USSIZ Energy Order MICROFILMED 29 any 27 The Soviet Nuclear Power Program The Soviet nuclear power program has two basic types of nuclear power reactors in its inventory at the present time—the pressurized—water reactor (PWR) and the channel—type boiling water reactor (BWR). In addition, the Soviets are currently in the process of introducing the liquid—metal fast breeder reactor (LMFBR) into their reactor inventory. The current Soviet nuclear reactor construction program is based on three reactors. The VVER-440, a medium-sized PWR, is in serial production in the Sovict Union. The VVER-440 has a gross electrical capacity of 440 megawatts (MWe) and is the standard Soviet PWR design both for export and for domestic power production (figure /). The Soviets have sold 26 of these reactors for export, almost entirely to the Eastern European countries. The VVER-1000 is a large-sized PWR which incorporates more sophisticated technology and safety features than does the VVER-440. The VVER-1000 is a scaled-up version of the VVER-440 PWR and has a gross electrical capacity of 1000 The Soviets are obviously making some concessions to Western reactor safety standards. This is demonstrated by the fact that the VVER-1000 will be the first Soviet PWR to utilize a Western-style secondary containment building and an emergency core cooling system (ECCS). Serial production of the VVER-1000 is beginning, and this reactor probably will become the standard UNCLASSIFIED EC05245 Soviet PWR in the near future. The RBMK-1000 is a large channel-type BWR and is the most sophisticated reactor of this type in the Soviet Union. It has a gross electrical capacity of 1000 MWe. One of the principle advantages of this type of reactor is that it allows for on-line refueling; i.e. the RBMK-1000, unlike Soviet PWRs, can operate at full power while its nuclear fuel is recharged. Although the USSR was the first country in the world to build a power reactor, the Soviet nuclear power program has not progressed as rapidly as one would have expected. As of July 1977, the Soviet Union had an installed nuclear-electric generating capacity of only 7073 megawatts-electric. Soviets have some 19,800 MWe of nuclear-electric generating capacity in various stages of construction at the present time and at least 11,000, and perhaps as much as 23,000, MWe of nuclear capacity is in an advanced stage of planning (table 1/). the locations of all the Soviet nuclear power stations--either operating under construction, or planned for construction to begin during the current Five-Year Plan--are shown in figure 2. An additional 13 nuclear power stations (26,000-30,000 MWe) are known to be in the planning stage but construction at these sites is not expected to begin until the next Five-Year Plan (1981-1985). 'In addition to the reactors which are in operation or under construction, the USSR has a number of other reactors under development. These include larger, 1500-Mwe versions of the channel-type BWRs (RBMK-1500) and PWRs (VVER-1500) and large LMFBRs. Construction of the first nuclear power plant utilizing a RBMK-1500 reactor has begun in Lithuania. The design of the VVER-1500 is not as far along. The USSR has one LMFBR in operation, the BN-350, near Shevchenko on the Caspian Sea. A larger LMFBR with an alternate design is under construction near Beloyarsk. Soviet LMFBR research work is directed towards the production of a large, 1000 to 1600 MWe LMFBR. The Soviet Union is among the many nations concerned about meeting their long-range energy needs. To meet the growing demands for electricity in the USSR, especially in the European part of the country, nuclear power stations are planned to offset a possible depletion of fuel for conventional power stations. At present, the Soviets' primary energy problem is one of distribution. About 85 percent of the Soviet fuel and hydro resources lie in Siberia, while about 80 percent of the electric power is consumed in the European part of the USSR. As the fossil fuel reserves in the European part of the USSR become depleted, nuclear power stations will become more competitive with conventional power stations, and the emphasis on nuclear power will increase. By the end of 1975, the Soviet Union had an installed nuclear-electric generating capacity of 5,621 MWe. The Tenth ## UNCLASSIFIED Pive-Year Plan calls for the completion of an 'ditional 13,800 MWe of nuclear-electric generating capacity by the end of 1980. An installed capacity of 100,000 MWe is planned for 1990. The Soviets predict that by the year 2000, nuclear power will account for 30 to 35 percent of total Soviet electric power generating capacity. This represents about 255,000 MWe of nuclear-electric generating capacity at that time (figure 3/). Soviet projections for nuclear power appear to be rather optimistic. It is likely that future Soviet projections will be scaled down, and it would not be surprising if the Soviet projected nuclear power program fell several years behind schedule. Oigune 31 *Figures for 1978 are the actual installed nuclear-electric generating capacity. 57879 5-77 CIA Figure 3 Projected Soviet Nuclear-Electric Generating Copacity (MPCHASSITIED) ## Mostle 11 ## Nuclear Power Reactors in Operation, under Construction, | | | 13.0 | | Elec | |----------------------|--|---|--|---------------| | Item
No Plant | t Designation | Location | Type of Plant | | | 1 Troit | hab 1 | Siberia | Graphite/Water | 100 | | 2 Troit | | Siberia | Graphite/Water | 100 | | 3 Troit | | Siberia | Graphite/Water | 100 | | 4 Troit | _ , | Siberia
Siberia | Graphite/Water Graphite/Water | 100 | | 5 Troit
6 Troit | | Siberia | Graphite/Water | 100 | | 7 Beloy | yarsk l | Beloyarsk | BWR (channel-type) | 100 | | 8 Beloy | yarsk 2 | Beloyarsk
Beloyarsk | BWR (channel-type) LMFBR | 200
600 | | 9 Beloy | yarsk 3 (BN-600) | | · •
! | 22.0 | | | voronezh 1 | Novovoronezh | PWR PWR | 210
365 | | | voronezh 2
voronezh 3 | Novovoronezh
Novovoronezh | PWR | 440 | | | voronezh 4 | Novovorcnezh | PWR | 440 | | | vorone_h 5 | Novovoronezh | PWR | 1000 | | 15 BN-35 | 50 | Shevchenko, | LMFBR | 350 | | 16 Bilik | bino l | Chukotka | BWR (channel-type) | 12 | | 17 Bilik | bino 2 | Chukotka | BWR (channel-type) | 12
12 | | 18 Bilit | bino 3
bino 4 | Chukotka
Chukotka | RWR (channel-type) BWR (channel-type) | 12 | | | 性,微致复合的 人名基本 | Kola Peninsula | PWR | 440 | | 20 Kola
21 Kola | | Kola Peninsula | PWR | 440 | | 22 Kola | | Kola Peninsula | PWR | 440 | | 23 Kola | | Kola Peninsula | PWR | 440 | | | ngrad 1 | Sosnovyy Bor | BWR (channel-type) | 1000
1000 | | | ngrad 2 | Sosnovyy Bor
Sosnovyy Bor | BWR (channel-type) BWR (channel-type) | 1000 | | | ngrad 3
ngrad 4 | Sosnovyy Bor | BWR (channel-type) | 1000 | | | | | | | | | | | PWR | 440 | | | beryan 1
beryan 2 | Armenia
Armania | PWR | 440 | | 29 Oktem | | | 及。古 的 景域(新文化) | | | 30 Kursk | | Kursk | BWR (channel-type) BWR (channel-type) | 1000 | | 31 Kursk | "生" "一""我们的"别说,我们是""我看"的家身格。这样,我们就是"好?",又说"人名勒德的"就是"女孩子教徒"的事 | Kursk | BWR (channel-type) | 1000 | | 32 Kursk
33 Kursk | "我们",只有我们都看到这样"你"的"特别的特别,我是"一家的都是我们是不知识,我们就能够完全 | Kursk | BWR (channel-type) | 1000 | | 2011年最初,最高的教育的 | | Chernobyl' | BWR (channel-type) | 1000 | | 34 Chern
35 Chern | | Chernobyl | BWR (channel-type) | 1000 | | 36 Chern | iobyl 7.3 | Chernoby! | BWR (channel-type) | 1000 | | 37 Chern | nobyl 4 | Chernobyl' | BWR (channel-type) · | 1000 | | 38 Smole | insk 1 | Smolensk . | BWR (channel-type) | 1000 | | 39 Smole | nsk 2 | Smolensk | BWR (channel-'type) BWR (channel-type) | 1000 | | 40 Smole | insk 3 | Smolensk
Smolensk | BWR (channel-type) | 1000 | | I DAR STORY | [2] [4]《石艺版》。[4] [4] [4] [4] [4] [4] [4] [4] [4] [4] | | PWR | 440 | | 42 West | Ukraine 1
Ukraine 2 | Rovno | PWR | 440 | | 44 West | Ukraine 3 | Rovno | PWR | T000 🤰 | | - 1 | | the Control of the Control of the Association of States | and the same of th | or the second | ## Storic 1 | Location | | Electric
Capacity
(MWe) | Year in
Operation | |--|--|----------------------------------|--| | Siberia
Siberia
Siberia
Siberia
Siberia | Graphite/Water Graphite/Water Graphite/Water Graphite/Water Graphite/Water | 100
100
100
100
100 | 1958
1958
1958
1958
1958
1958 | | Beloyarsk
Beloyarsk
Beloyarsk | BWR (channel-type) | 100
200
600 | 1964
1967
UC* | | Novovoronezh
Novovoronezh
Novovoronezh
Novovoronezh | PWR
PWR
PWR | 210
365
440
440
1000 | 1964
1959
1971
1972
UC | | Shevchenko
Chukotka | BWR (channel-type) | 350[equivalent] 12 12 | 1973
1973
1974 | | Chukotka
Chukotka
Chukotka
Kola Peninsula | BWR (channel-type) BWR (channel-type) | 12
12
12 | 1975
1976 | | Kola Peninsula
Kola Peninsula
Kola Peninsula | PWR
PWR
PWR | 440
440
440 | 1974
UC
UC | | Sosnovyy Bor
Sosnovyy Bor
Sosnovyy Bor
Sosnovyy Bor | BWR (channel-type) BWR (channel-type) | 1000
1000
1000 | 1974
1975
UC
UC | | Armenia | PWR | 440
440 | 1977
UC | | 14 · 一一一一一一一一一一一一一个,这样,这样,这样,他们就是这样的,他们就是解释的。 | BWR (Channel type) BWR (Channel type) | 1000 | 1977
UC
Planned
Planned | | | BWR (Channel-type) BWR (Channel-type) BWR (Channel-type) | 1000
1000
1000 | UC
UC
Planned
Planned | | Smolensk
Smolensk
Smolensk | BWR (channel-type) BWR (channel-type) BWR (channel-type) | L000
L000
L000 | UC
UC
Planned | | Royno
Royno
Royno
Royno | PWR
PWR | 140 | Planned
UC
UC
Planned | | 28 | Oktemberyan 1 | Armenia | PWR | 440 | |----------------------|---|---|---|------------------------------| | 29 | Oktemberyan 2 | Armania | PWR | 440 | | 30 | Kursk 1 | Kursk | BWR (channel-type) BWR (channel-type) BWR (channel-type) BWR (channel-type) | 1000 | | 31 | Kursk 2 | Kursk | | 1000 | | 32 | Kursk 3 | Kursk | | 1000 | | 33 | Kursk 4 | Kursk | | 1000 | | 34
35
36
37 | Chernobyl' 1
Chernobyl' 2
Chernobyl' 3
Chernobyl' 4 | Chernobyl Chernobyl Chernobyl Chernobyl | BWR (channel-type) BWR (channel-type) BWR (channel-type) BWR (channel-type) | 1000
1000
1000
1000 | | 38 | Smolensk 1 | Smolensk | BWR (channel-type) BWR (channel-type) BWR (channel-type) BWR (channel-type) | 1000 | | 39 | Smolensk 2 | Smolensk | | 1000 | | 40 | Smolensk 3 | Smolensk | | 1000 | | 41 | Smolensk 4 | Smolensk | | 1000 | | 42 | West Ukraine 1 | Rovno | PWR | 440 | | 43 | West Ukraine 2 | Rovno | PWR | 440 | | 44 | West Ukraine 3 | Rovno | PWR | 1000 | | 45 | Kalinin l | Kalinin | PWR | 1000 | | 46 | Kalinin 2 | Kalinin | PWR | 1000 | | 47 | Ignalina 1 | Lithuania | BWR (channel-type) BWR (channel-type) | 1500 | | 48 | Ignalina 2 | Lithuania | | 1500 | | 49 | South Ukraine 1 South Ukraine 2 South Ukraine 3 South Ukraine 4 | Nikolayev | PWR | 1000 | | 50 | | Nikolayev | PWR | 1000 | | 51 | | Nikolayev | PWR | 1000 | | 52 | | Nikolayev | PWR | 1000 | | 53
54 | Urals 1
Urals 2 | Urals
Urals | BWR (channel-type) BWR (channel-type) | 1000 | | 55
56 | Ivano-Frankovsk 1
Ivano-Frankovsk 2 | Ukraine
Ukraine | BWR (channel-type) BWR (channel-type) | 1000 | | 57 | Khmel'nitskiy 1 | Ukraine | Unknown | Unknown | | 58 | Khmel'nitskiy 2 | Ukraine | Unknown | Unknown | | 5g | Aktashi | Crimea | Unknown | Unknown | | 60 | Aktash 2 | Crimea | Unknown | Unknown | | 61 | Saratov 1 | Saratov | Unknown | Unknown | | 62 | Saratov 2 | Saratov | Unknown | Unknown | | 63 | Tsimlyansk 1 Tsimlyansk 2 | Volgodonsk | Unknown | Unknown | | 64 | | Volgodonsk | Unknown | Unknown | | | | | | • | NCTE: An additional 26-reactors are known to be in the planning stage but construe expected to begin on these reactors until the next Five-Year Plan (1981-198) 1. 200 MWE is utilize to Mulinate u-the form the Cooke | Armenia | PWR | 440 | 1977 | |--|--|------------------|----------------------------------| | Armania | PWR | 440 | UC | | Aursk
Xursk
Xursk
Xursk | BWR (channel-type
BWR (channel-type
BWR (channel-type
BWR (channel-type |) 1000
) 1000 | 1977
UC
Planned
Planned | | Chernobyl'
Chernobyl'
Chernobyl'
Chernobyl' | BWR (channel-type
BWR (channel-type
BWR (channel-type
BWR (channel-type |) 1000
) 1000 | UC
UC
Planned
Planned | | Smolensk
Smolensk
Smolensk
Smolensk | BWR (channel-type
BWR (channel-type
BWR (channel-type
BWR (channel-type |) 1000
) 1000 | UC
UC
Planned
Planned | | Rovno | PWR | 440 | UC | | Rovno | PWR | 440 | UC | | Rovno | PWR | 1000 | Planned | | Kalinin | PWR | 1000 | UC | | Kalinin | PWR | 1000 | | | Lithuania | BWR (channel-type | | UC | | Lithuania | BWR (channel-type | | UC | | Nikolayev | PWR | 1000 | UC | | Nikolayev | PWR | 1000 | UC | | Nikolayev | PWR | 1000 | Planned | | Nikolayev | PWR | 1000 | Planned | | Urals | BWR (channel-type | | UC | | Urals | BWR (channel-type | | UC | | Ukraine
Ukraine | BWR (channel-type
BWR (channel-type | | • Planned Planned | | Ukraine | Unknown | Unknown | Planned Planned | | Ukraine | Unknown | Unknown | | | Crimea | Unknown | Unknown | Planned Planned | | Crimea | J. Unknown | Unknown | | | Saratov | Unknown | Unknown | Planned | | Saratov | Unknown | Unknown | Planned | | Volgodonsk | Unknown | Unknown | Planned | | Volgodonsk | Unknown | Unknown | Planned | | | | | | are known to be in the planning stage but construction is not seactors until the next Five-Year Plan (1981-1985). the especial of 350 MVe; however, process steam equivalent