PROCESSING DATE--020CT70 UNCLASSIFIED 2/2 016 CIRC ACCESSION NO--APO111501 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. POLY(ETHYLENE TEREPHTHALATE) (1) FILMS AND POLYITETRAFLUORDETHYLENE) (II) FILMS WERE POLARIZED BY HEATING TO 110DEGREES AND 135DEGREES, RESP., IN POLARIZING FIELDS FOR SIMILAR TO 1 HR AND THEN BY ALLOHING THEM TO COOL IN THESE FIELDS TO ROOM TEMP. THE POLARIZATION, MEASURED BY THE RATIO OF THE INDUCED TO THE ORIGINAL CHARGE D. PERSISTED FOR LARGER THAN OR EQUAL TO B MONTHS AND LASTED LONGER FOR II THAN FOR I FILMS. THE POLARIZATION AND ITS DURABILITY INCREASED WITH THE FILM THICKNESS AND THE POLARIZING FIELD STRENGTH. WEAK HETEROCHARGING (SIMILAR TO 10 PRIME NEGATIVE 10 COULOMB-CM PRIMEZ) WAS OBSD. UNLY IN THE CASE OF I FILMS AT SMALLER THAN OR EQUAL TO 50 KY-CM FIELD STRENGTHS. IN THE CASE OF IT THE FILMS HAD DNLY CHARGES DE THE SAME SIGN. THE NEW EXPTL. AND THE LITERATURE DATA, GIVEN FOR OTHER ELECTRETS, ARE DISCUSSED IN TERMS OF THE SWAN GUBKIN THEORY. HART ASSIFTED

USSR

UDC 547.446+547.447+541.651

ZITSMANIS, A. Kh. and AREN, A. K., Riga Polytechnic Institute

"2- $(\gamma$ -Amino- β -Hydroxypropy1- and β -Oxopropy1)-2-Substituted-1,3-Indandiones"

Riga, Izvestiya Akademii Nauk Latviiskoi SSR, Seriya Khimicheskaya, No 4, 1970, pp 462-466

Abstract: The Prevot reaction with 2-ally1-2-substituted 1,3-indandiones leads to the formation of 2-(γ -iodo- β -acetoxypropy1)-2substituted 1,3-indandiones, which react with amines to form $2-(\gamma-amino-\beta-hydroxypropy1)2-$ -substituted 1,3-indandiones. The latter can be oxidized by chromic oxide to the corresponding $2-(\gamma-amino-\beta-oxopropy1)-2-substituted derivatives. The$ infrared spectra of these compounds are characterized by the absorption bands of B-dicarboxylic groups in the 1748-1700 cm-1 region and by the absorption bands of hydroxyl groups in the 3305-3210 cm-1 range. Acetylation of 2--(γ-amino-β-hydroxypropyl)-2-substituted 1,3-indandiones with p-tolucenesulfochloride led to the corresponding tosylate. The secondary hydroxyl group in the β -hydroxypropyl derivatives is easily converted into a keto group. 1/1

USSR

UDC 547.446+547.447+541.651

ZITSMANIS, A. Kh. and AREN, A. K., Riga Polytechnic Institute

"2- $(\gamma-Amino-\beta-Hydroxypropy1-$ and $\beta-Oxopropy1)-2-Substituted-1,3-Indandiones"$

Riga, Izvestiya Akademii Nauk Latviiskoi SSR, Seriya Khimicheskaya, No 4, 1970, pp 462-466

Abstract: The Prevot reaction with 2-ally1-2-substituted 1,3-indandiones leads to the formation of $2-(\gamma-iodo-\beta-acetoxypropy1)-2substituted 1,3-in$ dandiones, which react with amines to form 2-(γ-amino-β-hydroxypropy1)2--substituted 1,3-indandiones. The latter can be oxidized by chromic oxide to the corresponding $2-(\gamma-amino-\beta-oxopropy1)-2-substituted$ derivatives. The infrared spectra of these compounds are characterized by the absorption bands of β-dicarboxylic groups in the 1748-1700 cm⁻¹ region and by the absorption bands of hydroxyl groups in the 3305-3210 cm⁻¹ range. Acetylation of 2--(y-amino-B-hydroxypropy1)-2-substituted 1,3-indandiones with p-tolucenesulfochloride led to the corresponding tosylate. The secondary hydroxyl group in the β-hydroxypropyl derivatives is easily converted into a keto group. 1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

TOTAL CONTROL OF THE PROPERTY OF THE PROPERTY

USSR

UDC 669.187.2

KUZNETSOV, L. K., Candidate of Technical Sciences, TULIN, N. A., Candidate of Technical Sciences, ZHAVORONKOV, K. P., Engineer, LABUNOVICH, O. A., Engineer, and ZINUROV, I. YU., Engineer

"Working Experience of a 100-ton Electric Furnace with Uprated Transformer and Improved Short Fains"

Moscow, Stal', No 3, Mar 73, pp 236-238

Abstract: Transformers of 29, 15 and 32 Ev-amp uprated nominal power, permitting temporary overloading up to 45 Ev-amp, were installed on two 100-ton electric furnaces at the Chelyabinsk Metallurgical Plant. Modernization of short mains ensured a more uniform power distribution by phases and decreased induction losses. The conditions of melting stainless and structural steels are discussed. For greater effectiveness, further modernization measures must be carried out. One figure, four bibliographic references.

1/1

USSR

UDC 533.92:621.039.61

ALEKSIN, V. F., BIRYUKOV, O. V., VISHNEVETSKIY, V. N., GEORGIYEVSKIY, A. V., GROT, Yu. I., DIKIY, A. G., ZISER, V. Ye., KITAYEVSKIY, L. KH., KONOTOP, P. I., POGOZHEV, D. P., PELETMINSKAYA, V. G., SERGEYEV, Yu. F., SMIRNOV, V. G., SUPRUNENKO, V. A., TOLOK, V. T., and TARAN, V. M.

"Development and Synthesis of the "Uragan" Stellarator and Investigation of Magnetic Surfaces of High Shear"

Kiev, Fizika Plasmy i Problemy Upravlyayemogo Termoyadernogo Sinteza (Plasma Physics and Problems in Controlled Thermonuclear Synthesis -- collection of works) "Naukova dumka," No 3, 1972, pp 73-112

Abstract: After an initial section devoted to a review of the literature on the magnetic surfaces of toroidal stellarators and the principles of stellarators in general, the authors analyze the "Uragan" specifically. In particular, this paper is concerned with the problems involved in choosing the parameters of the magnetic system for the racetrack stellarator to obtain magnetic surfaces with high shear. This last term is defined as the extent of crossing of the magnetic lines of force. The synthesis and adjustment of the magnetic system are also examined, and 1/2

USSR

ALEKSIN, V. F., et al., Fizika Plasmy i Problemy Upravlyayemogo Termoyadernogo Sinteza, "Naukova dumka," No 3, 1972, pp 73-112

the results are given of an investigation into the instrument's magnetic surfaces. Computations worked out on an electronic computer for the design of the magnetic system are described, and differences between the "Uragan" and the "Sirius" stellarators are indicated. A comparative table of the parameters for various types of stellarator is given; it shows that the "Uragan" is one of the more powerful thermonuclear machines, with a high shear value for its substantial 10 koersted magnetic field intensity. This article is liberally illustrated with photographs and line drawings and has a bibliography of 51 titles.

2/2

- 65 --

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

USSR

UDC: 621.396.6

FEL'DMAN, N. B., TYULYAYEVA, N. G., ZIVZAKH, R. M., KUZNETSOVA, G. A.

"Effect Which Grain Orientation has on the Parameters of TsTS-22 Piezoceramic"

Elektron. tekhnika. Nauch.-tekhn. sb. Radiokomponenty (Electronic Technology. Scientific and Technical Collection. Radio Components), 1970, vyp. 5, pp 96-99 (from RZh-Radiotekhnika, No 5, May 71, Abstract No 5V387)

Translation: The authors study the effect of TsTS-22 ceramic grain size on fundamental parameters and the temperature coefficient of the resonance frequency. It is shown that an increase in grain size entails an increase in the permittivity and piezoelectric activity of the ceramic.

1/1

157 -

energias conservation en la constitución de la cons

USSR

UDC: 519.2:621.391

ZIYAKAYEV, R. G., SEMENOV, V. S.

"Statistical Approach to Signal Detection in Flaw Detection"

Tr. Sib. fiz.-tekhn. in-ta pri Tomsk. un-te (Works of the Siberian Physicotechnical Institute Affiliated With Tomsk University), 1970, vyp. 51, pp 202-208 (from RZh-Kibernetika, No 9, Sep 71, Abstract No 9V296)

Translation: It is noted that the part of the statistical theory of communications which deals with signal detection is fully applicable to the purposes of radioscopy. For this reason, the article contains a brief exposition of the well known principles of signal detection theory. The class of topics covered is indicated by the section titles:

"Average Risk and Plausibility Relation", "Optimum Receiver for a One-Dimensional Random Quantity", "Optimum Receiver for a Signal Given as a Function of Time", "Optimum Receiver for the Case of Nonadditive Interference". Ya. Kogan.

1/1

1 1930 in the control of the control

USSR UDC 621.351

ROMARIOV, V. V., ZIYATLY V. D., AGAGUSEYNOV, K. YU.

"Internal Resistance of Chemical Current Sources"

Uch. zap. Azerb. in-t nefti i khimii (Scientific Reports of the Azerbaydzhan Petroleum and Chemistry Institute), 1971, series 9, No 6, pp 89-92 (from RZh-Khimiya, No 6 (II), Jun 72, Abstract No 6L223)

Translation: As a result of analyzing the laws of change in the internal resistance of chemical current sources it was established that the internal resistances determined for any current strength are unsuitable for calculations for other values of the discharge current. The measurements show that different chemical current sources have a different nature of internal resistance with respect to alternating currents. Along with the active component, the internal resistance as a function of frequency can have a capacitive inductive, purely inductive or purely capacitive nature.

1/1

.. 6 ..

CONTROL OF THE PROPERTY OF THE

USSR

ABIDOV, A. A., Professor, ZAKIROV, N. A., Candidate of Medical Sciences and ANYAUTDINOVA, S. Z., Laboratory of Genetics of Vaccinal Strains, Tashkent Scientific Research Institute of Vaccines and Sera

"Characteristics of Auxotrophic Mutants of Enteropathogenic E. coli Serotypes"

Tashkent, Meditsinskiy Zhurnal Uzbekistana, No 2, 1971, pp 62-65

Abstract: Autotrophic mutants were isolated from three strains of pathogenic serotypes of E. coli -0111:B4:H2, o55:B5:H6, and 026:B6:H11 - under the influence of ultraviolet radiation or K-methyl-K-mitro-K-mitrosoguanidine (the more potent mutagen). The various amino acid requirements for growth of the mutants on a minimum medium were identified and tabulated. None of the mutants differed from the original strains in morphological, cultural, or biochemical properties. Study of the mutants in the agglutination reaction with homologous coli sera showed that most of the nutants retained the serological properties of the original strains. A few lost them and in some the serological properties were intensified, especially those induced by K-nitrosoguanidine.

1/1

- 17 -

Acc. Nr: AP0051938

Ref. Code: UR 6219

14.955. Desimante erromante autost expandringos engangelinini dinago din lahalahanni isanggilini dilihahahalikan ngurrang

PRIMARY SOURCE:

Byulleten' Eksperimental'noy Biologii i

Meditsiny, 1970, Vol 69, Nr 2, pp //6-//2

ISOLATION OF AUXOTROPHIC MUTANTS FROM THE CULTURES OF PATHOGENIC SEROTYPE 0111: B4: H2 OF B. COLI TREATED WITH N-METHYL-N'-NITRO-N-NITROSOGUANIDIN

N. A. Zakirov, S. Z. Ziyautdinova

Institute of Vaccines and Sera, Ministry of Health of the USSR, Tashkent

The authors isolated 55 auxotrophic mutants from the cultures of pathogenic serotype O111: B4: H2 of E. coli treated with N-methyl-N'-nitro-N-nitrosoguanidin. Investigation of the food requirements of the mutants isolated indicates that 27 of them are mono- and 13 are polyauxotrophic. In 15 mutants, requirements for individual food factors failed to be established. In some mutants, biochemical characteristics (capability to fermentate maltose) also changed compared to the initial strain. Investigation of serological characteristics allowed to establish that one group of mutants retained some antigens of the initial strain while the other completely lost them. Thus, nitrosoguanidin exerts considerable mutagenic action on bacteria of pathogenic serotype O111: B4: H2 of B, coli, especially on their antigenic structure.

REEL/FRAME 19820421

220

ussr

WC 632.95

ZIYAYEV, A. A., OTROSHCHENKO, O. S., SADYKOV, A. S., TOLKACHEVA, G. A., AKBAROV, KH. A., and KHODZHAYEVA, T. A.

"A Method of Making \(\beta - \beta \) -Di-\(\beta\) piperidyl-2- (or 1-Methylpiperidyl-2) \(\beta\)

Disodium-\(\beta \) \(\beta \) -Dihydrodipyridyl Carbamate"

USSR Author's Certificate No 343975, filed 13 Jul 70, published 14 Aug 72 (from RZh-Khimiya, No 10, May 73, Abstract No 10N614P by N. Y. Lebedeva)

Translation: \$\beta\$. \$\beta\$-Di-(piperidyl-2)-disodium-\formultiple{\chi}\$, \$\formultiple{\chi}\$'-di-(i-methylpiperidyl-2)-disodium-\formultiple{\chi}\$, \$\formultiple{\chi}\$'-di-(i-methylpiperidyl-2)-disodium-\formultiple{\chi}\$, \$\formultiple{\chi}\$'-dihydrodipyridyl carbamate (II) are synthesized by reacting anabasine (III) or N-methylanabasine (IV) respectively with dispersed metallic sodium in an organic solvent in a molecular nitrogen atmosphere at 50-60°C. Example: 50 g of III or IV are added to a suspension of 10 g of Na in PhMe, the reaction mass is agitated in a stream of N2 at 50-60°C until the sodium dissolves, and treated with CO2. The resultant mass is evaporated, the residue is washed with n-hexane and filtered giving compound I or II with a yield of 90%, the melting point of I is above 400°C, molecular weight 456; the melting point of II is above 400°C, molecular weight 486. The values of R are given for I and II as well as IR-spectral data. I and II can be used as herbicides, and 1/2

... 32 ...

USSR

ZIYAYEV, A. A., et al., USSR Author's Certificate No 343975, filed 13 Jul 70, published 14 Aug 72

also in synthesizing mono- and polyesters containing physiologically active fragments in the macromolecule.

2/2

USSR

UDC: 547.944/945

ZIYAYEV, R., ABDUSAMATOV, A., YUNUSOV, S. Yu., "Order of the Red Banner of Labor" Institute of the Chemistry of Plant Materials, Uzbek SSR Academy of Sciences

"Lirinin -- a new Alkaloid From Liriodendron Tulipifera"

Tashkent, Khimiya Prirodnykh Soyedineniy, No 1, 1973, pp 67 72

Abstract: A new alkaloid which the authors have named "lirinin" was isolated from the alkaloid sum (chloroform extraction) of leaves of the tulip tree (Liriodendron tulipifera) with empirical formula $C_{19}H_{21}O_{2}N$, melting point 152-154°C (alcohol), $\sqrt{\alpha}J_{D}^{22}$ --55°C (c 0.089, chloroform). Analysis of UV, IR, NMR and mass spectra shows that lirinin has the structure of 5-hydroxy-2,6-dimethoxyaporphine

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

USSR

UDC 547.944/945

ZIYAYEV, R., ABDUSAMATOV, A., YUNUSOV, S. YU., Order of the Red Banner of Labor Institute of the Chemistry of Plant Substances of the Uzbek SSR Academy of Sciences

"Alkaloids of Verbascum Songoricum"

Tashkent, Khimiya Prirodnykh Soyedineniy, No 6, 1971, pp 853-854

Abstract: A study was made of Verbascum songoricum Shrenk. (Scrophulariaceae family) gathered at Chimgan of Tashkent Oblast during various periods of vegetation and each organ separately. The total alkaloids in percent by weight of the dry plant are presented for each of the organs. Ultraviolet, infrared and mass spectrographic data show that anabasin, plantagonin, acetamide and a base with a melting point of 195-196° were isolated. This is the first time anabasin was isolated from Scrophulariaceae.

1/1

4 --

USSR

ZIYAYEVA, Z. T.

"The Problem of Optimization in Estimation of Probability Density"

Izv. AN UzSSR. Ser. Fiz.-Mat. N. [News of Academy of Sciences, UzSSR, Physics-Mathematical Sciences Series], 1973, No 1, pp 30-35 (Translated from Referativnyy Zhurnal Kibernetika, No 6, 1973, Abstract No 6V2CO, by the author).

Translation: Suppose x_1 , x_2 ,..., x_n is a stable Markov process, the stable and initial distributions coincide; f(x) is the initial probability density of values of the process, defined relative to the Lebesgue measure. For estimate of f(x), a study is made of the form

$$f_n(x) = \frac{1}{h(n)} \int_{-\infty}^{\infty} K\left(\frac{x-y}{h(n)}\right) dF_n(x) =$$

$$= \frac{1}{nh(n)} \sum_{j=1}^{n} K\left(\frac{x-x_j}{h(n)}\right).$$

1/2

- 18

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

USSR

UDC 615.616.24-003.656.6

FEYGIN, B. G., KHAMITOVA, V. Z., ZIZANGIROVA, L. A.

"Problem of the Effect of Titanium Admixture in Quartz on the Development of Silicosis"

Tr. NII krayev. patol. KazSSR (Works of the Scientific Research Institute of Marginal Pathology of the Kazakh SSR), 1972, No 23, pp 147-151 (from RZh--Farmakologiya, Khimioterapevticheskiye Sredstva. Toksikologiya, No 3, Mar 73, Abstract No 3.54.893)

Translation: A dose of 0.5 ml of suspension containing 25 ml of Ti and 25 mg of quartz (first group) or 30 mg of quartz (second group) was administered daily intratracheally to male rats for 12 months. After one month, fine-focal inflammatory alterations of the interstitial type with round-celled and histocytic infiltration of the alveolar septa were observed in the lungs of the animals of the first group. After six months the inflammatory alterations in the lungs were accompanied by the development of large centers of cellular proliferation, nodular and perivascular cellular accumulations. After 9 and 12 months, attenuation of the inflammatory process was noted with normalization of the histologic picture 1/2

- 70 -

USSR

FEYCIN, B. G., et al., Tr. NII krayev. patol. KazSSR, 1972, No 23, pp 147-151

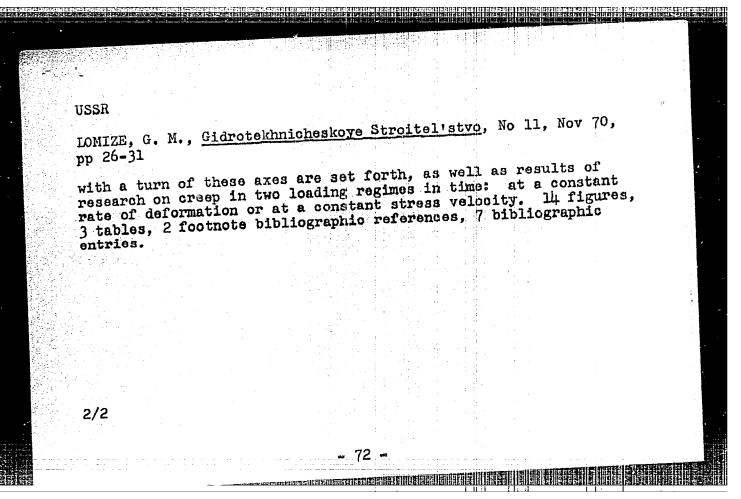
of the lungs. In the animals of the second group, the development of the typical silicosis picture was observed: infiltrative—proliferative part in the septum inter-alveolarium, then individual silicotic nodes of the lymphocytes, epithelial cells, compressed vessels and bronchi, then generalization of the process with partial deterioration of the lung tissue. It is considered that Ti does not intensify the silicosogenic properties of Si.

2/2

USSR

UDC 627.824.33:624.042.6.001.24

IOMIZE, G. M., Doctor of Technical Sciences, IVASHCHENKO, I. N., Candidate of Technical Sciences, ISAKHANOV, YE. A., ZKHAROV, M. N., Engineers


"The Deformability, Strength and Creep of Clayey Soils in Gores of High Head Water Dams"

Moscow, Gidrotekhnicheskoye Stroitel'stvo, No 11, Nov 70, pp 26-31

Abstract: The article gives a general formulation of the question of calculation of the cores of high head water dams and the problem of research on the initial equations of the stress-deformed state in the regions before and after the limit. It is shown that the stress-deformed state must be evaluated for various load trajectories, and that the influence of creep processes in various load regimes within time must also be studied. Results of experimental study of the deformability of clayey soils under conditions of simple and complex (according to Il'yushin) loading with a stationary position of the axis of the main stresses and

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

étés, ét data peset a did malest disperticipat des rengales dispertibilité par l'inferience de serve de l'esperante de Serves de l'esperant des des des disperticies de l'espectation de l'esperant de l'esperante de l'esperante de

1/2 011 UNCLASSIFIED PROCESSING DATE--300CT70
TITLE-EFFECT OF SULFHYDRYL GROUPS AND DISULFIDE BONDS ON THE QUALITY OF
THE FLOUR FROM DIFFERENT STRAINS OF WHEAT -UAUTHOR-(02)-ZKAHARGVA, S.A., KAZAKOV, YE.D.

CCUNTRY OF INFO-USSR

SOURCE-PRIKL. BIOKHIM. MIKROBIOL. 1970, 6(2), 127-32

DATE PUBLISHED --- 70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-WHEAT, BPROCESSED PLANT PRODUCT, PROTEIN, FOOD TECHNOLOGY

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3001/1997

STEP NO--UR/0411/70/006/002/0127/0132

CIRC ACCESSION NO-APOL27392

THE STRIFFE

PROCESSING DATE--300CT70 UNCLASSIFIED 011 CIRC ACCESSION NO--AP0127392 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. FLOUR ISOLATED FROM STRONG (BEZOSTAYA 1) AND WEAK (ALBIDUM 43) WHEAT KERNELS IN 1967 WAS TREATED BY VARIOUS HYDROTHERMAL PROCEDURES (HEATING, COOLING, AND STEAM). THE MIXING ABILITY OF FLOUR FROM STRONG WHEAT GRAINS (THE ABILITY TO INCREASE BAKING STRAIN OF THE FLOUR FRUM WEAK WHEAT) DEPENDED DIRECTLY ON THE RATIO OF SS TO SH GROUPS AND NOT ON THE TOTAL AMT. OF THESE GROUPS IN THE FLOUR FROM STRONG WHEAT STRAINS. DIRECT HYDROTHERMAL TREATMENT OF THE KERNELS BEFORE MILLING INCREASED THE BAKING VALUE OF THE FLOUR IN BOTH TYPES OF WHEAT. NO ADDITIVE PROPERTIES WERE OBSO. DURING MIXING OF FLOUR FROM BOTH WEAK AND STRONG WHEAT KERNELS. THE HYDRATION CAPACITY OF GLUTEN FROM ALBIDUM 43 WHEAT FLOUR INCREASED DURING HYDROTHERMAL TREATMENT. GLUTEN ELASTICITY MEASURED ON THE PEK 3A SCALE DECREASED IN ALL WHEAT STRAINS DURING HYDROTHERMIC TREATMENT. FACILITY: MOSK. TEKHNOL. INST. FOOD IND., MOSCOW, USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

USSR

UDC 621.311.25:0621.362:538.43.001.2

KUGUSHEV, N. M., ZLATIN, D. A., PETROV, Yu. A., MAKIN, S. A.

"Design and Construction of Electric Fower Plants With Magnetchydrodynamic Generators"

Tr. Vses. proyektn. in-ta "Teploelektroproyekt" (Works of the All-Union State Institute for the Design and Planning of Electrical Equipment for Heat Engineering Installations), 1970, vyp. 9, pp 95-110 (from RZh-Elektrotekhnika i energetika, No 9, Sep 70, Abstract No 9All9)

Translation: A brief exposition is given of the characteristics of practical utilization of the MHD method of energy conversion. Possible technological diagrams of electric power plants with MHD generators are described as well as methods for further developments along these lines. Consideration is given to the planning of new non-standard equipment, a brief description of the characteristics of systems for control, automation and protection of equipment, as well as basic solutions for putting together the main building. Four illustrations, bibliography of four titles.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

1/3 011 UNCLASSIFIED PROCESSING DATE--020CT70
TITLE--DENITRATION OF SULFURIC ACID IN THE PRODUCTION OF AMMONIUM SULFATE

AUTHOR-(05)-ZLATIN, L.YE., TRONDINA, G.I., ARTAMONOV, YU.P., SHETEYN, A.L., YUKHNUVETS, YU.D.
COUNTRY OF INFO-USSR

SOURCE--KOKS KHIM. 1970. (3), 45-7

DATE PUBLISHED----70

SUBJECT AREAS -- CHEMISTRY

TOPIC TAGS--INDUSTRIAL PRODUCTION, AMMONIUM SULFATE, NITROBENZENE, COKE, GAS, UREA, SULFURIC ACID, DENITRATION

CONTROL MARKING--NO RESTRICTIONS

DUCUMENT CLASS--UNCLASSIFIED PRUXY REEL/FRAME--1990/1386

STEP NO--UR/0068/70/000/003/0045/0047

CIRC ACCESSION NO--APO109455

UNCLASSIFIED

2/3 O11 UNCLASSIFIED PROCESSING DATE--020CT70 CIRC ACCESSION NO--APO109455

and a statement of the control of the statement of the st

ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. WHEN THE SPENT H SUB2 SO SUB4, TAKEN FROM PHNO SUB2 PRODUCTION FOR (NH SUB4) SUB2 SO SUB4 MANUF. IN COKE-CHEM. PLANTS, IS CONTAMINATED WITH N OXIDES, IT CONTAMINATES THE COKE GAS AND THE USE OF THIS GAS FOR NH SUB3 SYNTHESIS IS PREVENTED. THE N OXIDES IN THE COKE GAS FOR THIS SYNTHESIS SHOULD BE SMALLER THAN B CM PRIME3-M PRIME3, AND THE GAS CANNOT BE USED IF IT CONTAINS LARGER THAN OR EQUAL TO 10-12 CM PRIME 3 OXIDES-M PRIME3. LAB. DENITRATION OF THE ACID WITH UREA REDUCED THE NOXIDES HARPLY BY THE REACTION: 2HND SUB2 PLUS (NH SUB2) SUB2 CO YIELDS 3H SUB2 O PLUS CO SUB2 PLUS 2N SUB2. IN PHNO SUB2 PLANTS, THIS REACTION WAS SLOW. SINCE THE SPENT H SUB2 SO SUB4, OF TEPERCENT STRENGTH, CONTAINED OTHER KNOWN COMPDS., SYNTHETIC SOLNS. WERE PREPD. TO DET. THE EFFECT OF EACH OF THESE ON DENITRATION. DURING A 17 HR PERIOD AND IN 72-4-2-6PERCENT H SUB2 SO SUB4, THE DENITRATION WAS SATISFACTORY IN THE PRESENCE OF THE H SUB2 SO SUB4. SUB3. AND THE N OXIDES. THE PHNO SUB2 CONTENT WAS 0.3PERCENT OF THE H SUB2 SO SUB4 AND THE PROCESS WAS COMPLETE EVEN AT HIGHER HNO SUB3 AND THE H SUB2 SO SUB4 CONCNS. IN THE PHNO SUB2 PLANT, THE SPENT H SUB2 SO SUB4 AND THE UREA WERE INTRODUCED SIMULTANEOUSLY AND COMPRESSED AIR WAS USED FOR MIXING. THE FORCED AIR ALSO REMOVED THE N FORMED FROM THE H SUB2 SO SUB4 TREATMENT, THUS ACCELERATING THE REACTION. SULFATE SEPN. FROM THE DENITRATED ACID DID NOT INCREASE THE N DXIDES IN THE COKE GAS. THE UREA WHICH DID NOT REACT WITH THE OXIDES BUT ENTERED THE MOTHER LIQUOR WITH THE ACID WAS BENEFICIAL, SINCE IT IMPROVED THE PARTICLE SIZE COMPN. OF THE (NH SUB4) SUB2 SO SUB4.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

CIRC ACCESSION NUAPOIO	UN 09455	UNCLASSIFIED		PROCESSING DATE020CT70		
ABSTRACT/EXTRACTFACIL	ITY: KE	MERDY,	KOKSOKHIM.	ZAVOD.,	KEMEROVO,	USSR.
	٠.					
						-
				•		
	UNCLASS	IFIEN			89	

AREA ELECTRONIC AREA AREA ELECTRONICA DE LA PROPERTICION DE LA CARLA DE LA CARLA DE LA CARLA DE LA CARLA DE LA LA CARLA DEL CARLA DE LA CARLA DEL CONTROLLO DE LA CARLA DE LA

UDC 612.826.4

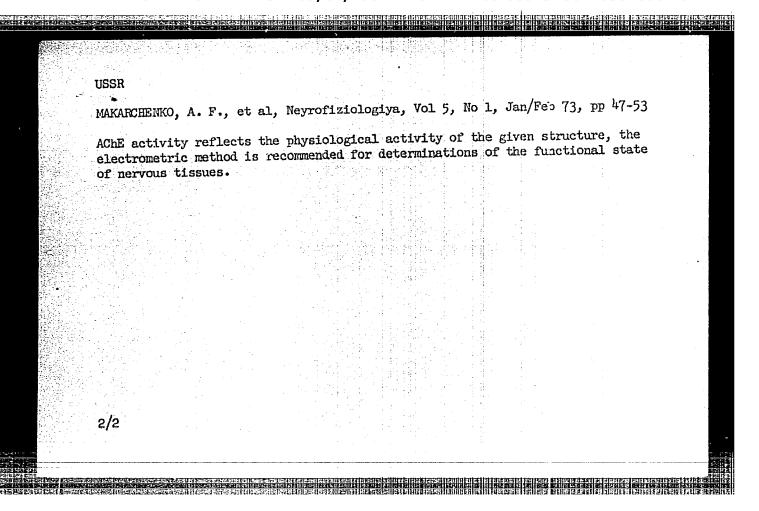
ZLATIN, R. S.

"Physiological Characteristics of Chemoreceptors of the Posterior Hypothalamus"

Kiev, Fiziologichniy Zhurnal, No 5, 1973, pp 586-592

Translation of abstract: Changes in electrical activity of the motor cortex, motor response threshold, and respiratory rate were studied in chronic experiments on five rabbits with electrostimulation of structures of the posterior hypothalamus against a background of preliminary subcutaneous injection of chlorpromazine (5 mg/kg) or scopolamine (0.5 mg/kg) and in experiments on 12 rabbits with injection of carbachol or norepinephrine (100 µg) into structures of the posterior hypothalamus through chronically implanted chemitrodes (as modified by the author). The ascending influences of the posterior hypothalamus on the electrical activity of the motor cortex were found to be determined mainly by cholinergic mechanisms, while the influences on the motor component of the orienting reflex are chiefly adrenergic in nature. The author draws the general conclusion that the structures of the posterior hypothalamus are heterogeneous with respect to function and chemoreception and that this heterogeneity is manifested in both ascending and descending influences.

USSR


ULC 612.8.015.1

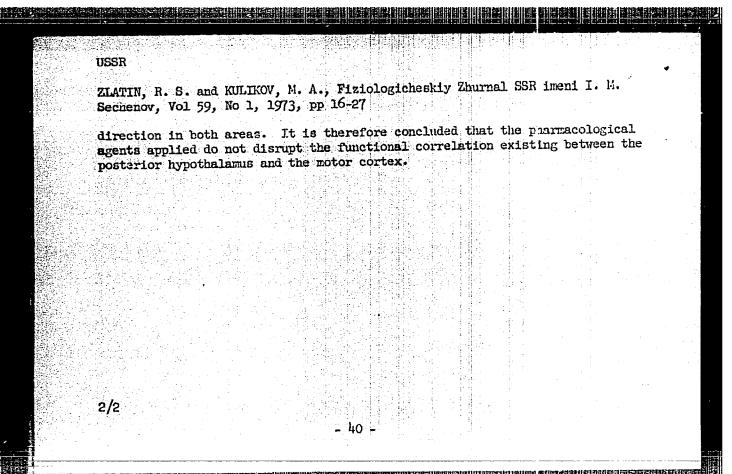
MAKARCHENKO, A. F., ROYTRUB, B. A., ZLATIN, R. S., GENIS, Ye. D., and KOSTYUK, O. I., Institute of Physiology imeni A. A. Bogomolets, Academy of Sciences Ukrainian SSR, Kiev

"Acetylcholinesterase Activity in Hypothalamic and Cortical Structures During the Action of Pharmacological Agents"

Kiev, Neyrofiziologiya, Vol 5, No 1, Jan/Feb 73, pp 47-53

Abstract: Acetylcholinesterase (AChE) activity in rat brain was recorded continuously by the automated electrometric method. In intact rats aged 1 month, AChE activity is highest in the sensory and motor cortex, while various lower levels are assumed in the posterior hypothalamus, anterior hypothalamus, and hippocampus. With advancing age (6, 12, and 24 months), the center of AChE activity is shifted to the posterior hypothalamus, and there is a general decrease in AChE activity per gram of tissue. Adrenaline, injected subcutaneously in a dose of 300 mcg/kg, redistributes AChE activity within 15 min, shifting the maximum to the anterior bypothalamus. An identical dose of chloral hydrate reduces AChE activity and equalizes it in all these structures. The histochemical method, though good for determining the location of AChE in cell organelles, is unable to detect small variations in AChE activity. Since

USSR


UDC 612.826+612.822.3

ZLATIN, R. S. and KULIKOV, M. A., Department of the Physiology of the Dience-phalon and Laboratory of Statistical Analysis and of Modeling Physiological Processes, Institute of Physiology imeni A. A. Bogomolets, Academy of Sciences Ukrainian SSR, Kiev

"Changes in Electrical Activity of Posterior Hypothalamus and Motor Cortex in the Presence of Various Pharmacological Agents"

Leningrad, Fiziologicheskiy Zhurnal SSSR imeni I. M. Sechenov, Vol 59, No 1, 1973, pp 16-27

Abstract: In rabbits, certain neurotropic drugs induce significant changes in the power of the electromagnetic radiation of the brain. Namely, chloral hydrate (60-100 mg/kg, rectally) reduces beta waves in the posterior hypothalamus and intensifies delta waves and reduces alpha waves in the motor cortex. Aminazine (5 mg/kg, subcutaneously) intensifies delta waves and reduces beta waves in the motor cortex. Scopolamine (0.4-0.5 mg/kg, subcutaneously) reduces beta waves and intensifies delta waves in the motor cortex. And carbacholine (0.03 mg/kg, subcutaneously) reduces delta waves and intensifies alpha waves in the posterior hypothalamus, and reduces delta and gemma waves and intensifies beta waves in the motor cortex. However, as far as the frequency spectra are concerned, the shifts induced by any one compound are much smaller and proceed in the same 1/2

USSR

UDC 612.826.014.423:615.473.2

ZLATIN, R. S., Department of Physiology of the Diencephalon, Institute of Physiology imeni O. O. Bogomolets, Academy of Sciences, Ukrainian SSR, Kiev

"A New Modification of Cannula Electrodes (Chemitrodes) for Implantation Into the Subcortex of the Rabbit Brain"

Kiev, Fiziologicheskiy Zhurnal, No 5, 1972, pp 698-700

Abstract: A new modification of a "chemitrode" based on the "needle to needle" principle is proposed. The chemitrode consists of a guide cannula and an injection cannula contained in a Plexiglas joint. The two cannulas form parts of a coaxial electrode with the electrodes 0.5 mm apart. The device can be used in a chronic experiment to supply the brain structure under study with a microquantity of some pharmacologic agent in a minute volume of solution and at the same time derive the electrical activity of the structure in bipolar fashion.

1/1

USSR

WDC 611.8:534.612.1

ALEKSANDROV, L. N., DYSKIN, YE. A., ZLATISKAYA, N. N., KONKIN, I. F., DEV, I. D., TIKHONOVA, L. P., FILATOV, A. I., and SHADRINA, N. S., Department of Normal Anatomy, Military-Medical Academy imeni S. M. Kirov

"Condition of Some Nerve Structures After Exposure to Powerful Shock Waves"

Leningrad, Arkhiv Anatomii, Gistologii i Imbriologii, No 10, 1971, pp 12-20

Abstract: Cats were exposed to a powerful shock wave with an excess pressure of 0.1 to 10 kg/cm² lasting about 0.1 sec. The effect was not lethal and after the experiment the animals were externally indistinguishable from normal cats. They were sacrificed at various times during the 30 days following exposure to the shock wave and the nerves in the walls of the vena cava, digestive organs, dura and pia mater of the brain and spinal cord, pancreas, and thyroid were histologically examined. The modullated fibers and preterminal portions of the receptors underwent the most distinct changes. The axial cylinders were swellen and the contours uneven. Along the course of the fibers were solitary or multiple varicosities. These reactive changes were largely reversible. However, some of the nerve elements proved to be quite resistant to the shock wave, notably the nonmedullated fibers, some affecent structures (e.g., diffuse receptors), and encapsulated cell bodies.

- 77 -

1/2 038 UNCLASSIFIED PROCESSING DATE--160CT70
TITLE--THE VIBRATIONAL SPECTRUM, THE OPTICAL CONSTANTS, AND THE IONICITY
OF THE BOND OF CDGEAS SUB2 IN CRYSTAL AND AMORPHOUS PHASES BY IR
AUTHOR-(04)-ZLATKIN, L.B., MARKOV, YU.F., STEKHANOV, A.I., SHUR, M.S.

COUNTRY OF INFO--USSR

SOURCE--I. PHYS. CHEM. SOLIDS 1970, 31(3), 567-71

DATE PUBLISHED ---- 70

SUBJECT AREAS -- MATERIALS, PHYSICS

TOPIC TAGS--VIBRATION SPECTRUM, OPTIC PROPERTY, IR SPECTRUM, CHEMICAL BONDING, CRYSTAL STRUCTURE, CADMIUM COMPOUND, CERMANIUM COMPOUND, SARSENIC COMPOUND, CRYSTAL LATTICE STRUCTURE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/1396

STEP NO-+US/0000/70/031/003/0567/0571

CIRC ACCESSION NO--APO107869

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

UNCLASSIFIED PROCESSING DATE--160CT70 CIRC ACCESSION NO--APO107869 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE IR REFLECTIVITY IS INVESTIGATED IN THE FREQUENCY REGION FROM 2 TO 75 MU FOR T EQUALS 295DEGREESK. CHANGES OF THE VIBRATIONAL SPECTRUM TAKE PLACE IN THE REGION OF THE LATTICE REFLECTION WHILE CLEAR CORRELATION EXISTS IN THE REGIONS OF SMALL (SMALLER THAN 25 MU) AND LARGE (GREATER THAN 60 MU) WAVELENGTHS BETWEEN THE OPTICAL CONSTS. OF COGEAS SUB2 IN THE CRYSTAL AND AMORPHOUS PHASES. THE DISPERSION OF N AND THE DIELEC. CONST. WERE CALCO. BY KRAMERS KRONIG AND DISPERSION ANAL. AND THE VIBRATIONAL FREQUENCIES DETD. THE QUAL. AND QUANT. PARAMETERS OF THE IONICITY OF THE BOND HAVE BEEN ESTD. THE CHEM. BOND IN COGEAS SUB2 IS IONIC COVALENT WITH LARGER DEGREE OF COVALENT PART. FACILITY: A. F. IOFFE PHYS. TECH. INST., LENINGRAD, USSR. UNCLASSIFIED

USSR

UDC 669.15-194.2:620.171:519.272

SHEVTSOV, A. L., and ZLATKIN, L. Z., Omsk

*Effect of Chemical Composition on the Mechanical Properties of 32Kh06L Steel"

Moscow, Izvestiya Akademii Nauk SSSR, Metally, No 3, May-Jun 71, pp 143-147

Abstract: The effect of the chemical composition of 32Kh06L steel (GOST 7823-65) on its mechanical properties was investigated on club-shaped samples (GOST 977-58) which were improved by tempering in water from 9000+20°C). The impact strength was determined on 10 x 10-mm notched samples. A correlation dependence between the indices of mechanical properties and chemical composition was established on the basis of mathematical processing of data on 500 industrial melts. The results obtained (regression equations, correlation coefficients, authenticity of the dependence) show that tensile strength, yield point, impact strength, and hardness have an authentic correlation dependence on the majority of the chemical elements of the 32Kh06L steel. An analysis of the regression equations and dependencies of mechanical properties on C, Mn, Cr, Ni, and P shows that chemical elements affect differently -- in terms of intensity -the mechanical properties of steels. Carbon has the greatest influence on mechanical properties, followed by Mn and Cr, and then hydrogen. Equations of multiple correlation are also derived, which make it possible to obtain for actual cases the optimal mechanical characteristics. 1/1

- 39 -

USSR

UDC: 518.5:681.3.06

ZLATKIS, V. M., KUCHGANOV, V. N.

"On a Method of Precognition of Complex Images"

V sb. Avtomat. ustroystva ucheta i kontrolya (Automatic Devices for Computation and Checking--collection of works), vyp. 6, Izhevsk, 1970, pp 89-101 (from RZh-Kibernetika, No 7, Jul 71, Abstract No 7V782)

Translation: This paper deals with one method of preprocessing and rough recognition of complex images. The essence of the method is illustrated by analyzing portraits of people. The problem is to indicate on the portrait the region of the eyebrows, eyes, nose and mouth, and to find certain characteristic points on these features. Knowledge of the location of such points enables speeding up the following stage — final recognition and improvement of accuracy. An algorithm for isolating a skeleton silhouette is described in detail. V. Mikheyev.

1/1

- 23 -

USSR

UDC 51:155.001.57:681.3.06

ZLATKIS, V. M.

"Construction of Description of Halftone Images"

Avtomat. Ustroystva Ucheta I Kontrolya, [Automatic Accounting and Control Devices--Collection of Works], No 6, Izhevsk, 1970, pp 175-185, (Translated from Referativnyy Zhurnal Kibernetika, No 5, 1971, Abstract No. 5V679 by V. Mikheyev).

Translation: One possible method of using structural methods for construction of the description of halftone images is presented. In the first stage, the problem is stated of reducing the redundancy of the initial description and related separation and input of contour elements of halftone images to a digital computer. A method is suggested for separating a contour by digital computer, the corresponding program is described and the sequence of its performance on the Minsk-1 computer is presented. In the second stage, a convenient and economical method of describing contour images is presented, consisting in approximation of the contour by sectors of identical length and representation of the contour as a graph, the lines of which correspond to these sectors. In order to eliminate redundancy in the graph, chains are separated, corresponding to sectors of constant curvature of the contour image. Relationships between individual contours of the image of the object are taken into consideration.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

and dependent of the content of the state of the content of the state of the state

USSR

UDC51:155.001.57:681.3.06

ZLATKIS, V. M., KAZAKOV, V. S., KUCHUGANOV, V. N., LOSEV, I. R., MOCHENOV, S. V.

"Image Input-Output Device for Minsk-1 Computer"

Avtomat. Ustroystva Ucheta I Kontrolya, [Automatic Accounting and Control Devices--Collection of Works], No 6, Izhevsk, 1970, pp 164-174, (Translated from Referativnyy Zhurnal Kibernetika, No 5, 1971, Abstract No. 5V682).

Translation: Problems are studied of creating and operating image input-output devices for small computers. The device is based on the FTA-PM phototelegraph apparatus with slight modifications and practically no modifications to the Minsk-1 computer. The input of an image is performed from a sheet 220 mm in width with unlimited length, and the output in onto electrochemical paper. The resolving capacity of the apparatus is 3-4 lines per mm, the operating speed is 120 lines per minute. Operation is performed at a carrier frequency of 1,900 Hz. Input and output of the image is performed by sectors 64 \times 7 mm or 128 x 14 mm in size with resolution into 250 x 31 elements, with brightness quantized to [single-digit number eligible--Er] levels. A block diagram and functional diagram of the device are presented and the operation of the individual units is described. It is noted that this device has been used for successful operation of algorithms for recognition of printed characteristics, algorithms for classification of complex images according to their skeletal outline have been studied, a method of probabilistic coding of halftone images has been tested and experiments have been performed on the separation of con-

USSR ZLATKIS, Avtomat.	UDC51:155.001.57:681.3.06 V. M., KAZAKOV, V. S., KUCHUGANOV, V. N., LOSEV, I. R., MOCHENOV, S. V., UStroystva Ucheta I Kontrolya, No 6, Izhevsk, 1970, pp 164-174.							
tours of	images from	n photogra	aphic portraits	of people				
				Selection of			. :	
					1.7			
				4				
akeri ar Managaran				•	. :			
		•		٠.				
								•
	• "				4.4			
					:		•	
					•			
		**				•		
				a + 1	i i			
					**			
								

UNCLASSIFIED PROCESSING DATE--0200170 TITLE--RECHANISM OF THE ACTION OF SALTS DURING THE SYNTHESIS OF AROMATIC POLYAMIDES IN AMIDE SALT SYSTEMS -U-AUTHOR-(04)-FEDUROY. A.A., SUKULOV, L.B., ZLATOGORSKIY. M.L., GRECHISTKIN, . v.s. COUNTRY OF INFO-USSR SOURCE--VYSOKOMOU. SOLDIN. SER. B 1970, 12(3), 205-8 DATE PULLISHED ---- 70 SUBJECT AREAS -- CHEMISTRY TOPIC TAGS--CHEMICAL SYNTHESIS, POLYAMIDE COMPOUND, MOLECULAR WEIGHT, NMR. LITHIUM COMPOUND, MAGNESIUM CHLORIDE, ALUMINUM CHLORIDE, ZINC CHLORIDE, STRUNTIUM CHLORIDE, CADMIUM CHLORIDE, ELECTRONEGATIVITY, AMIDE, HYDROGEN BONDING, PROTON CONTROL MAPKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO-+UR/0460/70/012/003/0205/0208 PROXY REEL/FRAME--1992/0316 CIRC ACCESSION NO--APOLITION UNCLASSIEIED THE PROPERTY OF THE PROPERTY O

CONTROL OF THE PROPERTY OF THE

UNCLASSIFIED CIRC ACCESSION NO--APOII1510 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE INTERACTIONS OF THE METAL SALTS LICE, LIBR, LII, LINO SUB3, LISCN, MGCL SUB2, ALCE SUB3, SRCL SUB2. ZNCL SUB2. AND COCL SUB2. AND HCL:WITH BENZANILIDE (I) IN ACHME SUB20 SQUAS. AND THE INFLUENCE OF THE SALTS ON THE MOL. WT. OF POLY(P, PHENYLENETEREPHTHALAMIDE) (II) SYNTHESIZED IN ACNME SUB2 SOLNS. WERE STUDIED BY A HIGH RESOLUTION NMR METHOD. CHEM. SHIFT INCREMENTS OF I AMIDE PROTONS DECREASED IN THE URDER OF DECREASING ELECTRUNEGATIVITY OF THE LISSALT ANIONS TO O AND THEN INCREASED IN THE DRDER OF INCREASING ELECTRONEGATIVITY OF THE CATIONS OF THE OTHER SAUTS. DECREASES IN I SOLY. FOLLOWED THE SAME ORDER OF DECREASING LI SALT ANION APPARENTLY, THE STRONGER THE H BONDS BETWEEN SALT ELECTRONEGATIVITY. ANIONS AND AMIDE GROUP PROTONS, THE GREATER IS I SOLY. AND THE FARTHER DOWNFIELD THE AMIDE PROTON STGNAC. THE SIZE OF THE CHEM. SHIFT OF THE AMIDE PROTONS CAUSED BY DIFFERENT SALTS INCREASED LINEARLY WITH INCREASING MOL. WT. OF II SYNTHESIZED IN ACMME SUB2 IN THE PRESENCE OF THESE SALTS. PRESUMABLY, INCREASED INTERACTION BETWEEN SOLVENT AND POLYMER PROMOTED HIGHER MOL. WTS.

UNCLASSIFIED

USSR

ZLATOPOL'SKIY, Z.

"Advance Against Cancer"

Riga, Sovetskaya Latvia, 4 Dec 70, p 4

Abstract: In an interview Professor S. A. Giller, Director of the Institute of Organic Synthesis, Academy of Sciences, Latvian SSR, and Candidate of Medical Sciences V. M. Bramberg discussed preparations synthesized at the Institute and used in the fight against cancer. Among these is Fluorafur, an original Soviet preparation for use in the treatment of several types of malignant neoplasms. The preparation has been clinically tested in the USSR and abroad and has been approved by the Pharmacological Committee of the Ministry of Health USSR. A permit for its production on an industrial scale has been granted. Manufacture of the preparation is now being organized in the USSR and a number of foreign countries. Other original preparations include: Furagin (Furazidin) and Solafur; imiphos, for treatment of erythema; and methynidione, for treatment of epilepsy. Steps are being taken to organize the production of thiophosphamide (ThioTepa) and Cyclophosphane, drugs widely used in oncological practice.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

USSR

ZLATOLPOL'SKIY, Z., Sovetskaya Latvia, 4 Dec 70, p 4

The achievements already made in research on cancer make it possible to hope that solution of the problem is near. Important work on cancer is being carried out at the Scientific Research Institute of Experimental and Clinical Medicine, Ministry of Health Latvian SSR. Studies have established that no single preparation can be relied upon to produce similar results when applied to all cases of cancer. Prior to the administration of an anticancer preparation it is essential to determine the form, type, and stage of the disease, its localization, the histological structure of the tumor, and the indications and contraindications for the use of the drug. Latvian chemists are doing their utmost to develop and produce new preparations which can be successfully applied to control the disease.

2/2

USSR

UDC 629.7.017:658.562.001.24

ZAGRUTDINOV, G. M., and ZLATOUSOV, S. V.

"On One Method for Increasing Instrumental Confidence in the Results of Automated Controls"

Kazan', Tr. Kazan. aviats. in-ta (Transactions of the Kazan' Aviation Institute) Vyp 146, 1972, pp 45-54 (from Referativnyy Zhurnal--Metrologiya i Izmeritel'naya Tekhnika, No 1, 1973, Abstract No 1.32.111)

Translation: A system of automated control is considered, the reliability of which is characterized by the probability of the appearance of accurate results. A method for increasing the confidence in the results of control using multiple measurements is analyzed. For the system of automated control, the probability of malfunctions of which does not equal zero, the authors propose a processing of partial results of multiple measurements, on the basis of majority logic with subsequent averaging, by excluding the influence of malfunctions and random errors in the final result. The increase in the probability of accuracy of the final result using multiple measurement is computed for different coefficients of variation of the controlled parameter. The possibility of solving several types of problems which will be encountered in the projected system of automated control is indicated with the aid of graphs and a table. (2 tables; 3 illustrations; 5 bibliographic entries)

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

region of the control of the control

USSR

UDC 629.78.017:658.562.001.24

aetriesenstangarriassangarri mang samangarringarringarringarringarringarringarringarringarringarringarringarri Bernesenstangarringarringarringarringarringarringarringarringarringarringarringarringarringarringarringarring

ZAGRUTDINOV, G. M., ZLATOUSTOV, S. V.

"Calculation of Instrumental Reliability of Results of Automatic Testing"

Tr. Kazan. Aviats. In-ta [Works of Kazan Aviation Institute], No 134, 1971, pp 72-78, (Translated from Referativnyy Zhurnal, Raketostroyeniye, No 2, 1972, Abstract No 2.41.160 from the Resume).

Translation: For tested parameters with various coefficients of formation of tolerances (z) and with various ratios of measurement error to tolerance for the parameter ($^{\delta}_{\rm meas}/^{\delta}_{\rm par}$), the basic components of instrumental reliability of the results of automatic testing are calculated -- the probability of false "useable" and "unuseable" decisions (ρ_1 and ρ_0 respectively), resulting from random errors in the measurement channels of the automatic testing systems. The graphic dependence of probabilities ρ_0 and ρ_1 on z and $^{\delta}_{\rm meas}/^{\delta}_{\rm par}$ is established. The possibility is shown of solving certain typical problems encountered in the stage of development of automatic control systems using the graphic dependences presented is demonstrated. 4 Figures; 1 Table; 3 Biblio. Refs.

1/1

- 3/1.

USSR

UDC: 681.332.65

ZLATOUSTOV S. V., KHAIROV, R. M., Kazan' Aviation Institute

"A Method of Producing a Pulse Train"

USSR Author's Certificate No 285046, filed 2 Dec 68, published 30 Dec 70 (from RZh-Avtoratika, Telemekhanika i Vychislitel'naya Tekhnika, No 10, Oct 71, Abstract No 105222 P)

Translation: In conventional methods of obtaining sequences of pulses with random durations having a controllable distribution function, use is ordinarily made of the controllability of the distribution of a random number sequence. However, it is difficult to orient the use of probability-controllable random number sequences to the predetermined probability of the selected duration of the random-duration pulse sequence because of the strong conditional dependence of the probability of appearance of a specific duration or the finiteness of the sampling time. In the method of obtaining a random-duration pulse train as introduced by this patent, the sum of sawtooth and noise voltages is compared with the sum of DC and noise voltages, after which the absolute value of the random error for the time duration of

1/2

al lock to enclosive de le salado emparantament por la primer para de la composition de la lacia de la lacia d El centro en lock en la lacia de la composition de la composition de la lacia de la lacia de la lacia de la lacia

			:			
USSR						
[Table 4 of the Table 1]	OU D M SOU	iet Patent No	285046			
ZLATOUSTOV, S. V., KHAIR	JV, R. M., 504.	100 100000		Juntion o	f the	
the comparison is isolat	ed. The selec	tion, control	l, and rest random-di	ration pu	lse	
the comparison is isolat probability distribution sequence is accomplished	function for	e rise time	of the say	rtooth vol	tage.	
sequence is accomplished. Two illustrations.	by (w1) 113					
[바다바다] 등 등이 보고 있는데 그 사람들이 되었다. 바다 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				•		
다음 경기 (1995년 - 1995년) 1982년 - 1987년						
			1			
				•		

CIA-RDP86-00513R002203820004-0 "APPROVED FOR RELEASE: 09/01/2001

USSR

UDC: 621.316.84

ZLATCUSTOV, S. V., OSTROVA, S. O., and ASADULLINA, V. R.

"Measuring Current Noise in Quality Control of Thin-Film Resistors"

Kiev, Izvestiya VUZ -- Radioelektronika, Vol. 13, No. 9, 1970, pp 1124-1128

Abstract: In view of the fact that resistors comprise about 30-40% of all the components in most electronic circuitry and that they are growing smaller with advances in miniaturization, their quality control is important. This article gives the results of experiments performed to find a relationship between the current noise level of thin-film resistors and their quality, and whether use of current noise level as an index to the reliability of resistors is justified. A block diagram of the noise meter circuit is shown. This version had to be used in place of standard equipment for measuring resistor noise since standard equipment has insufficient sensitivity for resistors with such low power ratings.

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

.ZLATOUSTOV, S.V., et al, Izvestiya VUZ - Radioelektronika, Vol 13, No 9, 1970, pp 1124-1128

The authors' analysis of the results of the experiment showed a high correlation between resistor noise and quality, with the noisiest resistors exhibiting the poorest quality, to the extent that the reliability of resistors can be predicted on the basis of their showing in this test. In these experiments, the noise a band of 10 kHz. The authors conclude that 100% control can be attained in control automation using the modulation noise meter they propose in thin-film resistor assembly line manufacture.

2/2

- 106 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

USSR

ZLENKO, A. A., PROKHOROV, A. M., SYCHUGOV, V. A.

"A Thin-Film Laser With Magnitude-Modulated, Distributed Feedback"

Moscow, Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 18, No 3, 5 Aug 73, pp 156-160

Abstract: A method is proposed for tuning the emission frequency of a thin-film laser with distributed feedback by using spatial modulation of the amount of feedback in the film. The amount of distributive feedback index of refraction or amplification factor. If these amplitudes are spatially modulated with period $\Lambda' \geqslant \Lambda$, then lattices with periods $\Lambda_n = \Lambda(1 \pm n\Lambda/\Lambda')$ will be formed in the film along with the lattice of period these lattices falls into the amplification band of the film, then emision should be stimulated on this wavelength with the corresponding pumping. Thus the emission frequency could be tuned by varying the period Λ' with a rotatable wire grid.

1/1

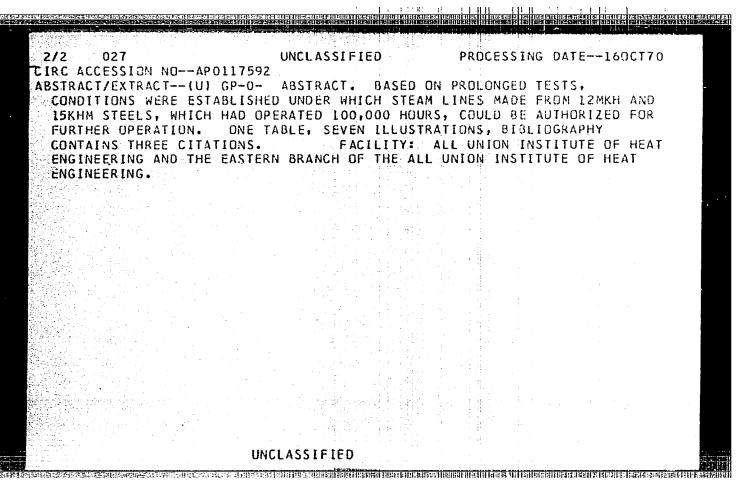
UDC: None

ZLENKO, A. A., PROKHOROV, A. M., SYCHUGOV, V. A., and SHIPULO, G. P.

"Exciting LaF2-Nd3+ Crystals with Monochromatic Light"

Moscow, Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 59, No 9, 1970, pp 785-789

Abstract: The relaxation time of the particles from the 0.53; absorption band of Nd3+ ions at the 4F3/2 level is determined, and the transverse cross section of the induced radiation in Larg-Nd3+ crystals is measured in lasers pumped with monochromatic light. The determination of this time is important since it has a definite effect on the operation of the laser. The results of a numerical solution of the problem of exciting laser oscillations in a fourlevel system with the relaxation time taken into account, pumped by a light pulse lasting 50 ns, are obtained. These results are found from a curve showing the laser radiation as a function of time, through the use of a computer. Formulas are derived to determine the relaxation time from measurements of the time interval between the first two peaks of the laser radiation curve as for the pumping pulse. The authors express their gratitude to M. V. Dmi-truk and to V. V. Csiko for the LaF3-Nd3+ crystals, and to Ye. M. Diamov for his commute and discussion.


621.396.622 UDU ZLENTSOV, A. V., KHAKHALKIN, V. N., SHEVTSOV, E. A. "Selection of Optimum Coupling With the Resonator in a Photoparametric Converter" Tr. Mosk. elektrotekhn. in-ta syyazi (Works of the Moscow Institute of Electrical Communications Engineering), 1970, vyp., pp 10-15 (from RZh-Radiotekiniku, No 10, Translation: The authors consider the circuit of a photoparametric converter cased Oct 70, Abstract No 10D306) m a photodiode located in a resonator which is one of the loads of a balanced waveguide bridge. The optimum coupling of the waveguide resonator with an arm of the waveguide bridge is calculated. The curve for the change in detector power as a function of the amount of coupling has a maximum close to critical coupling. It is recommended that the coupling coefficients be selected somewhat greater than 1 on the basis of the signal-to-noise ratio. The signal-to-noise level is determined by the converted frequency fluctuations of the klystron oscillator. The maximum signalto-noise ratio is observed at a rather small imbalance of the bridge. A. K. 1/1

1/2 027 FITLE--THE OPERATION OF STEAM LINES MADE FROM 12MKH AND 15 KHM STEELS AT PROCESSING DATE--160CT70 HIGH PRESSURE ELECTRIC POWER STATIONS AFTER A STANDARD SERVICE LIFE -U-AUTHOR-(05)-ZLEPKO, V.F., MAZEL, R.YE., KRUTASOVA, VE.I., ZAKHAROVA, A.I., COUNTRY OF INFO--USSK SOURCE--MOSCOW, TEPLOENERGETIKA, NO. 2, 1970, PP 55-58 DATE PUBLISHED ----- 70 SUBJECT AREAS -- MATERIALS, MECH., IND., CIVIL AND MARINE ENGR TOPIC TAGS--LOW ALLOY STEEL, ELECTRIC POWER PLANT, THERMOELECTRIC POWER PLANT, STEAM BOILER, STEAM TURBINE, STEEL PIPE, PIPE LINE, CHROMIUM STEEL, MOLYBOENUM STEEL, RESEARCH FACILITY, ALLOY DESIGNATION/(U)12MKH LOW ALLOY STEEL, (U) 15KHM LOW ALLOY STEEL CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1996/0355 STEP NO--UR/0096/70/000/002/0055/0058

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

UNCLASSIFIED.

CIRC ACCESSION NO--APO117592

1/2 015

PROCESSING DATE--11SEP70

TITLE--CRITERIA OF OPERATIONAL DEPENDABILITY OF THE 12KHIME STEEL -U-AUTHOR-ZLEPKO, V.F., ZAKHAROVA, A.I.

COUNTRY OF INFO--USSR

SOURCE--MOSCOW, ELEKTRICHESKIYE STANTSII, NR 4, 1970, PP 32-34

DATE PUBLISHED ---- 70

SUBJECT AREAS--MATERIALS, MECH., IND., CIVIL AND MARINE ENGR

TOPIC TAGS--LOW ALLOY STEEL, ALLOY DESIGNATION, STEEL PIPE, STEAM BOILER,

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1987/1412

STEP NO--UR/0104/70/000/004/0032/0034

CIRC ACCESSION NO--APO104726

UNCLASSIFIED

IN MANUE ACTURATE	IRC ACCESSION NOAPO104726 BSTRACT/EXTRACT(U) GP-O- ABSTRACT. THE 12 IN MANUFACTURING ISTEAM PIPES AND THEREFORE F WORKED FOR A LONG TIME ARE OF DEPENDABILITY			PROCESSING DATE11SEP70 2KH1MF STEEL IS WIDELY USER			
WORKED FOR A Laws	TENVITONAL DEPE	ENDARTITTO	ne ere	COUNTY IN THE	OGNOSYS		
THE FACTOR OF STR OPERATIONAL DEPEN	UCTURAL CHANGES D	F STEEL BE	USED AS A	SUGGESTED CRITERION C	THAT		
				•			
					ı		
	UNCLASSIFIED						

1/3 011 TITLE--ALL UNION CONGRESS OF VOLCANOLOGISTS -U-

PROCESSING DATE--020CTTO

AUTHOR-ZLIBIN, B.L.

COUNTRY OF INFO-USSR

SOURCE-MOSCOW, ZEMLYA I VSELENNAYA, NO 1, 1970, PP 79081

DATE PUBLISHED----70

SUBJECT AREAS--EARTH SCIENCES AND DCEANOGRAPHY, BEHAVIORAL AND SOCIAL

TUPIC TAGS--VOLCANOLOGY, GEOCHEMISTRY, MAGMA, VOLCANIC ROCK, EARTH CORE,

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1990/0044

STEP NO--UR/0384/70/000/001/0079/0081

CIRC ACCESSION NO--APO108421

UNCLASSIFIED

UNCLASSIFIED

PROCESSING DATE--020CT70

011 3/3 CIRC ACCESSION NO--APO108421 ABSTRACT/EXTRACT-HOWEVER. SOME SPEAKERS EXPRESSED A DIFFERENT OPINION: VOLCANIC LAVAS (PARTICULARLY ACIDIC LAVAS SATURATED 65-75 PERCENT WITH SILICAL WERE FORMED AS A RESULT OF MELTING OF ANCIENT ROCKS OF THE EARTH'S CRUST. CONVINCING MATERIALS WERE PRESENTED AT THE CONFERENCE WHICH SHOW THAT KAMCHATKA, THE KURILE ISLANDS, ARMENIA AND TRANSCARPATHIA ARE PARTICULARLY RICH IN CONSTRUCTION, CERAMIC AND CHEMICAL RAW MATERIALS OF VOLCANIC ORIGIN. MUCH ATTENTION WAS GIVEN TO THE USE OF THERMAL WATERS AND SUPERHEATED STEAM; MANY OF THE SPEAKERS FEEL THAT THEY ORIGINATE AT DEPTHS IN THE EARTH WHERE MAGMA IS FORMED.

2/3 011

UNCLASSIFIED

PROCESSING DATE--020CT70

CIRC ACCESSION NU--APO108421 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE THIRD ALL UNION CONGRESS OF VOLCANTE PROVED FOR THE PERSON OF SCIENCES USSR, THE INSTITUTE OF VOLCANOLOGISTS SIBERIAN DEPARTMENT ACADEMY OF SCIENCES USSR. INSTITUTE OF GEOLOGICAL SCIENCES ACADEMY OF SCIENCES UKRAINIAN SSR AND L'VOV STATE UNIVERSITY. FIVE YEARS HAVE ELAPSED SINCE THE LAST CONGRESS. THE MANY REPORTS DEALT WITH THE GENERAL PROBLEMS OF VOLCANISM AND ITS RELATIONSHIP TO THE EARTH'S INTERIOR, INVESTIGATIONS IN THE FIELD OF PETROLOGY AND GEOCHEMISTRY OF VOLCANIC PRODUCTS. FORMATION AND USE OF ORE MINERALIZATION AND THERMAL WATERS IN VOLCANIC REGIONS AND SPECIFIC MATERIALS ON THE GEOLOGY OF REGIONS WITH RECENT STRONG VOLCANISM (KAMCHATKA, KURILE ISLANDS, ARMENIA, CAUCASUS, CRIMEA, CARPATHIANS). MANY REPORTS DEALT WITH THE POSSIBLE DEPTHS OF MAGMA BENEATH MODERN VOLCANOES. IT WAS FOUND THAT IN SUCH AN ACTIVE VOLCANIC PROVINCE AS THE KURILE KAMCHATKA REGION, THE FOCI OF VOLCANDES IN MOST CASES ARE AT DEPTHS FROM 40 TO 110 KM. ASEISMIC REGIONS. WHICH EVIDENTLY ARE A REFLECTION OF A HOLTEN STATE OF MATTER, ARE SITUATED DIRECTLY BENEATH THE ACTIVE VOLCANOES OF KAMCHATKA AND REACH A DEPTH AS GREAT AS 130 KM. IF IT IS TAKEN INTO ACCOUNT THAT THE THICKNESS OF THE EARTH'S CRUST FOR THE KURILE KAMCHATKA PROVINCE IS NOT GREATER THAN 10-35 KM, THE MAGNETIC ORIGIN OF LAVAS IS DBVIOUS. THIS CONCEUSION IS CONFIRMED BY GEOCHEMICAL DATA ON THE DISTRIBUTION AND RATIO OF SOME RARE ELEMENTS IN VOLCANIC ROCKS, AS WELL AS THE ISOTOPIC COMPOSITION OF ELEMENTS IN THE GASES ACCOMPANYING THE EJECTED MATTER.

"APPROVED FOR RELEASE: 09/01/2001

CIA-RDP86-00513R002203820004-0

Acc. Nr:

AP0043696

UR 0056 Ref. Code:

Compression de la compression del compression de la compression de la compression della compre La compression della comp

PRIMARY SOURCE: Zhurnal Eksperimental noy i Teoreticheskoy Fiziki, 1970, Vol 58, Nr 3, pp 953-96/

> EFFECT OF QUANTIZED MAGNETIC FIELD ON INTER-ELECTRON COLLISIONS IN SEMICONDUCTORS AND NONLINEAR GALVANOMAGNETIC PHENOMENA

A. M. Zlobin, P. S. Zyryanov

An expression for the current in a semiconductor located in crossed strong electric and quantized magnetic fields is found by the density matrix technique by taking into account electron-electron collisions. It is shown that the efficiency of inter-electron collisions strongly decreases on quantization of the cyclotron orbits. A condition of applicability of the effective electron temperature concept is derived. The necessity of taking into account the Hall field (if it is present in the problem) in the energy balance is mentioned.

21

USSR

群四段

UDC 553.697

ZLOBIN, V.

"Study of a Jet System in a Transverse Flow in a Channel"

Tallin, Izvestiya Akademii Nauk Estonskoy SSR -- Fizika-Matematika, Vol 20, No 1, 1971, pp 66-76

Abstract: This article contains a discussion of results of an experimental study of the development of a system of circular isothermal jets flowing out of holes in a thin wall normal to the uniform flow in a rectangular channel. flow, with high values of the hydrodynamic parameter earlier, but for application to problems encountered A study of a similar $q_{\mu} \geq 50$, had been made in engineering the results obtained had to be extended to smaller values of the hydrodynamic parameter and relative step size. In this paper the development of the jet system was studied in the range of variation of $q_{ij} = 4-36$ and $\overline{s} = 2.0$ An effort is made to determine the effect of the restriction created by the opposite (with respect to the plane of expansion of the jet) wall of the channel on the development of the jet system. The velocity and temperature axes of the jets are studied and compared. It is demonstrated that the difference between them is especially significant in the case of flow of a 1/3

ZLOBIN, V., Izvestiya Akademii Nauk Estonskoy SSR -- Fizika-Matematika, Vol USSR

system of jets and for small values of the hydrodynamic parameter. A study of the development and blending of a single jet is also performed. It is noted that in the experiment the temperature and velocity axes were measured simultaneously. The measurements were performed in cross sections normal to the velocity axis of the jet, and in the system of jets, with the exception of the adjustment experiments, the measurements of the axes were performed on the jet in the center of the channels. For purposes of the experiment the velocity or temperature axis was the line in the midplane of the jet along the flow on which the values of the corresponding variables were maximal.

The development of the jet system was studied for three fixed values of $q_{\mu} \approx 4$, 16, and 36 and for relative step sizes s = 2.0, 4.0, and 8.1. With a decrease in relative step size from on to 4 the rate of occurrence of the jets decreases monotonically; however, with a decrease in the relative step size to 2.0, a sharp increase in the rate of occurrence is observed. The mechanism of this effect is explained. The study of the development of the temperature axes of the jet systems demonstrated that beginning with some point, they - 59 -2/3

ecentric control de la propiente

ZLOBIN, V., Izvestiya Akademii Nauk Estonskoy SSR -- Fizika-Matematika, Vol 20, No 1, 1971, pp 66-76

flatten out sharply along the direction of flow, and in some cases they tend to drop as a result of the stable eddy in the rear of the jet. From the corresponding measurements of the velocity axis, this eddy does not encompass the active part of the jet, which continues to rise monotonically. It is noted that it is possible to consider that the velocity axis determines primarily the aerodynamics of the flow, and the position of the temperature axis is affected by the size of the circulation zones which, in turn, is determined by the magnitude of the relative step size in the hydrodynamic parameter.

3/3

621.372.832.8 UDC

USSR

SHUKEYLO, YU. A. and ZLOBIN, V. A.

*Determining the Thermal Stressed State of the Ferrite Element of a Phase Circu-

Elektron. tekhnika. Nauch.-tekhn. sb. Ferrit. tekhn. (Electronics Technology. Scientific-Technical Collection of Articles. Ferrite Technology), 1971, vyp.4 (31), pp 115-119 (from RZh-Radiotekhnika, No 11, Nov 72, Abstract No 11 B151)

Translation: The authors present the calculations of the stress field in a ferrite element. The calculations were conducted on a computer. Results of the calculations are given in the form of graphs. Original article: three illustrations and five bibliographic entries.

1/1

USSR

UDC: 53.07/.08+53.001.5

KOLYADA, V. M., ZLOBIN, V. G., All-Union Scientific Research Institute of Analytical Instrument Building

"A Method of Measuring the Transverse Distribution of Ion Beam Density"

USSR Author's Certificate No 306591, Division H, filed 12 Dec 70, published 21 Jul 71 (from RZh-Fizika, No 4, Apr 72, Abstract No 4A488 P)

Translation: A method is proposed for measuring the transverse distribution of ion beam density. The method is distinguished by high resolution and is based on cathodic vaporization of a target. Resolution is increased by aiming the ion beam at a single-crystal or amorphous target, measuring the profile of the vaporization spot by the interference method, and determining the distribution of beam density from the depth of individual sections in the vaporized section. K. N. Korol'.

1/1

. 50 .

UDC 8.74

USSR

GRIGOR'YEV, V. L., ZLOBIN, V. I., KURGANOV, V. D.,

"Filtration of Images in Pattern Recognition"

V sb. Avtomat. upr. i vychisl. tekhn. (Automatic Control and Computer Technology -- Collection of Works), No. 10, Moscow, "Mashinostroyeniye", 1972, pp 116-140 (from RZh-Matematika, No 9, Sep 72, Abstract No 9V671)

Translation: Possible forms of noise in the input of iso-object information into a computer are analyzed. A critical review of several known methods of filtration is given. Single anisotropic filtration of discrete images is investigated. A new form of a recurrent filter having many advantages over known anisotropic filters was developed, and investigated. A procedure for measuring the intensity of noise and the automatic change depending on the value obtained for the filter aperture is proposed and investigated. A high-speed device was developed for measuring the intensity of noise in images of three-dimensional objects. A systematic study of the double filtration of images was conducted. The structures of filters of the first and second stages were determined. Recommendations are made concerning the parameters of a single smoothing device. 15 ref. Authors abstract.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

USSR

VOLKOVYSKIY, V. L., ZLOBIN, V. K., KOROLEV, Ye. P.

"The Scale Conversion of Images"

Tr. Ryazan. Radiotekhn. In-ta [Works of Ryazan Institute of Electronic Engineering], 1972, No 36, pp 184-191 (Translated from Referativnyy Ehurnal, Kibernetika, No 1, 1973, Abstract No 1 V825 by the authors).

Translation: Problems of continuous scale conversions are studied as associated with output of images from digital computers. Program and apparatus methods of scaling are suggested.

1/1

USSR UDC 8.74

ZLOBIN, V. K., ZLOBINA, N. V., KURGANOV, V. D.

"Computer Modeling of the Automatic Scanning of Three-Dimensional Objects for Recognition Purposes"

V sb. Avtomat. upr. i vychisl. tekhn. (Automatic Control and Computer Technology -- Collection of Works), No. 10, Moscow, "Mashinostroyeniye", 1972, pp 221-228 (from RZh-Matematika, No 9, Sep 72, Abstract No 9V675)

Translation: A technique is described for the computer modeling of the automatic scanning of three-dimensional objects for recognition purposes. A block diagram is given for a subprogram for showing some object for recognition with a given a priori probability, obtaining the angles of view of this object under the condition that the probabilities of their values are distributed according to a preassigned law, determining the values of the properties of the projection of the object corresponding to these angles, etc. The necessity of solving this problem always arises in the absence of actual equipment for the input of information to the computer. Authors abstract.

1/1

- 50 -

11DC 8.74

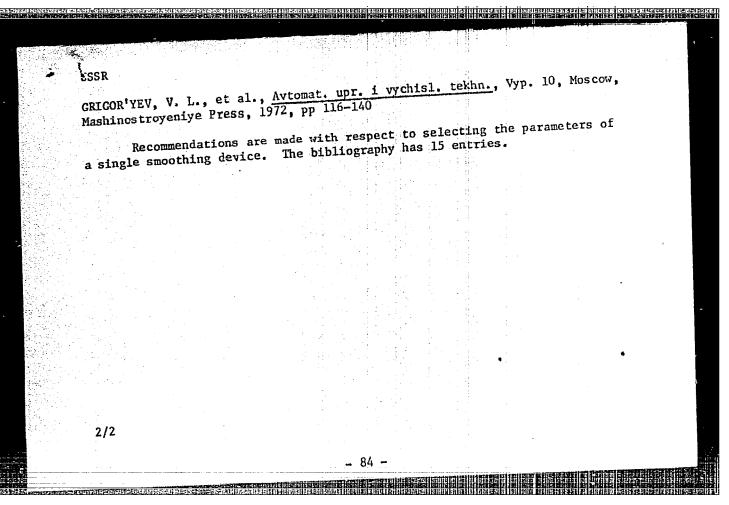
USSR

KURGANOV, V. D. GRIGOR'YEV, V. L., ZLOBIN, V. K.

"Filtration of Images in Pattern Recognition"

V sb. Avtomat. upr. i vychisl. tekhn. (Automatic Control and Computer Engineer-ing — collection of works), Vyp. 10, Moscow, Mashinostroveniye Press, 1972, pp 116-140 (from RZh-Kibernetika, No 9, Sep 72, Abstract No 9V671)

Translation: Possible forms of noise during input of iso-objective information to a digital computer are analyzed.


A critical analysis of some of the known filtration procedures is presented. A study was made of single anisotropic filtration of digitalized

A new type of recurrent filter has been developed which has a number of advantages by comparison with the known anisotropic ones, and it is investipatterns.

A procedure is proposed and investigated for measuring the intensity of noise and automatic variation as a function of the magnitude of the filter

A high-speed device was developed for measuring the noise intensity in aperture obtained. the patterns of three-dimensional objects. A systematic study of double filtration of the patterns is presented. The structures of the filters of the first and second stages are defined. 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

USSR

ZLOBINA, N. V., KURGANOV, V. D.

"Digital Computer Simulation of the Process of Automatic Scanning of Three-Dimensional Objects During Recognition of Them"

V sb. Avtomat. upr. i vychisl. tekhn. (Automatic Control and Computer Engineering - collection of works), Vyp. 10, Moscow, Mashinostroyeniya Press, 1972, pp 221-228 (from RZh-Kibernetika, No 9, Sep 72, Abstract No 9V675)

Translation: A procedure is described for digital computer simulation of the process of automatic scanning of three-dimensional objects during recognition of them. A block diagram is presented for a subprogram which permits presentation of the object for recognition with a given a priori probability, obtaining of the scanning angles of the object under the condition that the probabilities of their values are distributed by a law given in advance, determination of the values of the properties of the projection of the object corresponding to these angles, and so on.

The necessity for solving the investigated problem always arises in the absence of real equipment for data input to a computer.

1/1

- 86 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

USSR

UDC 681.327.11

ZLOBIN, Yu. P., KESSEL', Ye. L., State All-Union Central Scientific Research

"A Device for Recording and Reproducing Information"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, 1970, No 36, Soviet Patent No 288412, class 42, filed 14 Jan 69, published 3 Dec 70, p 154

Translation: This Author's Certificate introduces a device for recording and reproducing information. The device contains modules for recording and reading out cadence pulses and information signals, counters, a coincidence circuit, a delay line, and an adder. As a distinguishing feature of the patent, the accuracy of information reproduction is improved by combining the gaps of the magnetic heads in the units for recording and reading out the cadence pulses and information signals on a single axis. The outputs of the cadence pulse readout units are connected to the reset inputs of the counters, and through a coincidence circuit and delay line to the input of an adder, and the outputs of the information signal readout units are connected to the corresponding counting inputs of the counters, the outputs of the counters being connected by digital place to the inputs of the adder.

1/1

1P0038116 Acc. Nr:

UR 0326 Ref. Code:

Fiziologiya Rasteniy, 1970, Vol 17, Nr 1, PRIMARY SOURCE:

pp 155-161

PROTOPLASM SEPARATION AND HECHT LINES AS A MEANS FOR DIAGNOZING FROST RESISTANCE OF WINTER WHEAT

E. S. ZLOBINA

Kirov Pedagogical Institute

Weakly frost resistant winter wheat plants (Gorkovchanka and Lutescence 116 varieties), intermediate frost resistant (Eritrosperum 529 and Kirovskaya 2) and highly frost resistant varieties (Gorkovskaya 52 and Zorka) were grown in field conditions during 1965-66 and 1966-67. The degree of protoplasm separation and presence of plasmadesma and Hecht lines were studied by phase contrast microscopy in transverse sections prepared from November to March from the tillering nodes. The number of cells with separated protoplasm increased with decrease of temperature of the air and so I during the autumn and became smaller in the spring. Protoplasm separation was higher in highly frost resistant varieties than in those of intermediate or low resistivity. Protoplasm separation is clearly correlated to disappearance of the plasmodesmas and Hecht lines. It is concluded that the number of cells with separated protoplasm may be a criterion for quantitative assessment of the degree of dormancy and frost resistivity of winter wheat 01 REEL/FRAME plants.

19731169

06 h

USSR

UDC 8.74

ZLOBIN, V. K., ZLOBINA, N. V., KURGANOV, V. D.

"Computer Modeling of the Automatic Scanning of Three-Dimensional Objects for Recognition Purposes"

V sb. Avtomat. upr. i vychisl. tekhn. (Automatic Control and Computer Technology -- Collection of Works), No. 10, Moscow, "Mashinostroyeniye", 1972, pp 221-228 (from RZh-Matematika, No 9, Sep 72, Abstract No 9V675)

Translation: A technique is described for the computer modeling of the automatic scanning of three-dimensional objects for recognition purposes. A block diagram is given for a subprogram for showing some object for recognition with a given a priori probability, obtaining the angles of view of this object under the condition that the probabilities of their values are distributed according to a preassigned law, determining the values of the properties of the projection of the object corresponding to these angles, etc. The necessity of solving this problem always arises in the absence of actual equipment for the input of information to the computer. Authors abstract.

1/1

- 50 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

POTENTIAL SECTION FOR COME. AND THE RESIDENCE AND ADDRESS OF THE PROPERTY OF T

CIA-RDP86-00513R002203820004-0 "APPROVED FOR RELEASE: 09/01/2001

USSR

UDC 8.74

ZLOBIN, V. K., ZLOBINA, N. V., KURGANOV, V. D.

"Digital Computer Simulation of the Process of Automatic Scanning of Three-Dimensional Objects During Recognition of Them"

V sb. Avtomat. upr. i vychisl. tekhn. (Automatic Control and Computer Engineering -- collection of works), Vyp. 10, Moscow, Mashinostroyeniya Press, 1972, pp 221-228 (from RZh-Kibernetika, No 9, Sep 72, Abstract No 9V675)

Translation: A procedure is described for digital computer simulation of the process of automatic scanning of three-dimensional objects during recognition of them. A block diagram is presented for a subprogram which permits presentation of the object for recognition with a given a priori probability, obtaining of the scanning angles of the object under the condition that the probabilities of their values are distributed by a law given in advance, determination of the values of the properties of the projection of the object corresponding to these angles, and so on.

The necessity for solving the investigated problem always arises in the

absence of real equipment for data input to a computer.

1/1

1/2 010 UNCLASSIFIED PROCESSING DATE--27NOV70 TITLE--INDUSTRIAL EQUIPMENT FOR DRYING IN A FLUIDIZED BED -U-

AUTHOR-(02)-KAGANEVICH, YU.YA., ZLOBINSKIY, A.G.

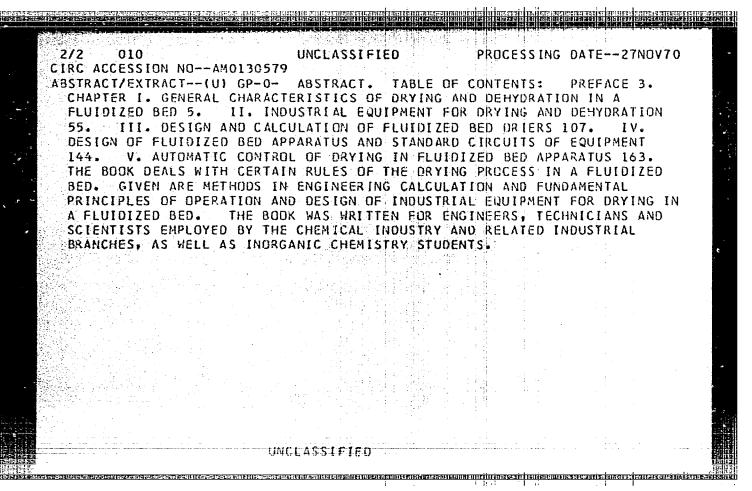
COUNTRY OF INFO--USSR

SOURCE--INDUSTRIAL EQUIPMENT FOR DRYING IN A FLUIDIZED BEDD (PROMYSHLENNYYE USTANOVKI DLYA SUSHKI V KIPYASHCHEM SLOYE) LENINGRAD, DATE PUBLISHED-----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--DEHYDRATION, FLUIDIZED BED, DRYING OVEN, AUTOMATIC CONTROL

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3003/1719

STEP NO--UR/0000/70/000/000/0001/0174

CIRC ACCESSION NO--AMO130579

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

THE STATE OF THE SECOND PROPERTY OF THE STATE OF THE STAT

1/2 016 UNCLASSIFIED PROCESSING DATE--30DC170
TITLE--STULYING THE RATE OF HARDENING OF BINDING MATERIALS USED FOR MAKING
CORES IN HEATED RISS -U-

AUTHOR-(03)-GERGALOVA, L.H., BORODYANSKIY, L.YE., ZLOBINSKIY, B.A.

CCUNTRY OF INFO-USSR

SOUNCE-KIEV, TEKHNOLOGIYA I ORGANIZATSIYA PROIZVOOSTVA, NO 1, 1970, PP 55-57 DATE PUBLISHED-----70

SUBJECT AREAS--MECH., IND., CIVIL AND MARINE ENGR, MATERIALS

TOPIC TAGS-BIBLIOGRAPHY, FOUNDARY CORE, METAL CASTING, ADHESIVE BINDER

CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—1999/1320

STEP NG--UR/0418/70/000/001/0055/0057

CIRC ACCESSION NO--AP0123279

UNULASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

2/2 016 CIKC ACCESSIO	N NUAPO	1122270	UNCLASSIFI			DATE3000	T70
ABSTRACT/EXTR HARDENING F THE USEFULN	ACT(U) OR BINDIA	GP-C-			UDY THE	RATE OF DETERMINI	NG
		•					
					1		
		UNCL/	ASSIFIED	 	.*		

USSR

VDC 534.833.5241546.3

ZLOBINSKIY, B. M., and MURAY'YEV, V. A., Moscow Institute of Steel and Alloys

"Sonic Projection of Metals"

Moscow, Metallovedeniye i Termicheskaya Ohrabotka Metallov, No 1, Jan 74, pp 56-57

Abstract: The effect of physical and mechanical properties on sonic projection of a number of pure metals and alloys was studied. Data are presented for sonic pressure, modulus of elasticity, damping rate, vibration amplitude, and interatomic distances of metals Al, Ni, V, Ta, Nb, Fe, Ti, Zr, Co, and Cu and alloys Ti-Zr, Nb-Ta and Fe-C-Si with particular attention given to Fe-C-Si alloys with a perlitic or ferritic base. Variations in the sonic properties of the alloys showed that these variations are a function of the type of solid solutions or chemical compounds formed in the alloys. It was shown that in most cases sonic pressure is directly proportional to interatomic distance while the relationship of modulus of elasticity to interatomic distance is sporadic. Three figures, two tables, two bibliographic references.

1/1

- 77 -

USSR

UDC: 669:613.6

THE PROPERTY OF THE PROPERTY O

ZLOBINSKIY, B. M., IOFFE, V. G., ZLOBINSKIY, V. B.

"Flarmability and Toxicity of Metals and Alloys"

Vosplamenyayemost' i Toksichnost' Metallov i Splavov, Metallurgiya Press, Moscow 1972, 264 pp.

Translation of Foreword: Metal is the basis of our economy. Millions of workers are involved in the production and processing of metals, and since metals have dangerous properties under certain conditions, which may cause a fire or explosion or may be toxic to the organism, the problem of assurance of production safety is particularly significant. Many metals and alloys can burn. Some oxidize rapidly in the presence of air or moisture, generating sufficient heat to reach the combustion temperature, while others oxidize slowly and the heat liberated is insufficient for combustion. Some metals, particularly magnesium, titanium, sodium, potassium, lithium, hafnium, are considered flammable, due to their capability for relatively easy ignition and maintenance of combustion. Some metals, usually not considered flammable, do ignite and burn in the finely powdered state. Aerogels and aerosols of many metals may ignite or explode; destructive industrial explosions of metal powder have occurred.

The effects of metals on workers have produced many occupational diseases. The interest in assurance of production safety has spawned an interest in the evaluation of the flammable and toxic properties of metals, their alloys and compounds. Studies in this area have been particularly intensive in recent years, with the progress of 1/7

USSE

Zlobinskiy, B. M., Ioffe, V. G., Zlobinskiy, V. B., Vosplamenyayemost' i Toksichnost' Metallov i Splavov, Metallurgiya Press, Moscow, 1972, 264 pp.

nuclear and missile technology, powder metallurgy, pyrotechnics and other new branches of industry which utilize metals and various compounds of metals. Deeper studies of the combustion of metals have been required as metals are used in high temperature and corrosive media, in reaction engines, as rocket fuels, etc. The development of nuclear power engineering and missile technology has required more complete explanation of the essence of the processes of high temperature oxidation, mechanisms of ignition and combustion of metals and alloys.

There is particular interest in the study of metals as fuels. This possible use of metals was first suggested in connection with the problem of interplanetary travel by the Soviet scientists Yu. Kondratyuk (Zavoyevaniye Mezhplanetnykh Prostranst'v [Conquering Interplanetary Space], Novosibirsk, 1929) and F. Tsander (Problema Poleta Pri Pomoshchi Reakti'nykh Apparatov [The Problem of Flight Powered by Reaction Engines], ONTI Press, 1932). These studies have been broadly developed only quite recently, in the last 20 to 30 years. Many metals and alloys, their aerogels and aerosols have been studied. This study and production experience have accumulated a great deal of factual material and lead to valuable theoretical conclusions. The studies continue, since the data available are frequently contradictory, many questions remain unanswered, and certain metals and their alloys have not yet been 2/1

. 62 -

USSR

Zlobinskiy, B. M., Ioffe, V. G., Zlobinskiy, V. B., Vosplamenyayemost' i Toksichnost' Metallov i Splavov, Metallurgiya Press, Moscow, 1972, 264 pp.

studied. Systematization of the accumulated data should help their practical use and the development of further studies in this area.

Section I of this monograph is dedicated to studies of the flammability of metals and alloys. Section II studies problems of the flammability of aerogels of metals and alloys, while Section III studies problems of the flammability of aerosols of metals and alloys. Sections II and III discuss the studies, performed primarily at the Moscow Order of Red Runner, Labor Institute of Steels and Alloys, based on the dissertation work performed under the leadership of B. V. Zlobinskiy on the flammability of binary metals and alloys, including the work of Candidate of Technical Sciences N. V. Manuyev (alloys of titanium with aluminum, manganese and silicon), of Candidate of Technical Sciences V. G. Ioffe (alloys of zirconium with titanium and silicon), of Candidate of Technical Sciences Kh. I. Peyrik (alloys of nickel with titanium and aluminum), of Candidate of Technical Sciences V. G. Poyarkov (alloys of aluminum with magnesium), of Candidate of Technical Sciences Ye. I. Popov (alloys of magnesium with lithium and aluminum), of Candidate of Technical Sciences M. M. Mukhametov (alloys of copper with aluminum and silicon), and of B. S. Fedotova (boron and borides).

The problem of assurance of production safety requires that the toxic properties of metals and alloys be studied as well. The dangerous properties of many

								Librar
							:	
USSR								
Zlobinskiy Metallov i	B. M., Ioffe, Splavov, Metalli	V. G., Zlobinskiy urgiya Press, Mos	, V. B., V cow, 1972,	osplamen 264 pp.	yayemos	it' i Tok	sichnost	: 1
mation which	th the engineer roof their danger.	etermined or stud xicity of metals needs concerning	and their of the toxici	compound ty of me	s and p tals an	resents t d possib	he infor le	
by V. B. S1	obinskiy and	was written by P I Candidate of Te	chnical Sci	iences V	G. Io	ffe, Sec	tion IV-	-
nayner, but	ences R. A. Kuch	grateful to Doc Sciences, Profes erskiy, who revi	sor L. A. S	Shvartem	in and	Candida+	o of	•
TABLE OF CO								
Foreword .	Section I		• • • • •	• • • •	• • •		3	
	Flammability of	Metals and Allo	ys				5	
Chapter 1.	deneral statemen	11165					5	
Chapter 2.	Methods of Inve	stigation	• • • • •				10	
		- 67 -		· 	··			
	er ten en en de		IIESEIKKRISSSEIMMI			3-4-8 30 C1 3-4-7-10 C10:5	110011111111111111111111111111111111111	72116.12

USSR	프린터 경험하다 한 회학자 최고 프로바스 (1915년 1915년 학교 1915년 기계 1915년 기계 - 1915년 - 1917년 - 1917 - 1917년 - 1917	
Zlobinskiy Metallov i	, B. M., Ioffe, V. G., Zlobinskiy, V. B., Vosplamenyayemost' i Toksic Splavov, Metallurgiya Press, Moscow, 1972, 264 pp.	chnost'
Chapter 3.	Models of Ignition	21
. Chapter 4.	Pre-ignition Criteria ()	25
Influ	ence of the oxide film. Induction Period. Theoretical ignition	
tempe	rature. Critical ignition pressure. Surrounding medium.	
Chapter 5.	Influence of Properties of Metals	45
Physi	cal and chemical properties. Heat physical properties.	
Chapter 6.	Geometry and Surface of the Metal	49
Adsor	Pyrophoric Properties of Metals and Alloys	55
Chapter 8.	Characteristics of Flammebility of Metals and Their Compounds ography Section II	63
	Flammability of Metal Aerogels	72
Chapter 1.	General Statements	72
Chapter 2.	Methods of Investigation	82
Chapter 3.	Investigation of Auto-Ignition Temperature	90
Alloys	for investigation. Experimental conditions. Influence of esion of powder. Influence of oxidation of powder and storage	

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

									SHEET SOUT	alek A
and the second s	en e									
USSR									-	
COOR										
71obinckiy	R M Toffo	V C 7	71 objectiv	V D V				Tal.		
Metallov i	, B. M., Ioffe, Splavov, Metal	v. u., z	TOUTHSKIY,	, V. D., Y	ospramen	yayemos	ε. τ	TOKS	ichnost.	
riccallov 1	opiavov, Metai.	urgrya r	Tess, Mose	-OW, 1972,	204 pp.					
timo	Influence of	owder r	roduction t	- oobnology	T-n-£1	orian of	2			
	r moisture cont						•			•
Chapter 4.	Determination	of Tonit	ion Energy	r or surro	unurng m	caram.			104	
Chapter 5.	Flammability	of Mechan	rical Mixti	ires of Me	tal Powd	ers		• •	106	
	Flammability 1								108	
Chapter 7.	Mechanism of	gnition	and Combus	tion of M	etal Pow	ders .			117	
Biblio										
	Section III									
	Flammability of	f Metal	Aerosols .						127	
Chapter 1.	General States	ents							127	
Chapter 2.	Methods of In	restigati	on			· · · ·			145	
Lower	concentration 1	imit of	Manmabili	ty Explos	sion pre	ssure.				
	on energy and t									
	Study of Ignit							• . •	170	
	ncentration lim						n in			
	nding medium.	Ignition	energy an	d temperat	ure. F.	lame				
	ature.					. **				
	Explosion Pres	sure of	Metal Aero	sols					180	
6/1										
<u> </u>				<u> </u>						
		****		211122 211112001224110	magnistijijin:259	anti i aminata m	क्षा उक्ष स्व	भक्तानाव्यक	10302021056	स्तराज्य

	SSR	100 PH 401
	lobinskiy, B. M., Ioffe, V. G., Zlobinskiy, V. B., Vosplamenyayemost' i Toksichnost etallov i Splavov, Metallurgiya Press, Moscow, 1972, 264 pp.	. 1
	apter 5. Mechanism of Ignition and Combustion of Metal Aerosols 191 Aprec 6. Interrelationship Between Flammability Characteristics of Metal Aerosels and Aerosels	
	Metal Aerogels and Aerosols apter 7. Interrelationship Between Flammability Characteristics of Metal Aerosols	
	Bibliography Section IV	
200 200 201 201 201 201 201 201 201 201	Toxicity of Metals	
	apter 2. Classification of Substances as to Degree of Danger 204 apter 3. Peculiarities of Metal Toxisis	
	Bibliography 226	
	pendix. Maximum permissible concentrations of harmful substances in the air in working areas (from 245-71)	

USSR

UDC: 669:613.6

ZLOBINSKIY, B. M., IOFFE, V. G., ZLOBINSKIY, V. B.

"Flammability and Toxicity of Metals and Alloys"

Vosplamenyayemost' i Toksichnoot' Metallov i Splavov, Metallurgiya Press, Moscow 1972, 264 pp.
Translation of Foreword: Metal is the basis of our economy. Millions of workers are involved in the production and processing of metals, and since metals have dangerous properties under certain conditions, which may cause a fire or explosion or may be toxic to the organism, the problem of assurance of production safety is in the presence of air or moisture, generating sufficient heat to reach the combustion temperature, while others oxidize slowly and the heat liberated is insufficient for combustion. Some metals, particularly magnesium, titanium, sodium, potassium, lithium, hafnium, are considered flammable, due to their capability for relatively easy ignition and maintenance of combustion. Some metals, usually not considered flammable, do ignite and burn in the finely powdered state. Aerogels and aerosols of many metals may ignite or explode; destructive industrial explosions of metal

The effects of metals on workers have produced many occupational diseases. The interest in assurance of production safety has spawned an interest in the evaluation of the flammable and toxic properties of metals, their alloys and compounds. Studies in this area have been particularly intensive in recent years, with the progress of 1/7

THE THE REPORT OF THE PROPERTY OF THE PROPERTY

USSR

Zlobinskiy, B. M., Ioffe, V. G., Zlobinskiy, V. B., Vosplamenyayemost' i Toksichnost' Metallov i Splavov, Metallurgiya Press, Moscow, 1972, 264 pp.

nuclear and missile technology, powder metallurgy, pyrotechnics and other new branches of industry which utilize metals and various compounds of metals. Deeper studies of the combustion of metals have been required as metals are used in high temperature and corrosive media, in reaction engines, as rocket fuels, etc. The development of nuclear power engineering and missile technology has required more complete explanation of the essence of the processes of high temperature oxidation, mechanisms of ignition and combustion of metals and alloys.

There is particular interest in the study of metals as fuels. This possible use of metals was first suggested in connection with the problem of interplanetary travel by the Soviet scientists Yu. Kondratyuk (Zavoyevaniye Mezhplanetnykh Prostranst'v [Conquering Interplanetary Space], Novosibirsk, 1929) and F. Tsander (Problema Poleta Pri Pomoshchi Reakti'nykh Apparatov [The Problem of Flight Powered by Reaction Engines], ONTI Press, 1932). These studies have been broadly developed only quite recently, in the last 20 to 30 years. Many metals and alloys, their aerogels and aerosols have been studied. This study and production experience have accumulated a great deal of factual material and lead to valuable theoretical conclusions. The studies continue, since the data available are frequently contradictory, many questions remain unanswered, and certain metals and their alloys have not yet been 2/7

62-

EXECUTED TO THE PROPERTY OF TH

USSR

Zlobinskiy, B. M., Ioffe, V. G., Zlobinskiy, V. B., Vosplamenyayemost' i Toksichnost' Metallov i Splavov, Metallurgiya Press, Moscow, 1972, 264 pp.

studied. Systematization of the accumulated data should help their practical use and the development of further studies in this area.

Section I of this monograph is dedicated to studies of the flammability of metals and alloys. Section II studies problems of the flammability of aerogels of metals and alloys, while Section III studies problems of the flammability of aerosols of metals and alloys. Sections II and III discuss the studies, performed primarily at the Moscow Order of Red Banner, Labor Institute of Steels and Alloys, based on the dissertation work performed under the leadership of B. V. Zlobinskiy on the flamma-bility of binary metals and alloys, including the work of Candidate of Technical Sciences N. V. Manuyev (alloys of titanium with aluminum, manganese and silicon), of Candidate of Technical Sciences V. G. Ioffe (alloys of zirconium with titanium and titanium and aluminum), of Candidate of Technical Sciences Kh. I. Peyrik (alloys of nickel with aluminum with magnesium), of Candidate of Technical Sciences V. G. Poyarkov (alloys of magnesium with lithium and aluminum), of Candidate of Technical Sciences Ye. I. Popov (alloys of Mukhametov (alloys of copper with aluminum and silicon), and of B. S. Fedotova (boron and borides).

The problem of assurance of production safety requires that the toxic propersies of metals and alloys be studied as well. The dangerous properties of many

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

CUSSR CONTROL OF THE
Zlobinskiy, B. M., Ioffe, V. G., Zlobinskiy, V. B., Vosplamenyayemost' i Toksichnost' Metallov i Splavov, Metallurgiya Press, Moscow, 1972, 264 pp.
metals have not yet been determined or studied sufficiently. Section IV studies general problems of the toxicity of metals and their compounds and presents the information which the engineer needs concerning the toxicity of metals and possible estimation of their danger.
Section I of the book was written by Professor B. M. Zlobinskiy, Sections II and IIby B. M. Zlobinskiy and Candidate of Technical Sciences V. G. Ioffe, Section IVby V. B. Slobinskiy.
The authors are deeply grateful to Doctor of Technical Sciences, Professor V. I. Layner, Doctor of Chemical Sciences, Professor L. A. Shvartsman and Candidate of Medical Sciences R. A. Kucherskiy, who reviewed the manuscript and made valuable suggestions.
TABLE OF CONTENTS
Foreword
Flammability of Metals and Alloys
the contract of the contract o
Chapter 2. Methods of Investigation

USSR				141	
Zlobinskiv R W	Toff- V C		- 4		
Metallov i Splavo	, Ioffe, V. G., Zlob v, Metallurgiya Press	inskiy, V. B., Vo s, Moscow, 1972,	osplamenyayemo 264 pp.	ost' i Toks	ichnost;
Chapter 3. Model	s of Ignition				
ulapter 4. Pre-i	gnition Criteria		• • • • •		21
Influence of	uic oxide film. Inc	luction Domical	The amount in 1 .	• • • • •	25
apect 3. Initial	CHLE OF Properties At	Motole			45
- M O T COL MIN	CHEWILLAI HUUNATTIAC	Hoof which 1			45
onaptor of decome	LLY AND SHTTACE At th	A Matal			49
					55
pyrophoric pr	rophoric properties;	Pyrophoric mec	hanism. Impa	ct	
		ility of Metals a	ind Their Comp	ounds	63
Sectio					
Flarmal	bility of Metal Aerog	els			72
					72
Chapter 2. Method	s of Investigation				82
					90
110/0 201 111	ACSCIERCION PROPERT	NONTO I. PONdifiana	F C1	•	
5/7 dispersion of	powder. Influence of	of oxidation of p	owder and sto	rage	
					-

ME LEE	
÷ .	
4.5	USSR
	71ohimatina processing and a second s
	Zlobinskiy, B. M., Ioffe, V. G., Zlobinskiy, V. B., Vosplamenyayemost' i Toksichnost' Metallov i Splavov, Metallurgiya Press, Moscow, 1972, 264 pp.
	time. Influence of powder production technology. Influence of powder moisture content and composition of surrounding medium.
	Chapter 4. Determination of Land Composition of surrounding medium.
	Chapter 5. Flammability of Mechanical Mixtures of Metal Powders
	Chapter 6. Flammability Diagrams 106
	Chapter 7. Mechanism of Ignition and Combustion of Metal Powders
	Bibliography Section III
siliya Ayaran Marana	Flammshility of Matal
	Flammability of Metal Aerosols
	Chapter 2. Methods of Investigation
	Ignition energy and temperature all explosion pressure.
	TOTAL TO COUNTY OF THE PUBLICATION AND COMPAGE TO COMPA
	surrounding medium. Ignition energy and temperature. Flame
	Chapter 4. Explosion Pressure of Metal Aerosols
	6/7 180
<u> </u>	
	Control Contro

USSR	
71obinalia n	
	M., Ioffe, V. G., Zlobinskiy, V. B., Vosplamenyayemost' i Toksichnost' vov, Metallurgiya Press, Moscow, 1972, 264 pp.
Meta	relationship Between Flammability Characteristics of relationship Between Flammability Characteristics of relationship Between Flammability Characteristics of
Chapter 7. Inte	rrelationship Between Flammability Characteristics of
Bibliograph ₎ Secti	y ion IV
General General	city of Metals
warpter Z. Clark	SITICOTION OF C.A. 200
Chapter 3. Pecul	diarities of Metal Toxicity
Bibliography	deteristics of Metals as to Danger
Appendix. Maximum air in worki	m permissible concentrations of harmful substances in the ng areas (from 245-71)
7/7	261

LACLASSIFIED TITLE-THE BASIC PRINCIPLES OF DIAGNOSIS OF THROMBGEMOULIZATION OF THE PRICESSING CATE--17JUL70 ALTHOR-- LLOCHEVSKIY, P.M. CCUNTRY OF INFC--USSR SCURCE--KLINICHESKAYA MECITSINA, 1970, VCL 48, NR 2, PP 137-143 CATE PLELISHEC----7C SUBJECT AREAS-BIOLEGICAL AND MEDICAL SCIENCES TOPIC TAGS-EMBELISM, THROMBIN, PULMENARY BLOOD VESSEL, ARTERY, DIAGNESTIC CENTREL MARKING--NO RESTRICTIONS OCCUMENT CLASS--LACLASSIFIED PROXY REEL/FRAME--1977/1680 STEP NE--UR/0497/70/048/002/0137/0143 CIRC ACCESSION NO--APOG44828 UNCLASSIFIED

Acc. Nr: AP CO44828

Ref. Code:

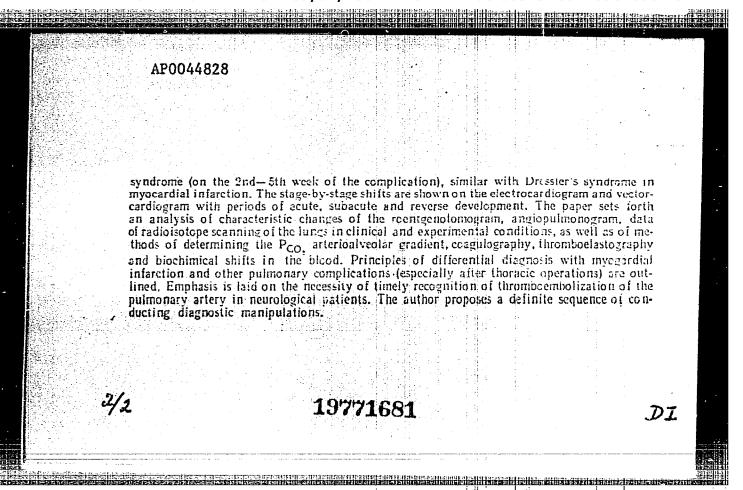
PRIMARY SOURCE:

Klinicheskaya Meditsina, 1970, Vol 48,

Nr 2 , pp /37-/43

THE BASIC PRINCIPLES OF DIAGNOSIS
OF THROMBOEMBOLIZATION OF THE PULMONARY ARTERY

Zlochevskiy, P. M.


Summary

Thromboembolization of the pulmonary artery is a relatively frequent complication which, contrary to previous notions, is commonly characterized by a comparatively slow (subacute) course and initial affection of small pulmonary vestels. According to autopsy materials (1952—1967) of the Central Clinical Hospital of the USSR Ministry of Railroad Communications thromboembolization of the pulmonary artery was established in 7.4 per central postmortem cases, with an increased incidence during the last years. The author analyzed an extensive clinical material involving the use of auxiliary methods of investigation (electrocardiological, roentgenoradiotomographic and laboratory). Three variants of the clinical course of thromboembolization of the pulmonary artery were singled out; acute, subacute and recurrent; the author proposes a pathogenetic syndrome classification. The article describes the abdominal syndrome (in right-sided involvement of the diaphragmatic pleura) and the allergic

1/2

REEL/FRAME 19771680

62

USSR

· UDC: 681.32.001

NEKRASOV, M. M., MANZHELO, V. A., MARTYNYUK, Ya. V., ZLOGODUKH, G. M.

"The Future of Utilizing Piezoelectric Elements in Computer Technology"

Poluprovodn. tekhn. i mikroelektronika. Resp. mezhved. sb. (Semiconductor Technology and Microelectronics. Republic Interdepartmental Collection), 1971, vyp. 6, pp 71-74 (from EZh-Avtomatika, Telemekhanika i Vychislitel'-naya Tekhnika, No 10, Oct 71, Abstract No 10B143)

Translation: The authors describe the principal types of piezoelectric elements which have been specifically designed for use in computer technology. Data are given on the basic parameters and field of application of analog piezoelectric elements. The possibilities of constructing high-capacity memory units with ferroelectric pulsed piezoelectric register elements are considered. The access time for readout from such a device is measured in fractions of a microsecond. Bibliography of six titles. N. F.

1/1

USSR UDC 681.142.65

NEKRASOV, H. M., MANZHELO, V. A., MARTYNYUK, YA. V., ZLOGODUKII, G. M.

"Prospects for Using Piezoelements in Computer Engineering"

Kiev, Poluprovodnikovaya tekhnika i mikroelektronika, No 6, 1971, pp 71-74

Abstract: A study was made of the basic types of piezoelements the designs of which were especially developed for application in computer engineering. Data are presented on the basic parameters and range of application of analog piezoelements. Special attention is given to the ferroelectric piezoelements designed for storing discrete information. The basic principles of constructing a memory of significant capacity using such elements are noted. The reference cycle when reading out of the described memories can be fractions of a microsecond. The length of the write cycle is on the order of a hundred microseconds, which permits application of relatively low writing voltages and simple write shapers. A write cycle frequency of several kilohertz is attainable. The memory circuit based on pulse elements is similar with respect to complexity to a magnetic memory with linear access.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203820004-0"

USSR

UDC 621.314.222.6

NEKRASOV, M. M., GUL'TYAYEVA, L. G., and ZLOGODUKH, G. M.

"Piezoceramic Shift-Type Transformers"

Kiev, Tzvestiya VUZov SSSR--Radioelektronika, No. 5, 1970, pp 608-513

Abstract: The transformer is an electromechanical device with a double energy conversion capable of transforming an electrical voltage to mechanical oscillations (or the harmonics) caused by the resonance amplification of stresses and voltages. In the simplest case, the piezoceramic transformer is a three-lead component made of a piezoceramic bar with surface electrodes, and consists of an exciter and an oscillator. A periodic electric field applied to the exciter causes the whole bar to oscillate mechanically as a result of the inverse piezoelectric effect. Resonance oscillations and standing waves result at particular frequencies, the natural mechanical frequencies along one of the geometric dimensions. The amplitudes of the elastic stresses and strains are given a resonance amplification, and these stresses set up an electric field at the oscillator electrodes. The equivalent circuit of the piezotransformer is given, and some computational equations are derived. Also shown are diagrams of various arrangements of these transformers. The curve for the transformer coefficient as a

1/2