PROCESSING DATE-+020CT70

TITLE--REACTIONS OF BISITRIFLUGROMETHYLI AITROXIDE. VI. POLMERIZATION OF TETPAFLUGROETHYLENE IN THE PRESENCE OF AN INITIATOR SUCH AS

AUTHOR-(04)-MELNNIKOV, A.V., PARANAYEV, MER., MAKAROV, S.P., ENGLIN, M.A.

UNCLASSIFIED

COUNTRY OF INFO--USSR

027

1/2

SOURCE--ZH. VSES. KHIM. DBSHCHEST. 1970. 15(1) 117-18

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--PULYTETPAFLUUROETHYLENE, POLYMERIZATION, NITRUGEN OXIDE, CHEMICAL REACTION MECHANISM. ORGANIC NITRO COMPOUND

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PRUXY PEEL/FRAME--1992/1413

STEP NO--UR/0063/70/015/001/0117/0118

CIRC ACCESSION NO--APOII 2407

2/2 027 UNCLASSIFIED PROCESSING DATE--020CT70
CIRC ACCESSION NO--APO112407
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE POLYNN. DF C SUB2 F SU34 WAS
INITIATED BY 1-30PERCENT (CF SUB3) SUB2 NO (I) AT 240-50DESREES TO GIVE
A SOLID POLYNER (WHEN I CONCN. WAS 1-3PERCENT) OF MOL. HT. 2 TIMES 10
PRIME4. A REACTION MECHANISM WAS PROPOSED. THE PROPAGATION RATE CONST.
WAS SIMILAR TO 25.5 1.-MOLE MIN AND THE TERMINATION RATE CONST. WAS
SIMILAR TO 3.000.

UNCLASSIFIED PROCESSING DATE—BOOCT70
TITLE—USE OF SLIME WATERS AND WATER FROM THE WASHING OF AN OXIDATE DURING
THE TREATMENT OF ACID WATERS FROM SYNTHETIC FATTY ACID PRODUCTION —UAUTHOR—(04)—BOCHKAREV, YU.A., MAKAROV, S.V., KUDRYASHDV, A.I., RYABYKH,

COUNTRY OF INFO-USSR

SOURCE-KHIM. PROM. (MOSCOW) 1970, 46(1), 16-17

DATE PUBLISHED ----- 70

SUBJECT AREAS-MECH., IND., CIVIL AND MARINE ENGR, CHEMISTRY

TOPIC TAGS-SLIME, WASTE HATER CONVERSION, HATER, FATTY ACID, CHEMICAL SEPARATION, AIR PURIFICATION EQUIPMENT, WATER RECOVERY, ORGANIC ACID

CENTREL MARKING-NO RESTRICTIONS

DOGUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1063

STEP NO--UR/0064/70/046/001/0016/0017

CIRC ACCESSION NO--AP0124720

UNCLASSIFIED

CIRC ACCESSION NO—APO124720
ABSTRACT/EXTRACT—(U) GP-O— ABSTRACT. THE VARIOUS SLIME AND WASHING
WATERS FFOM THE MANUFG. OF SYNTHETIC FATTY ACIDS CONTAIN 2.3-12.8PERCENT
NONVOLATILE SUBSTANCES; THESE SUBSTANCES ARE SPED. AS A RESIDUE BY
HEATING TO 130-40DEGREES UNDER 2-8 ATM. THE PRODUCT CONSISTS OF A MIXT.
OF FREE ACIDS, LACTIONES, LACTIONES, AND NA, K, FE, AND NN SALTS OF ORG.
ACIDS. AFTER SEPN. OF THE RESIDUE, THE WATER MAY BE USED FOR THE
WASHING OF INCOMING AIR AND FOR THE RECOVERY OF VOLATILE ORG. ACIDS.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

UIC 669.1:539.166

NIKOLAYEV, I. N., MAKAROV, V. A., FUZEY, I. M., and PAVLYUKOV, L. S., Moscow Engineering Physics Institute, Institute of Precision Alloys, and Central Scientific Research Institute of Ferrous Metallurgy imeni I. P. Rardin

"Mossbauer Effect in Fe-Ni-Mn Invar Alloys"

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 35, No 6, June 73, pp 1305-1307

Abstract: The Mossbauer effect was studied for nuclei of Fe⁵⁷ in five samples $\text{Fe}_{65.5}(\text{Ni}_{1-x}\text{Mn}_x)_{34.5}$ in the interval $0.2 \angle x < 0.8$. After melting, the samples were annealed for five hours at 1000°C and hardened. The resulting alloys were rolled into foil and annealed again for 0.5 hours at 700°C . Geometry of transmission was used in two modes of spectra measurements: constant velocities and constant accelerations. The method of spectra interpretation was done by determining the positions of centers of gravity of all samples at temperatures above 100°K with an accuracy of ± 0.006 km/sec. A $\text{Co}^{\circ}\text{T}(\text{Cr})$ was used at room temperature while sample temperature was varied from ± 0.006 km/sec. A diagram of the magnetic states of the alloys was produced from the temperature relationship of the Mossbauer spectra, which revealed alloys

1/2

USSR

NIKOLAYEV, I. N., et al., Fizika Metallov i Metallovedeniye, Vol 35, No 6, Jun 73, pp 1305-1307

Fe_{65.5}Ni_{5.5}Mn₂₉, Fe_{65.5}Ni₂₆Mn_{8.5}, and Fe_{65.5}Ni₂₈Mn_{5.5}. The first alloy above was antiferromagnetic and is a doublet with a relatively small average and super-thin magnetic field. An anomaly was noted in the behavior of £ (T) which was explained by the fact that the relative shift in the spectrum is compensated by a chemical shift that decreases the total shift with reduced temperature. In this case the decrease in isomeric chemical shift signifies an increase in the density of s-electrons in Fe⁵⁷ nuclei and that there is a change in the electron configuration of the iron atoms during the transition from the paramagnetic to the ferromagnetic state. YE. G. PONYATNYSKIY and G. T. DUBOVKA rendered assistance in this work. 2 figures, 5 bibliographic references.

2/2

Free Radicals

USSR

VDC 541.127:541.117

MAKAROV. V. A., FILATOV, E. S., Moscow State University imeni M. V. Lomonosov, Moscow, Ministry of Higher and Secondary Specialized Education RSFSR

"Disproportionation and Recombination Reactions of Cyclohexyl Radicals at Low Temperatures"

Moscow, Khimiya Vysokikh Energiy, Vol 4, No 5, Sep-Oct 70, pp 467-468

Abstract: The article describes results of a study of disproportionation and recombination reactions of cyclohexyl radicals in the 77-1450 K range for purposes of elucidating the effect of temperature on solid-phase processes. The radicals were obtained by the Klein-Scheer method. The results indicate that the yield of bicyclohexyl increases with temperature elevation and rises sharply (two orders of magnitude) when the transformation temperature of cyclohexene ($T_t \approx 139^\circ$ K) is crossed, while there is little change in the ratio of cyclohexene and cyclohexane yields.

PROCESSING DATE--230CT70 UNCLASSIFIED

TITLE--GEOCHRONOLOGY OF PRECAMBRIAN FORMATIONS IN THE URALS -U-

AUTHOR-104)-TUGARINOV, A.I., BIBIKOVA, YE.V., KRASNOBAYEV, A.A., MAKAROV,

V.A. COUNTRY OF INFO--USSR

SOURCE--GEOKHIMIYA 1970, (4), 501-9

DATE PUBLISHED-----70

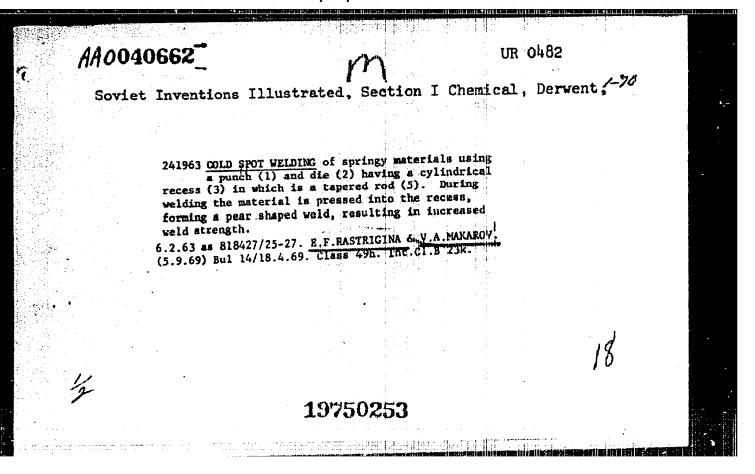
SUBJECT AREAS -- EARTH SCIENCES AND OCEANOGRAPHY

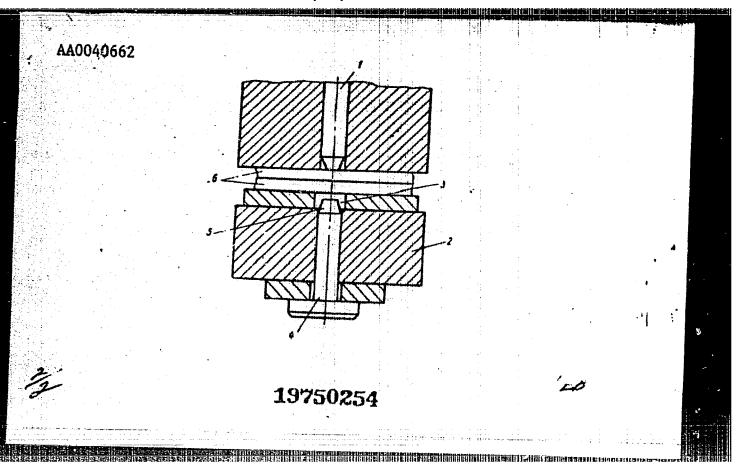
TOPIC TAGS--GEOCHRONOLOGY, PRECAMBRIAN TIME, ABSOLUTE AGE, MAGMA, METAMORPHIC ROCK, ZIRCON, EARTH CRUST AGE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0136

STEP NO--UR/0007/70/000/004/0501 .509


CIRC ACCESSION NO--APOIL9132


UNCLASSIFIED

PROCESSING DATE--230CT70 UNCLASSIFIED 007 2/2 CIRC ACCESSION NO--APO119132 ABSTRACT. THE ABS. AGES OF VARIOUS ABSTRACT/EXTRACT--(U) GP-0-PRECAMBRIAN MAGNETIC AND METAMORPHIC ROCKS WERE DETD. FROM ZIRCONS BY THE ISOTOPIC METHOD. THE AGE DETNS. INDICATED THE PRESENCE OF 2 STAGES OF EFFUSIVE ROCK FORMATION IN THE BASHKIR ANTICLINORIUM (SOURTHERN URALS). THE ANCIENT TARATASHSK INTRUSIONS, WHICH TERMINATED THE LOWER PROTEROZOIC CYCLE AND WERE ACCOMPANIED BY INTENSE REGIONAL METAMORPHISM, HAVE ABS. AGE OF 2000-200 MILLION YR. THE BERDYANSHSK PLUTON (1430 MILLION YR OLD) AND GUBENSK AND RYABINOVSK INTRUSIONS (1350 MILLION YR) BELONG TO SUCCESSIVE INTRUSIVE PHASE. THIS PHASE COINCIDED WITH LARGE INTERRUPTION IN SEDIMENT ACCUMULATION AND WAS DENOTED BY DISCONFORMITY BETWEEN THE BURZYANSK AND YURMATINSK SERIES INDICATING AN INTENSE DEVELOPMENT IN URALS OF THE STRATA HAVING A VERY LIMITED DISTRIBUTION IN FACILITY: V. I. VERNADSKII INST. GEOCHEM. ANAL. THE EARTH. CHEM., MOSCOW, USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

UDC: 621.386.6-181.48

SADCHIKOV, P. I., NOVOKRESHCHENOVA, O. Ye., MAKAROV, V. A.

"Strength of Contact Joints in Hybrid Thin-Film Circuits"

Elektron. prom-st'. Nauch.-tekhn. sb. (Electronics Industry. Scientific and Technical Collection), 1972, No 1, pp 64-66 (from RZh-Radiotekhnika, No 8, Aug 72, Abstract No 8V275)

Translation: The effect of the welding process on the physicomechanical (strength) properties of contact joints in hybrid microcircuits is considered. The causes of development of defective joints are determined. Resumé.

1/1

- 46 -

USSR

UDC 678.06-419.8:677.521.019.34

MAKAROV, V. G., YARTSEV, M. G., and KOSACHENKO, T. K.

"Destruction of Fiberglass Based on Phenolic Resins by the Action of Temperature and an Aggressive Medium"

Moscow, Plasticheskiye Massy, No 2, 1973, pp 63-64

Abstract: Experimental results are reported for the study of the kinetics of the destruction of phenolic fiberglass in a wide temperature range under the influence of an aggressive medium. Fiberglass based on the phenolic binder FSM, FSK, FSP, and KAST-V in 45% solution of hydrochloric acid was investigated. It was established that the decrease in mechanical strength of the fiberglass is a heterogeneous process of the first order. The temperature of the aggressive medium determines the extent of its course. The kinetic equation for the destruction processes of fiberglass was shown to hold for a wide range of temperatures.

1/1

USSR

UDC: 621.375.82

BABENKO, V. P., MAKAROV, V. I., NAPERSTAK, Yu. A., RUBINCHIK, B. Ya., TYCHINSKIY, V. P.

"A Laser apparatus With Preset Control for Cutting Materials"

Moscow, Kvant. elektronika--sbornik (Quantum Electronics--collection of works), No 1(13), "Sov. radio", 1973, pp 132-133 (From RZh-Fizika, No 8, Aug 73, abstract No 8D1174 by the authors)

Translation: An automatic apparatus has been developed for gas-laser cutting of materials. The unit includes a carbon dioxide laser with power of about 500 w and a series-produced coordinate indexer with preset control (EM-703). The basic parameters of the apparatus and results of technological tests are given.

1/1

- 26 -

UDC 621.762.001

MAKAROW V. I., MEL'NIKOV, V. A., GALAT, N. I., and KUKOZ, F. I.

"Magnetic Properties of Powders and Their Electrochemical Activity"

Tr. Novocherk. politekhn. in-ta (Works of the Novocherkassk Polytechnical Institute), 1970, 208, pp 100-103 (from RZh-Metallurgiya, No 11, Nov 70, Abstract No 11G2967

Translation: A study is made of the dependence of electrochemical properties (capacity) of electrodes, prepared from iron-nickel active masses (AM), on the imperfections of the crystalline structure of the AM components. The magnetic characteristics of AM (magnetic susceptibility X 3 0 p, coercive force Hc and residual magnetization $I_{\rm R}$) are used as parameters which determine the degree of structural imperfections. The results of measurements reveal the presence of magnetic-electrochemical characteristics of AM relation. The higher the values of $\chi_{\partial \mathcal{D}} \phi$ and $I_{\rm R}$, the more imperfect is the crystal lattice of the AM components and the higher the AM quality. The possibility exists of determining the AM quality on the basis of the results of magnetic measurements.

1/1..

- 26 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

UNCLASSIFIED PROCESSING DATE--11SEP70

1/2 009 UNCLASSIFIED PROCESSING DATE--11SEP70

TITLE--MAGNETOMETRIC STUDIES OF THE IRON ELECTRODE OF AN ALKALINE BATTERY.

TITLE-MAGNETOMETRIC DETERMINATION OF CURRENT EFFCIENCY DURING THE CHARGING AUTHOR--KUKOZ, F.I., MAKAROV, V.I., SOROKINA, S.F.

COUNTRY OF INFO-USSR

SOURCE--ELEKTROKHIMIYA 1970, 6(2), 195-8

DATE PUBLISHED ---- 70

SUBJECT AREAS--ENERGY CONVERSION (NON-PROPULSIVE)

TOPIC TAGS--BATTERY ELECTRODE, IRON

CONTROL MARKING--NO PESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1988/0254

STEP NO--UR/0364/70/006/002/0195/0198

CIRC ACCESSION NO--APO105328

UNCLASSIFIED

2/2 UNCLASSIFIED PROCESSING DATF--1185270 CTRC ACCESSION NO--AP0105328 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. LAMINAR FE ELECTRODES (CONTG. TOTAL FE EQUALS \$3.7 AND METALLIC FE EQUALS 46.9PERCENT AND CONTG. THE STD. ADDITIVES OF S AND NI) WERE CYCLED AT 100 MA DISCHARGE TO 0.75 V RELATIVE TO THE HGO REFERENCE ELECTRODE AND 125 MA CHARGE FOR PERIODS SMALLER THAN OR EQUAL TO 8 HR. THE MAGNETIC SUSCEPTIBILITY (X) WAS FOLLOWED. RESULTS FOR THE 25TH AND 26TH RECHARGE CYCLE SHOWED THAT THE VALUE OF X BECAME CONST. WHEN THE CURRENT EFFICIENCY BEGAN TO DECREASE SIGNIFICANTLY FROM THE PRIMARY CHARGING REACTION. THUS, THE END OF THE RECHARGE PERIOD COULD BE DETO. BY DETG. X. UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

responserate commencer with constitute the light that is

USSR

UDC 621.791.75:669.721.5

MAKAROV, V. I., and SKACHKOV, Yu. N.

Svarka Magniyevykh Splavov (Welding of Magnesium Alloys), Moscow, Izdatel'stvo "Mashinostroyeniye," 1972, 121 pp

Translation of Introduction: Magnesium alloys have been used in industry for the last 30-40 years. The aviation industry is the main user of these alloys because they can compete in many instances with aluminum alloys. Magnesium alloys possess high chemical stability with respect to many aggressive media, can carry high impact loads because of their low elasticity modulus, and they can be easily machined. This in addition to their good mechanical properties makes these alloys a desirable light structural material.

In comparison with aluminum alloys, magnesium alloys are more stable in aqueous carbonate solutions, and are not affected by gasoline, kerosene, benzene, toluene, phenol, rubber, oil, and greases that contain neither acids nor water.

However, magnesium alloys are less corrosive-resistant than aluminum alloys when subjected to mineral acids and their salts (with the exception of fluorides), organic acids, aqueous and alcohol solutions of certain organic 1/5

USSR

n kija tah masathara aren besar masahorak masah bah ka atah a

MAKAROV, V. I., and SKACHKOV, Yu. N., Svarka Magniyevykh Splavov, Moscow, Izdatel'stvo "Mashinostroyeniye," 1972, 121 pp

halogens (chloromethyl, chloroethyl), and methyl alcohol. Magnesium alloys are unsuitable for application in fresh water and sea water, as well as in water vapors. Special corrosion-protective coatings (surface oxide films and paint-varnish coatings) make it possible to extend the life and area of application of these alloys.

Magnesium alloys are used for manufacturing items designed to function under various environments. The aviation, automobile, and electrical industries are the largest users of these alloys. They are also used for the building of cranes because of their light weight and ease in handling.

However, the application of magnesium alloys as structural materials would have been impossible without the development of machining methods and welding technology. With increased production of magnesium and its alloys, the application of welding in a protective atmosphere has found wider use for joining light metals and alloys. Contact welding -- such as spot, seam, and flash welding -- is also used quite frequently.

2/5

- 93 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

. sa sa sa sa sa sa ta comuni. Balangadal addik katalendaran lithudut dibikli dama madi kindiya: "Media dibigiska da

USSR

MAKAROV, V. I., and SKACHKOV, Yu. N., Svarka Magniyevykh Splavov, Moscow, Izdatel'stvo "Mashinostroyeniye," 1972, 121 pp

As a rule, the contact welding of structural parts made of stamped sheet metal stock of small thickness (up to 4 mm) presents no difficulties. However, in order to protect the inside surfaces of lap joints from corrosion, spot welding should be carried out with the use of special cementing material. Blanks of different profiles or rods made of magnesium alloys can be joined successfully by contact welding. Gas welding (acetyleneoxygen) and plasma welding can also be used for the welding of magnesium alloys.

Nevertheless the weldability of magnesium alloys has been studied insufficiently compared with aluminum alloys. For many years much attention was paid to the production of high-strength alloys with good structural properties. As a result, the alloying technology aimed at the production of serviceable alloys did not consider the welding requirements. Therefore, only a small part of industrial magnesium alloys were deemed suitable for welding.

The metallurgy and technology of welding, as well as properties of welds produced by deformed magnesium alloys that are used for the production of 3/5

		,i		
USSR		1		
MAKAROV, V. I., and SKACHKOV, Yu. N., Izdatel'stvo "Mashinostroyeniye," 1972	Svarka Magniyevy , 121 pp	kh Splavov,	Moscow,	
structural parts have been studied ins problems of the weldability of magnesi protective gases. This method is most parts made of light matals.	um allovs during	insion mero	THE TH	
Translation of Table of Contents:			Page	
Translation of lable of company			_	
Introduction			3	
n of Magnasium an	A Tre Allovs		5	
Chapter 1. Properties of Magnesium an	u res manjo		5	
Properties of Magnesium	or Flements		6	
Interaction of Magnesium With Oth Main Characteristics of Deformed	Magnesium Alloys		16	
a vy 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11045	•	25	
Chapter 2. Weldability of Magnesium A	TTOAS		25	
Basic Welding Difficulties	Walding		28	
Metallurgical Characteristics of	uctoring		51	
Mechanical Properties of Welds				
0.4	_			1.11.

	MAKAROV, V. I., and SKACHKOV	, Yu. N., Svarka Magniyevykh Splav	ov. Moscow.
111	Izdatel'stvo "Mashinostroyen	iye," 1972, 121 pp	
	Chapter 3. Arc Welding of M	agnesium Alloys in an Atmosphere c	Page
	Protective Gases	-6. Corona Arroys in an Armosphere o	
	Welding Equipment		59
	Industrial Welding Mater	riai	60
	Preparation of Items to	he Wolded	64
	Welding With an Infusib	lo Planto 1	68
	Welding With a Fusible E	le precriode	71
4	Effect of Various Techno	ological Factors on the Strength of	_ 78
e de Nacional	Welded Joints	regreat ractors on the Strength of	
	Sensitivity of Welds to	Strong Conservation	89
1.10	Weld Stresses	octess Concentrators	100
	Main Defects of Welds		101
	Controlling the Quality	of Welde	11.1
	Correction of Defects	or nergy	11.3
			115
	Chapter 4. Organization of the	he Working Area and Safety Techniq	Ü
	During Argon Arc	Welding	
	, , , , , , , , , , , , , , , , , , ,	"The same of the s	116
	References		*
	5/5		120

Molecular Biology

UDC 576.858:615.28

ORLYANKIN, B. G., KOSHEIEVA, R. V., SERGEYEV, V. A., Doctor of Riological Cormunicated Sciences, and MAKAROV, V. V., Candidate of Biological Sciences (Cormunicated by KOVALENKO, V. V., Candidate of Institute of Veterinary Virology and Necrobiology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute of Veterinary Virology No. 7a. R.), All-Union Research Institute On Veterinary Virology No. 7a. R.), All-Union Research Institute On Veterinary Virology No. 7a. R.), All-Union Research Institute On Veterinary Virology No. 7a. R.)

"The Effects of Inhibitors of Macromolecular Synthesis on the Reproduction of Microbiology

Moscow, Doklady Vsesoyuznoy Ordena Lenina Akademii Sel'skokhozyaystvennykh Nauk Aujeszky's Disease Virus"

Abstract: Since little information is available on the effects of various Abstract: Dince little information is available on the errects of various antimetabolites and antibiotics on the multiplication of Aujestky's disease imeni V. I. Lenina, No 2, 1973, pp 35-36

antimetabolites and antibiotics on the multiplication of Aujeszky's disease antimetabolites and antibiotics on the multiplication of Aujeszky's disease from the effects of 5-brono-z-defects of 5-br preparation of actinomycin D, U.I. MB/mL), puromycin (1. MB/mL) and cyclonexation (10 MB/mL) on the reproduction of AW in chick embryo tissue culture. preparation was found to significantly inhibit viral replication during the latent period.

If administered after 8 h (6 h in the case of BDI), no natent period. If administered after on to n in the case or BDJ, no inhibition was obtained since the synthesis of the viral building blocks had

been completed.

USSR

UDC: 521.372.837(083.8)

VANDERSKIY, M. V., ABRAMOV, V. P., MAKAROV, V. K.

USSR Author's Certificate No 250232, filed 19 May 67, published 16 Jan 70 (from RZh-Radiotekhnika, No 7. Jul 70, Abstract No 7B183 P)

Translation: The proposed switch is based on a five-arm strip circulator with one input arm and four output arms. One pair of output arms is isolated, and the other pair divides the input signal into two parts with a phase shift of 180° in one arm as compared with the other. In the ferrite discs of conventional Y-circulators, the distribution of the electric and azimuthally magnetized fields is such that in addition to the field minimum lying in the region of the isolated arm, there is another minimum diametrically opposite from the first. Diametrically opposite from the output arm is an electric field with the same value as the field in this arm, which is in phase with the input value of the field and 1800 out of phase with the output value. This makes it possible to connect two additional arms to the conventional Y-circulator at an angle of 60° to the axis of the input arm. This design extends the functional possibilities of the channel. Two illustrations. A. K.

1/1

± 33 -

USSR

UDC: 51

MAKAROV, V. L., TITOV, V. V., and SHEYKHETOV, B. M.

"A Model for Designing the Production Program for an Industrial Enterprise"

Sb. tr. In-t mat. Sib. otd. AN SSSR (Collection of Works, Institute of Mathematics, Siberian Division, Academy of Sciences, USSR) No 7(24), 1972, pp 61-70 (from RZh--Matematika, No 7, 1973, Abstract No 7V569)

Translation: In this model for designing the production program of an industrial enterprise, one of the steps in the operation model for the enterprise, the existing practice of computing the production problem is formalized. Authors' abstract.

1/1

... 3/. ...

• บรรณ์

GROSS, YE. F., KREYNGOL'D, F. I., MAKAROV, V. L., Leningrad State University imeni A. A. Zhdanov

"Resonance Interaction Between Ortho- and Paraexcitons in a ${\rm Cu_2O}$ Cuprous Oxide Crystal With the Participation of Phonons"

Moscow, Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol. 15, No. 7, 5 Apr 72, pp 383-386

Abstract: The exciton luminescence spectra of $\mathrm{Cu}_2\mathrm{O}$ was studied to determine the frequencies of all optical phonons, including vibrations of $\Gamma_{2.5}^+$ active in Raman scattering. It is noted that in addition to the triple degenerate exciton state n=1 of the "yellow" series with symmetry $\Gamma_{2.5}^+$ (orthoexciton), there should also exist in the $\mathrm{Cu}_2\mathrm{O}$ crystal a nondegenerate state n=1 with symmetry Γ_2^+ (paraexciton). Transitions only to levels of the orthoexciton $\Gamma_{2.5}^+$ which were resolved in the quadrupole approximation can be observed in luminescence and absorption spectra. The transition to the Γ_2^+ state is forbidden in the dipole and quadrupole approximation and therefore this state has not been observed up until this time. Several bands arising due to annihilation of the exciton with simultaneous excitation or disappearance of phonons are observed in the luminescence spectrum of $\mathrm{Cu}_2\mathrm{O}$ along with resonance radiation of the exciton Γ_2^+ . Transition

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

GROSS, YE. F., et al, Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol. 15, No. 7, 5 Apr 72, pp 383-386

to the Γ_{25}^+ level with the participation of Γ_{25}^- , Γ_{12}^- , $\Gamma_{2,}^-$ and Γ_{15}^- phonons is permissible in the dipole approximation. A table is given showing the frequency of optical phonons of cuprous oxide measured on the busis of luminescence spectra. In addition to phonon repetitions the table shows an additional radiation band which is located at a distance of about 180 cm⁻¹ from the line of the orthoexciton and which has the characteristic shape of phonon repetition of the free exciton. The dependence of the luminescence intensity of this band on temperature is sharply different from the temperature dependence of the remaining phonons. It is also noted that phonon repetition with a frequency of 130 cm⁻¹ is never encountered in the radiation spectrum of bound excitons of cuprous oxide. It is suggested that this band arises from the interaction of a phonon with another (not Γ_{25}^{\dagger}) exciton state. Although the authors knew where the paraexciton level should be located, it could not be observed either in absorption or in luminescence. It was observed only in crystals subjected to deformation, and the new line appeared in the luminescence spectrum of Cu20 under compression of the crystal along the C4 axis of symmetry. It is concluded that the rise of the paraexciton line in the spectrum of cuprous oxide under deformation is due to resonance scattering of the orthoexciton through the level of the paraexciton with excitation of a phonon and subsequent radiative transition to the ground state.

USSR

UDC: 51

MAKAROV, V. L., MARSHAK, V. D., FEFELOV, V. F.

"An Algorithm for Formulating Optimum Dynamic Expenditure/Output Models"

V sb. Algoritmy i programmy realizatsii narodnokhoz. modeley (Algorithms and Programs for Realization of National Economic Models--collection of works), Novosibirsk, 1971, pp 116-133 (from RZh-Kibernetika, No 5, May 72, Abstract No 5V437)

[No abstract]

1/1

UDC: 51

USSR

MAKAROV, V. L.

"Existence of a Main Line in a Model With Discount"

Sb. tr. In-t mat. Sib. Otd. AN SSSR (Collected Works. Institute of Mathematics, Siberian Department of the Academy of Sciences of the USSR), 1971, vyp. 2(19), pp 109-113 (from RZh-Kibernetika, No 4, Apr 72, Abstract No 4v476)

Translation: The author considers a dynamic model of economics with consumption. Conditions are stated under which a stationary optimum trajectory exists. V. Malinnikov.

1/1

- 25 -

USSR'

UDC 517.948.330.115

KANTOROVICH, L. V. and MAKAROV, V. L.

"Differential and Functional Equations Arising in Models of Economic Dynamics"

Moscow, Sibirskiy Matematicheskiy Zhurnal (Siberian Mathematical Journal), Vol 11, No 5, Sept-Oct 1970, pp 1046-1059

Abstract: The behavior of an economic system over discrete or continuous time is described by trajectories in the phase space of the system, which is universally represented as a non-negative vector in an n-dimensional Euclidean space. Basic methods are examined for determining the vectors of an economic system in phase space related to extremal problems and equations. Results are given, without proof, that indicate the nature of the mathematical problems involved: e.g., identification of the actual trajectory of a system or the one which it should follow (in the case of a controlled system) and determination of its properties. Four classes of extremal problems are considered: 1) finding the (c,T)-optimum effective trajectory, 2) finding the effective or infinitely-optimum trajectory, 3) finding the (u,λ) -optimum trajectory, or 4) finding the effective Malenvo trajectory. The economic state is considered as a collection of products that can be labor or natural resources, production capabilities, services, or various products. The vector c_t is a flow of consumable product; in time t. The method 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

(| 100 E | 10

USSR

KANTOROVICH, L. V., et al, Sibirskiy Matematicheskiy Zhurnal, Vol 11, No 5, Sept-Oct 1970, pp 1046-1059

given is best suited for small-dimension models, taking into account raw materials, capital investment, and product consumption. The single-product model is treated at length, emphasizing the two production factors of capital and labor. Optimum vectors are determined from price vectors and the distribution of labor and capital funds. Specific cases are examined in which the capital investment is 1) time limited and 2) allocated and committed. A general model of economic equilibrium in the form of noncoalition game among several players is examined. The stability of the model is tested in terms of demand, supply, and pricing. Orig. art. has 15 refs.

2/2

78.

UNCLASSIFIED PROCESSING DATE--160CT70 1/2 023

TITLE--THERMAL BREAKDOWN OF RUBBER IN SUPERHEATED WATER VAPOR AT

ATMOSPHERIC PRESSURE -U-

AUTHOR-(05)-MAKAROV, V.M., EPSHTEYN, V.G., ZAKHAROV, N.D., MAKAROV, M.H., KALOSHINA, A.V.

COUNTRY OF INFO--USSR

SOURCE--KAUCH. REZINA 1970, 29(2), 25-7

DATE PUBLISHED----70

SUBJECT AREAS-MATERIALS

TOPIC TAGS--THERMAL DECOMPOSITION, STYRENE, WEAR RESISTANCE, SYNTHETIC RUBBER/(U)SKMS50ARKM15 STYRENE RUBBER

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1993/0387

STEP NO--UR/0138/T0/029/G02/0025/0027

CIRC ACCESSION NO--APO113305

_______UNCLASSIFIED

2/2 023 UNCLASSIFIED PROCESSING DATE--160CT70 CIRC ACCESSION NO--APOLI3305 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE STRAIN RELAXATION PARAMETERS (V. M. MAKAROV, 1969) OF SYNTHETIC RECLAIMED RUBBER SKMS-30-ARKM-15 SHOWED THAT THE OPTIMUM TEMP. AND TIME OF RECLAIMING WITH SUPERHEATED STEAM (M. M. MAKAROV, ET AL., 1962) WERE 300DEGREES AND 180 SEC WHEN 15PERCENT PETROLEUM DIL (MAZUT) WAS ADDED TO THE RUBBER. THE PRESENCE OF MAZUT SLOWED THE CROSSLINKING OF THE RECLAIMED RUBBER WITHOUT AFFECTING THE DEVULCANIZATION RATES. THE RECLAIMED RUBBER OBTAINED BY THIS METHOD HAD BETTER HEAT STABILITY, WEAR RESISTANCE, AND FATIGUE RESISTANCE THAN OTHER RECLAIMED RUBBERS. FACILITY: YARDSLAV. TEKHNOL. INST., YAROSLAVL, USSR. UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

UDC: 621.791.754

MAKAROV. V. N., Engineer, and GRUZDEV, B. L., Candidate of Technical Sciences

"The Effect of an External Magnetic Field on the Structure and Properties of Refractory Nickel Alloy Joints"

Kiev, Avtomaticheskaya Svarka, No 9, Sep 73, pp 72-73

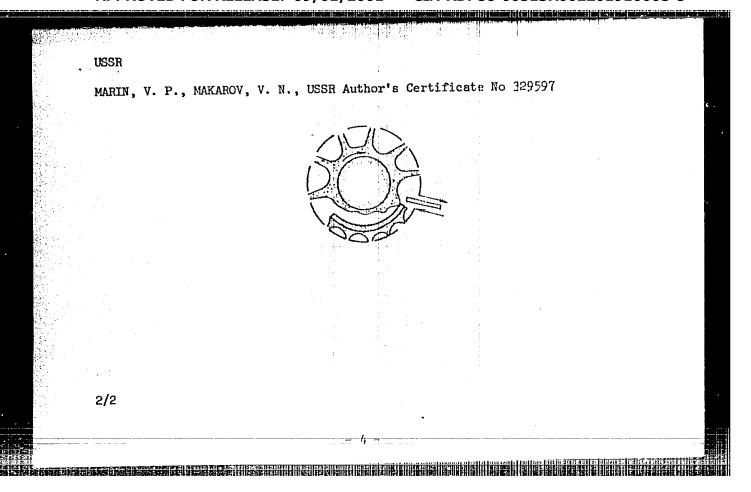
Abstract: The authors study the effect of the electromagentic influence on the molten bath during welding. A series of specimens were welded at the Ufa Aviation Institute imeni S. Ordzhonikidze from the VZh98 and EI602 alloys with the aim of evaluating the effect of an external magnetic field on the structure and properties of joints. The welding was done on the ADVS-2 automaton with the IPP-300P power source. In order to set up the external magnetic field a coil was fixed to the torch nozzle. The coil is fed with constantly pulsating current. The coil had 2250 turns of Ø 0.32 mm wire. The distance between the coil and the specimen was 10 mm. The welding was carried out with and without the magnetic field. Current had to be increased 15-20 percent with the magnetic field. The metallographic study showed that welding with a pulsating field of more than 3000 ampere-turns resulted in more disoriented and finer seam metal structure. The disorientation and the finer grains result in improving the mechanical properties of the joints. The improvements are explained by the formation of a structure with a lower density of defects in the crystal lattice. 1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

UDC: 621.385.6

USSI

MARIN, V. P., MAKAROV, V. N.


"An Amplifier of the Magnetron Type"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Zhaki, No 7, Mar 72, Author's Certificate No 329597, Division G, filed 15 Jun 70, published 9 Feb 72, pp 208-209

Translation: This Author's Certificate introduces an amplifier of the magnetron type which contains an open decelerating system wound into a ring with the ends connected to the input and output of the device, a cylindrical cathode placed concentrically inside the decelerating system, forming an interaction space together with the decelerating system. An a distinguishing feature of the patent, the amplification factor is increased by introducing an auxiliary electrode into the interaction space which forms a drift region in combination with the cathods. The surface of the electrode which faces the decelerating system is coated with an emitting material.

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

UDC 535.21

RYKALIN, N. N., UGLOV, A. A., and MAKAROV, N. I., Moscow "Calculation of Heating of Films by Laser Radiation"

Moscow, Fizika i Khimiya Obrabotki Materialov, No 2, Mar-Apr 71, pp 3-8.

Abstract: A number of problems are studied on the heating of 2-layer materials by a local surface heat source, such as a laser beam. For thin films, the solution of the problem is found using integral transforms with respect to time and coordinates and a limit transfer as λ_1 and $a_1^{+\infty}$ (λ_1 and a_1 are the heat conductivity and temperature conductivity coefficients of the upper layer), since when this condition is fulfilled the temperature through the thickness of the upper plate will be unchanged. In particular, the two-dimensional problem of heating of a 2-layered plate is studied on the assumption that the upper plate is thin, and a solution of the one-dimensional problem of heating of a film is found, considering heat emission from the surface.

. 1/1 .

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

EDC 621.385.6

MARIN, V. P., MAKAROV, V. N., SMIRNOV, N. A.

"Study of Debunching of Electron Stream in Drift Space of Type M Amplifier"

Elektron. tekhnika. Nauchno-tekhn. sb. Elektron. SVCh (Electronic Technology. Scientific-Technical Collection. Microwave Electronics), 1971, Issue 1, pp 132-133 (from RZh--Elektronika i yeye primeneniye, No 5, May 1971, Abstract No 5A142)

Translation: The results are presented of an experimental study of the effect of the length of the drift space of Type M backward wave amplifiers with a cathode in the interaction space at the debunching of the electron stream. It is shown that with the length of the drift space more than $3 \lambda_3$, grouping of the electrons is not complete. 2 ref. Author's Abstract.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

UNCLASSIFIED PROCESSING DATE--300CT70
TITLE--STRUCTURE AND SOME PROPERTIES OF SILICA, REVIEW +U-

AUTHOR-1021-MAKAROV, V.N., POSTNIKOV, V.S.

COUNTRY OF INFO--USSR

SOURCE-FIZ. KHIM. OBRAB. MATER. 1970, 121, 93-108

DATE PUBLISHED ---- 70

SUBJECT AREAS--EARTH SCIENCES AND OCEANDGRAPHY

TOPIC TAGS--SILICA, EPR SPECTRUM, BIBLIDGRAPHY, QUARTZ

CENTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED
PROXY REEL/FRAME--1998/0945

STEP NO--UR/0472/70/000/002/0093/0108

CIRC ACCESSION NO--APOI21547

UNCLASSIFIED

2/2 009 UNCLASSIFIED PROCESSING DATE--300CT70
CIRC ACCESSION NO--APO121547
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE STRUCTURES OF CRYST. AND
GLASSY QUARTZ ARE DISCUSSED. THERE ARE 2 TYPES OF DEFECTS IN THESE
GLASSY QUARTZ ARE DISCUSSED. AND OPEN RINGS OF SI,O TETRAHEDRA AND
STRUCTURES: IMPURITY ATOMS, AND OPEN RINGS OF SI,O TETRAHEDRA AND
HOLES. THE DEFECTS, ALTHOUGH PRESENT IN SMALL CONCNS., GREAT AFFECT THE
HOLES. THE DEFECTS, ALTHOUGH PRESENT IN SMALL CONCNS., GREAT AFFECT THE
PHYS. PROPERTIES OF SID SUB2. DIELEC. AND MECH. LOSSES AND OPTICAL AND
PHYS. PROPERTIES OF SID SUB2. DIELEC. THE TYPE OF DEFECT
PRESENT.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

บรรถ -

UDC 621.791.011:669.715

MAKAROV, V. P., KOZLOV, I. T., IGNAT'YEV, V. G., NAZARENKO, A. N.

"Mechanical Properties of the Base Metal and Welded Joints of Alloys 01915 and AMg6 at Below-Freezing Temperatures"

Avtomaticheskaya Svarka, No 12, 1971, pp 62-63.

ABSTRACT: The new aluminum-zinc-magnesium alloy type 01915 has better characteristics for use in railroad car building than the traditional aluminum alloy AMg6. The new alloy is stronger, has a higher yield point and better pressing properties. Pressed shapes of 01915 alloy are approximately 10% less expensive than shapes of AMg6 alloy. Studies of the mechanical properties of base metal and welded joints of 01915 alloy were performed at +20, -20, -40 and -60°C. A table of the test results is presented. The results showed that the mechanical properties of the base metal and welded joints of both alloys remain practically unchanged in the temperature interval tested. The mechanical properties of welded joints of both alloys are lower than those of the base metal. The yield point of joints of 01915 alloy is 20 to 24% higher than that of joints of AMg6 alloy. The relative elongation is

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

MAKAROV, V. P, et al., Avtomaticheskaya Svarka, No 12, 1971, pp 62-63

greater for AMg6 joints. The impact toughness of joint netal made by semiautomatic welding is lower than that of the base metal, while the impact toughness of joint metal produced by manual welding is higher than that of the base metal.

2/2

- 31 ~

1/2 025 UNCLASSIFIED PROCESSING DATE--27NOV70
TITLE--DETERMINATION OF THE MONDTONIC BENDING OF CRYSTAL LATTICES BY X RAY
DIFFRACTION TOPOGRAPHY -U-

AUTHOR-(02)-MAKAROV, V.P., MOLOTILOV, B.V.

COUNTRY OF INFO--USSR

SOURCE--ZAVOD. LAB., 1970, 36, (2), 187-189

DATE PUBLISHED ----- 70

SUBJECT AREAS--PHYSICS, MATERIALS

TOPIC TAGS--CRYSTAL LATTICE DEFORMATION, X RAY DIFFRACTION ANALYSIS, TOPOGRAPHY, GRYSTAL SURFACE, X RAY MEASUREMENT

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3003/0312

PROXY-REEL/FRAME--3003/0312 STEP-NO--UR/0032/70/016/002/0187/0189

CIRC ACCESSION NO--AP0129544

- uniciazitito

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

2/2 025
CIRC ACCESSION NO--APOL29544
ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. AN IMPROVED METHOD DE DETERMINING
THE MONOTONIC BENDING OF METALLIC LATTICES, BASED ON THE SCHULZ X RAY
TOPOGRAPHICAL TECHNIQUE, IS DESCRIBED. A STRAIGHT WIRE IS STREICHED
OVER THE CRYSTAL AND THE IMAGES OF THIS WIRE FORMED BY X RAY DIFFRACTION
CORRESPOND TO THE BENDING OF THE CRYSTAL PLANES. A FORMULA REPRESENTING
THE RELATIONSHIP BETWEEN THE SHAPE OF THE WIRE IMAGE AND THE CURVATURE
OF THE LATTICE IS DERIVED. THE FORMULA ENABLES A DISTINCTION TO BE
MADE BETWEEN THE ACTUAL BENDING OF THE PLANES AND ASPERTITIES ON THE
CRYSTAL SURFACE.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

UNCLASSIFIED PROCESSING DATE--090CT70
TITLE--X RAY DIFFRACTION CONTRAST IN FERROMAGNETIC DOMAINS OF THE FE PLUS
3.5PERCENT SI ALLOY -UAUTHOR-(02)-MAKAROY, V.P., MOLUTILUV, B.V.

COUNTRY OF INFO-USSR

SOURCE--IZV. AKAD. NAUK SSSR, SER. FIZ. 1970, 34121, 361-6

DATE PUBLISHED ------ 70

SUBJECT AREAS-MATERIALS

TOPIC TAGS--X RAY DIFFRACTION, IRON ALLOY, SILICON STEEL, FERROMAGNETIC DOMAIN, METAL SINGLE CRYSTAL, METAL CRYSTALLIZATION, CRYSTAL GROWING

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1995/0200

STEP NO--UR/0048/70/034/002/0361/0366

CIRC ACCESSION NU--APO115904

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

PROCESSING DATE--090CT70 2/2 UNCLASSIFIED CIRC ACCESSION NU--APO115904 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. SINGLE CRYSTALS OF THE ALLOY FE PLUS 3.5PERCENTSI WERE GROWN FROM.A MELT WITH CHYSTN. RATE 0.12 MM PER MIN AND TEMP. GRADIENT IN SOLID PHASE SODEGREES PER CM. THE MAGNETIC STRUCTURE WAS EXAMD. SIMULTANEOUSLY BY POWDER AND X RAY DIFFRACTION TOPOGRAPHIC TECHNIQUES. THE X RAY PHOTOGRAPHS WERE TAKEN BY THE SENSITIVE SHULZ METHOD. THERE ARE 3 KINDS OF DIFFRACTION CONTRAST: DYNAMIC (A). EXTINCTIAL (B). AND DISCRETE EXTENSION DF A CRYSTAL LATTICE (C). THE A IS THE RESULT OF A DISTORSION OF H A WAVE FIELD GENERATED IN THE "THICK" CRYSTAL (MUT APPROXIMATELY EQUAL TO 10, WHERE MU EQUALS LINEAR ABSORPTION COEFF., T EQUALS THICKNESS OF THE CRYSTAL) WHEN THE LAUE TYPE PHOTOGRAPH IS TAKEN. IT DECREASES THE INTENSITY OF THE DIFFRACTED BEAM. THE B OCCURS IN THE "THIN" CRYSTALS (MUT APPROXIMATELY EQUAL TO 1) ON THE LAUE PHOTOGRAPHS OR IN THE "THICK" CRYSTALS ON THE PHOTOGRAPHS TAKEN WITH REFLECTION (BRAGG METHOD). THE C IS A RESULT OF EXTENSION OF TWO ADJACENT REGIONS OF SIZE 10 PRIME NEGATIVEL MM OR 1 LARGER. THE BORDER BETWEEN THESE REGIONS OCCURS ON A PHOTOGRAPH AS LIGHT OR DARK STREAKS. THE 8 IS OBSERVABLE IN THE PLACES OF GREAT DISTORTIONS ON TOPODIAGRAMS TAKEN BY SHULZ METHOD. TSNIIGHM IM. BARDINA, MOSCOW, USSR.

UNCLASSIFIED

USSR

MAKAROV, V. P.

"Statistical Analysis of Non-Ideal Cylindrical Shells"

Moscow, Mekhanika Tverdogo Tela, No 1, 1970, pp 97-104

Abstract: Further development of the theory of stochastic problems of stability and their applications has been hindered by the absence of sufficiently detailed statistical information on the properties of the input and the output parameters characterizing the random behavior of structures. This work suggests a method for experimental study of random fields of displacements at points on circular cylindrical shells with initial irregularities. Complete statistical analysis of the initial deviations of the mean surface from the ideal form and displacements of the shell in axial compression is performed. Types of wave formation at the moment of loss of stability are investigated. The possibility is demonstrated of producing statistical characteristics required for prediction of precritical and postcritical displacements and the distribution of critical forces.

1/1

USSR

VDC: 621.335.5

LIKHITTSINDER, M. Ya., MAKAROV V. P., CHEPURNOV, V. Y.

"A Device for Multiplying and Dividing Slowly Changing Signals"

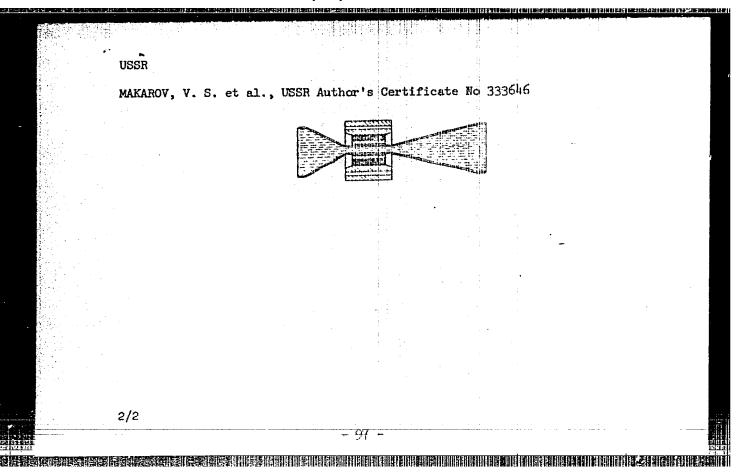
Nauch. tr. VNII kibernet. (Scientific Works of the All-Union Scientific Research Institute of Cybernetics), 1971, vyp. 4, pp 66-70 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 7, Jul 72, Abstract No 7B488)

Translation: A device is described for analog multiplication and division of several variables represented by square bipolar voltage pulses. The device incorporates a sawtooth voltage generator, a null indicator, a phase-sensitive rectifier, an AC amplifier, a comparison circuit, synchronous filters, and pulse dividers. The error of executing the operations is one percent or less. Two illustrations, bibliography of four titles. V. R.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

UDC: 621.362.2


MAKAROV V.S., KOLOMOYETS, N. V., CHERKASSKIY, A. Kb.

"A Thermoelectromagnetic Pump"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Chraztsy, Tovarnyye Znaki, No 11, Apr 72, Author's Certificate No 333646, Division H, filed 25 Nov 70, published 21 Mar 72, p 213

Translation: This Author's Certificate introduces a thermoelectromagnetic pump which contains P and N semiconductors, hot and cold commutation buses, a channel with liquid metal coolant, a cooling system, and a magnetic system with permanent magnets. As a distinguishing feature of the patent, the length of the working gap of the magnetic system is reduced and the efficiency of the pump is increased by making the cold commutation bus in the form of a polepiece of the magnetic system with cooling channels inside.

1/2

USSR

UDC 621.762.002.5(088.8)

UDACHIN, I. V., MAKAROV, V. S., TIMOSHIN, D. Ya., GAYEV, O. B., and GRIN, L. T.

"Device for Processing Powdered Materials With Liquids"

USSR Author's Certificate No. 268610, Filed 1/07/68, Published 3/08/70 (Translated from Referativnyy Zhurnal-Metallurgiya, No. 2, 1971, Abstract No. 2 G472 P).

Translation: The device includes a container, the base of which is equipped with a drainage aperture and a perforated barrier. In order to eliminate oxidation of the powder near the bottom of the container as it is dried, an automatic valve is mounted coaxially with the drainage aperture for drainage of the liquid.

1/1

- 41 -

MAKAROU, U.U.	In this paper the problem of improving the technoblaining simple crystals arm discussed, and results actualy of the structure of the defects in them.	KI-10. EFFECT OF THE GROWTH COMDITIONS ON THE PERFECTION OF Cap CRYSTALS [Article by T. I. Ol'khovikova, A. P. Herrin, V. T. Maketov, F. R. Khashin Rovensibirsh, III Simpasium po Professiona Roads & Sinvers Foldproyednikovykh Kristaliov, I [Ichok, Rassien, 12-17 June 1377, p. 15.] The methods of a-ray diffraction topography [Sopwass and Lang) were upparform a systematic study of the dasgem of prefection of simple parities to parform a systematic study of the dasgem of prefection of simple parities of the dasgem of prefection of simple parities. It was demonstrated that the unalloyed Cap crystals obtained from the purity stowers, as a rule, high dislocation density, in addition, there as hour, by stowers and single parities of the purity stowers and single parities.	27°K > 59008
	technological process of	FECTION OF CAP CRYSTALS V. Maketov, F. R. Khamthev; invers folustovojnikovykh To j forman and Lang wars maj forman of single pairie formin of single pairie by the Grochralst sathed crystals form the crystals and tion, there are y landing to cracking of the	4

USSR

GUZHAVIN, V. V., IVANENKO, I. P., MAKAROV, V. V.

"Effect of the Geomagnetic Field on the Angular Distribution of Particles in an Electromagnetic Cascade"

Moscow, Yadernaya Fizika, Vol 14, No. 5, 1971, pp 1006-1013

Abstract: The particles discussed in this paper are charged particles falling in a cascaded shower in the atmosphere and deflected by the earth's magnetic field. This deflection leads to the asymmetry of the shower's three-dimensional characteristics with respect to the axis of the shower. The paper derives the basic equations of the theory accounting for the effect of the earth's magnetic field on the particles, with an approximation of small angles of multiple dispersion, and computes the angular distribution function of the shower without taking the ionization losses into account. This latter computation is done by the method of moments.

1/1

USSR

UDC: 621.372.852.1

MAKAROV, V. V.

"Peculiarities in the Design of Tunable Strip Waveguide Filters"

V sb. Tonkiye magnith. plenki, vychisl. tekhn. i radiotekhn. T. 1 (Thin Magnetic Films, Computer Technology and Radio Engineering. Vol. 1), Krasnoyarsk, 1970, pp 29-31 (from RZh-Radiotekhnika, No 2, Feb 71, Abstract No 2B197)

Translation: The author discusses the possibility of constructing tunable strip filters based on filters with a maximally flat response with quarter-wave connections (use of the latter makes it possible to reduce requirements for accuracy in the tuning mechanism). N. S.

1/1

UNCLASSIFIED 1/2 PROCESSING DATE--040EC70 035 ITLE-PROPERTIES OF HIGH RESISTANCE GALLIUM ARSENTOE CONTAINING A TITANIUM IMPURITY -U-NUTHOR-(05)-VOROBYEV, V.L., GONTAR, V.M., YEGIAZARYAN, G.A., IZERGIN, A.P., MAKAROV, V.V. OUNTRY OF INFO--USSR OURCE-FIZ. TKEH. POLUPROV. 1970, 4(5), 993-7 ATE PUBLISHED----70 SUBJECT AREAS--PHYSICS OPIC TAGS--SINGLE CRYSTAL GROWTH, GALLIUM ARSENIDE, TITANIUM, CRYSTAL ELATTICE DISLOCATION, CRYSTAL IMPURITY, MANGANESE, IROM, ALUMINUM, MAGNESIUM, NICKEL, COBALT, BISMUTH, CHROMIUM, TIN, SEMICONDICTOR MATERIAL CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3003/0146 STEP NO--UR/0449/70/004/005/0995/0997 EIRC ACCESSION NO--APO129402 -----UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

2/2 UNCLASSIFIED PROCESSING DATE--04DEC70 035 IRC ACCESSION NO--APO129402 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. GAAS SINGLE CRYSTALS WERE GROWN BY THE CZOCHRALSKI METHOD FROM POLYCRYST. GAAS WITH AN ADDN. OF METALLIC THE DISLOCATION D. WAS SMALLER THEN OR EQUAL TO 2 TIMES 10 PRIME4-CM PRIME2, AND THE TI CONTENT WAS SIMILAR TO 10 PRIME18-CM PRIMES. THE CONTENTS OF FE, AL, MG, NI, CO, BI, CR, SN, AND MN WERE 10 PRIME NEGATIVES-10 PRIME NEGATIVES WT. PERCENT, AND THAT OF SE WAS SIMILAR TP 10 PRIME NEAGTIVES WT. PERCENT. THE MATERIAL WAS P TYPE, WITH AN ELEC. RESISTIVITY OF SIMILAR TO TO PRIMES OHM CM, A FREE CARRIER CONCN. OF 10 PRIME14-10 PRIME15-CM PRIMES, AND A MOBILITY OF 10-100 CM PRIME2-V SEC AT ROOM TEMP. TWO WNERGY LEVELS WERE DETD. FROM THE TEMP. DEPENDENCE OF THE HALL CONST. AND OF THE ELEC. COND. AS 0.35 AND 0.22 EV. RESP.: THE LATTER LEVEL WAS DUE TO THE GA VACANCY. DIODES OF THE P-PI-N TYPE HERE PREPD. FROM THE CRYSTAL: USING SN AS THE INJECTING CONTACT AND AG AS THE NONRECTIFYING ONE. THE AREA OF THE PN JUNCTION WAS 5 TIMES 10 PRIME NEGATIVES-10 PRIME NEGATIVES CM PRIMES. CURRENT VOLTAGE CHARACTERISTICS AT ROOM TEMP. EXHIBITED A REGION OF NEG. RESISTIVITY, WHICH DISAPPEARED ABOVE 80-90DEGREES AND (OR) IN MAGNETIC FIELDS LARGER THAN OR EQUAL TO 3: KOE. THE NEG. RESISTIVITY IS EXPLAINED AS DUE TO A CHANGE IN THE SCREENING RADIUS OF THE CHARGED IMPURITIES DURING THE INJECTION.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

UDC:537.226+537.311.35]:539.16.04

MAKAROY V.V.

"Excitation of Electrons and Formation of Radiation Defect Upon Bombardment of Silicon Carbide Monocrystals by Hydrogen Ions"

Tr. Leningr. Politekhn. In-ta [Works of Leningrad Polytechnical Institute], No. 311, 1970, pp. 130-138 (Translated from Referativnyy Zhurnal Fizika, No. 11, 1970, Abstract No. 11 Ye 1078 by A. Shub)

Abstract: Cathode luminescence and ion luminescence of SiC monocrystals were studied at energies of exciting particles (electrons and H_1^+ , H_2^+ , H_3^+ ions) of up to 20 KeV. Consideration of surface phenomena permitted quantitative estimation of the effectiveness of excitation of electronhole pairs and formation of radiation defects during ion bombardment. It was determined that the energy of formation of a pair of non-equilibrium carriers by protons is 7.5 \pm 2.5 eV. The number of defects created by protons in the material studied is independent of their initial energy in the 5-20 KeV energy range.

1-/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

M

JDC: 621.397.233

USSR

KATAYEV, S. I., UL'YANOV, V. N., ZUBAREV, Yu. B., MAKAROV, V. V., KHITROVO, N. G., Moscow Electrical Engineering Institute of Communications

"A Device for Transmitting a Television Image and Accompanying Audio Signals"

Moscow, Otkrytiya, Izobreteniya, Promyshlemnyye Obrantsy, Towarnyye Zmaki, No 19, 1970. Author's Certificate No 272354, filed 19 Nov 68, p 39

Abstract: This author's certificate introduces a device for transmitting a television image and accompanying audio signals within the limits of the video signal frequency spectrum. The unit contains a sound signal source, a phase shifter, two pulse modulators, a combined video signal shaper, a driven selsym, and a special synchromixture shaper. As a distinguishing feature of the device, combination distortions are reduced by insorting a series—connected electronic key and memory element between the output of the sound signal source and the input of one of the pulse modulators, as well as inserting the same combination (series—connected electronic key and memory element) between the input of the other pulse modulator and the phase shifter. Voltage from a cadence pulse generator is sent to both electronic keys.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

1/2 028 UNCLASSIFIED PROCESSING DATE--18SEP70
TITLE--LINEAR LUMINESCENCE OF ALUMINUM DOPED SILICON CARBIDE -U-

AUTHOR-(03)-SOKOLOV, V.I., MAKAROV, V.V., MOKHOV, YE.N.

COUNTRY OF INFO--USSR

M

SOURCE--FIZ. TVERD. TELA 1970, 12(1), 285-6

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY, MATERIALS, PHYSICS

TOPIC TAGS--LUMINESCENCE SPECTRUM, SILICON CARBIDE, CRYSTAL, DOPED ALLOY, ALUMINUM CONTAINING ALLOY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1984/0223

STEP NO--UR/0181/70/012/001/0285/0286

CIRC ACCESSION NO--APO055019

UNCLASSEFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

2/2 - 028 UNCLASSIFIED PROCESSING DATE--18SEP70 CIRC ACCESSION NO--AP0055019 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. LUMINESCENCE SPECTRA WERE INVESTIGATED BY USING A CAMERA OF 270 MM. FOR SMALL DS. OF ELECTRONIC CURRENT, WEAK LINES WERE OBSD. CHANGING INTO A CONTINUUM. WITH INCREASING C. D. TOTAL INTENSITY OF THE LUMINESCENCE INCREASES AND REDISTRIBUTION TAKES PLACE OF THE RELATIVE INTENSITIES OF THE MAX. WHICH INCREASES IN COMPARISON WITH THE BACKGROUND. PHOTOMICROGRAPHS ARE GIVEN OF THE SHORT WAVELENGTH PART OF THE LUMINESCENCE SPECTRUM OF CRYSTALS OF THE 6H MODIFICATION OF SIC AT MAX. D. OF EXCITATION AND AT **80DEGREESK.** UNCLASSIFIED

Acc. Nr: A 70044852

Ref. Code: UR0531

PRIMARY SOURCE: Khirurgiya, 1970, Nr / , pp /c/-/04

THE EFFECTIVENESS OF ANTIBIOTIC THENAPY IN SURGERY

G. I. Kharchenko, V. V. Makarov

Etiotropic therapy with antibiotics should be carried out with special consideration of the features peculiar to their irregular distribution between the blood and different tissues, differences in the concentration and rate of exerction of the antibiotic from the organism depending on the type of its administration. In experiments on rabbits the authors established that in intracerdiac administration of penicillin and chloretracycline the blood concentration was 3—60 times higher in comparison with that after intramuscular introduction. These data point to the participation of individual fractions of serum proteins in the molecular process of transportation and distribution of antibiotics in the organism. In connection with the features specific to the circulation of antibiotics in the organism in localized inflammatory processes in surgery it is deemed expedient to employ them locally.

1/1

DI

02

REEL/FRAME 19771707

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

Veterinary Medicine

USSR

UDC 576.858:591.2

SERGEYEV, V. A., Doctor of Biological Sciences, ORLYANKIN, B. G., and MAKAROV, V. V., Candidates of Biological Sciences, All-Union Scientific Research Institute of Veterinary Virology and Microbiology

"The Effects of Culture Temperature on Replication of Aujeszky's and Newcastle Disease Viruses"

Moscow, Doklady Vsesoyuznoy Ordena Lenina Akademii Sel'skokhozyaystvennykh Nauk imeni V. I. Lenina, No 11, 1971, pp 44-45

Abstract: Virulent and attenuated strains were grown in chick embryo medium at various temperatures. Growth was fastest at temperatures ranging from 31 to 40°C. No growth was recorded at 24 and 42°C. The growth rate was slow at 28 to 30°C. The thermal sensitivity of the three types of viruses studied is expressed in figures representing (in proper order) the optimum temperature yielding maximum growth and the suboptimum and supraoptimum temperatures causing 90 percent inhibition of growth: attenuated Aujeszky's disease virus -- 37, 30, and 40°C; virulent Aujeszky's disease virus -- 40, 32.5, and 41.5°C; and Newcastle disease virus -- 39, 33, and 39.5°C.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

IMSHENNIK, V. K., AFANAS'YEV, A. M., GOL'DANSKIY, V. I., MAKAROV, Ye. F., PLACHINDA, A. S., SUZDALEV, I. P., Institute of Chemical Physics, USSR Academy of Sciences

"Investigation of the Dynamic and Static Distortions of Complexes by Using Gamma-Resonance Spectroscopy"

Leningrad, Fizika Tverdogo Tela, Vol 15, No 9, Sep 73, pp 2656-2660

Abstract: Gamma-resonance spectroscopy is used to study dilute paramagnetics -- a frozen aqueous solution of FeCl3 (0.1 M FeCl3 and 8.3 M HCl) and a hydrated iron-containing sulforesin at a temperature of 90°K in an external magnetic field of 450 oersteds. A computer was used to separate three relaxation times $\tau_{S_{\mathbf{Z}}}$ corresponding to the Hramers doublets,

 $S_z = \pm 5/2$, $\pm 3/2$, $\pm 1/2$, and also to determine the parameter 1 describing departure of the crystal field from the axially symmetric. An attempt is made to relate the quantity λ to static distortion of the complex. From the fact that the three relaxation times are related through two parameters P_1 and P_2 , it is concluded that spin-lattice relaxation is a two-phonon

1/2

- 62 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

IMSHENNIK, V. K. et al., Fizika Tverdogo Tela, Vol 15, No 9, Sep 73, pp

phenomenon. It is also shown that the relation between P_1 and P_2 gives information on the anisotropy of oscillations of the ligands in the complex. The authors thank Yu. F. Krupyanskiy for valuable advice and comments.

2/2

UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--THERMAL CONVERSION OF DELTA-FEOOH TO ALPHA-FE SUB2 O SUB3 STUDIED
BY MOESSBAUER SPECTROSCOPY AND X RAY DIFFRACTION HETHIDOS -UAUTHOR-(05)-VLASOV, A.YA., LOSEVA; G.V., MAKAROV, YE.F., MURASHKO, N.V.,
PETUKHOV, E.P.

CCUNTRY OF INFO--USSR

SOURCE-FIZ. TVERD. TELA 1970, 12(5), 1499-503

DATE PUBLISHED ----- 70

SUBJECT AREAS -- PHYSICS, CHEMISTRY

TOPIC TAGS--MOSSBAUER EFFECT, SPECTROSCOPY, CRYSTAL STRUCTURE, X RAY DIFFRACTION, IRON OXIDE, HEMATITE

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3005/0953

STEP NO--UR/0181/70/012/005/1409/1503

CIRC ACCESSION NO--APO133039

UNGLASSIFIED

2/2 025 UNGLASSIFIED PROCESSING DATE -- 04DEC70 CIRC ACCESSION NO--APOL33039 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE CRYSTAL STRUCTURE OF SYNTHESIZED DELTA-FEOOH AT THE TEMP. OF TRANSFORMATION INTO ALPHA-FE SUB2 O SUB3 WAS STUDIED BY MOESSBAUER SPECTROSCOPY AND X RAY DIFFRACTION. INVESTIGATIONS WERE CARRIED OUT AT ROOM TEMP. USING SPECIMENS PREVIOUSLY HEATED FOR 30 MIN AT 23-650DEGREES. AT 23-155DEGREES DELTA-FEDOH EXISTS IN THE SUPERPARAMAGNETIC STATE. THE MOESSBAUER PARAMETERS ARE: ISOMER SHIFT DELTA EQUALS 064 PLUS OR MINUS 0.06 MM-SEC RELATIVE TO NA NITROPRUSSIDE AND QUADRUPOLE SPLITTING 2 EPSILON EQUALS 0.48 PLUS OR MINUS 0.06 MM-SEC. THE LATTICE CONSTS. ARE A EQUALS 2.546 PLUS OR MINUS 0.005 AND C EQUALS 4.57 PLUS OR MENUS 0.05 ANGSTROM. THE TRANSFORMATION OF DELTA-FEDOM INTO MEMATITE OCCURS AT 155-225DEGREES WITH A SHARP DECREASE IN THE MAGNITUDE OF THE EFFECT. A JUMP IN THE ISOMER SHIFT, AN INCREASE IN THE WIDTH OF THE MOESSBAUER LINES, AND MAX. BROADENING OF THE X RAY POWDER DEAGRAM. HEMATITE FORMED AT 225-650DEGREES HAS A EQUALS 5.032 PLUS OR MINUS 0.005 AND C EQUALS 13 PLUS OR MINUS 0.1 ANGSTROM. THE EFFECTIVE FIELD ON THE NUCLEUS IN HEMATITE VARIES FROM H SUBEFF EQUALS 409 PLUS OR MINUS 30 TO 515 PLUS OR MINUS 10 KOE AT CONST. DELTA EQUALS 0.61 PLUS OR MINUS 0.06 MM-SEC AND 2 EPSILON EQUALS 0.34 PLUS OR MINUS 0.06 MM-SEC. FACILITY: INST. FIZ., KRASNOYARSK, USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

1/2 031

UNCLASSIFIED.

T PROCESSING DATE--27NOV70

TITLE--MOSSBAUER STUDY OF THE THERMOMAGNETIC TREATMENT OF TICONAL ALLOYS

AUTHOR-(05)-POVITSKY, V.A., GRANDVSKY, YE.B., FRIDMAN, A.A., MAKAROV,

YE.F., PASHKOV, P.P. COUNTRY OF INFO--USSR

SOURCE--FIZIKA METALLOV I METALLOVEDENIE, FEB. 1970. 29, (2), 247-251

DATE PUBLISHED --- FE8 70

SUBJECT AREAS -- MATERIALS, PHYSICS

TOPIC TAGS--ALLOY, MOSSBAUER EFFECT, MOSSBAUER SPECTRUM, SPECTROSCOPIC ANALYSIS, MAGNETIC PROPERTY, METAL HEAT TREATMENT, X RAY ANALYSIS/(U)TICONAL ALLOY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3003/0212

STEP NO--UR/0126/70/029/002/0247/0251

CIRC ACCESSION NO--APOL29468

UNCLASSIFIED

CIRC ACCESSION NO--APO12946B

ABSTRACT/EXTRACT--(U) GP-O+ ABSTRACT. THE EFFECTS OF THERMOMAGNETIC TREATMENT (ISOTHERMAL QUENCHING IN A MAGNETIC FIELD) ON THE STRUCTURE AND PROPERTIES OF TWO TICONAL ALLOYS WERE STUDIED BY A TECHNIQUE BASED ON THE MOSSBAUER EFFECT. MOSSBAUER SPECTROSCOPY WAS EMPLOYED IN CONJUNCTION WITH X RAY DIFFRACTION TO TRACE THE BEHAVIOUR OF THE ALLOYS AT VARIOUS STAGES OF HEAT TREATMENT. IN THE FIRST STAGE OF AGEING AFTER QUENCHING IN A MAGNETIC PHASES OF THE ALLOY TOOK PLACE; IN THE SUBSEQUENT STAGE THE DEGREE OF ORDER OF THE WEAKLY HAGNETIC PHASE STARTED INCREASING.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

1/2 026 UNCLASSIFIED PROCESSING DATE--160CT70
TITLE--ON POLARIZATION PHENOMENA, ABSOLUTE PROBABILITIES AND ANISOTROPY OF
THE MOSSBAUER EFFECT IN SIDERITE -U-

AUTHOR-(04)-GOLDANSKIY, V.I., MAKARDY, YE.F., SUZDALEV, I.P., VINOGRADOV,

I:A.

COUNTRY OF INFO--USSR

SOURCE--ZHURNAL EKSPERIMENTAL NOY I TEORETICHESKOY FIZIKI, 1970, VOL 58, NR 3, PP 760-765
DATE PUBLISHED----70

SUBJECT AREAS -- PHYSICS

TOPIC TAGS--LIGHT POLARIZATION, ANISOTROPY, MOSSBAUER EFFECT, PROBABILITY, GAMMA QUANTA, IRON ISOTOPE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1986/1733

STEP NO--UR/0056/70/058/003/0760/0765

CIRC ACCESSION NO--APO103497

UNCLASSIFIED

Aligha - Maha

026 UNCLASSIFIED PROCESSING DATE--160CT70 CIRC ACCESSION NO--APO103497 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. EXPERIMENTS WHICH ARE SIMILAR TO OPTICAL POLARIZATION EXPERIMENTS HAVE BEEN CARRIED OUT FOR THE FIRST TIME WITH MUSSBAUER GAMMA QUANTA FROM FE PRIMEST; UNIAXIAL SIDERITE (FECO SUB3) SINGLE CRYSTALS SERVED AS THE POLARIZER AND ANALYZER. ASYMMETRY OF THE TWO QUADRUPOLE DOUBLET PEAKS WAS FOUND TO DEPEND ON THE AZIMUTHAL ANGLE (A) OF ROTATION OF THE CRYSTAL AKIS OF THE ANALYZER RELATIVE TO THE POLARIZER. ON THIS BASIS THE ABSOLUTE MAGNITUDE OF THE PROBABILITY FOR THE MOSSBAUER EFFECT, F PRIME, IN FECO SUB3 AT ROOM TEMPERATURE AND FOR AN ANGLE BETWEEN THE SIDERITE CRYSTAL AXIS AND THE GAMMA QUANTUM BEAM THETA EQUALS 90DEGREES HAS BEEN DETERMINED. FOR THEYA EQUALS 15, 30, 45 AND 90DEGREES THE PROBABILITIES F PRINE WERE ALSO DETERMINED FROM ASYMMETRY OF THE DOUBLETS AND ON BASIS OF THE TOTAL AREA OF THE TWO GAMMA RESONANT ABSORPTION SPECTRUM PEAKS.

UNCLASSIFIED

USSR

UDC 629.4.013:539.431

MAKAROV, Ye. G., Leningrad

"Estimate of Sensitivity of Materials to Stress Concentration Under Cyclical Loading"

Kiev, Problemy Prochnosti, No 8, Aug 73, pp 19-22.

Abstract: The equation for the cyclical deformation curve of a material is used to produce the dependence between theoretical and effective stress concentration factors during extension-compression and bending of flat and cylindrical specimens. A new notch-sensitivity criterion is suggested, simple to determine and independent of the shape of specimen and parameters of stress concentrator.

1/1

- 122 -

USSR

UDC 681,11,033,1

a inclusion intervental primari i mari entri la tri mana mana i da i fami i mat a grapi del mana de entri de la companione de la companione de la companione de la companione de la comp

GRANKIN, V. K., MAKAROV, YU. S., RONZHIN, O. V., KOZYREV, L. S., and YEGGROV, A. YE.
"An Information Display Device"

USSR Author's Certificate No 372566 kl G 06 k 15/18, filed 17 Sep 70, published 27 Apr 73 (from RZh Avtomatika Telemekhanika i Vychislitel'nava Tekhnika, No 11, Nov 73, abstract No 11 A406P)

<u>्रे प्रेर्ट के विकास के दिल्ली का स्थापन के अध्यक्त के अध्यक्त के अपने के अध्यक्त के अध्यक्त के अध्यक्त के अध्</u>

Translation: An apparatus is proposed for information display, containing indicators and current conductors. To improve the reliability and visibility of the apparatus, its indicators are in the form of lighted edges located along the outline of geometric figures, with the current conductors at the vertices. One illustration.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

UDC: 621.397.61

SIDORKIN, N. A., MAKAROV, Yu. S., MAYOROV, V. N., ZAYTSEV, G. N., KUDRYAV-TSEV, V. A.

"A Stereoscopic Television Camera"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 3, Jan 71, Author's Certificate No 291377, Division H, filed 31 Mar 69, published 6 Jan 71, p 162

Translation: This Author's Certificate introduces a stereoscopic television camera for inspection of wells, pipelines, etc. The device contains two television transmitting tubes, scanning devices, an optical system containing two identical reflecting truncated cones located on a single optical axis with the objective lenses, and a receiver. As a distinguishing feature of the patent, the unit is designed for more detailed inspection of individual sections of the surrounding space. Between each of the reflecting truncated cones and the transmitting camera lens is a flat mirror with a hinged device set at an angle to the optical axis of the objective lenses and connected by a rod and speed reducer to the focusing system of the objective lenses. The hinged device of the mirror is connected to an electrical interlock system which is coupled to the inverse stage of the scanning device.

1/1

- 125 -

USSR

UDC 621.3.049.774.002.5

DADAMYAN, Z. M., DEGTYAREV, A. P., KOKHANOV, B. T., MAKAROV, Yu. Ye.

"A Method of Making Printed Circuits"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye zneki, No 2, Jan 71, Author's Certificate No 290494, division H, filed 13 Sep 68, published 22 Dec 70, p 170

Translation: This Author's Certificate introduces a method of making printed circuits based on making an electrostatic image of the printed circuit on a foil-coated dielectric board, and etching the blank sections. As a distinguishing feature of the patent, the method is simplified by covering the foil-coated board with a dielectric layer such as lacquer with a polyvinyl alcohol base before applying the electrostatic image of the circuit.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

UDC 576.851.31.06

MARAMOVICH, A. S., VEYDE, A. A., SARDAR, Ye. A., MAKAROVA, A. P., SHVETSOVA, R. I., and URBANOVICH, L. Ya., Irkutsk Antiplague Institute of Siberia and the Far East

"Determination of the Cholerogenic Properties of Vibrios in Newborn Fabbits"

Moscow, Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, No 10, 1972, pp 59-64

Abstract: Study of 65 vibrio strains from different sources in newborn rabbits (considered a suitable model for testing the pathogenicity of a given cholera vibrio strain for man) showed that all the cholera strains could produce the typical syndrome of cholerogenicity, whereas the nonagglutinable vibrios could not do so except for occasional strains (Heiberg's group 1) isolated from human beings in cholera foci. The main signs of cholerogenicity are marked dilatation of the lumen of the large intestine filled with a light transparent fluid and marked hyperemia of the small intestine containing a viscous yellow fluid throughout. Cholerogenicity was regularly observed after intra-intestinal infection of 9-to 12-day-old rabbits with doses ranging from 103 to 100 vibrios/100 g of weight. Smaller doses generally failed to elicit any reaction.

1/1

1/2 027

UNCLASSIFIED

TITLE-INDUCTION OF DNA SYNTHESIS AND MITOSES BY POLYUMA VIRUS IN STEADY PROCESSING DATE--300CT70

AUTHOR-(02)-MAKAROVA, G.F., IRLIN, I.S.

CCUNTRY OF INFO-USSR

SOURCE--TSITCLEGIYA 1970, 12(3), 357-65

DATE PUBLISHED----70

SUBJECT AREAS-BIOLOGICAL AND NEDICAL SCIENCES

TOPIC TAGS-TISSUE CULTURE, EMBRYDLOGY, TUNOR, VIRUS, AUTORADIDGRAPHY, TRITIUM, CHEMICAL LABELLING, DNA, MITOSIS

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3001/2229

STEP NO--UR/9053/70/012/003/0357/0365

CIRC ACCESSION NO-AP0127591

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

027 UNCLASSIFIED PROCESSING DATE--300CT70 CIRC ACCESSION NO--APO127591 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. PATTERNS OF PROLIFERATION OF NORMAL EMBRYONIC HAMSTER AND MOUSE STEADY STATE CULTURE AND THAT INFECTED WITH POLYUMA VIRUS WERE STUDIED BY RADIOAUTOGRAPHY USING THYMIDINE H PRIMES. IN THE INFECTED CULTURES A STIMULATION OF MITOTIC ACTIVITY WITH DNA SYNTHESIS WAS DBSD. IN THE INFECTED CULTURE OF HAMSTER CELLS, THE MITUTIC CYCLE IS REDUCED AND THE PROLIFERATION POOL IS HARPLY INCREASED, SUGGESTING THAT THE POLYDMA VIRUS IS ABLE TO INDUCE DNA SYNTHESIS. THE INCREASED NO. OF MITOSES INVOLVING CELLS WHICH ALREADY COMPLETED DNA SYNTHESIS SHOWS THAT THE INDUCTION OF MITOSES BY POLYOMA VIRUS INFECTION IS INDEPENDENT OF THE INDUCTION OF DNA. FACILITY: LAB. KARVOL., INST. MOL. BIOL., MOSCOW, USSR.

2/2

UNCLASSIFIED -

UDC 576.858.75.095.18:615.373

HEKLYUDOVA, L. I., MAKAROVA, G. I., and ORLOVA, N. G., Institute for Advanced Training of Physicians and Institute of Epidemiology and Microbiology imeni N. F. Gamaleya, Moscow

"The Effect of Antineuraminidase Sera on the Enzymatic Activity and Reproduction of Influenza A2/Hong Kong Virus"

Moscow, Voprosy Virusologii, No 5, Sep/Oct 72, pp 599-602

Abstract: Serum antitoxic to cholera vibrio and serum antitoxic to influenza virus were obtained in rabbits. Through repeated adsorption, all types of antibodies (hemagglutinating, complement-fixing, and antitissue) except those with antineuraminidase activity were completely removed. Both purified seru effectively inhibited influenza virus neuraminidase. Similarly, both seru inhibited reproduction of influenza virus in 10-day old chick embryos and in the lungs of immune mice, though the antiviral serum was more powerful than the antivibrio serum. The findings suggest that individuals who have had cholera are more immune to influenza.

1/1

MAKAROVA, G. I.

"The Etiology of the 1970 Influenza Epidemic and Some Properties of Isolated Strains"

Moscow, Voorosy Mediko-Biologicheskikh Issledovaniy. Materialy Konferentsii Molodykh Mauchnykh Kabotnikov Mediko-Biologiches-kogo Fakul-teta (Aspects of Biomedical Research. Materials of a Conference of Young Scientific Workers of the Biomedical Faculty), Ministerstvo Zdravookhraneniye SSSR, 1970, 93 pp, pp 9-11

Abstract: A comparative study was made of the properties of two influenza virus strains -- A-2 Moscow/72 and A-2 Moscow/42, obtained from patients during the height of the influenza epidemic in January-February 1970. The capacity of the strains to hemagglutinate erythrocytes of rams, guinea pigs, mice, and chicks was tested. Both strains actively agglutinated erythrocytes of all of the test animals, with the highest hemagglutination titer obtained with chick erythrocytes, and lowest with ram erythrocytes. Further tests established that strain A-2 Moscow/42 is more thermostable than strain A-2 Moscow/72, and that both 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

MAKAROVA, G. I., Voorosy Mediko-Biologicheskikh Issledovaniy. Materialy Konferentsii Holodykh Nauchnykh Habotnikov Mediko-Biologicheskogo Fakul-teta, 1970, 93 pp, pp 9-11

strains are fully adsorbed on chick erythrocytes at a temperature of +4°C, but differ in the rate of elution. All mice intranasally infected with strain A-2 Moscow/72 perished by the 6th day after the infection, while only a few perished when infected with strain A-2 Moscow/42. The results obtained confirmed the earlier published data that different strains of Hong Kong influenza virus type A-2 vary in their biological properties.

2/2

- l: 3 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

UDC: 621.319.4

RACHKOV, S. P., MAKAROVA, I. A., YEVDOKIMOV, V. P.

"A Device for Assembling Electrolytic Capacitors"

USSR Author's Certificate No 268548, filed 10 Jan 69, published 10 Sep 70 (from RZh-Radiotekhnika, No 5, May 71, Abstract No 5V339 P)

Translation: This Author's Certificate introduces a device for assembling electrolytic capacitors. The unit contains a rotating table carrying die molds, a mechanism for pouring the electrolyte into the capacitors, a rolling mechanism, and a mechanism for removing the finished capacitors. To simplify the design of the device and improve its operational reliability, the pouring mechanism is made in the form of a rotating batcher which carries a pinion connected to a gear sector resting on a lug of the die mold, which is equipped with floating female dies; the rolling mechanism is fitted with a hydraulic cylinder whose rod is connected to the male die, and the mechanism for removing the capacitors is made in the form of a clamp fastened to the rod of a second hydraulic cylinder.

1/1

- 49

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

UDC 8.74

BIKMUKHAMETOV, A. Z., MAKAROVA, I. P.

"A problem of Optimal Data Allocation in a Large Memory"

V sb. Metody i modeli upr. Vyp. 1 (Control Methods and Models. Vyp. 1--collection of works), Riga, 1971, pp 62-67 (from RZh-Kibernetika, No 12, Dec 72, Abstract No 12V447)

Translation: A study was made of the problem of optimal allocation of data on the magnetic tapes or magnetic discs for the criteria of minimum mean time and access time (the access statistics are considered constant) in the model of a memory comprising a magnetic disc module or a magnetic tape module. In all in memory there are n files of different length. The information search is realized in two directions, and reading, in one direction. For magnetic tapes the reading direction remains coincident with the numbering direction of the locations of the information files.

For one model studies were made of two basic problems: 1) find the arrangement of the memory files minimizing the mean access time in memory; 2) find the arrangement of the memory files minimizing the maximum weighted access time to memory.

Problems 1 and 2 belong to the class of extremal combinatory problems,

64 --

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

BIKMUKHAMETOV, A. Z., et al., Metody i modeli upr. Vyp. 1, Riga, 1971, pp 62-67

the approximate solution of which is found on the basis of the exact solution for a special case.

It is stated that the optimal solution of problems 1 and 2 under the condition that the probabilities of access to the information files are equipped

with weighted proportional coefficients $v_{\gamma}/\sum_{\gamma=1}^{n}v_{\gamma}$ where v is the length of

the γ -th information file, $\gamma=1,\,2,\,\ldots,\,n$ is the exact solution for the special case where the references to the information file are independent, and the sizes of the information files are equal.

In the case of determining the information distribution in various search memory devices, for example, on magnetic tapes and magnetic discs, the statement remains in force after selecting the volume of information for each type of memory.

The problem of optimal allocation arises not only for optimization of the arrangement of the information in the digital computer memory. Other interpretations of the presented mathematical model are also possible.

2/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

UDC 632.4:633.11:582.285.2

MAKAROVA, L. A., All-Union Institute of Plant Protection, Leningrad

"Agroclimatic Factors Affecting the Development of Stem Rust of Wheat"

Leningrad, Mikologiya i Fitopatologiya, No 4, 1972, pp 334-340

Abstract: The amount of precipitation falling during the period between the phase of milky ripeness of the grain and harvest time is the principal climatic factor controlling the spread of stem rust of wheat in the USSR, frequency of epiphytotics, possibility of infection of the plants, and nature of the development of the disease. The temperature level determines the intensity with which susceptible plants are affected. A comparison of long-term meteorological data with crop records showed that in years marked by severe epiphytotics, 60% of the days were marked by rain and more than 90% by rain, dew, and drizzle while the rainfree periods did not last more than 3 or 4 days. In the years with moderate development of the disease, it rained on 40 to 60% of the days and the rainfree periods lasted 4 to 6 days. And in years with weak development of the disease, there was rain on no more than 40% of the days and the rainfree periods ranged from 9 to 12 days or longer.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

UNCLASSIFIED PROCESSING DATE--11SEP70
TITLE--FILTRATION OF A CELLULOSE ACETATE SOLUTION THROUGH A POROUS METAL
-U-

AUTHOR MAYAROVA, L.B., KOSTROV, YU.A., LAKHTIN, V.P., PAVLOVSKAYA, YE.I.,

COUNTRY OF INFO--USSR

SOURCE--KHIM. VOLOKNA 1970, (1), 35-7

DATE PUBLISHED-----70

SUBJECT AREAS -- MATERIALS, CHEMISTRY

TOPIC TAGS--FILTRATION, CELLULOSE RESIN, ACETATE, TITANIUM, HYDRAULIC

CONTROL MARKING--NO RESTRICTIONS

PROXY PEEL/FRAME--1984/1807

STEP NO--UR/0183/70/000/001/0035/0037

المراجع والمتراجع والمتراجع والمتراجع والمتراجع والمتراجع والمتراجع والمتراجع والمتراجع والمتراجع والمتراجع

CIRC ACCESSION NO--APO100381

UNCLASSIFIED

atinanismiaitiikaise istaaliausaanumanistussisimeetsisista 2/2 021 UNCLASSIFIED PROCESSING DATE--11SEP70 CIRC ACCESSION NO--APO100381 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. POWD. TI IGRANULES 0.4 MM DIAM.I WAS MIXED WITH A 40PERCENT GLYCEROL SOLN. IN ETOH AND PRESSED UNDER A HYDRAULIC PRESS AT 1000DEGREES UNDER AREITHE GLYCEROL SOLN. HAD BEEN REMOVED AT 400-50DEGREES! TO GIVE A FILTER MATERIAL LAV. PUROSITY 115-25 MUD FOR THE FILTRATION OF CELLULOSE ACETATE. A GROSS SECTIONAL DIAGRAM OF THE FILTRATION APP. AND ITS MODE OF OPERATION ARE PRESENTED. FILTRATION THROUGH A TI POROUS FILTER WAS RAPID AND EFFECTIVE AND FILTRATION CAPACITY OF THE CLOGGED FILTER HAS RESTORED BY ULTRASONIC WASHINGS WITH ME SUB2 CO. . . - UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

Organometallic Compounds

USSR

UDC 542.91:547.257.2:547.514.72:546.725

NESMEYANOV, A. N., MAKAROVA, L. G., and VINOGRADOVA, V. N., Institute of Metal Organic Compounds, Academy of Sciences USSR

"Synthesis of σ -Ferrocenyl and σ -Ferrocenoyl Derivatives of Iron and Tungsten Cyclopentadienylcarbonyls"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 12, Dec 73, pp 2796-2798

Abstract: Reaction of ferrocenyl lithium with π -cyclopentadienyliron-dicarbonyl bromide yields π -cyclopentadienylirondicarbonyl- σ -ferrocenyl (I). Ferrocenoyl chloride reacted with π -cyclopentadienylirondicarbonyl sodium gives π -cyclopentadienylirondicarbonyl- σ -ferrocenoyl. Respective tungsten derivatives were obtained in an analogous manner. Decarbonylation of the ferrocenyl-tungsten complex by heating yields cyclopentadienyl-tungstentricarbonyl- σ -ferrocenyl. The iron complex requires more drastic conditions and some decomposition takes place in this reaction.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

UDC 542.957:547.559.77:547.559.78:547.1'118

NESMEYANOV, A. N., USTYNYUK, N. A., BOGATYREVA, L. V., and MAKAROVA, L. G., Institute of Element Organic Compounds, Academy of Sciences USSR

"Reactions of the Phenyl Derivatives of the Metal Carbonyls of Molybdenum and Tungsten With Triphenylphosphine and Triphenyl Phosphite"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, 1, Jan 73, pp 62-67

Abstract: The products of the reaction of $C_5H_5W(CO)_3C_6H_5(I)$ with $P(C_6H_5)_3$ and $P(OC_6H_5)_3$ -- e.g., $C_5H_5W(CO)_2LC_6H_5+CO$; $C_5H_5W(CO)_2LCO$ C_6H_5 ; or $W(CO)_3L_3+\{C_5H_5\}$ + $\{C_6H_5\}$ -- depend on the condition. (L is either of the P ligands). A series of C_{31} to C_{57} phospho derivatives of W and Mo were prepared and characterized by physical data, elemental composition, and spectral and NMR data. Stereochemistry, exchange of the ligands, and the effects of a limited number of solvents were considered.

1/1

- 20 -

UDC 541.124.541.57:541.49:547.514.72:546.72

NESMEYANOV, A. N., MANAROVA Indiana, and FOLOVYANYUM, I. V., Institute for Organic Elemental Compounds, Academy of Sciences USSR

"The Influence of the Nature of the Phosphorus Ligand on the Character of Interaction Between the Central Atom and the Surrounding Ligands in Cyclopentadienyliron Carbonyl Complexes"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 3, 1972,

Abstract: During the study of the characteristics of O -aryl cyclopentadienyliron carbonyl complexes, we examined the influence of the nature of the phosphorus ligand on the character of the interaction of the iron atom with the carbonyl and O aryl ligands. To do this, a series of fluorophenyl couploxes of the type C5H5Fe(CO) (L) C6H4F-M, p were synthesized where L = (C6H5)3, P(OC6H5)3, and CO. The IR and new spectra were made. In the IR spectra 2/000 for the meta form is 1927; 1957; 1963 and 2018 for the above "L" series; and for the para form, 1925, 1949, 1961 and 2015, The nar spectra of F19 showed S vales of +4.47, +4.29, +2.35 for the note form and +13.84, +13.10, and +10.95 for the para form. The carbonyl group can act as a donor through both induction and resonance. The aryl groups, however, participate only through

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

MAKAROVA, L. G.

"Optimal Programming of Reactive Acceleration in Motion of a Point of Variable Mass"

Matematika i Mekhanika. Tezisy Dokl 4-y Kazakhstan. Mezhvuz. Nauch. Konf. Po Mat. i Mekh. Ch. 2. [Mathematics and Mechanics, Theses of Reports of 4th Kazkhstan Inter-University Scientific Conference on Mathematics and Mechanics. Part II -- Collection of Works], Alma-Ata, 1971, pp 54-55. (Translated from Referativnyy Zhurnal Mekhanika, No 1, 1972, Abstract No. 1A107).

Translation: The motion of a point of variable mass is studied. The flight time, initial velocity of the point, initial exhaust velocity, total mass and final velocity of the point are fixed. The problem is solved of determining the optimal characteristics of motion of the point, minimizing the functional

$$I_1 = \int_0^T a^2 dt$$

with the differential coupling

mv + cm = 0

energy to the statement of the second of the

1/2

- 32 -

网络罗斯萨马拉克斯勒 一生一 1/2 017 UNCLASSIFIED TITLE--EFFECT OF THE REACTION CONDITIONS ON THE INTERACTION OF C SUBS H PROCESSING DATE--230C170 SUBS FELCO) SUB2 AR WITH PHOSPHINES AND PHOSPHITES -U-AUTHOR-(03)-NESMEYANOV, A.N., MAKAROVA, L.G., PCLOVYANYUK, I.V.

COUNTRY OF INFO--USSR

SOURCE--J. ORGANOMETAL. CHEM. 1970, 22(3), 707-12

DATE PUBLISHED ---- 70

SUBJECT AREAS -- CHEMISTRY

TOPIC TAGS--ORGANOIRON COMPOUND, PHOSPHITE, ORGANIC PHOSPHORUS COMPOUND,

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0615

STEP NO--NE/0000/TO/022/003/0707/0712

CIRC ACCESSION NO--APO119527

UNCLASSIFIED

เราสเตรา เล่าส่วนสายแนกสรายเกาและการาย รวมรถเก๋

CIRC ACCESSION NO--APOIL9527

ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE REACTION OF C SUBS H SUBS FE(CO) SUB2 AR WITH PR SUB3 IN BENZENE IS INDEPENDENT OF THE NAUTRE OF THE PHOTOCHEM. REACTION GIVES C SUB5 H SUB5 FE(CO) IPR SUB3)AR, AND THE SUB5 FE(CO) SUB2 AR WITH P(IOPH) SUB3 IS AGAIN INDEPENDENT OF THE NAUTRE OF THE ARYL GROUP BUT DEPENDS ON THE REACTION OF C SUB5 H OF THE ARYL GROUP BUT DEPENDS ON THE REACTION OF C SUB5 H OF THE ARYL GROUP BUT DEPENDS ON THE REACTION CONDITIONS.

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

"APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201910008-8

AP0052085 Acc. Nr:

Ref. Code: UPSZUL

PRIMARY SOURCE:

Zhurnal Nevropatologii i Psikhiatrii imeni

S. S. Korsakova, 1970, Vol 70, Nr

PP 370-376

CHANGES OF BRAIN ELECTRIC ACTIVITY IN FRIEDREICH'S DISEASE

L. G. Makarova, N. Z. Gurskaya

The paper concerns a study of brain electric activity in 34 patients with Friedralch's disease (18 familial and 16 sporadic cases). «Spontaneous» EEG and bicelectrical brain reactions to a trigger photo stimulation were registered. In all cases there were changes in the development of electric process. They were expressed in different degrees of changed a cativity, in a weakening of β-activity, in unregular sharp waves and groups of slow waves of the θ-rhythm, or their paroxysmal discharges. The trigger photo stimulation stressed the changes dysplayed in a espontaneous» EEG. The character of EEG disorders and the topographical distribution of pathological forms of activity permits to assume the involvement into the pathological process in cases of Friedreich's ataxia, the stem-diencephalic structures in the light of contemporary concepts of the cerebellar-corcical subcortical correlations.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

Organometallic Compounds

USSR

UDC 542.91:547.1'13:546:72

NESMEYANOV, A. N., MAKAROVA I. G., and VINOGRADOVA, V. N., Institute of Metalorganic Compounds, Acad. Sc. USSR

"Synthesis and Properties of \mathcal{N} -Cyclopentadienylirondicarbonyl- \mathcal{O} -ferrocenyl"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 7, Jul 72, pp 1600-1604

Abstract: Reaction of diferrocenylmercury with cyclopentadienylirondicarbonyl iodide yields $\mathcal N$ -cyclopentadienylirondicarbonyl- $\mathcal O$ -ferrocenyl (I) -- a crystalline compound of orange color. In solid state it is stable in air, dissolves easily in organic solvents, but the solutions are less stable. The structure of (I) was proven by IR, PMR and NOR spectroscopy as well as by reactions with HCl, bromine, and mercuric chloride. Reaction of (I) with $(C_6H_5)_3P$ takes place without rearrangement, evidently one CO group being replaced by $(C_6H_5)_3P$.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

USSR

UDC: 621.372.413(088.8)

STEKLOV, L. V., SUKAZOV, E. A.MAKAROVA, L. P.

"A Coaxial Tank Circuit"

USSR Author's Certificate No 265981, filed 2 Jan 68, published 2 Jul 70 (from RZh-Radiotekhnika, No 1, Jan 71, Abstract No 18170 P)

Translation: A tank circuit is proposed which contains a movable shorting plunger, a ferrite tuning element and a solenoid. To increase the effectiveness of the control system, an additional ferrite core is included which is coaxial with the ferrite element in the space behind the plunger.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

UDC:629.78.002.3

GERASIMENKO, G. I., AKSHENTSEVA, A. P., ZHDANOV, V. D., MAKAROVA, L. S.

"Two-Layer Metal Type 3 Steel Plus N70M27F for Welded Apparatus Used in Highly Corrosive Media"

Sb. Nauch. Tr. Vses. N.-I. i Konstrukt. In-t Khim. Mashinostr. [Collected Scientific Works of All-Union Scientific Research and Design Institute for Chemical Machine Building], 1973, No 6, pp 15-17 (Translated from Referativnyy Zhurnal Raketostroyeniye, No 10, 1973, Abstract No 10.41.156 from the

Translation: A technology is developed for welding and pressure working of a two-layer metal consisting of type 3 steel plus N70M27F, and areas of its application are defined. An optimal heat-treatment mode is recommended and it is shown that heating to 700-850° C for 2-5 hours causes embrittlement of the cladding layer and reduces its corrosion resistance.

4 Figures; 2 Tables.

1/1

USSR

M

UDC 517.55

MAKAROVA, L. Ya.

"On Supplementary Convex Envelopes"

Moscow, Sibirskiy Matematicheskiy Zhurnal (Akademiya Nauk SSSR, Sibirskoye otdeleniye), Vol XII, No 3, May-June 1970, pp 547-551

Abstract: In this paper the necessary and sufficient conditions are given in which a linearly convex domain does not possess a supplementary, linearly convex envelope, and also the sufficient condition in which an arbitrary domain also possesses a supplementary envelope. Using these theorems, the author determines sufficient conditions in which the space domain Cⁿ does not possess a supplementary holomorphic envelope. 6 ref. Received by the editors, 13 June 68.

1/1

1/2 025 UNCLASSIFIED PROCESSING DATE--020CT70

AUTHOR-(02)-PALEYEVA, F.M., MAKAROVA, N.A.

COUNTRY OF INFO-USSR

SOURCE--TERAPEVTICHESKIY ARKHIV, 1970, VOL 42, NR 3, PP 83-87

DATE PUBLISHED----70

SUBJECT AREAS-BIGLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--KIDNEY, EDEMA, NEPHRITIS, PROTEINURIA, BLOOD PLASMA, SODIUM,

CONTROL MARKING--NO RESTRICTIONS

DUCUMENT CLASS--UNCLASSIFIED PROXY REEL/TRAME--1986/0817

STEP NO--UR/0504/70/042/003/0032/0087

CIRC ACCESSION NO--APOLO2779

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201910008-8"

2/2 025 UNCL'ASSIFIED PROCESSING DATE--020CT70 CIRC ACCESSION NO--APO102779 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE AUTHROS INVESTIGATED THE CLINICAL EFFICACY AND THE MECHANISH OF ACTION OF THE DRUG IN 68 PATIENTS WITH RENAL DISEASES AMONG WHOM 49 SUFFERED FROM DIFFUSE GLOMERULCNEPHRITIS, 4 WITH PYELINEPHRITES, 4 WITH RENAL POLYCYSTOSIS, 6, AMYLOIDOSES, 2 HYDROMEPHROSIS, 3 DIABETIC GLOMERULOSCLEROSIS. 12 PATIENTS HAD RENAL INSUFFICIENCY OF DIFFERENT DEGREE. PROTEINDURIA FLUCTUATED FROM 33 TO 29PERCENT. -TOTAL BLOOD PROTEIN WAS ESPECIALLY SHARPLY REDUCED IN 5 PATIENTS (3.2-3.3 GPERCENT). 30 PATIENTS SUFFERED FROM HYPERTENSION WITHIN THE RANGE OF 140-100-220-130 MM HG. A GOOD DIURETIC EFFECT WAS SEEN IN 61 PATIENTS. EDEMA COMPLETELY DISAPPEAPED IN 42 PATIENTS. IN GLOMERULAR FILTRATION LOWER THAN 10 ML-MIN THE USE OF LASYX WAS ALMOST INEFFECTIVE. AS WELL AS IN ACUTE HYPOPROTEINEMIA. -NATRIURESIS APPEARED TO BE MOSTLY MARKED. POTASSIUM EXCRETION WITH THE URINE WAS PRACTICALLY UNCHANGEABLE WHICH WAS ALSO CONDUCIVE TO AN INCREASE OF THE SODIUM-POTASSIUM RATIO IN THE URINE. CONCENTRATION OF SODIUM JAND POTASSIUM IN THE BLOOD PLASMA UNDERWENT NO SUBSTANTIAL CHANGES. TUBULAR REABSORBTION OF SODIUM AND WATER DROPPED WHEREAS PUTASSIUM REABSORBTION ROSE. THE GLUMERULAR FILTRATION OF WATER AND SUBJUM INCREASED IN MOST OF THE PATIENTS. A DROP OF THE ARTERIAL PRESSURE LEVEL WAS OBSERVED ONLY 6 PATIENTS DUT OF 30%

UNCLASSIFIED.