AN

and the second second

				• .	
. N. 153. 1.17					
ITLE: Electrical p	roperties of ph	tunnel junctio	ons in gal	1 LUM C	
rsenide 1			- 44		
an <u>a</u> an		· · · ·			
			. •		
				• • *	
			۱.,		

"APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8 ACCESSION NET APA 4 `` · · · · · · The values of E. H. E. terrerature 8.1

CIA-RDP86-00513R001756920003-8

an a manimum manager at the standard date and a second standard at the second second second second second second	gatet group		a server server server s	ternistissin sedin
				1
				· .
			ι.	
11月8月11日4日				
V JURG CONTRACT CONTRACT			ς,	
			~ , /	
Current a. Constant		· · · · · · .	· · · · · ·	
t entra se entra se esta se est			· . ·	
			• • · · · · ·	
			· ·	
•				
a teathar is				
ASSOCIATION: Fizik-+ekt	and the second second	1 m A 11	Toffa AN SSSP	
1. Contractor Contractor Contractor				
2. 1 . M. C			· •, •	
SUB COLF: FC, SS		:	-THEF:	
Card 3/3				

STATE AND A COMPANY AND A COMPAN

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8"

医多效性的复数形式 网络根状体的经常机体体 经代码分布

CIA-RDP86-00513R001756920003-8

	L 31082-65 ENT(n)/ENP(L)/ENP(B) IJP(C) 35 ACCESSION NR: AP5006880 S/0181/65/007/003/0775/0780
	AUTHOR: Imenkov, A. N.; Kozlov, H. M.; Meskin, S. S.; Nasledov, D. N.; Ravich. V. N.; Tearenkov, B. V.
	TITLE: Electroluminescence spectra of strongly degenerate gallium arsenide 35
	SOURCE: Fizika tverdogo tela, v. 7, no. 3, 1965, 775-780 B
	TOPIC TAGS: gallium arsenide, semiconductor, electroluminescence, p n junction, recombination radiation, radiative recombination
	ABSTRACT: An investigation was made of the injection electroluminescence of GaAs tunnel p-n junctions at temperatures of 77 and 293K. In preparing the diodes, zinc was diffused into an n-type GaAs monocrystal up to hole concentrations of $v_5 \cdot 10^{19}$ cm ⁻³ in a 10-20 micron surface layer. The tunnel p-n junction was fabri- cated by diffusing tin into the p-side of GaAs. The emission was found to vary strongly with injection current. Recombination radiation spectra showed a peak which with increasing current densities was shifted toward higher photon energies (from 1.0 to 1.445 ev at 77K). Other maxima independent of the injection current were also present. A very distinct peak at 1.42 ev was observed at 77K. Analysis of the experimental data showed that at small injection current densities (less
	Cord 1/2
ì	

The current- lying levels art. has: (• Piziko-tekhnic	heskiy instit	bsequent 1	adiative	recombi	nat fon .	Orig. [CS]	
(Physicotecl SUBMITTED:	hnical Institute,	AN SSSR) ENCL:	-			SS, OP		
NO REF SOV:	•	other :	006	ATD	PRESS:	3198		1
	2. 39				•			
							!	
Card 2/2	•	بندم وي				•		
							and a second	

APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001756920003-8"

ACCESSION NR: AP5007092		· · · · · · · · · · · · · · · · · · ·
AUTHOR: Burdukey, Yu. M. Messell.	And we see the second	•
	21	i i
SOURCE: Radiotekhnika i elektronika, v	10, no. 3, 1945, <u>468-475</u>	
TOPIC TAGS: pn junction, gallium ausenic	le semiconductor	
ABSTRACT: Alloy and diffusion junctions single constants may explore a second	and diodes were served (€⁄ ∵aAs
ABSTRACT: Alloy and diffusion junctions	and diodes were served (CaAs
ABSTRACT: Alloy and diffusion junctions angle of setal a new egothese of a set	and diodes were served (CaAs

and a market was seen as the second second

CIA-RDP86-00513R001756920003-8

ACCESSION NR: AP5007 242					
apacitance of an allow or diffusion		Sec. 1. 1	 i1 	11	*
· · · · · ·					
an tha an <u>a</u> an an a					
	•	•	. •	1 X	
SSOCIATION: Piziko-tekhnichest	nation in the	t P I-ffe	4 M 0000	r ye i e e	tair -
18MG. Harrison and a second seco					
Light Contraction of the second se			N ¹		
ord 2/2					
	1110 - Sec	A STATE OF THE OWNER OF THE OWNER OF	2 # 2		
	-				

1.5833.348

এটানা আ আন্দ্রিক্রিয়া **উটিন উ**টিটি জেন্দ্রান্টা ব

APOST.

<u> - 7 X 17 COM HERDER BERNE IS STREET BURGER BERNE BERNE IS STREET BURGER BURG</u>

			10		•
I. 33954-65 E	NT(1)/ENT(n)/T/EN(t)/ET	(1)/MA(h) Tr-(/	-	
ACCESSION NRI	AP5005313				
AUTHOR: Imcn Ravich, V. H.	kov, A. H.; Koslov, J ; Isamukov, B. V.		5. 5.; Nanled	634/8436 97, D. H.;	
TITLE: Bacom	h l n n h l n				,
	bination radiation in ka tvordogo tela, v.	/, no. 2, 1965	. 634-636	, J.	
TOPIC TACS.	tunnel effect, tunnel lon, recombination, g			() recombi-	
ABSTRACT: The current I in t resented in th $\Psi_3(T,I)$, where sity which is tage the volt- the radiation	dependence of the i the range of current is form of the sum of the member $\theta_3(T,I)$ added to the intensi ampere characteristic	ntegral intens densities 50- two members 0 is the part of ty 02. The fa and the cury	ity of radiati $10^{4} \operatorname{amp/cm^{2} can}$ $= \Phi_{2} + \Phi_{3} - A$ the radiation ct that at a cert 0 of the decom-	be rep- (T)I ⁿ + inten- ainvol-	
	• • • • • • • • • • • • • • • • • • •		90 IN/1//	A	
son, R., Proc.	tere, 51, 1963, 610)	s of other real	earchers (e.g	o the •; Ander-	•
Card 1/2		, no redractor	in the regio	n of	
•		······································	• • •		•
					••

27.85%。2015年

প্ৰায়ন্ত বেলেক

							,
	954-65					•	,
ACCE	SSION NRI AP	5005313			1		
nega has t	tive conductiv 2 figures ar	vity of the tunn nd 2 formulas.	el diode wa	s detected.	Orig. art. [Z	L]	•
ASSO Leni	CIATION: Fizi ngrad (<u>Physics</u>	lko-tekhnicheski 1-Technical Ins	y institut titute _s AN S	im. A. F. lof SSR)	fe, AN SSSR	•	1
SUBH	ITTED: 31Ju16	54 ENCLOS	UREI OO	SUB CODE	1 85, <i>NP</i>		:
NO R	EF SOV: 001	OTHER :	004	ATD PRES	5:3209		
						:	•
			•	•			•
	•	×					N
:				•			
				•			•
			•		•		
Card	2/2						
				· · · · · · · · · · · · · · · · · · ·		•	£.*

IMENKOV, A.N.; KOZLÓV, M M.; NASLEDOV, D.N.; TSARENKOV, B.V.

Electron-hole transition in heavily degenerate semiconductors in the case of superhigh current densities. Fiz. tver. tela 7 no.5: 1480-1485 My '65. (MIRA 18:5)

1. Fiziko-tekhnicheskiy institut imeni Ioffe AN SSSR, Leningrad.

CIA-RDP86-00513R001756920003-8"

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8

F. L <u>1928-66 Ear(1)/Ear(m)/T/Ear(t)/Fur(b)/Ear(b) LJP(o)</u> ACC NR. AP5025399 UR/0181/65/007/010/3115/3118 ŝ 1 41,00 M.; Heskin, 6. 6.1 AUTHOR: Imenkov, A. N.; Kogan, M.; Koslov, Tsarenkov. B. V. ORG: Physicotechnical Institute im. A. F. Ioffe, AN SSSR, Leningrad (Fiziko-tekhni 44.55 cheskiy institut AN 685R) TITLE: The effect of impurities on the recombination radiation of gallium arsenide 27 SOURCE: Fizika tverdogo tela, v. 7, no. 10, 1965, 3115-3118 TOPIC TAGS: recombination radiation, gallium arsenide, pn junction, impurity, acceptor, donor ABSTRACT: The effect of Zn, Cd, Mn, and Fe impurities on the recombination radiation of GaAs <u>p-n junctions</u> way experimentally investigated. The junctions were formed by direct diffusion of the element, by simultaneous diffusion of Mn and Cd and Fe and Cd, or by diffusion of Mn and then Cd or Fe and then Cd into n-type GaAs with an electron concentration (N_n) of 5 x 10¹⁶-3 x 10¹⁶ cm⁻³ (crystals with N_n > 7 x 10¹⁷ cm⁻³ were doped with Te). The junction area was 10^{-3} -10⁻⁶ cm². The recombination spec-tra were measured at 77 and 293K in the photon energy range between 0.7 and 1.6 ev. The spectra were recorded at direct injection currents at which the energy of the short wavelength band was independent of the current. The experimental data are given in Fig. 1 and Table 1. The band with hvmax \ge 1.01 ev (JTK) and hvmax = 0.95-0.98 ev Card 1/4 **.** . . 1

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8

APPROVED FOR RELEASE: 03/14/2001

12.11

CIA-RDP86-00513R001756920003-8

SEPTERS R

CIA-RDP86-00513R001756920003-8

 I 1028-66

 ACC NR. AP0023399

 (233X) and the band with by are 1.25 ev, clearly defined only at TTX in junctions activition are registed in those doped with NR and Fe, were attributed to recombination rediction of excess carriers with the deep lavels with [CB]

 SUB COLE:
 BS/ SUBH DATE: OGMay65/ ORIG REF: 003/ OTH REF: 009/ ATD FREES: ####

 WIB COLE:
 BS/ SUBH DATE: OGMay65/ ORIG REF: 003/ OTH REF: 009/ ATD FREES: ####

 WIB COLE:
 BS/ SUBH DATE: OGMay65/ ORIG REF: 003/ OTH REF: 009/ ATD FREES: #####

 WIB COLE:
 BS/ SUBH DATE: Offers of the deep lavels with activity of

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001756920003-8

APPROVED FOR RELEASE: 03/14/2001

有好意意无耻 法保证性的诉讼者 的复数制造物的复数形式 计

:

•

THE FART PROVIDE RECEIPTION STRATEGIES AND ADDRESS OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A

·				· •
				1
* •				· ·
			5	
L 6509-66				
ACCESSION NH: ALLAND	any the maxima shift	to 2.19, 1.04, a	ind 0.04 re-	
attributed to impuritie	a. At 77K the maxima shift bhotoconductivity curve exhile the valence to the c	bited also some	Polarization	
ev, attrively. The spectral I	ts. At 77K the maxima shift photoconductivity curve exhile hs from the valence to the c onductivity only above 2 ev, the direction of the electr	when the photoc	onductivity	
transicious creat the photoco	onductivity only the electr	ic vector. Into	ton edge. B	
began to arrect ansitive to	the direction of alls showed	a sharp absorpt	tion edge	
to anisotropy of the cryst	al. Not all defects. Whe	ere a singly do not	arization.	
fact attributed to the num	the direction of the showed al. Not all crystals showed ber of crystal defects. Whe dependence on the temperature ductivity and the start of the sharpness of t	the strong optics	al absorption	
Was observed, the nhotocot	ductivity and the mass of t	he absorption en	hand 18	
The matthe close to each of	ductivity and the sharpness of t ther, and the sharpness of t terband transitions in ZnSiP 00K and between 2.2 and 2.27 00K and between 4.77 and 4.27	at TTK. Two	absorption	
a divect 10	Ver 0 and 2.22		Ju 48 800	
the presence of different 3	ook and between 2.2 and h.21	, and their orig		
the presence of different at 3 estimated at 2.13 ev at 3 observed at 2.2	00K and between 2.2 and 4.27 3 and 2.27 ev at 77 and 4.27	(, and their orig cb. Orig. art.)	set 2 figures	
the presence of 13 estimated at 2.13 ev at 3 bands are observed at 2.2	00K and between 217 and 4.27 3 and 2.27 ev at 77 and 4.27	(, and their original origin	ast 2 figures	
the presence of 2.13 ev at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p	00K and between 2.2 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic	(, and their orig ch. Orig. art. 1 . Toffe Akademii	ast 2 figures	
the presence of 2.13 ev at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p	00K and between 2.2 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	
the presence of at 2.13 ev at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p and 1 table. ASSOCIATION: Fiziko-tehr (Physicotechnical Institu	00K and between 2.2 and 4.27 3 and 2.27 ev at 77 and 4.27 presented by L. A. Artsimovic unicheskiy institut im. A. F ate, Academy of Sciences 888 ENCL: 00	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	
the presence of a state of the presence of the presence of the state o	00K and between 212 and 4.27 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic unicheskiy institut im. A. F ate, Academy of Sciences 888 EWCL: 00	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	
the presence of 2.13 ev at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p and 1 table. ASSOCIATION: Fiziko-tehr (Physicotechnical Institu BUEMITTED: 17Nov6t NE REF SOV: 002	00K and between 212 and 4.27 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic unicheskiy institut im. A. P ate, Academy of Sciences 888	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	
the presence of at 2.13 ev at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p and 1 table. ASSOCIATION: Fiziko-teht (Physicotechnical Institu BUEMITTED: 17Nov6t	00K and between 212 and 4.27 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic unicheskiy institut im. A. F ate, Academy of Sciences 888 EWCL: 00	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	
the presence of at 2.13 ev at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p and 1 table. ASSOCIATION: Fiziko-teht (Physicotechnical Institu BUEMITTED: 17Nov6t NR REF SOV: 002	00K and between 212 and 4.27 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic unicheskiy institut im. A. F ate, Academy of Sciences 888 EWCL: 00	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	
the presence of 2.13 ev at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p and 1 table. ASSOCIATION: Fiziko-tehr (Physicotechnical Institu BUEMITTED: 17Nov6t NE REF SOV: 002	00K and between 212 and 4.27 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic unicheskiy institut im. A. F ate, Academy of Sciences 888 EWCL: 00	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	
the presence of at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p and 1 table. ASSOCIATION: Fiziko-teht (Physicotechnical Institu BUEMITTED: 17Nov6k NR REF SOV: 002	00K and between 212 and 4.27 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic unicheskiy institut im. A. F ate, Academy of Sciences 888 EWCL: 00	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	
the presence of at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p and 1 table. ASSOCIATION: Fiziko-teht (Physicotechnical Institu BUEMITTED: 17Nov6k NR REF SOV: 002	00K and between 212 and 4.27 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic unicheskiy institut im. A. F ate, Academy of Sciences 888 EWCL: 00	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	
the presence at 2.13 ev at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p and 1 table. ASSOCIATION: Fiziko-teht (Physicotechnical Institu BUBMITTED: 17Nov6t NR REF SOV: 002	00K and between 212 and 4.27 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic unicheskiy institut im. A. F ate, Academy of Sciences 888 EWCL: 00	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	
the presence at 2.13 ev at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p and 1 table. ASSOCIATION: Fiziko-teht (Physicotechnical Institu BUBMITTED: 17Nov6t NR REF SOV: 002	00K and between 212 and 4.27 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic unicheskiy institut im. A. F ate, Academy of Sciences 888 EWCL: 00	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	
the presence of 2.13 ev at 30 estimated at 2.13 ev at 30 bands are observed at 2.2 clear. This report was p and 1 table. ASSOCIATION: Fiziko-tehr (Physicotechnical Institu BUEMITTED: 17Nov6t NE REF SOV: 002	00K and between 212 and 4.27 3 and 2.27 ev at 77 and 4.27 resented by L. A. Artsimovic unicheskiy institut im. A. F ate, Academy of Sciences 888 EWCL: 00	(, and their orig ch. Orig. art. 1 . Toffe Akademii	nauk 686R	

1013

-

	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ACC NRI APG004486	5 <u>41107</u> 2
UR/0048/66/030/001/0135/0137	
AUTHOR: Vorob [†] yev,A.A.; Dotsenko,Yu.V.; Seliverstov, D.M.; Tsarenkov,B.V.	
ORG: none 51	
B 1917 B. 1997 B. 21, 44, 55	
I I LE: Use of semiconductor light gourgest to investigation	
photomultipliers /Transactions of the Fifteenth Annual Conference on Nuclear Spectro-	
scopy and Nuclear Structure held at Minsk 25 January to 2 February, 19657	
SOURCE: AN SSSR. Izvestiya. Seriya fizicheskaya, v. 30, no. 1, 1966, 135-137	
TCPIC TAGS: photomultiplier, time measurement, semiconductor diode, flash lamp	
ABSTRACT: The receiver it is in the second state of the second sta	
ABSTRACT: The resolving times of three photomultipliers (types K14FS-50, FEU-36 and FEU-30) were measured (losing a gallium photomultipliers (types K14FS-50, FEU-36 and	-
purpose of the present paper is to woint out the under as fight source. Part of the	
conductor light sources for such measurements and for other measurements in nuclear physics. Gallium arsenide diodes produce shout fill	
physics. Gallium arsenide diodes produce short flashes with very little scatter in the delay between pulse arrival and flash but the	
the sensitive range of present photomility but the wavelength of the light is outside	
the present work was excited by a 10-20 there. The gallium phosphile diode used in	1
produced a 100 nanosec flash in the green with an amplitude equal to that excited in	
a stilbene scintillator by a Co^{60} gamma ray. The pulse produced as a result of this flash in the 5 kilohm load resistor of the photomultiplication.	
flash in the 5 kilohm load resistor of the photomultiplier under test was shaped to	•
Card 1/2	۰.
>	

ACC NR: APG004486

4

0 30 nanosec and 2.0 V and brought, together with the attenuated and delayed pulse from the pulse generator, to a time to pulse height converter with a resolution of 0.15 nanosec. The output pulses from the converter were recorded in a 100-channel pulse height analyzer. There was thus obtained a curve representing the scatter of the delay times between the initiating pulse and the pulse from the photomultiplier. The half-width of this curve, which represents the resolving time of the photomultiplier increased by the scatter introduced by the light source, was plotted for each photomultiplier tube against the potential applied to the dynodes. In each case the resolv ing time was minimum for a certain optimum dynode potential. The minimum resolving time of 0.14 nanosec obtained for the K14F3-50 photomultiplier is in good agreement with the value 0.134 nanosec found by M.Bonitz, W.Meiling, and F.Stary (Nucl. Instr. and Meth., 29, 309 (1964)) using a hydrogen lamp. It is concluded that the scatter of the delay between pulse and flash in the gallium phosphide diode is not greater than in the hydrogen discharge tube. The effect of varying the intensity of the flash on the resolving time of the K14FS-50 photomultiplier was also investigated. The resolving time increased rapidly when the flash intensity was reduced below that of a Co⁶⁰ gamma-ray scintillation in stilbene, and decreased only slowly when the flash intensity was increased above that value. Orig. art. has: 3 figures. SUB CODE: 20 SUEM DATE: 00 ORIG REF: 000 OTH REF: 008 Card

APPROVED FOR RELEASE: 03/14/2001

Milleon.

ACC NRI AP 6024502		CODE: UR/0181/66/008/0	72
AUTHOR: Gol'dberg, Yu.	A.; Nasledov, D. N.; Ts	arenkov, B. V.	D
ORG: Physicotechnical	Institute im. A. F. loff	e, AN SSSR, Leningrad (Fiziko-
tekhnicheskiy institut	AN SSSR)		
TITLE: Dependence of e	2/ lectroluminescent parame	ters of <u>Ga</u> As lasers on	the angle
between the p-n junction	n plane and the resonato	r mirrors 1	
50URCE: Fizika tverdog	o tela, v. 8, no. 7, 196	6, 2251-2253	
Gollium orseniale, lass ABSTRACT: The threshol tigated experimentally junction plane (100) an shown that: 1) the thr distance between mirror (Fig. 2): and 2) quantu	tor laser, gallium arsen -, gnimetter d current density and th as a function of the ang d the resonator mirrors reshold current density d s 1 (Fig. 1), and with a m yield increased with a here d = width of activ	e output of diode <u>laser</u> le (φ = 90° ±0) between placed in the (110) pla ecreased with an increa decrease in the angle decrease in θ (Fig. 2	were inves- the p-n ne. It was se in the when 1 = const). The maxi-

CIA-RDP86-00513R001756920003-8

APPROVED FOR RELEASE: 03/14/2001