SCIENTIFIC ABSTRACT KIPRIYAN, K.M. - KIPTENKO, A.K.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R000722610009-4
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
September 18, 2001
Sequence Number: 
9
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R000722610009-4.pdf2.26 MB
Body: 
XnWTAN. Karp Moiseyevich; XANVMUYA, M.D., red.; KUKHIKA, U.S., -- toom.red. (How to organize cortification for the attainment of the second rank In the "Ready for Air Defense" organization) Kok orp'nl- Sovat, priam norm *Gotov k PTO" vtoroi stupeni. Kookva, lzd-vo DOSW, ig6o. 63 p. (mM 14:3) (Air defenses) ALEKSAIIYAN, A.M. (deceased); F:'!-PIY mw-. - Zfff,j,~!, cf arinc. substar,::~. ; *.n .L; t:-visfer of at ~..rjlfiticn fr,-m the nerv-9 to the mucle. e~sp. i klLn. mwl. 4 no.2:3-7 164. (HIRA 17: 8) 1. In3tit-it fizi,)lugli L.,'. Orlo-11, AN A.-mSSR. SLUENYUK9 TS,V,j SHISHOV9 B.A.; KIPRIYANs T.K. I Interrelations of automatic and reflex processes in the formation of the rhythmic activity of the respiratory center in fishes. Biofizika 4 no. 6t657-665 159. (MIRA 14:4) 1, Biologo-pochvennyy fakulftet Moskovskogo gosudarstvennogo universiteta imeni, M.V. Lomonosova. (RESPIRATION) (MIVOUS SYSTEM-FISHES) im f"t it Ut 'N Y~ff "I t-7-, if; 7 73 L--" ILI. .777777 44 t _1 -,~ut C' A., I 7777~ I, Z~ r 0.1 j.-, '47 ..... .. .. f !'I t~7 To- MTRIYA OVv L A. Dissertation: "The Summinj of Fourier Series and Interpolation Processes for Functions of Two Variablese" Cand Pbve-Math Sci Kazan' State Up Kazan's 1954- (ReforativrWy Zhumal-Matmatikap Moscowt Aug i~) SOi SUM 393., 28 Fab 1955 KIPRIYANOV, I.A. 'e"W" ~.q ~ Summation of interpolation processes for functions of two variables. Dokl.AN SSSR 93 no.1117-20 Mr 154. (KIRA 7:3) 1. Kasanskiy goeudaretyannyy universitet Lm. Y.I.Ullyanova- Lenin&. (Interpolation) (Punctions of several variables) KIPRIYANOV, I.A. N -- _-MEMOMENO FeJeWs method for summation KAI 31:91-106 156. (Yourierflg4eries) of double Fourier's series. Trudy (KIRA 10:5) 61068 1 ~. 3 Ar 00 14"1600 0 SO'1/44-59-9-9257 Translation froms Referativnyy zhurnal.Matenatika,1959,Irr 9,p 125 (USSR) AUTHOR: KipriZanov,.I.A. TITLE: On Some Function Spaces Connected With Fractional Derivatives PERIODICALi Tr.Seminara po funkta.analizu.Voronezhsk.un-t.1958,vyp6,49-65 ABSTRACT: Let P(Xl,x 2"''Pxn) and Q(t I't2""'tn ) be points of the cube 41 defined by the inequations 0.,cxI< 1 , i-1,2,.,.1 f(P) a function summable in,Q/ ; ai, numbers of the interval (0,1). If the function n X1 x n -w. 0 %P(P) - 6x f... 1-1(xi-ti f(q)dq ;"x2 'Oxn 61 r o -v,,,) I.-I is defined and summable almost everywhere in dLt1jPn it Is called fractional partial derivative of f(P) with the order aG 1+4r2+ +v&n and it is denoted by cc + or,2 +w. 1,C) n f 1 'o x1-dX2 :-ox Card 1/4 67068 16(1) OOV/44-59-9-9257 On Some Function Spaces Connected With Fractional Derivatives The author obtains the identity: X1 X +C4, n n 06 1-1 1 nf(,q) F J, n (X i-ti) co, dq - f(r), 0 -6 t t n i I n If the function (1) has a generalize(I derivative in k1-41 kP k 1 - k1+...+kn 'ax11...'axnn where k,,...,k n are non-negative integers, then the derivative is called generalized fractional derivative of thu order Ii- +...+oe. of the function 411 f(P). W n denotes the !iet of summable functions which have generalized derivatives of the order 1+ ~+0~1 (c,;, o,~,, c,, fixed given numbers) which in fL nre nummable in p-th power, For function3 of this set the author obtains an integral identity which F,,eneralizes the well-known integral identity of S.L.Sobolev. Card 2/4 16(l) ~;:)'1/44-59-9-92157 On Somc ','-'unrtion ;p-aces Connected With Fractional Derlvntiv~-s The case w,- - wn- oC, is conaidr-r(d sepiratoly. The notation3 w(aV W(e-) ; W (a ..... DO . -;" ( 1 , C*) P90 P P., P are introduced. The norm in W( or') in defined by P ,,nvX f 00 p x K~ LP Tlie norm in the W(" 00 is introduced by der!omponirg this npacv into a p (0~ u of direct sum, as S.L.Sobolov has done for the space W The cumpletene!;- ~ CY0 p the spaces W(-r-) and W(' is proved. The author prove- the imtc~-,'IinU P p theorems; if fr=w(00 and o6>.! Theorem 1: then f(P) is continuous and the imbeddinf, rl W) operator of W(OI)in ~ itj oompletely --ontinuou5. D~Ilt if fg-W( and p Card 3/4 16(1) 67068 SOV/44-59-9-9257 On Some Function Spaces Connected With Fractional Derivatives 0-