SCIENTIFIC ABSTRACT BERNSHTEYN, S. N. - BERNSHTEYN, V. M.
Document Type:
Collection:
Document Number (FOIA) /ESDN (CREST):
CIA-RDP86-00513R000205020010-1
Release Decision:
RIF
Original Classification:
S
Document Page Count:
100
Document Creation Date:
November 2, 2016
Document Release Date:
June 8, 2000
Sequence Number:
10
Case Number:
Publication Date:
December 31, 1967
Content Type:
SCIENCEAB
File:
Attachment | Size |
---|---|
![]() | 2.48 MB |
Body:
~ - --Xl .-I, . - . - -1
';, :, -,
~M-10~~ZVM,i~ Wffl -
- - I . I . - . - --. I I - - _: - - , .
~ - - - ; ~: -, ~ ~ -~ -- ~ - --,-L - , 1. - 7 ---- ------ I -- .
-I-.--,- -- - - , - : - , ---: -1 ~ -2
I - ~ I
I
r,- .
I K" ~ I P 4
PM/Nathellition SWI08 Nov 1947
Mthematics Formalas
~Mmiting Laws for Meox7 of Optimum,
ApproxImations,"
an S. N. BOMB
pg. 4ademici hteyn, 4 pp
:"~Dok Ak Naue voi Lvni, wo 4
thor has previous3,v stated that,the
11mitirig law I
fft) ~=A T. f CZ) can be applied to the.
P*C F
'~Vunetlonf 6E)(-
If for all'values of r>o
is a limited equa4ity. This is a continuation
an artiole published 1n *Dok Ak NWAI Vol
IaVj, No
1946, In which he showed that the first
fopmaa
-~q= be used for all cases vhere the
function x
I/Mathematics Series ..(Cmtd) Nor 1947
'Ills the requiremmt /ffX)k9&)(- c;04 X 4 0-
vhere HW Is a whole funo-
L of a zero series. Submitted 9 Nor 1947.
StrengthenivC the theorem on surfeces of a
negative curvature.
Veh. sap. IOU nv.96.-75-81 048. (MLRA 10!8)
(qw~ftftq)
- I I
- " ~ " - 1""',
~
--Z-4
I ~ - ., I. f . . . d I r
I . I
~ a,-,Z~e r -,
C W - - - -
I . .~ . .; ., - .;.-
. - , k, t-OVA-M t -V N-I~
~z , " ~,-- N W
- - Z.;" - ~ -,*l-, E7,.' ~- V N
-11~~ - ~. !I-. -.- V ,, RO-1-2-N
t, ~' ; :~ -,: x
o-: %;~T- ~~:- ~~*- *
PR fi, K~ I -., -
1~
r~-- ll-~ - -
F~ 711771"~7~~-7~ ~ , - -, "-- --- ! , _-
f-~- ~ esT loaRrl-l -, ~-. - 7 1 , 15-ItIt
R
- - z. -1 .... 1. - ! - -
I - '3 , -I'- -,
;~ ~~- ~P`I~l ~-
cr -C~6'R ~,K-RK - - ltlw~ -l,
'.- ~ _;
n - ,
f- U (.-,,I -: .I - - V
i,..! NJ
7 ~ ~: ,, ~,., " --l - " ~ ~- ~
tml- - I I vo i *-M-11"
i, - '.., .- . .1 1~
I-! ~ !:~-- =~ - ] ~-,A ~ - - - . -- % -
- - ., - .- .- - --- I
1.1 . _i ~ I . - . I
- - , ~'i-,WWX - ~
~- -,~ 7: 1A ~1-5-,,*z~~?,~ ~;
nwm-:-~~V;zj 3Fn~,~- -*A- , --~ ;-~25,t
',,~ 7,.,. ~ ., -~
f
i T,
u ek A
b&
%, ~ -r e A-- -C. , r ! h"
,, !", , f 1 A ; ., "
" -, t" - *--
5:~ L " .-. -
- 1. .I I I - - - mt-- -- .~ - ~ . . , , ~ ,I .
IJA the'18 t iC 8 -
Ind. Aero.
I j*rnstcjn, 5, S. on oravimetric Functions. Dokl- Akad-
~luk, 77, (h), 549-
50',~-%951;
IT
-
ift
6F-RNS1i-rEYJ4,,.'S -N
PHASE I TREASURE ISLAND BIBLIOGRAPHICAL REPORT
BOOK Call No.:
Author: BERNSHTEYN M-
Full Tit LLECTED-WORKSp VOL. I. CMSTRUCTNI
(1905-1930)
Transliterated Title: Sobraniye soehineniy. Tom I.
teoriya funktsiY (1905-1930)
AID 547 - I
QA3.B5
THEORY OF FUNCTIONS
Konstruktivnaya
PUBLISHING DATA
Originating Agency: Academy of Sciences, U.S.S R.
ftblishing House: AcadenW of Sciences,, U.S.S.R:
Date-z 1952 No. PP.: 581 No. of copies: 3,000
Editorial'Staff: Prof. N. I. Akhiyezer, Prof. V. L. Goncharov,
Prof. A. N. Kolmogorov, Prof, S. M. Nikollskiy and Prof. I. G.
Petrovskiy; also Kand. of Physic.-Nath. Sci. V. S. Videnskiy
PURPOSE: Not mentioned
TEXT DATA
Coverage: The volume contains 49 papers and articles (1905-1930)
covering the constructive theory of functions and together with
the second volume (62 items) (AID 495 - A fully.presents
Bernahteyn's investigations in this field. The book contains
also a large number of the author's remarks and explanations
pertaining to his articles In the text (38 pages), and an
1/2
Sobraniye soohineniy. Tom I. Konstruktivnaya AID 547
teoriya funktaly (1905-1930)
enumerated list of 265 of his works in chronological order from
1903 to 1952 on various subjects (12 pages), in Russian and non-
Russian languages, with indication of the periodicals of publi-
cation. The 49 articles were previously published In a number
of periodicals, mainly non-Russian.
No. of References: Very numerous in footnotes In the text.
Facilities: None
2/2
I
-2-22-2- ~--
BMISHTEYN, S. N.
PA 233T91
USSR/Mathematics -An'timajorants Nov/Dec 52
"Antimajorants," Acad S. N. Bernshteyn
."Iz Ak Nauk SSSR, Ser Matemat" Vol 16, No 6, pp 497-
502
-The article contains a demonstration and generalizathn
.of one theorem on antimajorants which was formulated
earlier by the author (cf. "Majorants of Finite or
Quasi-Finite Growth," "Dok Akad Nauk SSW Vol 65,
1949, pp 117-120). The name antimajorant (H(x) in
set A) is given to each function H(x)>,O(-ootxcoo)
possessing the property that the inequality of the
form /~(-NJH(x) for all x, where sup/G'/>N on any
inter a 2a, P
233T91
Bank& S. N. . On normikilly Inaeasing weight funtdons
WW Offinite, gmw&., DoWady AW. Nak
SSSR (N.S.) 35 257-260 (1952). (Russian)
The author c;;elates a number of his recent results on
weighted polynomial approximation and on inequalities
for
entire, functions [same Doklady.'(N.S.) 6S, 117-120; 66,
545-5.49 (1949); 17,549-552, 773-776 (1951); these Rev.
11,
23; 12, 814; 13~ 26] "'d-one of Videnskil's [see the
preceding
review3. In even functions t(x) of N [normal
increase: see the third. reference cited above] are
either in
class Nj,'majoiizing on the real axis some ev Ien entire
FI(s)
with positive coeffi6ents in its power series and not of
genus
zero; or in class N~ majorized on the real axis by Fo(s)
of
the same kind as PI(s) but of genus zero. The author
then
considers the'clasi N* of functions-4Kx) of N which
belong
to No forx>o andto N, for x