

Physiology

USSR

UDC 611.41:611.14]-02:612.014.47

NESTERENKO, N. T., Department of Normal Anatomy, 1st Leningrad Medical Institute imeni I. P. Pavlov

"The Effect of Gravitational Stress, Hypokinesia, and Hypodynamia on the Vascular Bed of the Spleen"

Leningrad, Arkhiv Anatomii, Gistologii i Embriologii, Vol 64, No 5, 1973, pp 44-51

Abstract: The purpose of the investigation was to study the effect of gravitational stress, hypokinesia, and hypodynamia on the vascular bed of the spleen as a whole. The experiments were made on 180 white rats of both sexes, with 40 used for study of the normal vascular bed. In the first series of tests, the animals were subjected to single continuous maximum endurable stresses in the chest-back direction. In the second series, the animals were subjected to hypokinesia for periods from one to eight weeks. For the third series the animals were subjected to hypokinesia for the times indicated above, then put under the stresses mentioned previously. Study was done by roentgenography, microroentgenography, clearing the sections, and a histological method. It was established that gravitational stress leads to morphological changes of the entire bed, expressed in constriction 1/2

USSR

NESTERENKO, N. T., Arkhiv Anatomii, Gistologii i Embriologii, Vol 64, No 5, 1973, pp 44-51

of both the arteries and veins of all orders. Similar changes were observed in the early periods of hypokinesia, but at later times the terminal branches of the arteries remained constricted while the terminal sections of the veins began to dilate after the fourth week. Sinuosity, uneven contours, varicose dilation were found in the large arteries and veins, and there were abrupt changes in the structure of the parenchyma, such as atrophy of the folliculi and narrowing of the lumen of the central arteries due to thickening of the muscular wall. Where stresses were combined with hypokinesia these changes were more marked (deformation of vessel walls - dilation and ruptures).

2/2

. ...

	NESTEREN	of Tachnological and Economic Opthaisation of the lic Paramutors of Atomic Power Plants With Fast th Dissociating Hy04 Coolant. Krasin, et al.). Colonic Power Plants With a Dissociating stance Popyrin, N. N. Starostenko). Dailysis of M ₂ O ₄ , He and CO ₂ Cas and Gas-Liquid Bubnov, et al.).	Translation of Russian-language materials presented at the Third All-Union Conference by A.K. Kresin, et al. Discottifrywshichiye Gary key Teylonositedii i Rabechiye Tela intergetichoskikh Ustanovok, 1973, Minask, UDC: 521311-622.987, Signed to press 12 April 1973 CONTENTS Preface. Preface. Preface. A. K. Kresin). Development and Optimization of Parameters of Acoste Power Plants With High-Power Past Reactors Using Dissociating Cases. Plants With High-Power Past Reactors Using Dissociating Cases. Plants With High-Power Past Reactors Using Dissociating Cases. (N. V. Nesterenko). 11 Corrector of Materials in Dinitrogen Tetroxide.	A property of the control of the con
--	----------	---	---	--

Information Theory

USSR

UDU 553.9.08

ZHDANOV, A.I., NESTERENKO, P.T., MAKAROV, A.F., GOLOSNYAH, V.L.

"Automation Of Analysis Of Experimental Data In Investigations Of Plasma Physics"

Vestn. Khar'kov. politekhn. in-ta (Bulletin Of Khar'kov Folytechnical Institute), 1970, No 50(98), pp 53-56 (from RZh-Elektronika i yeye primeneniye, No 1, January 1971, Abstract No 1A236)

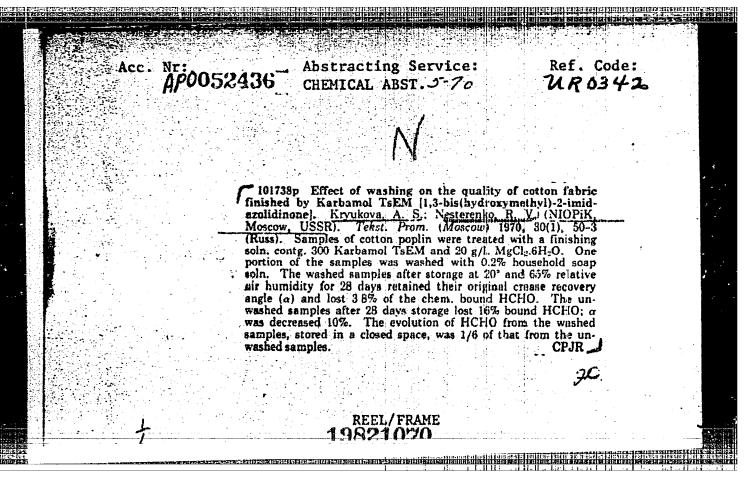
Translation: A system is described which is intended for automation of the analysis of the signals of diagnostic data units [датчик] recorded on a photographic film in experiments of plasma physics. This system, constructed on the base of the "Dnepr" controller, includes a specially developed device for introduction into the machine of graphic information. 3 ill. 3 ref. Summary.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

WC 541.1:546.27'16:547.1'118


SPITSYN, VIKT. I., KOLLI, I. D., SADYKOVA, E. M., and MISTERENKO, R. G., Moscow State University imeni H. V. Lomonosov

"A Study of Certain Adducts of Boron Trifluoride with Trialkyl(aryl)-phosphines"

Moscow, Izvestiya Akad, Nauk SSSR, Seriya Khimicheskaya, No 1, Jan 72, pp 45-50

Abstract: Published data on the halogenic borophosphanes are still very scant. The few compounds thus far obtained are recommended as antinock additives for engine fuels, hydraulic fluids, dielectrics and catalysts for polymerization. In addition, borophosphones containing a fluorine atom with the boron have gone almost entirely unstaudied.

Using trialkyl(phenyl) phosphines in combination with etherate of biron trifluoride, the authors obtained a number of fluorine-derivative borophosphanes, for which chemical analyses were made for those of type F₃B·PR₃. infrared spectra were obtained for those of type F₃B·PR₃, and both thermal and chemical analyses for the products of decomposition of those of type F₃B·P(C₆H₅)₃ heated in nitrogen and air were made. Decomposition was found to occur at 180-200°C in the case of air, and 200-220° in the case of nitrogen. Complete graphic summary of data obtained accompanies the paper.

USSR

UDC 621.378.3

NESTERENKO, T. M., KHAPALYUK, A. P.

"Concerning the Spectral Width of Laser Modes"

Minsk, Zhurnal Prikladnoy Spektroskopii, Vol 17, No 4, Oct 72, pp 623-632

Abstract: Expressions describing generation of a spatially bounded beam with finite spectral width are derived on the basis of exact solutions of Maxwell's equations in the form of Fourier integrals and conditions of steady-state emission of a Fabry-Perot cavity. In the case of finite dimensions of the active medium, these expressions are suitable for describing a beam from the instant that steady-state emission conditions begin to be satisfied until the instant that the field in the expansion process fills the entire volume of the cavity. Emission is treated as a collection of a large number of time-limited and space-limited pulses whose length depends on the initial radius of the beam and the transverse dimensions of the active medium. The pulse duration determines the spectral width of the mode, and its dimensions determine the divergence of the beam. The results are applied to the case of a beam with Gaussian distribution of intensity in the cross section.

1/1

- 57 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

erika a lun piyat salih saliki saliki naliki suliya hayan alimanda di dinanti biling karak saliki salik karak Saliki saliki saliki saliki naliki saliki naliki suliya hayan alimanda di dinanti biling karak saliki saliki s

USSR

WC 547.341 139.81+547.391

PUDOVIK, A. N., BATYEVA, E. S., NESTERENKO, V. D., and ANCSHINA, N. P.

"Reaction of Analides of Dialkyl Phosphorous and Diaryl Phosphonous Acids with

Leningrad, Zhurnal Obshcey Khimii, Vol XLIII (CV), No 1, 1973, pp 32-37

Abstract: In continuation of the study of the reactions of acid amides of trivalent phosphorous with compounds containing an activated carbonyl group A. N. Pudovik, et al., Izv. AN SSSR, Ser. Khim., 510, 1972, a study was made of the reactions of analides of dialkyl phosphorous and diaryl phosphonous acids with different substituted and unsubstituted quinones and naphtho-quinone. The amides of dialkylphosphorous and diaryl phosphonous acids react with quinones with the formation of 0.0-dialkyl-0- phydroxy aryl-arylinido phosphates and phosphinates. The 0.0-dialkyl-0- phydroxyaryl-N-arylinido phosphates are subjected to thermal regrouping into 0-alkyl-0- alkoxyaryl-N-arylamido phosphates.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

VDC 542.91:547.1'118

PUDOVIK, A. N., BATTYEVA, E.S., and MESTERENKO, V. D., Institute of Organic and Physical Chomistry Imeni A. Ye. Arbuzov, Acad. Sc. USSR

"Reaction of N-Arylamides of Dialkylphosphorous and Diarylphosphinous Acids With Benzyl"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 4, Apr 72, pp 871-875

Abstract: N-Arylamides of dialkylphosphorous and diarylphosphinous acids react with benzyl forming respective imidophosphites and imidophosphonates. To 4.2 g of the diethylphosphorous acid anilide in 50 ml ether, 4.2 g of benzyl in 100 ml ether was added dropwise with stirring and in an atmosphere of nitrogen. After a 30 min reaction at room temperature, the solvent was removed, the residue was evacuated down to 0.08 mm for 30 min, to yield a light yellow liquid. In an analogous manner, diethyl-\(\Delta\)-benzolylbenzyl-N-toly-limidophosphate was obtained from toluidide and benzyl. When diethyl-\(\Delta\)-benzoyl-benzyl-N-phenylimidophosphate (I) was reacted with CS2, phenylisothiocyanate, m.p. 52-550 was obtained; with water (I) gave diethylanilidophosphate, m.p. 930. The anilide of diphenylphosphinous acid treated with benzyl, followed by CO2 gave diphenylanilidophosphate, m.p. 2340 and \(\Delta\)-benzoylbenzyl-diphenylphosphinate, m.p. 128-1300,

. 4A

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

UDC 621.039.524.034.3

NESTERENKO, V. B., TVERKOVKIN, B. YE., SHINKEVICH, O. S., PLESHCHENKOV, G. A.

"Calculating the Parameters of a Chemically Reacting Flow in a Heated Channel"

Dissotsiiruyushch. gazy kak tenlonositeli i rab. tela energ. ustanovok -- V. sb. (Dissociating Gases as Heat Transfer Agents and the Working Medium of Power Plants -- Collection of Works), Minsk, Nauka i tekhn. Press, 1970, pp 238-252 (from RZh-Elektrotekhnika i Energetika, No 5, May 1971, Abstract No 50192)

Translation: A one-dimensional procedure for calculating the parameters of a chemically reacting stationary flow in a heated channel is proposed. The results of numerical calculation are presented, and the effect of the kinetics of chemical reactions on the average parameters of the chemically reacting flow is analyzed in the example of the dissociating system N₂O₄²2NO₂²2NO+O₂. There are 4 illustrations, 1 table and a 6-entry bibliography.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

UDC 621.039.526.621,311.2.001.5

NESTERANKO, V. B., Doctor of Technical Sciences, Institute of Nuclear Power Engineering, AS, Belorussian SSR

"Dissociating Nitrogen Textroxide--Promising Heat-Transfer Agent and Working Medium of Atomic Electrical Stations With Gas-Cooled Fast-Neutron Nuclear Reactors"

Teploenergetika, No 1, Jan 1972, pp 72-78

Abstract: The results are considered of a number of studies (including work done at the Institute of Nuclear Power Engineering, AS, Belorussian SSR) of the thermodynamic effectiveness of gas and gas-liquid cycles based on dissociating nitrogen tetroxide. The results are presented of a comparison of the effectiveness of the gas heat-transfer agents He, CO₂, and N₂O₄ for one-loop atomic electric power plants with fast reactors. The prospects are noted for the use of the dissociating heat-transfer agent N₂O₄ in atomic electric power plants with gas-cooled fast-neutron reactors. I tab. 4 ill. 31 ref.

1/1

82 _

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

UDC 621.039.524.034.3

NESTERENKO, V. B., KHOREV, V. I., KREMESHNYY, A. I., SOKOL'CHIK, V. A.

"Gas Loop Devices Using a Dissociating Heat Exchange Agent"

Dissotsiiruyusheh. gazy kak teplonositelii rab. tela energ. ustanovok — V sb. (Dissociating Gases as Heat Transfer Agents and the Working Medium of Power Plants — Collection of Works), Minsk, Nauka i tekhn. Press, 1970, pp 161-165 (from RZh-Elektrotekhnika i Energetika, No 5, May 1971, Abstract No 5U189)

Translation: Two loop devices designed for studying dissociating heat exchange agents, testing building materials and reserve testing of fuel elements are described. The loop devices are located in the research (IRT-2,000) reactor of the Nuclear Power Institute of the Belorussian SSR Academy of Sciences. The characteristic features inherent in the loop devices operating on the dissociating heat exchange agent are reflected. There are two illustrations and a one-entry bibliography.

1/1

- 130 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

UDC 621.039.524.034.3:621.039.526

KRASIN, A. K., NESTERENKO, V. B., KOLYKHAN, L. I., BUBNOV, V. P., IL'IN, A. YA., SLIZOV, V. P., SHURFROV, YU. V.

"Experimental Power Plant with a Gas Cooled Fast-Neutron Reactor and a Dissociating Heat Transfer Agent (BRG-20)"

Dissotsiiruyushch. gazy kak teplonositelii rab. tela energ. ustanovok -- V sb. (Dissociating Gases as Heat Transfer Agents and the Working Medium of Power Plants -- Collection of Works), Minsk, Nauka i Tekhn. Press, 1970, pp 42-47 (from RZh-Elektrotekhnika i Energetika, No 5, May 1971, Abstract No 5U107)

Translation: The possibility of creating an experimental industrial atomic power plant with a gas-cooled fast neutron reactor and a dissociating heat exchange agent is investigated. The parameters of the device and the required volume of experimental research are discussed. There are two illustrations and a four-entry bibliography.

1/1

-128

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

UDC 621.039.526:621.039.524.034.3

NESTERENKO, V. B., TVERKOVKIN, B. YE., SHINKEVICH, O. S.

"Prospects for Application of Dissociating Gases as the Heat Exchange Agents of Fast Neutron Nuclear Reactors"

Dissotsiiruyushch. gazy kak teplonositelii rab. tela energ. ustanovok -- V sb. (Dissociating Gases as Heat Transfer Agents and the Working Medium of Power Plants -- Collection of Works), Minsk, Nauka i tekhn. Press, 1970, pp 36-41 (from RZh-Elektrotekhnika i Energetika, No 5, May 1971, Abstract No 5U193)

Translation: Results are presented from thermal calculation of the cores of fast neutron nuclear reactors with dissociating heat exchange agents $^{\rm N}2^{\rm O}4$, $^{\rm Al}2^{\rm Cl}6$ and $^{\rm Al}2^{\rm Br}6$. They are compared with the heat engineering characteristics of the water vapor and sodium reactor. There is 1 illustration, 1 table and a 4-entry bibliography.

1/1

126

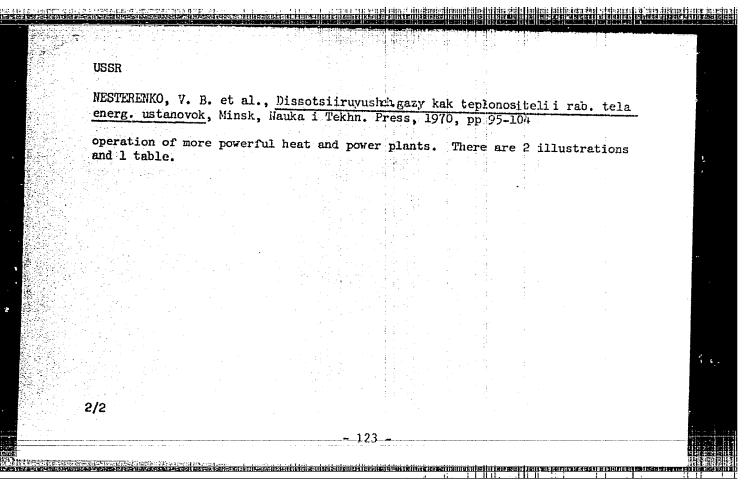
APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

and the state of t

USSR

UDC 621.039.524.034.3

NESTERENKO, V. B., LOMASHEV, B. I., VERZHINSKAYA A. B., KOZLOVSKIY, V. G., SAKOVICH, A. T.


"First Experience in Realizing Thermal Cycles in a Dissociating Gas NO $_4$ \neq 2NO $_2$ $\stackrel{7}{\neq}$ 2NO + 0 $_2$ "

Dissotsiiruyushch. gazv kak teplonositeli i rab. tela energ. ustanovok -- V sb. (Dissociating Gases as Heat Transfer Agents and the Working Medium of Power Plants -- Collection of Works), Minsk, Nauka i Tekhn. Press, 1970, pp 95-104 (from RZh-Elektrotekhnika i Energetika, No 5, May 1971, Abstract No 5U183)

Translation: The experimental testing units (the thermal D-50 and the power Vulkan) and the experience accumulated during operation of them in a dissociating medium N_2O_1 $\stackrel{?}{\downarrow}$ $2NO_2$ $\stackrel{?}{\downarrow}$ 2NO are presented for operation by a closed gas-

liquid cycle scheme with the following parameters: 1) p = 10-60 absolute atmospheres, T = 25-600° C; 2) p = 3-15 absolute atmospheres, T = 25-500° C. The first operating experience in N_2O_4 confirmed the reversibility of the chemical reaction of dissociation of the system $N_2O_4 \not\equiv 2NO_2 \not\equiv 2NC + O_2$. Methods of

measuring all the necessary values — temperature, pressure, flow rate and so on — are developed. This method of operation permits an approach to the 1/2

USSR

UDC 621.43.018

NAUMOV, A. N., and MESTERENKO, V. B., Institute of Nuclear Power Engineering, Academy of Sciences, Belorussian SSR

"Thermodynamic Possibilities of the Stirling Cycle With a Chemically Reacting Gas"

Hinsk, Izvestiya Akademii Nauk BSSR, Seriya Fiziko-Energeticheskikh Naukm No 1, 1971, pp 48-52

Abstract: A thermodynamic analysis of the Stirling cycle with a chemically reacting working medium is given. It is shown that the use of a chemically reacting working medium makes it possible to decrease the influence of internal losses upon the effective efficiency of the cycle. The domain of expedient application of the cycle is defined — power installations operating in a comparatively narrow temperature range of the working medium. Five figures, 3 bibliographic entries.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

Nuclear Science and Technology

USSR

WC 621.039.52

KRASIN, A. K., MESTERENKO, V.B., KOLYKHAN, L. I., BUBNOF, V. P., IL'IN, A. YA., SILZOV, W. F., and SHUFROV, YU. V.

Market Paragraph, 1989 - 1991; Arthur Berling and Harling Berling and Arthur Berling and Arthur Berling and Ar Market Paragraph (1984) - 1984; Arthur Berling and Art

"Experimental Powder Installation With Gas-Cooled Fast-Newtron Reactor and Dissociating Heat-Transfer Medium (BRG-20)"

Dissotsiiruyushch. Gazy kak Teplonositeli i Rab. Tela Emerg. Ustanovok' (Dissociating Gasses as Heat Transfer Media and Working Muids of Power Installations — collection of works), Minsk, Mauka i Tekhn. Press, 1970, pp 42-47 (from Referativnyy Zhurnal-Yadernyye Reaktory, Mo 4, 1971, Abstract No 4.50.134)

Translation: The possibility is studied of creating an experimental pilot scale atonic power plant with a gas-cooled fast-neutron reactor with dissociating coolant. The parameters of the installation and required volume of experimental study are discussed. 2 figures, 4 biblio. refs.

1/1

UNCLASSIFIED PROCESSING DATE--I3NOV70

SYSTEMS BASED ON THE EQUATION OF STATE -UAUTHOR-(02)-BAZHIN, N.A., MESTERENKO, V.B.

COUNTRY OF INFO--USSR

SOURCE--DOKL. AKAD. NAUK BELORUSS. SSR 1970, 14(4), 317-20

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY, PHYSICS

TOPIC TAGS--THERMUDYNAMIC CHARACTERISTIC, GAS STATE, LOW PRESSURE, EQUILIBRIUM CONSTANT, ENTROPY, ENTHALPY, REAL GAS

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3006/1163

STEP NO--UR/0250/70/014/004/0317/0320

CIRC ACCESSION NO--ATO134845

UNCLASSIFIED

is presented and the second records to the second second resident and the second second resident and the second se		
2/2 037		
CIRC ACCESSION NOATOLIZADAE	UNCLASSIFIED	PROCESSING DATE13NOV70
MEN ABSTRACT/EXTRACT— (III co. o	100 0 W	VERE DERIVED EDB
SYSTEMS IN RELATION TO DOC	CHEM. REA	CHING REAL GASEDUS
FRACTION, THE HEAT CAPACITY DEGREE OF CONVERSION CALCD.	AT A VERY LOW PRESSI	OF MOLES AND MOLE
DEGREE OF CONVERSION CALCO. CONST. ON TEMP. IN THE STD.	FRUM THE DEPENDENCE	OF THE LOFAL FOULL
CONST. ON TEMP. IN THE STD. YAD. ENERG., MINSK, USSR.	AND IDEAL STATES.	FACILITY: INST.
	·斯·波德多兰 阿雷克顿 医薄皮肤	
[1982년 대학교 : 100년 - 100년 - 소요한 - 100년 -		
IIMC I	ASSIFIED	
PRESIDENTIAL PRESIDENT DE SACOLULA.	2012年1月2日 - 11日 -	13-15-15

USSR-

UDC 747.341.139.31 + 547.391

PUDOVIK, A. N., BATYYEVA, E. S., IL'YASOV, A. V., NESTERENKO, V. D., MUKHTAROV, A. Sh., and ANOSHINA, N. P.

"Reactions of Trivalent Phosphorus Acid Amides With p-Quinones"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 7, Jul 73, pp 1451-1456

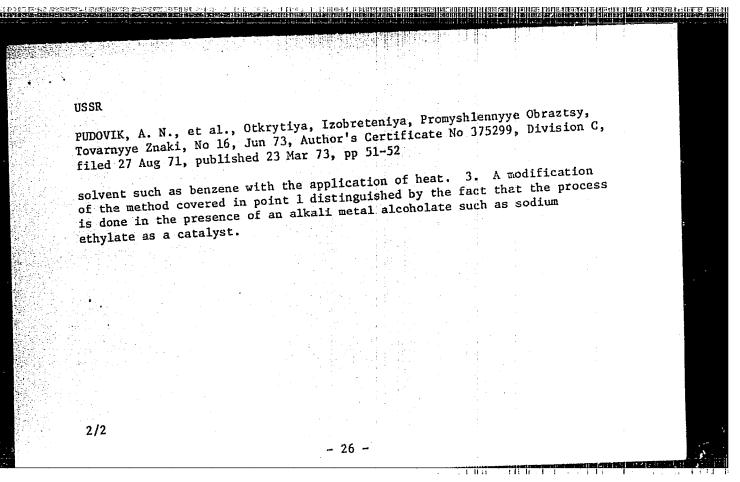
Abstract: Reaction of N-acetamides of dialkylphosphorous acids with p-quinones has been studied. Analogously to N-arylamidophosphites the N-acetamidophosphites react easily with p-benzoquinone, chloranil, and \u03c4-naphtoquinone forming crystalline addition products -- 0,0-dialkyl 0-p-hydroxyaryl N-acetimidophosphates. Using the EPR method, the possibility of a single electron transfer in the reactions of trivalent phosphorus acid amides with p-quinones was demonstrated going through an intermediate ion-radical formation.

1/1

- 43 -

USSR

UDG 547.341.26'.118.07


PUDOVIK, A. N., BATYYEVA, E. S., <u>NESTERENKO, V. D.</u>, Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov

"A Method of Producing 0,0-Dialkyl-N-Acetimido-β-Cyanalkylphosphonates"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 16, Jun 73, Author's Certificate No 375299, Division C, filed 27 Aug 71, published 23 Mar 73, pp 51-52

Translation: This Author's Certificate introduces: 1. A method of making 0,0-dialkyl-N-acetimido-β-cyanalkylphosphonates of the general formula

where R and R' are hydrogen or an alkyl. As a distinguishing feature of the patent, an 0.0-dialkyl-N-acetamidophosphite is reacted with a nitrile of an $\alpha.\beta$ -unsaturated carboxylic acid with subsequent isolation of the goal product by conventional methods. 2. A modification of this method distinguished by the fact that the process is carried out in an organic 1/2

UDC 547.261.118.07

PUDOVIK, A. N., BATYYEVKA, Ye. S., and NESTERENKO, V. D., Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov

"A Method of Synthesizing 0,0-Dialkyl-0-Dichlorovinyl-N-Acylimidophosphates"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 16, Jun 73, Author's Certificate No 375297, Division C, filed 27 Sep 71, published 23 Mar 73, p 51

Translation: This Author's Certificate introduces a method of synthesizing 0,0-dialkyl-0-dichlorovinyl-N-acylimidophosphates of the general formula

$$(RO)_2 P - O - CH = CCI_2$$
 $N - C - R^1$
 O

where R and R^{1} are an alkyl. As a distinguishing feature of the patent, an 0,0-dialkyl-N-acylamidophosphite is reacted with chloral in an organic solvent such as benzene in the presence of a hydrogen chloride acceptor such as trimethylamine with subsequent isolation of the goal product by conventional methods. - 25 -

USSR
PUDOVIK, A. N., BATYYEVA, E. S., and NESTERENKO, V. D.
PUDOVIK, A. N., BATYYEVA, E. S., and NESTERENKO, V. D.
"Reaction of Phenylsulfamide of Diphenylphosphinous acid with Benzaldehyde"

Leningrad, Zhurnal Obshchey Khimii, Vol 40, No 2, Feb 70, pp 502-503

Leningrad, Zhurnal Obshchey Khimii, Vol 40, No 2, Feb 70, pp 502-503

Abstract: Phenylsulfamide of diphenylphosphinous acid reacts eneralgetically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the absence of a catalyst to give a getically with benzaldehyde in the abse

Steels

USSR

UDC 621.785.533.669.018.8

POPOV, I. N., PEREVERSEV, V. M., KOROLEV, P. G., ZHEREBITH, O. A., and NESTERENKO, V. I., Kursk Polytechnic Institute

"Cyclic Strength and Residual Stresses of Nitrocemented Steel Containing Chromium and Nickel"

Moscow, Izvestiya Vysshikh Uchebnykh Zavedeniy, Chernaya Metallurgiya, No 3, . 1973, pp 152-154

Abstract: The fatigue strength and residual stresses of 20KhGSNT nitrocemented steel containing chromium and nickel were experimentally investigated. The fatigue strength on bending after nitrocementation did not decrease, in comparison with cementation and temper hardening by repeated heating. The high value of the endurance limit of 20KhGSNT nitrocemented steel is a function of the presence on the surface of the nitrocemented layer of compressive residual principal stresses, determined with the help of the "PION 2" device. The presence of compressive residual stresses on the metal surface results also from the analysis of sources of fatigue failures. Two figures, five bibliographic references.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

AND THE PROPERTY OF THE PROPER

USSR

UDC 621.375.82

NESTERENKO, V. M.

"Device for Measuring the Peak Laser Power on the Basis of the Optical Rectification Phenomenon"

V sb. Impul's. fotometriya (Pulse Photometry -- Collection of Works), No. 2, Leningrad, "Mashinostroyeniye", 1972, pp 104-110 (from RZh-Fizika, No 10, Oct 72, Abstract No 10D1026)

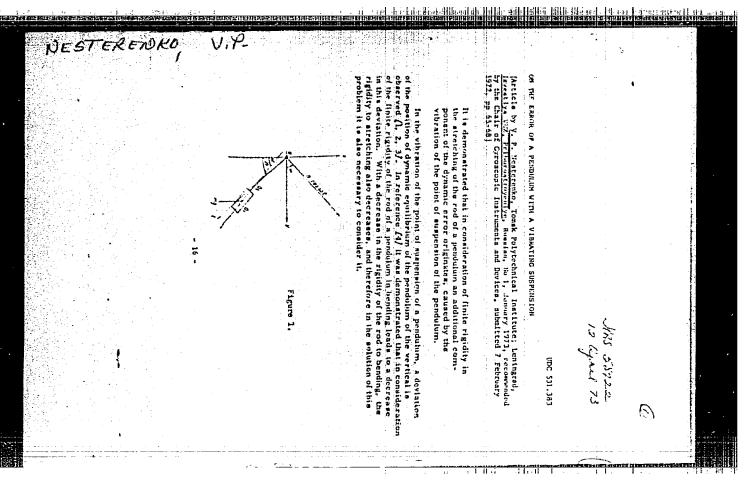
Translation: A device for measuring the peak power of laser radiation with modulated Q on the basis of the optical rectification phenomenon is described. The device is intended for measurements in the 0.3-300 Mw range at wavelengths of 693 and 1060 nm. 11 ref. Authors abstract.

1/1

- 37 -

USSR

UDO 621.317.382.621.378.325


NESTERENKO, V.K., MOROZOV, B.N.

"Use Of Optical Detection For Measurement Of Laser Power"

Kvantovaya elektronika, Moscow, No 5, May 71, pp 87-92

Abstract: The peculiarities are considered of the phenomenon of optical detection as applied to the measurement of laser power. Detectors of optical radiation using nonlinear polarization in crystals make it possible without attenuators to measure laser emission with a power density up to 10° watt/cm², and are characterized by a high speed of response (10-9 -- 10-10 sec) and a linearity which make it possible to operate in a wide range of wave lengths, including the infrared. The results of a study of five types of crystals are presented. The principal characteristics and a photograph are shown of a device for measurement of the peak power of a laser emission of 0.5-4 micrometer. The range of the power measured is 50 km to 1 gigawatt. The maximum power density of the emission measured is 500 km/cm². Received by editors, 22 Feb 71. 2 fig. 1 tab. 8 ref.

1/1

UDC 615.23:547.775+546.171.5

USSR

PISKAREV, A. V., NESTERENKO, V. S. and SUMINOV, S. I., Division of Radiation Pathophysiology and Radiation Pharmacology, Scientific Research Institute of Medical Radiology, Academy of Medical Sciences USSR, Obninsk

a Handa da karangan kanangan ka Kanangan ka

"Effect of Pyrazolone and Hydrazine Derivatives on the Resistance of Mice to Hypoxia"

Moscow, Farmakologiya i Toksikologiya, Vol 36, No 1, Jan/Feb 73, pp 48-54

Abstract: The effects of 23 pyrazolone and hydrazine derivatives in increasing the resistance of mice to hypoxia were studied in experiments in which the animals were lifted to a simulated altitude of 10,000 m (rate of lifting 30 m/sec) or 10,500 m (rate of lifting 11 m/sec) by reducing the pressure in a chamber after intraperitoneal administration to the animals of the compounds tested. Of the seven pyrazolone derivatives tested, analgin exerted the greatest effect in protecting against hypoxia. The antihypoxic activity decreased in the order analgin > antipyrine > 2-cyano-ethyl-5-pyrazolone > decreased in the order analgin > antipyrine > 2-cyano-ethyl-5-pyrazolone > demidopyrine. Butadion, 1-benzyl-3-methyl-5-pyrazolone, and 1-phenyl-3-methyl-5-pyrazolone had no significant activity. With the exception of hexylhydrazine and heptylhydrazine sulfates, all the hydrazine derivatives tested increased the resistance of the mice to hypoxia after being administered in appropriate

on an experience the metabolic content of the content of the properties of most platform of the content of the The moment of inertia of the principal control of the periodicular method in the point of and perpendicular method in the violation of the point of the point of the point of the point of the horizon: % and the pendulum; 1 * 002; It * (in a) 2/8; << 1, and 1, and 1, and 2/8; << 1. You can be pendulum; 1 * 002; It * (in a) 2/8; << 1. You can be method of successive all further invasilisations we will consider the disturbance to be $(0^{-2}/8) < 1$, and we will exclude the possibility of the origin $(0^{-2}/8) < 1$, and we will exclude the possibility of the origin of 2/8. For solution of the equations of system (1), we desire resonances. Theft-cift (and + it) a == hand his & cos all a filture cas of cos and 11+6a- c2+ (w.+cs) | - 111 + 111 + cosaf)+ equations of motion of the produlum. method, with consideration of the line a the many and the way to accompany and the first of the 四型, 十二十、十二节, 日三年 motion of the The con + cos with the contract con ref. g is the acceleration of free in the angle between the ribentian vector s of the rod is considered only by the to the vertical; z in the angles tieter. defaction **** ۳ (3)

USSR

PISKAREV, A. V., et al., Farmakologiya i Toksikologiya, Vol 36, No 1, Jan/Feb 73, pp 48-54

doses. The most pronounced antihypoxic effect was observed on administration of apressin, 1-hydrazinophthalazine-4-carboxylic acid hydrazide, phelazine, phenizine, and 1-(2-cyanoethyl)-1-p-toluenesulfonylhydrazine. The activity of the pyrazolone derivatives was associated with the hypothermic effect produced by them. While some of the hydrazine derivatives also reduced the rectal temperature of the animals, one may assume that compounds of this type, being MAO inhibitors, could increase the level in the body of biogenic amines (serotonin, adrenaline, and histamine) that are of importance in adaptive reactions.

2/2

4.50

- 28 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

UDC 577.391

KUDRYAVTSEV, V. D., NESTERBING, V. S., and CHERKASOV, V. F., Institute of Medical Radiology, Academy of Medical Sciences USSR, Obninsk

"The Effect of Whole-Body Gamma-Ray Irradiation on Some Receptor Functions in Rat Skeletal Muscle"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya, No 4, 1970, pp 611-613

Abstract: The threshold of electrical stimulation of gastrochemius receptors in Wistar rats dropped 2 to 3 hours after wholebody irradiation (900 r) and continued to drop steadily until the 5th day, when the excitability of the receptors tended to return to normal. However, on the 7th day the threshold again began to drop. The latent period of excitation in response to single submaximum stimulation was the same as in controls 2 to 3 hours after irradiation, but lengthened significantly thereafter until the 5th day when it approached control values. On the 7th day the latent period again started to lengthen. Following submaximum stimulation when prolonged depolarization of the receptors sets in, impulse activity is partly or entirely blocked because of depression of receptor potential.

i/i

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

UDC 548,0:535

VLOKH, O. G., KUTNYY, I. V., LAZ'KO, L. A., and NESTERENKO, V. YA., L'vov State University imeni Iv. Franko

"Electrogyration of Crystals and Phase Transitions"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya, Vol 35, No 9, Sep 71, pp 1852-1855

Abstract: Among the effects which are spontaneously generated during ferroelectric phase transitions the best known are the linear and quadratic electrooptical effects which are manifested in the change in refracting properties of
the crystals and are described by polar tensors of the third and fourth ranks.
Proceeding from the common symmetry arguments based on the principles of
Curie and Neumann it may be expected that the ferroelectric phase transitions
will be accompanied also by change in the gyration properties of the crystals
that are associated with the imaginary part of the complex refractive index.
The authors studied the spontaneous electrogyration effect in crystals of
triglycinesulfate (TGS). They determined the size of the coefficient of
linear electrogyration of the TGS crystals. They analyzed the character of
the spontaneous electrogyration as a function of the type of phase transition
and indicated the excellent characteristics of this effect as compared to the
spontaneous electro-optical effect. The article contains 1 illustration and 11

- 54 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

GENERAL BEGENERAL DE SETE LA COLLEGA DE CALA DE CALA DE COLLEGA DE

USSR

UDC 546.56;611.621;620.187-509.26

ZALUISKIY, V. B., NESTERENKO, Ye. G., and OSIPENKO, I. A., Institute of Metal Physics, Academy of Sciences UkrSSR

"Structural Changes Upon Decomposition of Cu-Mn-Al Alloys"

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 30, No 3, Sep 70, pp 627-633

Abstract: X-ray and electron-microscope studies were made of the structural changes in the process of decomposition of Cu-Mn-Al alloys. It is demonstrated that after annealing at 20G-250° C, the x-ray diffration pictures show satellites. An increase in the annealing temperature causes a change in the distribution of intensities in the diffusion maxima and leads to the appearance of reflections from the separated phase (GugAl4). The orientation of the separation phase relative to the crystals of the initial alloy is determined. The results of the x-ray diffraction studies are compared with the electron-microscope studies, and the nature of the structural changes occurring upon decomposition of the Cu-Mn-Al alloy is discussed. It is determined that when the alloy CupAlMn ages Ginier complexes occur in the early stages, while in the later stages the excess phase CupAl4 is separated.

1/1

- 75 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

UDU: 621.396.6.049.75.002

GRINSHTEYN, E. Sh., NESTERENKO, Yu. F., FROLOVA, I. S.

"Making Multilayered Printed-Circuit Boards With Protruding Leads"

V sb. Obmen opytom v radioprom-sti (Experience Pooling in the Radio Industry--collection of works), vyp. 4, Moscow, 1972, pp 36-38 (from RZh--Radiotekhnika, No 8, Aug 72, Abstract No 8V328)

Translation: A technological process is worked out for making multilayered printed-circuit boards with protruding leads. The technique gives boards with high operational reliability and enables 100% tracing with automated design of multilayered printed-circuit boards without human interference. Resumé.

1/1

- 00 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

UDC: 537.529

BAYKOV, A. P., ISKOL'DSKIY, A. M., and NESTERIKHIN, Yu. Ye., Institute of Automation and Electrometry, Novosibirsk

"Electrical Explosion of Wires Under High Energy Velocities"

Leningrad, Zhurnel tekhnicheskoy fiziki, No 1, 1973, pp 136-140

Abstract: If an energy level close to the energy of sublimation is put into a conductor for a time equal to the time constant for the growth of low-mode magnetohydrodynamic instabilities, the instabilies should not develop. The experiment described in this article is designed to test this theory. It consists in connecting exploding wires to a three-channel generator of rectangular pulses, one channel of which supplies energy to the wire, the other two being used to form gating pulses supplied to an electronic-optical converter to trigger a camera for photographing the explosion. A diagram of the generator is given. Since the pulse supplied by the generator has a steep leading edge, the time rate of change of the energy supplied to the wire is enormous, of the order of 1010 joules/g.sec. The experiments show that rapid explosions in wires of 10-2 cm diameter occur without the development of MHD instabilities. The authors express gratitude to A. Z. Potashinskiy for 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

ष्ट्रा स्टब्स्टर स्थापना विकास स्थापना है। स्थापना स्थापना स्थापना स्थापना स्थापना स्थापना स्थापना स्थापना स्थ इ.स.च्यान स्थापना स्थापना सामाना सामाना समाना समाना समाना समाना सामाना सामाना सामाना स्थापना समाना स्थापना सम

UDC: 537.529

BAYKOV, A. P., et al, Zhurnal tekhnicheskoy fiziki, No 1, 1973, pp 136-140

his comments and to V. G. Stashevskiy for his assistance with the experiments.

2/2

- 41 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

UDC 612.1:612.4:613.163:613.168(211-17)

-USSR

NEVEROVA, N. P., Problem Laboratory for Investigating Man's Acclimatization in the Extreme North, Archangelsk Medical Institute

"The Effect of Fluctuations in the Electromagnetic Field of the Earth in the North on Blood Flow Velocity Changes and Adrenaline Excretion"

Kiev, Vrachebnoye Delo, No 4, 1973, pp 77-80

Abstract: The investigation was conducted in Archangelsk in the electromagnetically active month of April 1969, on 10 young, healthy men from the USSR's southern regions who had been in Archangelsk 4 months. The subjects adhered to a uniform daily routine concerning work, relaxation, sleep, and meals. A total of 250 determinations of blood flow velocity were made between 6 and 7 AM in the basal state by means of an ear oximeter. After holding breath, the time elapsing from the beginning of the first inspiration to the beginning of the rise in oxyhemoglobin concentration was measured. At the same time, the quantity of adrenaline excreted with urine per hour was determined. The results revealed a wide scatter of the normal lung-ear circulation time of 4.5+0.3 sec, as indicated by a sigma of 1.29. Comparison of the circulation time with the K index of electromagnetic fluctuations showed a nonlinear relationship. Adrenaline excretion increased with increasing electromagnetic 1/2

Devices

4

USSIC

UDC 681,327

DOLGOVESOV, B. S., KOVALEV, A. H., KOTOV, V. N., LUEKOV, A. A., MESTERIKHIN, YU. YE., CHERTYSHEV, K. F., TOKAREV, A. S., YAKIMOVICH, A. P., NOVOSIBIISK

"Problems of Constructing Devices for Operative Interaction of Man with a Computer".

Novosibirsk, Avtometriva, No 2, 1972, pp 35-39

Abstract: Two types of devices corresponding to the basic requirements for systems for operative interaction of man with a computer — a computer operating in the time sharing mode and peripheral devices numbering from 1 to 1,000 — have been developed at the Institute of Automation and all strop sty of the Siberian Department of the USSR Academy of Sciences. One of them Andrews — the Ekron — was discussed previously [B. S. Dolgovesov, et al., Anterestrina, No 4, 1971; B. S. Bolgovesov, et al., Anterestrina, No 4, 1971; B. M. Movalev, et al., Anterestrina, No 4, 1971; B. M. Movalev, et al., Anterestrina, No 4, 1971; B. M. Movalev, et al., Anterestrina, No 4, 1971; B. M. Movalev, et al., Anterestrina of the Simbol — is investigated in the present article. A block diagram of the Simbol alphanumeric system is presented, and the algorithms for the various operating modes of the system are discussed. The algorithms of all modes of the system are executed by means of a return remain control circula. An effort who made to achieve the fastest possible system for which the principal cycle of the microprogrammed control unit was a faced to a afficient. Macro possible the single palse instructions

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

ring in the first state of the state of the state of the configuration of the state of the state

SCHERENHOUSE BEFORD DIE ER STERNES INDICTION OF INTERVENIE FRANCISCO STATE OF INTERVENIE FRANCISCO STATE OF THE PROPERTY OF TH

OLGOVESOV, B. S., et al., Avtometriya, No 2, 1972, pp 35-39

are processed simultaneously; a very high cycle frequency is selected — 2.5 millihertz. The operating logic of the device can be changed. One of the basic parameters of the operative interaction device along with broad functional possibilities is the information capacity. Thus, much attention was given to the high speed of individual units, in particular, the speed of the symbol generator. The programmed segment method was used as the basis for constructing the symbol generator which provides 1,024 symbols with an image regeneration frequency of 50 hertz. An example image photograph from the Simbol screen is shown.

2/2

R

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

UDC: 621.383.8 : 621.039.66

BARYSHEV, B. A., GYAVGYANEN, L. V., DIAMANT, L. M., ISKOL'DSKIY, A. M., KRASNOGOLOVYY, I. I., and NESTERIKHIN, Yu. Ye.

"Nanosecond Electronic-Optical Photorecorder 'Channel' With Amplified Image Brightness"

Novosibirsk, Avtometriya, No 6, 1971, pp 53-58

Abstract: This paper represents a continuation of the work being done by the Institute of Automation and Blectrometry on the design of devices for parallel recording and processing of optical signals obtained in the investigation of nanosecond and subnanosecond processes. A description is given in this paper of a multistage electronic-optical converter, developed by the authors, which has an electrostatic input chamber and two stages of image brightness magnification. A photograph and a functional diagram of the converter are given. Some of the advantages of this "Kanal" (Channel) instrument are low exposure time in frame operation, high electric field intensity near the photocathode due to the presence there of a control grid, a larger screen, high noise immunity, and a type of structure permitting assembly-line production by the Ministry of the Electronics Industry. The authors thank Yu. A. Shapiro for making the numerical computations, V. Yu. Sholokhov, Yu. N.

- 174 -

SR

UDC: 621.383.8: 621.039.66

BARYSHEV, B. A., et al, Avtometriya, No 6, 1971, pp 53-58

Yevgrafov, and V. A. Gubachenko for their help in the structural development of the instrument, and V. D. Prilepskikh for helping propare the apparatus.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

ESTIN BELEGICA CONTROL OF THE STATE OF THE S

			eri Seri
USSR		UDC: 537.533.3	
BONDARENKO, Yu. Y., EL	TOWNING, V. I., IL'IN, V. Ya., FOROVA, G. S., and	P., JOUOTABSMIY, SHADBAR, A. F.	
"Electronie Optical Co	nverters in Forced Light I	oad Operation"	
Novesibirali, Avig ciri	те, но 6, 1.971, рр 7-14		
operation of the plate in which a thetecompose processes 10 2-10 1- s obtained in ages are no paper is to take a che deteriorate the investment photocathode and the charms of the compose mental procedure emple tortion are shown and authors expansion that is	in duration in defined to high density in pictor in duration. In this him some look at the basic edite of the electrone the offict of the electrone charge in causing this in atal component is given incd. Photographic sample the reasons for the defect puttitude to B. A. Baryche component, and to L. M. Discotto.	putcal converter dividing deal operation the abian of this eta tending to a, the purpose of ic field near the a distortion. and the experisof the selarified. The vior his assist-	

ANO 017053 UR9007 NESTERIKHIN ... VU. DOCTOR OF PHYSICAL-TECHNICAL SCIENCES DIRECTOR, INSTITUTE OF AUTOMATION AND ELECTRIC MEASURE-DOCTOR OF PHYSICAL-TECHNICAL SCIENCES. AUTHOR --MENTS /INSTITUT AVTOMATIKI I ELEXTROMETRII/ OF THE SIBERIAN BRANCH OF THE ACADEMY THE SCIENTIST TITLE --KOMSOMOL, SKAYA PRAVDA, FEBRUARY 3, 1970, P 2, COL 1 NEWSPAPER ---THE ARTICLE REVIEWS OBSTACLES WHICH HINDER THE DEVELOP-ABSTRACT--MENT OF SOVIET ELECTRONICS. ONE OF THE MAIN OBSTACLES, IN THE OPINION OF THE AUTHOR, IS THE FACT THAT ELECTRONIC INSTRUMENT COMPONENTS ARE MANUFACTURED BY DIFFERENT INDUSTRIES. THIS RESULTS IN A TIME LAG OF 5-6 YEARS WHICH ARE SPENT ON THE COORDINATION OF EFFORTS OF SUCH MINISTRIES AS THE MINISTRY OF THE ELECTRONIC INDUSTRY, THE MINISTRY OF INSTRUMENT CONSTRUCTION, OR THE MINISTRY OF THE RADIO INDUSTRY. SOME TIME IS ALSO LOST IN INDUSTRIAL RESEARCH INSTITUTES, WHICH ARE SERVING AS LINKS BETWEEN BASIC SCIENCE AND INDUSTRIAL APPLICATIONS. THE AUTHOR IS OF THE OPINION THAT BETTER RESULTS ARE ACHIEVED WHEN リン 4 19600219

ANO017053

ACADEMIC INSTITUTES ARE HANDING THEIR DEVELOPED PROJECTS NOT TO INDUSTRIAL INSTITUTES, BUT TO EXPERIMENTAL-DESIGN BUREAUS OF INDUSTRIAL PLANTS. THE AUTHOR, SINSTITUTE, FOR EXAMPLE, MAINTAINS CLOSE AND LONG-TERM CONTACTS WITH THE L, VOV PLANT OF MEASURING DEVICES, THE OMSK "ELEKTROTOCHPRIBOR" PLANT, AND THE NOVOSIBIRSK INSTRUMENT CONSTRUCTION PLANT IMENI LENIN. IN THE CASE OF THE LATTER, AN ATTEMPT WAS MADE TO SIMULTANEOUSLY CONDUCT RESEARCH AND DEVELOPMENT WORK NAUCHNO-ISSLEDOVATEL, SKIYE I OPYTNO-KONSTRUKTORSKIYE RAZRABOTKIY. THIS APPROACH CUT MORE THAN IN HALF THE TIME NEEDED TO DEVELOP CERTAIN INSTRUMENTS. ON THE OTHER HAND, SOME PLANTS REFUSE TO COOPERATE ON THE PRETEXT OF BEING "SWAMPED WITH WORK", FOR INSTANCE, THE INSTITUTE WAS TOLD BY THE MINISTRY OF INSTRUMENT CONSTRUCTION, AUTOMATION AND CONTROL SYSTEMS THAT AN ELECTRONIC-OPTICAL LENS, "ZIS-1", DEVELOPED BY THE INSTITUTE, WILL GO INTO PRODUCTION ONLY IN 1975, WHEN A NEW PLANT WILL GO INTO OPERATION. THE "ZIS-1" LENSE CAN SNAP PICTURES AT 1 BILLIONTH OF A SECOND. SITUATIONS LIKE THIS ARISE BECAUSE PLANT, S ALLOCATIONS DO NOT TAKE INTO ACCOUNT CERTAIN TEMPORARY LOSSES WHICH ARE UNAVOIDABLE WHEN PIONEERING NEW PRODUCTION.

212

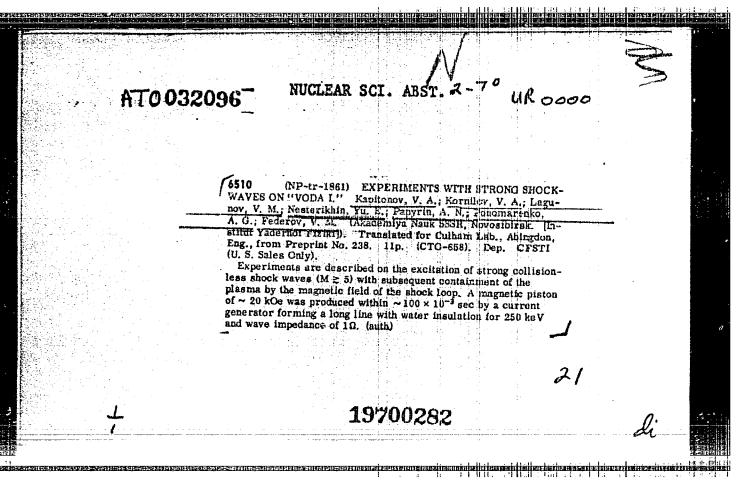
19600220

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

Recorders and Transducers

USSR

WC: 53.08+535.853


BAGLAY, R. D., ISKOL'DSKIY, A. M., KUDRYASHOV, M. I., and NESTERIKHIN. Yu. Ye.

"Electron-Optical Recorder 'Spectrum' as an Element in Automated Spectrum Investigation Systems"

Novosibirsk, Avtometriya, No 6, 1971, pp 24-41

Abstract: The Soviet spectral recording device "Spektr" (Spectrum) performs rapid conversion of unidimensional spatial distributions of electric signals and records them, by means of an oscilloscope, on photographic film. The recording system in the device is a double electronic-optical converter with electrostatic focusing and electron-beam deflection, given the designation LI-602. The purpose of this article is to consider the system errors and noise in the LI-602, describe the structure of the mechanical and electronic blocks in it, set up its mathematical model as a passive filter, present the results of typical experiments performed with data processing equipment, and propose several methods for eliminating systematic and random errors. A photograph of the device is reproduced together with some samples of the oscillographic output. Credit for assisting in the work is given to L. P. Baykov and V. D. Prilepskikh

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

N

ima 621.317.7-52+62-50

NESTERIKHIN, Yu. Ye. of Novosibirsk

"Autometry and Cybernetics"

Novosibirsk, Avtometriya, No 2, 1970, pp 3-8

Abstract: The first half of this article is devoted to a general and popular exposition of the thesis that information collection and processing represents one of the leading areas of technology, with application in a wide variety of fields. This contemporary truism is illustrated by examples from laboratory research, industrial testing, and automatic process control, all described in general terms. The concept is extended to social processes, but without examples. In this context, the author extends the term autometry to include practically all information gathering processes, pointing out that even purely scientific measurements require the collection of information about the instantaneous values of many interacting parameters. The requirement for a systems approach, combining information collection and processing in a unified technology, is emphasized.

In the second half of the article, modern developments in autometry are

illustrated with four specific instruments:

1) A digital laser displacement measuring instrument, developed in the

1/5.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR

MESTERIKHIN, Yu. Ye, Avtometriya, No 2, 1970, pp 3-8

Institute of Automation and Electronic Measurement, Siberian Department of the USSR Academy of Sciences. This instrument can be used to measure velocity, acceleration, deformation, amplitude of vibrations, and coefficient velocity, acceleration, as well as serving in the alignment of various structures. It uses the interference principle, based on a small helium-neon tures. It uses the interference bands converted to a series of laser, with the movement of interference bands converted to a series of electrical impulses. The instrument records displacement digitally in millimeters. It must be adjusted for conditions of the ambient medium. It millimeters. It must be adjusted for conditions of the ambient medium. It has a measurement range of 1000 millimeters, a sensitivity of 0.1 micrometers, an accuracy of 0.0001 ± 0.5 L:10-5 millimeters, and can record displacement at the rate of 1.5 meters per minute. It is constructed of Soviet integrated circuits and can be connected directly to a computer or programmed control apparatus.

2) A laser instrument for measuring the velocity of streams of liquid or gas, made by the same institute. The technique is based on the detection of Doppler shift in the velocity of laser light, reflected from micro particles in the stream. It makes direct measurements of the velocities of small sections of the stream, and introduces no disturbing influence of significance. Its characteristics are, range of measurement 1 millimeter 2/5

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

NESTERIKHIN, Yu. Ye., Novosibirsk, Avtometriya, No 2, 1970, pp 3-8 per second - 10 meters per second, area of resolution 10 x 50 microns, accuracy of measurement on the order of a few%. This is the first Soviet laser instrument for measuring flowstream velocities with digital readout.

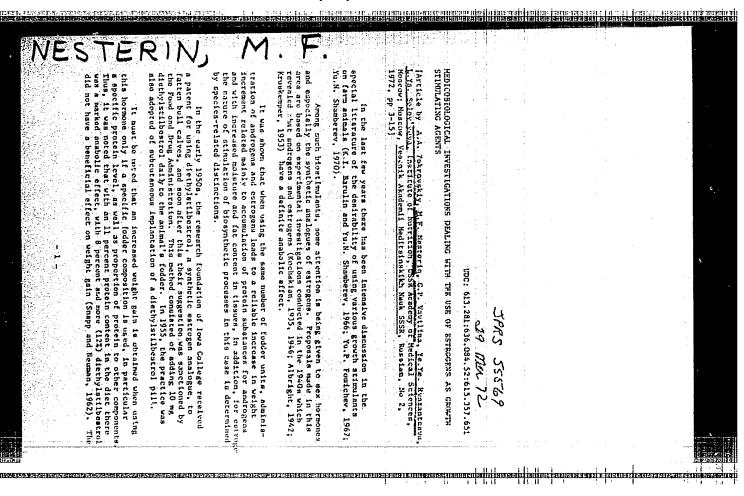
3) A method of simultaneously determining the instantaneous local values of electron densities and electron temperature at the front of a shock wave in a plasma, by the Institute of Nuclear Physics and the Institute of Automation and Electronic Measurement, Siberian Department of the USSR The measurements were performed with an apparatus for Academy of Sciences. the study of quasistationary shock waves, formed by the flow of a supersonic plasma stream with a velocity of 1.2.107 centimeters per second, and a density of 2.1014 centimeters 3 around a cylindrical object. An area of the shock wave front was proted for 15 to 20 nanoseconds with a 500 megawatt laser, and its image was recorded by Thompson scattering radiation, using electronic optical converters. The image was spectrally analyzed by a type MDR-2 diffraction spectroscope and transferred to the photocathode of the converter, where it was recorded with an exposure equal in length to the laser impulse. Its brightness was amplified and it was photographed. The 10', making it possible factor of current amplification was approximately to record an individual photoelectron. The photographs obtained were processed by counting individual photons, showing that the scattered signal 3/5

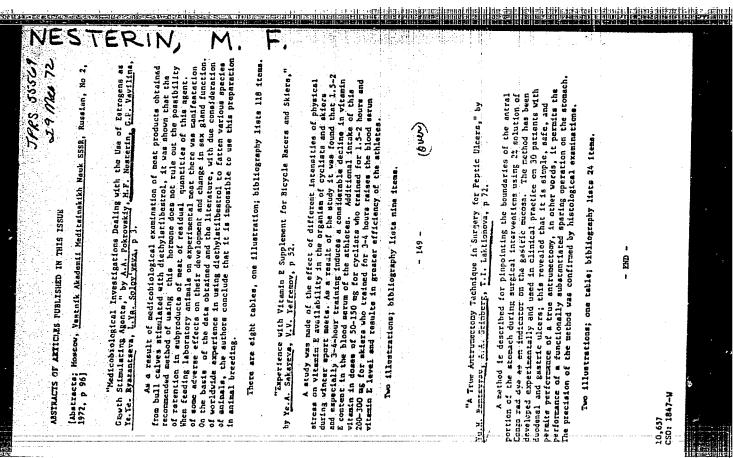
APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

TT in the control of the control of

USSR

NESTERIKHIN, Yu. Ye., Novosibirsk, Avtometriya, No 2, 1970, pp 3-8


reached a maximum of approximately twice the background signal. The value for electron temperature, $T_{\rm e}=6$ electron volts, obtained when a contour of 60 Angstroms was obtained by scattering lase light at 6943 Angstroms, agrees well with the results of spectroscopic measurements. The change in density along the direction of propagation of the laser beam agrees with control measurements made by a Michelson interferometer.


4) A flying spot scanner for reading film information directly into a digital computer, developed in the Institute of Automation and Electronic Measurement of the Siberian Branch, Academy of Sciences of the USSR. Each frame of the film is scanned by a flying spot formed on the screen of a cathode ray tube. The image of the spot passes through an objective lens to the plane of the film. The beam is devlected by a raster scan deflector. Special optical grids determine the two dimensional coordinates of the spot. This instrument, using a CRT with a high resolution and optical grids for determining coordinates, can ensure accuracy of spot location with an error not exceeding 0.001 times the linear dimension of the frame. The optical density of any section of the photo material is read out in discrete form, using an electronic multiplier located behind the film. The discrete

omerations of a city. The specifical things of the marketing of the buttle control is the control of the buttle control of the control of the

USSR
NESTERIKHIN, Yu, Ye., Novosibirsk, Avtometriya, No 2, 1970, pp 3-8
circuit elements are Soviet integrated circuits. The time to rend one
circuit elements are Soviet integrated circuits. The time to rend one
circuit elements are Soviet integrated circuits. The time to rend one
circuit elements are Soviet integrated circuits. The time to rend one
concludes by ascording power is 25 microns.

The author concludes by describing science as one of the foremost
battle fields in the ideological struggle and making a brief bow to Lenin.
battle fields in the ideological struggle and making a brief bow to Lenin.

UNCLASSIFIED AKARESTING MAIE--TIANTIE LTLE BIOLOGICAL ACTION OF FLUORESCENT SUBSTANCES ISOLATED FROM THE MOLD ASPERGILLUS NIGER -U-ETHOR SKIRKG, B.K., NESTERIN, M.F., VISSARICHOVA, V.YA. CUNTRY OF INFO-USSR OURCE—BYULLETEN EKSFERIMENTALINDY BICLOGII I MEDITSINY, 1970, VOL 69, NR 2, PP 44-46. ATE PUBLISHED -----70 UBJECT AREAS-BICLOGICAL AND MEDICAL SCIENCES 13 C - 5 - 5 - 5 - 5 - 5 CRIC TAGS-FLUCRESCENCE, CHRCMATGGRAPHY, ASPERGILLUS, ENZYME ACTIVITY, FOCO INDUSTRY, LIVER, BILE, FCCD INDUSTRY, WHITE RAT, PROTEIN CNTROL HARKING-NO RESTRICTIONS DOUMENT CLASS--UNCLASSIFIED STEP NG--UR/0219/70/069/002/0044/0046 ROXY REEL /FRAME-1982/0406 IRC ACCESSION NC--APOC51923 UNCLASSIFIED

Acc. Nr: APO051923

Ref. Code: UR0219

PRIMARY SOURCE:

Byulleten' Eksperimental'noy Biologii i

Meditsiny, 1970, Vol 69, Nr 2, pp 44-46

BIOLOGICAL ACTION OF FLUORESCENT SUBSTANCES ISOLATED FROM THE MOLD ASPERGILLUS NIGER

B. K. Skirko, M. F. Neslerin, V. Ya. Vissarionova

Institute of Nutrition, Academy of Medical Sciences of the USSR, Moscow

Extraction and preparative chromatography was used to isolate fluorescent substances from the mold Aspergillus niger. Experiments on albino rats testified to their toxic hepatotropic action: when given orally, they induce protein dystrophy of the liver parenchyma and proliferation of the bile ducts epithelium. If the mold Aspergillus niger is used as a sourse for enzyme preparations to be used in food industry, the preparation must be washed of fluorescent contaminants.

11

REEL/FRAME 19820406

2kc

USSR

UDC 537.311.3:546.26128

CEYTSI, I.I., GCRIN, S.I., NESTEROV, A.A., PLETYUSHEIN, A.A.

"On The Nature Of The 'Red' Band Of Cathodoluminescence Of Irradiated & Sic"

V sb. Radiats. fiz. nemet. kristellov (Radiation Physics Of Nonmetellic Crystals-Collection Of Works), Vol 3, Part 2, Kiev, "Nauk.dumka," 1971, pp 97-105 (from RZh-Elektronika i yeve primeneniye, No 10, October 1971, Abstract No 10838)

Translation: The effect was studied of fast electrons on the spectra of cathodo-luminescence (CL) of 3-SiC. Crystals of 3-SiC (n-type: 0.1-1.0 ohm.cm) were irradiated by 3.5 New fast electrons, with doses from 1012 to 101 cm-2 at room temperature. After irradiation by doses of 1015 m 1016 cm-2, in the red region of the spectrum (2-1.5 ev), an intensive band of CL appears with good development of the thin structure, which is connected with recombinations of the localized excitons at the ionized acceptors. I.I.

1/1

113 --

USSR

GEYTSI, I.I., et al., Fizika i Tekhnika Poluprovodnikov, Vol 4, No 5, 1970, pp 879-885

In order to explain the mechanism of radiative recombination in the red band and also the relation between the fine structure and the continuous spectrum, the intensities were measures as functions of the excitation flux density, the radiation kinetics during pulse excitation were studied, and spectra were taken for defined time intervals after the end of the excitation pulse. The results indicate that the fine structure is not connected with the donor-acceptor mechanism of radiative recombination.

It is pointed out that the green band of the cathodoluminescence is connected with radiative hole capture in the nitrogen level. Radiation by fast electrons leads to the occurrence of additional recombination channels of the nonequilibrium carriers of both radiated and nonradiated types. The presence of narrow lines (with a halfwidth less than kT) within the limits of the red band indicate localization of the charge carriers before recombination. The difference in the form of the red band for different temperatures is determined by whether

2/3

USSR

UDC: 621.315.592

GEYTSI, I.I., NESTEROV, A.A., SMIRNOV, L.S.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

"Thin Structure of the 'Red' Band of Cathodoluminescence of β-SiC Irradiated by Fast Electrons"

Leningrad, Fizika i Tekhnika Poluprovodníkov, Vol 4, No 5, 1970, pp 879-885

Abstract: This article contains an investigation of the cathodoluminescence of β -SiC caused by lattice defects. Irradiation by fast electrons and also heating to high-temperatures (above 1,100°C) lead to the occurrence of luminescence in the 6,250-10,000 Å range. At temperatures below 150°K on the short-wave side of this band, there is a thin structure in the form of narrow lines with a halfwidth less than kT and their phonon recurrence. It is demonstrated that the "red" band with its fine structure is most likely caused by result of irradiation of excitons captured on the ionized centers formed as a centers are of the acceptor type. The depths of these levels are estimated from the fine cathodoluminescence structure: $E_V + 0.42$, $E_V + 0.44$, $E_V + 0.48$, $E_V + 0.5$ electron volts. The final solution of the problem of the charge state of the centers requires additional investigation.

USSR

GEYTSI, I.I., et al., Fizika i Tekhnika Poluprovodnikov, Vol 4, No 5, 1970, pp 879-885

phononless transitions take place or not. It is also pointed out that the model of the exciton located on the ionized center is more suitable to t explain the data obtained in this experiment than the model of the exciton located on the neutral center.

3/3

- 40 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

CONTROL OF THE CONTRO

1/2 015 UNCLASSIFIED PROCESSING DATE--18SEP70
TITLE--FORMATION OF RETICULAR POLYURETHANE BASED ON AN OLIGOMERIC MACRO
DIISOCYANATE -U-

AUTHOR-(04)-NESTERDY. A.E., LIPATOVA, T.E., IVASHCHENKO, V.R., LIPATOV,

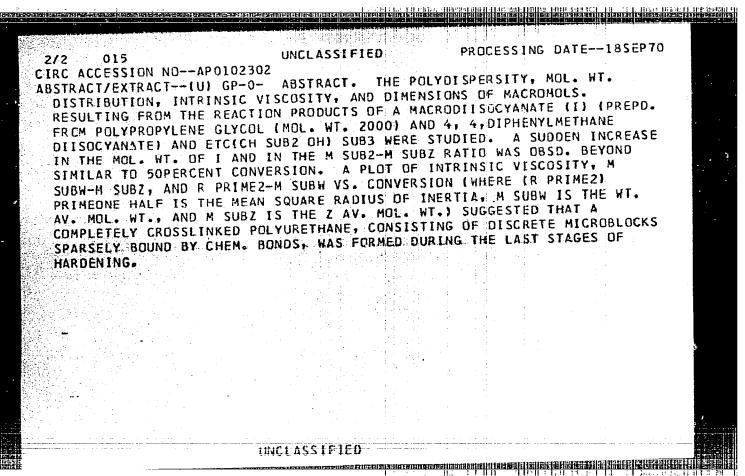
COUNTRY OF INFO--USSR

SOURCE--VYSOKOMOL. SOEDIN., SER. B 1970, 12(2) 150-3

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY, MATERIALS

TOPIC TAGS--POLYURETHANE RESIN, OLIGOMER, ORGANIC ISOCYANATE, MOLECULAR WEIGHT, INTRINSIC VISCOSITY


CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1986/0252

STEP NO--UR/0460/70/012/002/0150/0153

CIRC ACCESSION NO--APO102302

UNCLASSIFIED

USSR

UDC 621.643.29+002.72

ncoonactorismus en confineres in annuiculas (III) fina arab (IIII) in la fondiscultoria prise in confirmi en c

KONCHEV, Yu. N., State Scientific Research Institute of the Gas Industry, Saratov; GORSKIY, V. V., NESTEROV, A. M., Northwest Specialized Construction Trust, Kalinin

"Construction of a High Pressure Polyethylene Gas Line Under Winter Conditions"

Moscow, Stroitel'stvo truboprovodov, No. 5, May 72, pp 24-26

Abstract: Studies have shown that pipes of high-density polyethylene can be welded at temperatures below 0°C down to an ambient air temperature of -20°C without lowering the qualities of the welded joint. It is noted that the basic factors determining the properties of a welded seam, in addition to the welding technique, are the temperature and the rate of cooling of the molten material. At a high rate of cooling and at low temperatures of the structure the seam becomes microcrystalline, with the result that there is a certain drop in the density, the yield point and the strength of the material, for example, in many experiments the density of the material reduced from 0.956 to 0.951 g/cm³ and the yield point and the strength were reduced 8-10%. There is also a rise in the relative expansion of 65-80% on the average and in the shock viscosity of 20-25%.

1/2

USSR

KONCHEV, Yu. N., et al, Stroitel'stvo truboprovodov, No. 5, May 72, pp 24-26

The properties of the material change with the course of time due to continuing crystallization processes in it. The structure transforms into an equilibrium state and after 5-9 days the high-density polyethylene reestablishes its initial properties. It is recommended that the location where the welding is done be protected from wind and precipitation and that the flashing off temperature of the material be increased by 5-10% to obtain a high-quality welded joint at temperatures below zero. Individual sections of the pipe line were subjected to strength and density tests and after completion of the construction the entire line was subjected to a pneumatic test at pressures of 7.5 and 6 kilogram-force/cm². The tests showed the high strength of the welded joints and no breakdowns in the joints or a disruption in their density was observed.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

SEASCANCE SEASCALE SE

USSR

BRODER, D. L., GAMALIY, A. F., ZEMTSEV, B. V., NESTEROV, B. V., and KHAM'YANOV, L. P. (Institute of Physics and Power Engineering)

"Gamma Radiation Upon Capture of Thermal Neutrons by Isotopes of Cr"

Moscow, Yadernaya Fizika, Vol 13, No 2, 1971, pp 233-239

Abstract: This work is devoted to the study of the spectra of gamma radiation arising upon capture of thermal neutrons by Cr isotopes, by means of a Ge-Li gamma spectrometer. The isotopes of chromium studied are ${\rm Cr}^{50}$, ${\rm Cr}^{52}$, and ${\rm Cr}^{53}$. The yield of gamma lines per 100 captures of neutrons in each isotope are determined. Diagrams of the energy levels of ${\rm Cr}^{51}$, ${\rm Cr}^{53}$, and ${\rm Cr}^{54}$ nuclei are presented. The results are compared with the data of other authors. In general the data agree well with the data of recent works concerning the energy of individual gamma lines, but not as well concerning their yield. A number of new gamma lines are observed, particularly for ${\rm Cr}^{50}$ and ${\rm Cr}^{52}$.

1/1

USSR

NESTEROV. E. YE.

"An Apparatus for Solving Equations of the Form

 $\sqrt{n^2 + n^2}$

Moscow, Otkrytiya izobreteniya promyshlennyye obraztsy tovarnyye znaki, No 18, 17 Apr 73, p 125

Translation: (11) 377805(21)1405522/18-24(22)23.02,70(51)G 06g 7/10(53) 681.335.5

(72) (54) An apparatus for solving equations of the form $\sqrt{n^2 + n^2}$ -, containing two resistor voltage dividers, two diode logic circuits, a direct current power source, and a resistor is distinguished by the fact that the apparatus is simplified by connecting the resistor voltage dividers at their midpoints, while the diode logic circuits are connected by identical electrodes to the ends of the resistor voltage dividers and connected in pairs by other electrodes, with the source and the resistor connected in series between the midpoint of the resistor voltage dividers and the common point of two diodes of one of the logic circuits.

1/1

37 4

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

1/2 010 UNCLASSIFIED PROCESSING DATE-300CT TITLE-EFFECT OF SINTERING PROCESS PARAMETERS ON PELLET QUALITY AS STUDIED BY A FACTOR METHOD UNDER INDUSTRIAL CONDITIONS -U-AUTHOR-(05)-SHARYGIN, D.A., ONISHCHENKO, A.E., RYABOKON, F.A., NESTEROV, G.S., URIN, V.D.

COUNTRY OF INFO--USSR

SOURCE-STAL! 1970, 30(2), 105-7

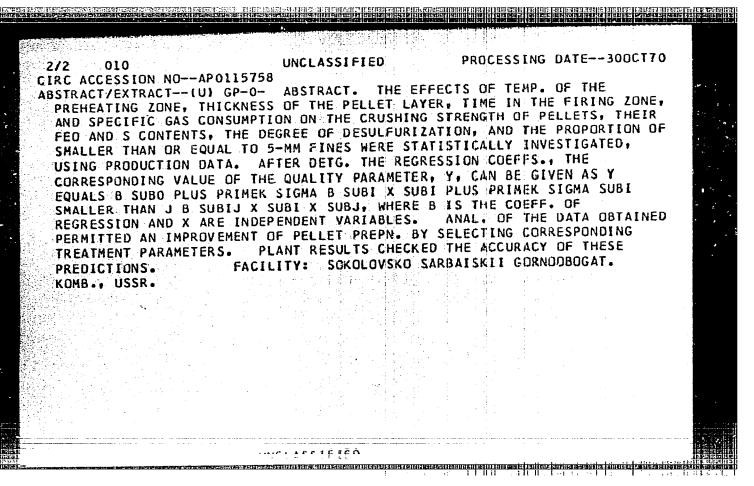
DATE PUBLISHED----70

SUBJECT AREAS--EARTH SCIENCES AND OCEANOGRAPHY

TOPIC TAGS-IRON OXIDE, SULFUR, DESULFURIZATION, INDUSTRIAL PRODUCTION, HIGH TEMPERATURE EFFECT

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1994/1950


STEP NO--UR/0133/70/030/002/0105/0107

CIRC ACCESSION NO--APO115758

UNICIASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

TO SECURITION OF THE PROPERTY OF THE PROPERTY

Mining, Petroleum, Geological

USSR

UDC 553.982.003.12:56.07

NESTEROV, I. I., SHPIL'MAN, V. I.

"Procedure for Evaluating Predicted and Prospective Reserves"

Moscow, Geologiya nefti i gaza, No 6, 1972, pp 1-6

Abstract: A procedure for evaluating predicted and prospective oil and gas reserves is outlined. The procedure is a general one but is discussed specifically as applied to Western Siberia. Predicted and prospective reserves are distinguished as the area estimates of the reserves of any section as a whole without indicating where accumulations of oil and gas can be discovered within the section and a specific discovered but not drilled out trap respectively. The subdivision of Western Siberia into districts for purposes of applying the procedure is discussed. In performing the evaluation, the reserve density -the ratio of the total explored geological reserves of hydrocarbons to the area of the standard (gas is recalculated into oil) -- and the largest possible number of geological, geochemical and hydrogeological parameters founded from the genetic point of view are determined with respect to each standard section for the oil and gas-bearing complex. Correlation analysis and the least squares method are then applied. Formulas are derived which can be used to estimate the density of the reserves within the limits of a prospective territory. 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

esses en esses en la company de la compa

USSR

NESTEROV, I. I., et al., Geologiya nefti i gaza, No 6, 1972, pp 1-6

Qualitative prediction or analysis of the standards using pattern recognition algorithms can be used to draw the boundary of prospective areas. The evaluation of the proportion of oil, gas and condensate in potential resources and the isolation of prospective structures are also discussed from the qualitative and quantitative points of view.

The level of geological knowledge permits evaluation of the prospective reserves of a trap which has not been drilled out only very approximately. The evaluation procedure can be used at this time not so much to evaluate the potential possibilities of a region as to establish the order of exploratory drilling.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

HAND TO THE THE PROPERTY OF TH

USSR

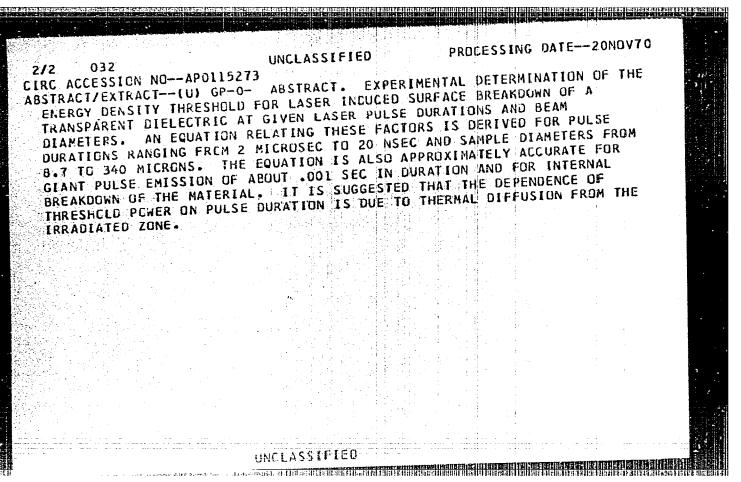
WC 632.95

PIL'HENSHTEYN, I. D., BEZUGLYY, S. F., HISTEROVA, JAKOVLEVA, L. I., and STONOV, L. D.

"Adhesion of Emulsions to Treated Surface"

V sb. Khim. sredstva zashchity rast. (Chemical Plant Protectants -- collection of works), vyp 1, Hoscow, 1970, pp 291-297 (from HZh-Khimiya, No 13, 10 Jul 72, Abstract No 13N534 by I. Pil"menshteyn)

Translation: Factors affecting the adherence of emulsion drops of 2,4-D butyl ester to various substrates (paraffinized surface of a polished steel plate and the surface of a bean leaf) were estimated according to the flow-off angle (C fl -- the angle of inclination of the surface to the horizon at which a drop applied to that surface began to flow off). The method of correlation analysis shows that C fl is determined by wetting conditions for the drops of the treated surface.


1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

UNCLASSIFIED PROCESSING PROCESSING DATE--- ZONOY TO TITLE-DEPENDENCE OF THE BREAKDOWN THRESHOLD OF A TRANSPARENT DIELECTRIC AUTHOR-(04)-NESTEROV, L.A., PGPLAVSKIY, A.A., FERSMAN, I.A., KHAZOV, L.D. COUNTRY OF INFC--USSR SOURCE-ZHURNAL TEKHNICHESKOI FIZIKI, VOL. 40, MAR. 1970, P. 651-653 DATE PUBLISHED ---- 70 SUBJECT AREAS -- PHYSICS TOPIC TAGS-LASER PULSE, DIELECTRIC BREAKDOWN CENTROL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0057/70/040/000/0651/0653 PROXY REEL/FRAME-1994/1256 GIRC ACCESSION NO--APO115273

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

UNCLASSIFIED

USSR

UDC 547.26'118 + 547.341 + 547.345

NESTEROV. I. V., KREPYSHEYEVA, N. Ye., SABIROVA, R. A., and ROMANOVA, G. N., Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, USSR Academy of Sciences

"Derivatives of Phosphorous Acid. VIII. Reaction of the Dialkyl Trialkyl-silyl Phosphites With Aldehydes and Ketones"

Leningrad, Zhurnal Obshchey Khimii, Vol XLI, No 11, 1971, pp 2,449-2,452

Abstract: Dialkyl acyl and tetraalkyl pyrophosphites are known to react with carbonyl compounds according to $(R0)_2POAc + R^!R^!CO \rightarrow (R0)_2P(0)\,C(OAc)R^!R^!$ $(R = alkyl, R^! = alkyl, aryl, R^! = H, alkyl and Ac = acyl or <math>P(OR)_2$). In this connection, the reactions of dialkyl trialkylsilyl phosphites with aldehydes and ketones were studied. These reactions were found to proceed along exactly the same lines when $Ac = SiAlk_3$, and the reactions proceed under much less rigorous conditions when Ac = acyl. The aldehydes react rapidly, with release of heat, while the ketones require preheating to $100^{\circ}C$. In all cases, there is formation of the dialkyl esters of α -(trialkylsiloxy)alkyl-phosphonic acids:

 $(RO)_2$ POSiAlk₃ + R'R"CO + $(RO)_2$ P(O)C(OSIAlk₃)R'R".

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

THE THE STATE OF THE BUILDING WITH THE WARD HER THE BUILDING WAS A STATE OF THE BUILDING WAS ASSESSED.

USSR

NESTEROV, L. V., et al., Zhurnal Obshchey Khimii, Vol XLI, No 11, Nov 1971, pp 2,449-2,452

These compounds have been known only for a few years, and until now no satisfactory method had been devised for obtaining them. Physical data for the nine compounds obtained, along with laboratory procedures, are given in the paper.

2/2

29

UNCLASSIFIED PROCESSING DATE--04DECTO

ITTLE--SOLVENT EFFECT ON SPIN SPIN COUPLING CONSTANTS IN PMR SPECTRA OF

ORGANOPHOSPHORUS COMPOUNDS CONTAINING A P-D GROUP. I. GEMINAL CONSTANTS

AUTHOR-(05)-VINOGRADOV, L.I., SAMITOV, YU., YU., KESSEL, A., VA., NESTEROV,

L.V., MARDANOVA, V.B.

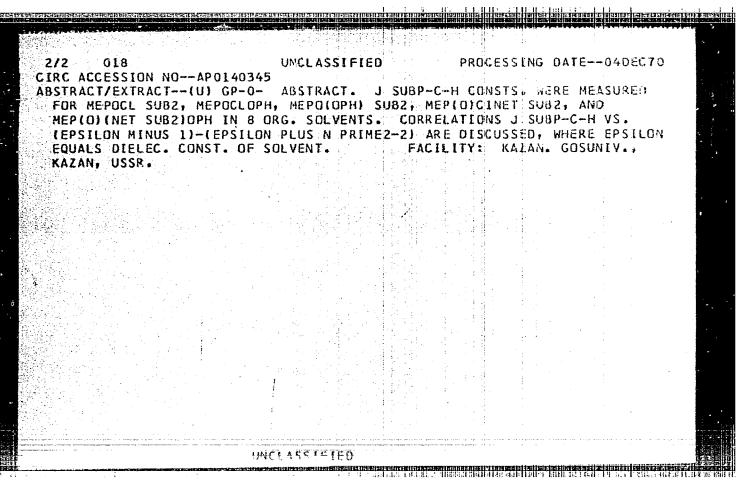
COUNTRY OF INFO--USSR

SOURCE--TEOR. EKSP. KHIM. 1970, 6(1), 103-7

DATE PUBLISHED-----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--SOLVENT ACTION, MAGNETIC RESONANCE, PROTON, SPECTRUM, ORGANIC


PHOSPHORUS COMPOUND, DIELECTRIC EFFECT

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY FICHE NO----FD70/605013/B04 STEP NO--UR/0379/70/006/001/0103/0107

CIRC ACCESSION NO--APOL40345

UNCLASSIFIED

USSR

UDC 547.26'118

NESTEROV. L. V., KESSEL', A. Ya., SAMITOV, Yu. Yu., MUSINA, A. A. Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, Academy of Sciences USSR, and Kazan State University imeni V. I. Ul'yanov Lenin

"Nucleophilicity of the Phosphoryl and Thiophosphoryl Groups"

Leningrad, Zhurnal Obshchei Khimii, Vol 40, No 6, Jun 70, pp 1237-1241

Abstract: A series of compounds of the form CH3P(S)XI was synthesized. All were alkylated by equivalent amounts of triethyloxonium borofluoride in methylene chloride. Their chemical shifts of the P-bonded methyl group protons exhibited a critical range beyond which no alkylation reaction took place. It was found that the methyl protons in the methylphosphonic acid derivatives are shielded more than those of the corresponding methylthiophonic acid derivatives, due to the greater tendency of the P+O bond to reverse coordination.

1/1

- 32

USSR

UDC 541.6 + 661.718.1

TO SOLIT FROM ESSAYS REALEST THE OFFICE OF SOLIT OF THE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OF

MESTEROV. L. V., and MUTALAPOVA, R. I., Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, Academy of Sciences USSR

"Stability of Phenylphenoxyphosphonium Chlorides and Bromides"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 1, Jan 71, p 167

Abstract: The decomposition of phenylphenoxyphosphonium bromides and chlorides occurs analogously to that of iodides, their stability increasing with increasing number of phenyl substituents. Furthermore, the bromides decompose slower than the iodides, and the chlorides — slower than the bromides. The decomposition of phenoxyphosphonium halides — the second stage of Arbuzov reaction — occurs by an $\mathrm{S}_{\mathrm{N}}^{2}$ mechanism.

1/1

6/4 -

USSR

UDC 542.91 + 661.718.1

DESCRIPTION OF THE PROPERTY OF

NESTEROV, L. V., and ALEKSANDROVA, N. A., Institute of Organic and Physical Chemistry imeni A. Ye. Arbuzov, Academy of Sciences USSR

"Dialkyldialkoxyphosphonium Salts"

Moscow, Izvestiya Akademii Nauk, Seriya Khimicheskaya, No 2, Feb 71, pp 415-416

Abstract: Dialkyldialkoxyphosphonium salts were obtained by treatment of dialkyl alkylphosphonites with equimolar quantities of alkyl halides in ether at 0°C. The most stable of these salts were those with branched alkoxy chains. n-Alkoxy salts were not isolated even though their formation was noted. The alkoxy substituents could be arranged in order of stability:

 $neo-C_5H_{11}$ iso-C₄H₉ iso-C₃H₇ $n-C_4H_9$ C₂H₅.

Stability is due to steric hindrance of the attack of the halide anions on the isoalkoxy groups.

1/1

UNCLASSIFIED PROCESSING DATE-920CT70

TITLE-REACTION OF ALPHA; ALKGXYVINYL ACETATES WITH CHLORAL -U
AUTHOR-(02)-NESTEROV, L.V., SABIROVA, R.A.

CCUNTRY UF INFO-USSR

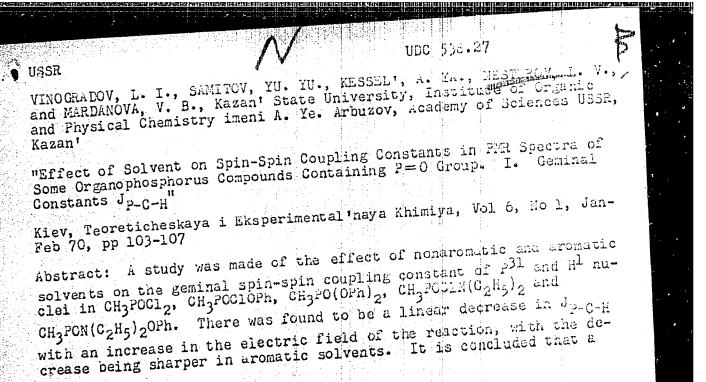
SGURCI-ZH. ORG. KHIM. 1970 6(3) 625

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--ALKOXIDE, ACETATE, CHLORINATED URGANIC COMPOUND

CONTROL MARKING-NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED

PRUXY REEL/FRAME-1992/1578 STEP NO-UR/0366/70/006/003/0625/0625

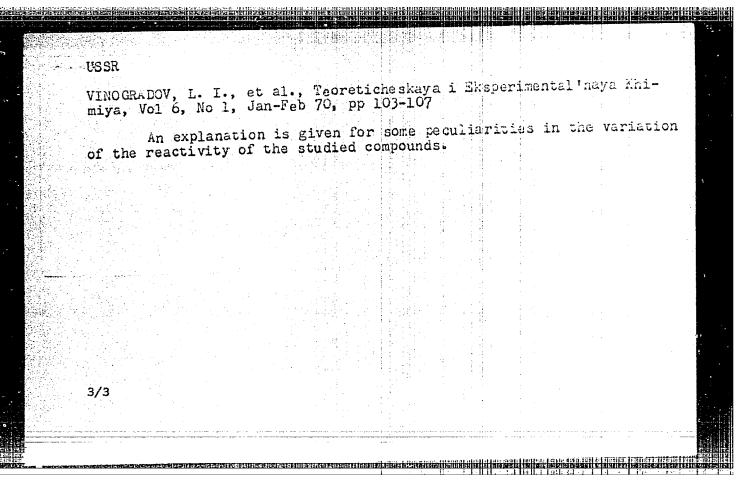
CIRC ACCESSION NO-APOLIZ522

UNCLASSIFIED

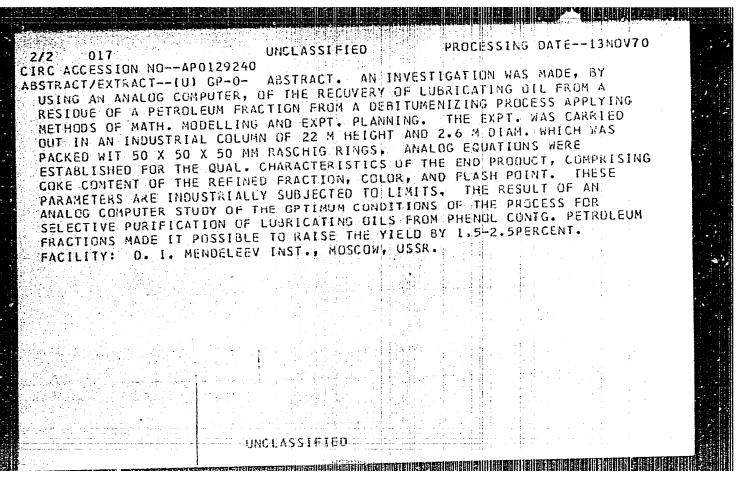
2/2 007 CIRC ACCESSION NOAPO112522 CIRC ACC		UNCLASSIFIED	PROCESSING DATE020CT7	
	2/2 007 CIRC ACCESSION NOAPO112522 ABSTRACT/EXTRACT(U) GP-0- ABSTRACT/EXTRACT(U) GP-0-		ATION OF H SUB2 C:C(DAC)OR 3 CCH(DAC)CH SUB2 CO SUB2	·
	R.			
				a
				;
				٠.
UNCLASSIFIED		UNCLASSIFIED	89	

1/3

USSR


VINOCRADOV, L. I., et al., Teoreticheskaya i Eksperimental naya Khimiya, Vol 6, No 1, Jan-Feb 70, pp 103-107

positive sign is likeliest for the spin-spin coupling constant. Two possible mechanisms for the spin-spin interaction through the pinelectron system of the aromatic ring are suggested to explain the increase in J_{P-C-H} as Cl atoms are displaced by CPh:


- l. The spin-spin interaction results from the bi-electron current induced by the magnetic moment of the nucleus in the arcmatic ring, creating a local field on the second nucleus.
- 2. The spin-spin interaction occurs through the pi-electron system of the aromatic ring according to the mechanism suggested by H. M. McCONNELL for a long-range proton-proton interaction in aromatic systems. This mechanism is apparently realized in the compounds investigated here.

2/3

101 -

PROCESSING DATE--13NOV70 TITLE--OPTIMIZATION OF COMPLEX CHEMICAL TECHNICOLOGICAL PROCESSES WITH ANALOG COMPUTERS -U-AUTHOR-NESTEROV, P.M. COUNTRY OF INFO--USSR SOURCE-CHEM. TECH. (LEIPZIG) 1970, 22(4), 206-9 DATE PUBLISHED ----- 70 SUBJECT AREAS -- MATERIALS TOPIC TAGS--COMPUTER_APPLICATION, ANALOG COMPUTER, LUBRICATING OIL, PETROLEUM PRODUCTION, MATHEMATIC MODEL, PHENOL, CHEMICAL PURIFICATION, CHEMICAL SEPARATION, INDUSTRIAL PRODUCTION CONTROL MARKING--NO RESTRICTIONS STEP NO--GE/9006/70/022/004/0206/0209 DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3002/1880 CIRC ACCESSION NO--APO129240 UNCLASSIFIED.

USSR

UDC 621.357.7:669.15 (24(088.8)

NEVSKIY, O. B., NESTEROV, P. V., and CHERNAYENKO, M. P.

"Electrolytic Plating of Nickel-Iron Alloy of Permalloy Type"

USSR Author's Certificate No 324305, Filed 7 Mar 69, Published 16 Mar 72 (from Referativnyy Zhurnal -- Khimiya, Svodnyy Tom, No 23(II), Abstract No 231264P by M. V. Ivanov)

Translation: In order to achieve the electrolytic plating of Ni-Fe alloy of uniform chemical composition, the suggested process should be conducted in a hermetically closed contained in Ar atmosphere while the electrolyte is turbulently mixed. The best results are obtained at Reynolds numbers 2500-10,000, 50-65°C, D_c 100-200 ma/cm². The electrolyte contains (E/liter) FeSO₄ 5-7, NiSO₄ 300-360, H_3BO_3 25-30, saccharin 0.2-0.8, citric acid up to 3, and pH 2.7-3.0. The suggested method makes it possible to obtain Ni-Fe films characterized by the following parameters: coersive force 150-200 a/m, anisoptopy field 80-120 a/m, axis slope of light magnetization $\leq 1.5^{\circ}$.

1/1

7:1-

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

USSR KOPERSAKO, N. T., NESTEROV, P. V. UDC: 681.32.001

"Singularities of Continuous Measurement of Parameters and Sorting of Cylindrical Magnetic Films"

Elektron. tekhnika. Nauch.-tekhn. sb. Mikroelektronika (Electronic Technology. Scientific and Technical Collection. Microelectronics), 1971, vyp. 4(30), pp 185-193 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 10, Oct 71, Abstract No 10B139)

Translation: The paper deals with the problem of the comprehensive study of cylindrical magnetic films throughout the length of specimens. Problems of continuous measurement of static parameters are illustrated by the example of a stand for registering obliquity of the axis of anisotropy and magnetostriction. The experimental set-up is briefly described. It is shown that when the magnetostriction of magnetic films differs from zero, twisting deformation of a specimen leads to an additional rotation of the preferred axis of magnetization of the film, and this additional obliquity is a measure of the magnetostriction. A description is given of the block diagram of a stand for automatic sorting of cylindrical magnetic films by dynamic parameters. Five illustrations, bibliography of two titles. Resumé.

- 55 -

The representation of the contract of the cont

USSR UDC: 681.32.001

NEVSKIY, O. B., NESTEROV, P. V., ALEKSEYEV, N. M.

"A Transfer Line for Continuous Electrochemical Deposition of Cylindrical Magnetic Films"

Elektron. tekhnika. Nauch.-tekhn. sb. Mikroelektronika (Electronic Technology. Scientific and Technical Collection. Microelectronics), 1971, vyp. 4(30), pp 176-184 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 10, Oct 71, Abstract No 10B138)

Translation: The paper describes the flowchart and design of a line for continuous electrochemical deposition of cylindrical magnetic films. The line performs the operations of cathodic degreasing, electropolishing, deposition of copper and deposition of permalloy with zero magnetostriction (80 percent Ni, 10 percent Fe). All operations are done at high current density and with intense agitation (with the exception of electropolishing). The advantages of such conditions are pointed out. Note is made of the harmful effect of iron oxidation in the electrolyte for the deposition of permalloy and of the necessity for complete hermetic sealing of the tank.

1/2

NEVSKIY, O. B. et al., <u>Flektron. tekhnika. Nauchn.-tekhn. sb. Mikroelektronika</u>, 1971, vyp. 4(30), pp 176-184

A description is given of methods of monitoring and controlling the process to obtain zero magnetostriction and the required pulse parameters. Seven illustrations, bibliography of thirteen titles. Resume.

2/2

The first of the f

USSR

SHAKHNOV, V. A., NESTEROV, P. V.

UDC: 681.32.001

"Technological Methods of Making Memory Matrices on Cylindrical Magnetic Films"

Elektron. tekhnika. Nauch.-tekhn. sb. Mikroelektronika (Electronic Technology. Scientific and Technical Collection. Microelectronics), 1971, vyp. 4(30), pp 194-200 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 10, Oct 71, Abstract No 108140)

Translation: In accordance with the requirement for ensuring the necessary accuracy in making memory matrices on cylindrical magnetic films, a comparison is made of some technological methods of implementing systems of control elements. A description is given of the technological processes, material requirements are defined, and recommendations are made on some of new type combining the advantages of a solenoid and a strip line. A matrix-density of memory elements. Three illustrations, bibliography of three titles. Resumé.

1/1

- 47 -

USSR

UDC: 681.32.001

MURMUKHAMEDOV, G. M., NESTEROV P. V., SALTYKOV, V. V.

"Wire Substrate for Cylindrical Magnetic Films"

Elektron. tekhnika. Nauch.-tekhn. sb. Mikroelektronika (Electronic Technology. Scientific and Technical Collection. Microelectronics), 1971, vyp. 4(30), pp 164-175 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 10, Oct 71, Abstract No 10B137 P)

Translation: Basic requirements are formulated which must be satisfied by a wire substrate, and the influence of the substrate on the properties of cylindrical magnetic films is analyzed. A detailed investigation is made of the physical and mechanical properties of thin BrB2 copper-beryllium allow wire, and recommendations are given on its use as a cylindrical substrate. A description is given of the technology for making a precision wire substrate, including processes of continuous tempering, mechanical treatment by rotating diamond draw plates, and thermal stabilization of properties. Seven illustrations, bibliography of nine titles. Resumé.

1/1

- 86 -

USSR

UDC 621.377.622.322.5.037.733.2

SECTION STATES AND STA

SHAKHNOV, V. A., and NESTEROV, P. V.

"The Effect of Information Transcription on the Efficiency of Magnetic, Thin-Film Memory Elements"

Sb. Nauch. Tr. po Probl. Mikroelektron. Mosk. In-t Elektron. Tekhn. (Collection of Scientific Works on Problems of Microelectronics. Moscow Institute of Electrical Engineering), No 5, 1970, pp 124-132 (from Referativnyy Zhurnal -- Avtomatika, Telemekhanika, i Vychislitel'naya Tekhnika, No 8, 1971, Abstract No 8B112)

Translation: The article cites the results of experimental research on the efficient area of memory elements made from cylindrical magnetic thinfilms using various models of information transcription. It is shown that the use of dual heteropolar pulses for transcription makes it possible to increase the efficient area and the density of information transcription on cylindrical magnetic thin films.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

TRIBUS THE RESIDENCE OF THE RESIDENCE OF THE SECOND THE

USSR

UDC 621.377.622.322.5.001.572

PRESNUKHIN, L. N., NESTEROV, P. V., and SHAKHNOV, V. A.

"Research on Dynamic Switching of Magnetic Thin-Film Elements With the Help of a Digital Model"

Sb. Nauch. Tr. po Probl. Mikroelektron. Mosk. In-t. Elektron. Tekhn. (Collection of Scientific Works on Problems of Microelectronics, Moscow Institute of Electrical Engineering), No 5, 1970, pp 133-141 (from Referativnyy Zhurnal — Avtomatika, Telemekhanika, i Vychislitel'naya Tekhnika, No 8, 1971, Abstract No 8B113)

Translation: A digital model of a magnetic thin-film element of a memory device is selected and justified. Results of theoretical research on the effect of the front of intensification of the switching field, the initial angular displacement of the magnetization vector, and the magnitude and dispersion of the anistropy field on the switching of magnetic thin films are cited.

1/1

21 --

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

THE REPORT OF THE PROPERTY OF

USSR

UDC

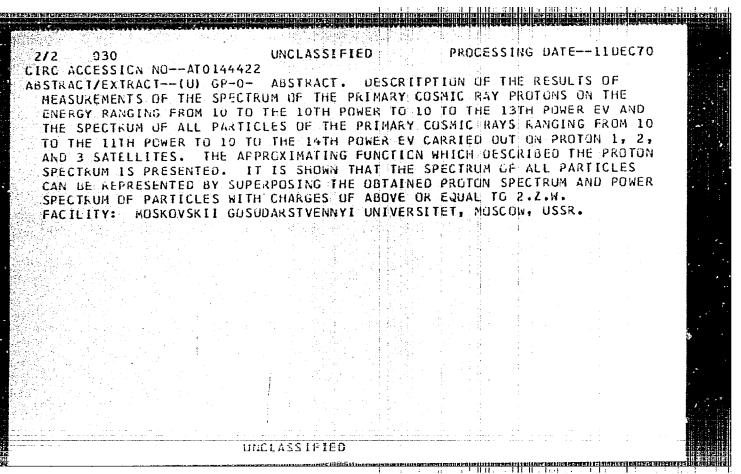
BORTNIKOV, Yu. S., NESTEROV, V. A., RUBASHOV, I. B., Moscow

"Study of Characteristics of the Electric Gas Dynamic Engine"

Zhurnal Prikladnoy Mekhaniki i Tekhnicheskoy Fiziki, No 6, 1971, pp 167-170.

ABSTRACT: Results are presented from theoretical and experimental studies of the electric gas dynamic engine, designed to create the thrust for a flight vehicle. Calculation relationships are produced, which agree well with the experimental data. It is demonstrated that the effectiveness of this engine can be rather high for practical purposes. A number of works have been written concerning ion-convection pumps operating on this principle, in which dielectric fluids are pumped using a Corona discharge. The use of the "Corona wind" in gases allows the creation of an engine capable of operating in any non-conducting atmosphere. In contrast to the ion engine, the EGD engine creates thrust due to acceleration of a neutral working fluid (for example, atmospheric gases) by means of ions, allowing the creation of a significant thrust, sufficient to support a vehicle in the atmosphere.

1/1


APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202210015-6"

"APPROVED FOR RELEASE: 09/17/2001

CIA-RDP86-00513R002202210015-6

PRUCESSING DATE--11DECTO UNCLASSIFIED TITLE-REASUREMENTS OF THE PRIMARY COSMIC RAY SPECTRA IN THE 10 TO THE IGTH POWER TIMES 10 TO THE 14TH POWER EV ENERGY RANGE FROM PROTON 1, 2, AUTHOR-(05)-AKIMOV, V.V., GRIGOROV, N.L., NESTEROV, V.E., RAPOPURT, I.D., SAVENKU, I.A. COUNTRY OF INFU-USSR. HUNGARY SUURCE--INTERNATIONAL CONFERENCE ON COSMIC RAYS, 11TH, BUDAPEST, HUNGARY, AUGUST 25-SEPTEMBER 4, 1969, PROCEEDINGS, VOLUME 1 CRIGIN AND GALACTIC. DATE PUBLISHED----70 SUBJECT AREAS--ATMOSPHERIC SCIENCES, SPACE TECHNOLOGY TOPIC TAGS -- PRIMARY CUSMIC RAY, PROTON SPECTRUM/(U) PROTON 3 SCIENTIFIC SATELLITE. (U) PROTON 2 UNMANNED LABORATORY. (U) PROTON 1 UNMANNED LABURATORY ... CENTRUL MARKING--NO RESTRICTIONS DUCUMENT CLASS--UNCLASSIFIED PRUXY FICHE NU----FD70/695060/F08 STEP NO--HU/2506/70/029/000/0517/0520 GIRC ACCESSION NO--ATO144422 UNCLASSIFIED

