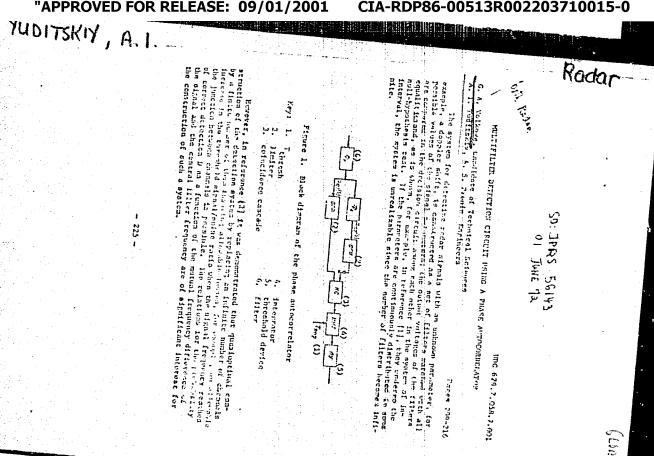
UDC: 519.21

YUDITSKAYA, P. I.

"Asymptotic Behavior of the Maximum of a Gaussian Field"


Teoriya veroyatnostey i mat. statist. Mezhved. nauch. sb. (Probability Theory and Mathematical Statistics. Interdepartmental Scientific Collection), 1970, vyp. 3, pp 240-247 (from RZh-Kibernetika, No 7, Jul 71, Abstract No 7V148)

Translation: A real Gaussian separable homogeneous and isotropic field $\xi(x)$ is considered, where x is a point in n-dimensional Euclidean space R_n , it being assumed that $M_{\xi}(x)=0$. $D_{\xi}(x)=1$. In R_n , a singly connected closed region E_1 of unit Lebesgue measure is isolated, E_R being understood to mean the region obtained from E_1 as a result of the mapping $x \rightarrow kx$, where k is a scalar. Making certain natural assumptions, the author establishes (almost certainly) the existence of a number $K_0(\omega)$ such that

 $\lim_{x \in E} \frac{1}{x} (x) - \sqrt{2 \ln k^n} < \frac{m_1 \ln \ln k^n}{\sqrt{2 \ln k^n}}$

1/2

. 17 .

YUDITSKAYA, P. I., Teoriya WELFASEDIO PROVED FOR RELEASEDIO PROVED

when $k > K_0(\omega)$, where $m_1 = 2 + \varepsilon$ when n = 2 and $m_1 = n \ge 3$ ($\varepsilon > 0$). M. Shur. (n + 1)/2 when

USSR

621.371.332.3:621.391.883.6 UDC

VOLKOVA, G. A., YUDITSKIY I., PRONIN, A. S.

"A Multifilter Detection Circuit Using a Phase Autocorrelator"

Tr. Mosk. aviats. in-ta (Works of Moscow Aviation Institute), 1971, vyp. 207, pp 209-216 (from RZh-Radiotekhnika, No 12, Dec 71, Abstract No 12G21)

Translation: The paper gives an analysis of the operation of a phase autocorrelator when the frequency of the received signal does not coincide with that of the filter tuning. A relation is found for the probability of correct detection as a function of the difference between the signal frequency and the central matching frequency of the filter. This relation is used as a basis to show that a multifilter system can be constructed with the use of a phase autocorrelator. Three illustrations, bibliography

1/1

UDC 681.3

AKUSHSKIY, I.Ya., YUDITSKIY, D.I

"Redundancy in Non-Positional Systems"

Ispol'z Izbytochnosti v Inform. Sistemakh [Use of Redundancy in Information Systems -- Collection of Works], Leningrad, Nauka Press, 1970, pp 300-307 (Translated from Referativnyy Zhurnal Matematika, No 11, 1970, Abstract No 11V472 by the Authors)

Abstract: The possibility of constructing correcting codes in a system of residual classes is studied. The correcting capabilities of codes with one and two test bases are studied. It is demonstrated that it is possible to test not only an individual number but also the result of a number of rational operations. The possibility of correction of errors using a single test base by gradual localization of errors during the process of calculation (method of alternative sets) is demonstrated. On the basis of statistical modeling it is concluded that for a system of bases with a range of 1010 the mean number of operations required to localize the point of error is 4-5. The problem of applying a system of residual classes to increase the viability of both individual machines and multimachine complexes is discussed.

UDC 681.3

AKUSHSKIY, I.Ya., YUDITSKIY, D.I.

"Organization of Detection and Correction of Errors in Computers in Non-positional Systems"

Tsifrov. Modeli i Integriruyushch Struktury [Digital Models and Integrating Structures -- Collection of Works], Taganrog, 1970, pp 308-318 (Translated from Referativnyy Zhurnal Matematika, No 11, 1970, Abstract No 11V471 by the

Abstract: Correcting codes in a system of residual classes with one test base are studied. It is suggested that the method of zeroing of a number be used for testing, allowing the number of the interval in which the number is located to be determined unambiguously. If the result of zeroing is other than zero, this indicates that there is an error present.

The result of zeroing allows possible values of errors to be determined for each base. Due to determination not only of the location but also of the value of possible errors, an average of three operations is sufficient to localize an error. An example of correction of a single error by a correcting code with one test base is presented.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

YUDITSKIY, M. I.

"Planning of Regression Experiments When Their Are Errors in the

Avtomatiz. Nauch. Issled. i Tekhn. Podgotovki Proiz-va [Automation of Scientific Research and Technical Preparation of Production -- Collection of Works], Kiev, 1973, pp 55-69 (Translated from Referativnyy Zhurnal Kibernetika, No 9V144)

Translation: The linear regression model $y = x^T \theta + \epsilon$ is studied, where y, 0, c, x are the vectors of the measurements, unknown parameters, random errors and independent variables respectively. It is considered that variables x are random independent variables and $Ex_i = 0$, $Dx_i = \sigma^2$,

but, in contrast to most works on this subject, it is assumed that after experimentation the values of independent variables x_i can be precisely

measured. Under these assumptions, when the number of independent variables is not over 2, it is easy to find the mean values of variables maximizing certain characteristics of least-squares-method estimates for θ if the mean values of (x_i) do not exceed a certain constant.

1/1 M. Malyutov

USSR

UDC 519.217

YUDITSKIY, M. I.

"Random Walks With Absorption"

Teoriya veroyatnostey i mat. statis, Mezhved. nauch. sb. (Probability Theory and Mathematical Statistics: Interdepartmental Scientific Collection), No 3, 1970, pp 248-252 (from Referativnyy Zhurnal - Matematika, No 8, Aug 71, Abstract No 8V97 by G. Pastore)

Translation: A study was made of Bernoullian random walks on a straight line and on a circle with a partially (i.e., with a probability r < 1) and with temporarily partially absorbing screens (i.e., with absorption for only some finite time) at each point.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

USSR

YUDKIN, F.

"A Rival of the Legendary Ginseng"

Sverdlovsk, Ural, No 11, 1970, pp 77-79

Abstract: The root of the giuseng plant has been known for its remarkable medicinal effects in the Far East for centuries. Plants of this family grow in East Asia, including Eastern Russia. In particular, at northern latitudes of up to 52°, one first the thorny eleutherococcus, a species of Araliaceae to which ginseng belongs. Paradoxically the pharmacological significance of this particular species had not been recognized until the middle of this century. Since then intensive research has shown that one nectare of land planted with eleutherococcus can yield up to 5 tons of root, up to 2 tons of stalks, and up to half a ton of leaves. All these parts of the plant are medicinally active, and in 1969, 100 tons of root extract were produced in the Soviet Union, which is equivalent to 2 million monthly human doses. The strongly stimulating material has found recommended use in the raising of poultry, since it has been found that it acts as a substance capable of normalizing disturbances produced by stress in the animal organism. Stress may arise under a variety of conditions (love, illness, physical and psychic

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

USSR

YUDKIN, F., Ural, No 11, 1970, pp 77-79

traumas, even during ordinary overwork). Stress is a protective reaction and helps the body, but any stress is to some extent accompanied by harmful aftereffects. The effect of eleutherococcus on sperm production in bulls was, studied also, and its beneficial stress-releasing effects were established.

2/2

Extraction and Refining

USSR

UDC: 669.71.41

YUDKIN, S. A., DUBODELOV, V. I.

"Influence of Technological Factors on the Process of Refining of Aluminum in Magnetodynamic Installations"

MGD v Metallurgii i Liteyn. Proiz-ve [MHD in Metallurgy and Foundry Production -- Collection of Works], Kiev, 1972, pp 30-35 (Translated from Referativnyy Zhurnal Metallurgiya, No 8, 1973, Abstract No 8G178, by G. Svodtseva).

Translation: There is interest in the use of electromagnetic installations of magnetodynamic type for the refining of Al and its alloys. The essence of the method is that active contact between metal and flux is provided by repeated continuous feed of melt under the influence of electromagnetic forces. Primary Al type A8 was refined with a triple flux (30% NaCl + 23% $\mathrm{Ba_3AlF_6}$ + 47% KCl).

The first series of experiments was designed to define an efficient flux state, the second -- to determine the optimal modes of circulation of the metal in the installation with injection of flux. The velocity of the stream causing the optimal movement of metal in the bath was 0.2 m/sec. The content of Al_2O_3

1/2

USSR

Yudkin, S. A., Dubodelov, V. I., MGD v Metallurgii i Liteyn. Proiz-ve, Kiev, 1972, pp 30-35.

in the optimal liquid flux refining mode was decreased by 4 to 5 times (from 0.05 to 0.0125-0.01%). During the next 40 minutes after completion of the active stage of the process of refining, the quantity of ${\rm Al}_2{\rm O}_3$ in the metal increased to 0.02-0.03%, then stayed at this level. The slight increase in ${\rm Al}_2{\rm O}_3$ content can be explained by separation of ${\rm Al}_2{\rm O}_3$ particles from the oxide film formed on the surface of the metal after removal of flux by the circulation streams of metal in the bath. 5 figures, 5 biblio. refs.

2/2

1.3

USSR

UDC: 669.715.046.54/55

YUDKIN, S. A., DUBODELOV, V. I., POLISHCHUK, V. P.

"Refining of Aluminum Alloys in Induction Channel Furnaces"

Moscow, Tsvetnyye Metally, No 8, Aug 73, pp 45-47.

Abstract: A system is developed for protection of the channel of induction furnaces from overgrowth. The optimal purification of aluminum alloys using active fluxes was observed at 720-730° C, with a flow rate of the stream at the nozzle of 0.22-0.25 mm/sec, using T-shaped fittings 0.30-0.32 m/sec.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

USSR

UDC: 620.18.539.4.019.3:621.791

MALAN'IN, Yu. M., KAVERINA, S. N., RZHEVSKAYA, I. Ya., SHULEPOV, V. I., YUDKOVSKIY, S. I., Moscow

"Study of Various Zones in a Welded Joint in Molybdenum by Methods of Internal Friction and Electron Microscopy"

Moscow, Fizika i Khimiya Obrabotki Materialov [The Physics and Chemistry of Materials Processing], No 6, Nov-Dec 73, pp 123-126.

Abstract: It is demonstrated that the high probability of formation of cracks in the zone around a welded seam in molybdenum results from the disappearance of the cellular structure of the metal during welding, the sharp drop in solubility of interstitial impurities and the separation of carbide particles, around which significant local phase hardening occurs.

1/1

USSR

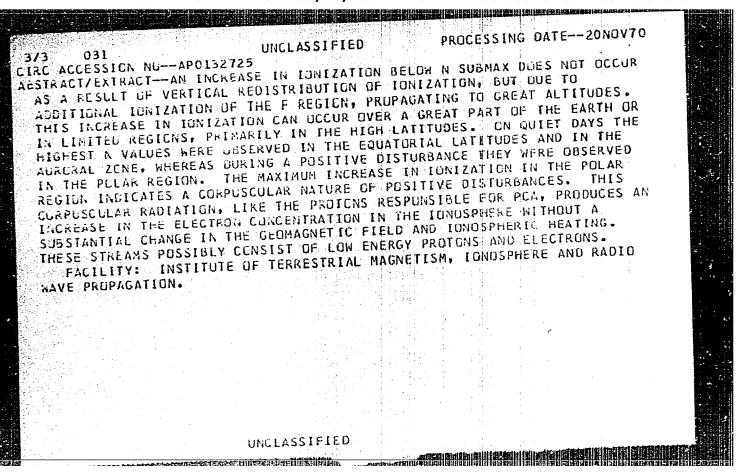
UDC 621.371:551.510.535

KISELEVA, H. V., KIYANOVSKIY, M. P., KNYAZYUK, V. S., LYAMHOVA, L. N., YUDOVICH,

"Forecasting the Critical Frequencies of the F2 Region"

V sb. Lonosfer. vocamushcheniya i ikh vlivaniye na radiosyyaz' (Lonospheric Disturbances and Their Effect on Radio Communications -- collection of works), Moscow, Nauka Press, 1971, pp 74-99 (from RZh-Radiotekhnika, No 1, 1972, Abstract No 14333)

Translation: A study was made of the time and space correlations between the deviations of the critical frequencies of the F2 region from the normal values (Af₀F2) with respect to icospheric data for the year of the maximum (1958) and minimum (1964) solar activity. The results with respect to the time correlation are reduced to the following: 1) for middle latitudes, the time stability is greater on days with negative disturbances and least of all on days with positive disturbances; in the equatorial latitudes, on the contrary, the time stability is greatest on days of positive disturbances; 2) in the summer the stability is greater than in the winter; 3) during the day the stability is somewhat higher than at night; 4) during the year of the maximum the stability is higher on the average than during the year of the minimum. The stability


· KISELEVA, M. V., et al., Ionosfer. vozmushcheniya i ikh vliyaniye na radiosvyani, Moscow, Nauka Press, 1971, pp 74-99

interval (the time period when the correlation coefficient $0 \ge 0.5$) is highest at latitudes of 40-60°. It drops at latitudes of 10-30° and again increases at the equatorial stations but appreciably less. The time correlation offers the possibility of extrapolation with respect to time in the middle latitudes, especially under conditions of negative disturbance. For the most favorable cases, the correlation equations are compiled for this purpose. A study of the spatial correlation confirmed a strong decrease in the correlation coefficient p with distance with respect to longitude and especially with respect to latitude. The spatial correlation is somewhat higher during negative disturbances during the years of maximum solar activity; during the day it is greater than at night. There are 6 illustrations, 8 tables and an 15-entry bibliography.

2/2

PROCESSING DATE--- 20 NOV 70 TITLE-CHANGE IN N.H. PROFILES DURING POSITIVE IGNOSPHERIC DISTURBANCES DURING YEARS OF MAXIMUM AND MINIMUM SOLAR ACTIVITY -U-AUTHOR-(04)-GCNCHAREVA, YE.YE., ZEVAKINA, R.A., LAVROVA, YE.V., YUDOVICH. L.A. COUNTRY OF INFO--USSR 1970, PP 547-549 SOURCE-MCSCON, GEOMAGNETIZM I AERONOMIYA, VOL X, NO 3, DATE PUBLISHED ---- 70 SUBJECT AREAS-ATMOSPHERIC SCIENCES, ASTRONOMY, ASTROPHYSICS TOPIC TAGS-ICNOSPHERIC DISTURBANCE, F LAYER, IONIZATION, AURORA, SOLAR ACTIVITY, GECMAGNETIC STORM CONTROL MAPKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NOT-UR/0203/70/010/003/0547/0549 PRUXY REEL/FRAME--3005/0526 CIRC ACCESSION NO--APO132725 UNCLASSIFIED

PROCESSING DATE--- 20NOV70 UNCLASSIFIED ABSTRACT. A STUDY WAS MADE OF CHANGE IN H(H) 2/3 CIRC ACCESSION NO--APO132725 PROFILES IN THE LATITUDE RANGE BODEGREESN-12DEGREESS DURING TWO POSITIVE ABSTRACT/EXTRACT--(U) GP-0-DISTURBANCES OBSERVED DURING THE PERIOD OF THE MAXIMUM OF SOLAR ACTIVITY 24-28 FEBRUARY 1958 AND DURING THE PERIOD OF THE MINEMUM 14-15 JANUARY BOTH DISTURBANCES WERE OBSERVED BEFORE SMALL MAGNETIC STORMS. SIMULTANEOUSLY WITH AN INCREASE IN IGNIZATION IN THE F REGION THERE WAS INCREASED ABSORPTION IN THE AURORAL ZONES. THE STUDY WAS MADE USING HOURLY N(H) PROFILES FOR WASHINGTON, TALARA, HUANCAYD, IBADAN, AND SINGAPORE, SUPPLEMENTED BY DATA FOR ALERT, BAKER LANE, CHURCHILL, SP-5, KHEYS ISLAND, DIKSON, MURMANSK, MOSCOW, AND ALMA ATAL COMPARISON OF N(H) PROFILES FOR DISTURBED AND QUIET PERIODS INDICATED THAT DURING POSITIVE DISTURBANCES THE ELECTRON CONCENTRATION INCREASES AT ALL ALTITUDES IN THE F REGION AND TO THE GREATEST DEGREE NEAR THE IONIZATION MAXIMUM. DURING THE NIGHTTIME AND MORNING HOURS THE GREATEST IONIZATION INCREASE OCCURS IN THE HIGH LATITUDES, WHEREAS DURING THE DAYTIME IT IS IN THE EQUATORIAL LATITUDES. N SUBMAX AND N FOR THE MOST PART HAVE SIMILAR CHANGES. AN INCREASE IN IUNIZATION OCCURS IN THE FORM OF BURSES WITH AN AVERAGE DURATION OF THREE OR FOUR HOURS. WITH A CONSIDERABLE INCREASE IN N. SUBMAX AND N (UP TO BOPERCENT) THE GEOMETRIC PARAMETERS H SUBY, H SUBOS AND T CHANGE FOR THE MOST PART IN NORMAL LIMITS (PLUS OR MINUS 20PERCENT) AT ALL LATITUDES. THESE PARAMETERS EXHIBIT AN APPRECIABLE INCREASE ONLY WITH AN INCREASE IN MAGNETIC ACTIVITY. UNCLASSIFIED

PROCESSING DATE--020CT70 TITLE--CYCLIC VARIATIONS OF THE A SUBO AND N PARAMETERS IN THE LATITUDE UNCLASSIFIED DEPENDENCE OF MIDDAY FZ LAYER IONIZATION, MIDDAY IONIZATION OF THE FZ AUTHOR-LOZI-BESPROZVANNAYA, A.S., YUDOVICH, L.A.

COUNTRY OF INFO-USSR

SOURCE--ARCTIC AND ANTARTIC SCIENTIFIC RESEARCH INSTITUTE AND INSTITUTE OF TERRESTRIAL MAGNETISM, IONOSPHERE AND RADIO WAVE PROPAGATION; MOSCOW, DATE PUBLISHED-----70

SUBJECT AREAS-ATMOSPHERIC SCIENCES, ASTRONOMY, ASTROPHYSICS TOPIC TAGS--F LAYER, IUNIZATION, VERTICAL SOUNDING, SOLAR ACTIVITY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1990/1664

STEP NO--UR/0203/70/010/002/0336/0338

per alleast and larver all the largest was considerable

CIRC ACCESSION NO--APO109657 UNCLASSIFIED

> APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

PROCESSING DATE--020CT70 UNCLASSIFIED CIRC ACCESSION NO--APO109657 ABSTRACT. THE ANALYTICAL FORMULA FOR ABSTRACT/EXTRACT--(U) GP-0-DESCRIBING THE GEOGRAPHIC DISTRIBUTION OF MIDDAY IONIZATION OF THE F2 LAYER IS (SHOWN ON MICROFICHE) WHERE M SUBIK IS EQUAL TO THE RATIO OF THE FOURTH POWER OF THE COSINES OF SOLARZENITH ANGLE AT THE ENDS OF THE MAGNETIC LINE OF FORCE PASSING THROUGH A PARTICULAR POINT WITH COORDINATES I (IN LATITUDE) AND K (IN LONGITUDE). THE PARAMETERS A SUB DATA FROM THE WORLD NETWORK OF VERTICAL D AND N ARE FOUND EMPIRICALLY. SOUNDING STATIONS IN THE NORTHERN HEMISPHERE WERE USED IN COMPUTING THE A SUBO AND N PARAMETERS FOR 1958-1964. THE ANALYSIS REVEALED THAT THERE ARE SUBSTANTIAL CYCLIC CHANGES IN THE AO AND N PARAMETERS WITH A LATITUDE DEPENDENCE OF MIDDAY IONIZATION OF THE F 2 LAYER. THE RADIO EMISSION FLUX AT LAMBDA EQUALS 10.7 CM CORRELATES BETTER WITH PHOTOTONIZING RADIATION THAN WITH SPOT NUMBER. LINEARITY OF THE DEPENDENCE IS NOT IMPAIRED EVEN DURING THE PERIOD OF HIGH SOLAR ACTIVITY. COMPARISON OF DATA FOR 1958 AND 1964 REVEALED THAT IN RELATIVE UNITS THE AMPLITUDE OF THE ANNUAL VARIATION REMAINS CONSTANT WITH TRANSITION FROM YEARS OF MAXIMUM TO MINIMUM ACTIVITY, ALTHOUGH IN ABSOLUTE VALUE IT DECREASED BY HALF DURING THIS PERIOD. THE EXPONENT N THE NATURE OF IN THE FOMULA IS FOR THE COSINE OF SOLAR ZENITH ANGLE. ITS CHANGES DURING THE CYCLE IS DIFFERENT FOR DIFFERENT SEASONS. DURING MARCH AND DECEMBER N INCREASES WITH A DECREASE IN SOLAR ACTIVITY WHEREAS IN YEARS OF MAXIMUM SOLAR ACTIVITY IN JUNE AND SEPTEMBER IT DECREASES. THERE ARE LOW N VALUES DURING WINTER AND A MARKED INCREASE IN N WITH AN INCREASE IN SOLAR DECLINATION FOR BOTH HEMISPHERES. IN WINTER THE N VALUES IN YEARS. UNCLASSIFIED

3 73	UNCLASS	SIFIED	PROC	PROCESSING DATE020CT70			
IRC ACCESSION NIAPO BSTRACT/EXTRACTOF T MAXIMUM. THE REVERS	HE MINIMUM ARE	GREATER	THAN DURI	NG YEARS OF	THE		
						. *	
					•		
				.· ·			
				; ;			
경영(경영) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
					•	1.	
						Į.	
				•			
	UNCLASSIF				89	. iii	

1/2 018

UNCLASSIFIED

PROCESSING DATE--090CT70

TITLE-INTERNATIONAL SUMMER SCHOOL ON IONOSPHERIC PHYSICS -U-

AUTHOR-(02)-DANILOV, A.D., YUDUVICH, L.A.

COUNTRY OF INFO--USSR

SOURCE-MUSCOW, GEUMAGNETIZM I AERONUMIYA, VOL X, NO 2, 1970, P 380

DATE PUBLISHED----70

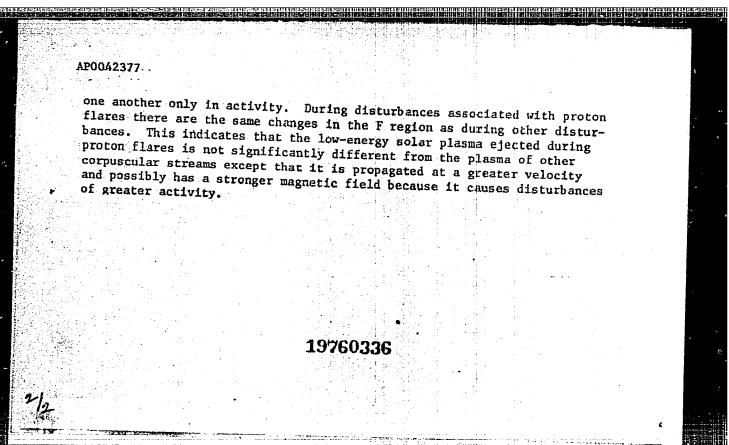
SUBJECT AREAS - ATMOSPHERIC SCIENCES, BEHAVIORAL AND SOCIAL SCIENCES

TOPIC TAGS-IONSOPHERIC P YSICS, AERONOMY, UPPER ATMOSPHERE, CHARGED PARTICLE

CONTROL MARKING-NU RESTRICTIONS

DUCUMENT CLASS--UNCLASSIFIED PRUXY REEL/FRAME--1994/0388

STEP NO--UR/0203/70/010/002/0380/0380


CIRC ACCESSION NO--APOLIA677

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

a der de la company de la comp

2/2 018 CIRC ACCESSION NU--APOII4677 UNCLASSIFIED PROCESSING DATE--090CT70 ABSTRACT/EXTRACT-(U) GP-0- ABSTRACT. AN INTERNATIONAL SUMMER SCHOOL ON IUNSOPHERIC PHYSICS WAS HELD AT SOCHI DURING THE PERIOD 3-16 SEPTEMBER 1969. THE SCHOOL WAS ATTENDED BY REPRESENTATIVES OF THE SOVIET UNION AND THE SOCIALIST COUNTRIES. OUTSTANDING SPECIALISTS IN THE FIELDS OF EXPERIMENTAL AND THEORETICAL LONGSPHERIC RESEARCH PRESENTED LECTURES. A. D. DANILOV GAVE A REVIEW OF CURRENT PROBLEMS IN AERONUMY, INCLUDING ATMOSPHERIC COMPOSITION, CHEMICAL REACTIONS AND INTERACTION OF RADIATION PROCESSES WITH THE UPPER LAYERS OF THE ATMOSPHERE. G. S. KVANON-KHOLODNYY GAVE A REVIEW OF EXPERIMENTAL DATA ON VERTICAL DISTRIBUTION, TIME OF DAY, SEASON, AND SOLAR ACTIVITY FOR ION COMPOSITION. TEMPERATURE AND EFFECTIVE RECOMBINATION COEFFICIENT. V. M. POLYAKOV PRESENTED A DETAILED EXAMINATION OF TRANSFER PROCESSES WHICH ON A GLOBAL SCALE AFFECT THE TONOSPHERIC DISTRIBUTION OF CHARGED PARTICLES. UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

UNCLASSIFIED PROCESSING DATE--20NOV70
TITLE--RELATION BETWEEN NONLINEAR POLARIZABILITY TENSOR OF MOLECULES AND
THE GREEN LAG FUNCTIONS OF THE APPLIED ELECTROMAGNETIC FIELD -UAUTHOR-(03)-90KOV, O.G., SHEKHTER, L.SH., YUDOVICH, M.V.

CCUNTRY OF INFO-USSR

SUURCE--OPT. SPEKTROSK. 1970, 28(2), 228-31

DATE PUBLISHED ---- 70

SUBJECT AREAS--PHYSICS

TOPIC TAGS-TENSOR, TENSOR ANALYSIS, NONLINEAR EFFECT, MAGNETIC POLARIZATION, MOLECULE, GREEN FUNCTION, ELECTROMAGNETIC FIELD, MATHEMATIC EXPRESSION

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1992/1782

STEP NO--UR/0051/70/028/002/0028/0231

CIRC ACCESSION NO--APOLIZ768

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

CIRC ACCES			68		1	1.5		E20NDV70	
APPLYING	THE DZY	ALOSHINS	- ABSI KII ANO	PITAEVS	KII (19	IUILIIY 59) MFTH	UN FUR C	TIGATED OF	
POLARIZA	EILITY T	ENSURS.	EXPRE	SSIONS A	RE DERI	VED FOR	THE TENS	ORS OF	
LINEAR A	NU NONEU	NCT IONS	OF THE	APPLIED	ELECTRO	MAGNETIC	FIELD.		
	the same		•				1. 1.		
							· .		
		5							
							•		
			*.						
			a*:				7		
		+							
									İ
							<u>:</u>		
			· .						
				and profession					
	•						:		
	•								
<u> </u>	<u></u>		NCLASSI	FIFD					

Hydraulic and Pneumatic

USSR

YUDOVICH. V. I. Rostov-na-Donu

"Occurrence of Autooscillations in a Liquid"

Moscow, Prikladnaya Matematika i Mekhanika, Vol 35, No 4, 1971, pp 638-655

Abstract: A study was made of the occurrence of autooscillations on transition of the Reynolds number (or another parameter determining the stationary movement of the viscous incompressible liquid) through the critical value. The method of Lyapumov-Shmidt [Vaynberg, et al., Teoriya vetvleniya resheniy nelineynykh uravneniy, Moscow, Nauka Press, 1969; Krasnosel'skiy, et al., Priblizhennoye resheniye operatornykh uravneniy, Moscow, Nauka Press, 1969] was used in the study.

The a priori estimate of the frequencies of possible autooscillatory conditions is established, and it is proved that the branch point of the cycle can only be the critical value of the parameter. Additional conditions under which the cycle actually occurs are discovered. A theorem which is an analog of the Krasnosel'skiy theorem on bifurcation points [Krasnosel'skiy, Topologicioskiye metody v teorii nelineynykh integral'nykh urawneniy, Moscow, Gostekhizdat Press, 1956] is proved. Under the conditions of this theorem the

YUDOVICH, V. I., Prikladnaya Matematika i Mekhanika, Vol 35, No 4, 1971, pp

existence of autooscillatory periodic motion is established on the basis of analyzing certain linearized equations independently of the form of the non-linear terms. A second theorem is proved resulting in a more detailed study of the cycles, their numbers and analytical properties as functions of the parameter under consideration. The proofs of the two theorems are based on the most general properties of the Navier-Stokes equations, and they are easily generalized to a broad class of ordinary differential equations in a Banach space containing various problems for equations of the parabolic type, the equations of convection, magnetohydrodynamics, and so on.

2/2

- 66 -

·USSR

MARKMAN, G. S., YUDOVICH, V. I.

"Conditions of Instability of Purely Rotary Periodic Flows of an Ideal

Mat. Analiz i ego Pril. T. 3. [Mathematical Analysis and its Applications, Vol 3 -- Collection of Works], Rostov-na-Donu, Rostov University Press, 1971, pp 59-69, (Translated from Referativnyy Zhurnal, Mekhanika, No 10, 1972, Abstract No 10 B524, by V. Kh. Izakson).

Translation: Purely rotary flows of an ideal incompressible fluid between rotating cylinders are studied:

 $\theta = \{0, \theta_{\epsilon}(r, t), 0\}, \theta_{\epsilon}(r, t) = \int_{0}^{t} F(r, t) dt + \varphi(t)$

 $F(r, \tau)$ is a T-periodic function of τ , satisfying the condition

 $\int_{0}^{T} (r, \tau) d\tau = 0$. $\int_{0}^{T} (r) - is$ an arbitrary function of r. The method of small oscillations is used to establish that for instability of these flows, it is sufficient that the conditions

USSR

MARKMAN, G. S., YUDOVICH, V. I., Mat. Analiz i ego Pril. T. 3., Rostov-na-Donu, Rostov University Press, 1971, pp 59-69.

be satisfied, where r_1 , r_2 are the radii of the cylinders.

2/2

-3.L -

1/2 036 UNCLASSIFIED PROCESSING DATE--300CT70
TITLE--THERMODYNAMIC AND SPECTRAL PROPERTIES OF P-NITROPHENDL IN AQUEOUS

AUTHOR-(04)-NIKOLSKIY, B.P., YUDOVICH, YE.YE., PALCHEYSKIY, V.V., SPEVAK,

COUNTRY OF INFO--USSR

SOURCE-ZH. FIZ. KHIM. 1970, 44(3), 709-11

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--THERMODYNAMIC CHARACTERISTIC, SPECTRUM, PHENOL, ORGANIC NITRO COMPOUND, ELECTROLYTE, ENTHALPY, ENTROPY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0723

STEP NO--UR/0076/70/044/003/0709/0711

CIRC ACCESSION NO--APO119630

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

UNCLASSIFIED PROCESSING DATE--300CT70 036 2/2 CIRC ACCESSION NO--APO119630 ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. PARTIAL ENTHALPY AND ENTROPY OF DISSOLN. OF P-O SUB2 NC SUB6 H SUB4 OH DECREASED WITH INCREASING CONCN. OF ELECTROLYTE. THE DECREASE OF THE ENDOTHERMIC CONTRIBUTION TO DELTAH DEPENDED ON THE ELECTROLYTE, KBR GREATER THAN KCL GREATER THAN NACL GREATER THAN LICL. THUS, THE DECREASE WAS LARGER THE LESS HYDRATED THE IONS OF THE ELECTROLYTES. THE ENERGY OF THE 1ST ELECTRONIC TRANSITION DECREASED WITH INCREASING CONCN. OF ELECTROLYTE AND THE EFFECT OF CREASED WITH INCREASING CONCN. OF ELECTROLYTE AND THE EFFECT OF ELECTROLYTES ON THE ENERGY VARIED IN THE ABOVE ORDER. FACILITY: LENINGRAD. GOS. UNIV. IM. ZHDANOVA, LENINGRAD, USSR. UNCLASSIFIED

UDC: 517.9:539.3

MOROZOV, N. F., YUDOVIN, M. E.

"On the Nature of Convergence of Bubnov-Galerkin Approximations in the Problem of Vibration of a Nonlinear Cylindrical Surface"

Tr. Leningr. tekhnol. in-ta tsellyulozno-bum. prom-sti (Works of the Leningrad Technological Institute of the Cellulose and Paper Industry), 1970, vyp. 25, pp 219-222 (from RZh-Matematika, No 5, May 71, Abstract No 5B519)

<u>Translation</u>: The authors study convergence of a sequence of Eubnov-Galerkin approximations to the unique generalized solution $u(x,t)\in W_2^{2,1}\begin{bmatrix}0< x<\pi\\0< t< T\end{bmatrix}$ of the indicated problem which satisfies the identity

$$\int_{0}^{T} \int_{0}^{\pi} \left[-u_{t} \Phi_{t} + u_{xx} \Phi_{xx} - \left[\Phi - K \left(u \right) \Phi \right] dx dt = 0 \right],$$

where $K(u) = e^{s} \int_{0}^{\pi} u_{x} dx \cdot u_{xx}$ and $\Phi(x,t)$ is a smooth function which vanishes on $i \in [T-\delta; T]$, $\delta > 0$.

1/2 It is shown that the Bubnov-Galerkin approximations $u^{(n)} = \sum_{i=1}^{n} u_{i}^{(n)}(t) \cdot v_{i}(x)$.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

MOROZOV, N. F., YUDOVIN, M. E., <u>Tr. Leningr. tekhnol. in-ta tsellyulozno-bum.</u> prom-sti, 1970, vyp. 25, pp 219-222

where $v_i(x)$ are eigenfunctions of the operator $\frac{d^u}{dx^u}$ in $L_2[0,\pi]$, and $u_i^{(n)} = \int_0^\pi u v_i(x) dx$ converge to the solution u(x,t) with respect to the norm in space $w_i^{(n)} = \int_0^\pi u v_i(x) dx$ 0 < t < T. This implies convergence of $u^{(n)}(x,t)$ to u(x,t) with respect to the cross sections t = const in the norm $w_i^{(n)} = \int_0^\pi u v_i(x) dx$ $v_i^{(n)} = \int_0^\pi u v_i(x) dx$ $v_i^{(n)} = \int_0^\pi u v_i(x) dx$

2/2

- 8 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

wc 577.17

LEBEDEVA, K. V., and YUDOVSKAYA, T. K.

"Juvenile Hormone Analogues and the Possibilities of Their Utilization in Plant Protection

Moscow, Zhurnal Vsesoyuznogo Khimicheskogo Obschoestva imeni D. I. Mendeleyev, Vol 18, No 5, 1973, pp 518-523

Abstract: A review with 113 references covering the compounds with pronounced juvenile hormone activity of the insects. The active compounds are subdivided in seven structural groups: biological activities of each group are reported. Some structure-activity generalizations have been made: the chain length in acyclic terpencids should be at least 13-16 carbon atoms long: when an aromatic ring is present, the side chain should contain at least 8 when a atoms. Changes at the terminal carbon atoms of the molecules have the most pronounced effect on the activity; as a rule the 2,3-double bond present in these compounds should be trans-oriented.

1/1

- 20 -

USSR

UDC 632.951+612.018

LEBEDEVA, K. V., and YUDOVSKAYA, T. K., All-Union Scientific Research Institute of Chemical Means for Plant Protection

"The Search for Insecticides With Juvenile Hormone Activity"

Moscow, Khimiya v Sel'skom Khozyaystve, Vol 9, No 5, 1971, pp 31-33

Abstract: Information given in the non-USSR literature on the constitution, mode of action, and synthesis of compounds with juvenile hormone activity is reviewed from the standpoint of prospects of application of these compounds in the control of insect pests (62 references)

1/1

53----

Devices

USSR

upo 621.327.534.15.032.43(088.8)

MAMSUROV, A.KH., CSKOLKOV, I.N., SAZHIN, L.I., TROFILOV, V.V., YUDOVSKIY, B.Z. [Vses. n.-i. kinofotoin-t--All-Union Scientific-Research Camera Institute]

Device For Ignition Of Xenon Lamps

USSR Author's Certificate No 311430, filed 13 Apr 70, published 6 Oct 71 (from RZh:Elektrotokhnika i energetika, No 5, May 1972, Abstract No 5v190P)

Translation: A device is proposed for ignition of xenon lamps, which contains a rectifier made with a thyristor, with a centrol circuit consisting of a RO network [tsepochka] with a switching diode. The rectifier is supplied from a supplementary winding of the power transformer of the rectifier. In order to accomplish control of the process of ignition of the lamps, an increase of their lifetime, and a decrease of the overall size of the device, the rectifier is connected in series with a supplementary winding of the transformer in the ignition circuit [tsep¹] of the xenon lamp. For supply of the control circuit an auxiliary rectifier is used, connected to the power transformer, at the output of which the RO network is connected. I ill. Ye.I. Afanaszyeva.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

USSR

UDC: 519.2

YEZHOV, I. I., YUDYTS'KYY, Ya, A.

"Concerning the Constructive Synthesis of a Markov Trajectory"

Visnyk Kiyiv. un-tu. Ser. mat. ta mekh. (Kiev University Herald. Mathematics and Mechanics Series), 1972, No 14, pp 15-18 (from RZh-Kibernetika, No 10, Oct 72, abstract No 10V75 [authors' abstract])

Translation: The two-dimensional Markov sequence $\{\xi_n, \tau_n\}$ is considered in which the first component assumes no more than a denumerable set of values, while the second increases. A random process is constructed whose values are equal to ξ_n between the process is constructed whose values are indicated which it is necestimes τ_n and τ_{n+1} . Conditions are indicated which it is necessary and sufficient to impose on the transitional probabilities of a two-dimensional Markov sequence in order that the process synthesized in accordance with this sequence be a stochastically continuous Markov chain.

1/1

18

USSR

UDC 621.397

YUDZON, O. I.

"Use of Superorthicons for Transmitting Images of Rotating Objects"

Vopr. radioelektroniki. Nauchno-tekhn. sb. Tekhn. televideniya (Problems of Radio Electronics. Scientific and Technical Collection. Television Equipment), 1970, vyp. 1, pp 93-100 (from RZh-Radiotekhnika, No 9, Sep 70, Abstract No 9G232)

Translation: This article contains an investigation of the basic characteristic features of operation of superorthicons in TV stroboscope equipment. Recommendations are made with respect to selecting the superorthicon which is most suitable for operation in this equipment.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

USSR

UDC: 8.74

BRYABIN, V. M., YUFA, V. M.

"Design of Syntax Analyzers for Conversational Systems"

Zh. vychisl. mat. i mat. fiz., 1973, 13, No 1, pp 172-186 (from RZh-Kibernetika, No 7, Jul 73, ebstract No 7V621 by the authors)

Translation: A method of describing the grammar of a natural language is considered as well as a scheme for converting the grammar into a syntax analyzer for a specific computer. The formal syntax and semantics of the metalanguage are presented. An intermediate language is proposed which describes the flowchart of the translator for the conversational system. The metadescription is transformed to the translator body for the specific computer in two stages by special programs in LISP language with the use of macro-operators in the assembler language.

1/1

		ea off-musin en estat de legation (1906 en 1916 de 1917) Regissime en la literatura de la managantique de 1917		5 12 14 14 15 7 1 ESENTULE
	の問題語が構造が難析 1 自 1 1 1 1 1 1 1 1	YUFARKIN	V. Ya.	
			3	,
Acc. Nr.: _APO042566		Ref. Code: <u>UR0293</u>	3_	(3)
Gamma Quanta with Energy Greater t	han 50 MeV in Cosmic	c Radiation		
(Abstract: "Measurements of Fluxes than 50 MeV in Primary Cosmic Radi Earth Satellite," by L. S. Bratoly Kalinkin, A. S. Melioranskiy, Ye. Yufarkin; Moscow, Kosmicheskiye Is 136-139) The artificial earth satell	ubova-Tsulukidze, N A. Pryakhin, I. A. galedovaniya, Vol VI	Savenko and V. Ya. II, No 1, 1970, pp		
cerenkov counters with radiators of by a scintillator for protection a cles, for measuring the fluxes of than 50 MeV. There is a dependent and geographic latitude, probably of y-radiation by charged particles.	against the backgrou- cosmic Y-quanta wi ce between the count related for the mos les. The article gi	and of charged parti- th energies greater ting rate of y-quanta t part to imitations tyes the values of the corial latitudes. The	•	-
of γ -radiation by charged particle total intensities of γ -quanta for latter data, interpreted as the up γ -rays, are (1.0+0.4)·10-4, (6+3 sterad) for E $\gamma \gg 50$, 90 and 146 of error these results agree with satellite 050-III.	pper limits of the f 3)·10-5 and (1.0+1.0 6 MeV respectively- the data obtained u	fluxes of primary))·10 ⁻⁵ (cm ² ·sec· Within the limits		ot in
	Reel/Frame 9760/Fra		A	

USSR

UDC 533,9.03,621.039.616 7 5-

BREDIKHIN, M. Yu., IL'CHENKO, A. M., MASLOV, A. I., SKIBENKO, A. I., SKIBE

"Investigating Conditions for the Formation of a Dense Plasma in Electron Beam Injection Into a Magnetic Trap"

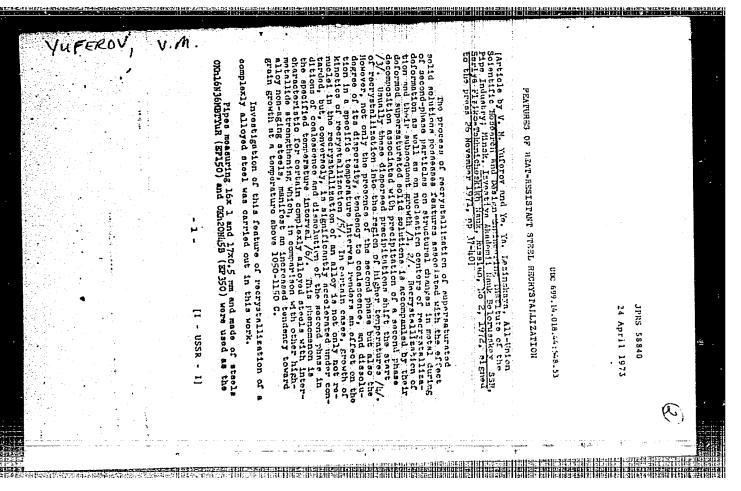
Moscow, Atomnaya energiya, Vol 29, No 4, Oct 70, pp 276-282

Abstract: The continuation of an earlier article by the same authors (Ukrainian Physical Journal, 14, 1969, p 1167), this paper describes experimental work they performed to study the conditions of plasma formation with a density of 10¹⁴-10¹⁵ cm⁻³ in a corkscrew-shaped magnetic trap into which an electron beam interacting with a neutral gas was injected. The experiments were peracting with the VGL-2 equipment, in which the magnetic field is formed with the VGL-2 equipment, in which the magnetic field is generated by two solenoids cooled with liquid nitrogen. Maximum generated by two solenoids cooled with liquid nitrogen. Maximum generated intensity is 21 kilogauss. A diagram of the VGL-2 magnetic field intensity is 21 kilogauss. A diagram of the experitogether with details of the equipment's operation and the experitogether with details of the equipment's operation and the experitogether with details of the equipment of an ental method is given. Oscillograms showing the development of the beam-plasma density as a function of electron beam current and time of plasma density as a function of electron beam current and the time rate of change of plasma density in the ionization of a neutral gas are plotted.

USSR

UDC 533.916

o de la company de la comp


BREDIKHIN, M. Yu., IL'CHENKO, A. M., MASLOV, A. I., SKIBENKO, A. I., SKIBENKO, Ye. I., YUFEROV, V. B.

"Study of a Dense Plasma Formed by an Electron Beam in a Magnetic Trap"

Fiz. plazmy i probl. upravl. termoyader. sinteza. Resp. nezhved. sb. (Plasma Physics and Problems of the Controlled Thermonuclear Fusion. Republic Interdepartmental Collection), 1972, No. 3, pp 147-161 (from RZh-Fizika, No. 11, Nov 72, Abstract No. 11G237)

Translation: An experimental study of the possibility of the formation of a dense plasma in the interaction of a high-energy electron beam with a neutral gas in a magnetic field of helical configuration is described. The introduction of a neutral gas into the interaction region in the form of a supersonic jet made it possible to produce the necessary pressure drop without applying special differential pumping systems. Conditions for the exponential rise in plasma density as a function of the parameters of the beam-plasma discharge were determined. It was concluded on the basis of the experiments that it is possible to form a plasma with a density of 5-7·10¹⁴ cm⁻³ with a supersonic jet of neutral gas.

1/1

Transformation and Structure

UDC 669.1.017.3:669.14.018.8

USSR

YUFEROV, V. M., and LEZINSKAYA, YE. YA

"Structural and Phase Transformations of Deformation Martensite in 1Kh15N9SZB Steel"

Kiev, Metallofizika, No 32, 1970, pp 82-85

Translation: An investigation was made of lKh15N9SZB (EP302) stainless steel. The substitution in this steel, as compared with steel 1Kh18N9B, of 3% chromium with the same amount of silicon leads to a considerable decrease in the stability of the steel austenite, whose martensite deformation point (Mg) reaches +150°C.

The cold rolling of 1Khk5N9SZB steel below the Ma point is accompained by the formation of deformation martensite, the amount of which reaches 70-80%. On heating the deformed smeal over the 450-700 range the process of transformation of deformation martensite into austenite occurs, its opeca during isothermal holding changing in time. The formation of austenite in transformation is accompanied by cold phase hardthed > ~ 1/2

USSR
YUFEROV, V. M., and LEZINSKAYA, YE. YA., Metallofizika, No 32, 1970, pp 82-85
ening and it acquires a fragmented structure inherited from the deformation martensite.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

UDC 699.14.018.44:548.53

USSR

YUFEROV. V.M., and LEZINSKAYA, Ye.Ya., All-Union Scientific Research, Design and Technological Institute of the Pipe Industry

"Peculiarities of the Recrystallization of Heat-Resisting Steel" Minsk, Izvestiya Akademii Nauk, BSSR, Seriya Fiziko-Tekhnicheskikh Nauk, No 2, 1972, pp 37-40

Abstract: The effect of the intermetallic phase on recrystallization processes of dispersion-hardening steel EP 150 (steel OKh16N36MBTUR) was investigated under conditions of usual furnace heating, electrocontact heating, and induction heating. The heating temperature dependence of the tensile strength and the average conventional grain diameter of the EF 150 steel is shown in comparison with steel EP 350 (OKh2ON45B). It was found that coagulation and dissolution of the NigTi-type intermetallic phase in the recrystallization process of the cold-deformed EP 150 steel contributes to a vigorous growth of grain and increasing graining difference in the 1050-1100°C temperature range. A more small-grained and homogeneous steel structure results by induction heating. To eliminate the different graining of the structure of cold-deformed heat-resisting and dispersion hardening steels, higher deformation degrees and increased heating rates of the metal by thermal treatment have to be applied. Two illustr., seven biblio. refs.

USSR

UDC 669.1.017.3:669.14.018.44:621.771.016.2

YUFEROV, V. M., and LITINSKIY, YU. D., All-Union Scientific Research Pipe Institute (Dnepropetrovsk)

"Phase Transformations in Martensite-Ferrite Steels in the Process of Hot Torsion Deformation"

Kiev, Metallofizika, No 39, 1972, pp 80-84

Abstract: The effect of hot torsion deformation on the structural and phase transformations in heat-resistant martensite-ferrite steels, taking place directly in the deformation site, was studied. Hot torsion of 8-mm-diameter samples was accomplished at 750-1275°C every 25 and 50° with subsequent prompt quenching. It was established that plastic deformation by torsion facilitates the alpha-gamma transformation, which leads to a decreased amount of ferrite and increased quantity of austenite in the steel in comparison with the equilibrium state at atmospheric pressure. The intensity of this effect is diminished with increased twisting temperature. It was shown that two-phase steels are found in the metastable state in the process of hot torsion as a result of phase transformations taking place, the realization of which is determined by the magnitude of shear and tangential stresses and no increased pressures in the deformation site. 1 table, 2 figures, 16 bibliographic references.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

Acc. Nr:
APO037763 Abstracting Service:
CHEMICAL ABST. 4/70

NE 0000

- 70440m Electron paramagnetic resonance study of free radical products of the reaction of inhlydrin with amino acids, peptides, and proteins. Yuferov. N. P.; Froncis, Wejeitech; Kharitonenkov, I. G.; Emmanson, A. E. (Bep. Biophys., D. I. Ivanovskii Inst. Virol., Moscow, USSR). Biochim. Biophys.

Acta 1970, 200(1), 160-7 (Eng.). EPR was used to study free radical products formed in the reaction of ninhydrin. Biophys.

Acta 1970, 200(1), 160-7 (Eng.). EPR was used to study free radical products formed in the reaction of inhydrin acids were characteristic of various amino acids and N-terminal amino acids of peptides. The EPR spectra of free radicals were characteristic of various amino acids and N-terminal amino acids of peptides. The anals, of these spectra showed that their hyperfine structure of the free radical products. The yield of free radicals defection with one N nucleus and protons which were a pair of structure of the free radical products. The yield of free radicals depended on pH of the medium and on the ant. of H₁O and O in the reaction mixt. Specificity of spectra permits use of EPR to identify amino acids and N-terminal amino acids in peptides.

REEL/FRAME

19730750

012

1/2

UNCLASSIFIED

PROCESSING DATE--11SEP70

TITLE--CONSTRUCTION OF A GAS LIQUID CHROMATOGRAPH FOR ANALYZING LOT STABILITY AND DIFFICULTLY BOLATILIZABLE COMPOUNDS -U-

AUTHOR--RUDENKO, B.A., KUCHEROV, V.F., YUFIT, S..S

COUNTRY OF INFO--USSR

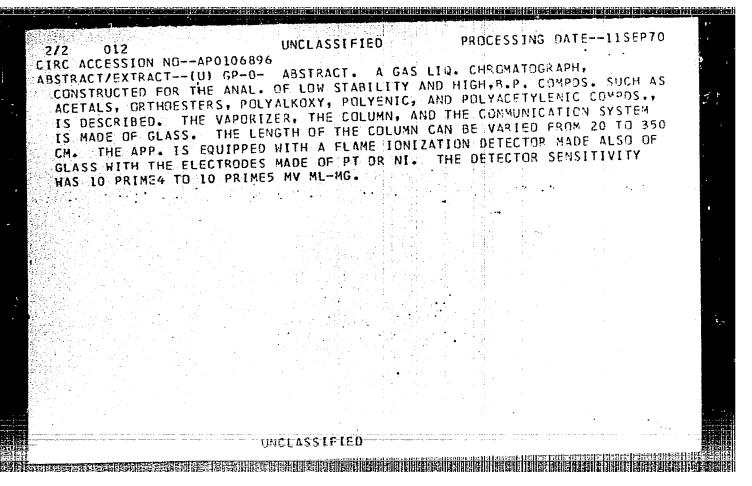
SOURCE--ZAVOD. LAB. 1970, 36(1), 109-11

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS-GAS CHROMATOGRAPHY, ACETAL, ACETYLENE HYDROCARBON, CHEMICAL LABORATORY APPARATUS, ESTER, CHEMICAL STABILITY

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/0240

STEP NO--UR/0032/70/036/001/0109/0111

CIRC ACCESSION NO--APOI06896

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

Acc. Nr:

AP0044594

Ref. Code: UR0497

PRIMARY SOURCE:

Klinicheskaya Meditsina, 1970, Vol 48,

Nr / , pp 11-76

BLOOD STREPTASE IN THE DIAGNOSIS OF RHEUMOCARDITIS IN PATIENTS SUFFERING FROM CARDIAC FAILURE AT REMOTE POSTOPERATIVE PERIODS

I. S. Golubev, SYE. Yulit. A. V. Plyashina
Summary

The authors describe the clinico-laboratory signs of rheumocarditis in 34 patients with rheumatic cardiac diseases at remote periods after the operation. By means of clinico-laboratory confrontations the authors stress the importance of the new test in the diagnosis of rheumocarditis. The authors are of the opinion that the streptase titer is a valuable auxiliary diagnostic test in the complex investigation of patients with active rheumocarditis, especially in its torpid course. One could assess the effectiveness of treatment by changes of the streptase titer in patients suffering from active rheumocarditis.

1/1

REEL/FRAME 19771270

Tel 02

UNCLASSIFIED PROCESSING DATE-20NOV70
TITLE--MECHANISM OF METAL IUN ADSORPTION ON CARBOXYLIC CATION EXCHANGERS.
VI. ADSORPTION OF COPPER AND NICKEL IONS ON SG.1 RESINS -UAUTHOR-(04)-YUFRYAKOVA, N.K., NAZAROV, P.P., CHUVELEVA, E.A., CHMUTOV,
K.V.
CGUNTRY OF INFO--USSR

SGURCE-ZH. FIZ. KHIM. 1970, 44(3), 720-3

DATE PUBLISHED----70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS-CATION EXCHANGE RESIN, ADSORPTION, COPPER COMPLEX, NICKEL COMPLEX, CARBONYL RADICAL, STABILITY CONSTANT/(U)SG1 ION EXCHANGE RESIN

CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3002/1211

STEP NO--UR/0076/70/044/003/0720/0723

CIRC ACCESSION NO--APOL28629

UNCLASSIFIED

2/2 011 UNCLASSIFIED CIRC ACCESSION NO--APO128629 PROCESSING DATE-- 20NOV70 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. THE INTERACTION OF 0.019 AND 0.038M CU(NG SUB3) SUB2 AND 0.0196M NI (CLO SUB4) SUB2 WITH THE CATION EXCHANGER SG.1 (PK SUBDISSOCN. 5.4 AND 5.52 IN NAND SUBB AND NACLO SUB4 SOLMS., RESP.) WAS STUDIED BY MEASURING THE PH OF THE SG.1 SUSPENSION AND EXTENT OF CU PRIME2 POSITIVE AND NI PRIME2 POSITIVE ADSOIPTION AFTER THE ADDN. OF VARIOUS AMTS. OF ALKALI. BOTH OF CU PRIMEZ POSITIVE NI PRIMEZ POSITIVE FORM A COMPLEX WITH 2 CARBOXYL GROUPS. CU IS MORE FIRMLY COMPLEXED, WITH A STABILITY CONST. K SUB2 TIMES 10 PRIME NEGATIVES EQUALS 0.93 AND 1.2 FOR THE CONCAS. 19 AND 38 MM-1., RESP., WHILE NI HAS K SUB2 EQUAL 0.013 TIMES 10 PRIMES AT THE STUDIED CONCN. FACILITY: INST. FIZ. KHIM. . MOSCOWN USSR. UNCLASSIFIED

USSR

UDC: 621.762:669.018.95

BEFERTEN BERNETT FROM HER DE HOUTE BEFORE DE HER BEFORE BEFORE BEFORE BEFORE BEFORE BEFORE BEFORE BEFORE BEFORE

NAZARENKO, N. D., YUGA, A. I., VLASKO, N. I., TRESVYATSKIY, S. G., KOLESNICHENKO, L. F., Institute of Problems of Material Sciences, Academy of Sciences UKrSSR

"Influence of Metal Fillers on Friction Properties of Sital 3"

Kiev, Poroshkovaya Metallurgiya, No 7, Jul 73, pp 51-54.

Abstract: An earlier work showed that the material called Sital 3, consisting of the oxides SiO₂, Al₂O₃, TiO₂, B₂O₃, MgO and fluorides, can be used for the manufacture of parts for friction couples. The authors believe that introzone into the depth of the material and formation of separating films on the surface of the material, could significantly improve the efficiency of Sital 3. duced to the material. The curve of coefficient of friction as a function of of about 30% copper powder allows the material to be used for vacuum operation, which is impossible with pure Sital.

1/1

- 35 -

USSR

WC 531.44.669.35

BELOBORODOV, I. I., KOLESNICHENKO, L. F., NENAKHOV, A. V., and YUGA, A. I., Institute of Problems of the Materia Science of the Academy of Sciences UkrSSR

"Investigation of Antifriction Properties of Bronze-Base Materials"

Kiev, Poroshkovaya Metallurgiya, No 11(131), Nov 73, pp 91-93

Abstract: The technology of the production of bronze-base metalloplastic antifriction materials with a high content of solid lubricant is described. The antifriction properties were studied on specimens with a highly porous (50%) bronze shell, produced from Gu (90%) and Sn(10%) powders and impregnated with a mix of fluoroplast-4 with 30% graphite. The results of investigations carried out in air at a sliding rate of 6 m/sec and loads of up to 60 kg/cm2 show that materials with 50% porosity based on non-spherical powders possess a high fatigue life independent of the presence of a solid lubricant surface layer. The antifriction properties of materials with 30% porosity based on spherical powders do not deteriorate when the surface layer is eliminated. Metalloplastic materials based on non-spherical powders with a higher content of solid lubricant are recommended for working under conditions of friction without lubrication. Four figures, one table, five bibliographic references. 1/1

CIA-RDP86-00513R002203710015-0"

APPROVED FOR RELEASE: 09/01/2001

"APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002203710015-0

Acc. Nr.: 1/0046764

 \bigvee

Ref. Code: UROIDS

USSR

UDC 621.791.927:669.35.6

ILYUSHENKO, V. M., SEDOV, V. YE., MAMYKIN, E. T., YUGA, A. I.

"Antifriction Properties and Wear Resistance of Hard-Faced Tin-Lead Bronze"

Kiev, Avtomaticheskaya Svarka (Automatic Welding), No 1, 1970, pp 28-31 (from Avtomaticheskaya Svarka, No 1, 1970, p 79)

Translation: This article contains a study of the wear resistance and coefficient of friction of hard-faced tin-lead bronze. The optimal composition of the antifriction alloy for manufacturing bimetal highly loaded bearings is selected. There is I table, 5 illustrations and a 5-entry bibliography.

X

Reel/Frame 19790068 ai 18

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

Physiology

UDC 523:612.015.3:611.85

8

USSR

LAPAYEV, E. V., PAVLOV, G. I., SIDEL HIKOV, I. A., UDALOV, Yu. F., YUGANOV, Yo. M., and CHELNOKOVA, N. A.

"The Effect of Linear and Angular Accelerations on Some Metabolic Indices"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya, No 4, 1970, pp 515-520

Abstract: Exposure of human subjects to linear and angular accelerations produced definite shifts in protein and vitamin metabolism. Some of the shifts were quite specific to vestibular stimulation --- decrease in transaminase activity, increased exerction of amino acids with decreased excretion of total nitrogen, and relative increase in content of the replaceable acids and amino acids involved in transamination reactions in the blood (aspartic and glutamic acids, glutamine, alanine). The shifts were more pronounced after Coriolis accelerations than after linear accelerations.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

1/2 039 UNCLASSIFIED PROCESSING DATE--300CT70
TITLE--PROBLEM OF NORMALIZING HIGH INTENSITY NOISES -U-

AUTHOR-(03)-YUGANOV, YE.M., KRYLOV, YU.V., KUZNETSOV, V.S.

COUNTRY OF INFO--USSR

SOURCE--KOSMICHESKAIA BIOLOGÍIA I MEDITSINA, VOL. 4, JAN.-FEB. 1970, P.

DATE PUBLISHED ---- 70

SUBJECT AREAS -- BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS -- WHITE NOISE, AUDITION, BLOOD PRESSURE, SPACE FLIGHT

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/0288

STEP NO--UR/0453/70/004/000/0038/0041

CIRC ACCESSION NO--APOL20977

UNGLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

UNCLASSIFIED PROCESSING DATE--300CT70
CIRC ACCESSION NO--APO120977
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. STUDY OF THE EFFECTS OF 500 HZ
114-116 AND 125-126 DB NOISE ON THE AUDITORY THRESHOLDS, BLOOD PRESSURE
AND THE TIME OF RESPONSE TO LIGHT STIMULI IN A GROUP OF 64 MALE
SUBJECTS, COVERING A TOTAL OF 152 TESTS. UNFAVORABLE EFFECTS OF 125-126
DB NOISE ON THE CARDIOVASCULAR SYSTEM AND AUDITORY AND VISUAL ANALYSORS
ARE ESTABLISHED. NOISE LEVELS OF 114-X16 DB ARE ACCEPTED AS PERMISSIBLE
DURING THE ACTIVE PHASES OF SPACE FLIGHTS.

USSR

UDC 613 693 (02)

ISAKOV, P. K., IVANOV, D. I., POPOV, I. G., RUDNYY, N. M., SAKSONOV, P. P., and YUGANOV, Ye. M.

Teoriya i Praktika Aviatsionnoy Meditsiny (The Theory and Practice of Aviation Medicine), Moscow, "Meditsina," 1971, 396 pp.

Translation: Annotation: This monograph elucidates theoretical and practical questions of aviation medicine. It presents brief information on the physiology, hygiene, pharmacology, toxicology, radiology, internal medicine, surgery, psychology, and other disciplines which make up the theoretical basis of aviation medicine. Questions of the medical flight examination for flight personnel, medical checks on flight safety, evacuating sick and wounded persons by air, and medical support for various types of aviation are considered.

The book is intended for aviation doctors and students at academies and aviation institutes and faculties.

Preface

The development of aviation medicine began with the introduction of aircraft into practical use. At the present time, representatives of practically all 1/11

USSR

ISAKOV, P. K., et al., Teoriya i Praktika Aviatsionnoy Mediusiny (The Theory and Practice of Aviation Medicine), Moscow, "Meditsina," 1971, 396 pp.

medical specialization devote attention to questions of aviation medicine. Furthermore, biologists and psychologists participate extensively in developing the scientific propositions which are used in aviation medicine.

In comparison with other occupations, flying activity involves a very high degree of action by various extreme factors on the organism. Even a slight emergency, similar to one which on the ground could be eliminated without danger to the crew, may end in disaster in the air if a set of special measures is not envisioned. For this purpose, aviation doctors participate in evaluating each new type of airplane, beginning with its design and ending with flight testing, and they conduct medical and psychological selection of candidates for flight schools. All activity by flight personnel is under constant observation by aviation doctors who regulate the flying load and participate in evaluating the pilot's readiness to perform the flight assignment.

In this book the first attempt is made to show, along with a presentation of the theoretical aspects of aviation medicine, the possibilities for applying this knowledge in the aviation doctor's practice.

USSR

ISAKOV, P. K., et al., Teoriya i Praktika Aviatsionnoy Meditsiny (The Theory and Practice of Aviation Medicine), Moscow, "Meditsina," 1971, 396 pp

The authors made no attempt to present all questions of aviation medicine without exception. In order to carry out such an attempt at the present time, a multi-volume publication would be needed. This refers particularly to the clinical aspects of aviation medicine. The specific etiological condition for the development and course of deviations in health caused by flight factors, analyzing the possibility of performing flights after suffering diseases, and the system and methods for medical monitoring of the state of health of flight personnel are all clinical aspects of aviation medicine which are elucidated in appropriate publications and, naturally, are treated in a limited manner here.

Table of Contents:		Page
Preface		3
First Part		
1. Flight Conditions and	Typical Features of the Occupation	
of Flying		5
Structure of the	Atmosphere	5
Elements of Fligh	nt Aerodynamics	16
3/11		

USSR			
ISAKOV, P. K., et al.	, Teoriya i Praktika Aviatsionnoy Meditsiny ion Medicine), Moscow, "Meditsina," 1971, 3	(The Theory 396 pp.	
		Page	
		24	
Types of Fli	ght and Their Typical Features	30	
Specific Nat	ure of the Profession of Flying	e 35 .	
2. Brief History of	the Development of Soviet Aviation Medicine		
	ors of High-Altitude Flight on the Human	51.	
Organism		51	
Hypoxia	on Disorders ("Altitude Pains")	62	
Decompression	y of Decompression Disorders	66	
Etiolog	enesis of Decompression Disorders	70	•
Patnoge	Ltitude Tissue Emphysema	71	
High-A	ive Decompression	73	
EXPLOSI	the Effects of Altitude on the Organism	75	
Preventing	elerations on the Organism	77	13.
4. Influence of Acce	Description of Accelerations in Flight	77	
Terminology	ctions of the Organism to the Effect of	:	
General Read	Lan	84	,
Accelerati	LUII		
4/11	- 49 -		

USSR			
ISAKOV, P. K.,	et al., Teoriya i Praktika Aviatsionnoy Meditsiny of Aviation Medicine), Moscow, "Meditsina," 1971, 39	(The Theory 6 pp.	·
	그는 생기를 가는 원목함이 함께 가는 그를 가르는 것		•
		Page	:
	Organism Reaction to the Effect of Radial	or	
e production	Accelerations	85	
	Influence of Radial Accelerations Directed from	91	
	the Feet to the Head	31	, -
	Influence of Radial Accelerations Directed		
	Perpendicular to the Longitudinal Axis of the	92	
	Human Body	93	
	asing Resistance to the Effect of Acceleration		
	nce of Vibrations and Motion Sickness on the Organi	96	
	tion and Prophylaxis	101	
	ickness and Its Prevention	103	
	Aviation iples of Diet Hygiene for Flight Personnel	103	
Princ	Feeding Flight Personnel Onboard the Aircraft	112	. e
	Feeding Under Emergency Conditions	114	
nd 1 as	's Personal Hygiene	115	
	mal Hygiene of Airport Quarters	119	
5/11	mar nygrene or Arrhore quarters	***	
J 11.	•		
•			.**

Haan	+ 4		
USSR			
ISAKOV, P. K., et al., Teoriya i Praktika Av			
and Practice of Aviation Medicine), Moscow,	latsionnoy Nedit	sinay (The Theory	•
	rieditsina, 197	1, 396 pp.	
		Page	
Labor Hygiene of Engineering-Technic	cal Personnel	124	-
Labor Hygiene in Aircraft Servicing	Jobs at the	77.4	
Airport		125	j
Medical and Hygienic Checks on the I	Physical Trainin	g of	
Flight Personnel		129	
. Aviation Toxicology		138	
. Aviation Pharmacology		146	
Reaction of the Organism Subjected t	to the Influence	of	. [
Flight Factors to Certain Pharmaco	logical Substan	ces 147	
Influence of Medicinal Substances on	n Organism React	ion	
to Subsequent Effects of Flight Fa	ictors	154	
ATTENDED TO NATURAL WATERTON		162	
Typical Features of the Action of Io	nizing Radiation		
Under Conditions of Flight Activit	y	167	
Superhigh Frequency Electromagnetic	Fields	171	
Preventing Radiation Injuries and Th Radiation Sickness	erapy of Acute		
'11		178	
- 5Q -			

	TO	AVOV n v		
	an:	AKOV, P. K., et al., Teoriya i Praktika Aviatsionnoy Meditsi	ny (The Theory	
		d Practice of Aviation Medicine), Moscow, "Meditsina," 1971,	396 pp.	
	7.0	어느 얼마 나는 그는 그를 보면 이 기를 보는 것이 없는 것이다.	Page	
	10.	The design of Mylacion Oblighatino 1008	183	
		Light Conditions of Flights	183	
		Visual Orientation in Flights	193	
		Cabin Lighting	199	
	-11	Methods of Increasing Visual Functions Aviation Otolaryngology	202	
		Noises and Their Effect	203	
		Noises and Their Effect on the Human	203	
		Barotrauma of the Ear, Nose, and Throat	220	
		Part 2.		
	1.	그는 그는 그는 사람들은 그들은 그는 그는 그는 그는 그는 그는 그를 모르는 것이 되었다.		
	••	Typical Features of the Psychophysiological and Hygienic		
	2.	Requirements for the Pilot's Working Location	225	
	4.	Oxygen Breathing Apparatus and Medical Check on the High-		
	3.	Altitude Training of Flight Personnel	239	
	-	Equipment for Emergency Abandonment of Aircraft and		
		Medical Checks on Flight Personnel Training for Forced		
		and the state of the	261	
4.1	7/1			

USSR

8/11

ISAKOV, P. K., et al., Teoriya i Praktika Aviatsionnoy Meditsiny (The Theory and Practice of Aviation Medicine), Moscow, "Meditsina," 1971, 396 pp.

The Parachute. Organism Reaction During Parachute	Page
amba. Traverring Tuliba	
Theory and Practice of Parachute Jumps	262
Preventing This Preventing Jumps	263
Preventing Injury During Parachute Jumps Ejection Organism Province Parachute Jumps	269
Ejection. Organism Reactions to the Mechanical Forces During Ejection	209
Briof Informati	272
Brief Information on the Design of the Catapult	273
Court in the court of the court of Maglines	213
Practices in Forced Abandonment of Aircraft During	274
Emergencies Proventing L.	
Emergencies. Preventing Injuries During Ejection	276
Dicerion at high Afficudes	279
Ejection at Parasonic Flight Speeds	
Redical Control During Drills in Emerger and	280
Abandonment of the Aircraft	
Survival and Rescue of the a	280
Survival and Rescue of the Crews of Aircraft After	
Landing (on Land or Water) in Unpopulated Difficult- to-Reach Places	
COLUGACIO LISCOS	201
C 1	284
- 51 -	

USSR ISAKOV, P. K., et al., Teoriya i Praktika Aviatsionnoy Meditsiny (The Theory and Practice of Aviation Medicine), Moscow, "Meditsina," 1971, 396 pp. Page Prospects for the Development of Rescue Equipment During Aircraft Emergencies 290 Preventing Passenger Injury During Transport Aircraft Emergencies 291 4. Evacuating Wounded and Sick Persons by Air 292 5. Medical Monitoring of Flight Safety 298 General Concepts 298 Selecting People Suitable for Flight Training by State of Health 299 Constant Observation of Health of Flight Personnel During the Performance of Flight Work 302 Annual Certification of Flight Personnel at Medical Flight Commissions 306 Preflight Medical Check and Approval for Flights 307 Medical Monitoring During Flights 312 Typical Features of Medical Support for Flights Under Different Climato-Geographic Conditions 313 9/11

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

USSR

ISAKOV, P. K., et al., Teoriya i Praktika Aviatsionnoy Meditsiny (The Theory and Practice of Aviation Medicine), Moscow, "Meditsina," 1971, 396 pp.

그러워 말이 되었다는 그 그 그 그 그 그 그 그 그 그 그를 입는 사람들이 되었다. 그를 모르는 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	Page
6. Psychological Selection of Candidates for Flight Schools	315
7. Typical Features of Medical Monitoring of the Health of	
Engineering-Technical Personnel Who Service Flights	317
8. Medical Analysis and Preventing the Causes of Flight	:
Accidents and Preconditions for Them	326
Medical Analysis of the Causes of Flight Accidents	326
Medical Analysis and Preventing the Preconditions to	
Flight Accidents	330
Preventing Erroneous Actions by Flight Personnel	333
Psychophysiological Preparation of Flight Personnel	
The Control of the Safety Park Park 日本 Park Park	336
9. Specific Features of Certain Types of Flights and Their	
Medical Support	344
Flights Under Complex Meterological Conditions	357
Flights at High Altitudes	357
Intercontinental (Prolonged) Flights	361

- 52 --

and Drooms	ar. 16	oriva i pro	less than 1 a				
ISAKOV, P. K., et and Practice of A	viation	Medicine),	Moscow, "M	tsionnoy ! editsina,'	feditsiny ' 1971, 390	(The Theory	
Test Fli Flights Flights 10. Current Prob	ghts in Helico	opters				Page 364 366 371	
Bibliography		racion Med	iicine			378	
						386	
							·
							c
/11							
							~

UNCLASSIFIED PROCESSING DATE--020C170
TIFLE--KINETICS OF THE GROWTH DE GAMMA PHASE PARTICLES IN NICKEL,
CHROMIUM, TUNGSTEN AND MULYBDENUM ALLOYS WITH VARIOUS ALUMINUM TITANIUM
AUTHOR-(02)-SOROKINA, YU.G., YUGANOVA, S.A.

COUNTRY OF INFO--USSR

SGURCE--METALLOVED. TERM. OBRAB. METAL. 1970, (3), 8-12

DATE PUBLISHED----70

SUBJECT AREAS-MATERIALS

TOPIC TAGS--GRAIN GROWTH, ALLOY PHASE TRANSFORMATION, ALLOY COMPOSITION, METAL AGING, NICKEL BASE ALLOY, METAL DIFFUSION, TUNGSTEN CONTAINING ALLOY, MOLYBOEUM CONTAINING ALLOY, HARDNESS, PARTICLE SIZE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/1937

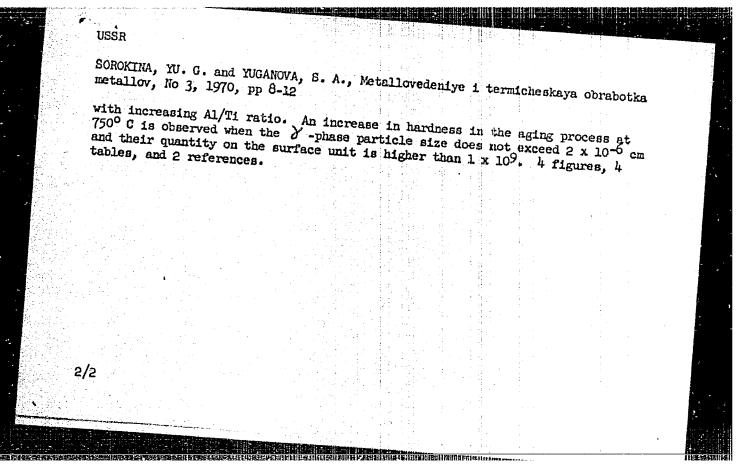
STEP NO--UR/0129/70/000/003/0008/0012

CIRC ACCESSION NO--APO108266

UNCLASSIFIED

PROCESSING DATE--020CT70 UNCLASSIFIED 031 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE GROWTH OF THE LINEAR DIMENSIONS OF GAMMA PRIME PHASE PARTICLES DURING AGING OF ALLOYS OF NI BASE AND CONTG. W AND MO IS DESCRIBED BY THE SAME EQUATIONS AS THE GROWTH IN ALLOYS WITHOUT THESE ELEMENTS. THE INTRODUCTION OF W AND MO INCREASES THE NO. OF GAMMA PRIME PHASE PARTICLES ON THE SURFACE AND SLOWS DOWN THE GROWTH RATE. A SIMILAR EFFECT IS OBSD. WHEN ALLOYING WITH TI. THIS EFFECT IS ASSOCD. WITH THE DIFFUSIONAL MOBILITY OF THE INTRODUCED ELEMENTS AND WITH THE DEGREE AND SIGN OF THE DEFECTS ON THE GAMMA PHASE, GAMMA PRIME PHASE BOUNDARY. AT EQUAL AGING TIMES THE NO. OF GAMMA PRIME PHASE PARTICLES DECREASES WITH THE INCREASE OF THE AL-TI RATIO. AN INCREASE IN THE HARDNESS OF THE ALLOYS DURING AGING AT 750DEGREES IS OBSD. WHEN THE GAMMA PRIME PHASE PARTICLES ARE SMALLER THAN 2 TIMES 10 PRIME NEGATIVES CM AND THEIR NO. IS SMALLER THAN 10 PRIME9-CM PRIME2. UNCLASSIFIED

UDC 669.14.018.44:620.18


SOROKINA, YU. G., and YUGANOVA, S. A. and TSNIITMASH, S. A.

"Kinetics of X -Phase Particle Growth in Ni-Cr-W-Mo Alloys with Different Al/Ti Ratios"

Moscow, Metallovedeniye i termicheskaya obrabotka metallov, No 3, 1970, pp 8-12

Abstract: The kinetics of the formation and growth of \(\) -phase particles in Mi-Cr-Al-Ti-W-Mo alloys was investigated and the results compared with available data on similar alloys not containing W and Mo. Tests were conducted on three nickel-based cast alloys with the same chrome, tungsten, and molybdenum content and different aluminum and titanium content. The chemical composition of the alloys is given in a table. The experimental technique and procedure are described. The size, shape, and quantity of phase particles were evaluated by the electron microscope method. The linear dimensions and quantity of phase particles were measured after alloy aging at 750°C with intervals of 100, 1000, and 5000 hours. The growth of \(\) -phase particle size during the aging process of nickel-based growth in alloys without these elements. The addition of W and Mo increases the quantity of \(\) -phase particles on the surface unit and decreases their growth rate. At the same duration of aging the quantity of \(\) -phase particle decreases

- 3 -

UDC 621.375.82

SIVERS, V. N., SHEMSHURA, V. Ye., and YUGAS, B.S.

"Determination of Density of Excited States in Three-Level Medium With Allowance for Multiple Light Scattering"

Opredeleniye plotnosti vozbuzhdennykh sostoyaniy v trekhurovnevoy srede s uchetom mnogokratnogo rasseyaniya sveta (cf. English above. Editorial Board of Zh. prikl. spektroskopii (Journal of Applied Spectroscopy)), Minsk, 1972, 11 pp, ill., bibliography with six titles (No 4204-72 Dep) (from RZh-Fizika, No 8, Aug 72, Abstract No 8D994 Dep from authors' abstract)

Translation: The authors consider the interaction of high-power monochromatic radiation with a three-level medium with equidistantly spaced energy levels. The medium is represented in the form of a one-dimensional array of scattering centers. With allowance for multiple light scattering in the medium, expressions are obtained which define the densities of scattering centers in states with energies E₁, E₂, and E₃. Stimulated emission is taken into account in the solution. The problem is considered under steady-state conditions. The density values of scattering centers make possible calculation of light conditions at any point in the medium. The results obtained 1/1

USSR

UDG 551.508.25.08

YUGAY, M. A.

"A Triple Balance Meter and Its Constant Values"

Trudy Kazakhskogo Politekhnicheskogo Instituta (Works of the Kazakh Polytechnical Institute), No 31, 1970, pp μμ-μ6 (from Referativnyy Zhurnal, Metrologiya i Izmeritel'naya Tekhnika, No 12, 1970, Abstract No 12.32.603 by V. S. K.)

Translation: A description is given of a triple balance meter developed at the Department of Physics of the Kazakh Polytechnical Institute for the Absolute Measurement of Radiation Intensity. The compensation-type balance meter constitutes a brass disk 100 mm in diameter and 10 mm thick, upon which are placed three balance meters which have independent leads for connection with measurement equipment. The space between the receiving surfaces of the balance meters is filled with a metal lining; this increases the stability of the instrument readings. The results of determination of the physical and geometrical characteristics of the described balance meter are presented. The heat lag of the instrument was found equal to 6-8 seconds.

- 107 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

USSR

ZHUK, N. S., RI, A. S., MIRCSHNICHENKO, N. I., KIN, V. YU., CVCHINNIKOV, N. A., and YUGAY. YU., Kazakh Institute of Epidemiology and Microbiology, Karatal'sk Rayon Sanitary Epidemiological Station, and Taldy-Kur, ansk Ublast' Sanitary Epidemiological Station

"Control of Blood-Sucking Insects in the Paddies of the Karatal'sk Rayon Rice-Growing System"

Alma-Ata, Zdravookhraneniye Kazakhstana, Vol 30, No 5, Kay 71, pp 14-15

Abstract: Favorable conditions for the propagation of noscuitoes exist in the rice paddies of Karatal'sk Rayon. Large amounts of larvae of Anopheles' maculipennis, An. hyrcanus, and Culex modestus are present in the paddies. Application of chlorophos in 0.5-0.8% solutions was effective in the control of mosquito larvae, Extermination of the larvae to the extent of 100% was obtained when these solutions were applied in amounts \geq 100 l./ha. The solutions were either sprayed from an aircraft or released into the paddies on the ground level. The first method sometimes resulted in inadequate spraying because of misses due to improper signaling while the second method had the drawback that the solution did not spread in a sufficient concentration to areas distant from the point of release. Organophosphorus compounds can be 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

USSR

ZHUK, N. S., et al., Zdravookhraneniye Kazakhstana, Vol 30, No 5, Kay 71, pp 14-15

used on rice crops only before flowering of the plants. Sound agricultural methods including lack of inclines in the system of paddies, dense planting of rice, and drainage of water from the paddies, dense planting of rice, and drainage of water from the paddies also proved effective in the control of mosquitoes.

2/2

- Q -

UDC 615.477.24:616.12-089.28

SHUTANOV, V. I., MOGILEVSKIY, E. B., KROL, A. D., ZUBAREV, Y. A., SHIRKINA, T. V., and YUGD, A. A., Scientific Research Institute of Clinical and Experimental Surgery, Moscow

"Model of an Artificial Heart for Intrapericardial Implantation"

Moscow, Meditsinskaya Tekhnika, No 5, Sep/Oct 70, pp 5-10

Abstract: A model is presented of an implantable artificial heart which consists of two mirror halves (right and left), each containing an artificial auricle and an artifical ventricle. The median surfaces of the ventricles are flat so that they may be easily connected after implantation. The overall dimensions of the unit and the volume of its cavities depend upon the heart dimensions of the animal for which the artificial heart is intended. Information is provided concerning the design, development, and testing of the artificial heart unit. Stand tests of implantable models developed by the authors and of control systems for them have made it possible to determine their functional parameters and to select the optimal operating conditions. It has been determined that the models can be used for experiments with total substitution of the pump function of the natural heart. Experiments on calves and dogs have been already initiated.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

UDC 629.7.015.3

YUGOV, O. K.

"Determination of Optimal Fuselage Dimensions of a Supersonic Civil Airplane at Preliminary Design Stage"

Kazan', Izvestiya VUZ, Aviatsionnaya Tekhnika, No 4, 1970, pp 31-37

Abstract: The problem of determining the optimal fuselage dimensions of a supersonic passenger airplane of a given passenger space volume is considered. The range at cruising speed, described by a formula, is taken as the evaluation criteria. The necessary weight and aerodynamic chracteristics contained in the above mentioned formula for the plane range are presented in the form of geometrical function of the fuselage. The fuselage friction, wave and base drags whose sum forms the fuselage total drag, are determined at Re = 6.5x106. Then an expression for total drag coefficient, related

to wing surface is derived. A finite equation for determining the range at cruising speed as a function of the fuselage geometrical dimensions is established. A numerical example of determining the rational fuselage dimensions of a super sonic airplane of 150 tons weight, designed for 120 passangers, at cruising speed corresponding to M - 2.2 is presented. The

YUGOV, O. K., Izvestiya VUZ, Aviatsionnaya Tekhnika, No 4, 1970, pp 31-37

results presented in graphs show that an optimal value of the nose aspect ratio exists for a plane designed for a specific passenger number and for a given cruising speed. It is stated in the conclusions that the procedure outlined here may be used for determining the fuselage parameters of other type aircrafts, when the fuselage capacity is given. 18 formulas, 2 figures, 4 references.

2/2

- 12 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

USSR

UDC:669.18:-147:621.746

POLYAKOV, V. V., SHORSHIN, V. N., NEKHAYEV, V. P., KVITKO, M. P., SINEL'NIKOV, V. A., FILATOV, Yu. V., YUGOV, P. I., and USTYUZHANIN, V. D.

"Study of Technology of Melting in an Oxygen Converter and Pouring of Type K-76 Rail Steel in a Continuous Casting Unit"

Proizvodstvo Chernykh Metallov [Production of Ferrous Metals--Collection of Works], No 75, Metallurgiya Press, 1970, pp 123-132

Translation: Results are presented from a study of a new, progressive metallurgical process—the production of railroad rails of high-quality ingots produced by continuous casting in combination with melting of rail steel in an oxygen converter.

It is assumed that the process is promising for further increases in the strength of railroad rails and reduction of the expense of their production. 5 figures; 4 tables; 5 biblio. refs.

1/1

- 20 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

USSR

ШС 669.184.144.66

YUGOV, P. I. UNNOV, V. D., and PLOKHIKH, V. A.

"Study of the Mechanism of Slaf Formation in an Oxygen Converter"

Proizvodstvo Chernykh Metallov (Production of Ferrous Metals -- Collection of Works), No 75, Metallurgiya Press, 1970, pp 116-122

Translation: Studies are performed in a 130 T oxygen converter on the mechanism of slag formation during blowing of cast iron, %, 4.2 C, 0.97 km, 0.67 Si, 0.041 S, 0.056 P. The melts were cooled with Fe ore. The slag forming materials used were lime (Ca0 = 85-87%) and feldspar. Blowing was with oxygen of 98.6% purity at a feed rate of 2.8 m/(min'T). The principal technological factors determining the nature and rate of dissolution of lime in the slag are the intensity of oxidation of silicon and manganese at the beginning of blowing; the content of MnO and FeO in the primary slag; the relationship of MnO and SiO₂ in the slag; the use of complex materials (fluxed sinter, Fe-ore briquettes, Mn ore, return slag) containing prepared components of the primary slag; the distribution of the additives of slag forming materials during blowing, taking into account the nature of oxidation of elements in the cast iron; the quality and physical state of the lime used. 3 figures; 1 tables.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

1/2 014 TITLE--DEPHOSPHORIZATION OF METAL WITH LOW CONCENTRACTIONS OF MANGANESE IN AUTHOR-(03)-YUGOV, P.I., AFANASYEV, S.G., KVITKO, M.P.

COUNTRY OF INFO--USSR

SOURCE--IZV. VYSSH. UCHEB. ZAVED., CHERN. MET. 1970, 13(4), 68-71

DATE PUBLISHED----70

SUBJECT AREAS-MATERIALS

TOPIC TAGS--REFINING FURNACE, METAL OXYGEN CONVERSION, LIMESTONE, PIG IRON, STEEL PRODUCTION, PHOSPHOROUS, MANGANESE CONTAINING ALLOY, METALLURGIC SLAG, MANGANESE DXIDE, ALLOY COMPOSITION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/0819

STEP NO--UR/0148/70/013/004/0068/0071

CIRC ACCESSION NO--AT0132909

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

UNCLASSIFIED PROCESSING DATE--04DEC70 CIRC ACCESSION NO--ATO132909 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. THE RESULTS ARE PRESENTED OF AN INVESTIGATION OF DEPHOSPHORIZATION CONDITIONS IN A 10 TON O CONVERTER DURING BLOWING OF LOW MN PIG IRON. LIMESTONE (85-90PERCENT CAO) WAS USED AS THE SLAG FORMING MATERIAL. A PROTION OF THE MELT WAS PREPD. BY THE USE OF MN ORE AND, FOR COMPARISON PURPOSES, ON BASIC PIG IRON CONTG. 1.2PERCENT MN. FOR ALL 3 VARIANTS THE LARGEST AMT. OF MELT CORRES NOS TO THE MIN. P CONCNS. IN THE METAL (LESS THAN 0.020PERCENT), I.E., ALL 3 VARIANTS PROVIDE FOR OPTIMUM CONDITIONS OF SUCCESSFUL DEPHOSPHORIZATION. THE FUNDAMENTAL TECH. FACTOR S ETG. THE DEGREE OF DEPHOSPHORIZATION DURING THE CONVERSION OF LOW MN PIG IRON ARE THE STATE OF OXION. AND THE BASICITY OF THE SLAG. DECREASING THE MN CONTENT IN THE METAL HELPS A HOVE LOWER P CONCNS. WITH INCREASED MNO CONCN. IN THE SLAG TO A GIVEN LIMIT THE DEPHOSPHORIZATION OF THE METAL DUGHT TO IMPROVE, WHEREUPON IT SHOULD AGAIN DETERIORATE. A REDN. OF P IN MELTS CONTG. MN ORE IS 0850. AND AN ATTEMPT IS MADE TO EXPLAIN THIS PHENOMENON. A DECREASE IN THE SUAG QUANTITY PRESENT WORSENS THE DEPHOSPHORIZATION CONDITIONS, SINCE AT THE SAME DISTRIBUTION COEFF. THE AMT. OF P REMOVED INTO THE SLAG DECREASES. THE REMOVAL OF P IS ALSO INHIBITED WHEN MN IS BEING REDUCED DURING THE COURSE OF THE PROCESS. 5 0 UNCLASSIFIED.

1/2 012 UNCLASSIFIED PROCESSING DATE--11SEP70
TITLE--EFFECT OF TECHNOLOGICAL FACTORS ON THE QUALITY OF OXYGEN CONVERTER
STEEL -U-

AUTHOR-AFANASYEV, S.G., YUGOV, P.I., DUKHANIN, A.S.

COUNTRY OF INFO--USSR

SOURCE--STAL' 1970, 30(1), 17-20

DATE PUBLISHED ----- 70

SUBJECT AREAS -- MATERIALS, MECH .. IND ., CIVIL AND MARINE ENGR

TOPIC TAGS--OXYGEN CONVERSION STEEL, DXYGEN, BIBLIOGRAPHY, METALLURGIC FURNACE, STEEL MANUFACTURE PROCESS

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1987/0141

STEP NO--UR/0133/70/030/001/0017/0020

CIRC ACCESSION NU--APOLO3820

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

ADSTRACT/CATRAC	1(U) GP-0-	ABSTRACT.	INFLUENC	CE OF DIFFERE	NT FACTORS IS	
MEATEMEN DV2F	U UN LITERATI	IRE DATA WI	TH THE COM	TAME ROTOLLOW	CTECLC MADE	
IN O BLOWN CO HEARTHS.	MAEKIZ WEF 20	JPERIOR TO	ANALOGOUS	STEELS MADE	IN OPEN	
				•••	* • • •	
					•	
				: 10 年 - 11 日 - 12 日		
	Secretaria de la Companya de la Com La Companya de la Companya de					
		interference de la companya de la c La companya de la co	.			
	1181	CLASSIFIED				

USSR

UDC 553.677:543.422.4.001.5

KARRYYEV, N. A., YUGOV, V. A., SAMORUKOVA, L. M.

"Spectroscopic Investigation of Slag"

Dokl. Nauchno-tekhn. seminara Metrol. v radioelektron. (Transactions of the Scientific and Technical Seminar Metrology in Radioelectronics), Tezisy, Ch 1, Moscow, 1970, pp 143-148 (from RZh-Metrologiya i Izmeritel'naya Tekhnika, No 8, Aug 70, Abstract No 8.32.642)

Translation: Results are presented of experimental investigations of the transmission spectra in the infrared region of the crystalline films of miscovite which are used as the backing in low inertia thin-film bolometers. The observed interference phenomena cause a considerable discontinuity of the slag spectrum. Since the reflectivity and the transmission of backing change from region of spectrum to another, then the receiver will produce higher response signal at the same wave length and smaller signal at others. Thus, the radiation receiver will not satisfy the desired continuity of spectral characteristics, a fact which should be taken into consideration during designing of bolometers. 3 111., 4 bibl. entries. V. S. K.

USSR

upd: 621.373:530.145.6:621.317.17

YUGOV, V. A., VOROB'YEV, L. K., KUSAREV, A. V., POTAFOV, I. S.

"A Thin-Film Laser Emission Measurement Receiver"

Dokl. Hauchno-tekhn. seminara "Metrol. v radioelektrot." Teziav. Ch. 1 (Regorts of the Scientific and Technical Saminar on Metrology in Radio Electronics. Summaries, Part 1), Moscow, 1970, pp 131-136 (from RZh-Radiotekhnika, No 7, Jul 70, Abstract No 7D244)

Translation: The authors give the design and technical characteristics of a thin--film receiver designed for precision measurements of low levels of the power of radiation flux from continuous-emission lasers. The indicator film is made from a semiconductor material with a high temperature coefficient of resistance such as germanium by the method of vaporization in a vacuum. The range of measurable emission powers is 10^{-2} - 10^{-5} [W] in the wave band of 0.4-14 μ . The limiting sensitivity is 0.1 µW. A. K.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

Acc. Nr. Abstracting Service: Ref. Code

CHEMICAL ABST. 5/70 (Aproved)

Abstracting Service: Ref. Code

CHEMICAL ABST. 5/70 (Aproved)

VI.; Sedov, V. E.; Vugova, T. C. (Fiz. Tekh. Inst. im. Ioffe, Legingrad, USSR).

The previously obsd. bound-exciton spectra (Gross, E. F.; S., V. I., 1967; G., et al., 1969) of Cu-doped crystals of GaAs were investigated. The photolumescence spectra at different depths of the crystal permitted the observation of the diffusion front of Cu in GaAs is detd. by the different soly, and diffusion coeffs, of the impurity centers. The characteristic diffusion of one of the centers was obsd. when the As pressure in the ampul was increased. The following models of the centers are proposed: [VacCug, Val,] and [Cug, Val), where Cug, is the Cu atom in a Ga vertex and Val is an As vacuncy. A shallow 0.023-eV level was obsd., ascribed to a lattice defect. The variation of the spectra with low-temp. annealing (450°) was also investigated.

Alexandre Fues

1/1

REEL/FRAME 19800165

18 NH

UNCLASSIFIED

PROCESSING DATE---230CT70

TITLE--ON THE EXISTENCE OF A WAVE FUNCTION FOR A SUBSYSTEM -U-

AUTHOR--YUKALOV, V.I.

022

COUNTRY OF INFO--USSR

SOURCE--VESTNIK MOSKOVSKOGO UNIV. FIZ. ASTRON. USSR, VOL. 11, NO. 1, P.

68-73 1970

1/2

DATE PUBLISHED ---- 70

SUBJECT AREAS -- PHYSICS

TOPIC TAGS--WAVE FUNCTION, PARTICLE DISTRIBUTION, SPECIFIC DENSITY, MATRIX FUNCTION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1990/1326

STEP NO--UR/0188/70/011/001/0068/0073

CIRC ACCESSION NO--APO109410

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

ABSTRA	CT/EXTRA	NOAPOLO CT(U) GI	P-0- ABST	RACT. CO	NSIDERS	THE EXIS	NG DATE2 TENCE OF 1 F N SUBSYS	THE
CAN OF W	S SHUWN HAVE A WA AVE FUNCT	THAT EVEN AVE FUNCT: TIONS IS:	IF THE SU ION IN THE INTRODUCED	BSYSTEMS ORDINARY WHICH PE	DO NOT I SENSE.	NTERACT, A GENER SEPARATE	NONE OF T ALISED CON DESCRIPTI	THEM ICEPT
A 50	BSYSTEM (OF A GIVEN	I ASSEMBLY	AND THE	RELATION	OF SUCH	FUNCTIONS IS EXPLAIN	TO
								.'
			•					
			•					
	\$ 15 10 10							
			*					

USSR UDC 577.4

YEGOROV, YE. A., YEKELIS, YU. I.

"Algorithms of an Automated Operative-Calendar Planning System"

Tr. N.-i. i proyekt, in-ta po vnedreniyu vychisl, tekhn, v nar. kh-vo (Works of the Scientific Research and Planning and Design Institute for the Introduction of Computer Engineering into the National Economy), 1971, vyp. δ , pp 12-21 (from RZh-Kibernetika, No 7, Jul 72, Abstract No 7V545)

No abstract

1/1

1/2 009 UNCLASSIFIED PROCESSING DATE-27NOV70

TITLE--ALKYLATION OF PHENOL BY TERT BUTYL CHLORIDE IN THE PRESENCE OF

ZEOLITES -U-

AUTHOR-(02)-YUKELSON, I.I., RAYEYSKAYA, V.I.

COUNTRY OF INFO--USSR

SOURCE--KHIM. PROM. (MOSCOW) 1970, 46(5), 333-5

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--ALKYLATION, PHENOL, ZEOLITE, ALKYL RADICAL, CHLORIDE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3008/0860

STEP NO--UR/0064/70/046/005/0333/0335

CIRC ACCESSION NO--APO137888

UNCLASSIFIED

PROCESSING DATE--27NOV70 **UNCLASSIFIED** 009 2/2 CIRC ACCESSION NO--APOL37888 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. REGRESSION EQUATIONS WERE OBTAINED CORRELATING THE TOTAL AND SEP. YIELDS OF MOND AND DISTERT, BUTYLPHENOLS WITH THE REAGNET RATIO, CATALYST CONCN., AND TEMP. DURING ALKYLATION OF PHOH BY TERT, BUCL ON ZEOLITES OF 0.25-0.5 MM PARTICLE SIZE. WHEN PHOH, TERT, BUCL HAS 1:1.2, THE YIELDS OF D AND P. WERT, BUC SUB6 H SUB4 OH ON 15PERCENT CAY AT 100DEGREES, 10 PERCENT CAX AT 175DEGREES, 5PERCENT NAY AT 100DEGREES, 10-20PERCENT NAX AT 100DEGREES, AND 10PERCENT NAM AT 60DEGREES WERE 84.8, 87.4, 70.1, 96.2, AND 65.1PERCENT, RESP. AT A RATIO OF 1:3 ON 20PERCENT CAY AT LOODEGREES, LOPERCENT CAX AT 125 DEGREES, 20PERCENT NAY AT 60DEGREES, 10-20PERCENT NAX AT 100DEGREES, AND 10PERCENT NAM AT 100DEGREES, THE YIELDS OF 2,4 AND 2,6, (TERT, BU) SUB3 C SUB6 H SUB3 OH WERE 58.4, 31.5, 90.3, 64.9, AND 79.2PERCENT. AT THIS RATIO ON 20PERCENT CAY AT 100DEGREES, 25PERCENT CAX AT 175DEGREES, 10PERCENT NAY AT 60 DEGREES, 10-20PERCENT NAX AT 100DEGREES, AND 10PERCENT NAM AT 100DEGREES, THE TOTAL YIELDS WERE 99.8, 94.8, 100, 96,23, AND 93.7PERCENT. THE ZEGLITES DECREASED IN STABILITY IN THE ORDER NAX, CAY, CAX, NAM, NAY.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"

UNCLASSIFIED PROCESSING DATE--11SEP70 1/2 023 TITLE--ELECTRON PARAMAGNETIC RESONANCE OF PRODUCTS FROM THE SULFURIZING OF POLYMERS CONTAINING BENZENE RINGS IN THE CHAIN -U-AUTHOR--GLUKHOVSKOY, V.S., KOSTIN, E.S., YUKELSON, L. J. COUNTRY OF INFO--USSR SOURCE--VYZOKOMOL. SOEDIN. SER. B 1970, 12(2), 136-9 DATE PUBLISHED----70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS--ELECTRON PARAMAGNETIC RESONANCE, POLYMER, BENZENE DERIVATIVE. SULFIDE, EPR SPECTRUM CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0460/70/012/002/0136/0139 PROXY REEL/FRAME--1989/0226 CIRC ACCESSION NO--AP0106982 UNCLASSIFIED

2/2 023 UNCLASSIFIED PROCESSING DATE--11SEP70 CIRC ACCESSION NO--APO106882 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE EPR SPECTRA AND THE CONCN. OF PARAMAGNETIC PARTICLES IN THE PRODUCTS FORMED BY REACTION OF POLY(1,3-DIMETHYLPHENYLENE SULFIDE) (1) WITH S WERE STUDIED. THE SULFURIZING OF I UNDER AR LED TO THE EVOLUTION H SUB2 S AND THE FORMATION OF A SOLID, DARK RED PRODUCT. THE REACTION OF I WITH S REQUIRED MORE DRASTIC CONDITION THAN DID POLY(ARYLENEALKYLS), PRESUMABLY DUE TO THE LOWER MOBILITY OF H ATOMS IN THE RESONANCE STABILIZED ME GROUPS. THE REACTION PRODUCTS OF I WITH S GAVE ASYM. EPR SPECTRA, ASSIGNED TO II RADICALS FORMED DURING (SHOWN ON MICROFICHE) EARLY STAGES OF SULFURIZING, WHILE III RADICALS WERE PRIMARILY FORMED WHEN THE S CONTENT WAS NEARLY EXHAUSTED. UNCLASSIFIED

NISHANKHODZHAYEVA, S. A., SOROKIN, V. M., and YUKEL'SON, L. Ya., Laboratory of Erzymology, Institute of Biochemistry, Academy of Sciences, Uzbek SSR

"Isolation and Characteristics of Toxin 2 from Central Asian Cobra Venom"

Tashkent, Meditsinskiy Zhurnal Uzbekistana, No 7, 1972, pp 44-46

Abstract: The venom of the Central Asian cobra Naja oxiana E. contains two neurotropic agents: toxin 1 (described in an earlier report) and toxin 2. Toxin 2 was isolated from whole venom by gel filtration on Sephadex G-75 and then purified by ion-exchange chromatography on KM cellulose. The toxin 2 molecule consisted of 62 amino acid radicals, with only methionine, phenylalanine, and hydroxyproline absent. Toxin 2 injected into mice intraperitoneally or intravenously was highly lethal to the animals. LD50 was 0.13 mg/kg of animal weight, or 4 times more potent than toxin 1 and 9 times more potent

1/1

- 25 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710015-0"