SCIENTIFIC ABSTRACT BERNSHTEYN, S. N. - BERNSHTEYN, V. M.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R000205020010-1
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
June 8, 2000
Sequence Number: 
10
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENCEAB
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R000205020010-1.pdf2.48 MB
Body: 
~ - --Xl .-I, . - . - -1 ';, :, -, ~M-10~~ZVM,i~ Wffl - - - I . I . - . - --. I I - - _: - - , . ~ - - - ; ~: -, ~ ~ -~ -- ~ - --,-L - , 1. - 7 ---- ------ I -- . -I-.--,- -- - - , - : - , ---: -1 ~ -2 I - ~ I I r,- . I K" ~ I P 4 PM/Nathellition SWI08 Nov 1947 Mthematics Formalas ~Mmiting Laws for Meox7 of Optimum, ApproxImations," an S. N. BOMB pg. 4ademici hteyn, 4 pp :"~Dok Ak Naue voi Lvni, wo 4 thor has previous3,v stated that,the 11mitirig law I fft) ~=A T. f CZ) can be applied to the. P*C F '~Vunetlonf 6E)(- If for all'values of r>o is a limited equa4ity. This is a continuation an artiole published 1n *Dok Ak NWAI Vol IaVj, No 1946, In which he showed that the first fopmaa -~q= be used for all cases vhere the function x I/Mathematics Series ..(Cmtd) Nor 1947 'Ills the requiremmt /ffX)k9&)(- c;04 X 4 0- vhere HW Is a whole funo- L of a zero series. Submitted 9 Nor 1947. StrengthenivC the theorem on surfeces of a negative curvature. Veh. sap. IOU nv.96.-75-81 048. (MLRA 10!8) (qw~ftftq) - I I - " ~ " - 1""', ~ --Z-4 I ~ - ., I. f . . . d I r I . I ~ a,-,Z~e r -, C W - - - - I . .~ . .; ., - .;.- . - , k, t-OVA-M t -V N-I~ ~z , " ~,-- N W - - Z.;" - ~ -,*l-, E7,.' ~- V N -11~~ - ~. !I-. -.- V ,, RO-1-2-N t, ~' ; :~ -,: x o-: %;~T- ~~:- ~~*- * PR fi, K~ I -., - 1~ r~-- ll-~ - - F~ 711771"~7~~-7~ ~ , - -, "-- --- ! , _- f-~- ~ esT loaRrl-l -, ~-. - 7 1 , 15-ItIt R - - z. -1 .... 1. - ! - - I - '3 , -I'- -, ;~ ~~- ~P`I~l ~- cr -C~6'R ~,K-RK - - ltlw~ -l, '.- ~ _; n - , f- U (.-,,I -: .I - - V i,..! NJ 7 ~ ~: ,, ~,., " --l - " ~ ~- ~ tml- - I I vo i *-M-11" i, - '.., .- . .1 1~ I-! ~ !:~-- =~ - ] ~-,A ~ - - - . -- % - - - ., - .- .- - --- I 1.1 . _i ~ I . - . I - - , ~'i-,WWX - ~ ~- -,~ 7: 1A ~1-5-,,*z~~?,~ ~; nwm-:-~~V;zj 3Fn~,~- -*A- , --~ ;-~25,t ',,~ 7,.,. ~ ., -~ f i T, u ek A b& %, ~ -r e A-- -C. , r ! h" ,, !", , f 1 A ; ., " " -, t" - *-- 5:~ L " .-. - - 1. .I I I - - - mt-- -- .~ - ~ . . , , ~ ,I . IJA the'18 t iC 8 - Ind. Aero. I j*rnstcjn, 5, S. on oravimetric Functions. Dokl- Akad- ~luk, 77, (h), 549- 50',~-%951; IT - ift 6F-RNS1i-rEYJ4,,.'S -N PHASE I TREASURE ISLAND BIBLIOGRAPHICAL REPORT BOOK Call No.: Author: BERNSHTEYN M- Full Tit LLECTED-WORKSp VOL. I. CMSTRUCTNI (1905-1930) Transliterated Title: Sobraniye soehineniy. Tom I. teoriya funktsiY (1905-1930) AID 547 - I QA3.B5 THEORY OF FUNCTIONS Konstruktivnaya PUBLISHING DATA Originating Agency: Academy of Sciences, U.S.S R. ftblishing House: AcadenW of Sciences,, U.S.S.R: Date-z 1952 No. PP.: 581 No. of copies: 3,000 Editorial'Staff: Prof. N. I. Akhiyezer, Prof. V. L. Goncharov, Prof. A. N. Kolmogorov, Prof, S. M. Nikollskiy and Prof. I. G. Petrovskiy; also Kand. of Physic.-Nath. Sci. V. S. Videnskiy PURPOSE: Not mentioned TEXT DATA Coverage: The volume contains 49 papers and articles (1905-1930) covering the constructive theory of functions and together with the second volume (62 items) (AID 495 - A fully.presents Bernahteyn's investigations in this field. The book contains also a large number of the author's remarks and explanations pertaining to his articles In the text (38 pages), and an 1/2 Sobraniye soohineniy. Tom I. Konstruktivnaya AID 547 teoriya funktaly (1905-1930) enumerated list of 265 of his works in chronological order from 1903 to 1952 on various subjects (12 pages), in Russian and non- Russian languages, with indication of the periodicals of publi- cation. The 49 articles were previously published In a number of periodicals, mainly non-Russian. No. of References: Very numerous in footnotes In the text. Facilities: None 2/2 I -2-22-2- ~-- BMISHTEYN, S. N. PA 233T91 USSR/Mathematics -An'timajorants Nov/Dec 52 "Antimajorants," Acad S. N. Bernshteyn ."Iz Ak Nauk SSSR, Ser Matemat" Vol 16, No 6, pp 497- 502 -The article contains a demonstration and generalizathn .of one theorem on antimajorants which was formulated earlier by the author (cf. "Majorants of Finite or Quasi-Finite Growth," "Dok Akad Nauk SSW Vol 65, 1949, pp 117-120). The name antimajorant (H(x) in set A) is given to each function H(x)>,O(-ootxcoo) possessing the property that the inequality of the form /~(-NJH(x) for all x, where sup/G'/>N on any inter a 2a, P 233T91 Bank& S. N. . On normikilly Inaeasing weight funtdons WW Offinite, gmw&., DoWady AW. Nak SSSR (N.S.) 35 257-260 (1952). (Russian) The author c;;elates a number of his recent results on weighted polynomial approximation and on inequalities for entire, functions [same Doklady.'(N.S.) 6S, 117-120; 66, 545-5.49 (1949); 17,549-552, 773-776 (1951); these Rev. 11, 23; 12, 814; 13~ 26] "'d-one of Videnskil's [see the preceding review3. In even functions t(x) of N [normal increase: see the third. reference cited above] are either in class Nj,'majoiizing on the real axis some ev Ien entire FI(s) with positive coeffi6ents in its power series and not of genus zero; or in class N~ majorized on the real axis by Fo(s) of the same kind as PI(s) but of genus zero. The author then considers the'clasi N* of functions-4Kx) of N which belong to No forx>o andto N, for x