RADIO ENGINEERING

Document Type: 
Collection: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP81-01043R002100080008-8
Release Decision: 
RIPPUB
Original Classification: 
K
Document Page Count: 
131
Document Creation Date: 
December 27, 2016
Document Release Date: 
June 24, 2013
Sequence Number: 
8
Case Number: 
Content Type: 
REPORT
File: 
AttachmentSize
PDF icon CIA-RDP81-01043R002100080008-8.pdf5.95 MB
Body: 
Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 STAT Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 SOME BASIC RELATIONS PERTAINING TO HIGH-POWER KLYSTRON AMPLIFIERS by . M. S. Neyman Active Member, A. S. Popov Scientific Teclm cal Society for Radio and Electro-Connninication Engineering This article survey some basic relations determining the design of high-power klystron amplifiers. Special attention is turned to analysis of band limitations of the frequencies passed by the output oscillatory system and to the minim= allowable feed voltage. Also a description of the conditions in which these limitations become less valid. 1. Introduction Klyatron amplifier engineering has been lately progressing along an arduous, peculiar and tortuous path of development. Klystron amplifiers have been developed less rapidly than other types of super-high-frequency amplifiers. However, the pessimistic opinions often voiced about the possibilities of their further develop. ment have been refuted by facts again and again. The paramount idea underlying the nature of the operation of klystron amplifi- ers, namely, the idea of velocity modulation of the electron beam has been formu- lated by D.A.Rozhanskiy as early, as in 1932, as published literature (Bibl.l) indi- cates. However, a year after the invention in 1938 of toroidal vibrators the first workable klystron amplifiers began appearing in 1939 (Bibl.2). At that time, klystron amplifiers had a low efficiency of the order of 15 to 20% owing to the large losses incurred at collisions of electrons with the grids and walls of tubes in the drift space, and also owing to the relatively disadvantageous F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 grouping of electrons into bunches at velocity modulation in only one control gap. Therefore, klystron amplifiers used to be designed for low power only; power of the order of tens of watts. Such a situation continued throughout nearly the entire nineteen forties. It was only at the turn of the forties and the beginning of the fifties that major modifications had been introduced in klystron amplifiers so as to increase sharply their efficiency and amplification factor. A longitudinal focusing magnetic field was applied, and this reduced the losses from the collisions of electrons with the side walls of drift space. The grids were eliminated and the interaction of electrons with the fields between grids was sup-.- planted by their interaction with the fields of the gaps formed by transverse slits in drift-space tubes. This eliminated the losses formerly incurred by collision of electrons with grid conductors. Lastly, there were introduced two or more succes- sive drift spaces with passive resonators near the intermediate gaps. This had im- - proved the longitudinal focusing of electrons into bunches, and it also had increased sharply the amplification factor. The considerable increase of the actually attainable electron efficiency to values of the order of 40 to 50% and more has made the development of high-power kly- atron amplifiers more profitable. In the last few years numerous descriptions of these devices have been published (Bibl.3 to 6). The power these devices develop already is reaching tens of kilowatts at continuous-wave operation and tens of meg-. awatts at pulsed operation.' Still, all modern high-power klystron amplifiers require very high, feed volta- ges and have narrow frequency passbands. Moreover, for waves longer than 50 - 60 cm, the dimensions of klystron amplifiers are too large. These shortcomings hamper greatly any more widespread use of klystron amplifiers. - The present paper analyzes the causes of the abovementioned shortcomings and the possible ways and means for their partial overcoming. F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Copy Approved for Release ~. Uesirn limitations of K1~'stron A,.nplifiers th will be expressed in centimeters meters and electrical Hereafter in this paper length Volts, watts and ohms. parameters in amperes, traverses the ft Let us survey the conditions in which an electron beam space of a two-resonator transit 'rlystron amnlifl longitudinal defocusinP,, which ass m eS an According to the elementary theory o: pi',i?7), ;re of side walls (r - bear^ in the absence area of the - re r current is de- infinite cross-sectional focusing of electron ranches for the fundamental-f querc?' degree of w::ose argtm'~ent eoua-s -ermined by Ressel's function of ,he firs`.. kind J1(x), 2r. c N sin h% (l) t vn 2 h lectromagneti c are the wave length. and velocit;~ of free ec waves; T o Here and . the lergth of the velocit;: of he electrons started by feed voltage Uo; s is ? and h is is U0 , drift space; ? is the ratio of ar:pli`.ude of control voltage to voltage longi'.udinal defocusing, related to the action of space charge. the parameter of and is expressed the der.sit~' of the electron current This parameter depends on .'0 . ? following formula (Ri'-l?8) F- r3-92h8/V Declassified in Part - Sanitized Copy Approved for Release correction factor x that is higher than. unit:: and takes On introducing sone she ul- into accocn., the effective attenuation of the defocus anon bean,d^ameter and owing which to also takes timate value of the cross-sectional area of the el ict be represented in this into account the influence of the ,side walls, eq.(l) can foum hs sin - 2~c c t' X = a v, s h (3) Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 hs _ It % 2 the magnitude of x is at its maximum, equal to 2 it r " .10-2 c _x U. 4 x = ~_ Xn,ax vo .2 h 3 uo a to Assuming that Vn U, 2 C 5" I which is correct at ( vo ) 2 1, when the correction deductible from the theory of c relativity is still small, we find The' maximum of the function J1(x} is present at x 1.84.. Having to satisfy - / a px Uo Xr,.,r-SV 33 1 the condition X,,,d? > 1,84 P, (6) we obtain the following condition for current density ?y i 1 0 )?2 25 a ! px l' Ua s. 3.1,84' ` J (4) (7) Considering that the maximum of Bessel's function is obtained in?a rather blunted form, the multiplier (scan be assumed to be somewhat below unity. The corresponding length of drift space s equals,-in accordance with eqs.(4) and (2) F-TS-921+8/ V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 1 a U,, 3 ? S = 0 2 0 Vr 10 (8) or, considering eq.(7), 1,84 L U 4 (9) X 1000 N 0 ? The application of egs.(4), (7), (8), and (9), corresponds to the conditions' present-at short waves when-the lengths of drift spaces are not large. At longer waves, for instance waves of the order of 100 cm, when it is desirable to reduce the lengths of drift spaces, it may prove expedient to select the argument of the sine in eq.(3) below 2 , i.e., to assume that hs =p, ,~ x 2 (4) where o'?< 1. Considering that, when-the argument of that sine is selected below 2 , the sine varies somewhat, it is possible to take the coefficient much below unity. to, 'Then, eqs.(7) and (9) will assume the following form: 10 25n (Nx sin `5' 3.1,842 ` 2 ) > 1,84 UO 2 1000 N (9') The multipliers 6 and (i' should, of course, be so selected as to preserve a quite satisfactory bunching of electrons. Proceeding from-here on we'will employ eq.(7),,on keeping in mind the necessity of replacing 6 by at a reduced length of drift space. sin T Considering that . F-TS-9248/V . Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 p() - P . U? is r voltage. 3. Case of Solid Cylindrical Electron Beam Present=day high-power klystron amplifiers operate with al electron beam having a circular -cross-section (Fig.l). On designating thea.diameter of the beam by D; `we ~. have 4 WIN/O/I For a good interaction of electrons with gap fields, there should be Fig.1 D Ad, where d stands for gap width, This width is, in turn, limited by the requirement d -~Lq - v? aUo B B c ~500B where Xq stands for the distance traversed during one oscillatory period by an elec- where P is the power of electron beam, 10 is the feed current, and'S is the cross- sectional area of beam, we find according to eq.(7) the limitation for the lowest value of feed voltage as imposed by the conditions of longitudinal repulsion of electrons (10) As can be seen from the above inequality., the cross-sectional area of the elec- tron beam should be large in order to ensure the possibility of applying a low feed 3 2 3.1,84 ?.- UO > P 25 n ? S C Px F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 S ' (3 ) T agUo. 1 at Po = 20 kwt On considering the latter limitation we obtain in accordance with eq.(10) -the requirement for the minimum allowable feed voltage tron accelerated by voltage Uo. The adopted values of the coefficients A and B are . determined by the conditions of the interaction between the electron beam and gap fields (Bibl.8, 9). The following limiting requirements are obtained for the diameter and the cross- sectional area of the electron beam: 5 Uol > 0,415. 10'?Po( x ? ~ For instance, assuming that 5 _ and B = 5.5 and A = 1.6, we obtain s Vo > 1,72.10'0 (12) < 4 D B )Uo , 500 U, > 12,5 xe. Published literature (Bibl.(4) contains a description of a 30-cm-wave klystron amplifier with very similar data. For that amplifier, Po = 19.5 kwt and Uo = 13 -kilovolts. Gap Width measures half an inch, which is corresponded by B - 5.7. Thus, the assumed value of is evidently approximate to the real one. ?X !.~ A Bend of Frequencies Pasped by tron Am Electron Bess. In view of the very high voltages of the klystron amplifiers of the here- described type' it is necessary to apply output oscillatory systems with a very high F-TS-9248/V' Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 resonant resistance R, and hence with a high quality Q when in loaded state. This is equivalent to a narrow frequency passband. The following are the formulas for the necessary resonant resistance R and quality Q: R=U= u0= EU, it 11 /o it P. U2 Q = R . E. UO . Pr 7, Po Pr (15) (16) Here U is the amplitude of alternationg voltage on output gap; I1 is the first harmonic of the current exciting the output oscillatory system; f = -U is the in- tensity of mode; yl = is the coefficient of the first harmonic of current; --0 and Pu is the parallel active characteristic (Bibl.10) of the output oscillatory system, related to voltage U. On considering requirement (]4) we obtain 8 5 E 1 R 0,s?ia B A Po (17) Assuming'that in the above-reviewed example P0 = 20 kwt and UO = 12.5 kilovolts, and also assuming that- = 0.8, we find U0 12,5'? 100 =6300 ohms. 0. ? R = _ - = 0.8 2-0 78 Po Thus, there is obtained a relatively very high resistance and, consequently, a narrow passband.. In effect, it is difficult to increase the characteristic Pu of the to=vidal vibrator' even at a relatively large gap between the ends of drift tubes. 'In prac- tice it can barely be made-higher than 60 - 70 ohms. Therefore, the necessary qual- ity obtained amounts to a value of hundred or more units, which. corresponds to an output-resonator frequency passband of the order of 1% or less from the carrier F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 present only at very high powers of klystron amplifiers. Therefore, quality Q =.30 at loaded state is corresponded by the conveniently obtained characteristic frequency (at computations in terms of half power level on the edges of the fre- quency passband). Passbands of such an order are actually observed in practice (Bibl.4). As can be seen from formula (17), resonant resistance -varies very slowly with a change in power, that is to say, as the root of the fifth degree of power. There- fore any much more favorable conditions for the width of the frequency passband are For example, according to formula (17), a four fold expansion of the passband is corresponded by an approxi- mately thousandfold rise in power. In this respect, a characteristic amplifier described in literature (Bibl.5) is the super-high-power pulsed klystron amplifier with a pulse output power of the or- der of 20 mwt and with Uo = 400 kilovolts, Io = 250 amperes, and Q tt 30. The pass- band in such an amplifier is thus comparatively wide. For that amplifier, we have (assuming = 0.8) R = E Uo = 0,8' 4250 = 1280 ohms. 71 R 1280 43 ohms. Q 3Q Let us also note that, as can be concluded from eq.(17),. a reduction in resis- ,tance R and expansion of frequency passband are also possible to achieve by reduc- ing the amplification factor (reducing the magnitude of '-) or by reducing inten- sity F i.e., weakening the braking of electrons by the field of the gap; 5. K1,ystron Amplifiers With Enlarged Cross-Sectional Area of the Electron Beam As can be seen from the. aforecited formulas, it is possible- to reduce the nec- essary feed voltages and expand the frequency passband by eliminating the limitation F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 imposed by requirement (13) on the cross-sectional area of the electron beam. This limitation becomes dispensable in, for example, the event of a multi-beam klystron amplifier described in the book by Warnecke and Guenard (Bibl.9), Chapter XXXVII, and to an even greater degree, in the event -that none of the electron beams is solid and all adhere to the walls of the drift-space tube (Fig.2). Fig.2 T For such a multi-beam klystron amplifier the- inequality (12) is replaced by the b S 2 d, (17) where b stands for thickness of the electron layer (Fig.2), and At stands for a somewhat smaller co- efficient than A. The overall area of all n rays (at D " b) approximately equals S 7c Dbn _-I rD 2nd, or, on taking into account inequality (11) i D z $ A' a n L/o 1000 B A where D is the diameter of each beam. Correspondingly, inequality (.10) assumes this form Uo > 1,84 120 Po B a n o A' nU For resonant resistance we obtain (18) (19) (20) E Uii 1, 84 2 B ?. 9 (21) II Po ( n / I90 Ii A' nD \ fir.) Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 0 As can be seen from the above, resonant resistance is not affected by power. On selecting a sufficiently high value of ?D it is possible to obtain compar- atively low values of U0 and R. For example, if it is nedessary that 'R be not over 1000 ohms, this should be the formula nD 0,12 (1_ X4) 71 A' \N ) ? we- Assuming that At = 12 and, as before, B = 5.5, YT- = 0.8, and nD > 0,27. Naturally, the amplifier's design should be adapted. for ensuring a fairly ade- quate decoupling between the output oscillatory system and the preceding oscillatory system. For the required voltage we have U0. V E RPo . (22) In the example described here, and Y1 assuming that R = 1000 ohms, P = 20 kwt, 0 Uo- 5000v, Io-5-= 4. I Thus we obtain a relatively. low feed voltage and a relatively high feed current. Let us-now turn our attention to the frequency passband of the output oscilla- tory system. Let us take note of the capacitance of the gaps, which, at the pres- ence of several large-diameter drift-space tubes, constitutes nearly the entire ca- pacitance of the output 'oscillatory system and may, therefore, *be used for an ap- proximate appraisal of its characteristic p u. F-TS-921.8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 0. The linear capacitance of gap width d between two flat tapes having a width h (Fig-3) is determined by the following approximate formula C - 1 In h en, 1 2 i d crn Therefore; for the above-discussed example, it can be ap- proximately assumed (on increasing capacitance somewhat) that r- n -d)-# -4 Fig-3 C-C,rDn= nD In h cm. 2r. d Correspondingly 15X 30X I r. C n D h In d (25) Assuming, for instance, that h = 20d, we obtain, in the event of ~D = 0.27 p? 37 ohms (23) ? For the necessary loaded quality of the output oscillatory system, the follow- ing formula. is obtained on taking requirements (21) and (25) into account 13 ( ~ I h t-8')s _ (inJ!-. Q ( 4- Pu 3 \ r Ti A' l .) d (26) Here, the, right-hand part does not depend on Po, U0?and /. Assuming; as before, that B = 5.5, At = 1.2, u = and = 20, we find Qm?n 27. Thus, in these conditions, we obtain a low necessary loaded quality correspond- ing to a comparatively wide frequency passband. Of course, the above computations .are approximate. As before, it is possible here too to expand further the frequency passband by -reducing the amplification factor, i.e., the magnitude of ...~_, or by reducing inten- ? F-TS-9214.8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 sity F. The enlargement of the cross-sectional area of the electron beam permits, not only to reduce the feed voltage and to expand the frequency passband but also to obtain certain other benefits-. 1. In accordance with inequality (7), the density of the electron-beam current 1 . decreases as U0 2 . This may be of vital importance in-short-wave operations when the current density necessary for the most. effective performance of an-amplifier and increasing in proportion to the reduction to lambda2, has a very high value that is difficult to attain. 2.' At long-wave operation, a reduction in voltage may prove expedient from the viewpoint of reducing the necessary lengths of drift spaces determined by require- 1 ment (9') and proportional to Uo 2 , and hence also from the viewpoint of reducing the lengthwise dimensions of the tube and the length of paths traversed by electrons. At the same time, the dimensions of the oscillatory systems are reduced by in- creasing their usefully utilized capacitance, which is also important at very-long- ,:.wave operation... These circumstances may expand somewhat the boundaries of the wave band within which the'l.clystron amplifiers can be applied. 6. Khvstron Amplifiers With Two and More Drift Spaces Arranged in Series Although the formulas described above pertain to klystron amplifiers with a siri- gle drift space, they can-also be related to amplifiers with two or more drift spaces, upon being somewhat modified, (in particular, with regard to-coefficients G and X). We have been so far concerned only with the problem of expanding the passband -of the output oscillatory system. A corresponding expansion of passband for the in- put and intermediate oscillatory systems can be achieved by their ballast loading. In view of the relative smallness of the amplitudes of r - f voltages occurring in F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 these oscillatory systems, the powers emitted in the ballast loads will he low com- pared to output power, so that the overall efficiency will be decreased only a lit- tle. Naturally, the amplification factor will be somewhat. below its maximum possi- lble value. However, this circumstance is not very-important in view of the very high amplification factors inherent in klystron amplifiers with two or more drift spaces. Appendix Beside .the above-described, as per inequality (7), limitation for the electron- beam current, imposed by the longitudinal debunching action of the space charge, it is also necessary to take into account the current limitation due to the decrease (the so-called "sagging")-of the potential inside the drift tube at the presence of the electron beam. This second limiting factor assumes the following form (see Bibl.8, p.78) at the presence of a longitudinal focusing magnetic field and allowing, as is usually done), for .a decrease in potential by no more than 10% - 3 _ 1, H 0 H. BIBLIOGRAPHY 1. Fok,V.A. - Field of the Vertical and Horizontal Dipole Elevated Above the Earth's Surface. Zhurnal Experimentalnoy i Teoreticheskoy Fiziki, Vo1.19 (1949) 2. Fok,V.A. - Fresnel Diffraction From Convex Bodies. UFN, Vol.XLIII, Bulletin 4, April (1951) 3. Fok,V.A. - Fresnel's Reflection Laws Compared with Diffraction Laws. UFN9 Vol.}JCXVI, Bulletin 3,November (1948) 4. Altpert,Ya.L., Ginzburg,V.L., and Feynberg,E.L. - Propagation of Radio Waves. Gostekhizdat, (1953) 5. Kalinin,A.I. - The Calculation of Field Strengths of Ultra Short Waves in the 'Illuminatedt Part of Space. Radiotekhnika, Vol.10, No.9, (1955) 6. Kalinin,A.I. - The Calculation of Field Strengths in Shadow and Twilight Zones at Propagation of Ultrashort Waves Along Smooth Spherical Surface of the Earth. Radiotekhnika, Vol.11, No.6, (1956) F-TS-9248/v - 33 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 THE APPLICATION OF FICTITIOUS MAGNETIC CURRENT FOR SOLVING THE PROBLEM OF ANTENNA RADIATION OVER A PLANE WITH NONHOMOGENEOUS LEONTOVICH BOUNDARY CONDITIONS by Description of a method of solving the problem of the rad iation of a system of side currents over a plane with non- 'homogeneous Leontovich?boundary conditions. A system of currents in area A exists over surface z = 0 (see diagram). The part of surface directly under the antenna is metallized within the confines of .the following limitations: , -area S. Outside the confines of this area, Leon- tovich boundary conditions apply on surface z = 0 Etg (1) Ht? If Here the subscript tg denotes tangential com- ponents. The problem is solved on considering' the 1. Current distribution in antenna A has,a circular symmetry in relation to' axis Z. 2. Area S represents a circle with a,diameter of 2 a. The beginning of the cylindrical system of coordinates lies at the same point as the center of the cir- cle. 3. The field created by antenna A in free space has a wave structure of the F-TS-924 8/V 34 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 U rr tyre. This l iir i t ation is not important, because the prof leer can he solved com- rletely analogousl' for the case of TE. waves froii primary antenna A. Despi'.e .the above-intro?iuce:l limitations the analysis of many metallize i-syster. antennas with such mounting can he reduced to a problem of electrodynamics. In solving the here poseur nroblerr we stall use the formulas obtaine'i in G.T.l:ar- kov's paper (hibl?l)? Let us separate the process of solution into two stages: 1. First we will solve the problem of the radiation of the here-examined sys- tem of currents over a plane with uniform threshold conditions (1), which, at the lirritatiors adorte-l, have this form (2) In accordance with Fitl.l the rectangular component of the electrical field strength for the given system of currents in free space will he writter as follows Er pnm.rr j dV V J E.n.vdxl (i ) n--,o X---W E:nx=s,a r0 (/T' - B) Let us analyze eq.(15). Here F, (x) Yx' -'K' Br? (x) (V x'-K'--B) a FM(x) -f' (I,rx'-K'-B) Considering this, let us find, upon taking into account (13) 00 00 E, a - $ 1; (r') x J1(xr') r'dr' J, (xr) dx + ~t s-+o 0 B Fr Yx) 14'x'-K'-B E" _ FM (z) x'-K' Jl (xr) dx. wt r-+o (yfB) 0 00 J1(xr) dx - 1m (r) + f ~XBFM () B J J1(xr) dx. 0 The first-item in the above-obtained formula corresponds to an instance when a magnetic-current sheet spreads over an infinitely conducting plane of boundless di- mensions,(instance B = 0). The second item owes its appearance to the fact that B is necessary in the instance cited. Considering that the introduction of boundary conditions (1) is based on the assumption that B is low, we can justifiably expect that the magnitude of Er at,the surface of magnetic current will be chiefly deter- mined by the first item in eq.(16.). Hence a wholly comprehensible physical order of the construction of successive approximations for solving the problem posed. On re- garding the parameter B as low, we can assume in the first approximation-that F-TS-9248/V . (15) (16) (17) Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Let us set such a magnetic current distribution as to cause the following equa- tion to be valid within the limits of r = 0 to r = a on surface z = 0 E, 1.11 +Er'j.rj=0. (18) where the first item is determined by eq.(11) and the second by eq.(15). By the same token, in the first approximation, an infinitely conducting shield is formed on surface z = 0 within the limits of r = 0 to r = a, and the boundary condition Etg ='0 is satisfied on its surface. Outside this area the field components expressed by egs.(11) and (14) satisfy separately the boundary conditions (2), whence it follows that the full field which is their sum also satisfies these boundary conditions. Thus, we obtain from eq.(18), upon considering eqs.(17) and (11), the following formula 1, (r') s (' ~X B B F(x) J1(xr')dx. Otd t = 2 8( w- Q)+ 0 I10 00 + ~ rp r S rp (t) cos _(2 + w) td t + (S) cos (Q -- a)) t d 0 0 where b (,;- c) stands for Dirak's delta function. This resuilt, as was to be ex- pected, coincides with the generally known interpretation of the spectrum of the AM signal: The spectrum consists of a carrier frequency f) with an effective value of A2 on whose both sides there are sidebands with displaced spectra of the modulat- ing signal ao (P ? vj = r, (.) cos (2 ? w) t d c. 2a ? F-TS-92)~8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 The cons;ierat ions touched upon here necessi tale a more precise deli rr: t.i on of rre concept. of the spectrum of signal power, and a more distinct separation of L;'he *wo different. aspects of that concept. Let us consider eq.(11) as the definition of the concept of spectral density of rower; it. is not difficult to observe that this concept can be endowed with totally different contents and rreaning as depending on the definition of the ;:unction R (:). On selecting the iefini*.ion ('a), i.e., the autocoherence function, we compute the spectrum of t..te tune-average signal power P. This spectrum can he also found exper- imentally by' investigating sigrlal f (t) by means of a suitable spectral arparatus and measuring a number of frequencies for sufficiently long time intervals that should at any rate ne no snorter than the uniformity limit of the signal. Let us conditionally term this a physical spectrum, necause it may ne determined up to any desired degree of accuracy cy means of physical (spectral) measurements. The concert of spectral density will rave a totally different meaning if the autocorrelation function be interpreted from the viewpoint of the random process theory R(')= J S Xrx,tuz(xi,?tz :) dxrdx2 Here w2(xl, x2, ) stands for the twodimensional distribution, which depends, in the case of stationary signals, only on the value of the time interval z between 'I-':e correlated values of signals and not on its position relative to the time axis; t'-.e integration applies to any value x of the signals it the group. In this case ',-(v) stands for some statistical characteristic of the group whose sense becomes clear if we represent the group by the Fourier integral b f(t) $ la (v)cos 2-,t -Fb(v)sln2rvl1 dv, on considering the coefficients a (v) and b (v) as random functions; the power spec- trumv) stands for the group-average value of the- randon magnitude a2 (v) + h2 1 in which connection F-T3-92Jr8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 b J rh(~)(1 = J x' w1 (x) dx where w, ()') s`ar, is for ':r.: iirer'si?on:r1 iist ri' u`.ion :n'ieren?lert, of '.irr.e. :i':ch 1 spec' rime co?:l I e err A i '' a'. i:`.ical.. as its :irmi, s' e,i from '.r'e nr;rsir?:~. snec',r J . :i:?` ?ra11; . canno`, he o''ser" ie i h?' rreans of .1r.; ? ph;: si cal ] ? real. izai le spectroscope. con- If a Fro'ip of sifnal3 is stationary and ergoiic, ho'.r lefini aions of .he cent will lead * o one ar.a the sure guar.'.if.a`.ive result, zec,.-.:se. the ergodic croner'.;- ensures }.ne- equ:.valency of '.ir:-e-and r-ro'rr-averagir;~ operations. However, as we rare seer. above, uniform signals w_-.n a wholly defi,r .e rhysical srec'.ricr. are -o. necess- aril:- s ;a`,jonar.. , and In sucr cases `..here is no er po i i c r ro']r ani hence also ro s*.a- ` _s' _ca' specs, rr. A ~?rcai exar. r le of s?:c'- a case i s t' a ?roi;r (>): ,-e exis :e-ce of the r-. -s_cal srec tr?ur of a' signals carnct be 'ioub,.ei, allt-ough -.re sar.e cannot be sail of ;heir statistical snectrrnr:. The iif ferentiation -e-.weer the concepts of tr:e nn;; sic%] and the s :a-,istical spectra apnarenttl:: serves to eliminate the not. infrequently arising mis'mierstard- ines and tc pain a clearer comprehension of -.he term "statisi. i cal spectrum". Article received off: F4itors on 29 Decemi'er la''- Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 SIl?4PI.IFIED ANALYSIS OF TilE CIRCUITS OF RADIO-FREQU&NNCY JUNCTION-TRANSISTOR OSCILLATORS WITH SELF-EXCITATION by P. D.l3erestnev This article derives simplified formulas for oscillated fre- quency and self-excitation conditions for two self-oscillator circuits (corrmon-emitter and common-base) as linked to col- leb',or circuit. The coupling between the input and output circuits can the of the transformer, air tot ransfor;. er or capac- simplest form when expressed in Y parameters. Figure 1 depicts the circuit of a self-oscillator where Y01 stands for admit- Approximate formulas for oscillated frequency and self-excitation conditions of ar oscillator can he obtained on proceeding from the assnption that a transistor represents an active linear four-terminal network with Y parameters. These parame- ters are easily measured and lead to an equivalent pi network of the transistor, sin- .liar to the equivalent circuit for a super-high-frequency electron tube. I'oreover, t.e formula for the voltage amplification factor, as used below, is obtained in its Fig.1 stability criterion in Fig.2. tance of oscillator load. Let us disrupt the feedback circuit at points aa, and let us load the. feedback coil Lfeedb with the input conductance of transistor, Yinp, (Fig.2). We will solve the problem of the self-excitation of the circuit and of the frequency oscillated, by applying Nyquist's For the circuit in Fig.2 the voltage amplification factor is F-T3-921.8/V 5/E Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 The system is unstable if K= U`& -IKIe''=a i ib. I K ~ 's IAndCD - 0, a> ],And b=0. (1) (2) Consequently, it is necessary to find the formula for the voltage amplification factor and to separate the real and the imaginary parts. On making the real part Fig .2 equal to unity it is possible to determine the conditions for self-excitation. On making the imaginary part equal to sero it is possible to find the oscillated frequency. Before deriving a formula for the voltage amplification factor for the circuit in Fig.2, let us introduce the following desig- nations: circuit admittance YM = - I. + CK RK -}- t m Ct, active component of circuit admittance CK RK = RK o K Q I 1 Ph circuit characteristic impedance L PK - Ch quality factor of nonloaded circuit F-'r3-921,.E/v (3) Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Q =_ ~K R,, (,) active component of the admittance of oscillator load - Gnp (the reactive com- ponent of load conductance will be ignored, beca'ise it can be compensated by tuning the circuit) coefficient of circuit connection from the output side of the four-terminal net- n1 = Us transformation ratio from the input, side of the four-terminal network U. (7) (8) At small signals the relationship between the voltage and current variable com- ponents of the four-terminal network is determined by the following equaAions in Y parameters: I t = Y11U1 + Y12 UI , ? ~2 Y21 U1 + Y21 U2. I (9) Here Y11 . . . Y22 - character admittances of the four-terminal network repre- senting the transistor. These admittances appear to be of the complex kind and, for a common-emitter circuit, can be represented by comparatively simple combinations or resistances, capacitances and inductances (Fig-3) (Bibl.3). As can be seen from Fig-3 the analytic formulas for these admittances can be presented in the following form: F-TS-92i 8/V I I I C. , WIC4t C11 ?~ i t1 I r2 I + r? ` .1 ro r1, - 1 (r,1 + r0) r1, tl + ,, C2 C2 0 C11 11 it 56 (10) Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 at ro r11 Fig-3 section bb),*'the related formula can be thus presented As for the common-ba'se circuit, the characteristic admittances of the network can be expressed by characteristic admittances of the common-emitter circuit in the following form: . Y? (12) (13) (17) The formula for network load (admittance of circuit in?Pig.2 to the right of the ?. where Y1f~ 1 r12 -f-1acis, Yi1= 1 = r91 r!1?+?1rLtf r21+.."L:1 "L21 2 1+h 41 r2 , Y?= 1 +J?C,,. 1s I Y,, -f- n' Y?n + Y., i, AI .1 i td, ns U, The formula for input admittance of the network has, as is known (Bibl;2) the following form - Y'. "'(f 1 Y11 - Yu Y1 Yu + 1'k . (~9) Substituting formula (19) in eq.(18), we will determine the value of Yn by the parameters of the circuit, load, and network F-TS-9248/V ? Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Y;i=Y11+Y12+Y21+Y2,-- Y11+Y,1. (14). Y12--(Y12+ Y,2h (15)+ ,1 I2 21, (16) Y21 ? -(Y - + Y r22 - Yea. ? ? Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Taking into account eqs.(7) and (8), and also considering that I2 = - U2Yn, the: . second equation in the system (9) can be used to obtain the formula.,for the full voltage transmission ratio of the entire system in the following form Substituting into eq.(24) the values of Y21, Y22, and Yn for specific circuits, 'and taking.into account egs.(l) and (2) it is possible to determine the-conditions- .for self-excitation and for the frequency of generated oscillations. For the common-emitter circuit the formula for the-frequency of generated os- Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 r.r,1(1)'Cit >> 1. r,'ur'C?>> 1, l.tIn l >>,12C11 ' >> a, L11 r11 r. CM r0C,f ' then eq.(25) can be easily reduced to this form (29) (30) -=- ~' - (31) - - I ~I+C [ n;c.+Lsl (G }r11,21 a! L,,, From eq.(31) it can be seen that the greater is the collector capacitance Ck,the higher is the stability of the self-oscillation frequency. It is to*be noted that eq.(31) is also correct for-lower radio frequencies (f - 100 kilocycles). The condition for self-excitation in a common-emitter circuit will be written in the following form -n, - 1f n2 - 4MN r,,(rer?"2C11-1) _ -'L1,Cn Cit + I) r'Ci, 4 1 N - r1, (G +- n1 ) - w' L:1(C,; 1- n2 Cn)-t- L,. r.4. L? L. 11 . -02) (33) (34) The inequalities (26) and (27) are correct for frequencies of f '> 1'megacycle, F-TS-92/4/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 and the formula for M becomes simplified r2, On frequencies of f { 100 kilocycles r~z C? ,b1_? re' (r.rii w'C;1 .- 1) - w'L,1 C11? rn (35) (36) 'For the.common-base circuit the formula for the frequency of. generated oscilla- tion,is the same as that for the comnon-emitter circuit [eq.(25)], but the value B .is to be construed as referring to the following expression B n FL!, - L,; Fr2t C~- nI ru (C-nLl, (G+ / 22 If we take into account inequalities (26) to (30); the formula for the fre- quency of generated oscillations for the cormon-base circuit will be obtained ex- actly the same as the formula for the common-emitter circuit [formula (31)]. The condition for self-excitation in a common-base circuit has the'.following form n, Vn"-4MN n= 2M 11 1 + '21(r?r,,w Cif- I) elk L" C1, , 11+ 1) r.2 w~ C11 +1 rat (''1 0 C2 r2, 2 C-') + L, On frequencies of f ; '1 megacycle M+r'L- L1, re reCt, F-TS-921+8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 C) On frequencies of f 100 kilocycles M 1 It should be~noted that in the case of inductive coupling In the case of capacitive coupling Cs", where C stands for the capacitance from which feedback voltage is taken. sv At autot rans former coupling where Ll = 1. + N stands for inductance of coupling. Experimental verification of eqs.(31), (32) and (37) has proved satisfactory. In computations of the self-oscillation frequency the verified error did not -exceed 10%,-and when verifying the condition for self-excitation the error did not exceed .20n. The table below cites X=parameter data for three Soviet-produced transistors of the P6G type:' Uk = - 5 volts, Ie = 1 milliampere F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 p. Article received by Editors on'26 January 1957 P6G No 1 P6G No 2 P6G No 3 f in kilocycles f in kilocycles f in kilocycles Parameters Components 100 500 1000 100 500 1000 100 500 1000 r 73.5 73.5 73.5 78.5 78.5 78.5 72 72 72 ohMs C Y ?000 micro- 9.8 7.8 7.5 9.4 7.L 7.25 9.55 7.4 7.2 11 microfarads r kiloohms 1.1 1 - 1.5 1.3 - 1.2 1.1 - C12 micro- 15 - - 18 - - 14 - - microfarads -Y12 r kil ohms 570 - - 640 - - 650 - - L ?e micro nrys 20 18.1 17.5 17.8 17.6 17.4 17.2 16.8 16 Y21 r ohms 30.4. 27.8 1.92 29 22.2 1.97 30 27 3.49 C mice- 69 35 26 89.5 43 38 87 43.5 32 microfarads Y22 kiloohms 32 12.2 9.1 38.2 10.6 8.4 41.2 10.9 7.65 1. Giacoletto,L.J. - Terminology and Equations for Linear Active Four-Terminal Networks Including Transistors. RCA Review, Vol.114., No.1 (1953) -2. Shea,R.F. - Principles of Transistor Circuits. New York (1953) 3. Tarasov,V.L. - Systems of Transistor Characteristics and Parameters. Materials of the VI Scientific-Technical Conference of the Higher Militar%V 'School of Aviation Engineering, Report 57, Kharkov (i956) F-TS-9248/v Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 CONCERNING THE SYNTHESIS. OF AMPLIFYING CIRCUITS by S.V.Samsonenko Description of a new mathematical.procedure for analysis of transient processes in amplifiers. Proposal to employ this procedure as the basis for synthesis of multistage systems according to various standards of signal distortion. A particularly interesting factor in the designing of amplifiers for pulsed de- vices is the synthesis of their parameters according to some given standards of pulse distortion. Here, as a rule, the various standards of signal distortion determine various technical. characteristics of the pulsed device. For example, steepness of pulse front characterizes the accuracy and resolving power of the pulsed range find- er, overshoot characterizes the contrast of television image, distortions corres- ponding to the optimal signal-to-noise ratio yield the real sensitivity of the pulsed receiver, and so forth. It is obvious that a definite form of pulse-form distortion is important for every type of radio line, wit11 h the allowable value of such distortion depending on the 'concrete conditions of operation of the pulsed device. The thus resulting dis- tortion stardards`are to he regarded as initial values in, computing a given ampli- fier circuit. One fundamental difficulty in the synthesis of amplifying circuits is the com- plerityy of the mathematical apparatus which, as a rule, is based on operational cal- culus. The application of orthogonal polynomials considerably simplifies a solution of this problem. The present paper employs the method of orthogonal polynomials to furnish rating formulas underlyyingthe synthesis of any amplifying circuit. In particular, this F-TS-921h/V 63 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 paper furnishes t he formulas of relationships between the values charact,erizir,F am- plifier parameters and such standards of signal distortion as front rise lime accord- inr to the interdecimal interval, amplitude of the first overshoot, and front rise time according to the maximum steepness of transient process. With the aid of this method it is facile to obtain rating formulas for raking such synthesis also accord- ing to the other standards of signal distortion that are of practical interest. The application of orthogonal polynomials makes it also possible to simplify considerably the computation of the transient process, especially in multistage am- plifier's. t z:,) paper begins by citing the foundations of the aforementioned mathematical apparatus and also some definitions which will be used hereafter. System Let us assume that a single break shock acts upon the linear system depicted in Fig.l, with a transmission factor F (p). The signal E (t) which is thereupon ob- tained on the output will be hereafter referred to as the transient function of the system. As is known, transmission factor F (p) represents a transient function con- verted according to Carson I `p (P) E (l) e-'r dt. where p is complex variable.and't is elapsing time. Let us introduce the standardized transient 1?1- t P(P} Fig.I U(t) - E (t,-- E(_x) and also the steepness of the standardized transient F-TS-92JX/V 64 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 f (t) = dU (t) dt Let us thereupon investigate only the systems for which the E (?.) equals a con- slant value 4ermed stationary level. It is clear that for such systems 11 ('r) 1 and f (n) - 0. Let us examine only the systems (amplifiers) with zero initial condi- tions. for which U - 0 at t -- 0. In this case, the following. expression applies to the standardized parameters as a. J f (t) dt _ $ dU (t) s 1. ! U (t) a-Pt dt. ti In accordance with the theorem of differentiation in the range of the real var- (1) Let us also introduce the standardized transmission factor of the system, K (p), as a standardized transient response converted according to Carsonts law K (P) P iable, the following formula applies to systems with zero initial conditions K (P) - f (t) dt. (2) (3) The purpose of the analysis is, as is-known, to determine the formulas for U (t) or f (t) as functions of'the parameters of a system, which is effected with the aid of operational calculus by means of converting eqs.(2) or (3) at a given formula for K (p). If the system is of the multistage type and is determined by an equation of a,high order, the computations become greatly involved; the formulas thus obtained for some simple systems are so cumbersome that their computation, and the determination of the system parameters ensuring the necessary form of transient process, is an extremely arduous process. The present paper proposes a simpler way of analyzing transient responses, as based on dissociating them into H?rmite poly- 'nomials. F-'r3-92U/v 65 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 2. Jissociation ],-,to Iiermite Polyno Threshold theorems of the probability theory (!3ibl.1), as apnlied to the ana;- psis of the asymptotic properties of' the transient, responses of multistage amplifi- were used L.A.I?!eyerovich and G.P.Tartakovskiy (Ibibl.2) to-demonst.rate that at _a number of stages equal to n the form of the curve of the transient mode on the I output of a system strives, at, the presence of break shock, to approximate Krampfs function, while the steepness of the transient process tends to approximate the Her- mite function. Hence, it is natural to examine the transient responses of a rulti- stage s;lstem from the viewpoint of their approximation to Kramnfs and I!em..itefs ''unctions, by representing them accordingly in the form of functional series whose coefficients should be functions of the parameters of the s:-stem. As demonstrated in a previous paper (iih1.3), such a dissociation, as annlied to the steepness of the standardized transient response, can be representei as fol- lows OR f(t)= E -o x2 Here rof (x) - (- 1)Ve ~- Hv (x) is the with derivative of Ermitfs function, i!v (x) is Hermite polynomial of the with order, By are dissociation coefficients, x is the standardized variable x ` , Al where t stands for elapsing time and Al stands for a constant value which can be subsequently determined (see eq.(9) at v = 1). In order that dissociation (h) have sense, the coefficients By should exist. It can be demonstrated that coefficients B. exist for all systems whose transmission factor has separate points on the left semi-plane. Without giving proof of this statement at the time let us pass over to determining the formulas for the dissocia- T ;.ion coefficients itv. For this purpose, let us multir)1i, both parts of eq.(4)? F-T;;-92)S8/ V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 1)' $f (t)H,(x)dx. _a ail` (x) an.i carr;? out an interration rar'ginP t'rom - to Proceedirr' from the re- ~- we o:.taj.n the quirement of ort.hogonalitY of herm.itian polynomials weighing e following formula on the two-sided infinite interval (5) Su:^stitutiniz, hermitian polynomials into eq. (5) and carr;fint- o'it integration within the arovementioned limits, we obtain B = M, - 1 B0 A, A M, M 1 _ 6 M, B, A3 B~ - _ Ai Ai 1 1 B~- M, -10 M, A; A' (6) where I: star,'i for the central moments of the standardized transient 1 v ' response of a system, determined b;' the formula co .y1 - $ (t - A,)' f (t) dt. m (7) On removing the parentheses and integrating, we obtain Al, A, - A . ,tt., - A3 - 3A1 A, 2A? M4=A,,,-- 4A, A,+6A;A,-3A; M. _ A, -A,_1 At ~tv21 A,_,A' -+ --. . (-1)'At (8) where Al, A2, A . . . A stand for simple moments of the standardized transient response ao A, -J t'f(t)dt -00 r?-'r3-92 P/v 67 (9) Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Obviously Av is the parameter of our system, which characterizes it in a def- inite manner. Another previous paper (BiblJi.) demonstrates that the moments of the system AV can be expressed by moments of separate stages a', where (10) and q. (t) stands for the steepness of the transient response of the separate ith stage. This steepness is determined through the standardized transmission factor of the ith stage, Iii (n) with the aid of the Laplace transform, by the following form- 00 ,r . ~"~r(t)t` dt, 0 Go Kr (P) = $ e-pr (t) dt. U If a system consists of n different stages and its transmission factor is K (P) = rI Kr (P). r-I then, by introducing the logarithmic transmission factor (Bibl.2, 4.), the connection between AV and ?{V) can be presented in this form ?r A.d r-l n It As= v(?2 + ?t) r-I As ?3-3?ixi. +2?i')-31?i [ (? 1 -?1+l.Lr ?i)3 r_1 r-1 r-I r-i Ai = ( ?q - 3x~' - 4xi a3 + 12o aZ - 6 ) + 3 ?2 - ?i~18 + r_ r f-1 +4 l.Lr ?r) l`( ?3 -3?i ?2+2?i'J + r-r r-i (( n (( n ( n 2 -at r-i r-r J r-r F-TS-924.8/V 1(12) Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 On the other hand, in the event of identical stages K (p) = KO (p) Al=na, As=n( as - ai)+nsai A 3 = n (~9 - 3a1a2 + 2a1) - 3n2 (a= - ai) al -}- n9 ai ( l3 ) A,r(a4-3ai--4a1a9+ 12%a2 -6a1) -}-3n'(as-(xl,)s-{- + 4ns al (a3.- 304% + 2a1) + 6n' a, (as - ai) + n' ai Analogous formulas can be obtained for central moments: n Ms M3=1113")' s t-t r-i If the stage moments are known, the substitution of eqs.(8) and (12) into the formulas for coefficients B,, and hence into series (G.), will yield a solution to the posed task. When using this series it is to be considered that, for practical purposes, the petty details of transient processes usually are of no interest; therefore, on being satisfied with-an accuracy of the order of 5 to 10%, it is possible to discard mem- bers in the dissociations whose absolute value is below 5 to 10% of the modulus of the first member. Inasmuch as the value of functions (Pl (x),cp2 (x) . . .,is of one and the same order, and Bo = 1, we can ignore the members for which B, < (0,1 . 0,5) v! Proceeding from this assumption, it can be presupposed that a definite sum of -the series, consisting of four members, will yield the-general formula for the .steepness of the transient process-of a system f (t) = fl L (X) + 2 ?,,,(X) 31 pill (X) + 1 _ B41 - ' pnu (X) 1 . (16) It is easy to.make the transition from.steepness f (t) to transient process by F-TS-921+8/V 69 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 means of integration of members. In effect, considering that and also considering that f (0) A1dt = U(x) x x f y (x)dx = O(x) an of S p" (x) dx = cp"-' (x) , -00 -60 where T (x) is Kramp's function, we obtain the following formula for the transient U (x) = (p (x) -I- 2' (r'. (x) `,, (x) -f- a, 4! (17) For the multistage systems consisting of identical stages the formulas for co- efficients B%, can be still more simplified. In this case B1 -? -1; B, n a Bt ~`~ + d2 - 6? + 3 P1 Pi P& - 3 P9 a= 2 bas 3 c- ; d=3a' a1 a1 al Considering that the values a, b, c, and d, have one and the same order, only members of the order of n should be considered in formulas for Bv, and the members of a higher power, and _ can be ignored. Thereupon, the coefficients will 1; B,- a - 1: B., = 0: B. s S - (19) Analogous simplifications can be obtained for an amplifier with non-identical stages. The computation of transient processes according to egs.(16). or (17) is much simpler than if done according to the formulas obtained by the operational calculus method. In effect, the multipliers determining the evolution of the process with F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 time - the derivatives of Hermite and Kramp functions - are tabulated, while tre coefficients R,, are constant numbers at given parameters of a system. Moreover there is no increase in the difficulty of such computing of a system consisting of differing stages, while the analysis of such a system by the operational method would he very complicated. In order to conduct computations according to egs.(17) and (18) it is necessary -to know the formulas for By as a function of system parameters; for this purpose it is necessary to establish a relationship between stage moments and stage parameters. 3. The Calculation of the Moments of Transient Responses of Amplifying Stages If the set stage transmission factor pertains to Ki (p), then a(i) can be com- puted by applying conversion formulas to the formula for Ki (p) and thereupon com- puting the integrals according to eq.(10). But this procedure leads to very cum- brous calculations at even a small increase in the complexity of a stage circuit, and therefore we are presenting below a simpler method of solving this task and elim- inating the need for resorting to conversion formulas. In effect, the general form of the transmission factor for most amplifying circuits. should be represented by a fractional-rational function of this fora 1(1 (p) = where n > m. - On dissociating the formula for Ki (p) into a series according to positive powers of p, and on substituting into eq.(11), we obtain 1 4 at P- a2 P'+ --- nmPM 1+bjp-Fb2P'+ ??-FbnPn , (20) OD 00 1+ E CAP ,p(t)a-v'dt, r-1 0 (21) where C1, C2 . . . CC are determined by means of identical conversions. It is to be noted that the left-hand part of this equality converges within a circle with a F-TS-9248/ V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 as for radius extending to the first separate point, and with center at point p = C; the right-hand part, it converges virtually for all p's located in the right-hand semi-plane: thus both parts of the equality have large areas of convergence on the plane of the complex variable. On representing e -Pt in the form'of an exponential series 1 - pt + P" - (PIN + .. . 21 31 and substituting into the right-hand part of eq.(21), we obtain Ob so Y 1 + IC. Pra,(- 1)r P1 , ?-1 .-1 where av =r tvf (t) dt is the moment of the with order of the transient function of u stage. On making equal the coefficients in this formula at equal powers of p, we obtain the simple formula Q a (- 1)rvlCr. r (22) Table 1 cites values of av computed for some forms of the transmission factor a according to eq.(22). Moreover, considering that the connection between central and simple moments for individual stages is expressed by a formula analogous to eq.(8), Table 1 can be used as the basis for computing the central moments of stages. The,. results of the calculations for some forms of the transmission factor are given in a general form in Table 2. An example is provided in Table 3 which cites the values of moments cv and ?v for specific stage circuits computed according to the formulas in. Tables 2 and 1. F-TS-921-8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 F-TS-924.8/v 4 .0 4 a 62 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Table 3 Type of Stage Circuit Standardized Transmission Factor Stage Moments Central Stage Moments -2 -I: a pl=O; P?-1 K(P)? I+p a, 3 a3 - 6. o, - 24 tJ3 - 2; Pi = 9 p- iwR,,C 1-+ -mp a1 - 1 - m; P1?0; I'2 (P)= 1-}p1 mp= a,_2(1-2m) 1-2m-m1 a3 - P3 p - iwRoC 6(1 - 3m + m2) -2(1-3m-m') L .- a -3(6-24m+ p , , CR; -24(1 - 4m + 3m1) + 18m2 + 4m'-m') 1,.. Examples of the Analysis of Transient Processes By Means of Orthogonal Polynom- a. Resistor-Coupled Amplifier Without Correction. In accordance with Table 3 and eqs.(18), we have a=1; b=2; c'=6; d-3; dissociation'coefficients 1 2 6 3 6 B2 = - 1; B3 = -- ; B. _ -= -F -i - -- -{- 3 n n' n~ n n and the transient process will be, in accordance with eq.(111) U (X) (X) + 1 - n I' (X) 3I V, (X)' + + 24 (n? + n' - n -{- 3) ?,u (X) F-TS-924+8/ Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 In the particular case of a six-stage amplifier (n 6), we have U (x) -'P (x) - 0,416 G-' (x) - 0,00925 cp" (x) + 0;0875 ,?" (x). (23) The graph of this function is depicted in Fig.2 b. Resistor-Coupled Amplifier With Parallel Correction. In accordance with Table 3 and eqs.(18), we have - m'-2m b _ 2 1-3m-m' (1-m)' (I-m)' c .6 1-4m+2m'-m' d=3 (I -?m'-2m)' Fig-3 In the particular instance of a six-stage amplifier and m = 0.36, we have a = 0,33; b = - 0,98; c = - 7,05; d = 0,402; B3 0,94; B, 0,0272; B4 = 2,613. In this case the transient process formula will be U (x) -CP (x) - 0,47 tp' (x) -}- 0,00455 p? (x) + 0,1 ce" (x). (2~ ) The graph of this function is depicted in Fig-3.' F-TS-92148/v Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Fig.2 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 4. Synthesis of Amplifying Circuits It can he concluded from an examination of eqs.(23) and (2h) that multistate amplifiers are not greatly affected by the third and fourth members of the dissocia- tions; therefore. if a computing accuracy of the order of 10% he recognized as suf- ficient, the corresponding formula for the transient response can be represented in the form of a t: inomial U (x) = 0 (X) + 2' ,, (x), (25) and the steepness, in this form f W = Al {(x)+ 4-c."(x)}. (26) df.(t)=0. dx (27) On substituting the Hermite functions into eq.(27) and taking the derivatives, we obtain, after reduction F-TS-921,.8/V 76 Thereupon the problem of the synthesis is reduced to investigating the applica- tions of eqs.(25) and (26) to various types of signal distortion. Let us conduct syntheses of amplifiers. a. Synthesis According to a Given Steepness of Transient Response (Pulse Front). Considering that the steepness of the front is variable, it can be set in various ways. In a number of practical cases it is important to know the maximum steepness of pulse front, which is the most characteristic point on the pulse front and as such is'most easily recognizable by station operators. Therefore, in the_ given case we will adopt the maximiun steepness of transient process at the, output of a system as the initial parameter for the synthesis.. The coordinates of the point of maximum steepness are determined from the fol- lowing equality Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 -I e t.rar- in eq.(25) t ne member with 'e coefficient, I'l let,errinirr the as;nrme',r of sien` process. we, of course'. ci:'tai.n L}'e s;7anet.rical transient process in w-ic` tre tire coordinate of ' ne maxim'mi steepness coincides with -.i'e time coordinate of ' ^e cer' er of '.}'e rise fror'. On sul"s' i`:a inf t^e value x 0 into eq.(2(~) we o'tain the value of rr.axirru.~-n. steepness as a of circuit parameters The root x - 0 is the sought-for roof., ''ecause It, correspor"is to 'J e r)oin', of max chile of the transient. process. lr ef"ec'.' upon liscardira, i.m~~r^ steepness in the r;i xl H' (3-x')--1 J==o. f(A)= 0,4 A, R, 2 (28) At a set steepness, the derivation of tris equality in relation to circuit parameters presents no diff,cuities. Inasm':ch as all the above-expoundei reaso'ing applies to standardized -ransien: responses, a valueopnosite to steepness represen-s the frot&t rise time f 'f 0,4(1 =1 Usually, all problems of ",he transient process are solveri in infinite time where t' is time in seconds and is' the -ti.mensional' coefficient, wi,ic: de- pends on circuit parameters. therefore the front Lime rieterminalle by eq'.(2) is also dimensionless, and the front time in seconds will be 0,4 (t - Q. ~-~ This foemi.la can serve for compuLinp the iuraLion of the front of the transient F -'I'3-92Jh.P/'1 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 vrocess on the output of any multistage system upon substituting into it the values of Al, i;2 and correspondinE to the given circuit. At a practical synthesis it is also necessary to consider the resultant ampli- fication factor of the system, and then the problem of synthesis has to be differ- ently formulated. In this case, the set values are: a) time (or steepness) of tran- sient process; b) parameters of amplifier tube S and Ck; and c) required amplifica- tion factor. The solution of this proF-lem by means of eq.(26) is easily applicable to any circuit. b. Synthesis of Amplifier According to Overshoot of Transient Response. In this case. the initial value for the calculations is represented bar the amplitude of the first overshoot of transient response ;.. The amplitude of overshoot for the standardized transient response will be, in accordance with eq.(25) A = d' (X1) _f- .1! ' (x1) - 1 , 2 (29) where x, is the time coordinate of overshoot, determined from the following require- f (t) = 0, i.e., . (x) -}- 2= " (x) = 0. On substituting here the formulas for Ermit functions and carrying out-the re- ductions, we obtain - 1 = 0. x2 ? B. B. are interested in the positive root, of this equation, which will be XL Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 At substitution of the value of this root into eq.(29) it can be seen that the amplitude of overshoot is a function of the value of B2. A graph of this relation- ship for larger values of.B2 (132 . 1) is depicted in Fig.l4, and for smaller values F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 of 1', (1n,) 1), in F'ig.5. a-f(&) at 1) 6 l>Q 5 ; 5 4-21(18,1-027)ai Q5> 18,1>0.3 Bl A?/o = 9,5 (B2 - 0,63). At small values of B2 this relation- ship has a non-linear character, but for practical purposes it can be approximated with sufficient accuracy- *,,~y two straight lines As for the coefficient r'2 for an am- plifier with identical stages. it is?.ie- ermined by the following equation This formula can serve, together with the graphs in I~ig.It. and 5, hoth for com- puting amplifier parameters according to a given value of overshoot and for deter- mining the amplitude of overshoot according to.known parameters of multistage cir- cuit. On substituting the value of moments for this or that amplifier circuit into eq.(30)-we obtain rating formulas for a specific multistage circuit schematic. The conduct of the related computations presents no difficulties. c. Amplifier Synthesis According to Rise Time Corresponding to the lnterdeci- mal Ordinate Drop (0.1 - 0.9) of the Transient Response. The rise time correspon.i- ing to the interdecimal ordinate drop is determined by the following formula F'-'f ;-92) 8/V IL is clear from Lhese graphs that the relationship /, _ -p (t2) has a linear character at larger values of h2, and is o/-f(Sz)- .5(IB,I-Qb3) at 18,1:1 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 approximated by the formula Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 tmo1-09 = tog - tot = Al (x0.9 -x0.1.). (31) where x0 9 and x0.1 are determined from eq.'(25) by deriving the following equations U (X".9) = eP (x0,9) + B. T,. (X0.9). U (x01) = (x0.1)+ 2 On deriving these equations graphically we obtain the relationships x0.1 and x0.9 as functions of R2 (Fig.'), on the basis of which the sought-for relationship is detertr.ined. L x61 F-T7"-I F-I 1-1 E ' I I I T 4s j-- -r - 1 0.5 45 a4 OV 0 01 4= 06 0.8 '(1 !2 1' Tb 5, Fig.6 As can be seen from the above .graph, relationships x0.1 :1 (b2) and x 0.9 ;,2 (B2) have identical inclination, but only x01 varies in the field of negative values of x; in this case, the value of I-) (1?2) is determined by the sum of values of x0.9 and x0.1, and not by the difference 'in these values. On carrying out the summation (Fig.6), we find that ' (B2)-does not depend on B2 and equals a constant value of(") = 2.6. Then the dimensionless duration of the interdecimal drop will be To,l-0,9 = A1.2,6 . This formula also furnishes a solution to the problem of the interdecima'l- interval synthesis. F-T3-9248/V - 80 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 RIPPLE FILTERS OF LOW-POWER RECTIFIERS by L.L.Dekabrun Some specific proposals about computing the elements of the pi filters widely applied in low-power feed sources. The methodology of the analysis of rectifier processes is fairly well developed by now. On the basis of a series of rational postulates all the information necess- ary in rectifier designing has been reduced to suitable graphs and formulas (Bibl.l), which are cited in student handbooks and manuals. Taut there is much less information available about the designing of ripple filters; moreover, the available information leaves us with a feeling of dissatisfaction. Thus for instance, some works (Fibl.2) cite empirical choke computing formulas which have to be considerably deviated from. Other works (Bibl.3) make attempts at analyzing filter processes (more exactly, filter-choke processes). It would be worthwhile to review briefly these attempts in 7 ? order to get an idea of the situation in this field as a whole. In Bib1.3?it is assumed that the maximum dynamic inductance for a?given choke is achieved when the choke core displays the maximum dynamic permeability (u.d)mak i.e., when-the magnetic state of the core corresponds to a bend in the magnetization curve. The value of the air gap in the magnetic circuit is selected such as to at- tain precisely this state of the core at a set direct current component in the wind- ing. No importance need be attached to the error committed by the author of Bibl.3 in the determination of induction at the bending point of the magnetization curve at divers air gaps in the magnetic circuit (in Bibl.3 every value of air gap is corres- ponded by a specific value of induction at the bending.point of the magnetization curve, whereas actually this bending of the curve expresses merely the properties of the core and is always present at one and the same induction in steel, regardless . F-TS-9248/V 82 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 U( of the value of the air gap). It is incorrect, to relate choke computations to a ? definite coincidence between initial magnetizing of the core and the henri in the mag- netization curve, because the dynamic inductance of the choke, L,r = 0,4aSew' (1) determining, the smoothing properties of the filter, is chiefly affected by the num- ber of choke turns w, and not by permeability of steel ?d, because the cited length of core remains lesser than or comparable in value with the length of the normal air gap Iv up to an induction of 10 to 12 kc. Moreover, none of the existing handbooks cites a complete curve of magnetization of transformer steel which would make it possible to establish reliably the induction at the bending point. The tables cited in the existing handbooks can merely be used to determine induction'at 25 ampere- turns per centimeter, i.e., far behind the bending point which ranges at 3 to 1,. kc. ? (Incidentally, from these figures it can be seen how prdfitable is it to use at the bending point a steel with'a saturation induction of 15 to 18 kc.). Experience shows that the basic characteristics of. the feed source, that is to say, its internal resistance and value of alternating voltage background, depend very considerably on the proper choice of ripple filter elements and on the mode of dperation of these elements. Therefore, it is.relevant tb devote serious attentiopy to these matters. The dynamic inductance of a filter choke at an initial current of Io in its winding is thus expressed dl C dt >ta It (2) where Eb is the change in choke-winding voltage caused by a change in initial cur- rent Io by a value of dI during a time dt. - F-TS-92/+8/V . Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 I DDC 4 Hence the dynamic inductance of choke, determining the smoothing properties of . . Ld = w'S [ ~B ] ? 10-1 e d (1r) B. _ Ld = w' dB Ldp S, ( d (Iw) JB. ? 10 . where Bc is induction in the steel of the magnetic circuit, and SC is.cross-sectional area of the magnetic circuit. Equation (3) can be transformed a filter, will be A direct cause for the appearance of voltage is the variation in magnetic flux 4 in'the magnetic circuit of the choke 0 Ed = w ( dt ?10-8 _dt ) o, (3) It is clear that (p 0 stands for magnetic flux conditional on winding current Io, and d4) stands for the change in the flux caused by a change in magnetizing current by the value of dI. Considering that 0 = BC Sc, (4) Ed - w S, ( dB )a. 10_8 wSC de C ? : /1. ? 10-` _ - \ I / dB l ( dl ti e = c L d(/w) ]B, \ dt )fo ' l0 (6) It is convenient hereafter to deal with inductance.per unit of cross-sectional area of magnetic circuit To 'determine Ldo the following formula is necessary B = f (1w) F-TS-9248/V 84 (7) (8) Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Fig.l - will assist us in establishing some Figure 1 depicts the method of at divers values of the air gap lv in the magnetic circuit. This formula can be ob- in the case when the length of magnetic line in. steel lc is known, i.e., tained only when subsequent analysis cannot remain general any more and has to be specific and to pertain to some definite transformer steel forging selected for a given choke. However, before treating of specific chokes with numerical formulations of corres- ponding conclusions, let us review the problem from its qualitative aspect; which general laws. plotting a magnetization curve for a magnetic circuit without indicating the scale of the axes of the coordinates. The air gap in this circuit has a definite value. In order to establish some induction Bl in this circuit, it is necessary, on the one hand, to have the following ampere-turns (ai2')ct=(aw)collc, (9) creating a magnetic flux in the core and, on the other hand, to have these ampere-turns B, (aw)vl = 0.4 a IWI for creating a magnetic flux in the air gap. B..f (aw) TV in Fig.1 represents the magnetization characteristic of a given magnetic circuit with a given air gap. It is obvious that such curves can be plotted for any value of the air gap t so long as this gap is not such as to cause induction. in steel and v induction in air to differ substantially from each other. The equality of inductions F-TS-921.s-8/V 85 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 :O is fairly reliably guaranteed by the following formula S, [ail 100 (CM] . ib FCM1 This inequality remains true in all practical cases. and therefore the magneti- zation curve as plotted in Fig.l does not have to be subsequently corrected. This plotting, and the subsequent graphical differentiation, yield the following formula dB_ = f(Iw) at (1w) at divers values of the air gap, which is illustrated in Fig.2 where it is obvious IV2 > IV1? These curves illustrate very demonstrably the effect of the air gap: at suffic- tion, it is obvious that (1o)i < (1o)2 < (10)3. iently large magnetizing ampere-turns the air gap increases choke inductance. How- ever, the formula for choke inductance includes not only-.the determined value dB d w but also the number of choke winding turns w. Every'value of ampere-turns plotted on the axis of abscissas in Fig.2 is cor- responded by a specific value of the number of turns which depends on the value of initial winding current 1o. In Fig.2 there are plotted curves 1, 2, and 3. express- ing the relationship w = f,(Iw) at three different values. of I . In this connec- 0 Thus in Fig.2 'there are concentrated all the data necessary for explaining by eq.(7) the specific dynamic inductance of choke, Ldo. In this connection, we can plot a chart for any value of the current I0, as illustrated' in Fig-3 which demon- strates very graphically that at a given current Io it is advisable to take a great F-TS-921+8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 00 I d8 dfflK Fig.2 Fig.3 area of the- wire will sooner or later prove inadequate for ensuring a safe thermal mode of operation of the choke. Accordingly, in choke designing it is necessary to set a limit on the number of turns which will enter the choke port without endanger- number of turns in a choke introducing a commensurate air /dap and-marnet,ic circuit. It appears that the increase in Ldo will be steady; however, at sufficiently large air gaps the leakage fluxes will begin to exert a considerable influence and the above-cited chart will cease to be valid. It is evident that the number of choke turns cannot increase indefinitely, be- cause, owing to the limited area of the port of the choke core's o the cross-sectional. ing the safety of the thermal aspect of operation of the cross-sectional area of the winding wire for a given current. For chokes with enameled-wire windings the wind- ing current, density should not exceed 2 to 2.5 a/mm2. A proper value of the air gap tv is'chosen for the thus obtained number of turns, and then the'transformer steel forging selected for 'the choke is utilized to the maximum degree. The foregoing is illustrated by the calculation of a specific choke with an open Sh-40?core having a port area of So = 20 x 60 = 1200'rmn2. At the customary "pile-up" ?ree-ling the cross-sectional area of the copper in the winding takes up 25 - to 50% of port area. At the allowable current density of 2 a/mm2 the number of initial magnetizing ampere-turns awo varies from 600 to 1200. Upon plotting the magnetization curves for the given core for divers values of the air gap lv and upon determining dB at the abovementioned value of magnetizing ampere-turns, we will F-TS-9248/V 87 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 DC obtain the following formula /A- - f (t"), eu~ illustrated in Fig.4. The curves in Fig-4 indicate that the optimum air gap for the Sh-h0 core meas- dB/dRW Fig.4 Fig-5 a) Sh/+0 X.40 steel; b) Sh32 x 32 steel ures 0.5 mm; when the core port is properly utilized for the winding (here we have in mind the air gap in every leg of the magnetic circuit; thus the full air gap meas- ures 1 mm). At-such an air gap the dynamic inductance of the choke is approximately ing turns, depends on choke. Fig-5 depicts core at a circuit-leg The speoific diameter of wire d and, consequently, the specific number of'wind- 20 times higher than in the case- of a completely closed' magnetic circuit: the value of the current I 0 which should be passed by the air full response curve of a filter choke with a?Shf,.O X 40. gap'of 0.5 mm and a port-filling, coefficient of 0.5. For comparison, Fig-5 also depicts the curves same port-filling coefficient. These curves indicate that the choke F-TS-9248/V? for a choke with a Sh32 x 32.core at the increases considerably the internal resis- Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 ()O tance of the feed source. which is undesirable no matter how one looks at, it. V. is therefore natural to pose the question of how to cause the feed source to have the least internal resistance at a given value of output voltage pulsation. The available comparative data on all forgings of the transformer steel applied at present in low-power feed sources lead us to select the parameters of the fl-filter a) Fig.6 a) Rectifier; b) Toward stabilizer or load (Fig.6) in the following, order of sequence: 1. Capacitor C and the resistance or transformer and kenotron R1 are selected by cal- culating the maximum peaks of charge current al- lowable for the rectifier's kenotron; all the related necessary information is provided in the aforecited book by F..P.Terent'yev. At such values of C1 and R1 we can ensure the minimum amplitude of pulsation of the filter input voltage U1. 2. Choke inductance Ld should correspond to this formula mwLd~(10 - 12) m 1 WC~ i (12) where-m is the'number of phases of rectified voltage; w is the frequency of this voltage. In a case to the contrary the kenotron of the rectifier would be overload- ed by current pulses. The type of core and the choke-winding data are'selected ac- curves depicted in Fig-5. 3. The necessary value of the rectified voltage cording to the value of choke inductance found .current I 'and the comparative characteristics 0 from eq.,(12), the known value of l,he of various forgings analogous to the smoothing-factor for the, fundamental harmonic U' ` - Y (1 - m1 w2 Ld Cap )'+ 171? w2 R2 Cz ; n:' w2 Ld C, Ti = U,- - (13) is used to calculate the value of capacitance C,, of LI' 'filter. In eq.(13) U1_ F-TS-924/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 c~ c stands for the alternating component of the filter input voltage, which is computed by the methods described in fihl..l; and U2 stands for the alternating component of - the filter output voltage, whose value is determined by the technical characteristics of the consumer. Such a ripple filter has the minimum dimensions and increases most minimally the internal resistance of the feed source. Article received by Editors on 29 March 1955 1. Terentfy-ev,P.P. - The Power Supply of Radio Equipment. Svyazfizdat (191.3) 2. Malft,P.A. - Rectifier an.i Amplifier Equipment. Gos.l-:inoizdat (191L9) 3. Kazarinov,I.A. - Selenium Rectifiers for Communications Enterprises. Svyrazfiz- dat (1952) F-TS-921,.8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 J.:J. I 0 SIMULTANEOUS OSCILLATIONS OF 7+4O FREQUEAXIFS IN A SELF-OSCILIATOR WITii SELF-BIAS by G.M.Utkin Active Member, A.S.Popov Scientific-Technical Society for Radio and Communication Engineering A previous paper by the writer (Bibl.2) furnished a general theory of two- circuit self-oscillators with multiple circuit frequencies. The present paper dis- cusses an analogous self-oscillator on taking into account self-bias from grid cur- rent. At a low inertiality of the self-bias cell in a two-circuit self-oscillator (Fig.l) it is possible to have stable oscillations of two frequencies, be they mul- tiple or asynchronous (Bibl.3)? To demonstrate this, let us investigate the stability of the modes of syn- chronization and of beats at'a low-inertia self-bias from grid current. The equations for the self-oscillator shown in Fig.l, with self-bias for the frequency multiples of Fig.l n - 3 and with a linear-broken approximation-of the plate current characteristic, r ? have been formulated in Bibl.l. During the derivation of these equations, the com- pound form of plate and grid currents, having the aspect of a series of higher- frequency pulses periodically repeated with a lower oscillation frequency, has been approximated by a cosinusoid inscribed between the plate-current pulse envelope and the axis of abscissas, as illustrated-by broken line in Fig.2 which depicts the form of plate current and its approximation when two multiple-frequency voltages are act- ing on the grid. As a result, the necessary plate current harmonics prove to be functions of the angle of cutoff of the plate, current for the self-oscillator assume this aspect: F-TS-921,.8/V . envelope, and the equations Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 cuits; S, Sc are the (2 SRS Y1-1) U,. Tl (U, == T,U'~= 2 SR2I$Ul-U2. TE,l= 2 S, Reis (ee)U1-I E,I, To = Am T2 - SR2 2 U~~ 7n + 4 b2 R2 on-1 In+1 , sin ~Q~ T1' , = 4 SR, 7.-1 - In+1) sin q, transconductances of the idealized characteristics of'plate and 2' T 716-12 2 T w262 c The equations for the :synchronization lQ b) t = R C are the circuit time constants-and mode are obtained from (1) it:U1 = U2 = = Ec = m = 0, and have this aspect I(r) r I(t)?T [1+CW(ar+YA Fig.2 S. R, i = 2, - S'R2 11 Ui = 2 Us. I ?e 2 S, Re -10 (ee) U1?' Am = (Awl + Aw") sin*?, . Aw, sine? n where U1, U2'and m are the amplitudes and general phase difference in the grid vol- tages of the fundamental frequencies; Ec is the bias voltage; pw = w2 - nwl is the general circuit detuning; W1 is the correction for oscillation frequency in the first circuit in relation to its natural frequency; Yl (0) are the coefficients of dissociation of the cosinusoi- dal pulse into the cutoff angle 0; R1, R2 are the control resistances of the-cir- grid circuits T1 = self-bias cells* the designations: F-TS-9248/v. (1) (2) The-last two equations use the first two equations and introduce Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 ,&Mp _ Olds 7r 2 70 I 7n-1 - 7n Hl 2 271 (3) Let us investigate the stability of the modes of simultaneous oscillations of two frequencies on the assumption that the angle of cutoff of grid current 'is small, i.e., that Rc is sufficiently large. In this case, the bias voltage equals the sum of the voltage amplitudes of the fundamental frequencies and, at a low inertiality of the self-bias cell (Tc x 0), it continually varies with them. In this connection, it is found that the angle of cutoff of the plate current envelope is not affected by the voltage amplitude of the higher frequency (actually, there is some relationship between them, but a weak one). The justice of the above statements can be easily verified by substituting Ec = - (U1 + U2) into the formula for the cosine of the angle of cutoff EE -E, + Us cose= - U whereupon we obtain cose=l-U,` Considering that the first two equations in the initial set (1) are?not affected . 'by phase *, the study, of the stability of the system at-variations in voltage am- plitudes is reduced to a study of these first two equations in set (1). On composing the corresponding first-approximation formulas it is not difficult to ascertain that the conditions for system stability in face of variations in amplitudes correspond to the satisfaction of this inequality (4) This result is the more probable the higher is the multiplicity of frequencies. F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release C Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 The above inequality is always satisfied at the assumptions adopted: an in- crease in Ul causes a decrease in A and hence also in the coefficient y ? When a system is stable in relation to the variations in amplitudes, it is pos- sible, to have simultaneous oscillations of either the multiple or nonmultiple fre- quencies corresponding to the synchronization and beat modes. The detuning on the threshold of the synchronization mode is determinable from the requirement for sys- tem stability toward variations in phase w. The requirement for the "phase" stabil- ity of a system is easily obtained from the fourth equation in set (1) and has this (Awl +Aw") Cos Cf>0. As depending on the plus or minus sign of the expression in brackets, the range of stable values of phase cp is - 2 < w < 2 or 2 < 3 n. The extreme val- ues correspond to the thresholds of the synchronization mode. The formula for the detuning on the threshold of the synchronization mode is obtained on substituting + 2 into the fourth equation in set (1), whence it follows that A i - Aar' + Am'. The present article will not expatiate upon the peculiarities of the synchron- ization and beat modes, because these have already been discussed in detail in A conducted experiment has corroborated the conclusion about the possibility of the existence of simultaneous oscillations of two frequencies outside as well as in- side the synchronization zone in a self-oscillator with self-bias. These simultan- eous oscillations of two frequencies continue uninterruptedly at a.smooth change in circuit detuning from, one synchronization zone to another, Article received by Editors on 1 October 1955 F-TS-9248/V 94 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 1. Utkin,G.M. - Self-Oscillatory Systems With Two Degrees of Freedom at Multiple Frequencies. Candidate Dissertation. V.M.Molotov Moscow Electrical Engi- neering Institute (1955) 2. Utkin,G.M. - Self-Oscillatory Systems With Two Degrees of Freedom at?Multijile Frequencies. Radiotekhnika, No.10 (1956) 3. Utkin,G.M. -'Mutual Synchronization of Self-Oscillators on Multiple Frequencies. Radiot.ekhnika i elektronika, No.1 (1957) F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 short waves has been jointly convened by the A_.S.Popov Scientific-Technical Society for Radio and Communication Engineering, the All-Union Scientific Council for Radio Physics and Radio Engineering of the USSR Academy of Sciences, and the Institute for Radio Engineering and Electronics, USSR Academy~of Sciences. The conference members listened to and discussed fifteen addresses devoted to CONFERENCE ON THE PROBLEMS OF FORWARD SCATTER OF ULTRA SHORT WAVES In January of this year a conference on the problems of forward scatter of ultra the theoretical and experimental studies of tropospheric-and ionospheric forward scatter of ultra short waves. As is known, during the last six or *seven years many studies of the forward scatter of ultra short waves have been carried out in a num- ber of countrieq. The investigation of this new form of propagation of ultra short waves is of 'great practical importance to radio communications, long-distance tele- vision transmission, radio navigation, etc. In his-prefatory address Professor A.G.Arenberg, Doctor of Engineer"ingSciences, surveyed the state of theoretical and experimental studies of the related,problems and outlined the principal tasks of the conference. - Five papers were devoted to problems of tropospheric scatter. P.P.Biryulin's paper discussed an integral equation-for the vector potential of scatter field in an environment with a fluctuating permittivity. The sequence of approximations obtained when deriving that equation takes into account.the multiple scatters of various degrees. Unfortunately, the related theory has not yet been A.S.POPOV SOCIETY NEWS perfected to a point where it can yield numerical results and can be compared with experimental data. The physical premises of the theory are not either well founded as yet. F-TS-9248/V 96 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 u C: V.A.Zverev described in his paper the methods of computing the mean intensity of the scatter of radio waves on random irregularities upon taking into account the width and form of the radiation pattern of the receiving antenna. In this connec- tion, it has been found that the computations of scatter intensity published in lit- erature are correct only when the dimensions of the receiving antenna exceed consid- erably the correlation scale. The lecturer also reviewed the opportunities for an experimental determination of the correlation function. D.M.Vysokovskiy's paper was concerned with a critical analysis'of the derivation- of the general formula for the effective area of the scatter of ultra short waves in the troposphere. The paper furnished a derivation of the formula for power at the reception point in the event of broad antenna radiation patterns, and it described some aspects of reception. With respect to narrow antenna radiation patterns; the paper evaluated the influence of the irregularity of turbulence on the magnitude of the loss in antenna gain. The paper also contained formulas derived for taking into account the influence of refraction on the diffusion propagation of ultra short waves, and demonstrated that it is possible to consider that influence by introducing the effective radius of the Earth into the appropriate formulas. The influence of multiple scatter or. the magnitude of field attenuation was appraised, and it was dem- onstrated that this influence can be ignored in a great majority of cases. The paper by A.A.Semenov and G.A.Karpeyev described the results of an experi- mental investigation of rapid fluctuations in the amplitude of signals reflected from two fixed reflectors and received by two spaced receivers. The this obtained. scale of instantaneous values of signal amplitudes proved approximate to the logar- ithmically normal law, which clashes with the theory of multiple reflectors on the Earth's surface, which was originally adopted as the working hypothesis. This indi- gates the predominance of the influence of the irregularities in the troposphere itself. The paper by L.Ya.Kazakov and A.N.Lomakin was devoted to a survey 'of the prin- F-TS-9248/V ? 97 IC Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Q C, ciple of performance and design of a radiorefractometer used for measuring the irreg- ularities in permittivity. It also described the problems encountered in the appli- cation of measuring methods and the evaluation of data. Preliminary experiments have demonstrated the feasibility of measuring the intensity and dimensions of ir- regularities. The measurements also have demonstrated the varying character of the distribution of intensities as depending on altitude, and the presence of intensive stratified irregularities on divers altitudes, and also sharp changes in intensity on the threshold of the cloud ceiling. Ten papers and reports were devoted to the problems of ionospheric forward scatter. A.N.Kazantsev surveyed the materials of the VIII Plenary Conference on Iono- spheric Forward Scatter of Meter Waves, convened by the Comite Consultatif Interna- tional pour le Radio, and the program of scheduled research in this field, and also he briefly described the principles of the new form of communication constituted by utilizing the reflections of meter waves from the traces of'meteors. Ya.L.Al'pert described in his paper the results 'of ,a theoretical analysis of ionospheri'c?scatter of radio waves at a correlation factor having the form of (' = P (r) eap l.- r I where 1 is the scale of irregularity. i Utilization of these results makes it possible to employ the analysis of exper- imental data for determining the fluctuations of electron density and the optimum dimensions, of the scattering irregularities. B.N.Gershmants paper derived the effective area of ionospheric scatter upon taking into account the turbulent shifting of the ionized gas. The obtained results are comparable with the data of the theory of Buker-Gordon and Villars-Veiskopf. M.V.Boyenkov surveyed the problems of the use of the forward scatter of 6 - 10 meter radio waves by reflection from ionospheric layers, and the future perspectives F-TS-92J 8/V. Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 10( The reports by V.A.Bubnov, A.I.Khachaturov and S.I.Sotnikov describe cases of long-distance reception of meter waves, reception of programs from foreign television stations, etc. Emphasis was placed on the possible importance of bring- ing the related studies to the attention of radio clubs and radio amateurs so as to gain en masse actual experimental data about the forward scatter of ultra short of this form of communication. described The papers by S.F.rlirkotan and L.A.Drachev, and also by Yu.V.Berezin, frequency- the methods of investigating the irregular structure of the ionosphere at he re- s aced reception, by means of recording the variations of the phase path of t p fleeted pulse. d divers this field by the USSR Academy of Sciences, and of bringing these matters to the at- . tention of the institutes of the said Academy, and especially the Institute of At- mospheric Physics, and the Main Directorate of the Meteorological Service, minis- tries of communications and radio-engineering industry, and the faculties and labror- waves. ce noted the great theoretical and prac- The resolution adopted by the Conferen tical importance of developing omnilateral studies of the forward scatter of ultra short waves in the troposphere and ionosphere, and it also formulated concrete pro- posals concerning a number of scientific and organizational problems. The resolution pointed out the desirability of coordinating further research in atories of higher schools: The Conference approved a motion for publishing a collection of the papers read SEMINAR ON TRANSISTOR ELECTRONICS From March 114. to March 21 of this year the A.S.Popov Scientific-Technical So- ciety for Radio and Communication Engineering (Section of Transistor Devices and Small Parts), in collaboration with the Polytechnical Plu'seum, convened a ten-day F-TS-924 /V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 ` and to send a copy to each participant. Only then can the mask posed to the seminar be regarded as completely fulfilled. In view of the previous experience in convening such'seminars, the Governing Board of the A.S.Popov Society has resolved to convene.during October-November 1957 ? a special seminar on the problems of popularizing the use of printed circuits, small parts and ferrites. A new seminar on transistor electronics is planned to be convened in the next All-Union seminar on transistor electronics, in Moscow. The seminar was attended by 600 experts working on electronic matters in plants, designing bureaus, and over scientific-technical institutes of various ministries and agencies, including about 300 scientist and scientific-technical workers sent to the seminar from 4.3 cities. The lectures read at the seminar were aimed to explain the foundations of the theory of transistor devices and their app]ications in the radio engineering cir- cuits. These lectures also surveyed the physics of the operation of transistors, methods of computing low-frequency, high-frequency and pulsed circuits, and aspects of operation of these circuits at changes in temperature. The participants in the seminar observed that the conduct of such undertakings is favorable to the realization of the directives of the XX Congress of the Communist Party of the Soviet Union with regard to the introduction of transistor devices into the Nation's economy. At a time when relations between the enterprises are not yet well organized the conduct of this seminar is doubtless conductive to an exchange of experience. It is necessary to print as soon as possible the lessons read at the seminar year. The-program of that seminar should be so scheduled' as to reflect to a great degree the problems of the design and computing of transistorized equipment and of the omnilateral utilization of printed circuits and small parts. The program should -envisage a date for the exchange of experience among the participants in the seminar and for the organization of visits to neighboring enterprises. F-TS-924/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 VIII th PLENARY ASSFjBLY OF THE INTERNATIONAL RADIO CONSULTATIVE COF1;ITTEF (CCIR) IN WARS'Vv7' August 9 - September 13, 1956 Study Group Study Group 1,. is concerned with investigating the problems of the propagation At its first session the following two Subgroups have been of surface radio waves. formed: 11.A, under the chairmanship of tfiillington (England); and hB, under the chair- manship of HerbstreYt (USA). The area of studies of Subgroup IVA was as follows: 1) Study program and recom- mendations on "Propagation of Surface Waves over Nixed Routes"; and 2) Study program and paper on "Propagation of Surface Waves over Uneven Terrain". The area of studies of Subgroup 11B included: 1) Study program on "Influence of Tropospheric Refraction on Frequencies 1elow 10 me"; 2) Study program on ''Time Var- iations in the Field Strengths of Surface ;laves"; 3) Resolution on "Plotting Curves of Propagation for Frequencies flelow 300 kc"; 1,.) Recommendation on "Presentation of Data on Antenna Radiation"; and 5) A novel question broached by the Czechoslovak delegation, "Determination of the Electrical Parameters of the Earth's Surface". The recommendation on "Propagation of Surface Waves Over?Mixed Routes" has been modified in the sense that the use of theoretical methods is currently recommended,- in all possible cases and,whenever this is not possible empirical methods may be em- ployed upon considering the limits of their suitability. A study of the "Propagation of Surface Waves Over Uneven Terrain" served as the subject for a. paper describing briefly the results of various theoretical investiga- Due note was taken of the theoretical work on the solution of the problem of the propagation of radio waves over mixed routes. The paper included presentation i~ Continuation of report published in Radiotekhnika, Vol.12, No.3, 1957. F-TS-92) /V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 of doctur.ents containing the solution of this problem upon taking into account. .he sphericity of he Earth (Godzinski,,, Furutsu), even though this was not presented as ,?et in a form suitable for practical computations. The paper on "Influence of Tropospheric Refraction on Frequencies Lelow 10 mc" appraised the difficulties related to applying the methods of geometrical optics to these frequencies and also to the influence of troposphere on fairly low frequencies. The paper concerning the resolution on "Plotting Curves of Propagation for Fre- quencies Below 300 kc" pointed out the necessity for a cautious approach by the CCIR toward the use of these curves for determining field strengths on frequencies below 300 kc, owing to the influence of the ionosphere, which is not considered in these The recormendation on "Presentation of Data on Antenna Radiation" has been com- pletely modified so as to recommend that data on antenna radiation be presented in the form of field strength or power relationships and also by means.of introducing the concept of "simomotive" force. The novel question of "Determination of the Electrical Parameters of the Earth's Surface", presented by the Czechoslovak delegation, has met with endorsement by the whole Stud-, Group and, after evaluation, was approved. Study Group I,. had also adopted two proposals for new resolutions. The first resolution expresses the wish that the Secretariats of the CCIR should complement its published atlas of curves for the determination of field strengths of meter waves by adding thereto an appendix explaining the method of computing field strength at e4uivalent-radius values and soil parameters differing from those for which the curves in the atlas are plotted. The second resolution expresses the wish that the Secretariate of the CCIR should draft and publish a new atlas of curves for deter- mining field strengths at higher frequencies (up to 10,006 mc) and higher antenna heights (up-to 20,000 in), which is needed by aviation services. The resolution con- stains tentative data for the related calculations. F-TS-92h8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 U Study Group 5 is concerned with investigating the problems of-the tropospheric Study Group 5 propagation of radio waves. At its first session these two Subgroups have been formed: 5A, under the chairmanship of Allen (USA), and 5B, under the chairmanship of Rauden (England). The area of studies of Subgroup 5A comprised: 1) Study program on "Measuring the Field Strengths of Radio Signals"; 2) Problem "Measurement of Field Strength at Direct Proximity of Obstacles"; 3) Recommendation on "Optimum Methods of Expressing Field Strength at Pulsed Transmission"; h) Recommendation on "Field Strength Meas- urements. Types of Receiving Antennas and Equipment for Every Frequency Band"; and 5) Recommendation on "Field Strength Measurements. Influence of Local Conditions on Interpretation and Accuracy of Field Strength Measurements". The area of studies of Subgroup 5B comprised: 1) Study program on "Curves of Tropospheric Propagation for Distances Much Greater than Line-of-Sight Distances"; 2) Study program on "Tropospheric Propagation of Radio Waves; 3) Problem :'Radio :Dave 'Propagation Data Necessary for Wide-Pand Radio Systems"; 1~.)-Recommendation on "Data Presentation at Studies of the Tropospheric Propagation of Radio Waves"; and 5) Rec- ommendation on "Curves of Tropospheric Propagation for Distances Much Greater than Line-of-Sight Distances". The study program and recommendation on "Curves of Tropospheric Propagation for Distances Much Greater Than Line-of-Sight Distances" led to the adoption of a reso- lution for postponing the revision of these curves until after the Vlllth session of the CCIR, and not during that session, because of the enormous scope of the related work. Also there was formed an international. working group which should within a year or a year and half complete the work on the revision of tropospheric curves upon utilizing all the currently available data. The revision of these curves will consist in the plotting of new curves for higher frequencies and higher time percen- tages, in determining the corrections to be introduced for propagation over sea F-TS-92JWV 103 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 U U surfaces, and in an appraisal of the spread of field strength values sterrr:ing from the diversit; of climatic conditions and antenna heights. The study program on "Tropospheric Propagation of Radio Waves" has been sub- 'ected to some modifications. Considering that irregularities of the troposphere cause the forward tropospheric scatter of ultra short waves,, the newly modified pro- gram turns attention to the necessity of a broad study of these irregularities (their intensity, form, dimensions, etc.) with the aid of special sensitive, low- inertia radio-engineering and meteorological instruments. Attention is also turned to the necessity of investigating the correlation between meteorological conditions and the conditions of the tropospheric forward scatter of ultra short waves. Con- siderinr that at such scatter the value of field strength is substantially affected meteorological conditions, the program proposes the compilation of charts of iso- lines of the vertical gradient of air permittivity, based on meteorological data ob- tained b;' means of radiosondes, as the first step in the development of radioclima- tologi. The question of "gave Propagation Data Necessary for Wide-Band Radio Systems" in its original version pertained only to the systems operating on the 'oasis of the propagation of ultra short waves approximately within the line-of-sight li;its. On the last session of Study Group 5 the United States delegatioh introduced a proposal ,for a new, important study program and recommendation under the overall came of "Radio Transmissions Utilizing the Irregularities of the Troposphere". The new study program includes the investigation of problems of great practical impor- tance to the design of communication systems utilizing the phenomena of the tropo- spheric forward scatter of ultra short waves; the investigation of fading and of the influence of meteorological conditions, determination of the maximum band of trans- mitted frequencies, antenna efficiency and gain at the use of spaced-antenna recep- tion. F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 00 Study Group 6 Study Group 6 is concerned with investigating the ionospheric propagation of radio waves. The chairman of this Group, Dellinger, was absent, and Bailey (USA) deputized for him. Five Subgroups were formed at first, and afterward a sixth one was added. Subgroup CIA (Chairman: Smith-Rose, England), was entrusted with the following issues: 1) Study program and paper on "Selection of Basic Index of Ionospheric Propaga- tion"; 2) Recorrinendation on "Forecasting the Solar Activity Index"; 3) Study pro- grain, paper. recommendation, and resolution on "Short-Term Ionospheric Prognoses"; 4) Study program and paper on "Basic Information for Prognoses of Ionospheric Prop- agation"; and 5) Paper on "A Centralized Organization for Rapid Exchange of Informa- tion on Propagation". Subgroup 6J3 (Chairman: Millington, England), investigated the following proc- 1) Study program on "Radio Wave Propagation on Frequencies Below 1500 kc"; 2) Study program and paper on "Ionospheric Propagation on Frequencies of 3C - 300 me"; 3) Study nrorrarn on "Pulsed Transmission Experiments at Inclined Incidence"; 10) Rec- ommendation on "The Study of Absorption in the Ionosphere"; and 5) Study program. on "Non-Linear Effects in the-Ionosphere". Subgroup 6C (Chairman: Crichlow (USA)), reviewed a number of problems relating. to atmospheric interference: 1) Study program and recommendation on "Measurements of Atmospheric Radio Interference"; 2) Recommendation on "Review of Data on Atmospheric Interference; and 3) Recommendation on "Counters of Local Lightning Flashes". Subgroup 61) (Chairman: Grosskopf, West Germany) was concerned with the problem of fading at ionospheric propagation (study program). Subgroup 6E (Chairman: Roberts, International'Frequency Registration Foard) investigated chiefly the issues raised by the International,Frequency Registration F-TS-92) 8/V 105 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 hoard, and also the question of protecting the frequencies applied in radio astron- Finally, Subgroup 6F investigated a question shared with Study Group No.7: "The Utilization of Modulated Transmissions on Standard Frequencies for Evaluating the Reliability of the Prognoses of Radio Wave Propagation". Subgroup 6A lation of world charts of critical frequencies of the F2 layer for specific hours of the day (every 2 hours, round the clock). Study Group 6 should investigate the pos- sible advantages of such charts. Basically no new recomm;ndations have been, made arent the problem of short-term ionospheric prognoses. The problem of solar index prognoses' has been investigated chiefly by the Di- rector of the CCIR, Professor van der Pol. However, it was stated that "tile methods explored by the Director of the CCIR and based on the technique of autocorrelation In the revised version of the lecture paper the index of countries and institu- tions furnishing long-term prognoses has been expanded by adding the Soviet Union (?IIZMIR, Ministry of Communications) thereto. A like addition has also been-made with regard to short-term prognoses and rapid exchange of information on propagation. A recommended method of improving ionospheric prognoses consists in the compi- England and New Zealand proposed that the basic index for ionospheric prognoses should be constituted by the so-called "ionospheric number of sunspots", i.e., by some given number of sunspots determined by measuring the critical frequencies of the F2 layer (index JF2). However, the small working group formed after discussion (consisting of delegates of England, USA and the Soviet Union) adopted a revision proposed by the delegate of the Soviet Union. This revision consists in that the R index (golf number) should continue to he used for long-term prognoses, because it is the simplest and most homogeneous index in the circumstances, but the possibility of a future application of JF2 and other indexes should at the same time be explored. F-TS-9248/v Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 ':ave n:o! l?ett to a corrn1et.et;' sa}.ist'actorv rret.hod of forecar,'.irj? solar tC`..i i'.'~~? In a technical circular issuel l,,? van her Pol, the Director notes ' ~?1' ''~' short,1 ' exnect.ed maximum solar activit;' (which perhaps wi 1.' occur as soon as j r- the middle of 10r7) will he very bich and will apparently exceci all hither',o ooservej rnaximu r limits. Subrroun 6i~ St:rgroi:p Fl' investigated in detail the results of a rulti]ateral experimental study conductei by the Europear l3roadcastinc Union (With the participation of Eng- land, France, Pollard, Finlarl, Yurosla=,ia, and other courtries) and concerning `.he proparation of medium and lonr waves. The o?stained experimental curve o:" field strength at, ri rr". t is sl'apel rr':cb lower than the curve accepters on the Cairo i? eeti: r r,rt it coincides sat,isfactori l: (ail distances 'r) to 2000 !=) with the curve accented ir' the International Frequency Registration !'oard. Tne latter curve was plotted or, the Copenhagen Feeting by a stud;' group under the chairmanship of Professor V.N.Kes- senikh (USSR). ',T The principal questions investigated by Subgroup OF nertained to the long- distance propagation of meter waves - especially by means of tneir ;orwarJ scatter- ing from ionospheric irregularities. The study program points out that the scatter is successfully used for radio communications at distances of 1000 - 20U,4-irt, espec- ially in the arctic and subarctic areas. The program postulates future investira- tion of the mechanism of such scatter - the seasonal, *diurnal and momentary cnarges in field strength, the influence of solar and geomagnetic activity, the most sui;- able types of modulation, etc. The Chairman of Study Group 6, Dailey, who leads studies on forward scatter or radio waves in the USA, delivered a special lecture on this sub,iect, on the confer- ence. He pointed out the special importance of this form of communication in polar areas, and he emphasized that the worse are the conditions o.f ordinary- propagation F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 of radio waves in the polar aurora zone, the better are the conditions for effectirt; communication by means of the wholly reliable forward scatter of meter waves. hail- ey noted that this kind of radio communication, which extends over distances of the order of many thousands of kilometers, has a good nerspecLive of development., and he pointed out the actual existence, of an experimental line between America and Eng- land via Iceland. The paper of the Czechoslovak delegation mentioned the?possibil- ity of super-long-distarce radio communication on frequencies much higher than the minimum applical?le frequencies, hhy propagating radio waves between the lower bound- ary and the maximum ionization level of a single ionized layer. The program of research on return-inclined sounding (;'return scatter") actually constitutes a new study program containing a number of interesting proposals: inves- tigation of divers forms of scatter (from the Earth, from the E Layer); determina- tion of the scatter coefficient as a function of frequer?.cy;.nature of the scattering surface and the angle of incidence of the ra?:; and investigation of the change in antenna radiation pattern at considerat.le distances from the transmitter, etc. Subgroup tiC On the VIIth Plenary Assembly of the CCIR in London the Soviet Delegation did not accept any of the resolutions pertaining to atmospheric radio interference, in view of the'negative Soviet attitude toward the American charts of atmospheric in ter?erence. In the interval of time between the VIIth and VIIIth Assemblies a special stud;: group consisting of representatives of England and USA compiled new charts of atmos- pheric interferences based on a greater number of measurements, although with a broad application of interpolation. The Soviet delegation made the motion that these new charts "can be used, with great reservations". 'In the accepted compro- mise phrase the words "with great reservations" were changed to "with some reser- vations". F-TS-921,.8/V 4 108 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 L Subarot~p 'D the studies conducted with regard to This Subgroup issued a paper describing the Soviet Union, and supplying the topic, including also the studies conducted by a t,rief resume of the law of the distribution of field strength variations. Sticgr~ 6E Subgroup 6E has been principally concerned with questions posed by the IFRB to the CCIR. The first question was whether it is feasible to iise the curves of maxi- mum applicable frequencies plotted in Mexico City on the basis of Paper No.1,62 of the Bureau of Standards. The delegate of the Soviet Union transmitted to Subgroup 6E a repor`, furnishing a comparative analysis of some results of the computations of the IFRn. as made by and demonstrating that the novel the American, Czechoslovak, and Soviet methods, version of the American. method yields, as a rule, lower -results. The first question powers. including the .USSR, Rumania, and Czech - existing methods of computing field strength. The labors of the CCIR and, especially, of the three consisting of representatives or six oslovakia, for investigating all the posed by the. IFRB remains pending. The second problem was that of selectilg a rr et iod of ce.n.puting field strergt}'. On the motior of the delegate of,the Soviet Union, Subgroup 6E adopted ,ananimousl;- a resolution - later ratified b;? the Plenum - for organizing a special study group with radio wave propagation, manifest tangibly the-spirit lion (which iri a number of cases was violated States alone /sic/). A'preponderant majority study groups concerned of international coopera- by the representatives of the United of problems was solved cooperatively, h ichmakes the Warsaw Conference much different from the London one. Naturally, w this was largely owing to the active position of the Soviet delegation, which sub- mitted a great number of papers and introduced a number of valuable resolutions. F-TS-92) 8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Stud,., Groin 7' The labors of Study Group 7, which is concerned with the organization of the world service of standard-frequencies and time signals and the techniques of the transmission and reception of these signals. have been somewhat advanced at t^e VIIIt`?, Plenary Assem' l; . The paper compiled on basis of the data on Question No.R7 includes a '.a-:ula'tion of the characteristics of the stations transrr,ittinr standard frequencies and time signals, which' comprises also data on the Moscow station. Tie number of the sta- `ions transmitting standard frequencies and tirre signals has risen from six to ten during the interval between the VIIth and VIIIth Plenary Assemblies. In addition, four stations are in the project state and should be set into operation cetweer. the end of 1956 and the.spring of 19:7. There are also four other stations transmitting standard frequencies and time signals with a high degree of stability and accuracy, but not operating on the frequencies set aside for this kind'of transmission. A new study program and two novel questions have considerably exnan:led he pro- grar. of labors in this field. The study program concerns the investigation of the possiilities for improving the transmission of standard frequencies and time signals for the purpose of reduc- ing mutual interference among standard-frequency transmitters. This program under- takes a study of the possibility of reducing interference by means of utilizing special forms of transmission such as single sideband with suppressed carrier or two sidebands with suppressed carrier. A novel question has also been posed: the investigation of the causes of the decrease in the stability and accuracy of the reception of standard frequencies and time signals. It is also recommended that research be initiated on determining the optimum forms of time signals and receiving-equipment characteristics that would en- sure maximum accuracy of reception. - From the engineering viewpoint an interesting bit of information supplied by F-TS-921E3/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 3,,ix Troup T coneerne,i the frequency startdar-1 , Lsecl Orl the utii i7at on o:` to ?,% e 1river- a' omic resonance of cesium, whic" was developed in the USAA. According, -,iced data. this standard ensures a stability of no less than 5 in the co?.irse of the entire life of device. Study Grown 8 Stud; Grown 8 is concerned with problems of the methodiolopy and tec:-,nical _cnar- acteristics of :reasurino equinment of ti'e stations of ?,r'e ir.terr.ational Control Ser- vice. The fundamental trend of the labors of :.i,is Group is dictated r:? ..:-e reeds of %-e IMF purporting to facilitate its work r perfec.inr' t? e cor..rol of .:.e star ilia:- of *reg1iencies. occupation of `.:-e _freq?ienc;? spectrum, an.i xri.ith of radiation bane. The activities of Study ~'Group R durir.r- ',"-.e '. Iltt'' Plen?ir?? assen rly were ex~essed two stud: rrorrams and two questions. The activities of Stud.Troup 0 during the VIII-1 Plenary Asser'-l:= were con- dr:cted b;: two Stu?ir 3ul-prouns: PA, whose larors were cer.tereu on the question ol' "Automatic Control of the Radiation Spectruun" and on the study rrogram or. "1?:easure- meets of Radiation Spectra by Control Stations", and F-,, wh:c: examined t"e rro:lers relating to the stud;; program on "The Accuracy of Field atrer.f th NN:easurements by Control Stations" and '"easurements of Frequencies Over c~G r!c by Control Stations". :iFhteer, documents were presented on the above pro^lerrs 3 tud?y Group P. The lanors of the Group nave become somewhat advanced, and a result of .he `:III" ' Plen- ary Assembly was the issuance of 10 documents including a modification of t'e recor-- mendation on "The Accuracy of Field Strength t;easurements by Control Stations". whicr contains a table of the values of the accuracy of measurements which s` oul.i be satisfied r`, the control devices used for measuring frequency. The recommendation that was formulated concerning the automatic control of the occupancy of the radio frequency spectrum cites tentative technical features of au- t.orrati c control equipment corresponding to the features reconmendied by Soviet organ- i -3-92h?i/'J Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Amon Declassified in Part - Sanitized Copy Approved for Release 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 MTz. () ' izaLions (SLate lnspcct.orate of EIectrocollJnun]Ca`.101i$ an'l the :iCJWl i I I:Ca^car Institute of the hinistry of . olrununications). A complement to the study prograi on "l req'renc., Measurements by Control 3a- ions" refers to the necessity of cotparinr the statior radiation spectra neasureel directly on tra??sr:itters NO those that are measured tiy lore distarce or a control station, developing new equipment for control of wide radiation hands (anout 10 Mc in a range of over 30 nc), and conductiflF a -re]ininary erarination of the possih1e measurements of wave-fora characteristics on control stations for s:?stems for which Ms is of r asic importance (for instance. for television). 3` ui:- Group o Study Grour c] is concerrre 1 tiritn stud:?ir.r the problems pertaining to radio relay lines. The CCIR has : eFun its labors in t?:is field comparativel:: recently and no recor mendatiors were adopted ur.tii the :11t} Asserrrly. ire rlroun irvest_Fated ter ^ro= ierrs ar.l one researcr. rroFrar. The Group was divided into four Subgroups art, noreo-er, each 3"-group createi two or :.Tree worl?inr gror?ns for drafting he pro=ects of recommendations a^i reverts. The Commission nrerared 311 new aocunents, i nclulA : 23 recomnenlatiors, reports. I resolution. 2 new questiors. and 2 new research pro ?rai s . The principal cortents of these aocrrent,s are s'c;-me i ur as follows : Interra`.ional linage of freq.renc;r-multiplex radio relay Jives and st,ar.lardiza- `.ion of t: eir basic features: This involved the determination of the characteristics of radio relay lines which should be standardized on the divers forms of interna- tional connection. Considering- that such standardization has peen deemed to ce as yet premature, there have been adopted recommendations determining the advisable p:ir'trr e!.ers of the basic characteristics of the following three forms of radio rela s"s'.ers: your-channel, interned iate- frequency, and radio-frequency. These recorr- ren?iations concern such c'.arac'Leri3L2cs as the number of chaf]rels, values of inter- Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 :lei1a'.e t'reglierc; t':?egnency tlevia..ion, frequerc iiaislon or sip '.r:.rY; or.r:r:1. sl''lu1taneons1: on ore 1--re. and so fort.)'. There w'is also alop',ed a recorrJnr:rrl-t,Aon for determinin, the allowable freq :enc;' instal 111',;' on '.l:e trlrsmi tter s o' radio relay lines. ,~':ality Of commurications on ra?iio relay lines: The a'iontefl recorrmen'la'.iof de- 'e-mines the so-called standard hypothetical circuits for ray io relay '_ ire s. These ci rcui s (for lines wi+.i, an 12 - ;C channel capaci'.;? and for lines with c?ipacit ' of o?.rer ~-C c-"inrels), which have a efini`.e lenrtl' and struc'.':re. should provide i'.4 ?i- 2CCe `O .1-e esir?rers o" rmiio rela;' ,;;stems. Arot} er recorurer :atior ',e ~ e a lopt.e'i es,.at l l s`' ei ',he allowz -l e roise level in 'e'en-one cl.ar'rel. at t. 'e en-i of a 2`,;CU-i?:rr s'.arlard circ':it. This recorr:enda~ ion ie- ?,er?'-nes '.r'e :rear noise rower per i?c?.r, ar i i t aprears to 're ?,e:-rorary, . ecat se .,-e al? owal?le noise power rer si or-:. - r i t3 of `:r.e ras not ye+ teen determined, and -,-e lnvestization of tl.is pro:~ien: sicu,ld re cor,:ir. e.i. All tnese recorrine'_iations are cor-sorar z, wits t1 e prorosai presented c,? '?ne So- v;e ; ielegat ior. lire recomrenla, for ieterm_ninr the allowable noise level inciu :es an arren-lix descritinr a Soviet-proreseu rreti-oi of corrr%,_-*ni she -asic pararreters of equirment. ,t'tx,llar,? equipment for radio relay lines: r~?e aioptei reconirendations te;,er: ire he retl?o?is of ersurir:c' reserve equipment on ratio relay lines, the anplica;ion of sne,,.al control curren,s at transn,issior of ',el.evision signals and b00 telephone conversatiors, and a r.ethol for r?easuring the quality of radio relay line charnels. A rew r4uestior has l.een approved for investigation, for the purpose of drafting a recormendation on the me*tho.is of effecting service communications and on the re- a?:i rements nosefi to service channels. Time-division-multiplex (pulse-modulation) radio relay lines: No apreen,ent could he reached at-out the related protlems and thus no recon:rilen 1ations on the ; asic' cr arac terisr,ics of stch lines iconld be drafted. Even the rough drafts of recorJllen- F-T S-9 248/V 11 3 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 .iations which were prepared at a rreeting of Study Group 9 in September of y/51, were not arprove.i-either. however, the Group did compile a list of basic characteri3tic3 which should oe standardized at international linkage of pulsed radio relay lines., It was proposed that at such international linkage the recommendation to -e adopted s could specify that the receiving part should accent the terms of the trarsr'ittinr; :`art;'. Stud,-.*- Groun 10 The labors of this Groun were oriented toward two ;-asic trends: radio-frequency -roadcastir.F and sour.1 r ecor,ii r.r for international exchange of programs. Accordir.r- ly, the followin7 documents pertaining to radio-frequency i roadcastinr nave been ex- anined and approved. 1. Recomlr,endatior or ultra short wave ii, broadcasting. The discussion ranged a'-ovt the documents presented b? the German Federal Rebut lic, France and England, corcerning the frequency deviation. protective ratios and minimum field strength L?-a-, are necessar:? for satisfactory reception. The narers rresent.ei :r t.1e a` ove- raved co-,:rtries rrorosed a freq??e^c;' deviation of + 75 kc. This value has also c.een sunnorted b:? the L'3 delega;:ion. The Soviet delegation demo^strated the pertinency and some alvartar?es of the application of a frequaenc-: deviation of + 5C ''c, and.this value has been unar.imousl:' apnrove.i together with the deviation of + 75 kc. Also adopted were the Soviet=recommended field strengts, staraards for low-noise zones - 250 rw; for towns - I mw; and for large cities m-w. 2. The Polish administration proposed an antenna which makes it possi:'le to reduce spurious radiation. At a session of the Group the antenna was approved and a report was drafted to recommend that this antenna he listed in the CCIi antenna ook. Also, a program on prac_t.lcal research in spurious radiation of classic direc- +,ional antennas had been formulated and unanimously approved. 3. lnvestigaLion of the pro lent of ensuring the reception zone wit.h the nec- `r-TS-92/ 8/V ] llI Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24 : CIA-RDP81-01043R002100080008-8 -a, Na I' A" essary field strenpth by means of ant.ennhs operati.nr at son.e anpie .o ~ac? r, ?rer? Such an antenna system makes possible a more uniform covering of the recep'?ion zone owing to the expansion of the enerry radiation lobe in the main direction, provided that the said zone have considerable scope and width. Also, this system males it' rossible to obtain a more uniform field at the use of a single frequency. with regard to sound recording for international exchange of programs, the fol- lowing resolutions were,examined and adopted: 1) adoption of the types of magnetic tape adapters proposed by the European Union and supported by the Soviet delegation; 2) during the examination of the problems of sound recording on mapretic tape, there was adopted a Soviet proposal that tape data t'e recorded on the side of the record representing the continuation of the unused cart of tape. The Group reached no specific agreement about the standards for the width and tolerances of r,agnetic tare. As for movie-tape recording for exchange of television programs. t:e Group adopted a proposal. made Iny the Euronear Union that sound arl irnare he rot! recorded or a single tape by means of magnetic or or.'-ical track. This Grour (chairman: Esninp, Sweden) was concerned exclusively with. television r ro''lems . Its :,asic labors were conducted by five Subgroups, concerned with the following problems: ]lA - color television' standards; 11h - formulation of requirements for long-distance transmissior of television signals on conar:urication channels; 11C - }-lack-and-white television standards; l1D - quality of television images; 'and 11E protective ratios at, planning the distribution of television stations and freq?;ercy channel division. . i'-TS-92hc8/V 11.5 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 ,.olor Television The sessions of the Group at the VIII}' Plenary Assembly of the CCIh in i1arsaw were preceded by demonstrations of various color television systems in the UJSA. .rF-- land, Hollani ani France in the sprint of 195,6. The results of these demonstrations were cited in the chairnants"report.. It had been supposed that an All-European color television s;,sterr woiil'i be settled upon in ;Jarsaw. The discussion revealed that, at research or the develonrent of a color television system, most countries rave prefererce to an adaptation of the NTSC s,rs- ' em to European conditions. The Soviet -delegation advised that at present it the USSR principal attention is turned to ievelopine- a combined color television s:?s'.err, with a sin:-le su:,- carrier and quadratic components, hecause this s;,sterr appears to `e the most thor- our hl;- tested one. The En.=lisr and French delegations were catevoricall,y opposed to tre selection of any specific .television s,: stem on the present 11' enary Assen . : asiro tt ei r or- 'osi Lion or the insufficiercy of the hitherto co:: i?.cted research in this fiei-i. T e French delegation insisted or. the conduct of cor-narisors of ',.~-.e 1,TSC s,'s'er wi-.- ---e s:.st.er.s developer in France. The discussion coneinuinr, throughout the three sessions of the Sul,croun -.Jeldec no definite results and was halted in view of the iifficulties involved it a corrn3r- ison of the qualitative and technical indices of the NTSC system, wick!, is al read!:- in operation. with analogous indices of the French-developed systems which are still in the laboratory-experiment stage. The United States delegation dii not nartici- r,ate actively in the discussion, upon advising that the USA does not propose to al- ter its viewpoint as to the selected NTSC system. It was pointed out that in this year several hundred thousand television sets will he manufactured, and that their output will continually increase. In view of the absence of sufficient data for the adoption of definite color F-TS-92).8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 television standards, and also in view of the atsence of an unanimi of opinion on .his pro'.blem, the VIIIth Plenary Assemi.ly of' the CCIR adopted no definite resol?.- ,ions as to an European color television system. It was merely resolved that .r,is problem should be re-examined on the subsequent *session of the Commission.. It is assumed that, after that session, and before 191,8 is over, there will be convened the second European conference on a revision of the Stockholm plan for the division of' frequency channels for television and ultra short wave FM broadcasting in the I. II and III hands. This conference should arrive at a new plan for fre- quency division in the IV and V bands. At that time, Study Group,5 of the CCIR should have ready some more precise data on radio wave propagation in these bands. Requirements Posed to Communication Cnarnels for Long-Distance Television Transmission. An evaluation of these requirements, conducted by Subgroup 11P, was based on the set of standards drafted in 1955 in i'russels, upon taking into account the new proposals presented :;' England, Pollard, Switzerland. and the German Federal Republic. This included the formulation of new requirements as to the qualitative indices of the television channels of radio relay and cable lines. This :iociment also included methods for measurement of non-linearity. of the amplitude characteris- tic, amplification factor of communication channel, and transient-response toler- ances in the range of low and medium, video frequencies, and so forth. All these in- dices were established only with regard to transmission of black-and-white televis- ion signals. Upon a proposal by the Soviet delegation and the representatives of the CCIF9, there was adopted a resolution for regarding the above requirements as a desirable aim and not as standards which should be maintained on the existing or projected communication systems. The possibility of adopting these requirements as standards for a hypothetical control line should, in accordance with that resolution, be in- vestigated by a combined CCIR-CCIT team. F-TS-92/ 8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Subgroup 11C examined a report including information or. the black-and-white television standards established in various countries. This also included evalua- tion of the basic parameters of the OIR, and the Subcommission adopted a resolution for including these parameters in the CCIR's report on`black-and-white television standards. Also, this Subcommission drafted a naner complementing the recommenda- tion (on television standards) by the point on the gamma-characteristic coefficient of televisio^ transmitters which, on taking into account the modulation characteris- tic of the receiving tube, should he below unity. The new research program envisages an investigation of problems relating to correction of the distortions of television signals at single sideband transmission (q?iadratic distortions, phase distortions in transmitters and receivers, etc.). Subgroup 11D appraised the data presented by various countries with regard to evaluating the quality of television ir:ages. The Subgroup approved the resolution of the Soviet relegation that this problem be reviewed anew on considering that the met; ods of evaluating the qualit,, of television Lmages should not dener.:i on the tel.- As for the protective ratios at planning of the distribution of television sta- tions and frequency channel division, Subgroup 11E examined a report on protective ratios in television. It adopted the proposal that the standards specified in this report can be applied only at planning the, distribution of black-and-white televis- ion stations. 1?;oreover,'1t was pointed out that the determination of protective ratios should take into account the frequency responses of television receivers, be- cause the curve of protective ratios cited in the report was plotted without consid- ering these responses. The new research program envisages the investigation of' problems relating to F-T3-92JF8/V _ 118 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 cn on the black-anti-white This also included evalua- nission adopted a resolution )lack-and-white television rplementinp the recommenda- i-characteristic coefficient the modulation eharacteris- of problems reiatinp to single sideband Lransrission 's and receivers, etc.). is countries with regard to up approved the resolution .new on considering that the hould not depend on the tel.- tri>,ution of television sta- ned a report on protective standards specified in this of black-and-white televis- ermination of protective of television receivers, re- was plotted without consid- n of' problems relating to determining the gain in protective ratios at the use of the system employing the offsetting of the carrier frequencies of television transmitters at a considerab: difference between the carrier frequencies of offsetting stations. Study Group 12 Study Group 12, which is concerned with tropical-zone broadcasting, and whirl has Mr. Ralig (India) as its chairman, reviewed Recommendation No.87 (London, 19; and established new power limits for transmitters operating on tropical broadcast frequencies (below 5060 kc): not over 10 kwt for distances of up to 0 In, and not over 30 kwt for distances of up to 800 km. For transmitters operating in the tropical zone on frequencies of over 5050 (i.e., in the customary radio-frequency broadcasting bands), the Group cancelled power limitation and recommended that the power applied there be the same as that established on the Mexico-City conference on radio-frequency broadcasting. Furthermore, the Group approved three reports on: noise in radio 'broadcastin, bands; improved methods of computing the field intensity of the space wave on ? tropical-zone broadcast transmitters; and the design of receiving antennas for tropical-zone broadcasting. The Group also approved the study of the .new problem of feeding tolerances in tropical-zone broadcasting. Study Group 13 The problems investigated by this Group include: 1. Publication of service codes for the international telegraph service. 2 Identifiqation of radio stations. 3. Marine equipment for identificat2on. L.. Classification of bearings for short wave and ultra short wave radio-direotion fi~ ing. 5. Technical characteristics of marine ultra short wave FM equipment. 6. Testing Of an emergency radio-telegraph 500-kc receiver on marine vessels. 7. L 'speaker equipment for ship artd coastal stations. 8. Preventing of noise in radi F-TS-924 /V 119 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Study Group 12 determining the gain in protective ratios at the use of the syst9m employing the offsetting of the carrier frequencies of television transmitters at a considerable difference between the carrier frequencies of offsetting stations. Study Group 12, which is concerned with tropical-zone broadcasting, and which has Mr. Ralig (India) as its chairman, reviewed Recommendation No.87 (London, 1953) and established new power limits for transmitters operating on tropical broadcasting frequencies (below 5060 kc): not over 10 kwt for distances of up to 0 Ian, and not over 30 kwt for distances of up to 800 km. For transmitters operating in the tropical zone on frequencies of over 5060 kc (i.e., in the customary radio-frequency broadcasting bands), the Group cancelled the power limitation and recommended that the power applied there be the same as that established on the Mexico-City conference on radio-frequency broadcasting. Furthermore, the Group approved three reports on: noise in radio broadcasting bands; improved methods of computing the field intensity of the space wave on tropical-zone broadcast transmitters; and the design of recdiving antennas for tropical-zone broadcasting. The Group also approved the study of the.new problem of feedingtolerances in tropical-zone broadcasting. The problems investigated by this Group include:. 1. Publication of service codes for the international telegraph service. 2. Identifiqation of radio stations. 3. Marine equipment for identification.. 1,.. Classification of bearings for short wave and ultra short wave radio-direotion find- ing. 5. Technical characteristics of marine ultra short wave FM equipment. 6. Testing of an emergency radio-telegraph 500-kc receiver on marine vessels. 7. Loud- speaker equipment for ship and coastal stations. 8. Preventing of noise in radio F-TS-924 /V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 t) L reception on ships. 9. Radio-telephone observation of the 2182-kc distress fre- quency, and equipment for that frequency. 10. Alarm signal for use on the 2182-kc distress frequency. Five Study Subgroups were formed. The Soviet delegation was able to participate in the work of only two of these Subgroups. 1. With regard to the problem of identification of radio stations, five docu- ments were presented at the session. The Soviet delegation attempted to reject the documents recommending the methods of identification not acceptable to the USSR, without opposing the problem itself. The Soviet proposal was not seconded, and the Soviet delegation reserved its opinion as to three of the documents while voicing in advance its positive attitude as to the question of further research. 2. With regard to the problem of the equipment and classification of short wave and ultra short wave radio-direction finding, these two reports were anproved: "Short 'gave and Ultra Short Wave Direction Finders", and "Marine Identification De- documents presented differ in their appraisals of the accuracy of radio direction vices". The nature of the issued documents (reports). speaks for itself: the session could not develop any concrete recommendations on the given problem, because the finding, their observations were not based on unified- methods, and the-results they . obtained are not identical. Group 13 examined and adopted the following: recommendation on common technical characteristics of ultra short wave FI marine equipment, and the new question of spurious radiations of ultra short wave FM equipment. '.Document No.761 introduced the new question of investigating the degree of necessity of applying the interna- tional selective-call system in mobile marine stations using. the ultra short wave band, and the advantages of this system. Study Group 1A 1. The principal labors of this Group were centered on compiling a vocabulary F-TS-9248/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 oG of radio engineering terms in accordance with a recommendation of the CCIR (London) Assembly. The chairman of the Commission, Professor Tullio Gorio, sul,mi`.t,erl to it a draft, of the vocabulary he~compiled, which contained both the definitions formulated by the CCIR and the definitions formulated by the International Electrical. Engineer- ing Commission, and- also definitions taken from the dictionaries of various national organizations. After examination, the Commission resolved, on basing itself on the draft of vocabulary compiled by Professor Gorio, to divide all terms into the fol- lowing four groups: Group B - terms requiring no definition; Group C - terms whose definitions are cited in the draft of the dictionary of the International Electrical Engineering Commission; Group D - terms whose definitions are taken from the diction- aries of various national organizations; and Group R - terms whose definitions will be supplied by the CCIR (that is to say, by the CCIR's vocabulary). For purpose of information, the terms in Groups C and D will be published in the form of an appendix to the CCIR's vocabulary. All investi-atinp com;,,fissions of the CCIR have been enlisted in the work on compiling the definitions of the CCIR vo- carular,>. The completion of the work of the vocabulary was undertaken by.the "na- tional correspondent" of the French Administration, who will enlist "national cor- respondents" of England or the USA for the purpose of hastening the English-language version. The-Group approved the report on this. matter. With regard to the adoption of the universal-decimal classification for the standard' classification of documents and articles concerning radio, the Group com- posed and approved a new report which pointed out that there is not enough related data for approving this system at the present Plenary Assembly, but the matter should be resolved.at the next Plenary Assembly of the CCIR. Commission for'Technical Assistance to Technologically Underdeveloped Countries The Administrative Council of the International Telecommunications Union pro- posed at its xIth Session (Geneva, 1956) that the next Plenary Assembly of the CCI . F-TS-92)t.8/V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 ' lJ which communications engineering is poorly developed. In compliance with the proposal of that Administrative Council and the letter of the CCIR Director, the VIIIth Plenary Assembly set up a temporary commission for provision of techrical assistance. The leader of the Soviet delegation, Z.V.Topur- iya, was elected as the Commission's chairman. The Commission includes representa- tives of the delegations of 23 countries. The agenda of the Commission includes, in accordance with the resolutions of should explore the ways-and means for providing technical assistance to countries in the XIth Session of the Administrative Council of the International Electrocommuni- cations Union; examination of the ways and means of providing technical assistance% to technologically underdeveloped countries for the purpose of a harmonious devel- opment of the internal and international electrocommunications of these countries, and compilation of resolutions on this problem. All work on provision of technical assistance is organized by the Secretariate -General of the Irternational Electro-Communications Union. The Secretariate of the CCIR (and also of the CCIT and CCIF) confines itself only to consultation and in- quiries posed to organizers, who are members of the Administrative Council of the ? International Telecommunications Union. The role of the International Telecommuni- cations Union in the work of providing technical assistarice?is a purely consultative The Soviet delegation drafted and submitted to the Commission for Technical Assistance several proposals on the forms and organization of technical assistance within the framework of the CCIR. The Soviet delegation recommended that a permanent committee be set up and at- .tached to the International Telecommunications Union-for the purpose of coordinating the work on the provision of technical assistance. In making this proposal the Sov- iet delegation proceeded from the assumption that the character of the-participation of the ITU in the work on provision of technical assistance is an unsatisfactory one, T .F-TS-92)+8/V 122 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 C5 CCIT and two directors, with the aim of continuing the st,urlies of the ways and means of improving the technical assistance of the ITU. The Assembly also had confirmed the program for the study of the problems of providing technical assistance as based on the proposals of the Soviet delegation concerning the forms of technical assis- tance within the framework of the CCIR. Final Plenary Sessions The work of the CCIR sessions reached its apogee at the period when the mass of documents drafted by the study groups was submitted for examination to the Assembly. A part of the documents was not totally approved by the study groups themselves, and the differences in opinions were reviewed bar the Assembly.. Altogether, over 1000 documents were presented to the Assembly. The great ex- tent of activities of the stud,. groups and the increased number of documents and the related considerable overburdening of the work of the Secretariate during the con- vention of the Assembly, have necessitated the raising of the question of reorganiz- ing the activities of the CCIR. In this connection, the resolutions adopted propose a system of work similar to that applied by the corranitteet of the CCIF and CCIT, where the study groups ply their activities uniformly throughout the three-year in- tervals between plenary assemblies instead of concentrating their activities in the period directly preceding a plenary assembly. For the purpose of greater economy in expenditures, it was proposed that the study groups should convene their meetings not separately but iointl;r; to comprise mutual problems. The proposal recommended that the following experimental order of presentation of documents should be introduced: the contributions of the,'partici- pants of the study group should be sent to the chairman of the corresponding study group interested in examining them (one copy), and to the Director of the CCIR for translation, printing and transmission to the interested members of the study group (three copies). The result of this experiment is to be commrinicated at the next,. F'-TS-92480 121 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 ,r lJ j IX t1' Plenary Assembly of the M11. Henceforth, the plenary sessions of '.r.e CCIR would be concerned only with the reports of the representatives of investigating commissions, while all preliminary documentation should be dealt with on intermedi- ate sessions of the commissions and distributed only by participants in these com- missions. Therefore, to obtain all documents, it is necessary to inform the CCIR of the commissions in which a given national administration will participate. Also, there was adopted a special resolution on reducing preliminary, documenta- Lion and size of all documents. The documents that are of theoretical interest only and bear no direct relation to the undertaken problems and research programs, and the papers containing detailed ments should contain a minimum amount of special mathematical formulas or designa- tions and experimental data. Lost of the documents approved at the VIIItr Plenary original material, should not be submitted to the CCIR. Instead, only brief annota- tions of such materials should be sent to the CCIR for purposes of translation and publication. Original-language copies of such documents can be distributed directly by a given administration to those expressing a desire to receive them. These docu- Assembly were also approved by the Soviet delegation, which has reserved its opinion only with regard to several documents that were not acceptable to it for various reasons. On the concluding plenary session the head of the United States delegation in- vited the IXth Plenary Assembly to convene its sessions in the USA. The head of the Soviet delegation invited the Xlth Plenary Assembly,_which is to be held in 1958, to convene in the Soviet Union. F'-TS-9248/V 125 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 The collection contains following articles: 1. Fok,V.A. - Theory of Diffraction from a Rotating Paraholloi?r; 1. Pelkina,DN.CG., and Vaynshteyrr,L.A. - Radiation Characteristics of Spherical Antenna Surfaces; 3. Ielkina,M.G. - Radiation Characteristics of a Stretched Rotating Ellipsoid; 11. Pelkina,M.G. - Diffraction of Electromagnetic Waves on a Disk. These articles are corcerned with the rigorous theory of the diffraction of electromagnetic waves on conducting bodies. The book is designed for radio physicists and radio engineers concerned with superhigh frequencies. Zvorykin,V.K., and Morton,D.A. - Television: Electronic Problems of the Trans- mission of Color and Monochrome Images. Translated from. the English; edited by Professor S.I.Kata::ev. Foreign Literature Publishing House, Moscow, 1956. 780 pages, + 1 inset. Price h6 r. 10 k. An exposition of the physical foundations of television, including the description of the principal units and circuits of television equipment; a survey of the problems of the theory and practice of color television and of Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 the optimum utilization of television set-ups. Some Problems of the Theory and Computing of the Elements of Radio Reception Circuits.' A collection of articles edited by A.P.l3eloyusov. Oborongiz Publishing House, Moscow, 1956. Transactions of the Sergo Ordzhonikidze Order-of-Lenin Moscow Institute of Aviation. Bulletin 65. Price 7 r. This collection contains articles by.: Belo:rusov,A.P. - Sorting Out the High Frequency Signal and Noise at Detec- tion; and The Calculation of the Complete Ultra Short Wave Autotransformer Input Circuit; Protopopov,A.S. - Energy Relationships at Combined Detection of Signal and Noise; and The Calculation of a Single Amplifier Circuit Under Matched Line Load; and Volfpyan,V.G. - A Diagram of the Input. Circuit of a F-TS-92J.8/ V Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/06/24: CIA-RDP81-01043R002100080008-8 l)! TAF,I,E OF COIITIDN I'S P%Ce Some "'asic Forrrulas Pertaining to I'.irh-Power Klystron Amplifiers by 1 M.s.....:..........?. Approximate Methods of Computing the Field Strer,ptt; or Ultra Short slaves 17 With Consideration of Terrain Relief on A.l.falinir. . . . . ? Tne Arnlicati on of Fictitious 1 a.=,netic Current for Solving he Problem of r' . e~T?tenncl, Radiation Over a Plane .._,.n honnomogeneous l..eortovic'; 31,, :?oundary Conditions by 0.:+.:'eresnin . . . . . . . . . . . . . . . Some ?asic Corcep' s of the 3ipra:. Tneory i ; V.U. Fur.iL:. e . . . . . . . . . . . 3imnlified Ara1:'sis of n he Circuits of Radio-Frequency Jurction-Transistor Oscillators Jitn Self-::xcitatiO' by P.J. ~erestnev . . . . . . . . . ConcerninC one Synthesis of Arp2if inF Circuits by S.:'.Samsonenko . . . . . =z Ripple Filters of sow-Power ?ec- i Piers L.1 ..)el?a"rt.r . . . . . . . . . . . 3imal ;areons Oscillations of "wo L're