Document Type: 
Document Number (FOIA) /ESDN (CREST): 
Release Decision: 
Original Classification: 
Document Page Count: 
Document Creation Date: 
November 2, 2016
Document Release Date: 
June 20, 2000
Sequence Number: 
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
PDF icon CIA-RDP86-00513R001032330009-0.pdf6.31 MB
MARCUS, Solomon -------9Ya-tionary ensembles of the finite or in-finite derived functions, Comunicarile AR L~ no.4-399-402 Ap 162. 1. Comunicare prezentata de academician M.Nicolescu, membru al. Comitetului de redactieY "Comunicarile Academiei Repu- blicii Romine." MARCUS, Solomon On a theorem of A.S.Kronrod. Gomunicarile AR 12 no.3.287- 288 Mr 162. 1. Comunicare prezentata de academician Miron Nicolescu, membru al Comitetului de redactie, "Comunicarile Academiel Republicii Populare Romine." MARGUS, Soloman On a problem set up by O.Frink Jr. Gomzdcarile AR 12 no.3&281-286 Mr '62. 1. Comunicare prezentata do academician Miron Nicolescu, membru al Comitetului de redactie, "Gomunicarile Academiei Republicii Populare Romine." MARKUS, Solomon [Marcus, Solomohl On a logical model of elementary grammatical category. Pt. 3. Rev math pures 7 no. 4:683-691 162. MMUSP S. Some aspects of mathematical linguistics in the So-Aet Union. II. And-lele mat 15 no.4-:3-34 O-D 161. (Mathematics) (Russian language) (Bucarest) On quasi-continums functions in the sense of S.Kempisty. Coll =th 8 no.1:47-53 061. (EFAI 100) (Functions) (Topology) MMUS, Solomon .. I ------ Description of awe morphologic phenowna with the aid of the theory of owembles. Rev math pures 6 no.4035-71A 1610- a MARCUS, Solomon Linguistic structures, and structures in topologY. Fev math pures 6 no,3:501-506 '61. M&RCUS, S.-(Bucarest) On a descriptive property analogous to the N property of Lusin. Col math 7 no.2:213-220 160. (OW 10:1) (Aggregates) (Functions) HARCUS,.S.; VASILIU, En. Mathematics and phonology; the theory of graphs of the Rumanian language. II. Rev math pures 5 (Mathematics) (Gra=ar, Comparative and general) (Rumanian language) and the consonantism no-3/4:681-703 160. (EEAI 10:5) MARCUS, S. Synthesis of the functions of bounded variation. Rev math puree no.2:375-382 160. (KFAI 10:9) (Functions) (calculus of variations) (Integrals) (Topology) HARCUSO S.; VASILIU, Em. Mathematics and phonology; the theory of graphs and the consonantism of the Rumanian language. I. Rev math pures 5 no.2;321-340 160. (EFAI 10: 9) (Mathematics) (Rumallian language) MARKUS# Solomon[Marcus, Solomon] On a theorem formulated by A. Lindenbaum and dewnstrated b7 W. Siarpinski. Rev math pures 5 no.1:103-105 160. (EEAI 10-9) (Aggregates) (Nwbers, Theory of) (Functions) MARCUS, S. -- -- On the superposition of two integrable functions in the sense of Riemann and on the change of variable in the Riemann integral. Rev math puree 4 no.3:381-389 159. (EFAI 1039) (Functional analysis) (Integrals) (Riemann surfaces) (Transformations('.qathematies)) . Doklady Akad.gaulc 112, 812-814 (1957) CMW 2/2 PG - 068 and if they are continuous in all points of D in every variable, then they are identioal in D. For n o 2, D is the product of certain intervals (X,- If x 0+ i) and (yo- I q YO + 1 ). p p INSTITUTIONt Math. Inst. Acad. Rumanian Republic. SUBJECT USSa/mATHMWICS/Thfiory of functions CARD 1/2 PG - 868 AUTHOR MARKUS S. TITLE, --'0n--Tu-u-aTfcns being continuous in every variable. PERIODICAL Dolclady Akad.Nauk 112, 812-814 (1957) reviewed 6/1957 Theorem ls It exists a function f(xF) being defined in the unit aqu=a P, vanishing on au everywhere in P dense set 9, being continuous in P~Z, with respect to every variable and being not Identically equal to zero in P. Theorem Z:. Let f(XVY) be defined in Q and satisfy the following conditions: 1) f(x,y) is cont-inuous in x in G, 2) it exists a set 9 CG being everywhere dense in G, on which f(X,Y) vanishes, 3) -&(x,y) is continuous ir. G-9 in y. Then f(xOY) - 0 in 0. Theoram 32 Lot f(7-97) be defined in G, lot exist a couplement of a set of first category ECG such that f(x9y) a 0 for (x y) CEO let f(x,y) be r continuous in G-E in.every vakiabla- Then-f(M.Yi - 0. Theorem 4: If the functions of real variables f (x1 .... 9x.)' 9(xll ... Imn) being defined in D are identical on a set 9 being everywhere dense in DO I - , I - A !.- t I li-. ~ 1; - A . ; ,I- I - 1, ." 11-1- C~:~ - I 1~."I il;- I I I i MARCUS, S. The modern theoi-y of the notion of the length of a curve. p. 2F1 (Gazeta Matematica Si Fizica) Vol. 9, no. 6, June, 1957, Bucuresti, Rumania SO: Y,'ONTHLY INDEX OF EAST EURCFEAN ACCESSIONS (E-EAI) LC. VOL. 7, NO. 1, JAN. 1958 Erd&, -P.; et S~ Sur U d6compasWo, 4c respace eucm a Actk Math. Uen eft"IMMM, homageam Acad.' agari *4- .2,'- s~bset:01 q~didean mogene- SaRam.9- is hol ows (Hord) If for each two of its points X~Y the iiiida- -lion Xy If"Orms, the kt, i~- itself. - The ~Utho 'shO Wat any-111ka MIP*( W"tion of I int6 of Imse, rputu, auy'qxcl.tWvi It e 111un omog a 101 they. prdyethat the Ejj --uper A .'bk!:tmIiSla -d'-set 1~ 4v' (L A W YP or me 4 *Ab I byf .4~' 4 AM "~4 'y' VIARCUS, S. ------- - Points of discontinuity and points of' differentiability. In Ri.,ssian. p. 4771- REVUE DE H.5 MLES ET A??LI- JoUidIkL uF PUEL, ,,%b ANLI~;D ,%JMO!LA TICS. (Academia Republicii Populare R ominej Bucuresti. Rumania. Vol. 2, 1957. Montlily list of East European -ccessions (L;,1KA.L LC Vol. 9, no. 1, January 196u. UNCL icus, S. On S. Stoilow's theorem concernin~7 continuous functions of a real variable. In French. 1). 4C)9. REVUE DE MATH2,11ATIQUES PUri---,'S ,','T AP-I-LI~.-UEES. JCURLNI~L 01-' PUI,-,,' :.i.'b ;,P?LIED -'ITI~,~iiTICS. (Acader, -;.a Republicii Populare Rondne) Bucuresti. Rumania. Vol. 2~ 1957. Monthly List of East European Accessions (Z-~AJ,), LC. Voi. 9, no. 1, Januar7 1961- UNCL The Superposition or Fuji(ations and the Isometry of Certain Clascesof Ametions ?I Ham-mg SdawAm La superposition &s foactUM d !' classes do fbactions. Bull. Math. i! i Soc. Sci. Math. Phys. R. P. Roumaine (N.S.) 1(49) (1957).' r i w i69-76 Cet article contient quinze propositions dont les d& monstrations ddp~ndent plus ou moins de r&-Wtats ant6- ri-eurs dus principalement & W. Sierpinski et St. Ruzie- wicz. La propositign extraite et sa d6monstration peuvent :-6tre regarddes v)mme originales et typiques. Proposition: U existe un ensemble TZ de fonctions rdelles. borudes,' ponctuellement discontinues, int6grables, au sens de ;Riemann(doncmesurables)etddrivablespresque artoUt sur [0, 1). isomdtrique & 1'espace S des fonctions Cmdes, x(g) sur [0, 1) mdtris6 par p(x, y)=sup jx(t) -y(f)j. Es- quissedeladdmonstration:rl,ri. -,-,rs. ---:suitede tous les nornbres rationnets de (0, Q. Fonctinn auxiliaire: 11f ($)-1;$ 2-4, la somme Y,' s'kendant A tous les n Ws qua rs