SCIENTIFIC ABSTRACT LEVITAN, B.M. - LEVITAN, KH.N.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R000929620010-2
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
July 12, 2001
Sequence Number: 
10
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
Body: 
SUBJECT USSR/MATMUTICS/Yourier series CARD 1/2 PG - 449 AUTHOR LEVITAN B.M. TITLE of the spectral function of the Laplace operator. PERIODICAL Mat. Sbornik, no Ser- 32j. 37-50 0956) reviewed 12/1956 Let D be a finite simply connected domain of the n-dimensional Euclidean space EX, lot B be the boundary of D. Let 2 P 29 ... 2,.... be the eigen- P1 r2 rn values and C01(3c),P 2(3c) j .... point of Z,) be the corresponding eigenfunctions of the problem Au + 2u 0 (A - ~2 ~2 -aX2 + 'a x2 1 N u 0. The author has obtained the asymptotic formula n N (1) Q(Xtyl 1 r) + 0(ik N-1 N (2 1r)"Z r z -Mat., Sbornik, n. Ser..U.L 37-50 (1956) (Mat.Sbornik, n. Ser. 31L 267-316(1954)) where CJLRD 2/2 PG - 449 Q(xl-vl 0-2: Con(x) Wn(y) No), o(x,ylp) - - o0c,yl-,P) (r1 6, Col. 2 r.) 4 r lo%ril4ing t.,.-; !he the Jlr,tr t. tht~orem.; the. c~)nv~!rov F-, p r r) h 2 ,.m j ,i z i e v s-, d L t .,,3) be a% c~ompatible s-fotem, a lirl!'"Jue 41,01uti in f,-,r cerl-Iin ,nitial conditions; under which ,.,,!J, t4ori;A! w.' 11 thit; so!,utir)n be an opperator of' uniform tre, A number of qucstion3 in ~;onnlDr- i, 1 4, 1 v p;) -A there are I Ink*rodu~ucj certain jj.-Lrators. correspovr.,,Jnc, to the ~.er.:;ru fjrdc~r in the il~;e of L:ie Croul, (c jp~, r 3 P n t r ~' il I I + r 0 1 5 Owo example,3 are considered. -~i,;,,rv rir~, ..,c,vivt-bA,),c r.-nd 1 v~,,.)r.-5ovipt-bloc reference. M"ar-A, 10. C111YC444 AUTHORt Levitan, B. 9 TITLE: On a theorem of Titchmarsh and Sears PERIODICALs Uspekhi matematicheakikh nauk, v. 16, no. 4, 1961, .175-178 TFATt In the whole space R n the Schrddinger operator Lu - - A u + q (xI1'-txn) u (1) be considered, where q (xI9-#00xn) is real and continuous. Lot ()(Xfy9A be the spectral function of (1) and R(xjyjz) the corresponding resolvent dA-0, (x,y;A ) I---- R(x.ylz) j - z (2) OD A E. C. Titchmarsh (Ref. It On the uniqueness of the Green's function associated with a second-order differential equation, Canad. J. Math. 1 (1949), 191-198) has showns if Card 1/3 3/04 61/016/004/002/005 S/04 61/016/004/002/005 On a theorem of Titchmarsh and Sears C111YC444 q(x) >., Ar2 B (3) where x E R n, r 1XI A,B are positive constants, then (1) possesses a unique resolvent. D, B. Sears (Ref. 21 Note on the uniqueness of Green's functions associated with certain differential equations, Canad. Math. 2 (1950), 314-325) Improved this result by pointing out that the right hand of (5) may be replaced by a function - Q(r) which has to satisfy certain demunds. The author gives a now proof of the mentioned results of [Ref.1,2] . The proof is based on the estimation of the order of increase of the solution of the Cauchy problem 2 ,Au - q(x) u u (5) j)t2 0 U U1 0 (6) It-0 f(x), L at t-O Card 2/3 S/042/61/016/004/002/005 On a theorem of Titchmarsh and Sears C111/C444 where f (x) (--- L2(R ), for a fixed x and t--~o cD , and on the theorem of uniqueness from B. M. Levitan, N. N. Meyman (Ref. 3t 0 teoreme yedinst- vennostl fon the theorem of uniquenous3 DAN 81. no. 5 (1951),729-731). There are 2 Soviet-bloc and 2 noti-Soviet-bloc references. The two refeiences to English-language publication read as follows: E. C. T!*rhmarsh. On the uniqueness of the Green's function associated witb a second-ordor differential equation, Canad. J. Math. 1 (1949), 191-198~ D. B. Sears, Note on the uniqueness of Green's functions associated with certain differential equations, Canad, Math. 2 (19JO), 314-525. SUBMITTED; January 4, 1960 Card 5/5 ISVITAN# Boris_M9ineyeviob; MOLYANSKIY, M.L.,, red.; TMIAKOVAv Te.A., --tAld in* red, (Generalized displacive operators and sow of their applications] Operatory obobsbohennogo adviga i nekotorye ikh primeDeniia. Mo- skva, Goa, izd-vo fisiko-matem.lit-ry, 1962. 323 pe (MIRA 15:5) (Operators (Mathematics)) DDIIDOVICH, Boris Pavlovich; Inaak Abramovich; SOUVALOVA, F.mma Zinov'yeva; LEVITk4, B.F.,, prof., retsenzent; SVOLITSKIY, Kh.L. --pfof`., retsenzent; BMUK, G.I., red.; AXIaAMOV, S.N.j i:khn. red. [Numerical -methods of analysis; approximation of functions# differential equations] Chielennye metody analiza; priblizhe- nie fur&.tsiip differentsialfrqo uravneniia. Pod red. D.P. Demidovicha. Moskva, Gos. izd-vo fiziko-matem. lit-ry, 1962. 367 (IMA .15:4) (Functions (Differential equations) IEVITAN, B.M. Lie's theorems for generalized dieplacive operators* Trudy Moak. mat. ob-va 11:128-19/7 162. (MIRA 15:10) (Operators (Mathematics)) 402(33 ~;/020/62/146/oOl/col /rl 6 B1 121B108 j-: u'. 3 Levitan, B. L% Continuation of solutions to partial differential nqudtilons T D 1 1, j iikadusmiya nauk Z35R. Doklady, v. 146, no. 1, 1962, ZO TLO elliptic equation a(X,Y)a 2ulay 2 + b(x9y)30Y * c(x,;r)u ++4(x)32u/,r)x2 + i~ (X au/3x + f (x,y) - 0 (8) is considered in a convex donaii. D of th,-t upper sem1plane, -Mch contains an interval ~r of the x-axis. I, i% de.:,onstr--ted that cach colution satisfying the boundary condition (au/3y - hu): - 0 can be continued throughout the intervalCr if th, 1y"0 equation (0) has Linalytic coefficients. The continuation iv perfoi-,I.ed ',I meun~i of transforryation operators. Thorv is 1 figure. PH.-J:~-11-TA ---:, iApril~~2, 1962, by I. G. Petrovskiy, Academician i i 13'4~ I T Tb iAarch,279 1962 Card 1/1 GUTER, le.S.; KUDDII-117UNY L.D.; LLVITAII", b.Y.; ULIYANOV, P.L., red.; LYUSTEPXIK, L.A., red.; YAIIFOLISKIY, A.R., red.; GAFOSHKIV, V.F., rod.; KUYLOVA, A.11., red.; PIAKIM, L.Yu., telJm. red. [Elements of the theory of functions; functions of real variables afproximatior. of functions; alrost periodic functionsi Elerenty teorii funktsii; funktsii deistvitell- nogo pererennoCo, priblizi-enic funktnii, pochti-periodi- chookie funktsii. Moskva, Fizmatgiz,, 196~. 244 p, (MI:(A 16:12) (Functions) WT(d)/nC(W)/J3rS AFFTC ZJP(C) AcassION M AP3000733 s/oo20/63/150/00*474/076 AUTHORt Levitanj.-Kt ~Ij TITLE: Determirwtion of a Stum_U.*uvUl~_4ff*rentU1 2glatlon over tv* spectra SOURM AN SSSR. Voklady, v. 150, no. 3, 1963. 474-476 TOPIC TAGSi Sturm-Liouville differentlAl equation ABSTRACT: The problem of constructing a Sturm-Liouville differential equation over two spectra was engaged by M. 0. Krayn (DAN, 76. 345, 1951). In the present work the author gives a different solution to this problem. This method allows him to state necessary and sufficient conditions for two sequences of real numbers to be two spectra over a Sturn-Liowii1le differential equation. Orig. art. has: 7 equa- tions. ASSOCIATION: none -LI51 ,~7243 EW-1(%FGG(v)/BD5 , AYFT1G11JP(C) ACCfS_S_1_021VNRt AP3005, 25 S/6020/63/ 151/005/1014/1017 AUTHORSI QaG.V*m0V, M. G.; Levitan, B. TITLE: Sum of the differances of the eigenvalueB of two singular Sturm-Liouville operators 16 SOURCE: AN SSSR. Doklady*, v. W'., no. 5, 1963, iol4-lolT TOPIC TAGSt eigenvalue, difference sum, perturbation, Sturm- Liouville operator, boundary condItion ABSTRACTz This is a continuation of a study carried out by M. G. Gasy*mov (DAN, no. 5, 1963, P. 150) wherein a formula was proposed for the case of two singular Sturm-Liouville operators with discrete spectra differing from each other only by finite perturbation. Au- t6rs studied the sum of the differences of the bigenvalues of two singular Sturm-Liouville operators which differed from each other by boundary conditions and finite perturbation. An analogue for Gasy*- mov's formulas was obtained and some necessary conditions were proven a nd so that the two !scuuences of TTmbersil'~,3 U,,Iw(,r--- eigenvalues of one 3!n;,i1ar Sturir,-Liouvilbt equation lj,.,.t with different LLundary conditions. Thme tl-.eo rr~mq ars Card l/Vj prov-d. Orig. ait. ha-_z 2"' foniulas. IZVIT,Afl~ D.H. Lette r to the eGitOr- UOP- 'r-at- muk 18 no.4:239 Jl-Ag 163. (MIRA 16:9) 'J, FRI GASYMOV, M.G.;_~~VITAN._Uj,_ Sum of differences between the eigenvalues of two singular Sturm- Louiville operators. Dokl. AN SM 151 no.5tlO14-1017 Ag 163. (MIRA 16s9) 1. Predstayleno akademikom I.G.Petrovskim. (Operators (Mathematics)) IZVITAII, fi.mo cRiculation of tiv! rogularizo-d trPcfw !,-r a iisp.imit,naijk 19 no. 1:161-165 Je-F '64- operator. (rP,4 ACCESSION NRs AP4031754 S/0042/64/019/002/0003/0063 :Aunim: I&vitang B. M.; Oasyftovp Ho Go TITIZ: Determination of a differential equation from two spectra SOURCEs UsPekhi matematichaskikh nauk. Y, 19. no. 2. 196h. 3-63 :T01qC TAGSs differential equation., spectral functionj differential equation deter-i minations differential operator, linear intogral equation, Parseval equalityp Sturm~ Liouville equation.. asymptotic formula.. Sturm Liouvine operator IBSTRACTs Section titles ares 1. Determination of a differential equation from its spectral function 1. On the spectral function of a differential operator 2. Derivation of a linoar integral equation for the kernel K(x,,t~ 3. Inverse problem. Solvability of the integral equation for the kernel K(xpt) 4. Derivation of the differential equation So Parseval equality 6. Classic Sturm-Liouville problem Card 'ACCESSION NR: AP4031754 :II. Determination of a regular Sturm-Liouvills equation from two spectra j Is Expression of normalization numbs ire in terms of the spectrum i 2. Asymptotic formulas for the numbers 3- Inverse Stum-Liouvine Problem !in. Determination of the singular Sturm-Liouville problem from two spectra 1. Formulas for the differences of traces of two Sturm-Liouyilleo~erstors for various bodndary conditions at zero 2. Expression of the numbers c4n~hj) in terms of the spectrum 3, Ono class of potentials 4. Solution of the inverse problem for the class.0 'Application 1. Proof of a theorem of V. A. Ambartsumyan Application no Derivation of asymptotic formulas (1.6.6) andCL.6-7) :Given two sequences of real nwobers1k @**A Ans #**Vo i Of Alt ~**; /4 of 141 n 'the authors treat the problem of finding necessary mid sufficient conditions for .these sequences to be two spectra of one Sturm-Liouvilla operator of the form 0- -.q W) Y Card 2/5 ACCESSIMI NRt AP4031754 undor various boundary conditions. Here q(x) is a real function which is summsble on each intorval (Oobt)p bt < b, In the first section the authors find a solution or the inverse Sturm-Liouville problem from the spectral function# based on the ,following: Let, p(A) be the spectral function of the problem Yft+OL-~-q(z))Y-O. ' 0'