CIA-RDP86-00513R002201930010-3

USSR

UDC 620.17:669.14.018.44

MASLENKOV, S. B., BUROVA, N. N. and ZEMSKAYA, T. V., Central Scientific Research Institute of Ferrous Metallurgy imeni I. P. Bardin (TSNIICHERMET)

"Anisotropy of the Mechanical Properties of Nickel-Base High-Temperature Alloys"

Moscow, Metallovedeniye i termicheskaya obrabotka metallov, No 1, 1972, pp 70-71

Abstract: This study concerns the effect of temperature on the anisotropy of the mechanical properties of high-temperature alloys (with various degrees of alloying) including KhN70MVTYuB (EI598), EI826, EI929, EP109 as well as on various smelting methods such as open induction vacuum-arc and double vacuum-arc remelting. Two factors are shown to affect the anisotropy of the mechanical properties: the chemical inhomogeneity and its related differences in the degree of strengthening of cartain areas along and between the axes; nonuniform distribution of insoluble inclusions -- the liquation products. The most resistant in the nickel-base alloys are tungsten liquation inclusions causing nonuniform decay in the fibrous

1/2

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3"

USER

MASLENKOV, S. B., et al, Metallovedeniye i termicheskaya obrabotka metallov, No 1, 1972, pp 70-71

structure following hot remelting of castings. At room temperature the anisotropy of the mechanical properties is related basically to the nonuniform distribution of the strengthening phase. At solubility temperatures the anisotropy in plasticity is determined primarily by the amount and distribution of nonmetallic inclusions. To reduce the anisotropy of the mechanical properties of the nickel-base alloys, it would be necessary to refine them with respect to nonmetallic inclusions by double vacuum remelting. (2 illustrations, 1 table, 2 bibliographic references).

< 0

2/2

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

"APPROVED FOR RELEASE: 09/01/2001

MASLENKOV, S. B ن • In determining the means for decreasing the anisotropy in the properties it follows to differentiate the influence of the deformation capacity of the metal of the periodic cher-ical microbeterogeneity and of the heterogeneous distribution of the insoluble inclusions. The first type of heterogeneity can be explained by the different degree of alloying of the axial and interaxial volumes as well as by their structural state. The hest resistance of such a heterogeneity is rela-tively low and may be lowered by high-temperature heating and nechanical refining of the alloy. Decreasing the second type of heterogeneity requires using optimal smelting procedures which will ensure the required degree of refining. ments corresponding to the axes and interaxes and the differ-ent degree of strengthening during dispersion. Aardening in conjunction with the line arrangement of the inscluble inclu-sions concentrated in the interaxes produce an anisotrony in the mechanical properties of the deformed netal. A sharply expressed dendritic heterogeneity is develop during crystallization in heat-resistant slops on a nickel base [1]. In the refining process the elements of the dendri-structure and the nonmetallic inclusions are drawn in the di-rection of the deformation, fowning a filamentary structure that is characterized by a chemical and structural heteroper-that is characterized by a chemical composition of the ser-[Article by S.B. Haalankov, M.M. Burova, T.V. Senskava, Centr Scientific Research Institute of Ferrous Natallurry; Hoscov, Hetallovedenlye 1 Termicheekava Obrabotka Netallov, Russian, Ho 1, 1972, pp 70-71] Depending on the composition of the alloy and the temperature the relative influence of the structural and ANIBOTROPY OF THE MECHANICAL PROFERTIES OF HEAT-RESISTANT Alloys on a mickel base ÷ UDC 520.17:669.14.018.44 4 May 1972 **JPRS 55885** H H USSR -Centr chem 1951

- 1

 MASIENKOV, S. B., BUROVA, N. N., and ZEMSKAYA, T. V. "Intracrystalline Liquation in Ingots of Heat-Resistant Nickel-Base Alloys Produced by Vacuum Arc Remelting" Spetsial'nyye Stali i Splavy [Special Steels and AlloysCollection of Works], No 77, Metallurgiya Press, 1970, pp 49-55 Translation: The method of local X-ray spectral analysis is used to study the liquation microirregularity in ingots of heat-resistant alloys types EP109, E1929, E1826, and E1598, produced by vacuum arc remelting. The direction of liquation and intensity of segregation of the basic components of the alloys are determined. Nicbium and titanium, the elements having a high degree of chemical affinity to nickel, are most strongly liquated. The alloying elements can be placed in the following series in order of increasing tendency to liquation in nickel-based alloys: aluminum, cobalt, chromium, tungsten, molybdenum, titanium, niobium. The intensity of segregation of alloying elements increases in the direction for the axis of the ingot, sharply increasing upon transition from the zone of columnar crystallization to the equilibrium crystallization zone. 2 tables. 	•	WDC 669,24.017
<pre>aced by Vacuum Arc Remelting" petsial'nyye Stali i Splavy [Special Steels and AlloysCollection of Works], b 77, Metallurgiya Press, 1970, pp 49-55 ranslation: The method of local X-ray spectral analysis is used to study the iquation microirregularity in ingots of heat-resistant alloys types EP109, i929, EI826, and E1598, produced by vacuum arc remelting. The direction of iquation and intensity of segregation of the basic components of the alloys re determined. Nicbium and titanium, the elements having a high degree of hemical affinity to nickel, are most strongly liquated. The alloying elements an be placed in the following series in order of increasing tendency to liqua- ion in nickel-based alloys: aluminum, cobalt, chromium, tungsten, molybdenum, itanium, niobium. The intensity of segregation of alloying elements increases in the direction weard the axis of the ingot, sharply increasing upon transition from the zone</pre>		
Translation: The method of local X-ray spectral analysis is used to study the liquation microirregularity in ingots of heat-resistant alloys types EP109, E1929, E1826, and E1598, produced by vacuum arc remelting. The direction of liquation and intensity of segregation of the basic components of the alloys are determined. Nicbium and titanium, the elements having a high degree of themical affinity to nickel, are most strongly liquated. The alloying elements can be placed in the following series in order of increasing tendency to liqua- tion in nickel-based alloys: aluminum, cobalt, chromium, tungsten, molybdenum, itanium, niobium. The intensity of segregation of alloying elements increases in the direction powerd the axis of the ingot, sharply increasing upon transition from the zone	'Intracrystal line Liqu luced by Vacuum Arc Re	ation in Ingots of Heat-Resistant Nickel-Base Alloys Pro- melting"
liquation microirregularity in ingots of heat-resistant alloys types EP109, Ei929, EI826, and EI598, produced by vacuum arc remelting. The direction of liquation and intensity of segregation of the basic components of the alloys are determined. Nichium and titanium, the elements having a high degree of chemical affinity to nickel, are most strongly liquated. The alloying elements can be placed in the following series in order of increasing tendency to liqua- tion in nickel-based alloys: aluminum, cobalt, chromium, tungsten, molybdenum, titanium, niobium. The intensity of segregation of alloying elements increases in the direction toward the axis of the ingot, sharply increasing upon transition from the zone	Spetsial'nyye Stali i No 77, Metallurgiya Pr	Splavy [Special Steels and AlloysCollection of Works], ess, 1970, pp 49-55
liquation and intensity of segregation of the basic components of the alloys are determined. Nicbium and titanium, the elements having a high degree of chemical affinity to nickel, are most strongly liquated. The alloying elements can be placed in the following series in order of increasing tendency to liqua- tion in nickel-based alloys: aluminum, cobalt, chromium, tungsten, molybdenum, titanium, niobium. The intensity of segregation of alloying elements increases in the direction toward the axis of the ingot, sharply increasing upon transition from the zone	liquation microirregul	arity in ingots of heat-resistant alloys types EP109, a produced by vacuum arc remelting. The direction of
can be placed in the following series in order of increasing tendency to liqua- tion in nickel-based alloys: aluminum, cobalt, chromium, tungsten, molybdenum, titanium, niobium. The intensity of segregation of alloying elements increases in the direction toward the axis of the inget, sharply increasing upon transition from the zone	liquation and intensit are determined. Nicbi	y of segregation of the basic components of the alloys um and titanium, the elements having a high degree of
The intensity of segregation of alloying elements increases in the direction toward the axis of the ingot, sharply increasing upon transition from the zone	can be placed in the f	ollowing series in order of increasing tendency to liqua-
of columnar crystallization to the equilibrium crystallization zone. 2 tables.		lloys: aluminum, conait, chromitun, cungsten, morvedentan,
	titanium, niobium. The intensity of toward the axis of the	segregation of alloying elements increases in the direction ingot, sharply increasing upon transition from the zone

USSR

UDC 669.18.001.5.669.14.015.853

KOZLOVA, N. N., LYAPUNOV, A. I., MASLENKOV, S. and HELYAYEVA, V. A.

"Oxidation Resistance of Steels in the System Fe-Cr-Ni-Al as a Function of Relationship of Alloying Elements"

Spetsial'nyye Stali i Splavy [Special Steels and Alloys--Collection of Works], No 77, Metallurgiya Press, 1970, pp 27-32

Translation: Alloys in the system Fe-Cr-Ni-Al were studied in the 1000-1250°C temperature interval. The principal regularities of the influence of alloying elements on the oxidation resistance of the alloys were established, and the dependence of oxidation resistance and phase composition of scale on the relation-ships of alloying elements was demonstrated. 4 figures; 2 tables; 2 biblio. refs.

1/1

APPROVED FOR RELEASE: 09/01/2001

	Nickel			• •	
			UDC 669	.245	j¢.
USSR		Maccoli			
BUROVA, N. N., and MAS	uation in Nic	ker Arroy	a	With Niobium'	
Moscow, Izvestiya Akademi Abstract: This work dete intracrystalline liquatio complex-alloy compounds portion of the titanium i an alloy with a high cont aging by separation of the the niobium is found to The heterogeneity of the	i Nauk SSSR, Met rmines the quan n in binary (Ni based on type K s replaced with cent of niobium, he Ni ₃ Nb phase. have a sharply distribution of n increase in th	tally, NO I titative cha -Nd), trina hN77TYu nic niobium, a which is h In alloys expressed t niobium is te content o	ry (Ni-Cr-Nd kel, in which nd type KhNS ardened duri based on nic endericy to 1 reinforced of migbium in	; of), and n a OMBVYu ng kel, iquation. in the nickel- of the	
chromium alloys causes a chromium. The elements	included in the	Component			ب ب ع
1/2					
		1 A. 1997	·		

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3
USSR
BUROVA, N. N., and MASLENKOV, S. B., Izvestiya Akademii Nauk
SSSR, Mrtally, No 1, Jan 71, pp 91-93
resistant alloys studied can be placed in the following order of increasing tendency toward liquation: aluminum, chromium, iron, molybdenum, tungsten, titanium, niobium.
2/2

APPROVED FOR RELEASE: 09/01/2001

2

"APPROVED FOR RELEASE: 09/01/2001	
UNCLASSIFIED UNCLASSIFIED TITLEHEAT TREATMENT OF AUSTENITIC HEAT RESI	PROCESSING DATE
AUTHOR-102)-NAZAROV, YE.G., MASLENKOV, S.B.	
COUNTRY OF INFO-USSR	
SOURCE-METALLOVED. TERM. DBRAB. METAL. 1970	(3) 12+19
DATE PUBLISHED70	
SUBJECT AREASMATERIALS	
TOPIC TAGS-STEEL FEAT TREATMENT, AUSTENITIC ALLOY PHASE COMPOSITION, DISPERSION HARDEN	STEEL, HEAT RESISTANT STEEL, ING, BIBLIOGRAPHY
CONTROL, MARKINGNO RESTRICTIONS	
DOCUMENT CLASSUNCLASSIFIED PROXY REEL/FRAME1989/1938 STEP NOU	R/0129/70/000/003/0012/0019
CIRC ACCESSIEN NDAPO108267 UNCLASSIFIED	
The second se	

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3 2/2 025 UNCLASSIFIED PROCESSING DATE--130070 PROCESSING DATE--130070 2/2 025 UNCLASSIFIED PROCESSING DATE--100 GP-0- ABSTRACT. A REVIEW COVERING STRONGLY, ABSTRACT/EXTRACT--100 GP-0- ABSTRACT. A REVIEW COVERING STRONGLY, ABSTRACT/EXTRACT--100 GP-0- ABSTRACT. A REVIEW COVERING STRONGLY, MED IUM, AND WEAKLY DISPERSED MARDENING ALLOYS. THE TOPICS COVER DOUBLE WED NORTH, AND WEAKLY DISPERSION AGING, LAVES PHASES, BORIDE PHASES, STRESS OUENCHING, DISPERSION AGING, LAVES PHASES, BORIDE PHASES, REMOVAL, NEW DEVELOPMENTS, AND DETRIMENTAL PHASES. REMOVAL, NEW DEVELOPMENTS, AND DETRIMENTAL PHASES.

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

USSR

UDC 669.14.018.85:001.18

NAZAROV, YE. G., MASLENROW BumB., Central Scientific Research Institute of Ferrous Metallurgy im. I. P. Bardin

"The Present and Future of Heat-Resistant Alloys"

Moscow, Metallovedeniye, No 4, Apr 70, pp 16-28

Abstract: A brief review is given of developments in heatresistant alloys during the last 30 years. This heat resistance of metallic materials is governed by the following: strengthening the solid solution with dissolution of alloying elements in it and on separation of secondary intermetallides and carbide phases from it; the grain size of the solid solution; dynamics of both hardening and softening; stability of the structure at high temperatures; resistance to scaling and brittleness. Of these factors, the first is constant, while the others are variables and depend on temperature, time, and the medium. With the extension of the service life, great importance is attached to the resistance of alloys to gas corrosion at high temperatures, since oxidation at this stage controls the efficiency of the alloys. 1/3

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3"

i ta na sa na s

USSR

NAZAROV, YE. G., et al., Metallovedenive, No 4, Apr 70, pp 16-28

Steels and alloys with carbide strengthening are less heat resistant than alloys strengthened with internationalidos. Primary carbides and chromium carbides have a high dissolution temperature (11:00°C and higher) and the presence of some of them in alloys makes possible high-temperature strengthening. Laves phases are thermally stable and have an extended incubation period of formation. Compared to intermetallide Y:-phases, the strengthening effect of the Laves phases is lower. Representative heat-resistant iron-, iron-nickel-, nickel-, and cobalt-base stools and alloys are briefly reviewed, their main features and characteristics described, and designations explained. Tables in the original article provide information on iron- and iron-mickel-base steels and alloys and nickel-, and cobalt-base wrought and cast alloys. The brand names, compositions, origins, service ligo, and temperatures are also given. Refractor-base alloys with volume-centered cubic lattices, such as vanadium- and chromium-base alloys, are described, including their basic features, compositions, alloying elements, and service temperatures. New trends in the development 2/3

- 45 -

CIA-RDP86-00513R002201930010-3

USSR

NAZAROV, YE. G., et al., Metallovedeniye, No 4, Apr 70, pp 16-28

of heat-resistant alloys both in the USSR and elsewhere are analyzed. High-chromium nickel alloys are noted. Research in Japanese austenitic steels and alloys is discussed. Of particular interest is the solubility of ruthenium in nickel and the high melting temperature (1550°C) of Ni₃Ru. Platinum-base alloys and radioactive elements as additions to heat-resistant alloys are mentioned. Particular reference is made to alloys containing technetium (melting temperature 2170°C) obtained in nuclear reactors.

3/3

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

USSR

UDC 620.186.2:669.14.018.44

MASIENKOV. S. B., VERZINA, V. K., GEVELING, N. N., and EUROVA, N. N., Central Scientific Research Institute of Ferrous Metallurgy

"Segregation Microheterogeneity in 4Khl2NBG8MFB (El481) Heat-Resistant, Electroslag-Remelted Steel"

Moscow, Metallovedeniye, No 9, Sep 72, pp 70-72

Abstract: A comparative analysis was made of intracrystalline segregation in ingots of a 13-8-8 austenitic steel (E1481) produced by open-arc melting followed by electro-slag remelting. The composition of the remaited steel was (in %): 0.39 C, 0.41 Si, 13.4 Cr, 8.2 Mn, 8.0Ni, 1.4 V, 1.3 Mo, and 0.45 Nb. The degree of dendritic heterogeneity was evaluated by the coefficient of segregation K_s, which is the ratio of maximum concentration of an element to the minimum concentration of the element in a dendritic cell. The steel was made at the Elektrostal' Plant in a 20-ton electrical furnace. The resulting electroslag remelted ingot weighed 3200 kg. It was found that El481 steel, alloyed with strong carbide-forming elements and carbon, experiences interaxial segregation of the basic components. The segregation heterogeneity is determined by the nature of the macrostructure, and the maximum heterogeneity was the same for both the open-arc and electroslag melted steel. 1 figure, 1 table, 5 bibliographic references.

1/1

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

"APPROVED FOR RELEASE: 09/01/2001

MASLENKOV, S. B The alloys contained 0.02-0.17% SI, 0.002-0.005% S and up to 0.01% B. ¹Jopanese Patent No. 2696₂ cl. 10125, 12 April 19 ³Extrusion vas carried out under the supervision Test alloys were melted in a vatuum induction furnace from pure charge waterials (Table 1), Nowever, information about the effect of microadditives of nonferrous metals on the properties of refractory alloys is erricanely sparse and the principle of their beneficial action on the properties of alloys has not been established. The effect of the on the properties and structure of mickel-chrome alloy of the type MAUTET (El435) is discussed in this article. Mischel-bese allo<u>rs</u>, hardanod with internetallide physes of the types MigT1, MigAl, Mig(AL, T1), MigNo are used extensively as refractories, It has been established that the stress-rupture strength of scoris and alloys can be increased with additives of these elements [1-3]. A minomic type alloy¹, containing 0.5-5% Ti and 1-10% Sn, has been developed. Marwayer, hickel forms intermetallide compounds similar to the Y"-phase, with silicon, tin, beryllims, etc. [Article by Y<u>e. G. Mararoy, S. B.</u> Masimikov, TawlitchEGoHEY (central Scientific Revearch functione of Ferrens Mattringer Te. I. P. Martini: Marcan Hetellowennya I Termicherkayn ubrabotka Hetellov, Russian, xo 3, 1972, <u>37 33-10]</u> The test specimens were made by extrusion² at 1,000-1,022°C. TIN AS AN ALLOTING ELEMENT IN NEAV-RESISTANT ALLOYS . 1958. on of C. I. Taransako. [I - USSE - I] 6 February 1973 JPRS 58159 UDC 669.14.018.44'6 (<u>:</u>.) APPENDIX AND A DATE OF A

APPROVED FOR RELEASE: 09/01/2001

USSR		UDC 669.245'26:539.4.015/019	. s= `
ABRAMOV, Moscow	I. V., GOLOVAN	NENKO, S. A., MASLENKOV, S. B., and ABRAMOV, O. V.,	
"Dispersi	ion Hardening o	of Nichrome Using Oxide Particles"	
Moscow, 1	Izvestiya Akade	emii Nauk SSSR, Metally, No 6, Nov-Dec 72, pp 227-230	
is studie produced acteristi High-temp is consid nickel ha of deform	ed. At identic composition ma cs of the same erature stress erably higher rdened by the ed nichrome, s	tained by metallurgical melting methods and dispersion- ium dioxide (ZrO2) and aluminum oxide (Al2O3) particles, cal levels of strength, the indices of ductility of the aterial are more than a unit higher than analog char- e material produced by the method of powder metallurgy. S-rupture strength of dispersion-hardened nichrome than that of common nickel base alloys and powder same oxides. The electronmicroscopic investigations trengthened by finely dispersed particles, show high missions at temperature 1200°C.	
	•		
1/1			

No. Distante Stat

CIA-RDP86-00513R002201930010-3

UDC 621.78:539.219.3 USSR NOVIKOV, B. A., KONNOVA, I. Yu., SHCHERBEDINSKIY, G. V., COLOVANENKO, S. A., and MASLENKOV, S. B., Moscow "Carbon Redistribution and Diffusion in Bimetals" Moscow, Fizika i Khimiya Obrabotki Materialov, No 5, Sep-Oct 72, pp 83-87 Abstract: Using C14 and methods of autoradiography and radiometric layer analysis the redistribution of carbon in St. 3+0Khl3 bimetal was studied for two variants: without an intermediate layer and with an intermediate nickel layer. It was shown that carbon passes from the carbon steel into the stainless steel both in the process of manufacture and during all subsequent annealings. The presence of a nickel intermediate layer inhibits the passage of carbon from steel St. 3 to OKh13 and strongly varies the nature of carbon redistribution in the contact zone. For the purpose of selecting the best bimetal cladding layers for long-time service at elevated temperatures the temperature relationships of diffusion coefficients were determined for carbon in OKh13 ferrite steel and EI943 (OKh23N28M3D3T), EI628(OKh23N28M2T), and EI432 (OKh17N13M3T) austenitic steels. Comparison of the data on these steels showed that up to 700°C 1/2

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

APPROVED FOR RELEASE: 09/01/2001

A A THE REAL PROPERTY OF A DESCRIPTION OF A nta 5 mini altin in ininti indi 2024 mini Superalloys UDC 669.14.018.8:620.17:620.186 USSR NIKANDROVA, YE. A., and MASLENKOV, S. B., TENIIChermet (Central Scientific Research Institute of Ferrous Metallurgy ineni I. F. Bardin) "The Structure and Properties of Nickel-Base Wear-Resistant Alloys" Moscow, Metallovedeniye i Termicheskaya Obrabotka Metallov, No 2, 1973, pp 47-51 Abstract: A study was made of the effect of heat treatment on the structure and properties of now N65M20V15 and N55M2DV25 corrosion-resistant alloys reserved for work in 30%-hydrochlorid acid and 70%-sulfuric adid at up to 90°C in the capacity of wear-resistant materials. The hardness and strength of these nonmagnetic alloys is the same as of tool materials, the maximum hardness obtained on N55M20V25 alloy being HRC 53. In hardened condition, N65M20V15 alloy has the structure of d-solid solution with a face-centered cubic lattice and N55N20V25 alloy has the structure of $a_1 + d^4$ solid solution. The high hardness of these materials after aging is obtained at the expense of falling out of the tetragonal Ni₄(Mo, W)-phase and the MGC carbide. The advantageous effects of the present Q'-phase on Mb base in the N55M20V25 alloy, in contrast to the N65M20V15 alloy, are indicated. The Ni, (Ho, W)-1/2

APPROVED FOR RELEASE: 09/01/2001

MCD.		1			1
NIKANDROVA, YE. A., and M Obrabotka Metallov, No 2,	17/11 22 27				
phase favors a retention term (up to 1000 hrs) tes properties resulted on NS	of high hardnes	s up to 600°	C at short-t ngth, and pl ed state. F	ern and long- asticity ive figures,	
three tables.					3
		:			
					Č.
- 10					•
2/2					

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3"

把运用

:	UDC 520.186:69.24*25 /	
USSR		
USSR GEVELING, N. N., and MASLENKOV, S. B., Cen	tral Scientific Research Inscreee	
E Powroug Metallular		
"Structure and Composition of Phases in th	e Crystallization of Eutectic	
Ni-Cr Alloys"		-
Moscow, Metallovedeniye i Termicheskaya Ob	TADOLKA ACCULATE	
pp 29-35	w on allows was investi-	
Abstract: The compositions of phases in e	atitative analysis of distribution	
i can the nurnest of a system in the	the manufal and the second	
of components in the phase diagram featu:	res. It was found that in composi-	4 : : :
		4
tion, nucleation of primary when volume o	E the melt. Conversely, the Salard,	
	A THE PARTY AND A THE PARTY PARTY PARTY AND A	
eutectic composition, occurs only after t ring around the primary dendrites of the	alpha-phase.	
1/2		

GEVELING, N. N., and MASLENKOV, S. B., Metallovedeniye i Termicheskaya Obrabotka Metallov, No 1, Jan 73, pp 29-35

crystals of the alpha- and gamma-phases are characterized by a higher degree of supersaturation of the second component than the same phases solidifying in the composition of eutectic colonies. Relative supersaturation in comparison with equilibrium values for primary and eutectic crystals of the alpha-phase is higher than for gamma-phase crystals. The nature and intensity of precipitation in the solid phases of eutectic alloys have been associated with crystallization form and the corresponding supersaturation of the second component. The most intense precipitation occurs in the dendrites and primary crystals. At the same time precipitation is strongly retarded in the crystals of phases which form eutectic colonies due to the low supersaturation. 3 figures, 1 table, 10 bibliographic references.

2/2

APPROVED FOR RELEASE: 09/01/2001

USSR

UDC:669.1.017

MASLENKOV, S. V.

"The Relationship of Dendritic Liquation to the Type of State Diagrams"

Spetsial'nyye Stali i Splavy [Special Steels and Alloys--Collection of Works], No 77, Metallurgiya Press, 1970, pp 7-11

Translation: The relationship between the degree of dencritic liquation and the type of state diagram of binary, trinary, and more complex alloys, established by the author, is presented. It is demonstrated that significant liquation is observed only in alloys in which strong chemical interaction of the components occurs in the liquid.

Liquation and redistribution of carbon are related to the distribution of the elements influencing its activity. 2 figures; 2 tables; 8 biblio. refs.

1/1

APPROVED FOR RELEASE: 09/01/2001

....

	UNCLASSIFIED	PKD(ESSING DATE	-3000770	
2/2 013 2/2 013	THE THE	EFFECT OF	COULING COND TED. INCREAS	ITIONS ING THE	, 5 1
2/2 UIS IRC ACCESSICN NOAPO125176 BSTRACT/EXTRACT(U) GP-O- ON THE STRUCTURE OF CU-NI ON THE STRUCTURE OF CU-NI PERIOD OF CODLING CAUSED TO PERIOD OF CODLING CAUSED TO	CONVERTER MATTER	F A CUARSE	R STRUCTURE. N OPTIMUM STR	UCTURE	er al de la compañía
BSTRACT/EXTRACTORE OF CU-NI ON THE STRUCTURE OF CU-NI PERIOD OF CODLING CAUSED TO THE PROPERTION OF SEGREGAT THE PROPERTION OF SEGREGAT WAS OBTAINED BY COOLING OV	IGN IN THE FINE FR 6-8 DAYS. A	NY SHORTEN	ING OF THIS P CREATER FOR T	HECU	
HAS UNIAINED FFFECT ON QU	ALITY, THIS EFF	ECI BETHO		:	
AND THE NI CONCENTRATE.					
		•			
	•				
	· · ·				
- 1997 				•	
· · · · · · · · · · · · · · · · · · ·	INCLASSIFIED	a te estate a discu			

	CLASSIFIED	DSPHOR	IC ACINS	G DATE		
1/2 012 EITLEMAGNETOOPTICAL KETHOD FO AUTHOR-(05)-BORISOV, V.M., MASL KONANYKHINA, L.N.	ENNIKOV, B.M.	, SANO	YLOV, W.	L GUBAR	EVAP	
THEN-USSR	V I			•		
SOURCEKHIM. PROM. MOSCOW 1970), 46(3), 190-	-1				
DATE PUBLISHED70			• :			
						~
SUBJECT AREASCHEMISTRY	-	FFECT		1 - ¹ 1		
TOPIC TAGSPHOSPHORIC ACID, M	IAGNETUOPTIS		•			
			-			
CONTROL MARKINGNO RESTRICTIO	UNS			A. D. D. M.	0/0191	
DOCUMENT CLASSUNCLASSIFIED PROXY REEL/FRAME1996/0886	STEP NO-	-UR/00	54/70/(146	1003/019		
	LASSIFIED	: 	· · · · · · · · · · · · · · · · · · ·			

"APPROVED FOR	RELEASE:	09/01/200	1 CIA	A-RDP86	-00513R	0022019300	10-3
2/2 012 CIRC ACCESSION NOAPOIN ABSTRACT/EXTRACT(U) GP DELTA DELTA OF AQ. POL OF P SUB2 O SUB5 CONCM DELTA INCREASED FROM I 25 TIMES 10 PRIME NEGA INCREASED FROM 10 TO	8055 -0- ABST YPHOSPHOR 1.) AT 350 LO TIMES 1	EGREES AND O PRIME NE	CHANGE NS. WAS A WAVE SATIVE5	IN VERC S TRACES LENGTH U AND THE P SUBP D)ET'S CO) (AS A)F 500 N EN DECRE 3 SUB5 C	ASED TO ONCN WAS	
INCREASED FROM IU TU P CONTINUOUSLY AT HIGHER	R P SUB2 C	SUB5 CONC	NS.				
							42 - C
			ta da series				
	1		• 1		;		-
							- 14 - 14 - 14 - 14
		·					1
						:	
	UNCLAS	SIFIED					

CIA-RDP86-00513R002201930010-3

UDC 547.341 USSR MASHLYANOVERTY, L. N., ZAGUDAYEVA, T. A., IONIN, B. I., and OKHRIMENKO, I. S., Lemingrad Technical Institute meni Lensovet "Synthesis of Ester Acid Chlorides, Mixed Esters and Amidoesters of 1,3-Dienylphosphonic Acic.s" Leningrad, Zhurnal Obshchey Khimii, Vol 41 (103), No 2, Feb 71, pp 330-335 Abstract: The reaction of acid dichlorides with primary or secondary alcohols in presence of tertiary bases leads to replacement of Cl atoms with formation of esters of acid chlorides, mixed esters and ester aniwith formation cf esters of acid chlorides, mixed esters and ester ami-des 1,3-dienylphc sphonic acids. The following compounds were syn-thesized formula, b.b./mm, dg, and n²⁰ being reported CH2:CHC(CH3)= CHP(0)(CC2H5)Cl, 88°/1.5, 1.1441, 1.5055; CH3CH=CHCH=CHF(C)(CC2H5)Cl, 108-110°/2, 1.1622, 1.5172; CH3CH=CHCH=CHP(0)(CC3H7-iso)Cl, 135-137°/4, 1.1167, 1.5002; CH2=CHCH=CHP(0)(CC2H5)N(C2H5)2, 109-111/3.5, 1.C214, 1.1167, 1.5002; CH2=CHCH=CHP(0)(CCH3)CC2H5, 85.5+86°/1, 1.0674, 1.4832; 1.4852; CH2=CHC(CH3)=CHP(0)(CCH3)CC2H5, 85.5+86°/1, 1.0674, 1.4832; CH2=CHC(CH3)=CHP(0)(CCH3)N(C2H5)2; 93-94°/1, 1.0225, 1.4928, CH2=CHC(CH3)=CHP(0)(CCH3)N(C2H5)2; 93-94°/1, 1.0225, 1.4928, CH2=CHC(H=CHP(C)(CCH3)-iso-CC3H7, 84-86°/3, 1.0519, 1.4797; CH3CH=CHCH=CHP(0)(CCH3)UC2H5, 79-80°/1, 1.0667, 1.4796. - 75 -1/1

CIA-RDP86-00513R002201930010-3

USSR

UEC 539.67

ARTYEMENKO, A. G., LEVIN, Yu. N., MASIENNIKOV, E. M., PESIN, M. S., and POSTNIKOV, V. S.

"Mechanism of Energy Absorption in Diffusion Shape Variation of Impurities in Binary Alloys"

Sb. "Vnutrenneye treniye v metallicheskikh materialskh" (Internal Friction in Metallic Materials), Moscow, Izd-vo "Nauka," 1970, pp 159-163

Abstract: A short description and an experimental verification by the internal friction method of the energy absorption mechanism in diffusion shape variation of impurities in binary alloys are presented.

Alloys of Cd-Ge, Zn-Ge, and Bi-Ag eutectic composition systems were used as impurity-containing alloys. Peaks related to diffusion, occurring along the impurities boundaries as a result of the onset of an inhomogeneous stress state during measurements, were obtained on internal friction amplitude-dependence curves.

The results obtained confirm the theory of the impurities diffusion shape variation mechanism developed earlier, 2 figures, 6 references.

1/1

- 82 -

APPROVED FOR RELEASE: 09/01/2001

UDC: 621.373.431

USSR

SHMAKOV, P. M., MASLENNIKOV, G. B.

"A Master Ultralow-Frequency Oscillator"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 4, 1970, p 31, patent No 260676, filed 19 Jun 68

Abstract: This Author's Certificate introduces a master ultralow frequency oscillator based on a two-pentode push-pull circuit. As a distinguishing feature of the patent, the frequency range is extended and operating stability and reliability are improved by connecting a self-heating dicde in the plate circuit of each pentode, the cathode of this diode being connected to the plate of the pentode, while the anode is connected to the load resistor of the same pentode.

1/2

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

CIA-RDP86-00513R002201930010-3

USSR UDC 621.646.2 MASLENNIKOV, G. P., KRASIL'NIKOV, G. V., TARAKANOV, Ye. V., and SOKOLOV, A. D., Technological and Scientific Research Institute of Planning, Ministry of the Motor Vehicle Industry of the USSR "A Programmed Control Device" Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 22, Aug 71, Author's Certificate No 309355, Division G, filed 1 Sep 69, published 9 July 71, p 186 Translation: This Author's Certificate introduces a programmed control device for test stands. The device contains a program cycle input controller, a comparison module, a parameter data unit, and a parameter regulator. As a distinguishing feature of the patent, the design is simplified by making the comparison module in the form of a disc with open slots mounted on the axle of the parameter data unit. Each pair of slots is displaced by an angle corresponding to the predetermined value of the parameter. The disc is located between supply and reception nozzles, the first being connected in pairs to the outputs of the program cycle input controller, while the second are connected to the parameter regulator. 1/2

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

APPROVED FOR RELEASE: 09/01/2001

USSR					,	UDC 54	7.241	
LAVRENT'YEV Technologic	, A. N., M al Institu	<u>IASLENNI</u> ite imen	<u>KOV, I.</u> 1 Lensov	<u>G</u> ., and S et	OCHILIN, Y	e. G., Len	ingrad	
"Synthesis Phosphines"		eptafluo	ropropyl)phosphin	e and Mixe	d Tertiary		
Leningrad, 2	Zhurnal Ob	shchey	Khimii,	Vol 43 (1	05), No 12	, Dec 73,	pp 2663-260	65
Abstract: 7 from bis(heppresence of	ptafluorop metallic	oropyl)i antimon	odophosp v. Anal	hine and ogously t	heptafluoro rifluorome	oiodopropa thylbis(he	ne in prafluoro-	
Abstract: from bis(hep presence of propyl)phosp phosphine, b	ptafluorop metallic phine, b.p	oropyl)i antimon . 112-1	odophosp y. Anal 13° and	hine and ogously t bis(trifl	heptafluor rifluorome uoromethyl	biodopropa thylbis(he)heptafluo	ne in prafluoro- ropropyl-	
from bis(hep presence of propyl)phose	ptafluorop metallic phine, b.p	oropyl)i antimon . 112-1	odophosp y. Anal 13° and	hine and ogously t bis(trifl	heptafluor rifluorome uoromethyl	biodopropa thylbis(he)heptafluo	ne in prafluoro- ropropyl-	
from bis(hep presence of propyl)phose	ptafluorop metallic phine, b.p	oropyl)i antimon . 112-1	odophosp y. Anal 13° and	hine and ogously t bis(trifl	heptafluor rifluorome uoromethyl	biodopropa thylbis(he)heptafluo	ne in prafluoro- ropropyl-	
from bis(hep presence of propyl)phose	ptafluorop metallic phine, b.p	oropyl)i antimon . 112-1	odophosp y. Anal 13° and	hine and ogously t bis(trifl	heptafluor rifluorome uoromethyl	biodopropa thylbis(he)heptafluo	ne in prafluoro- ropropyl-	
from bis(hep presence of propyl)phose	ptafluorop metallic phine, b.p	oropyl)i antimon . 112-1	odophosp y. Anal 13° and	hine and ogously t bis(trifl	heptafluor rifluorome uoromethyl	biodopropa thylbis(he)heptafluo	ne in prafluoro- ropropyl-	
from bis(hep presence of propyl)phose	ptafluorop metallic phine, b.p	oropyl)i antimon . 112-1	odophosp y. Anal 13° and	hine and ogously t bis(trifl	heptafluor rifluorome uoromethyl	biodopropa thylbis(he)heptafluo	ne in prafluoro- ropropyl-	
from bis(hep presence of propyl)phose	ptafluorop metallic phine, b.p	oropyl)i antimon . 112-1	odophosp y. Anal 13° and	hine and ogously t bis(trifl	heptafluor rifluorome uoromethyl	biodopropa thylbis(he)heptafluo	ne in prafluoro- ropropyl-	

CIA-RDP86-00513R002201930010-3

MASLENNIKON AA0047845 UR 0482 Soviet Inventions Illustrated, Section III Mechanical and General, Derwent, 1/70 INERTIA COUPLING consisting of a driving 241837 shaft with a disc 2 and driven shaft with cruciform disc 4. In order to provide simplicity of design, the driving disc has inertia triangles 6 which can rotate on axes 5. When the driving shaft begins to rotate, the triangles turn under the effect of effort P and the coupling is rigid, since the transmission of the driving shaft's effort is made through the fixed contact between the edges of the triangle and the crudiform disc. As the revolutions increase there is an increase in centrifugal force F, which is applied to the mass centre of each triangle. Forces F and P create moments M_1 and M_2 round axes 5, and when moment M, increases with the revolutions to exceed H2 the triangles start to turn clockwise on their axes, and the transmission of effort is then through the points of contact between the triangles and the cruciform arms. At established revs. the triangles will occupy a position where $M_1 = M_2$ 18 19791506

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

USSR UDC: i 621.317.3: 621.315.61+621.315.592 URYVSKIY, Yu. I., SYNOROV, V. F., CHURIKOV, A. A., POFOV, V. A. KONONOV, V. I., LAVRENT'YEV, K. A., MASLENNIKOV, P. N. "Ellipsometric Method of Checking Dielectric and Semiconductor Films" Elektron. prom-st'. Nauch.-tekhn. sb. (The Electronics Industry. Scientific and Technical Collection), 1972, No 2, pp 82-83 (from RZh-Radiotekhnika, No 12, Dec 72, abstract No 12A393 by A. K.) Translation: The ellipsometric inspection method is distinguished by high information capacity and resolution: It enables simultaneous measurement of the thickness and index of refraction of the film on a substrate during production with accuracy of up to 1 nm and 0.05 respectively. The method is based on determining the change in parameters of polarized light reflected from the surface being studied. 1/1

APPROVED FOR RELEASE: 09/01/2001
CIA-RDP86-00513R002201930010-3

USSR

UDC 621.315.592.3

RUDNEV, V. V., MASLENNIKOV, P. N., NAZAROV, V. A., ZOLOTAREVA, R. V., ANTROPOV, V. D.

"Ion Implantation -- New Method of Alloying Semiconductors"

Elektron. tekhnika. Nauchno-tekhn. sb. Materialy (Electronic Engineering. Scientific and Technical Collection. Materials), 1970, vyp. 5, pp 148-149 (from RZh-Metallurgiya, No 4, Apr 71, Abstract No 4G483)

Translation: Results are presented of studying ion alloying of semiconductors on the basis of materials published in Soviet and foreign literature. The basic areas of application of ion beams in the technological process for manufacturing semiconductor instruments are investigated. The effect of penetration of the ions into amorphous and crystalline substrates is described in detail. The effect of the energy of the incident ions, the atomic mass of the substrate, and its crystallinity and orientation on the magnitude of the ion path in the solid state is investigated. A procedure for calculating the mean ion path is presented.

1/1

- 61 -

APPROVED FOR RELEASE: 09/01/2001

KONDAT'YEV, A. B., MASLENNIKOV, P. N., KONDRAT'YEV, V. P., ZEMSKOV, O. A., DANILOV, O. M., and ZENNIN, V. V.

"Apparatus for the Electrochemical Treatment of Small Diameter Holes"

USSR Author's Certificate No 284879, Filed 25 Jun 68, Fublished 6 Mar 72 (from Referativnyy Zhurnal -- Khimiya, No 21(II), 1972, Abstract No 211288P by A. D. Davydov)

Translation: The new patented apparatus contains a tank for electrolyte, the power source, and a cathode in the shape of a thin rod. It is suitable for the treatment of small diameter holes in items made of low-magnetic alloys such as VKG, VK8, and VK15. It differs from other similar apparatus by the presence of a magnetic lens (in a shape of the shielded coil), with the cathode-instrument placed within its field. The cathode is made of paramagnetic material, in order to prevent the concentration of magnetic power lines in it.

1/1

USSK

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3"

"APPROVED FOR RELEASE: 09/01/2001 CIA

CIA-RDP86-00513R002201930010-3

APPROVED FOR RELEASE: 09/01/2001

				IDC 547.2	5*118		
USSR				4	• • •		
KRYSOV, V. V.	HASLENNIKOY	V.P., SER	GEYEVA, V.	P. :			
"Synthesis and	Some Physic	al and Chemi	cal Propert	ties of Sec	-Butyl Pe	roxy+	
	Ohebeba	y Khimii, Vo	1 42(104).	No 7, Jul	72, p 164	Ŋ	
Leningrad, Zhui Abstract: The		and committee	1 hydroper	onide react	ed with a	tethyl	·
		OI DOUGHUNG		mannate	(0,8 _c 0),P		
Abstract: The	solium salt	andutyl Der	naydiethyl	Ducabura	· 6 7 4		
chlorophospitel	5 60 6±10 00		nd. There	al dissibili	ution in a	n-nonstie er	
chlorophospitel	5 60 6±10 00		nd. There	al dissibili	ution in a	n-nonstie er	
chlorophospitel	5 60 6±10 00		nd. There	al dissibili	ution in a	n-nonstie er	
Abstract: The chlorophosphat C ₂ H ₅ . The com 140°C gives a	5 60 6±10 00		nd. There	al dissibili	ution in a	n-nonstie er	
chlorophosphile	5 60 6±10 00		nd. There	al dissibili	ution in a	n-nonstie er	
chlorophosphile	5 60 6±10 00		nd. There	al dissibili	ution in a	n-nonstie er	
chlorophosphile	5 60 6±10 00		nd. There	al dissibili	ution in a	n-nonstie er	
chlorophospitel	5 60 6±10 00		nd. There	al dissibili	ution in a	n-nonstie er	
chlorophospiul C ₂ H ₅ . The com 140°C gives a	5 60 6±10 00		nd. There	al dissibili	ution in a	n-nonstie er	
chlorophospitel	5 60 6±10 00		nd. There	al dissibili	ution in a	n-nonstie er	

CIA-RDP86-00513R002201930010-3

the first being less stable at room temperature than the second. In n-nonane solution (I) decomposes quite rapidly at 90°, while (II) just begins to decompose at 130°, yielding a series of compounds. This thermal decomposition is well described by a kinetic equation of the zero order with regard to the peroxide. Changing the specific surface of the vessel has no effect on the rate of decomposition, which points out the homogeneity of the process. Increasing the 1/2

CIA-RDP86-00513R002201930010-3

USSR

12 ્ંય

UDC 547,261118

MASLENNIKOV, V. P., SERGEYEVA, V. P., SUKHIKH, N. G., Gor'ki State University imeni N. I. Lobachevskiy, Gorkiy, Ministry of Higher and Secondary Specialized Education RSFSR

"Decomposition of Some Phosphorus-Containing Perceides in newNonane"

Leningrad, Zhurnal Obshchey Khimii, Vol 40, No 9, Sep 70, pp 2019-2021

Abstract: Di-tert-butylperczysthylphosphonate (I) and tert-butyl-

USSR					m titt	Var 10	N No G	-
MASLENNIKOV, Sep 70, pp 20	119-2021							•
initial conce However, the rate and act decomposition tic mechanism	decompos: Lvation en h of (I) a	nergy o and (II	f the p) cccur	ILLAND A.	7+-4e	runosei	1 that	:
				11			- 	
						•		
				:				
			•					
2/2								

USSR			$\mathbf{U}_{1}\mathbf{D}\mathbf{Q}$	5147.26	118	
				•		
MASLENNIKOV, V. P.,	SENGELEVA, V. r					
"Synthesis and Some phosphonate"	Properties of t	ert-But	ylperoxy	phenyle	thory-	
Leningrad, Zhurnal O	bebeber Khimii.	Vol hu). No 8,	Aug 70,	p 1906	
Leningrad, Zhurnal O	DSHCHOY MILLING,			i 20 -	052 20	
Abstract: tert-Buty 1.4852) was obtained	lperoxyphenylet	hoxypho	siphonatio aodium	alt of	tert.	
	f'nom fing react	TOU OT	EX CONTRACTOR			
1.4852) was obtained	nd phenylethoxy	chlorop	phosphon	A.C.O.		
1.4852) was obtained butylhydroperoxide a	ind phenylethoxy	chlorog	phosphon	1. T.H		
1.4852) was obtained butylhydroperoxide a	ind phenylethoxy	rchlorog	phosphon	à℃ •0 .		
1.4852) was obtained butylhydroperoxide a	ind phenylethoxy	rchloroy	ono apapan	2 .C.G.		
1.4852) was obtained butylhydroperoxide a	ind phenylethoxy	r chloro g	оцоврои	100		
1.4852) was obtained butylhydroperoxide a	ind phenylethoxy	chlorog	о <mark>ио</mark> двоио	100		
1.4852) was obtained butylhydroperoxide a	ind phenylethoxy	rehlorog	отото	1 C O .		
1.4052) was ubtained butylhydroperoxide a	ind phenylethoxy	rehloro	о <mark>лоар</mark> ои	10		
1.4852) was obtained butylhydroperoxide a	nd phenylethoxy		оцо цо цо цо цо цо цо цо цо цо цо	1 C O .		

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3 Ref. Code: Abstracting Service: Acc. Nr: 419 0079 CHEMICAL ABST. AP0053427 110597u Decomposition of tris(tert-butyl peroxy)boron to hydrocarbons. <u>Gerbert, G. P.</u>; <u>Maslennikova, Mark</u>; <u>Shushu-</u> nov, V. A. (Nauch.-Issled. Inst. Khim., Gor'k. Gos. Univ. im-Lobachevskogo, Gorki, USSR), Zh. Obshch. Khim. 1970, 40(1), 131-5 (Russ). Kinetic data were presented for pyrolysis of (Me₂CO₂)₄B (I) in nonane and in cumene in the 13D-90° interval. The reaction products were H₃BO₂, Me₂COH, CH₄, and esters of H₃BO₃. In cumene the latter esters were not formed, but they amounted to some 0.48 mole in nonane after pyrolysis at 160°. amounted to some 0.48 mole in nonane after pyrolysis at 160°. The product distribution was tabulated for the various temps.; the product distribution was faculated for the various temps, while CH₄ was a minor product, Me₅COH was the main decompn. product. A reaction scheme was proposed: Addn. of the princi-pal reaction products to the mixt, did not affect the rate of con-version of I but addn. of (Me₅CO)₂ did accelerate the reaction, as expected. The effective rate const. could be called for the overexpected. The effective rate const. could be calcil. for the overall reaction on the basis of 1st order kinetics. The activation energy for the reaction in nonane is 18.4 kcal/mole. G. M. Kosolapoff 7 REEL/FRAME 19830452

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3 Acc. Nr: APO049122 Abstracting Service: CHEMICAL ABST. 5/70 Ref. Code: U.P 0079 100195x Synthesis and thermal decomposition of dibutoxy-100195x Synthesis and thermal decomposition of dibutoxy-cumylperoxyboron in n-nonane. Maslennihov, V. P.; Gerchert, G. P; Khodalev, G. F. (USSR): 24: Ubshch. Kkim. 1970, 40(1), 245 (Russ). (BuO),BCl and NaO₂CMe₂Ph gave (BuO)₇ BO₂CMe₁Ph, d¹⁰ 0.975; n²⁹ 1.4767, which is hydrolyzed by mois-ture at extraordinary rate. Pyrolysis of it in nomine gave 75% PhMe₂COH, 20% AcPh, 20% CH₄, 96% esters of H₃BO₄, and 4.5% dinonyl. Hydrolysis of the mixt. gave nonpil alc. Indi-cating the presence, in the decompa. products of borate esters, of the solvent radical component. Evidently in the attack of the peroxide by the nonyl radical a displacement occurs at the tumylperoxide by the nonyl radical a displacement occurs at the cumyl-oxy grouping. The reaction is free radical. G. M. Kosolapoff . 4 7 Nt REEL/FRAME 19800928 ins in its its

慵

CIA-RDP86-00513R002201930010-3

UDC 547.26'118 USSR MASIENNIKOV, V. P., SERGEYEVA, V. P., and SHUSHUNCV, V. A. (deceased), Gor'ki State University Imeni N. I. Lobachevskiy "Decomposition of Organophosphoric Peroxide Compounds" Moscow, Doklady Akademii Nauk SSSR, Vol 209, No 5, Apr 73, pp 1109-1112 Abstract: The aim of this study has been the investigation of the effect of organic fragment connected to the phosphorus atom and of the radicals on the peroxide link oxygen on the reactivity of phosphorus containing peroxides. It has been established that during the thermal decomposition of organophosphoric peroxides the primary reactions appear to be the homolytic split of the peroxide bond and rearrangement of the starting material into the isomeric product. The rate of the conversion of organophosphoric peroxides in n-nonane is independent of the type of radical connected to the phosphorus atom. The use of solvents with high dielectric permeability or those specifically reacting with the substrate results in a breakdown of the peroxide via a rearrangement. 1/1 7

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

USSR

UDC: 621.375.132

MASLENNIKOV, V. V.

"Low-Frequency Selective RC Amplifiers Using Field-Effect Transistors"

Moscow, <u>Elektrosvyaz'</u>, No. 12, 1970, pp 42-44

Abstract: The advantage of RC selective circuits is the small space they occupy, especially in the form of integrated circuitry. The author proposes such an amplifier, with two differentiating circuits in a direct amplification strip and a frequency-independent series feedback circuit for current consisting of field-effect transistors with p-n junctions. In this circuit made up of identical, balanced amplifiers in cascade, the junction capacitances together with the inverse feedback circuit provide the selective amplitude-frequency characteristic. Field-effect transistors are used because their amplification factors change only slightly in the +20°C to 70° C range, and because their low drain currents result in low power demands. A schematic of the circuit and a table

1/2

APPROVED FOR RELEASE: 09/01/2001

USSR							•	
MASLENNIKOV	, V. V., Elektr	osvyaz', No	12, 19	770, pi	e 42-44			
formulas ar differentia	meters for the e given. Durin ting circuit ce	two temperating the tuning apacitances,	ture e: g proce the Q	edure, and r	e are pro done by esonance	esented, a varying amplific	and design one of the ation are	
practically	constant.							
						1		
		11 - L				• • •		
					- - - -			
				. .		Ŧ		
2/2								

1

1/1

CIA-RDP86-00513R002201930010-3

UDC: 621.375.132
ive RC Amplifiers With Electronic Frequency Contro
bory v tekhn. elektrosvvasi (Semiconductor Devices 1 Communications-collection of works), Moscow,
34 (from <u>RZh-Radiotekhniks</u> , No 1, Jan 71, Abstract
or considers the circuit of a three-stage selective three integrating circuits in the forward amplific requency-independent series-connected negative fee ons are presented for independence of the resonance fier with respect to transistor parameters. Result ture tests of an amplifier with resonance frequence o or three varactors. Bitliography of 14 titles.
ia- hdfiis

1

1/2 TITLEINTERACTION OF HIGH VO	UNCLASSIF	IED CELAIN	WITH GL	DCESSING	DATE230	CT70
AUTHOR-(02)-MASLENNIKOVA, G.N				2		
COUNTRY OF INFOUSSR	M					
SOURCEIZV. AKAD. NAUK SSSR.	NEORG. M	ATER.	1970, 6(3), 542-	6	
DATE PUBL ISHED70						
SUBJECT AREASMATERIALS, PHY	SICS					
TOPIC TAGSPORCELAIN, THERMA VOLTAGE LINE	LEXPANSI	ON, SPE	ECTALIZE	COATIN	G, HIGH	
CONTROL MARKINGNO RESTRICTIO	ONS		• • •			
DOCUMENT CLASSUNCLASSIFIED PROXY REEL/FRAME1997/0632	STEP	NOUR	10363770	070067000	3/0542/0546	5
CIRC ACCESSION NOAP0119544	ASSIFIED					

野周

PROCESSING DATE--230CT70 UNCLASSIFIED 020 2/2 CIRC ACCESSION NO--AP0119544 BETWEEN GLAZE AND HIGH VOLTAGE PORCELAIN ON WHE CHANGE IN THE THERMAL EXPANSION COEFF. OF THE INTERMEDIARY GLAZE LAYER WAS INVESTIGATED. THIS REACTION CAN BE CONSIDERED AS BEING A REACTION OF THE DISSOLN. OF THE SOLID PHASE OF PORCELAIN IN THE LIQ. PHASE OF THE GLAZE. IT IS THUS SHOWN THAT DURING THE FIRING OF PORCELAIN ARTICLES THE PORCELAIN INTERACTS WITH THE GLAZE THEREBY FORMING AN INTERMEDIARY LAYER, BEING A GLAZE WHICH HAS ASSIMILATED UP TO 40-5PERCENT PORCELAIN (1320DEGREES). AS A RESULT OF THIS, THE CHEM. COMPN. OF THE GLAZE COATING CHANGES, AND CONSEQUENTLY ALSO ITS THERMAL EXPANSION COEFF., THEREBY EXERTING AN EFFECT ON THE MECH. STRENGTH VALUE OF THE GLAZED SAMPLES. THE THERMAL EXPANSION COEFF. OF THE INTERMEDIARY LAYER DECREASES AS COMPARED TO THE THERMAL EXPANSION COEFF. OF PORCELAIN, WHICH ENHANCES INCREASED MECH. STRENGTH OF GLAZED PROCELAIN ARTICLES AS COMPARED TO THE NONGLAZED ONES. WHEN SELECTING THE GLAZES FOR INTERACTION WITH HIGH VOLTAGE PORCELAIN ONE MUST TAKE INTO CONSIDERATION THE ROLE OF THE INTERMEDIARY LAYER, THE CHEM. AND THE PHASE COMPN. OF WHICH DIFFER FROM THE CHEM. AND THE PHASE FACILITY: NOSK, INZH.-EKON, INST. COMPN. OF THE GLAZE COATING. IN. ORDZHONIKIDZE, MOSCOW, USSR. UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

USSR UDC 612.58 ISAAKYAN, L. A., MASLEDNIKOVA, L. S., OL'NYANSKAYA, R. P., and TRUETTSYNA, G.A. Group for the Study of the Physiology of Bioadaptation, Institute of Physiology imeni I. P. Pavlov, USSR Academy of Sciences, Liningrad "On Certain Changes in Oxygen Metabolism in the Animal Organism and Tissues During Cold Adaptation" Leningrad, Fiziologicieskiy Zhurnal SSSR imeni I. M. Sechenova, Vol 59, No 11, Nov 73, DD 1.742-1.749 Abstract: White rats and golden hamsters were subjected to intermittent adaptation to 4°C. Control animals were maintained at 22°C. In vivo and in vitro studies demonstrated that exygen consumption was greater in coldadapted animals, as well as in their organs and tissues. However, increased oxygen consumption was not accompanied in the adapted animals by increased contractile function of the muscles. Muscle bioelectric activity in coldadapted animals was lower than in control animals. The calorigenic effect of norepinephrine was greater and longer in adapted animals than in controls; a possible explanation of this effect was dissociation of exidative phosphorylation in the adapted animals. 1/1 - 63 -

APPROVED FOR RELEASE: 09/01/2001

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3 Abstracting Service: Ref. Code: 480028 Acc. Nr CHEMICAL ABST. 4-70 05592 APU 1 116345g Infrared spectra of complexes of mathylamine and ethylamine with cupric chloride. Konovalov, L. V.; Maslenni-tova, L. S.; Shemvakin, V. N. (USSR). Zh. Neorg. KATH. 1970, 15(2), 571-2 (Russ). The ir absorption max. of N-H 1970, 15(2), 571-2 (Russ). The ir absorption max. of N-H shifted to lower frequencies on coordination of MeNH₄ or EtNH₄ shifted to lower frequencies on coordination of MeNH₄ or EtNH₄ to CuCl₄. CuCl₅.2MeNH₅.2HCl and CuCl₅.2EtNH₄.2HCl (I) to CuCl₅. CuCl₅.2MeNH₅.2HCl and CuCl₅.2EtNH₄.2HCl (I) had r(CuN) at 580 cm⁻¹ and rCuCl at 312 and 294 cm⁻², resp. when I was preper in the instead in ac.-alc. solar, a strong new When I was prepd, in alc. instead in aq. alc. solat, a strong new (not yet assigned) band appeared at 226 cm⁻¹. [IMJR]. p 4 REEL/FRAME 19841252

USSR

ANZON, Z. V., et al, Institute of Nuclear Physics, Academy of Sciences, Katakh SSR, Alma-Ata; BOZOKI, G., et al, Central Research Institute of Physics, Budapest; DALKHAZHAV, N., et al, High-Energy Laboratory, Joint Institute of Nuclear Research, Dubna; BABETSKIY, Ya., et al, Laboratory of High-Energy Physics, Institute of Nuclear Research, Polish Academy of Sciences, Krakow; MASLENNIKOVA, N. V., TRET'YAKOVA, M. I., CHERNYAVSKIY, M. M., Physics Institute inend P. N. Lebedev of the Academy of Sciences, USSR, Moscow; ALENSEYEVA, K. I., Scientific Research Institute of Nuclear Physics, Moscow State University, Moscow; CHERNEV, Kn., TODOROV, P. T., Institute of Nuclear Physics, Academy of Sciences of the People's Republic of Bulgaria, Sofia; TUVDENDORZH, D., SHARMHI, D., CHADRAL, V., Institute of Physics and Mathematics of the Academy of Sciences, Mongol People's Republic, Ulan-Bator); AZIMOV, S. A., et al, Institute of Nuclear Physics Academy of Sciences, Uzbek SSR, Tashkent

"Coherent Generation of Particles by J-Mesons With Momenta of 45 and 60 Gigaelectron-Volts/Sec on the Basis of Photoemulsion Nucleil"

Moscow, Izvestiya Akademii Nauk SSR. Seriya Fizicheskaya, No 9, 1970, pp 1938-1943

Abstract: In the present report are presented data concerning the coherent generation of π -mesons by π -mesons at 45 and 60 gigaellectron-volts/sec, obtained by means of nuclear photoemulsion by the laboratories of a number of institutes 1/2

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3"

USSR

2/2

ANZON, Z. V., ET AL, Izvestiya Akademii Nauk SSR. Beriya Fizicheskaya. No 9. 1970, pp 1938-1943

of the Soviet Union and countries of the Soviet bloc. The joint study was organized by the Photoemulsion Committee of the Joint Institute of Nuclear Research. The preliminary results of this project were presented at the International Conference on Elementary Particles in Lund in June 1969 and at the International Conference on Cosmic Rays in Budapest in August 1969. The path value of the coherent generation of three and five charged particles is obtained from the distribution of charged particles and the angular characteristics of secondary particles on the basis of multiplicity. Comparison of the path value with the corresponding values at lower and higher energies shows a decrease of the run (and, consequently, an increase of the coherent particle-generation cross section) as the energy increases. 5 figures, 11 bibliographic entries.

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3"

LINE

"APPROVED FOR RELEASE: 09/01/2001 CIA-I

CIA-RDP86-00513R002201930010-3

APPROVED FOR RELEASE: 09/01/2001

(2)

USSR

MASLENNIKOVA, V. N., Differentsial'nyye Uravneniya, Vol 8, No 1, Jan 72: pp 85-96

in the region $\{x \in E_3, t \ge 0\}$, where $\vec{\nu}(x, t) = (\nu_i, \nu_1, \nu_3)$, $\vec{\omega} = (0, 0, \omega), \omega = \text{const}, [\vec{\nu}, \vec{\omega}]$ is the vector product, $\alpha = \text{const}$ is the compressibility factor. System (1) is symmetric hyperbolic according to Friedrichs with multiple characteristics in a previous article the author obtained an explicit solution of the Cauchy problem

 $\vec{v}(x, t)_{l=0}^{t} = \vec{v}^{0}(x), P(x, t)_{t=0}^{t} = P^{0}(x)$

for system (1) and noncoercive evaluations in L_p for this solution. At the same time, it was shown that there can be no "coercive" evaluations in L_p ; i.e., evaluations of the type

2/4

APPROVED FOR RELEASE: 09/01/2001

APPROVED FOR RELEASE: 09/01/2001

USSR

MASLENNIKOVA, V. N., Differentsial'nyye Uravneniya, Vol 8, No 1, Jan 72, pp 85-96

for any x belonging to an arbitrary compact. A comparison is made of the corresponding asymptotic behavior for the system considered and for a system without compressibility. It is shown that it is the same, and the dominant terms are determined by the lowest terms $\begin{bmatrix} \vec{v} & \vec{\omega} \end{bmatrix}$ in system (1) rather than by one of the leading terms $\alpha^2 \frac{\partial P}{\partial \tau}$. This is apparently due to the presence of multiple characteristics in the system.

4/4

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3"

4, UDC 621.378 USSR BORISEVICH, N. A., KALOSHA, I. I., LAVRUSHIN, V. F., MASLENNIKOVA, V. P., TOLKACHEV, V. A. "Generation Capacity of Isomer 1,4-Dipyrazolenylbenzenes" Minsk, Zhurnal Prikladnoy Spektroskopii, No. 1, Jan 72, pp 45-48 Abstract: A large group of the 1,4-dipyrazolenylbenzenes of the structure 1,4-di($n'-R_n$,- $m'-m'-R_m$,- Δ^2' -pyrazolenyl-k') benzene was investigated; where ndenotes 1 or 3 positions; m is 3, 5; k is 1, 3, or 5; and R_n , and R_m , are any 1 or methyl substitutes in the position n' and m'. The fluorescence and desorption spectra and the relative quantum yield of this class have been thoroughly investigated. Three groups of compounds were studied under excitation of the second harmonic of a ruby laser: 1,4-di(1'-aryl-3'-aryl-A2'-pyrazolenyl-5') benzenes (16 substances) and 1,4-di(1'-methyl-3'-phenylpyramolenyl-5') ben-zenes (A); 1,4-di(1'-ary1-5'-ary1- Δ^2 '-pyramolenyl-3') benzener (12 substances) and 1,4-di(1'-methyl-5'-phenylpyramolenyl-3')-beamer (B); and 1,4-di(5'-aryl--3'-aryl-A2'-pyrazolenyl-1') benzenes (8 substances) (C). Only compounds of group (B) are generated. Generation on two wavelengths corresponding to the 1/2

APPROVED FOR RELEASE: 09/01/2001

BORISEVICH, N. A., et al, Zhurnal Prikladnoy Spektroskopii, No. 1, Jan 72, pp 45-48

oscillatory maxima of the fluorescence spectra was observed in the majority of (B) compounds. The generation wavelength is in the range 425-500 nm. The relationship between the generation capacity and the structural chain of the compound is analyzed.

5/5

.) Oli ---

APPROVED FOR RELEASE: 09/01/2001

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3 measured in chloroform and dioxane solns. In comparison wath chalcone with the absorption may, at 310 or 305 and, the dichalcone band is shifted 11-15 nm, the isodichalcone band 45 nm to longer wavelengths; in addn., a new band appeirs at 370-5 nm for the compas. A as well as B. Donor propps cause a bathochromic shift in A, whereas in B the effect is isonsiderably smaller. The shift in the former case, expressed in wavenes, can be correlated with the Hammett -consts, of the substituents in R. Electron acceptor groups have a negligible iffect on the spectra. In the series R = biphenyl, mphthyl, anthryl in A, a bathochromic shift as well as a hyperchronic effect occurs and the naphthalene or anthracene vibrational structure appears. NEEL/FRAME 19801670

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3

USSR

IVASIK, V. M., MASLEMNIKOVA, Ye. I. and SOBOLEV, Yu. A.

Biologicheskaya Produktivnost' Ryb i Drujikh Zhivotnykh (Hiological Productivity of Fish and Other Animals) by G. I. Shpet, Urozhai, 1965, 92 pp.

Hydrobiology

Kiev, Gidrobiologicheskiy Zhurnal, Vol 6, No 3, May/Jun 70, pp 135-136

Abstract: This book is concerned with the productivity of terrestrial, freshwater, and marine plants and animals. Topics of discussion include the potential productivity and evolutionary prosperity of fish species, the comparative productivity of marine invertebrates, river crayfish and their productivity, the geometric progression of the potential capacity of animal propagation, the "economic" use of feedstuffs for the growth of fish and other animals, and the dependence between size, occupied space, and the biological productivity of marine species. It is emphasized that potential productivity is calculated by adding the terms of the propagation progression, which is different in principle from a geometric progression. The factors determining productivity may interact or counteract. Animal productivity varies with the time conditions of the medium, as well as with human interferences. Productivity is enhanced during evolution. This book will be valuable for developing methods of evaluating potential production capacities of various species for use in breeding and culturing, in the acclimatization of species, and in forecasting reproduction.

APPROVED FOR RELEASE: 09/01/2001

UDC:661.862(541.444+546.12);541.49 USSR ALPATOVA, N. M., GAVRILENKO, V. V., KESSLER, Yu. M., OSIPOV, O. P., and MASLIN, D. N. "Complexes of Organometallic, Hydride, and Halide Compounds of Aluminum" Kompleksy Metalloorganicheskikh, Gidridnykh i Galoidnykh Soyedineniy Alyuminiya [English Version Above], Moscow, Nauka Press, 1970, 296 pages Annotation: This book deals with the physical and chemical properties and synthesis of complexes of aluminum formed of its organic, hydride and halide compounds with organic and inorganic addends. Particular attention is given to the molecular structure of the complexes and the strength of bonds in them. The spectral characteristics of complexes and the role of complex formation in the synthesis of compounds of aluminum and their solubility are analyzed. Plans of the dissociation of complexes in the liquid phase are discussed, and the nature of ions is analyzed in detail. Cathode and anode processes 1/10

APPROVED FOR RELEASE: 09/01/2001

i ni fra fi su da la fini al marte de la 4 mada estas dans deteradaden de mera misterio e demos faseum en m

USSR	HDC:661.862(541.444+546.12);541.49	
MASLIN, D. N., Kom	VRILENKO, V. V., KESSLER, Yu. M., OSIPOV, O. P., leksy Metalloorganicheskikh, Gidrldnykh i Galoidnykh iya, Moscow, Nauka Press, 1970, 296 pages	
in the electrolysi	of melts and solutions and problems of practical	
electrodeposition Equeous media ar	f aluminum and electrochemical synthesis in non- discussed.	
Equeous media ar The book is design general problems o organic aluminum a izing in non-aque	discussed. d for a broad range of persons interested in complex formation, chemicals operating with d hydride compounds, and electrochemists special- us solutions. The broad range of factual material be used as a reference work as well. 94 tables;	
Equeous media ar The book is design general problems o organic aluminum a izing in non-aque allows the book to	discussed. d for a broad range of persons interested in complex formation, chemicals operating with d hydride compounds, and electrochemists special- us solutions. The broad range of factual material be used as a reference work as well. 94 tables;	-
Equeous media ar The book is design general problems o organic aluminum a izing in non-aque allows the book to	discussed. d for a broad range of persons interested in complex formation, chemicals operating with d hydride compounds, and electrochemists special- us solutions. The broad range of factual material be used as a reference work as well. 94 tables;	
Equeous media ar The book is design general problems o organic aluminum a izing in non-aque allows the book to	discussed. d for a broad range of persons interested in complex formation, chemicals operating with d hydride compounds, and electrochemists special- us solutions. The broad range of factual material be used as a reference work as well. 94 tables;	

1.1

en ander en en

	USSR	UDC:661.862(541.4	44+546.12);541.49
	ALPATOVA, N. M., GAVRILENKO, MASLIN, D. N., Kompleksy Meta Galoidnykh Scyedineniy Alyumi	I COATGANICHESKIKH, QIVIAN	<i>y</i> ((), <i>+</i>
	Table of Contents		
	Foreword		3
	Ob and any 1		1
	Methods of Synthesis of Organ	lexes	7
	Organic Aluminum Compounds of	the Type Alk ₃ and meri	7 גומוי מער א
	Alkyl Aluminohalides, Hydrid	es and Mixed Compounds of	11
	and Their Complexes		16
	Aluminum Hydride and its Deri	valives	27
nî e 4	Salt-Like Complex Organic Alu Aluminohydride Metals		34
•	3/10	: 	
	·	·	

CIA-RDP86-00513R002201930010-3

JSSR	j U	DC:661.862(5	41.444+546	.12);541.49	
ALPATOVA, N. M., GAVRILENK	O V. V., KES	SLER, Yu. M.	, OSIPOV,	O. P.,	
ASLIN, D. N., Kompleksy M Galoidnykh Soyedineniy Aly					
				34	
Production and Chemic	al Properties	1. 	•	46	
Thermal Decomposition	of Aluminohy	drides		48	
Substituted Metal Aluminoh	ydrides			50	
Aluminum Borohydrides				54	
Swinner Motel Hydrides				57	
Literat Conversion of Compl	ex Compounds	of Aluminum	• • •	57	
Substitution Reaction	of Weak Lewi	s Bases and	Actus in	57	
Complex Aluminum Co	mnounds				
Reaction of Redistrib	ution (dispro	portionation	1) of Ligar	lds	•
in Complex Aluminum	Comounds		9	55	
Exchange of Cations i	n MAIX, Compl	lexes		61	
Exchange of cacions 1	4	an internet Com	mound		
Influence of Complex	Formation on	Aluminum Com	politic	62	
Chemistry				<i>42</i>	
An			1.000		
4/10		e material contract.			

the later of the l

USSR	UDC:661.862(541,444+546.12);541.49	
ALPATOVA, N. M., GAVRILENKO, MASLIN, D. N., Kompleksy Met Galoidnykh Soyedineniy Alyum	V. V., KESSLER, Yu. M alloorganicheskikh, Gi iniya, Moscow, Nauka F	I., OSIPOV, O. P., dridnykh i Press, 1970, 296 pages	
		65	
Bibliography Chapter 2	17. 17. Jan	Halide	
Dramigal Dranerties	of Complexes or hydr	73	
and Organometallic Compo	unds of Archithem	73	
Complexes AlR ₃ nL	rhons	73	
AIR ₃ -Aromatic Hydroca		75	
AlR ₃ -Simple Esters		79	
AlR ₃ -Amines		83	
A1R ₃ -Amnonia	•	85	
AlR ₃ -Polyamines			
5/10			

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3"

Atinit

USSR UDC:661.862(541.444+546.12);541.49 ALPATOVA, N. M., GAVRILENKO, V. V., KESSLER, Yu. M., OSTPOV, O. P., MASLIN, D. N., Kompleksy Metalloorganidheskikh, Gidridnykh i MASLIN, D. N., Kompleksy Metalloorganidheskikh, Gidridnykh i MIR ₃ -Heterocyclical Nitrogen-Containing Compounds Arsines 89 AlR ₃ -Nitriles 93 AlHal ₃ -Hilal-Åromatic Hydrocarbons or Simple Esters 97 AlHal ₃ -Oxygen-Chlorine-Containing Compounds of Phosphorus 99 AlHal ₄ -Interhalide Compounds 100					541 49
MASLIN, D. N., Komplexsy Metalloorg, Moscow, Nauki Press, 1970, 296 pages Galoidnykh Soyedineniy Alyuminiya, Moscow, Nauki Press, 1970, 296 pages AIR ₃ -Heterocyclical Nitrogen-Containing Compounds AIR ₃ -Phosphines, Diphosphines, Phosphinamines, Arsines 90 AIR ₃ -Sulphur Derivatives 91 AIR ₃ -Ketones 92 AIR ₃ -Ketones 93 AIR ₃ -Halide Alkyls AIR ₃ -Halide Alkyls 95 AIHal ₃ -Nitrocompounds AIHal ₃ -Hilal-Áromatic Hydrocarbons or Simple Esters 97 AIHal ₃ -Oxygen-Chlorine-Containing Compounds of Phosphorus 99	USSI		1 · · · · · · · · · · · · · · · · · · ·		
AIR3-Heterocyclical Nitrogen-Containing Compounds87AIR3-Phosphines, Diphosphines, Phosphinamines, Arsines89AIR3-Sulphur Derivatives90AIR3-Ketones91AIR3-Nitriles92AIR3-Halide Alkyls93AIR3-Halide Alkyls95AIHal3-Nitrocompounds97AIHal3-Hilal-ÁromaticHydrocarbons or Simple Esters97AIHal3-Oxygen-Chlorine-Containing Compounds of Phosphorus99	ALP/ MASI	TOVA, N. M., GAVRILENKO, V. V., H IN, D. N., Kompleksy Metalloorgan Janykh Soyedineniy Alyuminiya, Mo	KESSLER, Yu. M., nicheskikh, Gidr oscow, Naukı Pre	OSIPOV, O. P. idnykh i ss, 1970, 296	, pages
AlR3-Phosphines, Diphosphines, Phosphinamines, Alsines90AlR3-Sulphur Derivatives91AlR3-Ketones92AlR3-Nitriles93AlR3-Halide Alkyls93AlHal3-Nitrocompounds95AlHal3-Hill-ÁromaticHydrocarbons or Simple EstersAlHal3-Oxygen-Chlorine-Containing Compounds of Phosphorus99	Gar	Linghi - / · · · · · · · · · · · · · · · · · ·	ontaining Compou	nds	87
AlR3-Sulphur Derivatives91AlR3-Ketones92AlR3-Nitriles93AlR3-Halide Alkyls93AlHa13-Nitrocompounds95AlHa13-HHal-ÁromaticHydrocarbons or Simple EstersAlHa13-Oxygen-Chlorine-Containing Compounds of Phosphorus99		AlR ₃ -Heterocyclical Nitrogen of	Phosphinamines,	Arsines	89
AlR3-Ketones92AlR3-Nitriles93AlR3-Halide Alkyls95AlHal3-Nitrocompounds95AlHal3-HHal-AromaticHydrocarbons or Simple EstersAlHal3-HHal-AromaticHydrocarbons of PhosphorusAlHal3-Oxygen-Chlorine-Containing Compounds of Phosphorus99	na Sentin Sentin Senti Sentin Sentin	AlR ₃ -Phosphines, Dipnosphines,	110550000		90
AlR3-Nitriles93AlR3-Halide Alkyls95AlHal3-Nitrocompounds97AlHal3-HHal-ÁromaticHydrocarbons or Simple EstersAlHal3-HHal-ÁromaticHydrocarbons of PhosphorusAlHal3-Oxygen-Chlorine-Containing Compounds of Phosphorus99		AlR ₃ -Sulphur Derivatives			91
AlR3-Halide Alkyls95AlHal3-Nitrocompounds97AlHal3-HHal-AromaticHydrocarbons or Simple Esters97AlHal3-HHal-AromaticHydrocarbons of Simple Esters99AlHal3-Oxygen-Chlorine-Containing Compounds of Phosphorus99					92
AlHal ₃ -Nitrocompounds AlHal ₃ -HHal-Áromatic Hydrocarbons or Simple Esters 97 AlHal ₃ -HHal-Áromatic Containing Compounds of Phosphorus 99	la a principalan di si Secondari Secondari	AIR ₃ MILITIO			93
AlHal ₃ -HHal-Aromatic Hydrocarbons or Simple Esters AlHal ₃ -HHal-Aromatic Hydrocarbons of Phosphorus 99 AlHal ₃ -Oxygen-Chlorine-Containing Compounds of Phosphorus 99		AIR ₃ -Halide Aikyls			95
AlHalz-Oxygen-Chlorine-Containing Compounds of Phosphorus		AlHal 3-Nitrocompounds	bons or Simple E	Isters	97
AlHal ₃ -Oxygen-Chlorine-Containing Compounds AlHal ₂ -Interhalide Compounds		AlHalHHal-Aromatic Hydrocut	ing Compounds of	Phosphorus	99
		AlHal ₃ -Oxygen-Chlorine-Contain AlHal ₃ -Internalide Compounds	ing components	-	100

a second and a second second
CIA-RDP86-00513R002201930010-3

USSR		UDC:661.862(5	41.444+546.12	2);541.49	
	VA, N. M., GAVRILENKO, V. V. I, D. N., Kompleksy Metalloor neniy Alyuminiya, Moscow, Na				
	AlR ₃ -Other Ligands			100	
.	Conductometry of the AlHal,	-L-Solvent Trinar	y Systems	101 113	
Comp1	exes $MR_{m} \cdot nA1R_{3}$ (m = 1, 2)	2)		113	
	Complexes $MR_m \cdot A1R_3$ (m = 1,	2) 1. Am)		128	
	Complexes $MAIR_{n}H_{4-n}$ (R = Al	Alk. Ar)	: : .	128	
lenter Alternet Alternet	Complexes MAIR _n Hal _{4-n} (R =	hal = A l R = C R = A l k	Ar)	130	
	Complexes in the Systems M	3		136	
Compl	Complexes MA1Hal _n H _{n-i} exes MR _m \cdot nAlR ² ₃ \cdot nA (m = 1, 2)			137	
	ography				
7/10		· · · · · ·			

1

ALPATOVA, N. M., GAVRILENKO, V. V., KESSLER, Yu. M., OSIPOV, O. P., MASLIN, D. N., Kompleksy Metalloorganicheskikh, Gidridnykh i Galoidnykh Soyedineniy Alyuminiya, Moscow, Nauka Press, 1970, 296 pages Chapter 3 Structure of Compounds of Aluminum and Their Complexes. Nature and Energy of Bonds. Distribution of Electron Density in Molecules 150 Compounds of Aluminum. X-Ray, Electronographic and Spectral Studies 161 Complexes Containing One Ligand Molecule 165 Complexes of Aluminum Compounds. Spectral Studies 167 Bibliography Chapter 4 Electroconductivity and Plans of Electrolytic Dissociation of Ligand 8/10	USSR		UDC:661.862(54	1.444+546.12);541.49	
and Energy of Bonds. Distribution of information of	ALPATOVA, N. M., GAVR MASLIN, D. N., Komple Soyedineniy Alyuminiy	ILENKO, V. V., K ksy Metalloorgan a, Moscow, Nauka	ESSLER, Yu. M., icheskikh, Gidr Press, 1970, 2	OSIPOV, O. Idnykh i Gal 96 pages	P., oidnykh	•
and Energy of Bonds. Distribution of interesting 150 Molecules 151 Compounds of Aluminum. X-Ray, Electronographic and 151 Spectral Studies 161 Complexes Containing One Ligand Molecule 165 Complexes Containing More Than One Ligand Molecule 165 Complexes of Aluminum Compounds. Spectral Studies 167 Bibliography Chapter 4 Electroconductivity and Plans of Electrolytic Dissociation of Complexes of Aluminum 201	Chapter 3	C Al	d Thair Complex	ces. Nature		
MoleculesISICompounds of Aluminum. X-Ray, Electronographic and151Spectral Studies161Complex Compounds of Aluminum. X-Ray Studies161Complexes Containing One Ligand Molecule165Complexes Containing More Than One Ligand Molecule165Complexes of Aluminum Compounds. Spectral Studies167BibliographyChapter 4Electroconductivity and Plans of Electrolytic Dissociation of201	Structure of Compound	s of Aluminum and	of Electron De	ensity in	0	
Compounds of Aluminum. X-Ray, Electronographic and151Spectral Studies161Complex Compounds of Aluminum. X-Ray Studies161Complexes Containing One Ligand Molecule165Complexes Containing More Than One Ligand Molecule165Complexes of Aluminum Compounds. Spectral Studies167BibliographyChapter 4Electroconductivity and Plans of Electrolytic Dissociation of201	and Energy of Bond	2. DISCITUATION			150	
Spectral Studies161Complex Compounds of Aluminum. X-Ray Studies161Complexes Containing One Ligand Molecule165Complexes Containing More Than One Ligand Molecule165Complexes of Aluminum Compounds. Spectral Studies167BibliographyChapter 4Electroconductivity and Plans of Electrolytic Dissociation of201	Molecules Compounds of A	luminum, X-Ray,	Electronograph	nic and	153	
Complex Compounds of Aluminum. A-Ray Studies161Complexes Containing One Ligand Molecule165Complexes Containing More Than One Ligand Molecule165Complexes of Aluminum Compounds. Spectral Studies167BibliographyChapter 4Electroconductivity and Plans of Electrolytic Dissociation of Complexes of Aluminum201	Second Sti	20100				
Complexes Containing One Ligand Molecule 165 Complexes Containing More Than One Ligand Molecule 165 Complexes of Aluminum Compounds. Spectral Studies 167 Bibliography Chapter 4 Electroconductivity and Plans of Electrolytic Dissociation of Complexes of Aluminum 201	··· · · · · · · · · · · · · · · · · ·	-lo of Aluminum.	X-Ray Studies	5		
Complexes Containing More Than One Ergand Horocons Complexes of Aluminum Compounds. Spectral Studies 167 Bibliography Chapter 4 Electroconductivity and Plans of Electrolytic Dissociation of Complexes of Aluminum 201						
Bibliography Chapter 4 Electroconductivity and Plans of Electrolytic Dissociation of Complexes of Aluminum	· ·	Cambraining MOTO	TUDE DESCRIPTIONS	1 110 4 4 5 4 5 4		
Chapter 4 Electroconductivity and Plans of Electrolytic Dissociation of Complexes of Aluminum	Bibliography	-				
Electroconductivity and Plans of Electroly 20 201 Complexes of Aluminum	Chapter 4	· · · ·	Tutta Diana	tation of		
Complexes of Aluminum	Electroconductivity a	ind Plans of Elec	trolytic bisso	AUCION OI	201	
	Complexes of Alum	inum				
8/10	an a					
	8/10					

CIA-RDP86-00513R002201930010-3

USSR	- - -	UDC:661.862	(541.444+546.1	2);541.49	
ALPATOVA, N. M., GAVR MASLIN, D. N., Komple Soyedineniy Alyuminiy	rev Metalloorga	nicneskiku, v	Tat rand with a log	P., loidnykh	
AlR ₃ in Individ				201	
AIR_3 in Electron	-Donor Solvent	5 ¹		203	
•				204	
AlHal ₃ -Nit		•		208	
AlHal ₃ -Sim	sphorus, Sulphu	r and Nitrove	n Oxychlorides	208	•
		1 4110 11202-8-		210	
AlHal ₃ -Hal	Ide Alkyls	Wali Matal)		212	
MR·nAlR ³ in So	LUTIONS (M A	INGIT MCCOX)		221	
Bibliography Chapter 5		•			
Chapter 5 Preparative Electroly Processes	sis of Compound	s of Aluminum	and Electrode	224	
9/10					

ALPATOVA, N. M., GAVRILENKO,	WECCIED N			
ALPATOVA, N. M., GAVRILENKO, MASLIN, D. N., Kompleksy Met Soyedineniy Alyuminiya, Mosc	V. V., KESSLER, alloorganicheskikl ow, Nauka Press,	Yu. M., OSIPOV, G h, Gidridnykh i G 1970, 295 pages). P., Galoidnykh	
			225	-
Binary Systems			236	
Trinary Systems			256	
Mixed Solvents			262	
Bibliography			265	
Appendices Appendix 1. Physical	Properties of Hal	ide, Hydride	•	
and Organometallic L	ompounds or madine		265	
Complexes Appendix 2. Associati metallic Compounds c			269	
Annendix 3. Dipole MC	oments of Individu	ar and compron	275	
Aluminum Compounds	Properties of Cer	tain Solvents	278	
Appendix 5. Thermal H	Effects of Reactio	ITS OF COMPTON	281	
Formation			288	
Index				

"APPROVED FOR RELEASE: 09		CIA-RDP86	-00513R002201930010-3	
172 - ROL EXCLUSION FLOOR DECK	ASSIFIED	PT JC: CHI TALLUKGY (ESSING DATE110EC70 DF GULD -U-	
CTHER-(25)-PRICHAR, F.C., POLIMI MASLIY, A.T. CURING LT TRED-USSR	MA, L.E.,	ZDURUVA, H.I	P., BEK, R.YU.,	
CURCE-ISVET. SETAL. 1970, 43(3)	, 70-4	* -		в
ATE PUELISHED70 SUBJECT AREASMATERIALS				and the second secon
GPIC TAGSHYDRCHETALLURGY, GCLC RETALLURGY/(U)APZ ANIGN EXCHANG), ICN EXC Ger	HANGER, EXTR	ACTIVE	5
	•			
CATROL MARKINGNO RESTRICTIONS	•			:
COUMENT CLASSUNCLASSII 160 ROXY REEL/FRAME3001/1407	STEP NU-	-UR/0135/70/(043700370070707074	
TRE ACLESSION NOAP0126945				

"APPROVED FOR R	LEASE: 09/01/2001 CIA-RDF	286-00513R002201930010-3
		COCESSING DATE
2/2 009		RUCESSING DATETTICCTO
RE ACCESSION NOAPOI	P-O- ABSTRACT. A TECHNEL.	SCHERATIC DIAGRAM FOR
THE ENTERIESS SUBPLI	CA PROCESS IN THE EXTN. OF A	U FROM CYANGGEN PULPS
AY USE DE ANTEN EXCHA	NGER AP 2 IS GIVEN. AP 2, 8	ased lan
CHU DRUMETHYLATED COPI	EYAER STYRENE DIVINYLBENZENE	TARD TERFIARY ARTHER
UNS SYNTHESTZED HEDEE	LAB. CENDIFICNS, THE INCRE	ASE IN SELECTIVITY OF
AP 2 FOR GULD IS 2-2	5 TIMES AND ITS CAPACITY IS	1.3-1.5 LIMES THAT UP
OTHER ANICH EXCHANGER	S UNDER ANALOGOUS CONDITIONS	• 1997 -
	· · ·	
e de la companya de l		
	:	
	i - cirizh	·····

|| ||

CIA-RDP86-00513R002201930010-3

USSR

UDC 622.342:541.183.12

FRIDMAN, I. D., POCHKINA, L. YE., ZDOROVA, E. P., BEK, H. YU., MASLIY, A. I.,

PUNISHKO, O. A., POCHIVALOV, I. N., and STAFEYEVA, L. B.

"Ion-Exchange Technology in Gold Hydrometallurgy"

Moscow, Tsvetnyye Metally, No 3, Mar 70, pp 70-74

Abstract: Ion-exchange technology permits the use of filter-free systems, thus eliminating both costly equipment and cumbersome operations -- filtration of pulp and washing of precipitates as well as precipitation of Au from solutions. Sorption leaching, which is more complete in dissolving Au from ore and reduces the loss of dissolved gold in the dump pulp, offers much better conditions for higher Au extraction. In order to provide satisfactory results, the new technology requires the use of anionites, which are selective with respect to Au, and also have high kinetic, mechanical, and regeneration properties. The selectiveness of the AP-2 anionite, synthesized at the Kemerov Scientific-Research Institute for the Chemical Industry, was found to be 2--2.5 and its capacity -- 1.3--1.5 times that of similar anionites. The anionite was tested on a semi-industrial unit using a counter-current system. The high desorption capacity of the bifunctional AP-2 anionite with respect to metal impurities makes it possible to simplify the regeneration process and reduce the mumber of required elements. The process 1/2

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3"

CIA-RDP86-00513R002201930010-3

n sa indiana (ta international factoria (taxia)

USSR

FRIDMAN, I. D., et al, Tsvetnyye Metally, No 3, Mar 70, pp 70-74

includes the following phases: desorption of CN, Zn, and Ni with HNO_3 or E_2SO_4 solutions; desorption of Au, Ag, and Cu by chloride and sulfide solutions of thiourea during electroelution, and disorption of Fe by NE_1NO_3 alkaline solutions at $50--55^{\circ}C$. The high desorption capacity of the AP-2 aniconite determines the relatively short duration of the regeneration process: desorption of CN, Zm, and Ni -tively short duration of Au, Ag, Cu during electroelution in 3--5 hrs; desorption of 5 hrs; desorption of Au, Ag, Cu during electroelution in the original article. Fe--5 hrs. The complete procedural flow chart is given in the original article.

26

2/2

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3"

UNCLASSIFIED PROCESSING DATE--020CT70 1/2 018 TITLE--EFFECT OF SLOT SHAPE AND SIZE ON CURRENT DISTRIBUTION IN A SLOT CELL -U-AUTHOR-(03)-MASLIY, A.L., PODDUBNYY, N.P., PIROGOV, B.YA. COUNTRY OF INFO--USSR SOURCE--ELEKTROKHIMIYA 1970, 6(1) 70-3 DATE PUBLISHED-----70 SUBJECT AREAS--CHEMISTRY, ELECTRONICS AND ELECTRICAL ENGR. TOPIC TAGS--ELECTRODE, ELECTROLYTIC CELL, ELECTRIC CURRENT, ANODE, CATHODE CONTRUL MARKING--ND RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP ND--UR/0364770/006/001/0070/0073 PROXY REEL/FRAME--1989/0464 CIRC ACCESSION NO--AP0107070 UNCLASSIFIED

BEK, R. YU., MASLIY, A. I., and LAVROVA, T. A.

"The Rate of Electrolytic Separation of Gold from Thiourea Solutions"

Izvestiya Sibirskogo Otdeleniya AN SSSR, Seriya Khimicheskikh Nauk, Vyp 1, No 2, 1972, pp 25-31 (from Referativnyy Zhurnal -- Khimiya, Svodnyy Tom, Abstract No 23I244 by E. Z. Napukh)

Translation: The effect of electrolysis conditions on the electrodeposition rate of Au from thiourea solutions was studied in laboratory and industrial pilot plant. A dependence of the mass transfer coefficient on cathode potential, temperature, evolution rate of H_2 , and the electrolyte flow rate was established. 'A rapid flow of electrolyte secured the maximal Au deposition rate. Formulas are given for the calculation of the mass transfer coefficient and the removal of gold from eluate with respect to time.

1/1

计注意计算法 医胆管管腔 医胆管管腔

TICOUT

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3"

CIA-RDP86-00513R002201930010-3

USSR			time	632.95	diaman's
			UDC	032.95	
STEPANOV, M. K., OSI B. S., and DUNAYEVA,	PYAN, V. T., KAZHI I. D.	DAN, V. B.,	, MASLIY, L. K	., GRABOVSKIY	9
"A Method of Control	ling Fleas"				
USSR Author's Certif	icate No 263328, f	iled 16 Ma	ar 62, publish	ed 26 May 70	
(from <u>RZh-Khimiya</u> , No Franslation: Hexame pellant. The substar	hylenecarbamide (nce is an otly, co	(I) is prop	osed for use	i with a baili	ing
Cranslation: Hexame bellant. The substan point of 153°C/3 mm, pubbling COCl ₂ at 5-1 appropriate solvent. conditions of intense	hylenecarbamide (nce is an oily, co d4 ²⁰ 1.0489, n ²⁰ D 10°C through a sol The preparation	(I) is prop lorless, o l.5161. ution of h is stable.	osed for use dorless liquid Compound I is examethylene In 30 days	d with a boili synthesized b Hiamine in an of storage und	у
(from <u>RZh-Khimiya</u> , No Franslation: Hexamer pellant. The substan point of 153°C/3 mm, pubbling COCl ₂ at 5-1 appropriate solvent. conditions of intense	hylenecarbamide (nce is an oily, co d4 ²⁰ 1.0489, n ²⁰ D 10°C through a sol The preparation	(I) is prop lorless, o l.5161. ution of h is stable.	osed for use dorless liquid Compound I is examethylene In 30 days	d with a boili synthesized b Hiamine in an of storage und	у
Cranslation: Hexame bellant. The substan point of 153°C/3 mm, pubbling COCl ₂ at 5-1 appropriate solvent. conditions of intense	hylenecarbamide (nce is an oily, co d4 ²⁰ 1.0489, n ²⁰ D 10°C through a sol The preparation	(I) is prop lorless, o l.5161. ution of h is stable.	osed for use dorless liquid Compound I is examethylene In 30 days	d with a boili synthesized b Hiamine in an of storage und	у
(from <u>RZh-Khimiya</u> , No Franslation: Hexame pellant. The substan point of 153°C/3 mm, pubbling COCl ₂ at 5-1 appropriate solvent. conditions of intense	hylenecarbamide (nce is an oily, co d4 ²⁰ 1.0489, n ²⁰ D 10°C through a sol The preparation	(I) is prop lorless, o l.5161. ution of h is stable.	osed for use dorless liquid Compound I is examethylene In 30 days	d with a boili synthesized b Hiamine in an of storage und	у
(from <u>RZh-Khimiya</u> , No Translation: Hexamet pellant. The substan point of 153°C/3 mm, bubbling COCl ₂ at 5-1 appropriate solvent. conditions of intense volatilized.	hylenecarbamide (nce is an oily, co d4 ²⁰ 1.0489, n ²⁰ D 10°C through a sol The preparation	(I) is prop lorless, o l.5161. ution of h is stable.	osed for use dorless liquid Compound I is examethylene In 30 days	d with a boili synthesized b Hiamine in an of storage und	у

1/2 018 TITLENETHODS FOR COMBATTIN	UNCLASSI G FLEAS -	FIED V-	M	РКО	¢ESSIN	IG DATE2	27NOV70
AUTHOR-(05)-STEPANOV, M.K., GRABOVSKIY, B.S. COUNTRY OF INFOUSSR	OSIPYAN,	T.V.,	KAZH)AN, V	•B•, M	ASLIY, L.	К.,
SOURCEU.S.S.R. 263,328 REFERENCEOTKRYTIYA, IZDBRE DATE PUBLISHED04FEB70	T., PROM.	OBRAZ	τsγ,	TUVARI	NVE ZN	AKI 1970,	47(7)
SUBJECT AREASBIOLOGICAL AND) ΜΕΡΙΓΔι	SCTEN	° € ⟨				
TOPIC TAGSFLEA, INSECTICIDE				AMIDE			
					• • •	:	-
CONTROL MARKINGNO RESTRICTI	ONS			di di			
DOCUMENT CLASSUNCLASSIFIED PROXY REEL/FRAME3002/1561	STEP	NO1	R≠041	32/70/	000 7 00	070000700	000
CIRC ACCESSION NOAA0128956 UNCI	LASSIFIED						

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3"

				i í
2/2 018	UNCLASSIFI		PROCESSING D	
CIRC ACCESSION NOAA0128956 ABSTRACT/EXTRACT(U) GP-0-	ABSTRACT.	HEXAMETHYL	ENECARBAMIDE	WAS USED AS
A FLEA REPELLENT.				
				· · · · ·
		1		
			4 y	
4. We shall be a set of the se	C + 4 C C T C T C D			
<u>UN</u>	CLASSIFIED	d a george		

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3"

....

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002201930010-3 긑 Abstracting Ser Acc. Nr 05345: CHEMICAL ABST. 110710a Reaction of the diethylamide of chlorosulfonic acid with butylmagnesium bromide. <u>Maslii, L. K.</u>; <u>Petrov, A. A.</u> (USSR). Zh. Org. Khim. 1970, 6(3):896 (Russ). An attempt to prep. alkylsulfamides by reacting Bt_2NSO_3Cl with BuMgBr gave only SO₂, Bt_2NH , and BuCl. The reaction at $\rightarrow 40^\circ$ evi-dently proceeds with the formation of $[Et_3N(SO_4Cl)MgBu]^+Br^-$, which during the work up with 5% HCl soln. decomps. CPJR 7

CIA-RDP86-00513R002201930010-3"

		UDC 632.95	•
USSR	•	CUTENOVA S. M. OSTPYAN, V. T.,	
VASHKOV, V. I., DEDOV, MASLIY, L. K., KOCHANOV.	V. S., DREMOVA, V. P.	, SMIRNOVA	
MASLIY, L. K., NUCHAIIOT.	n, ,	the of a New Repellent	
"Entomological and Toxi	cological Characteris	tics of a New Repellent	
(from <u>RZh-Khimiya</u> , No 1	4, 25 Jul 72, Abstrac	All-Union Scientific Research), 1971, vyp. 21, Vol 2, pp 30-37 et No 14N465 by T. A. Belyayeva) ellent for mosquitoes, midges, and reams and gintments are made,	
Translation: Carboxiuc		mana and distances are muse,	
some species of norself protective film-forming able through the skin. (ointment. cream etc.)	substances must be g Refined carboxide, M , causes no lesions of	put in since carboxide is about when used in its various forms n exposed areas of the body and has of uprefined (industrial) carboxide	5
some species of norself protective film-forming able through the skin. (ointment. cream etc.)	substances must be g Refined carboxide, M , causes no lesions of	put in since carboxide is about when used in its various forms n exposed areas of the body and has of uprefined (industrial) carboxide	5
some species of norself protective film-forming able through the skin. (ointment, cream etc.)	substances must be g Refined carboxide, M , causes no lesions of	when used in its various forms	5
protective film-forming able through the skin.	substances must be g Refined carboxide, M , causes no lesions of	put in since carboxide is about when used in its various forms n exposed areas of the body and has of uprefined (industrial) carboxide	5
protective film-forming able through the skin.	substances must be g Refined carboxide, M , causes no lesions of	put in since carboxide is about when used in its various forms n exposed areas of the body and has of uprefined (industrial) carboxide	5
some species of norself protective film-forming able through the skin. (ointment. cream etc.)	substances must be g Refined carboxide, M , causes no lesions of	put in since carboxide is about when used in its various forms n exposed areas of the body and has of uprefined (industrial) carboxide	3
some species of norself protective film-forming able through the skin. (ointment, cream etc.), no side effect on the h to make various forms of	substances must be g Refined carboxide, M , causes no lesions of	put in since carboxide is about when used in its various forms n exposed areas of the body and has of uprefined (industrial) carboxide	5

"APPROVED FOR RELEASE:	09/01/2001	CIA-RDP86-0)513R002201930010-3
ITTLEON THE SYNTHESIS OF	UNCLASSIF C SUB5 A SUE	DO TH PRESEMPE	CESSING DATE13NOV70 DF CR SUB2 D SUB3 -U-
AUTHOR-1031-MASTLY. YE.N.,	URYVAYOVA, C		• A.T.
CCUNTRY OF INFOUSSR	m		
SOURCEIZVESTIYA SIBIRSKOGO KHIMICHESKIKH NAUK, 1970, DAVE PUBLISHED70) OTDELENIYA NR 2, PP 16	AKADEMII MAUK 8-171	SSSR, NO 4, SERIYA
SUBJECT AREASCHEMISTRY			•
TGPIC TAGSCHREMIUM_DXIDE,	CHEMICAL SY	NTHESIS	
			4
			,
CENTROL HARKING-NO RESTRICT	TONS		· · · · · · · · · · · · · · · · · · ·
OCCUMENT CLASSUNCLASSIFIED PROXY REEL/FRAME1993/0572	STEP N	IDUR/028977071	100/000/0168/0171
CIRC ACCESSION NOAPO113463			
			······

"APPROVED FOR RE	LEASE: 09/01/2001	CIA-RDP86-00513R0	02201930010-3
2/2 007	UNCLASSIFIED	PROCESSING D	
CIRC ACCESSION NOAPOL	13463 P-O- ABSTRACT. TH NTHESIS DE C SUB5 A	E EFFECT OF 0.3-15PE	CENT CR
THAT THE PRESENCE OF	0.8-1.1PERCENT GR B3 STRUCTURE BECAUS	E OF ALO SUBA HAS CAUS	ADDED THE
SUB4 SUBSTITUTION .	SUB3, CACR SUB2 U	SUB7, CR. HUBZ D SOUS	INICHESKIKH
SUB5 A SUB3) WAS FOUN OSNOV PERERABOTKI MIN	D. FACILIA ERAL'NDGO SYR-YA S	O AN SSSR NOVOSIBIR	SK.
		•	
			4
	UNCLASSIFIED		

CIA-RDP86-00513R002201930010-3

UDC: 519.2 USSR "Asymptotic Behavior of Stationary Probabilities for Two-MALYSHEV, V. A. -Dimensional Positive Random Walks" Sib. mat. zh. (Siberian Mathematics Journal), 1973, 14, No 1, pp 156-169 (from RZh-Kibernetika, No 5, May 73, abstract No Translation: A continuation of a previous paper by the author (RZhMat, 1973, 4V102). The asymptotic form of sta-tionary probabilities π_{mn} is found. The qualitative particu-lars of asymptotic behavior are described in the language of turbulance theory. Extensive use is made of the ideas of turbulence theory. Extensive use is made of the ideas of Morse theory in deriving the results. 1/1and the second second

USSR		UDC: 519.2	
MAMATOV, M. "Local Limit Theorems for Sums Quantities"			-
Tashkent, Sluchayn. protsessy Processes and Statistical Infe vyp. 2, "Fan", 1972, pp 77-83 May 73, abstract No 5V29 by th	(from RZh-Kibern e author)	etika, NO 5,	
Translation: Proofs are given densities of the normalized su quantities, and estimates are these theorems.	for local limit m of a random nu found for the re	theorems for imber of random esidual terms in	
1/1			
	- 20 -		

	1/1	
÷.,		
-		
	Translation: Various schemes of dependent random quantities are considered, and conditions are indicated for convergence of their sums to Poisson law. These conditions are very similar to those found by B. V. Gnedenko for independent random quantities.	
	Uch. zap. Tashkent. gos. ped. in-t (Scientific Notes. Tashkent State Pedagogical Institute), 1972, 100, pp 72-78 (from RZh- Kibernetika, No 5, May 73, abstract No 5V39 by the author)	
	"On Convergence of Sums of Dependent Random Quantities to Poisson Law"	
	MANEVICH, D. V.	
	USSR	
	UDC: 519.2	

USSR						UDC:	519.2	
MANEVICH	<u>D. V.</u>							
"Concern Random Q	ing Asympt uantities'	totic Dist	ributions	for Su	ms of De	pendent		
Ctata Da	dagogical	t. gos. pe Institute	1. 1972.	TOO: DD	- 00-7.L (TTOUL IVE		
	tika, No S							ł
Translat for sums conditio	tika, No S	et of limi dent rando are free o	ting dist	ributic	ns is es isfving	tablish	ed	-
Translat for sums conditio	tika, No se ion: A se of depend ns which a	et of limi dent rando are free o	ting dist	ributic	ns is es isfving	tablish	ed	
Translat for sums conditio	tika, No se ion: A se of depend ns which a	et of limi dent rando are free o	ting dist	ributic	ns is es isfving	tablish	ed	
Translat for sums conditio	tika, No se ion: A se of depend ns which a	et of limi dent rando are free o	ting dist	ributic	ns is es isfving	tablish	ed	

8

EXE

	USSR		UDC: 519.2	
	MANEVICH, D. V.		•	
	"Conditions of Convergence to St cesses"	table Laws f	or Stationary Pro-	
	Uch. zap. Tashkent. gos. ped. in State Pedagogical Institute), 19 -Kihernetika, No 5, May 73, abst	n-t (Scienti 972, <u>100,</u> pp tract No 5V3	fic Notes. Tashkent 50-65 (from RZh- 7 by the author)	
	Translation: The paper gives ne ditions of convergence to stable sequences which are stationary is conditions of strong intermixing conditions of convergence to sta	e laws other in the narro g. In addit	than normal for w sense and satisfy ion, sufficient	
	andra af chair an chair	1 . :		
У.,				
	1/1			

D. Programming and Mathematical Machine Theory UDC: 8.74 **บ**รรณ MASHKEVICH, A. S. "Set of Input/Output Equipment for the Automated Control System of an Enterprise With Production of Discrete Type" Tr. In-ta elektron. upravl. mashin (Works of the Institute of Control Computers), 1972, vyp. 17, pp 86-90 (from RZh-Kiber-netika, No 5, May 73, abstract No 5V737 by V. Mikheyev) Translation: The paper describes peripheral equipment used in the "SDV-4" discrete information input/output system. The "SDV-4" system is part of a set of third generation computer facilities and is used for connecting various types of I/O devices to the "M-400" processor for use in automated control systems for enterprises with production of discrete type. All the I/O equipment connected to the SDV-4 is divided into two groups: 1) discrete data pickups; 2) terminal devices. In the first category are I/O devices for direct monitoring of the technological production process. This group includes positional pickups with binary or code output, and pulse-code 1/2

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3"

USSR

MASHKEVICH, A. S., Tr. In-ta elektron. upravl. mashin, 1972, vyp. 17, pp 86-90

data sensors. The I/O devices belonging to the second group are used for feeding formalized messages to the computer input, and for output of necessary information to service personnel. In this group are: terminals of the "URI-4" and "Konsul-260" type. The URI-4 is designed for input of digital data to the central computer while simultaneously producing a printed output of the message. The URI keyboard contains the digits from 0 to 9 and necessary auxiliary symbols: "+" add, "-" subtract, ":" word division, "[" message begins, "]" message ends, "?" error in the message.

2/2

- 90 -

APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002201930010-3"

1/2 013 TITLELEUCU 1,4,5,8 TETKAHYJI	UNCLASSIFIED PROCESSING DATE20NOV70 DROXYANTHRAQUINONE -U-	
AUTHOR-(05)-BELKIN, I.D., BRID POTIRAY, R.YE. GCUNTRY OF INFUUSSR	IGIER, YU.Z., MASLOSH, Y.Z., SANKA, L.G.,	
SCURCEU.S.S.R. 266,777 REFERENCEUTKRYTLYA, IZUBRET DATE PUBLISHEE70	r., PROM. OBRAZISY, TOVARNYE ZNAKI 1970,	
SUBJECT AREASCHEMISTRY		
TOPIC TAGS-CHEMICAL PATENT, C HYDROXYL RAGICAL	CHEMICAL SYNTHESIS, ANTHRAQUINONE, NITRATION,	
CONTROL HARKING-NO RESTRICTIO	UNS	
DOCUMENT CLASSUNCLASSIFIED PROXY REEL/FRAME3004/1310	STEP NO	
CIRC ACLESSION NUAA0132075	1 XSSTF(#)	1

	UNCLASSIFIED PROCESSING UA	TEZONUV70
CIRC ACCESSION NOAA0132076 ABSTRACT/EXTRACT(U) GP-0- CTETRABYORCXYANTHRAQUINUNE (TI HAS A LITER ADDING WITH NA SUS	ITHRAGUINCNE 12 SIN THE
THE REPART OF THE REAR OF THE	G SUB4.2H SUB2 O; FILTRATION, RINS GF AQ. NACH AND NA SUB2 S SUB2 O S	SING.
U. AND SCHWA OF TH		
		s.

USSR	Ŭ	DC 532.501.34:532.517.2	-
GAPONOV, S. A. and MASLO	V A A		
"Numerical Solution of t	he Problem of Full S	tabilization of the Boundary	Layer"
Novosibirsk, Zhurnal Pri March-April 1972, pp 39-		Tekhnicheskoy Fiziki, No 2,	
		سابيا المراجب المراجب المراجب والمراجب	.r 🖬
full stabilization of a considerable cooling of into two curves. The to curves are calculated. asymptotic calculations	supersonic boundary the surface, the cur mperatures of full s Comparison of the re shows that above Mac	cal solution of the problem of layer. It is shown that with ve of neutral stability split tabilization for both neutral sults of the present work with 2, the asymptotic method yi	s h
full stabilization of a considerable cooling of into two curves. The to curves are calculated.	supersonic boundary the surface, the cur mperatures of full s Comparison of the re shows that above Mac	layer. It is shown that with we of neutral stability split tabilization for both neutral sults of the present work wit h 2, the asymptotic method yi	s h
full stabilization of a considerable cooling of into two curves. The to curves are calculated. asymptotic calculations	supersonic boundary the surface, the cur mperatures of full s Comparison of the re shows that above Mac	layer. It is shown that with we of neutral stability split tabilization for both neutral sults of the present work wit h 2, the asymptotic method yi	s h
full stabilization of a considerable cooling of into two curves. The to curves are calculated. asymptotic calculations	supersonic boundary the surface, the cur mperatures of full s Comparison of the re shows that above Mac	layer. It is shown that with we of neutral stability split tabilization for both neutral sults of the present work wit h 2, the asymptotic method yi	s h