SCIENTIFIC ABSTRACT KHOKHLOV, R. V. - KHOKHLOV, S. F.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R000722130009-7
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
September 17, 2001
Sequence Number: 
9
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R000722130009-7.pdf4.62 MB
Body: 
273" S/05 41/041/002/021/020 Theory, of simple magnetoliydrodynamic ... B111 212 '?Javba are, I -Ahe _461,66 considered .'-for: whiol ityi-denaity 'pressure and f d a tre'n a mpij,'~ a.' o i X/. t 0 f bu a 2 .1m ion- f, 6 t i i ~possib a t o 4~4 41. istidate*, he-I'ttota INg 6q, i i~i al, shapes,. .,.,-The, ti U -L *' ' - I i'-:v J- " ~ - of- tho'heat-conduotion - -b ia:4' .' . . e sfo'~ ~ior im d' jkt o 6n e q4,a j on fj';by.-t -C4 -'a u I tu-t i j It 'or ,A X a solved I h. b t th' ir -b b-i An d f0 -with he I ollbwiyik~,~. wee v Or/ X-1 ox VIR 6 (OAgn e .,r - a76~4? 6 )7,1; -civ .(2w6) F O-by~ rod3raumio Reynolds numbe -0 r i$~ From tue. sol~ution f or. T the of -.'the"'~olr mave L& is. oal~ -ulated to'be gu NIA, t j Y~T I ~x t + + CA x 1.2 3 ml ,Cv u! 3 (u' j p (21). Card 2/4 S/056J61,1041/662/021/028 Theory of simple magnotohydrodynamio... B111/B212 '0 ox ~'r vx = +V 0 4 -rew LO = 2.u 192fix. f' ox A .11 ~2p ox 1r/ P) 0 !k T fa jvox(1- - 'r/P)d vj 3) 0 P X- X- T>1 corresponds to relatively weak nonlinear effects. b) At k >1 the shane of the shook wave becomes unsymmetrically with respect to the center level, c) at k >1 v(y) becomes theoretically ambiguous; this corresponds to a nonsteady real function, The compression jump can be described with a parameter which is proportional to the shear viscosity d2v + (V + moo + dy 2 2 parameter 6 by Q' + (v v (25)- Substituting 2 2F, 0 dy Card 3/5 Propagation of finite... S10461621008100110111018 B125A102' w dv/dy gives for the trajeotories on the phase plane dw v + m00 + ~1 w + _.~_ (v1 v2). A. V. Gaponov is thanked for the ~_v 2 F, r_ 2 r .0 suggestion. There are 2 figures and 6 references: 5 Soviet and 1 non- Soviet. The reference to the English-language publication reads as .*-.'.,,.,: follows: J. S. Mendousse. Nonlinear dissipati,~e distortion of progressive sound waves at moderate amplitude, J. Acoust. Soo. America, 1953, 2.~, 1, 51 - 54. ASSOCIATION.: Akusticheskiy inatitut:,AN SSSR Moskva (Acoustics Institute of the AS USSR Moscon); Moskovskiy gosudarstvennyy universitet (Moscow State University) SUBMITTED: May 17, 1961 Card 4/5 11/046/62/008/002/011/016 B104/B138 AUTHORSs Soluyan, S. I.,,Xho~~~. TITLEi Acouatio waves of finite amplitude in a medium with relax&tion PERIODICAL: Akustioheskiy zhurnalp v. 81 no* 2t 1962, 220 - 227 TEXTt With small Mach numbers and low energy dissipation the propagation of acoustic waves in a relaxing medium can be described approximately by the following systems Ov- a V 8V Br asE 2,P..0 Oe" (1) T10cG v* (2) + dy For the dispersion losses can be neglected and the system is 2 111vz (v/V reduced to av/ a z 0)vOv/ay, = 0. a)y w tro sin(v/V 0 2 0 is 0 .the solution of this equation under the boundary conditions z 0, V - V ain&V. This solution describes the distortion of the sinusoidal bard 1/3 42 S/046j62/008/bO2/011/oi6 Acoustic waves of finite... B104)(B138 waves until discontinuities have formed. A discontinuity, e.g., is formed at z z is determined from the relation &WV z /02 1. The solutions of 1 o 1 o the system (1) (2) in the region 0-r>>1 is obtained from.the transformed system av aG + 01 G V2 + (8) 24o' W'02 OV, - 'r + MPOCO. V. ay'. B VO V= Wy + A th EWVOX (13) + where A 1-:~mvoglcol.1 (14) TAW,, for the dimensionless width of the frontV,-:,.,,For relaxing media Re is analogous to the Reynolds numbert Re It follows from (13) and (14) that a' sufficiently large z dist'~hces,:under the condition sl~v z 02--A4ERe$ the waves are again sinusoida'l:in first approximation. 0 4/ 0 The amplitude is then V a V0/fRe and# at lb~rge Reynolds numb era, it is in- Card 2/3 8/046/62/008/002/011/016 Acoustic waves of finite... B104IB138 dependent of the initial amplitude. The propagation of acoustic waves is also studied for 0