SCIENTIFIC ABSTRACT KIPRIYAN, K.M. - KIPTENKO, A.K.
Document Type:
Collection:
Document Number (FOIA) /ESDN (CREST):
CIA-RDP86-00513R000722610009-4
Release Decision:
RIF
Original Classification:
S
Document Page Count:
100
Document Creation Date:
November 2, 2016
Document Release Date:
September 18, 2001
Sequence Number:
9
Case Number:
Publication Date:
December 31, 1967
Content Type:
SCIENTIFIC ABSTRACT
File:
Attachment | Size |
---|---|
![]() | 2.26 MB |
Body:
XnWTAN. Karp Moiseyevich; XANVMUYA, M.D., red.; KUKHIKA, U.S.,
-- toom.red.
(How to organize cortification for the attainment of the second
rank In the "Ready for Air Defense" organization) Kok orp'nl-
Sovat, priam norm *Gotov k PTO" vtoroi stupeni. Kookva, lzd-vo
DOSW, ig6o. 63 p. (mM 14:3)
(Air defenses)
ALEKSAIIYAN, A.M. (deceased); F:'!-PIY
mw-. -
Zfff,j,~!, cf arinc. substar,::~. ; *.n .L; t:-visfer of at ~..rjlfiticn fr,-m
the nerv-9 to the mucle. e~sp. i klLn. mwl. 4 no.2:3-7
164. (HIRA 17: 8)
1. In3tit-it fizi,)lugli L.,'. Orlo-11, AN A.-mSSR.
SLUENYUK9 TS,V,j SHISHOV9 B.A.; KIPRIYANs T.K.
I
Interrelations of automatic and reflex processes in the formation
of the rhythmic activity of the respiratory center in fishes.
Biofizika 4 no. 6t657-665 159. (MIRA 14:4)
1, Biologo-pochvennyy fakulftet Moskovskogo gosudarstvennogo
universiteta imeni, M.V. Lomonosova.
(RESPIRATION) (MIVOUS SYSTEM-FISHES)
im
f"t
it
Ut 'N
Y~ff
"I t-7-,
if;
7
73
L--" ILI.
.777777
44 t
_1 -,~ut
C' A., I
7777~
I, Z~ r
0.1 j.-,
'47
..... .. ..
f
!'I t~7
To-
MTRIYA OVv L A.
Dissertation: "The Summinj of Fourier Series and Interpolation Processes for
Functions of Two Variablese" Cand Pbve-Math Sci Kazan' State Up Kazan's 1954-
(ReforativrWy Zhumal-Matmatikap Moscowt Aug i~)
SOi SUM 393., 28 Fab 1955
KIPRIYANOV, I.A.
'e"W" ~.q ~
Summation of interpolation processes for functions of two
variables. Dokl.AN SSSR 93 no.1117-20 Mr 154. (KIRA 7:3)
1. Kasanskiy goeudaretyannyy universitet Lm. Y.I.Ullyanova-
Lenin&. (Interpolation) (Punctions of several variables)
KIPRIYANOV, I.A.
N -- _-MEMOMENO
FeJeWs method for summation
KAI 31:91-106 156.
(Yourierflg4eries)
of double Fourier's series. Trudy
(KIRA 10:5)
61068
1 ~. 3 Ar
00 14"1600 0 SO'1/44-59-9-9257
Translation froms Referativnyy zhurnal.Matenatika,1959,Irr 9,p 125 (USSR)
AUTHOR: KipriZanov,.I.A.
TITLE: On Some Function Spaces Connected With Fractional Derivatives
PERIODICALi Tr.Seminara po funkta.analizu.Voronezhsk.un-t.1958,vyp6,49-65
ABSTRACT: Let P(Xl,x 2"''Pxn) and Q(t I't2""'tn ) be points of the cube 41
defined by the inequations 0.,cxI< 1 , i-1,2,.,.1 f(P) a function summable
in,Q/ ; ai, numbers of the interval (0,1). If the function
n X1 x n -w.
0 %P(P) - 6x f... 1-1(xi-ti f(q)dq
;"x2 'Oxn 61 r o -v,,,) I.-I
is defined and summable almost everywhere in dLt1jPn it Is called
fractional partial derivative of f(P) with the order aG 1+4r2+ +v&n and it
is denoted by cc + or,2 +w.
1,C) n f
1
'o x1-dX2 :-ox
Card 1/4
67068
16(1) OOV/44-59-9-9257
On Some Function Spaces Connected With Fractional Derivatives
The author obtains the identity:
X1 X +C4,
n n 06 1-1 1 nf(,q)
F J, n (X i-ti) co, dq - f(r),
0 -6 t t n
i I n
If the function (1) has a generalize(I derivative in
k1-41 kP k 1 - k1+...+kn
'ax11...'axnn
where k,,...,k n are non-negative integers, then the derivative is called
generalized fractional derivative of thu order Ii- +...+oe. of the function
411
f(P). W n denotes the !iet of summable functions which have
generalized derivatives of the order 1+ ~+0~1 (c,;, o,~,, c,, fixed given
numbers) which in fL nre nummable in p-th power, For function3 of this set
the author obtains an integral identity which F,,eneralizes the well-known
integral identity of S.L.Sobolev.
Card 2/4
16(l) ~;:)'1/44-59-9-92157
On Somc ','-'unrtion ;p-aces Connected With Fractional Derlvntiv~-s
The case w,- - wn- oC, is conaidr-r(d sepiratoly. The notation3
w(aV W(e-) ; W (a ..... DO . -;" ( 1 , C*)
P90 P P., P
are introduced. The norm in W( or') in defined by
P
,,nvX
f 00
p x K~ LP
Tlie norm in the W(" 00 is introduced by der!omponirg this npacv into a
p (0~ u of
direct sum, as S.L.Sobolov has done for the space W The cumpletene!;-
~ CY0 p
the spaces W(-r-) and W(' is proved. The author prove- the imtc~-,'IinU
P p
theorems; if fr=w(00 and o6>.!
Theorem 1: then f(P) is continuous and the imbeddinf,
rl W)
operator of W(OI)in ~ itj oompletely --ontinuou5. D~Ilt if fg-W( and
p
Card 3/4
16(1)
67068
SOV/44-59-9-9257
On Some Function Spaces Connected With Fractional Derivatives
0-