Approved For Release 2007/07/17 : CIA-RDP86B00689R000300040031-0

Attachment B

| Is Here .. ,_.‘.ft’To_day :

“Denelcor s Heterogeneous
~ Element Processor (HEP) is -
“a large-scale . (64-bit}) high~
e s.peed digital: computer-.
 whose architecture makes all::
- ‘other supercomputer ar--
- chitecture obsolete. HEP
- .provides a totally new com--
' puting environment:. high--.
- speed, parallel processing of.".
= heterogeneous- data ele--
--ments. HEP has been de- .-
. signed for use: in. scientific -
“-and/or commercial applica- .
tions which can: effectively
. ‘utilize processing speeds of -
. “’ten million to 16Q million.in--
. structions per second.. HEP*
.- achieves this throughput be--’
. > cause of its design which im-
- plements the: Multiple In--
_struction Stream Muitiple

B

 chitectural concept “for the':
icst time in al commercxally

dent instruction streams or pro--:.
cesses, each with its own data.stream to-
be used concurrently for use:-in: pro-- j
gramming appiications. This multiplicity }
of instruction streams runningin paralle} -

Bt component parts for parallel processing. Other features of

" data processing equipment. An equal number. of Super-

- visory Processes are available for processing the privileged -
functions necessary to the support of the User Processes.

for a total of 2,048 independent instruction streams.

“enables and encourages breaking. the apphcatlon into.its. ™
) Lbeneflts in economy and rehabnhty
- the HEP design provide the synchronization necessary to’ = :
. facilitate: cooperation between concurrent processes, and: .
_ eliminates the precedence delays which often occur when- -
- parallel processing is attempted using more conventional -

iHEP Parallel Fortran is des‘gned for maximum similarity to
. - existing languages, with logical extensions as necessary to.-
: '1mplement the advanced featuras of HEP. . TR

teractive Maintenance Language for diagnostic purposes. -

The many capabilities of thi
HEP hardware.are.full
“supported by HEP' System
Software so that:the poten
- tiak performance of the sys
temn. is. realized .with: relativ
~ease. Using the-available’
. .System. Software, pro
-.gramming HEP is very simi
lar to. programming a:con
. ventional system, and' onl
minimal- additional: pro
grammer:, trammg isv re

»,'ln' addition- to the obvious.
;'design goals. of fas
throughput-and the ability.to
solve: very-large- and' com
plex: problems, HEP is. de
.. signed for ease of operatiol
and to be. highly effective
“across the full range of
. general-purpose. computmg
applications.. .:

proven *“leading edge technology’ ‘elec-:
tronic components. This provtdes the user

HEP is designed for ease of mamtenance in the event of
hardware malfunction. Maintainability features are an in-:
tegral part of the hardware design, including an on-board’
maintenance diagnostic system which implements an In- -

Approved For Release 2007/07/17 - CIA-RDP86B00689R000300040031-0

228

Approved For Release 2007/07/17 CIA- RDP86BOO689R000300040031 0

Evolution of Computer
AT chrtecture

The earliest computers executed a single instruction at a
time, using a singie piece of data. The architecture of these -
machines, called SISD (for Single Instruction, Single Data: -
Stream) computers, was straight-forward; and well suited .
to the technology of the times. As technology advanced -
and computer users required greater performance, SISD -

machines were made faster and faster, using newer and

better components and designs. But a fundamental prob-
lem remained. Although the execution of a computer in- .-
struction is physically composed of several parts — instruc-
tion fetch, operand fetch, execution and result store.— the ;"7
SISD computer could only perform one of these at a time,”
since each step depended on the completion of the previ- - .-
- ous one. Thus, three-fourths of the expensive hardware -
stood idle at any given time, ‘waiting for the rest of the{

" Another épproach to increésing the speed of computation = -
-.-was. to make multiple copies of portions of the SISD.:

" . struction, Multiple Data Stream),. the operand fetch, - .
-execution and result store portions of the hardware were .. <.~
. replicated, so that the execution of a single instruction. - ’
- caused several values to be fetched, computed upon and -
“the answers stored. For certain problems, this provideda .~ 7. -

: - total completion of the instruction before proceeding. . The -

hardware: In this approach; called SIMD (for Single In- -

substantial' performance improvement.. With sufficient. .
hardware; entire: vectors of numbers could be operated ::
upon- simultaneously. - However, -as - with’ “look-ahead’” .=
SISD. machines, the occurence of test and branch instruc-- - =
tions, among others, required the machine to wait for the .

test and branch itself could make no use of the rephcated B =

hardware to finisn operation. © ;. hardware. :
: P
F’logram Figure 1 , ro.gr“am Figure 2
SISD SIMD
Single Instruction, Singte Instruction,
Single Data Stream Muitiple Data Stream
Branch: Branch- o
- - 250 % G e &0
-Divide -, Divide - o mrc&: SOUKE'*#.‘” % A
Multiply Multiply clod el Fh G} [HE
- AddLE: Add:i7| -
> @ &
Result | { Result Result | [Result
| S | L i
A+B c+b E+F G+H
‘Add Add Add Add Add
[N

SISD designers attempted/to,remedy-this by'a.techﬁique
called “look-ahead”, in which instruction fetch for the next

instruction was overlapped with some portion of the -

exacution of the current instruction. This provided some
performance improvement. However, digital computer
programs, particularly those written in higher level lan-
guages, contain large numbers of test and branch instruc-

tions, in which the choice of the next instruction depends . -
» on the outcome of the current instruction. In such cases, -

“look-ahead” offers no speedup, and introduces substan-

tial complexity to make sure that the partial execution of |
an incorract next instruction does not contammate the .

computation.

" architecture. Substantial portions of most programs are

. length of the machine, performance suffers and softwaré -

“high since the hardware is often not fully utilized.

In addition, two new problems were created by the SIMD

not vector-oriented. The computation of iteration variables
and array subscripts is a scalar problem, for which SIMD
offers no speedup, and the collection of operands across.
arrays is an addressing problem which many SIMD
architectures do not handle. As a. second problem, if an
SIMD computer has a fixed quantity of replicated execu-
tion modules (adders; etc.), and if the length of the vector ~
which the user wishes to operate on differs from the vector -

complexity increases. The cost of computation remams- '

Approved For Release 2007/07/17 - CIA-RDP86B00689R000300040031-0

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300040031-0

._T-_...A« A L E Y:” . ﬁ " o N “,.‘v,_\-v,.
iy i'cx_::f\)gen QUS Cigemerit PfOC*r;baux

Dienzicor, Inc.

Evoimon of Computer
Archa‘tecture :

; Continf.xed difﬁculties With the imﬁléfnéhtatibn of high p:ef-': '

formance, cost effective computation using single instruc-
_tion machines have led to the development of a new
concept in computer archxtecture .

“This concept, called MIMD {for Mulnple Instructlon Multi-

ple Data Stream) architecture, achieves high performance-

at low hardware cost by keeping all processor hardware
utilized executing multiple parallel programs simulta-
neously. For example, while an add is-in progress for one
process, a multiply may be executing for another, a divide

~for a third; or similar functions may be executing simulta--
- necusly, such as multiple adds or divides. In MIMD ar- -

chitectures, cooperating programs are often called “pro-
- cesses’. Independent programs may contam one or sev-
“eral processes. - -

processes. Since this arbitration of the state of memory -
locations is handled by hardware and without affecting the
execution of unrelated instructions, the communication
delay.is short and the overhead is small.

-~ MIMD c'omputets. méyv be used to execute either SISD or

SIMD programs. SISD programs are just MIMD programs
with no inter-program communication. Execution of mul-
tiple identical MIMD programs is equivalent to execution of
an SIMD program.

In the SIMD case, MIMD computers may match the vector
lengths exactly, while using remaining resources for unre-
lated computation. Thus, high efficiency may be main-
tained.even ‘through scalar portions of the code. But the -
major application of MIMD computers lies in problems of

Process Process Process Process
1 2 3 4
® o e
Sranch - Add | {Muitiply| | Divide.-
Divide Branch Add | [Multiply
» |Muttiply] | Divide-| |Branch. Add-
Add |- [Multiply: Divide { | Branch:

Figure 3

MIMD
Multiple Instruction,
Muitiple Data Stream

Result Result Result
S | N
Divide A+B CxD E+F
Multiply
Add

Because the multiple instructions executed concurrently
by an MIMD machine are independent of each other,

execution of one insiruction does not influence the execu-.

tion of other instructions and processing may be fully
_parailel at all times.

Successful MIMD architectures. (figure 3} also provide

low-overhead mechanisms for inter-process communica-

. tion. In these architectures, data locations may contain not
only a value but a state. Processes may synchronize by
waiting for input locations to have the “full” state. Result

- storage may wait for output locations to attain the “empty’’

state resulting from consumption of their contents by other -

sufficient complexity that straightforward vector computa-

* tion is not feasible. In these cases, which include continu-

ous simulation and complicated partial differential equa-
tion solutions, MIMD architecture offers the only possible
method of achieving significant parallelism. Denelcor’s
Heterogeneous Element Processor system is the only
commercially available MIMD computer.

Approved For Release 2007/07/17 CIA RDP86BOO689R000300040031 0

T g

‘Hei @orogor’mous Flen

T Dencor, Inc.

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300040031-0

g ent f”ocessor

_ HEP Architecture.

Process Execution Module

Diagnostic Maintenance:

Figure 4
HEP System
Structure
s s 1Tyl Interfaces
1 [l{e} :]
' : 3 Peripherals
- Cache “b-—ts-- —
X ;.- "8 Sub-Systems
1 External -+
I o W DAC
[-3 ADC
Clocks
Discrete 'O

~ The HEP computer systemn consists of process execution
. modules (PEMs), data memory modules and support pro- . . -

.~ cessars interconnected by a high-speed data switch net-
. work.- All data memory modules are accessible by all
.~~~ PEMs. Thus, processes executing in parallel in one or
... several PEMs may cooperate by reading and writing
.© shared information in the data memories. Parallel pro-
;" cesses synchronize and pass information back and forth
" using the full/empty attribute of each data memory loca-
 tion. HEP instructions may automatically wait for an input
" data memory- location to be full. before execution, and
.. - leave the location empty after execution. Instructions may
- also wait for an output location to be empty before execu-
- tion and leave it full after execution. This communications

. ously pass information to other processes while executing
The full/empty attribute ensures that reads and writes of
inter-process variables will alternate and no information
will be lost. For locations used exclusively within a process,
the full/émpty attribute is ignored and memory may be ac-
cessed conventionally. N

Both normal and synchronized memory access are avail-
able to the Fortran programmer as well as the assembly
programmer. Software modules in both Fortran and as-
sembler programs may be distributed across several PEMs

to achieve increased throughput. In general, design of a .
parallel program is not affected by whether the program.

~will run in one or several PEMs,

“: discipline allows processes to conveniently and unambigu- "~

In HEP, creation and termmatlon of parallel processes in

an MIMD program is a hardware capability directly avail-
able to the programmer. Processes are created or termi-
nated in 100 nanoseconds by execution of a single HEP:
instruction. Thus, processes may be created at any point in

- a program where additional parallelism is required, and. -
- terminated as soon as their function is accomplished. Up to. .-

64 user processes may exist simultaneously within each

c PEM ina HEP system :

- In order to efficiently mampulate data, each PEM contams S
-..2048 internal general purpose registers. PEMs auto-.
" matically detect and flag normal- arithmetic -errors {over--
" flow, ‘underflow, etc.) and may generate traps on occur-
rence of these errors. Programs in a HEP system are:
- protected from each other and relocated in' memory by-a
_set- of relocation/protection registers in each PEM. This

allows multiprogramming in a HEP system with full Lsola~
tion of one user from the next.

All data and instruction words in a HEP are 64 bits long,
although PEM data memory reference instructions allow
partial word and byte addressing. The memory bandwidth
in a HEP system is 20 million words/second per PEM,
including the dafa switch network. Each PEM executes up
to 10 million instructions per second. The architecture of
the switch network allows up to 128 memory modules of: -
up to one million words each and up to 16 PEM's. This
range of system configurations results in speeds up to 160
million instructions per second on 64 bit data and memory . -

: _Avsxzes up to one billion bytes.

Approved For Release 2007/07/17 : CIA-RDP86BOO689R00030004003A1 -0

Figure 5

Process Execution
Module Structure

,operatmg system: prowdes input .,,ahd outpu (
. atch JOb scheduling, and full operator control ¢f the sys-

HEP Forténs is-an- extended ANSI Fortran IV 'with- added

" -mon to many Fortran compilers, HEP Fortran provides the
programmer with the means for-explicit parallel pro-
gramming. A math library is also available which generates

- parallelism in the evaluation of known functions. . -

The HEP Asseknbiy Lai’:éuége-éllows the user to access all

“"of the capabilities of the system in an efficient manner. =~
_ HEP Assembly Language subroutines.may be inciuded in
.a Fortran iob: to lmprove the effxcxency of certain heavily.

parallel capabilities: The Fortran programmer has access to -
all standard Fortran. formatted and. unformatted [/O
capabilities. In addition to the relaxation of syntax-com- "."

used sections of code Assembly Language programs have:
direct access to.all hardware- capabilities, including the,)
direct creation and termmatxon of arbntrary processes

The HEP Link- Editor bmds programs and subroutmes into
processes,. tasks, and jobs.- The input is from- either HEP
Fortran or: HEP Assembler. The output is HEP machine
executable: code’ which is: input to the. HEP Loader at

e The HEP Link-Editor runs as a userjob in

rate I/O capablhty via. the HEP Switch to a HEP" System :
with multiple Process Execution Modules (PEM). Sequen-

tial access:to information stored in multiple moving-head _‘
disk files is provided to the system at data rates from 80 ..

megabytes per second (the maximum-input rate for the -
switch),: to-approximately 1 megabyte per second (the -
rotating storage data rate}. Random access to. information

loglcal file:size and the access patterns.

The HEP Xnteractwe Mamtenance Language (IML) pro- |

-~ vides a sophisticated yet easy-to-use language for debug-

" ging the HEP System. It is used in conjunction with main-
.. tenance hardware, wither test slots in the HEP main frame

_ oriented; thus permitting complex funchons to be coded B
_into hxgherorder procedures - SOEEI

” Approved For Release 2007/07/17

” CIA-RDPE6B00689IRO00300040034-0

_is provided with comparable bandwidth, dependingon the B

-.or off-line test fixtures. The language is procedure- - . -

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300040031-0

Hoter ogeﬁeous i:.iemeﬂt Pfocessor

- Denelcor, ‘nc.

HEP Applications

~'programming of ordinary SISD algorithms. This applica-

' tures of HEP, but fully utilizes its computing capacity. Since
. ¥ HEP’s parallel architecture allows more complete. utiliza-
... tion of its hardware, the cost effectiveness of HEP multi-
... programming is higher than for other machines of compa-
:; rable performance. Another benefit of HEP’s effectiveness
at conventional computation is that it can easily run all jobs

o » 1mportant to be written in parallel.

" the solution of systems of ordinary differential equations,
* such as those describing flight dynamics problems. In these
" problems, a substantial system of dissimilar equations must
- be solved, often in real-time. Many of the functional rela-
" tionships in the equations are empirically derived and must

. tion. in lookup tables. Historically, such problems could

"only be solved, with limited precision and great expense,
- using analog computers. The HEP MIMD architecture is
- the first commercially available digital technology capable
-, of effectively addressing these problems.

" Another application area well suited to HEP is the solution
- of partial differential equations describing continuous
. media. These equations, which occur in fluid dynamics

-:and heat transfer problems, are typically modelled using a
“grid of lattice points within the continuous medium. The
.behavior at a point is a2 function of the values at its
.. neighbors. The HEP’s architecture allows these problems
to be solved with full parallelism, even in the presence of
- irregular or time-varying lattice geometry, or with complex

' functxonal relationships between lattice points.

A fourth and very general, apphcanon area for HEP is that
class. of problems for which a large number of discrete
. elements must be modeled or computed upon. Examples
. of such problems are tree and table searches, muiti-

fractional distillation simulations. In all cases, complex be-
havior at a number of sites must be modeled, and interac-
tion between the sites is critical to the result. Such prob-
lems are easily solved on the HEP.

The computing requirements for each of these applications
are different. To effectively supply the range of capabilities
needed, the HEP system is available in several configura-
tions. . .

Approved For Reléase 2007/07/17 CIA-RDP86BOO689R000300040031-O

- The most obvious area of HEPAabplicaﬁon is the multi- '

; tion-does. not use the inter-process communications fea- -

* - at a facility — not just those which are suffxcxently large or

o The applxcatlon for which HEP was originally desxgned was

be repetitively evaluated by multi-dimensional interpola-:

St s

&l
LA

. particle physics problems, electric power distribution, and

LN kg B e e

: HEP Summary

Approved For Release 2007/07/17 : CIA-RDP86B00689R000300040031-0

4

genrieous Ele ment PZOCESSC?:,??J

Deneélcor, Inc.”

“HEP’s" building block. architecture: offers total. flexibility
‘enabling the user to start with the.exact amount of compu--
ter power needed. As computing requirements grow, . -
HEP’s field-expandability allows the:user to easily-and::
economically. add hardware and software modules to ac---
commodate the largest of applications. These advanced " . -
features clearly place HEP in the forefront of digital com- -.

puter technolagy and provide strong competition for exzst-
ng computer systems, both scalar and vector :

The evolutlon of HEP is a natural result of Denelcors
on-going commitment to meet the market needs wth
state-of-the-art hxgh—quahty systems. .

Denelcor Ine.

B L ' R 3115 East 40th Avenue
oo . ~ - Denver, Colorado 80205
ST 303-399-5700

o s i TWX 910-931-2201

Approved For Release 2007/07/17 CIA- RDP86800689R000300040031 0

