2/2 021 UNCLASSIFIED PROCESSING DATE--20NGV70 CIRC ACCESSION NO-ATO133576 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE RESPIRATORY ACTIVITY OF TSOLATED NUCLEI OF RAT LIVER CELLS WAS TABULATED WITH AND WITHOUT ADDED CYTGCHROME C, NADH, AND ADP AS WELL AS GLUTAMATE, SUCCIMATE, AND CN PRIME NEGATIVE. THE RESULTS SHOWED THAT DXIDATIVE SYSTEMS ARE PRESENT IN THE CELLS OF LIVER STRUCTURE AND SPECIFICALLY IN THE NUCLEI OF THESE CELLS SO THAT NUCLEAR OXIDATION PROCEEDS: IN VARIOUS CELES AND IS NOT RIMITED TO LYMPHOIDAL TISSUES ONLY. THE NUCLEAR MEMBRAÑE AND NUCLEI PER SE ACTIVELY USE NADH AS THE OXION. SUBSTRATE; A LESS INTENSIVE STIMULATION OF RESPIRATION BY NAOPH AND A CONSIDERABLE INCREASE OF THIS EFFECT BY ADDED NAD WERE NOTED. THIS INDICATES THAT MADPH IS OXIDIZED MAINLY BY A TRANSHYDROGENASE AND SUBSEQUENT DEHYDROGENATION OF MADH. THE ABSENCE OF A PRONOUNCED EFFECT OF ADDED SUCCINATE ON O SUB2 UPTAKE AGREED WITH THE LACK OF SUCCINATE DEHYDROGENASE IN THE AUCLEAR STRUCTURES OF THESE CELLS. ADDED ADP OID NOT STIMULATE RESPIRATION. HENCE EXCGENCUS ADP EVIDENTLY DID NOT PLAY A ROLE AS PHUSPHATE ACCEPTOR FACILITY: INST. BIOL. RAZV., MOSCOW, USSR. IN THESE SYSTEMS.

UDC 533.69.048

HONAKHOV, N. H.

"On One Analytical Solution of the Problem of a Thin Airfoil Streamlined by a Hypersonic Gas Flow"

Kazan', Aviatsionnaya Tekhnika, No 4, 1972, pp 14-20

Abstract: An analytical solution has been found for the streamlining of a thin tapered airfoil moving at very high speeds in a pulsating wave, when the exponent of its equation of motion equals 3/5, and the ratio of heat capacities of the air Cp/Cv is 1.4. A differential equation for the autosimilar movement of the gas was obtained and solved by analogy with a wedge. Using the entropy function, the coefficient of pressure was calculated. The solution was subsequently used to construct mathematical models of flow around various modified airfoils.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

Ecological and Environmental Problems

USSR

MONAKHOV, V., Correspondent

"The Influence of Electric Fields on Marine Life"

Moscow, Izvestiya, 5 Aug 73, p 4

Translation: Near Gelendzhik, an experiment has been performed involving geophysicists, biologists, ichthyologists and chemists. Its purpose was to determine the influence of electric fields on inhabitants of the sea. The success of the experiment would determine whether the approval could be given for electrical prospecting of the sea floor.

Since evening, Vekilov had worried whether there would be fish. In the morning, he woke us before daylight and took us to the port. A light wind blew over the restless sea, but Gelendzhik Bay was empty.

"Nothing," Edward said. "The boys promised that there would be fish. The question is, alive or dead!"

"We still need some live ones," said Protasov. "Hopefully nice, fat ones, mullet, flounder or mackeral. That would suit me. How is Krylov doing? Ushina, how is she..."

It was hot over the bay: not in the fishing season. Vekilov, of course, was not worrying for nothing. All night, his boys from the Admiral Nakhimov

USSR

MONAKHOV, V., Izvestiya, 5 Aug 73, p 4

research ship had gone from one group of fishermen to another, helping them to pull in their nets -- as empty as the hole in a donut. Just before dawn, they had a little luck. Now, fish were flopping in the canvas bins on the deck. The cabin of the ship showed complete indifference: it was not intended for the ear.

Now, I believe, its time to tell you why Doctor of Biological Sciences Protasov came to Gelendzhik. On the way south in our slow AN-24 airplane, Vladimir Rustamovich told me:

"Understand, the problem of conserving the environment is not the concern of biologists alone. Representatives of all professions which contact nature in any way must also be concerned. We are flying to see geophysicists. These people will be actively interfering with the life of the seas and oceans.

"This is the problem," Protasov continued. "While we search the deeps for useful minerals, we may threaten the ichthyofauna, the fish and other animals in the sea. Like doctors studying a patient, these prospectors of the sea 'tap' on the crust of the earth with explosions. Several methods of seismic prospecting which would be fatal for marine life nave had to be abandoned. Of those still used, I believe the pneumatic methods to be the least harmful to marine fauna. Its effect can be compared to the effect of

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

MONAKHOV, V., Izvestiya, 5 Aug 73, p 4

opening a champagne bottle: compressed air under high pressure fires out into the water and special instruments record the waves reflected from the sea floor... But can we find still safer methods for the inhabitants of the sea? Geophysicists are working together with biologists to find them. An inter-departmental commission on efficient utilization of geophysical methods for departmental commission on efficient utilization of geophysical methods for prospecting in bodies of water has been set up. It includes representatives of two union ministries — geology and fishing — as well as the Academy of Sciences, USSR..."

Protasov, who knows fish as well as anyone else in the country, was named to this commission. His journey to Gelendzhik was a sort of inspection. "Yuzhmorgeo" Union of the Ministry of Geology, USSR, had suggested that electric fields be used to prospect for useful minerals.

The Admiral Nakhimov sailed out into the sea. On board the ship were geophysicists, biologists, ichthyologists and biochemists -- workers from the laboratory for protection of ichthyofauna of "Yuzhmorgeo."

"I never thought I'd have to make a serious study of biology," states the laboratory leader, E. Vekilov. "I am a geophysicists by profession. But the laboratory leader, E. Vekilov. "I am a geophysicists by profession. But now I don't know what to call myself. Judge for yourself: my dissertation, now I don't know what to call myself. Judge for yourself: my dissertation, which I am just completing, is entitled 'A Study of the Effects of Physical Fields on Fish'..."

MONAKHOV, V., Izvestiya, 5 Aug 73, p 4

Along the walls of this laboratory are rows of aquariums filled with fish and wrapped with wires. Before performing experiments at sea, the influence of electric current on fish was studied here...

"Let us begin." Protasov says.

The sailors began to trail a cable into the sea. At the end of the cable is one electrode. The second electrode is lowered overboard. The electrical pulses sent from the ship to the bottom of the sea will help the geophysicists to understand the geological structure of the crust. But for now it is important to know how the "population" of the sea acts during the experiment. Fish have been carefully placed in containers and also lowered into the water.

The current!... The pen of a strip chart recorder draws the curve. From the ship, we can see clearly that the fish jumped once, then became quiet once more.

"Bring the fish in closer," Velikov commands.

He makes rapid entries in his journal. Looking over his shoulder, I read: "In the region of action of the electrodes -- up to 2 meters -- large fish experience the influence of the electric field (Aha, it seems it was not by chance that Protasov wanted big, fat fish!)... And a pulse of direct

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

MONAKHOV, V., Izvestiya, 5 Aug 73, p 4

current acts on such commercial fish types of the Black Sea as mullet, anchovy and haddock within a range of 1 1/2 meters..."

"Well," Protasov says, when the experiment is completed, "you can use your method without harm to the marine life. I will report this to the commission..."

We returned to the bay in the evening, having been out to sea all day, without a swim.

5/5

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

ESSAURESHIEF DARIM HELDE BARA HELDER ARE HELDER I ARE MORE HELDER BEREITEN BEREITEN

UDC: 517.9:532

ANTONTSEV, S. H., MONAKHOV, V. N.

"On Some Nonstationary Problems With Unknown Boundaries"

V sb. Nekotor. probl. mat. i mekh. (Some Problems of Mathematics and Mechanics—collection of works), Leningrad, "Nauka", 1970, pp 75-87 (from RZh-Matematika, No 5, May 71, Abstract No 5B492)

Translation: Proof is given of the existence of generalized solutions of a class of boundary value problems with a free boundary for a quasilinear system of differential equations consisting of a parabolic equation and an elliptical system of first-order equations. The parabolic equation describes either the temperature field of a filtering nonhomogeneous liquid or the distribution of saturation of one of the phases of a nonhomogeneous liquid in nonhomogeneous ground. In the intermediate stages of the investigation a study is made of the properties of quasiconformal mappings which depend on a real parameter, proof is given of the unique solvability of a mixed boundary value problem with four singular points for quasilinear elliptical systems of equations, and the solvability of the first boundary value problem is established for a quasilinear parabolic equation in noncylindrical regions with a non-smooth boundary. Authors' resume.

1/1

... h. ...

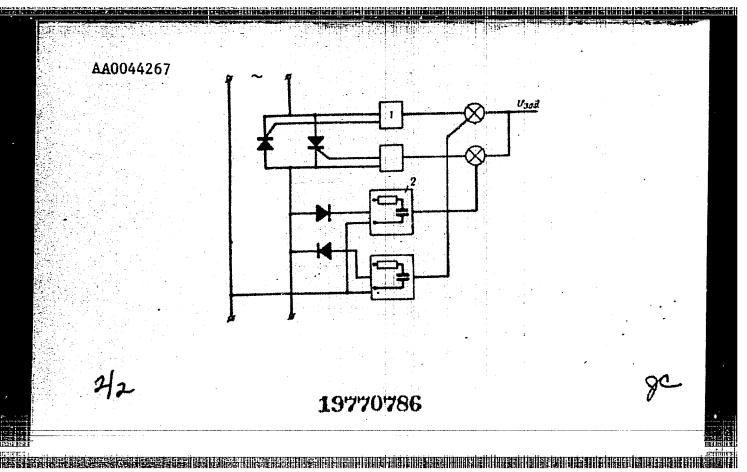
AA0 044267_

M

UR 0482

Soviet Inventions Illustrated, Section II Electrical, Derwent,

243046 OUTPUT VOLTAGE OF A THYRISTOR CONVERTER is continuously varied while equal load sharing by the thyristors is ensured. The phase of gating pulse for a thyristor depends not only of the reference voltage (Uzad) but of the load voltage as well. Consequently the relationship between the firing angle of the thyristor and the control voltage to the driver (1) is made to depend on the deviation between the reference voltage (Uzad) and the time integral of supply voltage for the duration of thyristor conduction (2). This solution ensures uniform load-sharing in both half cycles.


29.6.66 as 1086914/24-7. M.I. KOLKER & IU.V.MINAKHOV. ELECTROTHERMAL EQUIPMENT RES.INST.(30.9.69) Bul 16/5.5.69. Class 21d. Int.Cl. H 02m.

AUTHORS: Kolker, M. I., Monakhov, Yu. V.

Vsesoyuznyy Nauchno-Issledovatel'skiy Institut Elektrotermicheskogo Oborudovaniya

1/2

19770785

1/2 014

UNCLASSIFIED

PROCESSING DATE--160CT70

TITLE--STYRENE COPOLYMERS -U-

AUTHOR-(05)-PETROV, G.N., RAPPOPORT, L.YA., SAVINSKIY, P.A., MONAKHOVA, L.A., MOLOTKOV, R.V.

COUNTRY OF INFO--USSR

SOURCE--U.S.S.R. 263,877

REFERENCE--OTKRYTIYA, IZOBRET., PROM. OBRAZISY, TOVARNYE ZNAKI 1970,

DATE PUBLISHED -- 10FEB 70

SUBJECT AREAS--MATERIALS

TOPIC TAGS--STYRENE, COPOLYMER, POLYMER CROSSLINKING, ACRYLATE, ETHYL

CARBAMATE, CHEMICAL PATENT

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1995/1082

STEP NO--UR/0482/70/000/000/0000/0000

CIRC ACCESSION NO--AA0116548

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

/2 014	UNCLASSIFIED		PROCESSING DATE160CT70		
RC ACCESSION NOAAUI16546 STRACT/EXTRACT(U) GP-O-	(DOOFTIMPTIM)	Market Commercial Comm	LE COPOLY POLYDIENS	MERS ARE URETHAN	PREPD. BY
DIACRYLATE) IN THE PRESENCE	E OF A HARDE	NEK.		-	
			14	r	
			+ 1		
생물 그들을 하는 그 그리는 그 그리는 그			100		
		101000		*	
	= 10 f	1 2			
			+1		* :
		[14] [[]	, iii		
		1			1.0
		1 1 1 1			
			<u> </u>		
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		1	a. Ela		-
			3		
tiñ	CLASSIFIED				

Acc. Nr: Af0044593

1 Ref. Code: URO497

PRIMARY SOURCE:

Klinicheskaya Meditsina, 1970, Vol 48,

Nr / , pp/7-2/

THE PRIMARY RESULTS OF CONTINUOUS (ANNUAL) BICILLIN-ASPIRIN PROPHYLAXIS OF RHEUMATISM RELAPSES IN ADULTS

1. N. Mikhaylova, M. A. Monakhova, T. A. Tarasenkova, K. V. Nikolskaya, V. S. Panomarev

Summary

The authors commit to paper the results of continuous 21/a-year-long bicillin-aspirin prophylaxis of rheunatism relapses in 180 patients who have sustained the active stace of the process. The patients were subject to intramuscular injections of the new Soviet-mans antibiotic bicillin in a dose of 1,500,000 Units (110 cases) or of the Carchoslovakian antibiotic pendepon in a dose of 1,00,000 Units (70 cases) once every four weeks. In spring and authors the patients were given per os 2 cm of aspirin daily for a period of one month. In regular prophylaxis the number of rheunatism relapses decreased by 10 times, with a sharp reduction of the incidence of tonsillits, influenza and upper respiratory catarrin. There was noted a normalization of the astreptolysin-0 titer and a significant decline of laboratory indices of the rheunatic process activity in patients affected with a continuous-recurrent form of the disease.

1/1

REEL/FRAME 19771269 44. 02

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

1/2 010 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--POSSIBLE CULTIVATION OF FOOD YEASTS IN A MIXTURE OF HYDROLYZATE AND

RESIDUAL LIQUOR FROM ALCOHOL FERMENTATION -U-

AUTHOR-(02)-MONAKHOVA, N.I., SEMUSHINA, T.N.

COUNTRY OF INFO--USSR

SOURCE-GIDROLIZ. LESOKHIM, PROM. 1970, 23(1), 3-5

DATE PUBLISHED ---- 70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--YEAST, ALCOHOL, FERMENTATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1996/0481

STEP NO--UR/0328/70/023/001/0003/0005

CIRC ACCESSION NO--APOII7717

UNCLASS1F1ED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

2/2 UNCLASSIFIED PROCESSING DATE--230CT70 CIRC ACCESSION NO--APOILT717 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. IN MOST HYDROLYSIS PLANTS, FEED YEASTS ARE GROWN EITHER IN DIL. HYDROLYZATE OR IN THE RESIDUAL LIQUOR FROM ALC. FERMENTATION. SOME PLANTS, (E.G. THE VOLGOGRAD PLANT), USE A MIXT. OF THE 2 SUBSTRATES AND THIS METHOD ALWAYS GIVES LOWER YIELDS OF YEAST. THE BASIC DIFFERENCE BETWEEN THE HYDROLYZATES AND RESIDUAL LIQUIR IS THEIR SUGAR COMPN.: HYDROLYZATES CONTAIN MAINLY HEXOSES (GLUCOSE, MANNOSE, AND GALACTOSE IN SOFTWOOD HYDROLYZATES), PENTOSES CONSTITUTING SIMILAR TO 25PERCENT OF THE TOTAL SUGARS. THE RESIDUAL LIJUOR CONTAINS MAINLY XYLOSE, A SMALL AMT. OF ARABINOSE, AND TRACES OR NO HEXOSES. WHEN THE 2 SUBSTRATES ARE MIXED IN A 1 TO 1 RATIO, THE RATIO OF HEXOSES TO PENTOSES IS 1 TO 0.7. CANDIDA WAS GROWN UNDER STO. CONDITIONS IN CONTINUOUS CULTURES ON A HYDROLYZATE, ON LIQUOR, AND ON MIXTS. OF THE 2 IN VARIOUS PROPORTIONS. AT EQUAL ENITIAL CONC. OF SUGARS, GROWTH WAS LOWER WHEN YEAST WAS GROWN IN MIXED SUBSTRATES THAN WITH EITHER THE HYDROLYZATE OR RESIDUAL LIQUOR. IN THE MIXED SUBSTRATES, GROWTH OCCURRED IN 2 STAGES WITH A CONSIDERABLE LAG BETWEEN THE STAGES.

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

UDC 616.9:681.142

TER-KARAPETYAN, A. Z., TEPLYAKOV, B. Ya., DROZDOVA, A. A., MONAKHOVA, S. I., and RUBANOVA, F. G., Central Scientific Research Institute of Epidemiology, Ministry of Health, USSR, and Belorussian Scientific Research Institute of Epidemiology and Microbiology

"Centralized Processing of Materials on Infectious Diseases"

Minsk, Zdravookhraneniye Belorussii, No 6, 1970, pp 66-67

Abstract: The organization of data requires centralized processing of properly classified information which may be suitable for machine processing. For this purpose, a new chart was prepared by the Central Institute of Epidemiology, designed for epidemiological studies and provided with a separate sheet containing 18 points considered essential for centralized processing. At the seminars attended by all epidemiologists, their aides, and all others working with infectious diseases, the various difficulties concerning the particular items in the new chart were resolved. Putting these new charts through the Minsk-22 computer proved accurate, reliable, and time-saving.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

USSR

UDC: 574.94

MONAKHOVA, T. Ye., PROSKURNINA, N. F., TOLKACHEV, O. N., KOBANOV, V. S., PEREL'SON, M. Ye., All Union Scientific Research Institute of Medicinal Plants

"Alkaloids of Sophora Alopecuroides. 3-X-Hydroxysophoridine"

Tashkent, Khimiya Prirodnykh Soyedineniy, No 1, 1973, pp 59-64

Abstract: In a continuation of research on the alkaloids of Scphora alopecuroides, preparations were made from the aerial part of the plant in the fruitbearing stage. The sum of the alkaloids obtained by the conventional dichloroethane method (2.5%) was divided into fractions of strong and weak bases. The following alkaloids were distinguished in the fraction of weak bases by extraction with various solvents combined with aluminum oxide chromatography: sophoridine, cytisine and three bases -- $C_{13}H_{18}N_{20}2(III)$, $C_{15}H_{24}N_{20}2$ (IV), and $C_{15}H_{24}N_{20}2$ (VI). The fraction of strong bases yielded sophoridine, cytisine and baptifoline (V). This is the first time that the alkaloids cytisine and baptifoline have been isolated from this plant. Infrared and mass spectroscopy suggest the structure of 3α -hydroxysophoridine for base IV.

1/1

BOBROVNIK, I. I., GORBUNOV, K. I., KLOCHAN, V. I., MONASTYREV, V. K., POPLAV-SKIY, N. N.

"Geoseismic Logging Procedure"

USSR Author's Certificate No 370567 (from Otkrytiya, Izobreteniya, Promyshlennye obraztsy. Tovarnvve znaki (Discoveries, Inventions, Industrial Models, Trademarks), No 11, 1973, page 144)

Translation: The geoseismic logging procedure by reducing multichannel reflected wave recordings to one generalized track with utilization of mutual correlation functions, track selection by the threshold values of the similarity coefficients and summation with preliminary input of kinematic and static corrections is distinguished by the fact that in order to increase the reliability of wave correlation and determine the relations of the dynamic wave characteristics with physical-lithologic section parameters, two-halfperiod detection of the digital analog of the summogram, sliding integration with the time interval digital analog of the oscillation halfperiod and normalization of the which is a multiple of the oscillation halfperiod and normalization of the recordings with respect to intensity of the excitation center and the amplification coefficients of the recording channel are used successively with subsequent conversion of the energograms by the law of formation of a sequence of partial sums of the theories.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

UDC 576.858.083.35:576.353

BLYUMKIN, V. N., and MONASTYREVA, L. A., Institute of Virology imeni D. I. Ivanovskiy, USSR Academy of Medical Sciences, Moscow

"Methodology for the Study of Pathological Mitoses in Cell Cultures Infected With Viruses"

Moscow, Voprosy Virusologii, No 4, Jul/Aug 71, pp 475-478

Abstract: Investigations of mitotic disorders caused by various viruses should be performed on tissue cultures with a minimum percentage of spontaneously developing abnormal mitoses, such as cultures of the RES line (1-%). VERO line (0-6%), and diploid human cells (2-10%). To ensure thoroughness, the investigation may proceed according to the following classification: A. Pathologic Prophase: 1. premature separation of chromatin; 2. disorganization of spireme; and 3. pulverization of chromosomes. B. Pathologic Metaphase: 1. remaining of single chromosomes or chromosome fragments in metaphase; 2. formation of three groups (multigroup metaphase); 3. colchicine-like (C-) metaphase with disorderly arrangement of excessively short and thick chromosomes; 4. C-metaphase with several chromosome groups; 5. C-metaphase with chromosome adhesion; 6. pulverization of chromosomes; 7. dispersion of unchanged chromosomes; 8. multiband metaphase; 9. open metaphase; 10. monocentric metaphase; and 11. combined 1/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

ON LEGITIN HELD HELD THE STREET OF A SELECTION OF SHEET AND A SECURE OF STREET OF STRE

USSR

BLYUMKIN, V. N., et al. Voprosy Virusologii, No 4, Jul/Aug 71, pp 475-478

disorders. C. Pathologic Anaphase: 1. remaining of viryle chromosomes in anaphase; 2. or of chromosome fragments; 3. chromosome bridges; 4. chromatin bridges; 5. irregular separation of chromosomes; 6. multiband anaphase; and 7. combined disorders. D. Pathologic Telophase: 1. irregular telophase; 2. presence of bridges; 3. multiband telophase; 4. formation of micronuclei; 5. nuclear pyknosis; and 6. combined disorders. A multiband phase in which chromosomes from a triangle, cross, or various stars but are located on one plane (equal distance from polar body) should be distinguished from a multigroup phase in which separate groups of chromosomes are located on different planes (unequal distance from polar body).

2/2

USSR

UDC 616-018.15-092.9-02:576.858.75 (Sendai)

BLYUNKIN, V. N., MONASTYREVA, L. A., and BUKRINSKAYA, A. G., Institute of Virology imeni D. I. Ivunovskiy, Academy of Medical Sciences USSR

"Mitotic Changes in RES Cultures (CLone I) Infected with Sendai Virus"

Moscow, Byulleten' Eksperimental'noy Biologii i Meditsiny, No 1, 1970, pp 85-88

Abstract: RES cultures (clone I) infected with Schdai virus (strain 960) exhibited peculiar quantitative and qualitative mitotic changes. Within two hours of infection, mitotic activity increased simultaneously with intranuclear synthesis of virus-specific RMA. A wave of pathological mitoses appeared after 4-6 hours. The chromosomes, spindles, and centricles were severely damaged and many of the cells contained micronuclei. These pathological mitoses are interpreted as an early manifestation of the cytopathic effect of Sendai virus on the cellular system under study.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

APO 031143_ Acc. Nr.:

Ref. Code: UR 0219

Byulleten' Eksperimental'noy Biologii i PRIMARY SOURCE: Meditsiny, 1970, Vol 69, Nr 1, pp 85-88

MITOTIC CHANGES OF RES CULTURES (CLONE I) INFECTED THE SENDAL VIRUS

V. N. Blyumkin, L. A. Monastyreva, A. G. Bukrinskaya

D. I. Ivanovsky Institute of Virusology, Academy of Medical Sciences of the U. S. S. R. Moscow

RES cultures (clone 1) were infected by Sendal rus, strain No. 960. In this cellular system the virus multiplied with development of cytopathic changes: symplastoformation and destruction of a cellular layer, At early stages of infection a considerable number of cells appeared containing micronuclei. Increase of infection activity after infection is replaced by its depression as infection develops. Increase of pathological mitoses in infected cultures is possibly one of early manifestations of a cytopathic action of Sendai virus.

REEL/FRAME

40001409

UDC 678.742.2-137.46.22:66.018.86

TERTERYAN, R. A., LESHCHENKO, S. S., LIVSHITS, S. D., GOLOSOV. A. P., ITSIKSON, L. B., MONASTYRSKIY, V. N., KARPOV, V. L., SOBOLEVA, N. S., MAL'TSEVA, A. P., and ISKHAKOV, L. I.

"Radiation Stability of Ethylene and Styrene Copolymers"

Moscow, Plasticheskiye Massy, 7, 1973, pp 3-5

Abstract: A study was made of the continuous statistical copolymerization of ethylene monomers (E) with styrene (S) under conditions similar to those under which low density polyethylene is produced and also of the behavior of E + S polymers in an ionizing radiation field. The results of copolymerization studied — grams of copolymer/hr concentration of S in the polymer, density, and others — are given as a function of styrene concentration and pressure at 200°C. An increase in the concentration of S in the reaction mixture leads to a decrease in the copolymer yield, in its characteristic viscosity, in its melting temperature, and its crystallinity, and to an increase in the density. The presence of S nonomers in the polyethylene chains and the chemical bonds between them and the methylene groups significantly increases the resistance of the material to a-radiation damage. The gases evolved during the radiation of various types of polymers were determined.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

UNCLASSIFIED

PROCESSING DATE--020CT70

TITLE--SYNTHESIS OF ALKYLSALICYLATE ADDITIVES BASED ON P.CKESOL -U
AUTHOR-(05)-MONASTYRSKIY, V.N., TSVETKOV, D.N., OMITRIYEVA, N.A., KAZAKOV,

YE.1., KURENEV, K.D.

COUNTRY OF INFO--USSR

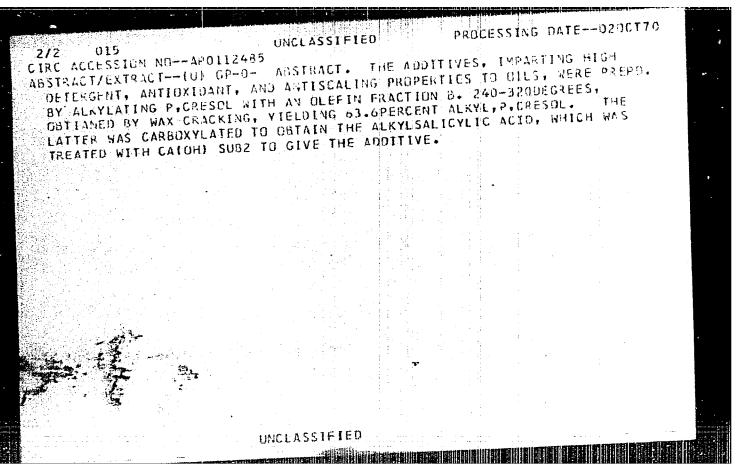
SOURCE--KHIM. TEKHNOL. TOPL. MASEL 1970, 15(3), 17-19

DATE PUBLISHED-----70

SUBJECT AREAS--CHEMISTRY, MATERIALS

TOPIC TAGS--SALICYLATE, ALKYLATION, CRESOL, PETROLEUM FRACTION, CHEMICAL

SYNTHESIS, ANTIOXIDANT ADDITIVE, DETERGENT ADDITIVE


CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1992/1491

STEP NO--UR/0065/70/015/003/0017/0019

CIRC ACCESSION NU--AP0112485

UNCLASSIFIED

Acc. Nr AP0045173_

Abstracting Service: CHEMICAL ABST. 15-70 Ref. Code

ene with isobutylene. Golosov A.P.: Terteryan, R.A.: Larina, M.Y.: Monastyrski, V.N. (USSR). Plast. Massy 1970, (I), 5-7 (Russ). The copolymn, of ethylene (I) with isobutylene (II) was studied in a continuous-flow tubular reactor at 200-20° and 400-2000 kg/cm². High-mol. wt. products were obtained when the II content was ≥ 15 mole %: a further increase in II content gave low-mol. wt. copolymers, accompanied by a sudden decline in m.p. (from 100 to 0°). The tensile strength of I-II copolymers in m.p. (from 100 to 0°). The tensile strength of I-II copolymers was inversely proportional to II content, declining to 0 when II was inversely proportional to II content, declining to 0 when II content was 40 mole %. A radical copolymn, mechanism was proposed. The copolymn involved chain transfer (via II mols.) and the termination, thus leading to the formation of low-mol. wt. copolymers. The mol. wt. of the copolymers (500-mol. wt. copolymers. The mol. wt. of the copolymers (500-mol. wt. copolymers. The mol. wt. of the copolymers (500-mol. increased pressure had a favorable effect on the d., pressure. Increased pressure had a favorable effect on the d., mers.

الكاستو

19780073

1

UNCL 1/3 C28 ITLE-THE STATE OF THE CANDIOVAS POISONING -U- AUTHOR-(02)-MOMAYENKOVA, A.M., GL COUNTRY OF INFOUSSR SOURCEKLINICHESNAYA MEDIISINA,	M			
DATE PUBLISHED70 SUBJECT AREASBIULOGICAL AND ME TOPIC TAGSCARBON DISULFIDE, POPRESSURE	EDICAL SCIENCES	AR SYSTEM, BLOC	10 ·	
CONTROL MARKINGNO RESTRICTION DOCUMENT CLASSUNCLASSIFIED PROXY REEL/FRAME3001/0584 CIRC ACCESSION MOAPO126322	STEP NOUR/0497	7/70/043/003/00	50/0064	

PROBESSING DATE--13NOV70 UNCLASSIFIED 2/3 CIRC ACCESSION NO-+APO126322 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE ARTICLE DEALS WITH A DETAILED CLINICAL EXAMINATION OF 91 PATIENTS INVOLVING THE USE OF TACHO OSCILLOGRAPHY, ELECTROCARDIOGRAPHY AND POLYCARDIOGRAPHY. THE CLINICAL MANIFESTATIONS IN THE MAJORITY OF PATIENTS WITH CARBON DISULFIDE POISONING WERE CHARACTERIZED BY FUNCTIONAL CHANGES OF THE NERVOUS SYSTEM, IN THE FORM OF VEGETATIVE AND VASCULAR DYSFUNCTION, THE ASTHENOVEGETATIVE SYNDROME, WHEREBY IN A NUMBER OF CASES THERE WERE SEEN ORGANIC CHANGES IN THE FORM OF ENCEPHALOPOLYNEURITIS. AMONG THE PATIENTS. DEPENDING UPON THE STATE OF HIGHER VEGETATIVE REGIONS OF THE NERVOUS SYSTEM, THE AUTHORS SINGLED OUT PERSONS WITH INVOLVEMENT OF THE HYPOTHALAMIC DIENCEPHALIC REGION: TACHO USCILLOGRAPHIC REGISTRATION OF THE ARTERIAL PRESSURE DISCLOSED AN INCREASE OF THE MAXIMAL BY BERCENT, TRUE LATERAL BY ASPERCENT, MEDIAN DYNAMIC BY AZPERCENT AND MINIMAL REPEATED MEASUREMENTS REVEALED AN PRESSURE BY BAMERCENT OF CASES. INSTABILITY OF THE ARTERIAL PRESSURE WITH A TENDENCY TO HYPOTENSIVE (23 PERCENT) OR HYPERTERSIVE (48 PERCENT) REACTIONS. CHANGES OF THE HEART ARE PREDCHINANTLY OF DIFFUSE DYSTROPHIC AND RAHELY CORUNARY SPASTIC CHARACTER WITH AN INSIGNIFICANT REDUCTION OF THE MYPCARDIAL CONTRACTILE THE VIEW OF THE PACT THE HYPERTERSIVE FORE OF NEUROCIACULATORY FUNCTION. DYSTONIA AND CHANGES OF THE MYDCARDIUM, AS A RULE, WERE OBSERVED IN PATIENTS WITH SIGNS OF DIENCEPHALIC PATHOLOGY, ONE COULD THINK OF THE RELATION OF THESE SHIFTS WITH FUNCTIONAL DISTURBANCE OF THE HYPOTHAL AMUS.

UNCLASSIFIED

PROCESSING DAKE--1340V70 UNCLASSIFIED 028 3/3. CIRC ACCESSION NO--APO126322 ABSTRACT/EXTRACT--THE ABOVE MENTIONED INVESTIGATIONS HAVE SHOWN THAT IN CHRONIC CARBON DISULFIDE POISONING, ALONG WITH ALTERATIONS OF THE NERVOUS SYSTEM, A NOT LESS CHARACTERISTIC CLINICAL MEGULARITY IS THE GREAT LABILITY OF THE ARTERIAL PRESSURE WITH A PREVALENCE OF HYPERTENSIVE REACTIONS. THE DEVELOPMENT OF NEUROCINCULATORY DYSTONIA AND HYPERTENSIVE VASCULAR DISEASE AGAINST THE BACKGROUND OF OTHER SYMPTOMS OF POISONING IS, APPARENTLY, ASSOCIATED WITH THE EFFECT OF CARBON DISULFIDE. THE REFERRED TO CHANGES OF THE HEART DO NOT LEAD TO CARDIAC DECOMPENSATION OR PERSISTENT CORONARY INSUFFICIENCY, HOWEVER IN A NUMBER OF CASES THEY ARE ONE OF THE CAUSES OF DECREASE OF THE WORKING FACILITY: INSTITUT GEGIVENY TRUDA I CAPACITY IN PATIENTS. PROFZABOLEVANIY, AMN SSSR, MOSKVA.

1/2 026 UNCLASSIFIED PROCESSING DATE--160CT70
TITLE--DN THE INITIAL FORMS OF CHRONIC CARBON DISULFIDE POISONING -U-

AUTHOR-(05)-MILKOV, L.YE., MONAYENKOVA, A.M., BYALKO, N.K., GLOTOVA, K.V., VERETINSKAYA, A.G.

SOURCE-GIGIYENA TRUDA 1 PROFESSIONAL'NYYE ZABOLEVANIYA, 1970, NR 5, PP

DATE PUBLISHED----70

1

COUNTRY OF INFO--USSR

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--POISON, CARBON DISULFIDE, INDUSTRIAL HYGIENE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1995/0450

STEP NU--UR/0391/70/000/005/0028/0032

CIRC ACCESSION NO--APOLIGILE

UNCLASSIFIED

PROCESSING DATE--160CT70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--APOLIGITA ABSTRACT. AN EXAMINATION OF WORKERS EXPOSED ABSTRACT/EXTRACT-- (U) GP-0-TO THE EFFECT OF CARBON DISULFIDE IN CONCENTRATIONS OF 30-60 MG-M PRIMES DISCLOSED THE PRESENCE OF THE INITIAL FORMS OF CHRONIC CARBON DISULFIDE POISONING IN THE SHAPE OF VEGETATIVE VASCULAR DYSFUNCTION (NOT INFREQUENTLY WITH HYPERTENSIVE REACTIONS) AND OF THE ASTHENO VEGETATIVE SYNDROME, OFTEN APPEARING IN CONJUNCTION WITH SIGNS OF MILDLY PRONOUNCED VEGETATIVE SENSITIVE POLYNEURITIS, COMMONLY DEVELOPING IN PERSONS WITH LONG SERVICE RECORDS. IN THE INITIAL FORMS OF POISONING A NUMBER OF NONSPECIFIC CHANGES IN INDIVIDUAL BIOCHEMICAL BLOOM AND URINE INDEXES WERE ELICITED, WHEREBY IN CASES OF VEGETATIVE VASCULAR DYSFUNCTION OF A DECLINE OF THE PSEUDO CHOLINESTERASE ACTIVITY AND A FALL OF THE BLUOD CHLORIDE CONCENTRATION, ALONG WITH AN ELEVATED CATECHOLAMINES EXCRETION INITH NORPINEPHRINE BEING COMMONLY RESPONSIBLE FOR IT) OCCURRED MUCH MORE OFTEN THAN IN THE ASTHENIC FORM OF POISONING. PERSONS EXPOSED TO CARBON DISULFIDE CONCENTRATION NOT SURPASSING THE MAXIMUM PERMISSIBLE LEVEL (10 MG-M PRIMES) ALSO DEMONSTRATE INITIAL FORMS OF CHRONIC CARBON THIS MAKES IT NECESSARY DISULFIDE POISONING, ALTHOUGH IN FEWER CASES. TO LOWER THE FIXED MAXIMUM PERMISSIBLE CONCENTRATION LEVEL OF CARBON DISULFIDE IN CONSIDERATION OF THE INHALATION AND CUTANEOUS ROUTS OF ITS FACILITY: INSTITUT GIGIYENY TRUDA I INGRESS INTO THE ORGANISM. PROFZABOLEVANIY AMN SSSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

Acc. Nr: AP0049027

Ref. Code: UNIGO,

PRIMARY SOURCE:

Vestnik Otorinokaringologii, 1970, Nr/

pp 18-24

NASAL POLYPOSIS AS AN AUTOIMMUNE DISEASE

G. N. Popova, A. M. Monayenkov, N. N. Tarasevich (Moscow)

The authors studied nasal polyposis from the viewpoint of the possibility of referring it to autoimmone diseases. In the patient's serum the content of autoantibodies to specially prepared polyp antigen was investigated. The following techniques were employed: latexagglutination, passive hemagglutination and the immunofluorescent method. In secological reactions the authors used the principle of consecutive employment of antigens—at the first stage the serum was exhausted by normal tissue antigen and then the reaction with polyp antigen occurred. The reactions of latex-agglutination and passive hemagglutination demonstrated the presence of autoantibodies to polyp antigen in all patients with nasal polyposis in different dilutions (reaction of latex-agglutination in dilution of 1:3—1:64, reaction of passive hemagglutination——1:50—1:1000). In control sera autoantibodies were practically absent.

1/2

REEL/FRAME 19800808 2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

AP0049027 -

Apart from the blood serum the polyp fluid was also subjected to serological analysis. Autoantibodies to polyp antigen were revealed in titers of 1:180-1:800. In 2 out of 10 patients the autoantibody liter in the polyp fluid markedly surpassed the titer of actibodies in the blood serum.

By means of the immunofluorescent method in the polyp tissue an antigen-antibody complex was revealed.

The dynamics of autoantibody accumulation was studied at diverse periods of the disease—during relapse of polyposis and during the period free of polypos. There was noted a definite relation between the antibody liters and stage of the disease—intensification during relapses of polyposis and decline of autoantibody titers during the period free of polypos. The data derived make it possible to state that autoimmune reactions play a definite role in the pathogenesis of nasal polyposis.

19800809

UDC 621.374.5

KARINSKIY, S. S., KOMAROV, V. G., MOHDIKOV V. D., GOLIKOV, M. I., ROMANOV, L. N., KOMAROVA, I. S., KRISTININA, L. I.

"An Integrated Ultrasonic Single-Crystal Delay Line"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obramtsy, tovarnyye znaki, No 15, May 71, Author's Certificate No 302808, Division H, filed 22 Sep 69, published 28 Apr 71

Translation: This Author's Certificate introduces an integrated ultrasonic single-crystal delay line for surface waves. The device contains a piezo-electric single-crystal acoustic line with a slot on one end which is filled with an absorber. The device also contains lattice-type two-phase receiving and transmitting converters. As a distinguishing feature of the patent, the delay time is increased by locating the converters on the upper and lower surfaces of the acoustic line, and by rounding the other end of the line with a radius of at least ten ultrasonic resonance wavelengths.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

1/2 020

UNCLASSIFIED

PROCESSING DATE--L3NOV70

TITLE-- SELECTION OF THE TYPE OF HARDENING FURNACE FOR FERRITIZATION OF

AUTHOR-MONDIN, L.YA.

BARIUM FERRITE POWDERS -U-

COUNTRY OF INFO--USSR

SOURCE--PUROSH. MET. 1970, 10(2), 98-103

DATE PUBLISHED----70

SUBJECT AREAS -- MATERIALS, MECH., IND., CIVIL AND MARENE ENGR

TOPIC TAGS -- FERRITE, BARIUM COMPOUND, SINTERING FURNACE, MAGNETIC PROPERTY, CERAMIC TECHNOLOGY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1999/1097

STEP NO--UR/0226/70/010/002/0098/0103

CIRC ACCESSION NO--APOL23089

UNCLASSIFIED

2/2 020 UNCLASSIFIED PROCESSING DATE--13NOV70 CIRC ACCESSION NO--AP0123089 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE POSSIBILITY OF USING A ROTARY FURNACE FOR FERRITIZATION OF BA FERRITE POWDERS WAS INVESTIGATED, AS WELL AS THE EFFECT OF THE TEMP. AND THE TIME OF FERRITIZATION ON THEIR MAGNETIC PROPERTIES. THE FOLLOWING PARAMETERS WERE INVESTIGATED: RESIDUAL INDUCTION, COERCIVE FORCE RELATIVE TO INDUCTION, MAX. MAGNETIC ENERGY, AND SATN. MAGNETIZATION. INVESTIGATED WERE PONDERS PREPD. FROM CONVENTIONAL CERAMIC TECHNOLOGY AS WELL AS BY THE COPPTN. METHOD, WITH A MOLE RATIO OF BAD: FE SUBZ O SUB3 EQUALS 1:5.6. THE MAGNETIC PROPERTIES OF BA FERRITE POWDERS FERRITIZED IN THE ROTARY FURNACE DO NOT DIFFER FROM THE PARAMETERS OF POWDERS FERRITIZED IN THE TUNNEL KILN ANNEALING FURNACE. HOWEVER, THE POWDER FROM THE ROTARY FURNACE IS MORE HOMOGENEOUS, BECAUSE IN THE PROCESS OF THERMAL TREATMENT IT IS WELL MIXED. THE CONSUMPTION OF ELEC. ENERGY PER UNIT OF PRODUCTION FOR THE ROTARY FURNACE IS APPROX. ONE HALF THAT FOR THE TUNNEL ANNEALING FURNACE. FACILITY: VSES. NAUCH .- IS'SLED. IMST. REAKTIV. KHIM. CHIST. MATER. DLYA ELEKTRON. TEKH., USSR. UNCLASSIFIED

tur santtebecenni muno puta itti ara matri inilair inili santa ili santa ili santa ili santa ili santa ili san

Acc. Nr: Apon49303 CHEMICAL ABST. 5/79 Ref. Code: App 0226

1 CHEMICAL ABST. 5/79 Ref. Code: App 0226

1 CHEMICAL ABST. 5/79 Ref. Code: App 0226

1 CHEMICAL ABST. 5/79 Ref. Code: App 0226

2 CHEMICAL ABST. Feeting and code of the powders of the code: App 0226

2 CHEMICAL ABST. Reaktiv Khim. Chestylih Addie: Chestylih

USSR

Chemical Substances for Electronic Technology, Donetsk

"Effect of Thermal Treatment of the Magnetic Properties of Barium Ferrite Powders"

Kiev, Academy of Sciences Ukr SSR, Poroshkovaya Metallurgiya, No 1, Jan 70, pp 83-88

Abstract: A study was made of the effect of heating and cooling rates, temperature, ferritization time, and repeated ferritization on the magnetic properties of barium ferrite powders. Barium ferrite powders, obtained by the technique of joint precipitation in the form of carbonates with a molar ratio and feed at 1220°C in a KO-10-type furnace with a 300 degree/hour temperature rise ments of magnetic parameters, with respect to heating and cooling rate, are presented in a table. Four ferritization cycles were conducted under the same conproperties. In order to determine the effect of temperature and time of

USSR

MONDIN, L. YA., Poroshkovaya Metallurgiya, No 1, Jan 70, pp 83-88

ferritization, the latter was conducted in a thin layer 25-30 nm high with and without air quenching. Air quenching significantly improved the magnetic properties of the powders. To obtain the optimal magnetic parameters, a higher ferritization temperature (30 to 40°C more) is necessary than with cooling done in the furnace. With repeated ferritization cycles, the residual induction B, the coercive force at intuction BHc, and the maximum magnetic energy (BE) max at first increased and then decreased after the fourth cycle. The coercive force at magnetization $_{1}^{1}\text{Hc}$ decreased monotonically with an increasing number of ferritizations. Two hours was shown to be sufficient for ferritization in a thin layer. Orig. art. has: 5 figures, 3 tables, and 10 references.

2/2

m 34 m

USSR

A.F.

UDC 629.12:532

GULIYEV, YU. M., MONEYM AKHMED FARUK

"Disturbing Forces During Pitching of a Ship on a Sandbar"

Sudostr. i sudoremont. Nauch.-tekhn. sb. (Shipbuilding and Ship Repair. Scientific and Technical Collection), 1970, vyp. 3, pp 129-142 (from RZh-Mekhanika, No 11, Nov 71, Abstract No 11B390)

Translation: An approximate procedure is presented for calculating the disturbing forces during pitching of ships in a liquid of finite depth. The procedure was obtained on the basis of solving the hydrodynamic problem of forces acting on a stationary triexial ellipsoid floating on the surface of an ideal liquid of finite depth. When solving this problem, the velocity potential is represented by the sum of the oncoming wave potential and the potential of the disturbed (diffracted) movement of the liquid. When calculating the disturbing forces, the Haskind conclusion was used that there is no need to solve the diffraction problem but it is sufficient to determine the velocity potential of the disturbed movement of the liquid for forced oscillations of the body on quiet water. The calculation was performed on a digital computer for 24 ellipsoids with different halfaxis ratios by the approximate formulas obtained for the dimensionless coefficients of the disturbing force and the disturbing moment. Examples of the graphical dependence of these coefficients on the

1/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

USSR

a sacina a conservación de describir de describir de la conservación de la conservación de la conservación de l

GULIYEV, YU. M., et al., Sudostr. i sudoremont, Nauch.-tekhn. sb., 1970, vyp. 3, pp 129-142

relative wavelength and the relative draft are presented. The possibility of practical utilization of the results of the theoretical study was checked by comparing the results of the calculations by the formulas obtained with the data obtained experimentally on 9 models of series 60 ships with different ratios of the primary dimensions. The experimental studies demonstrated that for ordinary maritime transport ships the geometric characteristics of the hull and the depth of the water have no significant effect on the dimensionless coefficients of the disturbing forces. This fact permits application of the approximate formulas obtained to the practical calculations of disturbing forces. Comparison of the calculation results by these formulas with the experimental data demonstrates entirely satisfactory coincidence.

2/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

AA0043411

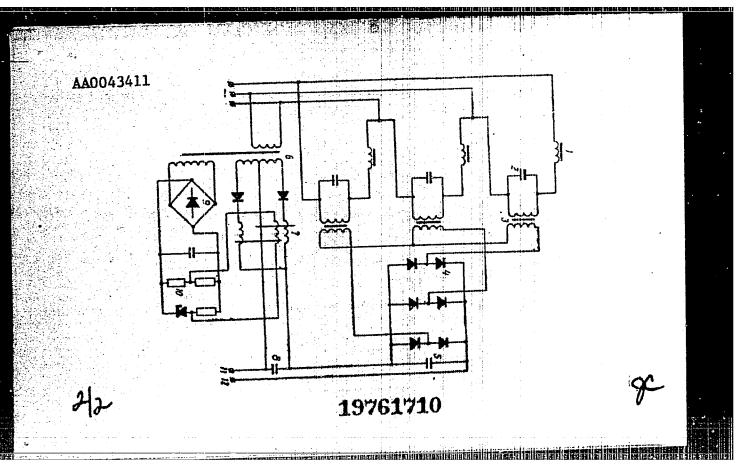
M

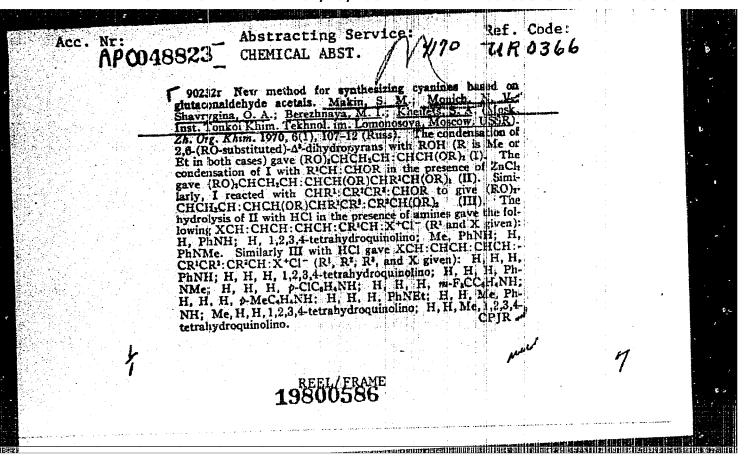
UR 0482

Soviet Inventions Illustrated, Section II Electrical, Derwent,

2/70

241509 STABILIZED D.C. SUPPLY where each phase is supplied to the rectifier bridge (4) through a choke (1) and a saturable transformer (3) with a tuned (2) primary winding. A boosting circuit consisting of a transformer (6) and a magnetic amplifier (7) contributes to the D.C. output. The amount of boost is determined by a measuring bridge (9) connected across the control coil of the amplifier. A stabilitron is one arm of a non-linear bridge (10) acts as a component of comparison.


5.2.68. as 1215203/24-7.E M.MONGAYIT (19.9.69) Bul 14/


5.2.68. as 1215203/24-7.E.M. MONGAYIT (19.9.69) Bul 14/ 13.4.69. Class 21c, 21d². Int.CL 5 05f, H 02 j.

1/2

19761709

"APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4

1/2 019 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--EXTRACTION AND PHOTOMETRIC DETERMINATION OF THALLIUM USING VICTORIA

BLUE 4R -U-AUTHOR-(02)-KISH, P.P., MONICH, YE.YE.

COUNTRY OF INFO--USSR

SOURCE-ZH. ANAL. KHIM. 1970, 25(2), 272-6

DATE PUBLISHED---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--CHEMICAL ANALYSIS, THALLIUM, PHOTOMETRIC ANALYSIS, ALKALI METAL/(U)4R BLUE VICTORA CHEMICAL REAGENT

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1994/1920

STEP NO--UR/0075/70/025/002/0272/0276

CIRC ACCESSION NO--AP0115734

UNCLASSIFIED

PROCESSING DATE--230CT70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--APO115734 ABSTRACT. TLCL SUB4 PRIME NEGATIVE FORMS A ABSTRACT/EXTRACT-- (U) GP-0-COLORED 1:1 COMPO. WITH VICTORIA BLUE 4R WHICH IS WELL EXTO. BY C SUB6 H SUB6 AND ITS HOMOLOGS, BY CHCL SUB3, PHBR, ANISOLE, AND PROPYL BENZOATE FROM H SUB2 SO SUB4 SOLNS.; 95-98PERCENT OF THE COMPLEX IS EXTO. BY A THE MOLAR ABSORPTIVITY OF THE TERNARY COMPLEX (C SUB6 H SINGLE EXTN. SUB6) IS 6.2 TIMES 10 PRIME4 AND 8.5 TIMES 10 PRIME4 AT 556 AND 608 NM, RESP. THE EFFECT OF THE AQ. PHASE ACIDITY, NACL CONCN., REAGENT CONCN., RATIO OF PHASE VOL., AND CONTACT TIME ON THE EXTN. OF THE TL COMPLEX WAS STUDIED. MAX. ABSORBANCE IS OBTAINED IN 6-9N H SUB2 SO SUB4, 10 PRIME NEGATIVE4 MU REAGENT CONCN. WITH 40 SEC CONTACT TIME. BEER'S LAW IS OBEYED IN THE RANGE 0.1-10 MUG TL-ML. THE REAGENT WAS USED TO DET. TL IN METALLIC CD, CDS, AND CDSO SUB4. LARGE AMTS. OF ALK. EARTHS, ALKALI METALS, MG(II), ZN(II), DC(II), CU(II), CO(II), MN(II), NI(II), AL(III), CRCIII), FECTIII, BICTIII, POCTI), RHCIIII, W(VI), PB(II), 150 FOLD AMTS OF SN(IV), 140 FOLD AMTS. GA(IIII), 75 FOLD AS(IIII), 50 FOLD IN(IIII), 25 FOLD SB(III), MD(V), AND V(V) DO NOT INTERFERE IN THE DETH. OF 20 MUG TE: AULIII), SB(V), HG(II), IR(III), PT(IV), I PRINE NEGATIVE, SCN PRIME NEGATIVE DO. THE SENSITIVITY OF THE DETN. IS 0.1 MUG TL-HL, AND THE FACILITY: UZHGOROD STATE ERROR IS PLUS OR MINUS 6.2PERCENT. UNIV., UZHGOROD, USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

THE RELEASE OF THE PROPERTY OF

USSR

UDC 521.771.23:621.892.8

MONID, A. G., GRINBERG, D. L., SOBOLENRO, V. P., FIRSOV, F. A., and rough MYY. I. A., Cherepovers Metallurgical Plant; Vologia State Pedagogical Institute

"Anticorrosion Protection of Steel Sheets"

Moscow, Metallurg, No 9, Sep 70, pp 33-34

Abstract: A study was made of the effectiveness of the anticorresion protection of sheet steel using inhibitor oils. The study was prompted by the multitude of complaints lodged by consumers and plants. The latter have been shipped both cold—and hot-rolled steel sheets with corrosion defects. The project called and galvanized steel using inhibitor oils. Industrial oil-19 was mixed with NG-203 and NG-204 and lubricants PP95/5 in contentrations of 10, 10, and 30%. Samples of 08 kp steel treated with oil containing additives of NG and PP95/5 treated metals were also subjected to accelerated tests which condisted of dipping in water for 8 hours at 40°C followed by holding in air for 16 hours. The cycle was repeated 5 times. Use was made of a point system 10 access anticorrosion protection. The outcome of the study was a standardination of enticorrosion lubricants comprising oil-20 with additives of NG-203 and 204

USSR
MONID, A. G., et al, Metallurg, No 9, Sep 70, pp 33-34
inhibitors, construction of mixer equipment, and development of a coating technology.

1/2 O21 UNCLASSIFIED TITLE--THE ATMOSPHERIC BOUNDARY LAYER --U-

PROCESSING DATE--27NOV70

AUTHOR--MONIN, A.S.

COUNTRY OF INFO--USSR

M

SOURCE--IN: ANNUAL REVIEW OF FLUID MECHANICS. VOLUME 2. (ATO 34661 17-12) PALO ALTO. CALIF., ANNUAL REVIEWS, INC., 1970, P. 225-250. 89 REFS DATE PUBLISHED-----70

SUBJECT AREAS--ATMOSPHERIC SCIENCES, EARTH SCIENCES AND OCEANOGRAPHY

TOPIC TAGS--ATMOSPHERIC BOUNDARY LAYER, ATMOSPHERIC MODEL, SURFACE BOUNDARY LAYER, OCEAN SURFACE TEMPERATURE, AIR SEA INTERFACE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3009/0217

STEP NO--US/0000/70/000/000/0225/0250

CIRC ACCESSION NO--AT0139073

UNCLASSIFIED

PROCESSING DATE--27NOV70 UNCLASSIFIED. 021 2/2 CIRC ACCESSION NO--AT0139073 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. DEVELOPMENT OF A MODEL OF THE ATMOSPHERIC BOUNDARY LAYER, AND DISCUSSION OF THE STRUCTURE OF THIS LAYER. THE AIR SURFACE INTERACTION IN THE DYNAMIC SUBLAYER OF THE SURFACE LAYER IS CONSIDERED. NOTING THE SPECIFIC CHARACTER OF THE SEA SURFACE AND THE HEAT AND HUMIDITY EXCHANGE. SIMILARITY THEORY IS APPLIED TO AN ANALYSIS OF THE WIND, TEMPERATURE, AND HUMIDITY PROFILES OF THE SURFACE LAYER AND TO AN ANALYSIS OF THE STATISTICAL PARAMETERS OF TURBULENT FLUCTUATIONS OF VELOCITY, TEMPERATURE, AND HUMIDITY IN THE SURFACE LAYER. A SIMILARITY THEORY IS DEVELOPED FOR ANALYZING THE DYNAMICS OF THE ENTIRE ATMOSPHERIC BOUNDARY LAYER. AKADEMIIA NAUK SSSR, INSTITUT OKEANOLOGII, MOSCOW, USSR. UNCLASSIFIED annostrativamentali militate parti estanti estanti estanti estanti estanti estanti estanti

ASSIFIED

PROCESSING DATE--023CT70

1/2 TITLE-BASIC FEATURES OF THE SEA TURBULENCE -U-

AUTHOR--MONIN, A.S.

COUNTRY OF INFO--USSR

SOURCE--OKEANOLOGIYA. 1970. VOL 10, NR 2, PP 240-248

DATE PUBLISHED----70

SUBJECT AREAS--EARTH SCIENCES AND OCEANOGRAPHY 444、2011年6月2

TOPIC TAGS--OCEAN DYNAMICS, TURBULENT FLOW

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PRUXY REFL/FRAME--1990/1284

STEP NO--UR/0213/70/010/002/0240/0248

CIRC ACCESSION NU--APO109368

UNCLASSIFIED

PROCESSING DATE--020CT70 UNCLASSIFIED 018 2/2 CIRC ACCESSION NO--APO109368 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. A REVIEW OF THE MODERN STATE OF KNOWLEDGE OF THE SEA TURBULENCE IS GIVEN. A NUMBER OF PROBLEMS AWAITING THEIR SOLUTION ARE DETERMINED. GENERATING MECHANISMS OF THE ENERGY SOURCE AND THE PROPERTIES OF SYMMETRY OF THE SMALL SCALE TURBULENCE ARE SYSTEMIZED. THE ROLE OF WAVE MOTIONS IN THE OCEAN DYNAMICS IS DISCUSSED AND METHODS ARE SHOWN FOR SEPARATING WAVE AND TURBULENT MOTIONS. THREE LAYER STRUCTURE OF THE OCEAN (MIXED INTERNAL AND BOTTOM LAYERS) IS SUGGESTED, THE TURBULENCE REGIME BEING DIFFERENT IN EACH OF THE LAYERS. INTERMITTENCE IS AN IMPORTANT FEATURE OF TURBULENCE IN THE INTERNAL LAYER. THE ROLE OF DENSITY STRATIFICATION IN THE OCEAN AND ITS DYNAMIC EFFECT ON TURBULENCE ARE ANALYZED IN DETAIL. A JOINT ACTION OF THE TURBULENT AND MOLECULAR PROCESSES RESULTS IN THE FORMATION OF A FINE FACILITY: INSTITUT OKEANOLOGII STRUCTURE OF THE OCEANIC FIELDS. IM. P. P. SHIRSHOVA AN SSSR. HNCL ASSIFIED

This is the control of the first that the control of the control o UNCLASSIFIED PRUCESSING DATE-ZUNUV/U 013 TITLE-CN CORRELATION OF CLUUDINESS WITH TEMPERATURE AND HUMIDITY -U-ALTHOR-(03)-VOYOVA, K.V., KCLESNIKOVA, V.N., MONIN, A.S. CCUNTRY OF INFO-USSR SOURCE-METEGROLOGIYA I GIORGLOGIYA, 1970, NR 5, PP 53-58 DATE PUBLISHED----70 SUBJECT AREAS -- ATMOSPHERIC SCIENCES TOPIC TAGS-CLIMATE, ATMOSPHERIC TEMPERATURE, ATMOSPHERIC HUMIDITY, ATMOSPHERIC CLOUD CENTREL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0050/70/000/005/0053/0058 PROXY REEL/FRAME--3005/0090 CIRC ACCESSION NO--APO132383 UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

72 013 RC ACCESSION NOAP013238	33 - ARSTRACT. I	MPORTANCE OF ST	UDYING CLIMATE	
STRACT/EXTRACT LOT GPTO	O. INFORMATION	ABSTRACT. IMPORTANCE OF STUDYING CLIMATE INFORMATION ON CURRELATION OF CLOUDINESS TWO CORP. DIFFERENT CLIMATIC REGIONS OF THE		
CORRELATIONS IS EXPLAINED WITH TEMPERATURE AND HUM	IDITY FOR DIFFE	RENT CLIMALLE K	NECESSITY OF	
WITH TEMPERATURE AND HUM SOVIET UNION IS GIVEN. ACCOUNTING SUCH CORRELAT	THE CUNCLUSION	TTAIC NON LINEAR	CLIMATE	
ACCOUNTING SUCH CURRELAT	FACILITY: INS	TITUT OKEANOLOG	IE AN SSSR.	
CHARACTERISTICS				
			•	
				3
				E
			the second second	
물병 등에 되어 있는 사람들이 보는 것이 되었다.			f I	-
	UNCLASSIFIED			

1/3 010 UNCLASSIFIED TITLE-DENSITY STRATIFICATION IN THE OCEAN -U-

AUTHOR-(03)-MONIN, A.S., NEYMAN, V.G., FILYUSHKIN, B.N.

COUNTRY OF INFO--USSR, PACIFIC OCEAN

SOURCE-MOSCOW, DOKLADY AKADEMII MAUK SSSR, VOL 191, NO 6, 1970, PP

1277-1279

DATE PUBLISHED----70

SUBJECT AREAS--EARTH SCIENCES AND OCEANOGRAPHY

TOPIC TAGS--OCEAN DEPTH, FLUID DENSITY MEASUREMENT, DOCEAN TEMPERATURE, DOCEAN BOTTOM, SALINITY

CONTROL MAPKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/1158

STEP NO-+UR/0020/10/191/006/1277/1279

: i

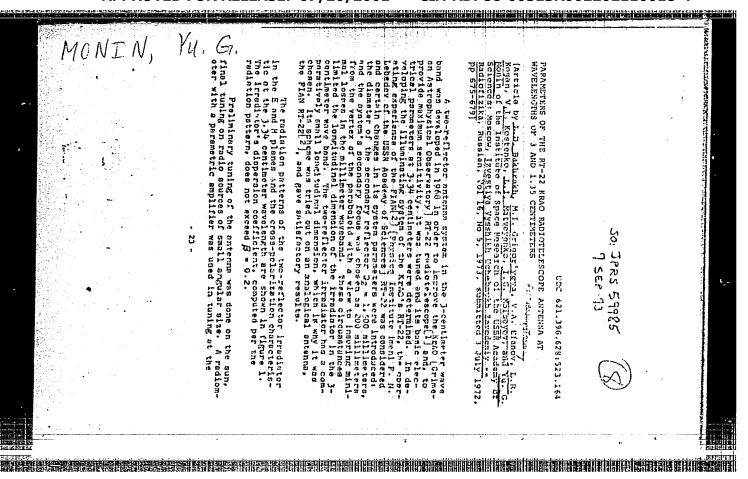
PROCESSING DATE--L3MGV70

CIRC ACCESSION NO--AT0133181

- UNGLASSIFICO

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY


进生的 第二十二世 PROCESSING DATE--13NOV70 UNCLASSIFIED 2/3 010 CIRC ACCESSION NO--AT0133181 ABSTRACT. AN ANALYSIS OF NIZ) STRATIFICATION ABSTRACT/EXTRACT--(U) GP-0-CURVES WAS MADE IN IS THE FREQUENCY OF INERTIAL OSCILLATIONS, Z 15 DEPTH) USING DATA FROM 46 HYDROLOGICAL STATIONS IN THE NORTHERN HALF OF THE PACIFIC OCEAN. THE NIZI CURVES FOR THE UPPER LAYER OF THE OCEAN HAVE A CUMPLEX AND VARIED SHAPE, OFTEN WITH SEVERAL EXTREMA, BUT IN THE INTERNAL LAYERS OF THE OCENA, AT DEPTHS OF 500-5:000 M. THEY ARE WELL DESCRIBED BY A SIMPLE LAY OF DISTANCE FROM THE SURFACE NIZI EQUALS W EQUALS CONST, (3) THAT IS, THE PREQUENCY N IS INVERSELY PROPORTIONAL TO DEPTH Z. THE LAW GIVEN ABOVE IS UNIVERSAL IN THE SENCE THAT THE CONSTANT W IS APPROXIMATELY THE SAME FOR DIFFERENT STATIONS (IT IS W FIGURE 2 IN THE TEXT SHOWS N(Z) VALUES FOR THE 40 CONGRUENT M-SEC1. STATIONS. IN THE NEAR BUTTOM LAYER OF THE OCEAN BELOW THE REGION OF APPLICABILITY OF THE ABOVE LAW THE N(Z) CURVES LOSE THEIR UNIVERSAL. SHAPE. SOMETIMES N DECREASES THERE WITH DEPTH MORE RAPIOLY THAN INDICATED BY THE LAW (FOR EXAMPLE, IN STAGNANT BASENS WITH BOTTOM CONVECTION CREATED BY A GEOTHERMAL HEAT FLUX) OR SCHETCHES MORE SLOWLY (FOR EXAMPLE, WHEN THERE ARE COLD WATERS OF ANTARCTIC ORGIN IN THE NEAR BOTTOM LAYER). INSTEAD THE DEPTH & ONE CAN USE HEIGHT ABOVE THE BOTTOM H EQUALS H-Z (H IS TOTAL OCEAN DEPTH). IN THE CASE OF STABLE STRATIFICATION FOR LARGE H TYPICAL SCALES OF TURBULENT INHOMOGENEITIES ARE OF THE ORDER OF L EQUALS U PRIMES (GM-P) PRIME NEGATIVEL, WHERE M EQUALS BAR P PRIME W PRIME IS THE VERTICAL TURBULENT FLUX OF MASS (W IS THE VERTICAL VELOCITY, THE PRIME DENOTES FLUCTUATIONS, THE LINE DENOTES STATISTICAL AVERAGING!

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

Secretary and the control of the con UNCLASSIFIED PROCESSING DATE--13NOV70 CIRC ACCESSION NO--ATOL33181 ABSTRACT/EXTRACT--THE VELOCITY GRADIENT SINULET U-SINULET H FOR LARGE H ASYMPTOTICALLY APPROACHES THE ORDER OF WHI FOR LARGE H, BUT THE TEMPERATURE AND SALINITY GRADIENTS (DETERMINING THE DENSITY GRADIENT) MUST INCREASE WITH HEIGHT AS 1-ALPHA (H) WHERE ALPHS IS THE RATIO OF THE EXCHANGE COEFFICIENTS FOR HEAT (AND SALT) AND FOR MOMENTUM. TRANSPORT OF INHOMOGENEITIES OF THE DIMENSION L'WITH THE VELOCITY H SINULET U-SINULET H CREATES A LOCAL FREQUENCY H SINULET U-SINULET H-L. THE RESONANCE CONDITION, ACCORDING TO LONG, IS N EQUALS H SINULET U-SINULET H OVER L (EQUALS AH; A EQUALS 1 OVER L'SINULTE U OVER SINULET H SIMILAR TO U OVER L PRIME2), ENSURING THE PROPAGATION OF INTERNAL WAVES IN THE ENTIRE THICKNESS OF THE OCEAN (THIS CONDITION CORRESPONDS TO D (H) SIMILAR TO H PRIME NEGATIVEZE CHECKING OF THE LAW OF DISTANCE FROM THE BOTTON N EQUALS AN REVEALED THAT IT IS SATISFACTORILY SATISFIED FOR MOST OF THE MENTIONED HYDROLOGICAL STATIONS AT DEPTHS BELOW 1-2 KM. THE RESONANCE CONDITION IS NOT UNIVERSAL: THE CONSTANT A FOR DIFFERENT STATIONS IS DIFFERENT (IT VARIES IN THE RANGE (1-9) TIMES TO PRIME NEGATIVET M PRIME NEGATIVEL TIMES SEC PRIME NEGATIVELLE BY COMBINING LAHS (3) AND (5) ONE OBTAINS A EQUALS W-Z(H-Z). THIS VALUE IS ALMOST CONSTANT (THERE IS LITTLE DEPENDENCE ON Z) IN THE BLAYER NEAR THE MAXIMUM OF THE FUNCTION Z(H-Z). THUS, IN THE MIDDLE LAYERS OF GCEAN BOTH (3) AND (5) MAY BE APPLICABLE. FACILITY: INSTITUTE OF OCEANOLOGY. DESTRUCTED AND THE PROPERTY OF THE PARTY OF

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

Physical Properties

USSR

WC 669.295.5.018.29.669.018.2

NEYMARK, B. YE., KORYTINA, S. F., MONINA, E. F., and MERKUL'EV, A. N.

"Experimental Study of the Physical Properties of Alloys Based on Type VT-5 and VF8 Titanium"

V. sb. Teplofiz. Svoystva tverd. veshchestv. M. Nauka (Thermophysical Properties of Solid Materials -- Collection of Works), Moscow, "Mauka," 1971, pp 71-80 (from Referatinvyy Zhurnal -- Metallurgiya, No 6, Jun 71, Abstract No 61663)

Translation of Abstract: Experimental studies were carried out on the physical properties of two Ti alloys: VT-5 and VT-8. The properties studied were: normal modulus of elasticity (by dynamic method), internal friction by attenuation of free vibrations of the samples, heat conductivity, electrical resistance, Lorentz Number (by the method of Jacque-Delanel horst), linear coefficient of expansion (in a vacuum delatometer), density and heat capacity in the temperature range of 20-800°. (Two illustrations, one table, 5 bibliographic entries).

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

USSR

UDC [621.357.035.4:621.79.027]:669.14(088.8)

ZUBATOVA, L. S., MOROZ, I. I., and MONINA, M. A., Experimental Scientific Research Institute of Metal-Cutting Machines

"Electrolyte for Electro-Abrasive Grinding of Steels, Heat-Resistant, and Magnetic Alloys"

USSR Author's Certificate No 329246, Filed 2 Mar 70, Published 20 Mar 72 (from Referativnyy Zhurnal -- Khimiya, Svodnyy Tom, No 23(II), 1972, Abstract No 231236P by A. D. Davydov)

Translation: The Na₂CO₃electrolyte for electro-abresive frinding of steels, heat-resistant, and magnetic alloys differs from other electrolyte by the presence of ammonium bifluoride. The presence of the latter inhibits the formation of sludge in the electrolyte and increases the finishing quality of the treated surface. The electrolyte components are taken in the following amounts (%); Na₂CO₃12-14, Ni₁F·IF 0.5-1.0, and water.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

USSR

VDC: 621.9.047

VOLKOV, Yu. S., MONINA M. A., MOROZ, I. I., Moscow

"Concerning the Question of Titanium Machinability"

Kishinev, Elektronnaya Obrabotka Materialov, No 3(45), 1972, pp 11-14

Abstract: Some particulars in the electrochemical machining of titanium were studied by a comprehensive method including theoretical analysis of the physical and mechanical properties of metal and solution and experimental verification of the theoretical results. The theoretical studies showed that the fluorine anion F- has the greatest activating capacity of the halogens, followed by I-, Br-, and Cl-, the most promising being Iand Br . It is concluded from the results of the experimental studies that with respect to productivity, stability of electrochemical machining. and surface quality of finished parts, the investigated ions can be arranged in the following conditional series: ClOT > Br > I -> F -> Cl -.

1/1

CIA-RDP86-00513R002202110018-4"

APPROVED FOR RELEASE: 07/20/2001

UDC 539.4.42

USSR

KAKHOVSKIY, N. I., YUSHCHENKO, K. A., MON'KO, G. G., SOLOKHA, A. M., and KVASNEVSKIY, O. G., Kiev, Institute of Electric Welding imeni Ye. O. Paton, Academy of Sciences UkrSSR

"Fundamentals of Alloying Steel and Weld Metal for Structures Operating Continuously at Low Temperatures"

Kiev, Problemy Prochnosti, No 8, Aug 70, pp 119-125

Abstract: Results are presented of a series of investigations for determining the mechanical properties of Cr-Ni-N and Cr-Ni-Mn-N steads for the purpose of establishing optimal quantities of alloying elements for obtaining austenite-stable steels under conditions of long-duration operation at low temperatures (to - 100°C). The results show that a 15% Ni content in Cr-Ni-N and Cr-Ni-Mn-N steels is sufficient for complete sustenite stability. The affect of alloying metals on the mechanical properties of steels and weld metals is shown in graphs.

1/1

44 -

Mechanical Properties

4

USSR

VDC 539.4.015

YUSHCHENKO, K. A., STARTSEV, V. I., IL'ICHEV, V. Ya., MON'KO, G. G., LIVSHITS, L. A., KAPLAN, L. I., STEPANOV, G. A., and GRUDZINSKIY, B. V., Kiev, Institute of Electric Welding imeni Ye. O. Paton, Academy of Sciences, UkrSSR

"Low-Temperature Properties of Austenitic Steels"

Kiev, Problemy Prochnosti, No 10, Oct 70, pp 113-115

Abstract: A study was made of the mechanical properties of some steels of industrial melts destined for use at temperatures down to -269°C. A low carbon content was characteristic for the investigated steels, and some were also alloyed with nitrogen. The 21-16-8-N type stable-austenitic steel had the best strength properties and smallest reduction in plasticity and toughness at reduced temperatures.

1/1

USSR

UDC 539.411.5

43420-51

YUSHCHENKO, K. A., KAKHOVSKIY, N. I., KVASNEVSKIY, O. G., MON: KO. G., G., SOLOKHA, A. M., (Kiev), Institute of Electric Welding Imeni Ye. O. Paton

"The Influence of Second-Phase Separations on the Embrittlement of High-Alloy Austenitic Steels at Low Temperatures"

Kiev, Problemy Prochnosti, No 8, 1970, pp 99-103

Abstract: In the article are presented results of research carried out with the sim of ascertaining the influence of nitrogen alloying upon the tendency of some austenitic steels, used in cryogenics, toward brittle destruction. 7 figures, 1 table, 7 bibliographic entries.

1/1

- 73 -

ASSESSMENT OF THE PROPERTY OF

USSR

UDC 621,774:539.4.014.3

MONOSHKOV, A. N., LUPIN, V. A., KUTEPOVA, V. I., NIKULIN, Yu. N., Urals Scientific Research Institute for the Pipe Industry, Chelyabinsk

"Estimation of Limiting Pressure in Wrapped Pipes with Axial Loads"

Moscow, Stroitel'stvo Truboprovodov, No 2, Feb. 1973, pp 10-12.

Abstract: Wrapping of large diameter pipes significantly increases their resistance to large ruptures and in many cases allows a reduction in metal consumption. This article presents a method for estimation of the maximum pressure in wrapped pipes loaded with both internal pressure and axial forces which change in direct proportion to the pressure. Calculations are performed for thin wall pipes, the wrapping of which accepts only circumferential forces. The axes of the primary stresses and deformations are assumed to coincide with the geometric axes of the pipe. Analysis shows that as the axial compressive forces increase, the effectiveness of wrapping increases significantly.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

UDC 621.791.053:620.172.24:620.172.25

USSR

BAKSH, O. A., MONOSHKOV, A. N., and ANISIMOV, Yu. I., Chelyabinsk, Chelyabinsk Polytechnical Institute

"Low-Temperature Effect on the Efficiency of Welded Joints Under Static Tension"

Kiev, Problemy Prochnosti, No 8, Aug 70, pp 74-79

Abstract: An outline is given for a procedure for the theoretical evaluation of the ductility and brittleness of welded joints of compact cross section with a smooth interlayer, which are subjected to static tension. Mechanical inhomogeneity and temperature (up to 78° K) are taken into account. The plastic properties and type of failure, in relation to service temperature, were investigated under certain assumptions. Tests samples were made of 45Kh and St10 steels, welded by friction. Tests were conducted on an UMM-5 test machine at temperatures of -20, -78, -100, -150, -170, and -196°C, with a deformation rate of 1.1 x 10-3 sec. The results show that with decreasing T and with a reduction in the relative thickness of the interlayer x, the yield point and short-time strength increase.

... 41 --

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

USSR

BAKSH, O. A., et al, Problemy Prochnosti, No 8, Aug 70, pp 74-79

A transfer of fracture from the soft interlayer toward the hard metal was observed in the entire temperature range and at sufficiently small values of χ . The range of interlayers with brittle fracture widened with decreasing temperature, attaining χ = 0.9 at 78° K. The test procedure is described briefly.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

USSR

UDC 620.178.2

BAKSHI, C. A., KUKIN, A. G., and MONOSHKOV, A. N., Chelyabinsk, Chelyabinsk Polytechnical Institute

"A Method of Evaluating the Reliability of Materials and Welded Joints, Operating at Low Temperatures"

Kiev, Problemy Prochnosti, No 8, Aug 70, pp 70-73

Abstract: A method for evaluating the resistance of naterials and welded joints to brittle fracture is presented. The method is based on tensometric recording of the process of impact flexure of samples, with subsequent processing of the stress-time oscillogram, for determining the energy of crack formation and propagation, the average speed of crack development, the impact strength, and the breaking point of a sample. A specially designed sample with three notches was used for comparative evaluation of the properties of characteristic sections of materials and welded joints. A procedure is outlined for determining the elastic energy of a sample-machine system for any time instant of sample deformation, right up to the formation of a critical crack in it. Oscillograms of impact flexure of standard and notched samples with a soft interlayer are presented.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

Welding

USSR

UDC 620.178.2

BAKSHI, O. A., KUKIN, A. G., and MCNOSHKOV, A. N., Chelyabinsk Polytechnical Institute

"Effect of the Mechanical Inhomogeneity of Welded Joints on Their Resistivity to Brittle Failures Under Low-Temperature Conditions"

Kiev, Problemy Prochnosti, No 10, Oct 70, pp 106-108

Abstract: The effect of the mechanical inhomogeneity of welded joints at low temperatures on the indices of the specific energy of crack formation and propagation, impact toughness, and breaking force was investigated. It is demonstrated that a mechanical inhomogeneity significantly affects the breaking parameters to be determined. The incorrectness of estimating mechanical inhomogeneities of joints from results of impact bending tests of standard specimens is substantiated.

1/1

UNCLASSIFIED PROCESSING DATE--27NDV70

1/2 027

TITLE--METHOD OF DETERMINING BRINELL HARDNESS NUMBERS BY SHOCK LOADING -U-

AUTHOR-(02)-MONOSHKOV, A.N., VLASOV, R.A.

COUNTRY OF INFO--USSR

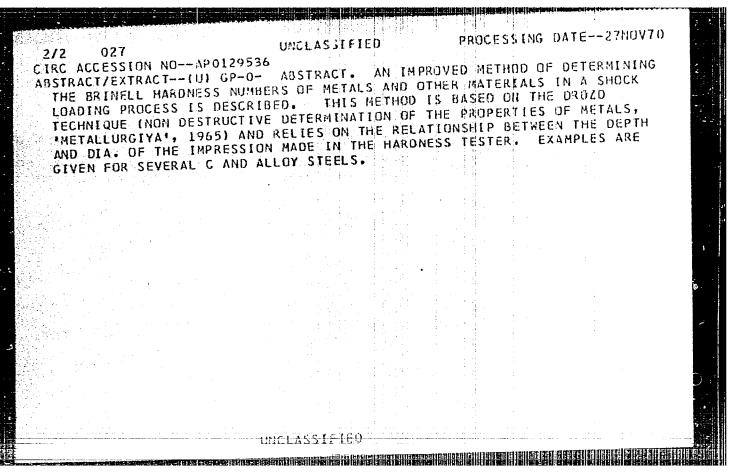
SOURCE--ZAVOD. LAB., 1970, 36, (2), 225-227

DATE PUBLISHED-----70

SUBJECT AREAS -- MATERIALS, METHODS AND EQUIPMENT

TOPIC TAGS--HARDNESS, IMPACT STRESS, METALLURGIC TESTING MACHINE, CARBON STEEL

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3003/0304

STEP ND--UR/0032/70/036/002/0225/0227

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

CIRC ACCESSION NO--APOL29536

UNCLASSIFIED

USSR

MONOSOV, Ya. A., ZUBKOV, V. I., Institute of Radio Engineering and Electronics, Academy of Sciences of the USSR, Moscow

"On the Mechanism of Limitation of the Amplitude of Spin Waves in a Strongly Energized Ferromagnetic"

Leningrad, Fizika Tverdogo Tela, Vcl 13, No 9, Sep 71, pp 2773-2775

Abstract: The authors take issue with some of the basic assumptions of a previous paper -- "New Mechanism of Limitation of the Amplitude of Spin Waves in the Case of Parallel Pumping", V. Ye. Zakharov et al., Fizika Tverdogo Tela, Vol 11, 1969, p 2047. In particular, the authors contend that the stability of a spin wave group was erroneously defined. Specifically, the error consisted in appending the hypothesis of "external" stability to the Lyapunov stability condition. This assumption is refuted, thus negating the validity of the proposed mechanism in the steady state. The action of this nechanism of spin wave amplitude limitation in the case of unstable nonlinear resonance has been previously studied. One figure, bibliography of eight titles.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

1%

USSR

UDC: 621.384.639

ABROSIMOV, N. K., ALKHAZOV, D. G., DMITRIYEV, S. P., YELLSEYEV, A., KAMINKER, D. M., KULIKOV, A. V., MIRONOV, Yu. T., MIKHEYEV, G. F., RYABOV, G. A., CHERNOV, N. N., SHALMANOV, V. I., KOMAR, Ye. G., MALYSHEV, I. F., MONOSZON, I. A., PEREGUD, V. I., ROZHDESTVENSKIY, B. V., ROYFE, I. M., SEREDENKO, Ye. V., Physicotechnical Institute imeni A. F. Ioffe, Academy of Sciences of the USSR, Leningrad, Scientific Research Institute of Electrophysical Equipment imeni D. V. Yefremov, Leningrad

"The Leningrad Synchrocyclotron for a Proton Energy of 1 GeV"

Leningrad, Zhurnal Tekhnicheskoy Fiziki, Vol 41, No 9, Sep 71, pp 1769-1775

Abstract: The paper describes the synchrocyclotron at the Physicotechnical Institute imeni A. F. Ioffe of the Academy of Sciences of the USSR for a proton energy of 1 GeV. Proton beam parameters as well as the characteristics of the main systems of the accelerator are presented. The beam channels are described, and the layout of the accelerator building is given. The installation has been in successful operation since 1970. Three tables, two figures, bibliography of twelve titles.

1/1

- 83 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

UDG 621:039:623

USSR

ALEKSIN, V. F., BIRYUKOV, O. V., GEORGIYEVSKIY, A. V., KIZAYEVSKIY, L. KH., KOMAR, YE. G., LUGINOV, A. S., MALYSHEV, I. F., MUNOSZON, N. A., POPROVICH, A. V., ROZHDEST VENSKIY, B. V., SAKSAGANSKIY, G. L., A., SUPRUNENKO, V. A., SINEL'NIKOV, the late K. D., SUKULOV, YU. A., SUPRUNENKO, V. A., TOLOK, V. T., CHURAKOV, G. F., and SHABEL'NIKOV, L. A.

"The Experimental Thermonuclear Device 'Uragan'"

Moscow, Atomnaya Energiya, Vol 28, No 1, Jan 70, pp 22-28

Abstract: An urgent task of stellarator research is a definitive elucidation of the reasons for anomalous diffusion in a stellarator, as well as the effect of the shear and magnetic well on the confinement of a hot and dense plasma. These questions will be studied on the "Uragan" stellarator. Construction of the "Uragan" stellarator was begun at the suggestion of I. V. KURCHATOV and completed in 1967. The physical substantiation and technical assignment of developing and constructing the complex were developed at the Physicotechnical

1/3

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

ALEKSIN, V. F., et al., Atomnaya Energiya, Vol 28, No 1, Jan 70, pp 22-28

Institute of the Academy of Sciences Ukrainian SSR under the direction of K. D. SINEL'NIKOV, who took an active part in the solution of theoretical and technical questions. Organizations taking part in the development of the project and the construction of the complex in the development of the project and the construction of the complex included the Scientific Research Institute of Electrophysical Equipment imeni D. V. Yefremov, the Elektrosila Electrical Engineering Comment imeni D. V. Yefremov, the Elektrosila Electrical Engineering Comment, the Khar'kov Polytechnic Institute imeni V. I. Lenin, the Electromechanical Plant and NIIElektroapparat Escientific Research Institute of Electrical Equipment in Khar'kov. A considerable amount of tute of Electrical Equipment, manufacture, and adjustment of the systems work on the development, manufacture, and adjustment of the systems and components of the "Uragan" was done at the Physicotechnical Institute of the Academy of Sciences Ukrainian SSR.

The principal feature of the "Uragan" is high shear (of the order of 0.02 and 0.1) at a high level of magnetic field strength

2/3

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

ALEKSIN, V. F., et al., Atomnaya Energiya, Vol 28, No 1, Jan 70, pp 22-28

Ho (35 and 10 koe respectively). The stellarator is in the shape of a racetrack and uses a high-shear triplex helical field. The vacuum chamber of the trap consists of two semi-tori with an average radius R = 1100 mm and two rectilinear sectors, each 1725 mm long. The internal diameter of the chamber is 200 mm. On the outside of the chamber on the toroidal sectors are two helical windings and longitudinal magnetic field coils, distributed evenly along the device. The maximum strength of the magnetic field is 10 koe under steady-state conditions and 35 koe under pulsed conditions. Three windings are used; viz., longitudinal magnetic field, helical, and transverse magnetic field. All metallic elements are made of low-magnet steel lkhlöngt. The toroidal sectors of the vacuum chamber and part of the rectilinear sectors are made of stainless nonmagnetic alloy EP-125. The article gives a detailed description of the windings, cooling system, electric power supply system, vacuum system, and plasma diagnostic and heating system.

3/3

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

M

24

ADO, YU. M., ZHURAVLEV, A. A., LOGUNOV, A. A., MYAE, E. A., NAUHOV, A. A., PISAREVSKIY, V. YE., ROGOZINSKIY, V. G., TUSHASRAMISHVILI, K. Z., SHUKEYLO, I. A., BOYKO, S. N., KOMAR, YE. G., MALYSHEV, I. F., MOZIN, I. V., MCNOSZON, N. A., MCZALEVSKIY, I. A., SPEVAKOVA, F. M., STOLOV, A. M., TITOV, V. A., VODOP'YANOV, F. A., KUZ'MIN, A. A., KUZ'-MIN, V. F., MINTS, A. L., RUBCHINSKIY, S. M., UVAROV, V. A., GUTNER, B. M., ZALMANZON, V. B., PROKOP'YEV, A. I., and TEMKIN, A. S.

"Some Results of the Overall Adjustment and Start-up of the 70-Gev Proton Synchrotron of the Institute of High-energy Physics"

Moscow, Atomnaya Energiya, Vol 28, No 2, Feb 70, pp 132-138

Abstract: The physical part of the plan for the 70-Gev proton synchrotron was executed by the Institute of Theoretical and Experimental Physics. The electromagnet with feed system, the vacuum chamber, and the injection devices were developed at the Scientific Research Institute of Electrophysical Apparatus imeni D. V. Yefremov. The radio-electronic systems for acceleration process control and generation of

1/4

USSR

ADO, YU. M., et al., Atomnaya Energiya, Vol 28, No 2, Feb 70, pp 132-138

the accelerating field, as well as the radiotechnical measurement and beam observation systems, were developed by the Radiotechnical Institute of the Academy of Sciences USSR. "Tyazhpromelektroproyekt" [State Planning Institute for the Planning of Electrical Equipment for Heavy Industryl designed the general-purpose electrotechnical devices and cable connections. The plan for the construction complex of the accelerator was developed by the State All-Union Planning Institute. The construction of the accelerator was under the general supervision of the State Committee for the Use of Atomic Energy USSR. The adjustment of individual systems and the overall adjustment and start-up of the accelerator were carried out by the Institute of High-energy Physics and the developers of the accelerator systems. The basic beam work was done by the Institute of High-energy Physics with the participation of the Radiotechnical Institute. The construction of the accelerator was begun in 1960, and all the basic construction and assembly work was completed at the beginning of

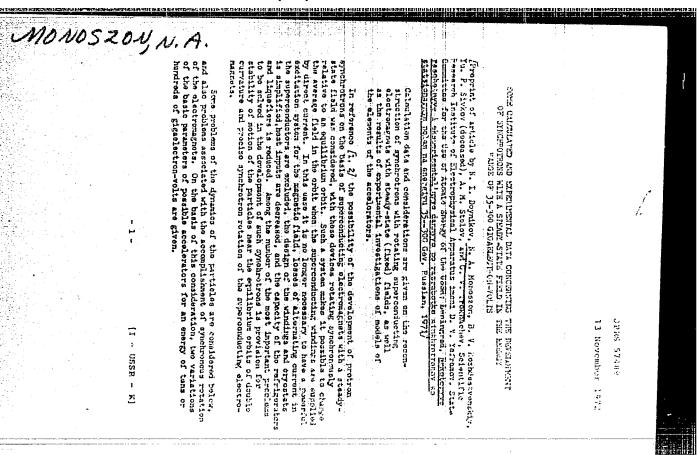
2/4

ADO, YU. M., et al., Atomnaya Energiya, Vol 28, No 2, Feb 70, pp 132-138

1967. At the initial stage of construction, before the formation of the Institute of High-energy Physics in 1963, the work was coordinated by the Institute of Theoretical and Experimental Physics. The linear accelerator injector was started on 28 July 1967, the operation of the individual systems was adjusted by September 1967, and the physical start-up of the accelerator was accomplished on 14 October.

A description is given of the work done to adjust the annular electromagnet (including the electromagnet cooling and feed systems), the injection system (consisting of matching channel and injection device), the vacuum system, the radicelectronic system (including the accelerating field generation system, the acceleration process control system, and the radiotechnical measurement system), and the beam observation system (which provides for beam observation in the first revolution and during acceleration). In the physical start-up of the accelerator the main efforts were directed towards obtaining accelerated protons of the planned energy, and the problem of obtaining high

3/4


USSR

ADO, YU. M., et al., Atomnaya Energiya, Vol 28, No 2, Feb 70, pp 132-

intensity of the accelerated proton was not raised.

The article gives a listing of the principal parameters of the proton synchrotron, as well as a schedule of the individual stages of the start-up of the accelerator. Photographs include a view of the part of the ring hall in the beam injection area and a general view of the hall of ignitron rectifiers.

4/4

WC 632.95

rake ar Talle

GOLYSHIN, I. M., MONOYA, V. I., KLIMKINA, I. P., IVANOVA, S. N., MEL'NIKOV, N. N., KHUSMETDINOVA, F. I., SHVETSOV-SHILOVSKIY, N. I., SAMYSHKINA, M. A., and BOLONINA, YE. I.

"An Antiseptic"

USSR Author's Certificate No 355008, Div B, filed 11 Jan 71, published 13 Nov 72 (from RZh-Khimiya, No 14, 25 Jul 73, abstract No 148616 P by T. A. Belyayeva)

Translation: It is proposed that 4,5,6-trichlorobenzomazolinone-2 (I) be used as an antiseptic for nonmetallic materials, and at the name time is a bactericide, which considerably extends the sphere of its action. Compound I is used in a 2-2.5% concentration to control mold, wood-rotting and wood-discoloring fungi.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

USSR

tmc 632.95

6

VOLODKOVICH, S. D., AMDREYEVA, YE. I., GOLYSHIN, N. M., MONOYA, V. I., KAFLAN, G. I., PRONCHENKO, T. S., USHANOV, M. G., ABELENTSEV, V. I., DVOICHENKOVA, E. A., and SKAZKINA, T. P.

"Bromtan"

V sb. Khim. sredstva zashchity rast. (Chemical Plant Protectants -- collection of works), vyp 1, Moscow, 1970, pp 116-129 (from RCh-Khimiya, No 13, 10 Jul 72, Abstract No 13N501 by T. A. Belyayeva)

Translation: The preparation broatan (BrCCl_CHBrCH_2CH_2CH_2CH) (I) is being tested as a soil fungicide and antiseptic for nonmetallic materials. I is as effective as carbathion in the control of melon fusarial wilt. I in a concentration of 0.8 percent is equivalent to DNOC in an 0.6 percent concentration with respect to hibernating forms of the causative agent of apple scab and brown spot. I is active in the control of cotton root rot and wilt at a consumption rate of 100-100 kg/ha.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

UNCLASSIFIED PROCESSING DATE--230CT70 026 1/2

TITLE--IONIZATION OF MOTT EXCITONS IN PARALLEL ELECTRIC AND STRONG

MAGNETIC FIELDS -U-

AUTHOR-(02)-MONOZON, B.S., PEVZNER, M.B.

COUNTRY OF INFO--USSR

SOURCE-FIZ. TEKH. POLUPROV. 1970, 4(3), 466-71

DATE PUBLISHED ---- 70

SUBJECT AREAS--PHYSICS

TOPIC TAGS--IONIZATION, EXCITON, ELECTRIC FLELD, STRONG MAGNETIC FIELD

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/1715

STEP NO--UR/0449/70/004/003/0466/0471

CIRC ACCESSION NO--APO120427

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

2/2 UNCLASSIFIED PROCESSING DATE--230CT70 CIRC ACCESSION NO--APO120427 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE INFLUENCE IS STUDIED OF PARALLEL ELEC. AND MAGNETIC FIELDS ON THE LOWEST COULOMB STATE, N EQUALS A STRONG MAGNETIC FIELD IS CONSIDERED: I.E., THE WHOLE COULDMB SERIES (INCLUDING N EQUALS O) SHOULD BE NARROWER THAN THE INTERVAL BETWEEN NEIGHBORING LANDAU LEVELS: THE ELEC. FIELD IS LOW IN COMPARISON WITH THE COULOMB FIELD. THE WAVE FUNCTION IS CALCO. AND THE SHIFT IN THE 2ND APPROXN. OF THE PERTURBATION THEORY, AS WELL AS THE PROBABILITY OF IGNIZATION OF THE COULOMB STATES (N EQUALS 0, 1, 2,1 IN THE SLEC. FIELD, IS GIVEN. THE INFLUENCE IS DISCUSSED OF THE ELEC. FIELD ON THE INTENSITY, SHIFT, AND WIDTH OF EXCITON PEAKS IN THE MAGNETOOPTICAL ABSORPTION SPECTRUM. THE FORMULAS DERIVED MAKE IT POSSIBLE TO TAKE INTO ACCOUNT A WEAK SCREENING EFFECT OF IMPURITIES ON THE EXCITON LEVELS. FACILITY: LENINGRAD. GOS. UNIV. 1M. ZHDANOVA, LENINGRAD, USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

gar altıtı PROCESSING DATE--11DEC70 UNCLASSIFIED 014

TITLE-REGIONALIZATION OF HERBICIDES WITH CONSIDERATION OF COTANICAL

CCMPCSITICH OF WEEDS -U-AUTHUR--MEASTVILAYIE. YA.

CCUNTRY OF INFU--USSR

SOURCE-MOSCOW, KHIMIYA V SELISKUM KHOZYAYSTVE, VOL 8, NR 4 (78), APR 70,

PP 51-55 DATE PUBLISHED ---- APR70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-HERBICIDE. PLANT PHYSIOLOGY, CLIMATIC CONDITION

CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS-UNCLASSIFIED PROXY FICHE NC----F070/605014/C10 STEP NO---UR/0394/70/008/004/0051/0055

CIRC ACCESSION NO--APO140480

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

PROCESSING DATE--11DEC70 UNCLASSIFIED 014 CIRC ACCESSION NO--APO140480 THE AUTHOR STUDIES THE SENSITIVITY ABSTRACT/EXTRACT-(U) GP-0-ABSTRACT. OF WEEDS TOWARD HERBICIDES UNDER DIFFERENT SOIL CLIMATE CONDITIONS IN ORDER TO DISTRIBLTE VARIOUS AGENTS BY REGIGNS. IT WAS DETERMINED THAT BOTANICAL CEMPOSITION OF THE WEEDS HAS TO BE TAKEN INTO CONSIDERATION EXAMPLES OF THE DIFFERENT WITHIN INDIVIDUAL SOIL CLIMATE REGIONS. RESPONSE OF WEEDS TO VARIOUS TYPES OF HERBICIDES (2.4-D. 2M-4KL, DNOK) ARE REPORTED AND RECOMMENDATIONS ARE MADE FOR THE LITHUANIAN REPUBLIC. IT WAS FOUND THAT THE HERBICIDES SHOULD BE SPRAYED EARLY IN THE SPRING. FACILITY: VASESK BRANCH OF THE LITHUANIAN SCIENTIFIC RESEARCH INSTITUTE OF AGRICULTURE. SHE LASSIFIED

USSR

UDC: 632.954 + 532.51

MONSTULIAYTE, YA., Vakesk Branch of the Lithuanian Scientific Research Institute of Agriculture

"Regionalization of Herbicides With Consideration of Botanical Composition of Weeds"

Moscow, Khimiya v Sel'skom Khozyaystve, Vol 8, No 4 (78), Apr 70, pp 51-55

Abstract: The author studied the sensitivity of weeds towards herbicides under different soil-climate conditions in order to distribute various agents by regions. It was determined that botanical composition of the weeds has to be taken into consideration within individual soil-climate regions. Examples of the different response of weeds to various types of herbicides (2,4-D, 2M-4KL, DNOK) are reported and recommendations are made for the Lithuanian Republic. It was found that the herbicides should be sprayed early in the spring.

1/1

USSR

UDC 669.71.053.4

RAYVICH, Sh. B., MONTVID, A. E.

"Algorithm for Optimization of Evaporation Battery"

Tr. Vses. N-i. i Proyektn. In-ta. Alyumin., Magn. i Elektrodn. Prom-sti [Works of All-Union Scientific Research and Planning Institute of the Aluminum, Magnesium and Electrode Industry], 1970, No. 70, pp 153-156. (Translated from Referativnyy Zhurnal Metallurgiya, No. 5, 1971, Abstract No. 5 Gl48 by the authors).

Translation: A method is suggested for optimization of evaporation batteries according to a combination of characteristics. The criterion used is the cost of a unit volume of water. A general plan of the sequence of design of evaporation batteries with different characteristics is developed for optimization.

1/1

UDC 669.712.1.05

AGRANOVSKIY, A. A., BERKH, V. I., KAVINA, V. A., LEVIN, M. V., LYAPUNOV, A. N., MONTVID, A. E., MUNITS, I. N., and CHERNIN, V. N.

"Spravochnik metallurga po tsvetnym metallam" (Metallurgist's Handbook of Non-Ferrous Metals); Moscow, Izd-vo "Metallurgiya," 1970, 320 pp

Translation of Annotation: Data on the physico-chemical properties of the most important aluminum compounds and aluminum solutions are presented, phase diagrams of chemical systems determining the processes of alumina production by alkali methods are given, and standards and technical conditions are reviewed.

Various alumina production methods and reference data on the technology and equipment of alumina production are described.

The handbook is intended for engineers and technicians engaged in the aluminum industry. Ninety-one figures, 116 tables, 176 references.

TABLE OF CONTENTS (Abridged)

1/3

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

USSR			
AGRANOVSKIY, (Metallurgis giya," 1970,	A. A., et al., "Spravochnik metallurga po tsvetnym metat's Handbook of Non-Ferrous Metals), Moscow, Izd-vo "Metals) pp	allam" callur-	
Foreword		0	
Section	One. PHYSICO-CHEMICAL DATA AND STANDARDS		
Chapter 1.	Minerals, Basic and Auxiliary Raw Materials and		
	Final Products of Aluminum Oxide Production	11	
Chapter II.	Aluminum Compounds and Other Substances, Presenting		
	Interest for Aluminum Oxide Production, Alkaline		:
Chantan TTT	and Aluminate-Alkaline Solutions	24	
Chapter III.			
Coation	Production Processes	91	
Chapter I.	Two. INDUSTRIAL PRODUCTION METHODS		
oughter 1.	Short Classification of Types of Aluminum Raw Materials and Methods for Processing Them	10/	
Chanter II.	Thermal Methods of Aluminum Oxide Production	134 143	
Chapter III.	Hydrochemical and Combined Methods of Aluminum	143	
V	Oxide Production	183	
- /-		دبت	
2/3			

Hapter IV. Method of Producing Aluminum Oxide From Alunite Acid and Acid-Alkaline Aluminum Oxide Production Methods Hapter VI. Automatic Control and Regulation of Production Automatic Control and Regulation of Production
Methods 1 method
Habler VI. Automatic Control and Regulation of B
hapter VI. Automatic Control and Regulation of Production Processes 283
eferences

UDC 627.81.034(47+57)

NISHCHIMENKO, A. YA., MONZHOSOV, A. I., SHEVCHENKO, P. K.

"Reformation of the Banks of the Dnepr Reservoirs"

Tr. koorkinats. soveshchaniy po gidrotekhn. (Works of the Coordinating Meetings on Hydroengineering), No 59, 1970, pp 50-59 (from RZh-Elektrotekhnika i Energetika, No 2, Feb 71, Abstract No 2 D39)

Translation: Generalization of many years of stationary studies by the hydrogeological expedition of the Ministry of Water Conservancy of the Ukrainian reservoir banks considering the genesis and dynamics of the reworking processes. The characteristic and spread of types of banks are presented of the three largest reservoirs: Kiev, Kremenchug and Kakhovka. There are

1/1

- 37 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

USSR

UDC 669.721 71 5.018.9

VYAZNER, M. YA., TAYTS, A. YU., and MORACHEVSKIY, A. G.

"Equilibrium of Liquid-Vapor Over Binary Melts of Magnesium-Aluminum and Magnesium-Zinc"

V. sb. Vakuumn. protesessy v tsvetn. metallurgii (Vacuum Processes in Non-ferrous Metallurgy -- Collection of Works), Alma-Ata, "Mauka," 1971, pp 120-124 (from Referativnyy Zhurnal -- Metallurgiya, No 6, Jun 71, Abstract no 6G186)

Translation of Abstract: The equilibrium of liquid-vapor in the systems Mg with Zn and Mg with Al was studied and the possibility was shown of the distribution of the liquid melt on pure components by means of fractional distillation (Five illustrations; 20 bibliographic entries).

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

1/2 032 UNCLASSIFIED PROCESSING DATE--04DEC70

LEAD, SODIUM, BISMUTH SYSTEM -U-AUTHOR-(03)-MORACHEVSKY, A.G., STATSENKO, S.I., BUSSEMACHUKAS, V.B.

COUNTRY OF INFO--USSR

SOURCE--IZVEST. V.U.Z. TSVETNAYA MET., 1970, (2), 97-101

DATE PUBLISHED----70

SUBJECT AREAS-MATERIALS

TOPIC TAGS--THERMODYNAMIC PROPERTY, OROERED ALLDY, ELECTROMOTIVE FORCE, LEAD ALLOY, SODIUM ALLOY, BISMUTH ALLOY, SUDIUM CHLORIDE, CALCIUM CHLORIDE, BARIUM CHLORIDE, ENTROPY, GLASS

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3003/1498

STEP NO--UR/0149/70/000/002/0097/0101

CIRC ACCESSION NO--AT0130427

UNCLASSIFIED

A SECTION OF THE PROPERTY OF T

ABSTRACT/EXTRACT(U) GP-O- ABSTRACT. THE THERMODYNAMIC PROPERTIES OF A NUMBER OF ALLOYS OF THE PB,NA,BI SYSTEM WERE STUDIED BY MEASURING THE E.M.F OF (MINUS)NA, GLASS, (NACL-CACL SUB2 -BACL SUB2) SUBEUT, GLASS, PB(N SUBPB), NA (N SUBNA), BI(N SUBBI) (PLUS) CONCENTRATION CELLS BETWEEN THE TEMP. OF THE LIQUIDUS LINE AND 9100EGREESC. THE NEGATIVE VALUES OF THE ENTROPY OF MIXING OBTAINED FOR THE SYSTEM WERE ATTRIBUTED TO THE EXISTENCE OF ORDERING IN THE ALLOYS, SIMILAR TO THAT CHARACTERIZING SUCH COMPOUNDS AS NA SUB3 BI		UNCLASSIFIED PROCESSING DATE04DEC70	
E.M.F OF (MINUS)NA, GLASS, (NACL-CACL SUB2 -BACL SUB2) SUBEUT, GLASS, PB(N SUBPB), NA (N SUBNA). BI(N SUBBI) (PLUS) CONCENTRATION CELLS BETWEEN THE TEMP. OF THE LIQUIDUS LINE AND 9100EGREESC. THE NEGATIVE VALUES OF THE ENTROPY OF MIXING OBTAINED FOR THE SYSTEM WERE ATTRIBUTED TO THE EXISTENCE OF ORDERING IN THE ALLOYS, SINILAR TO THAT CHARACTERIZING SUCH COMPOUNDS AS NA SUB3 BI	ABSTRACT/EXTRACT(U) GP-0-	ABSTRACT. THE THERMODYNAMIC PROPERTIES OF A	
PB(N SUBPB), NA (N SUBNA), BI(N SUBBI) (PLUS) CONCENTRATION CELLS BETWEEN THE TEMP. OF THE LIQUIDUS LINE AND 9100EGREESC. THE NEGATIVE VALUES OF THE ENTROPY OF MIXING OBTAINED FOR THE SYSTEM WERE ATTRIBUTED TO THE EXISTENCE OF ORDERING IN THE ALLOYS, SIMILAR TO THAT CHARACTERIZING SUCH COMPOUNDS AS NA SUB3 BI			7
VALUES OF THE ENTROPY OF MIXING OBTAINED FOR THE SYSTEM WERE ATTRIBUTED TO THE EXISTENCE OF ORDERING IN THE ALLOYS, SIMILAR TO THAT CHARACTERIZING SUCH COMPOUNDS AS NA SUB3 BI	PB(N SUBPB), NA (N SUBNA),	BI(N SUBBIY (PLUS) CONCENTRATION CELLS	
CHARACTERIZING SUCH COMPOUNDS AS NA SUB3 BI	VALUES OF THE ENTROPY OF MI	IXING OBTAINED FOR THE SYSTEM WERE ATTRIBUTED	
UNCLASSIFIED			4
	UNC	CLASSIFIED	

UDC 621.396.6-181.48

MORALEV, S. A., TABARNYY, V. G., MOLCHANOV, A. A., LESHCHENKO, YU. I., and LOG-

*A System for the Machine Design of BIS (Large Scale Integrated Circuits) Based

Elektron. prom-st'. Nauchn-tekhn. sb. (Electronics Industry. Collected Scientific-Technical Articles), 1972, No 2, pp 44-49 (from RZh-Radiotekhnika, No 11, Nov 72, Abstract No 11 B225)

Translation: The proposed machine design system makes it possible to automate the basic stages of the design and development of MOS type, large integrated circuits. This includes the following: from the statement of the technical specifications in the form of functional circuits with an inventory of the circuit-technical and technological limitations to the representation of the topology of the microcircuit in the form of a geometric drawing, along with the corresponding code on perforated tape. The information recorded on the perforated tape is used for the automated production of photopatterns.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

UDC 621.382.002:621.382.32

ZARUDNYY, D.I., MORALEY, S.A., MOROZOV, A.A.

*Problems Of Planning And Analysis During Simulation Of The Technological Process Of Production Of Integrated Circuits Based On MS Structures

V sb. <u>Mikroelektronika</u> (Microelectronics-Collection Of Morks), Moscow, Izd-vo Sovetskoye Radio, No 4, 1971, pp 294-302

Abstract: The specific special features of the use of mathematical statistics during selection of a strategy of systematic investigation are studied and experiments and their interpretation are conducted, as applied to the technological process of production of integrated circuits based on metal-insulator-semiconductor (MIS) structures. The principal stages of the solution of the problems considered are shown in the form of a block diagram of the control process. A complex algorithm and a program using algorithmic language for the "Minsk-22" electronic computer were developed for solution of the problems considered. The mathematical provision worked out can be extended to other forms of technological processes. 2 fig. 15 ref.

1/1

- 38 -

I/2 023

UNCLASSIFIED PROCESSING DATE--23UCT70

DURING ALPHA AND GAMMA RADIOLYSIS OF METHANOL AND AN AQUEOUS SULFURIC

AUTHOR-(03)-RAITSIMRING, A.M., MORALEV, Y.M., TSVETKOY, YU.D.

COUNTRY OF INFO--USSR

SOURCE--KHIM. VYS. ENERG. 1970, 4(2), 180-2

DATE PUBLISHED---- 70

SUBJECT AREAS--CHEMISTRY, NUCLEAR SCIENCE AND TECHNOLOGY

TOPIC TAGS--ELECTRON SPIN, RADIOLYSIS, METHANOL, SULFURIC ACID, POLONIUM, ALPHA PARTICLE, GAMMA RADIATION, FREE RADICAL, COBALT ISOTOPE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0753

STEP NO--UR/0456/70/004/002/0180/0182

CIRC ACCESSION NO--APOL19660

UNCLASSIFIED

2/2 023 UNCLASSIFIED PROCESSING DATE--230CT7C CIRC ACCESSION NO--APOL19660 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. PRIME 210 PO ALPHA PARTICLE AND PRIMEGO CO GAMMA RADIATION RADIOLYSIS WAS STUDIED OF THE GLASS LIKE 8M H SUB2 SO SUB4 SOLID AQ. SOLN. AND OF CRYST. MEDH AT 770EGREESK. RADICAL CONCNS. WERE DETD. BY USING THE 2. IMPULSE ELECTRON. SPIN, ECHO METHOD. THE SAME RADICALS OR ATOMS WERE FOUND IN BOTH THE ALPHA AND GAMMA IRRADIATED SYSTEMS, NAMELY CH SUB2 OH WITH MEDH AND H AS WELL AS SO SUB4 PRIME NEGATIVE WITH H SUB2 SO SUB4. THE RELAXATION RATE INCREASED LINEARLY WITH INCREASING MEAN RADICAL CONCN. IN THE GAMMA IRRADN., THE SLOPE OF THE STRAIGHT LINE INDICATING A REGULAR RADICAL DISTRIBUTION. NO CHANGE OF THE RELAXATION RATE AT VARYING MEAN RADICAL CONCN. WAS DESD. IN THE ALPHA IRRADN. THIS WAS EXPLAINED BY ASSUMING THAT RADICALS ARE STABILIZED ALONG THE ALPHA, TRACK AND AUGMENTED LOCAL RADICAL CONCNS. ARE ATTAINED IN SOME REGIONS; NO SIGNIFICANT DIPOLE MAGNETIC INTERACTION BETWEEN RADICALS SITUATED IN SINGLE REGIONS 15 EXPECTED TO OCCUR. THE RADII OF SUCH REGIONS, WHICH ARE PRESUMABLY CYLINDRICAL, ARE 130, 105, AND 55 A AND THE MEAN DISTANCES ARE 30, 35, AND 26 A WITH CH SUB2 OH, H, AND SO SUB4 PRIME NEGATIVE, RESP. FACILITY: INST. KHIM. KINET. GORENIVA, NOVOSIBIASK, USSR.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202110018-4"

UNCLASSIFIED