HYDRODYNAMICS

Document Type: 
Collection: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP80-00809A000600200234-1
Release Decision: 
RIPPUB
Original Classification: 
R
Document Page Count: 
20
Document Creation Date: 
December 22, 2016
Document Release Date: 
June 29, 2011
Sequence Number: 
234
Case Number: 
Publication Date: 
August 17, 1948
Content Type: 
REPORT
File: 
AttachmentSize
PDF icon CIA-RDP80-00809A000600200234-1.pdf1.44 MB
Body: 
Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 s+e '~' ,ENTRAL INTELLIGEpiCE AGENCY REPORT in~~QRm~T ol~~~r PUi~ ACQUIRED iI:t3R 0~+ "AT~&3N 19A7 DATE DISTR. 17 eul~xst 3948 N0. OF RAGES 2D NO. OF ENCLS. tuareo spow~ SUPPLEMENT TO REPORT N0. '1'FIIS 1S UNEVALUATED 9NFORMATION FOR THE RESEARCH USE C1F TRAINED INTELLIGENCE ANALYSTS 8eaelaa p?~rioAiaal, mY?~~..~?~.r col ZY, No ~, 1967. (~ ~' Abe 1~lvlnelation epeaifioallr reaneotesi. f t Y FOR TUI''i S 11t3TTDN OF A S Ct:F:i~SSIt1T. ? D. 'te. Do:idse AoeA Sat- Qearglao 88R T~Llie! Matti Iaet, Tbilisi SnbsitCed 2b Oataber 1948 ere in p3ronthesea refer to the bllalioB~PA9s7 After the roorka of odgvist (]~, 2) I,lohtenetein (3), and Lergv (4): dsdiisated to 11'~isu: the, theorem cx ttio esdatanoe and vniqusaeas of a eolutiaa of the taoup=iary probier far tare stiia'jY motion of a vieaous L'ga;td orith eynal].:teynoids mier, this pratriem asn be coneidos~aE! aom-~ plete],9 developed. Toro ~~acke ai Odgviet (5) and ie~v (6) mey bs cited ofdoh treat boundary pivbL:.ma for unstoiacly motion. A eollsticu of firs linear problem ie given ixr Odgviit'~ Bork ew'ttt saw rathsr ganerat aeaump'~ioree by twc ciffersnt :rathods~dep~ ~ fPan o~ether a i..r+ite aac 's.Slntts !Ye].d is bail; axeminsd. a plea3e L a3,eularl/ eoramined in F.erAy'a encteusive work. Le,ey reduaoe the solution of the.;inear prroblem on a plane to a ayetem of tna sir~n~- lar Lttetra]. equations. Csiog the method of sucbesaive appro~matian, yei+gy oleo examines *,ha nonlinear problem nn a pL4ne and share that a a'ssglo .Kalutiwn of the eo-aallod par~i.a1:4! iinaari?e~ p~biem deer eoeist. The present mart: is dsdiaated to the solution of the basis linear bomadary pvL?1~u fcr t"e u a:to~c~j .^x:ticn =S s rf.a~?: Le ; ~aa~reeaibYe ltgaid. The probla.. aonaiate of the folloHirgt detercSswt:,or- of regular i~1+a4Y.eld aolutioias of the linear hydrodynamic equations vdth given, vsluee of veiocit~ at the beuMary at the iaf,tial .^..~nard. .The field ~, l , , CiASSiFICATtOIN RaSTtitCT3i Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 4 Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 RES~'RIC~ED ~~~C~ 17iai1 i'imLd ~ ~iroon here. Tn eontxmet to Odgr3at (6), attar Pa?~' of the oaa the iars9gaisamese of tho ealutiaa said of the i~tia7. oroaQitioae to steam, tm est t~s tvntal solutiam by irhioh th? pi's 2a rsdaased to the solution o2' a syetean og qusei~-ro~u7:ar luts~csi, od' the seasond lid. ~lhe solution oS this eyetae is toaad by eaooeeeirA spproriatetion, eissaltaneonsi'' ehoaiatg its neigae- aueepsrs. '&'he bslutias of the pleas probleQ arieiog oat of tl'i+o geaerai liaeor ease ie given at the sod at file paper. ip ooneiderod to be s eir~le oanpenaoAO,y anatteated ,~ ti~ao; 'asid liaaited tr~- ~a,~n?~a~~itavniy ?xoeea sarfeos -stth a aootsa+_a,~~v?ar~9.s`7hle ' Sew+w ~ .~ ~1~$ti1~17~s Z~ the ~~.~ A~ 'Mw~aW.y fhe`tia~ ahslogans to the rawy,er6i~e at the Po'~:~ ed' s. dOUbLu ]syer. They are rsgalar irseido the tia/d, tmt on erh~ia~ throngl~ the bovndaq enrraos, they esPei3enoe ~ diosanGi-- smilry'dt tke first off, aaoacd3.~ to shish a system as integral egnatlaas sa d~talnod far dskszmiaatioa 4t the udowsc tcnotiens w a, w1Nre ri L the l3oitSng ? esit:.on ed the i..,_.,:t n ~dth respect td its. iieae3ine to the rYnuuiary sur, rasa, ~ (~; arc the gian ~llnes of LRe oao,9aoaotiaoo ~ ,~, ~q of ens 5r' rar.+ ibnatica. ~i.+ae pa (di se as bod~diws i~o equtiono (2.13) and (3.12), the a>~reaeions (3.1) and (3e2) aa'lStr~j- e~s~s (i.d). to sddiW,oa, tt~ re~or6 to aero aL ffia LdSti~l ~ eiNriiarso~ Ao(o) $ S), apd 3a tha oase of an a>e~esnal isnl+d ~ aaL~- tda ooaditi,ods Est tba attavaadd;:.on of motico a4 fnltirAt,. xt ramti:ds to Aatla~r the bawddrr3' owtdit3,ane (1.9). sFo ebt11 stodgy 01 the bohel~-laor of fi~aotioda (3:1) oith a stredur lino rt posh: P t0 file staKaee. Fla ram .g_ ft334R,tCT~ RESTRICTED STAT Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 M l RESTRICTED tT~d~c 9uDstituting t-'f = r~ !4/w'~'; ve: fret it 3 _ t .~~.~... e X t r Therefore the eaoond meNber in the right aide cP foaeemla (3.3) rwseSna a e~ aoduane than ~Uih~. Ou the okher head, aacot4irg to Odq~rist+s rssuita, we oan main- tain that flea intoc~:~al Yar3,es aonticaeous~;y through the ontire range Srcm !!~(~,, 1t) alor~ the surfaoa ~. From thi.e we ooenolebde that flee su~taoe Prom tT-s eeaond mea3eer is the right aide of facrmils (3.3) *~ ~ aoatirwoua when orae~ throuP,h the banndaay aurfaoa. Caaeequsntl,,,the question is reduced to the study of the first mee+ber is tFe rSdht side of losmula (3.~)? ~Ys shall Sadiaate it tY J IIainB the second foxmuYa of (2.8) and expreasiaos (Z.6) for ' ~ iatrodusing the expresaioa The evooad 3ntagcpl !a Lhe rLght side nt the Iatter formula is iiedl,aetad ~ J. ~V~ y >z r t the eoq~s~esslou for J~ can be presented in the fexm x ~ axK y~~- .~ ~ vt -~ y~ t= - t) It oac ossify 1>s ahawn test subetitutiog t _T x r i4 v w 2, and Z~ zl ~ -~ ~cp y r~ dY RESTRICTED Y3U;.c _ rl --3 Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 I RESTRIC~E4 'JIK ~a---~- too - ~~dT -7~x~X~ ~'~ ~XP ra (~.2) ror is tt-e etartaa,igta~a8 the eaaoad a is the ~,~ or $ f3.k~ rd39. bde 4a~t3rege~o ixs a oYaad. tia]d ~ ~- ~ atth eel ~>?. i~r 9q^$~g tte~ fret t~mbara ~e siotiar t1~et the dlrt~erenao ~i ?. ~~ emtidios the e~tiau g~il ~'~_ ~ 1lvr t3.~) ~ ~. aren~e to sego at ~e eit~a t moo, !od AL -!~tlLa1 i~ ie ~+ t? aoeia lme~a thM na1+~. ~. ,r. #' ~ h dts er- ~ ~a tDe sgeLd. .. tiw ~~ea~ ~ tnoabdm ~ GAP, +y. w~ CRY tM ~ ~3.~) is bhe ~bsn ,.~ "S-,' J ,a~. c~~ y4 t~a~r,Q~Jd~q D from this w obt~n s s 0 . ~f?-il;1dr ~ GAP, C~)dVi~~Br C~,~'1, r - ?!'~cit (3.6~ 0 e~ ~3.5~' t'ajt Hi, it is eaat7~ ehceti b~ iata. ,B; dT = ~? ex ~ d P y~o (l.T~ 9~ lbr~, ?eoaoMtn~ to i .6), wr caaoapa aW tl~~ ~0? s ~ K R~'~R~C~ED. STAT Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 RESTRICTED ie a omttemaxe i`waotiaaa t tia. awe np tee tha e~a%ao:. Zhea+etoa~e, J is w~GLmaoaae aa~aout flee eaat4re .~Le].d r .~-!`, grad bT toe (3.31 ~ Five at the earaa~loea that ~dF ~V;,~dr F 0 aLD xMae!see m aatinrome rdth the atream-li:te o4 paint P 'taa~d the sta~taee lr. ~s L ? l;+n dP V,?x(J;Mr-r)dx=~df_rV? ~~M,r~?T)d?' ~ ~ r? 0 e L , rL ~df~~Y;dt= fdF (C-1K(M,~')-~(N,r~V;drtw(~;c)'dfJ~~ d~ F o ~ p ~ vilF~ o! t!r eoa~.imdty ofv~ , !se eciromd a e sell as tizw i3aTSt, fae~ear in the ar3~at side o~ the"lsttevr !'e~ala 3a aa~Sscraotae t@ae entire arao`e. laaa tide it tol]owe that the ~ amd ]user ]l~dte oY !tM eamdaed inte~raly rdffi the ets+o~,l3~ne of ~t y~ut P to~a+Q tM em~tacw, ass eQu1 to its Yalne at a poSmE ant errlaee, i.e., to ffis ialregral ~ e0o ~ s aooo~.lt-8 t+o~tdwaalaee (~~7i~aeu! (3?daa )rsaEels~ vI~ lEa`j r+3c arf"d F,'1 ~ ~M~T?~ A(P lH~ ~ -1' ~dT F o nbdeb paeeaecte the spatlsl thea'aai. potaatial of a dooDL yt~reor 7dtta a dendt~,r wQ. deoal~frg trs the imam tbtsB]sa tae the 1!altiog velure, iq 7ddoh thr a~rper and l.~a~or liedts aQ tffis Pam Csea ]gnnte (8)) era ~ESTP,IETED c STAT i Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 Sanitized Copy Approved for Release 2011/0?6/29:CIA-RDP80-00809A000600200234-1 l RESTR~CTER the limttlog values '~! take the Pura Oa, the basis of the lattor relations, whist. satisfy the boundaay amasclitions (l,9), we obtain a ~yetem of throe Integra: egnstioas for determining the'uaPsnans Punctiaas xi wfrora #i(N, t) are the ?.vsn limiting values of the comgornmta of ?s$o4ity /t.r ?b 1 in the case of the intexnal problem, anti )~ v ~ l if the prob]am ie ertaraal. v'fcrr.?~rnmTnsz.nF mta: ^_rT~t~na 1. ~uation. (3.8) fca~tos a egetem o1 oouapoeite integfal agn+sttom of the Volterra type. The solution of this ~stmm onn bo carri~sd out aaslagous7y to the soliatioa of the equatfon ~ tharmel aoadaotivity by using encosasive appro~bions. .7e shalt eu~aml.ne a epretem Td.th a parcmeter. X 3~tatitutittig is syetam t.';,I)q ws o3tain far the datwr- ednatian of the membcra,/of the eoriee the recutzwat foraalae t /t X;~M;;J = - ~ ~d f ~ (X~,? A f L, ~irnvKi~ dz t4a3} K f o RESTRICTED Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 RESTRICTED ey tmmt3.as (3.3), (3.b) ex-d (3.6), tre have f r lCxrt-~KXxs-~.;Icos y _ra J o~~J y~, :1T~ ( ~r~ 'ruT J~ t J e e~?. A xr^p 'per 4 r 3J ex~a ~r1 ~lct`?'F~~~ dlr 'llstdng into caneideration e~g~reeeion (2.6) for 0,~, it 3~ botmded by' ~aurt+aoe F. eid4 of the ]attar tormiil,a remat~ Yn the tiT as point & t~ a#~s11 e~spsrat4 as iatinite5y ear~I pert of b' of the eta~aoe T~. and aitall. date ~ polar oo- sat~ae~tra of H in the plsr~s $a2 bP ro, dten the te~ng Lltakan inlr~ 6 and the sstb ~ ie dSreoted aaooniiog to the noetaal. ems, tro trill have vrl.0h aaoia~ou~r o! a traaq !~ die cos j' _~r~y, dfi ~J~ t~a~'~~t~R~~a . dr- d9 aR, : aX~ ~ whoy rj ~ ~~ arQ) iw tie agw~tiaa of the avr3a~ Fo. 1Ne shad dee~ats bpi dg the iibertnl inte~ra2. ~t tho brut stem ~t toitatla (t~.~). To obtain an eaalnstion tra preeant it is LM toa _ J - t1~- - ~F -r-; t - i?, RES`f RICTEQ Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 RESTRICTED RF. C1T;D In the right aide of this tormula the $rst integral is limited; teas 4he second integral sve can eraite Hsn is a ~nAtant related to the surtaoa~ ! y and b ie the radius-veotax of the cmtottr of the snrtace Fo, ;~betituti~ of ?C v The right part of the ]after inequsiity io limited for alt a and t; thsrstore, it can be ccacluded that J.,_ is of t{~tod Y0.1C11 and +'~ ta.a) Let ~ be the maximan value among tine piven~ tii~ 3n a4atem (js.Z). On the beds of the determination oY (1r.8), bg Pommral,s (4?~) rs a'~tain RESTRICTED Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 STAT Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 x~sx~zc~ prbexa ci and. s2 st+e positive constanEs ~l..}~ s2 . c. Tdsa~atore, we ~ vrSte R~RIC~ED Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 Sanitized Copy Approved for Release 2011/06/29 :CIA-RDP80-00809A000600200234-1 RESTRICTED Theref~e, the xs~tio of the tiro successive terms of the ma3ority of aeries (k.2) aril]. be /'' ~~ ht t 1;! r~z~hrt r)t1~ which at all finite valuee of t and x tends tcx~rard zezn u~t~an m -~ ~; oonsequently, with x . 2 eeri?E (4.2) gives a solution a? system (9.g). 2. Yt ie eaaiay shown that the solution of system (3.8) is uniquo. actually, the ~ei.stence of tao differont mntinnoua aoa 1uLiona of system (3.8) could iredicata the oxistence of a continue ous solution other than sero a? the carreaponding homo~rer~oua ~~~ i= o Pfe shall designate the upper Lfedt of the absolute.valuca of tfin andnl~.irt:~ of mrn4san ~6_lA) by w _. Av arneafinn (/._1~1 anA: fha preceding determinations we have - -?- - ~------- ?-- - - On the brsia of thts