SCIENTIFIC ABSTRACT MIKHLIN, S. G. - MIKHLIN, S. YA.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001134120015-3
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
June 14, 2000
Sequence Number: 
15
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001134120015-3.pdf3.02 MB
Body: 
0. On some ectimates coanetted wit regn!l_ - TundiR 443~ rOnS. Woklady ad. Nauk SSSR (N.S.) 81 i 1931 n) (R 46 ( a uts ). Ul'x& be 8'.mi-volued continuous function de- the 06sed -init circle 0+0:111g. fincd on , Ish" on the b0 dilry x1'+$O_1 , and ~tu ax I ~a alu X~l I f Intqrabla aqvAre on xj~+Xo'~ 1. It ~ t OWn ha here_ t t t dsbl a real numbei 0 such that the - . ual, - in IT ity :ff + ff w ~herek-l miction a. --Th Se 0 0 06ormakes it f a formula of F. Tricoval [fdath Z 27P -1331- (101)] for differentiating Cauchy pr1njv;i ue intV W i gals and of a previous theorem (if the author CC R--(Doklady)Acad.,Sci.URSS(N.S.)IS,429~432 '(1937)1 Uvpehl Matem, Nauk 3, no. 3(25), 29~412 (1948) , fated _. as Amer. Math. Soc. Translation no. 24 (19S0); these RtYJO, 305; 12, 107] concerning integralsof this mr. J. B. Diax (College I no 1 eve # &the t 04 Bo I - ~ I r~l I I - I N/, , ,-,. - PHASE I TREASURE ISLAND BIBLIOGRAPHICAL REPORT AID 712 - I BOOK Call No.: AP476493 Author: MIKHLIX, S. G. Full Title: FRORM OF A NININUM OF TM QUADRATIC FUNCTIONAL Transliterated Title: Problema m1n1muna kvadratichnogo funktalonals PUBLISHING DATA Originating Agency, Series "Sovremennyye problemy matematiki" Publlshlng House: State Publishing House of Technical and Theoretical Literature , Date: 1952 No. pp.: 216 No. of copies: 5,000 Editorial Staff Contributors: Gelfand, I. M. and Shapiro, Z. Ya. PURPOSE: This book is Intended for the young scientist who works In the field of mathematical. physics. TEXT DATA Coverage: This book is a summary of the scientific reaearch In the theory of a minimum of the quadratic functional in Hilbert's space, most of which has been done by such Russian scientists as Mikhlln, S. G., Sobolev, S. L., VIshn1k, M. I., and Eydus, D. M. This book is divided Into four chapters; Chapter I, Formulation and Solution of Variational Problems; Chapter II, Some Auxiliary Information; Chapter III, Applications 1/2 I. KEKHLIN9 So Go 2. USSR (6oo) 4. Science 7. Experimental methods in organic chendstry. Pt. 2. Pervod a nemetskogo. Moskva# 1952 9. Monthly List of Russian Accessions, Library of Congress, Januaryq 1953. Unclassified. NJ-V'HLIN 5 G ussR Wo) MAritle Plates and- Shells Determination of the error in cos"tIng an elastic shell as & flRt PlAtO. Prikl. mat. i makh. 16 no 4, 19;Z. 9. Monthly List of Russian Accessions, Library of Congress, November _195A. Unclassified. 2 MR/Pbyaice - Elastic Sheila U Jun 52 "Certain Theorems in the Theory of Operators and Their Application to the Theory of Elastic Shellaft S. 0. Mikhlin, Leningrad State U imeni ZhAnnov "Dok Ak Nauk SSSR" Vol LXXXIV, No 5, PP 909-912 Considers a Hilbert apace 3 and a conjoint opera- tor A pos in N. Constructs a new Hilbert space RA as the act of regions D(A) in the metricL/ Z, 6 a (Au,v), /u/2= (Au,u); here certain of the ideal I.ements of pace HA can be identified with : uitably cho:en elements from H: If u. is an ideal element of HA a sequence un in D(A) exists such 22W94 that lim/un-u /=O and lim/un-uc,/-O for m,nsoo, -Yiy u with the limit toward which than we ident the sequence (un) ?ends in the metric of apace 1. Shows that such a law permits one to identify u0 with not more than one element of B. Sub- mitted by Acad V. I. Smirnov 8 Apr 52. x1flOn, S, G, A' Anceralug a thro~c~m Olt 6itlEdness of a 11-Ta-g-MIPM egral Opersiticir, -Unwhi Mallem. MIA (N Li".) I 8, no. .1 (33). 213 -217 (1953). (Russian) Ina previous expository work (1] [Uspehi Nfatem. Nauk (N.S.) J. 3(25), 29-112 (1948); these Rev. 10, 3033 flic autbor matle use of his earlier theorem, accnirifing to whif Ii a singular integral operator is 1xitillufal in L, if i(ff 9$~Mlifjl j-4 lioundcd. The author rendem greater precision to this dicoreni, importint ill view of some of its ircin".juviiii es. The notation is that from (I]. If the symbol of fhe sullph.%l singular operatnt- depends only on 0 and is 1~)undcql. flit it the norm of the operator in Li(E.) dtles not exrVi'd flic maximum of file mollulus of (fie operator. Whence. it flit- syrullol of the simplest singular opermor is (if Ow Itirm En.(Alo),N(O) and the scric-; x- E utax In.(AN)l max 14,.(0)l Mlthorritiottl Roviams cmiverges, Own file opt-rator is Nnintled ill 1.101"..);11141 if-. Vole 14 How 0 noriii is 6s. The opvrator (2) An = -f01.. OW, , Sept; 0 1953 k bmindrd ill L.(I-',) if flit, (haracli-ri,lic f0l.,Oi Irt, dvriv.iii%-v,;wiih rt-,Iw,ct toetif tivlf-i aiiii i-f too, C Flit. fit ti-Olim- if -m; tilar ifil, -.-ral -I,- i11"I If* J."t 21 59T(k TMSR/Mathematics Functional Analysis I M&Y 53 "Application of Fiinctional Analysis to a Slanting Elastic Shall Having the Form of an Elliptic Pa- raboloid," V. S. Zhgenti, Gorl State Pedagogic Inst im H. Baratashvili DAN SM, Vol 90, No 1, pp 9-11 Solution by functional analysis of the eq of equi- librium of a slanting shell derived by S. G. Kikhlin (Priklad Matemat i Kekhan. 16, go 4, 417 (1952)). The solution consists of expressions that converge according to S. L. Sobolev's inclusion 25W66 theorem of spaces (Nekotorrp Primeneniya Funk- tsional'nogo Analiza v Matematicheskoy Fizike, Some Applications of Functional Analysis to Mathe- matical Physics, Leningrad, 1950). Present" by Acad S. L. Sobolev 23 Feb 53. r-'U a DT IL OL ft solookft d a *My& *Pad=& r%&f- ir Ak";,l -IF 91, Y23-736 (1953). OWmARn) C I =iidff IL SAIIIS OMO -t 0 ~~ id ft haV-plam y>o, whom bouoda~romflits ofailulto Ulterval (6, b) - r, tho x-4xk arA of a curve r lyWg In y>0 mye &Dr its ermi- q~ pants at a and 6. Let AG and Mo he two sets of functims wbl& are twice cant k contlnuoWydiff lab oatheclosedoet! J Uo+r+rl and vaniph, on r. The functfmg [a irt also I Vt IVIIIIM W r WIN& t1lass a Mt theiryderivadvas e"d, to sem ost LI. Suppow the finmd= Ify) f& cmd 4a' idw fnftrvd 0 SyS V. wbew F k greaser thaa or awal to' the --f-unt ordinaft *( the pobts of the curn r; thAt r f(0)-0.- aid 1(y)>O whtit y>O. The differantlal operator of (UM- OW tim atts , C doesVt s" Us, pMom two opmt^ wW& #W be ''denoted byAt and At, respettiv*. The Gist them= states' that At avA At am both posMve defialte ova tha HUbert Ls(Q). (L ft. then ezkt positive Wastantt y'r =I& v) for i-L. k and any a Ea L%(Q)j. i This fact pennits the 4ppReation of v"doad medwds Cd. Mthlin Problem of the askdmuza of a quadratic fwzdcW, Gostehttdat- Wsecw-Lenlagmd, M?; tbtw Rev, 14, 411 to th6 bouadary-vabje prohkxv tir4r of the partial diffemtial equatiom -f(y)0g1W-61v1W- p(ry). with, IF In rj(U). subjeLt-to either die- beuwlary o=&tkwI UIr-D. Llfr--O; Or 91 P-0, srf r,-O; and Also to theco"W "dfair bmndar~-vafue problem with ths homagentous I equaticit and non-homogentous boundary condWom Fur-! ther ~Itz wncera the cAse wim -y-., ). w m (y (y he a(y)?.k>O for 0:5yrV and cr>O. aqd the diffetentiall r opena~o ) 6Y r. ir. IN4& (Collep Park, hfd.). I I Au, 53 7";u I Int- --rF-, Ion of the Poicson Equ,-iti )r-. in nr. Inf I -.I' - Pe,:i )r., "S. 3. Yi~-- nAN SSSR, Vol 91, 'Tr) 5, p-p 1O1e-lC"7 CY rncteri,-.es the ei,- -en rolutic,.,,9 f.-:)m thc tYe PoiEsm e, -au= f(x) (f in L2(C)) in Pn i.fir.'Ite m6ij.,. 0 )f the m-di.-nensional Luclidert.i a-~.qce, f~)r the boundary coiid!ti-,n tx/c,;= 0, where S the Ooun~.,.:-y of this rt;Li)n lieu in - f'-At, -,f the spnce. Pi spnts-d by Acqd V. 1. S! irnov 29 *-IqY 53. z66T87 MTKYLTN' G. U'39RA'athematics -Bgundry-Value Pr,-) b 1, e mn 11 Sep 53 "Theory of General Boundry-Value Problems for Elliptical Differentibl Equations," M. 5h. Firman, Leningrad Mining Inst DAN SSSR, Vol 92, No 2, pp 205-208 Discusses certain problems con!.ected with M. 1. I:isik'F theory of -enera-1 boundry problems for elliptic differential eqs (M. 1. Visik, Trudy Mosk Met Ob-va (Works of Voscow !bath ~,oc), 1, 1952). Limits the -iincussion just to the case of the self-ad.4oint lifferential operator wl-, ch -til.zoa the Important re-ults of M. G. Kreyn (Yatem -hor (Math Eymposium), 20((~2), 3, 1947) in the invest1wation. Cit .9 relt-ited work of ". Vikhlin (Problema Minimuma Yvadratichnogo :;'unktsionala, 1~)52). Prp-ented by Aoad V. 1. 7mirnov 10 Jul 53. 269T72 14DUILIN, S. G. , Ed. N/5 613.054 Nekotoryye voprosy teoril raspros-tranenlya voln v odnorrejnykh I izotropnykh sredakh, organichennykh ploskostyani ('certain 1:rotlems r)n the 'Meory of the Expansion of W ves in Uniform ani Isotropic Environments of Limited Planes) Leningrad, Izd-vo Leningradskogo Univeraiteta, 1954. 222 p. (Leningrad. Uni fersitet. Uchenyye Za,-,iski. Seriya Matema'iches- kikh Nauk, Vyp. 28) At Hend of Titlot Dinamicheiskiye Mdachi Te-rit Uprugosti, 4. Bit-liography: p. 221. HIMILIN. S.G. Degenerating elliptic equations. Yest.lon.un. 9 no.8:19-46 Ag 154. (Differential equations, Partial) U,g S I Oa the thaoxy of degenerate altfp* eqda-. ----- 7 dom Do Zady Akad. Nauk SSSR (N-5.) M-185 - 19S# R i uss an) )- ( ( 4 The author considem. the differentiAt equation (A M& it of efflptle type [a a bounded domain Q of Euclidean, space; the ooefficients A,* are supposed wffcimtly regutar.' a is supposed to be the sum oft finitt number olstar-shaped! -idordalintopermittheikAicabilityoldii:lWus&xtdm=', of S. L Soboley C-Same appikations of functionat analysis; to mathematkal physim. rz&t. Uafh~ Goa. Ualv, Al 4, ~~ 1 1930; then Rm H, S65]. The degeneracy of L consists Em, ' e the edsten Ce of At proper subftt of the bounduy r of a ' such that on th;t subset some of the ekftWueg of. the" autrix [Aal , am zew. The prwat note Is coamned with the formulat . ion, of'spectrat proper6ei, of the, operator L: Olarlir ya didws and two types. of de-' genemcy. Some of the results have Skawy been announced "for 0-2 Lrt the papee'rtyiewed above. r. Dr. D(GL ~Aw ' ' . 11 (1956) Vestnik Leningrad. Uhiv no, is concerned e gular operator A Tid .,with th sin Paper given y. b Ap(x) a(z)#(z) 4f eld the e -:Wh x4fid uiivedom 41. udWah ~s-spaces R., 0 tha is Ogle IxtWeen x 4nd ~t-j, r is th~ dist4tice, between ' n egra s- hi th I I tak elletiso 61 a. r~rlncipal. on I 'the author givf-s Improved v a it prools of bii previoUs - resufts on the regulariv~bility'of- n e behavfqur A A don ih :-:Of A 2:sr-an, operator on j. In the coneluding' pam hs th thor makes some r b~*&Clei eau a conune mu t 6ft and Z d jTra6s . n a pe ; yg : ? C 'Artery - Math 78 (1955), 209-224~ AM 16,- 816). '' an Prokss~ir Z;i Mund informs me that there Is. actually ' , which is I ow- ~:oversight on p. 213i line 12 of the pa per ever not diffi~ ult to correct without changing the essential 'd - f I U The rrection appears in Trans. At I C.1 0 t le Proo c0 ner '. Math, Soc. 84 (1,957), 559-560 [MR 18, 894). Meanwhile A comPlettly different proof -of a more general result was publishrd by C.Aflerftand him (Ainer. J. Rath. 7$ (1956). :289-309, vsIllocially p. 290.,Th. 2: MR-18, 8941. N, rj Kohn (Priurt-lon J J . . , , 14IMILIMP S*G* On Ritz's method. Dokl.AN SSSR 106 no.3:391-394 Ja 156. (NUU 9: 6) l.Laningradakiy gomdaretvennyy universitet imeni A.A.Zhdanova. Predstavleno akademikom T.I*SmirnoM. (Spaces, Generalized) (Operators (Kathematice) C , (.r . L INI ~) SUBJECT USSR/MATHEMATIC3/Fourier serlas CARD 1/1 PG - 572 AUTHOR MICHLIN 3.0. TITLE On the multiplicatorn of Fourier Integrals. PERIODICAL Doklady AkaJ. Nauk 12L 701-705 (1956) r9viswad 11/1956 The theorem of Marcinkiowirz StulAa Math. 0, (1959)) on the multiplicators of the Fourier series is formulated by the author also for complex functions and multiplicatora. Besides an analogous theorem for Fourier Integrals lo proveds Lot (~(x) be continuous In the whole E. (at most with exception of the origin) and let its derivative dm ~ /a xi. .? XM exist in every poInt, while all preceding derivatives are continuous. Besides l*tjxjk IDk( 1!~ 9 ic-O,1,2,..-m (Dk an arbitrary derivative of the mentioned ones,, k 1 5 order). Then the operator F(g) - 'I -F2 91(X.Y) ~(Y)dy 9_1(y's) g(z)dz (21() f sm Em is defined on a set which is dense in Lp(Em), lw-P.4oo. Furthermore the operator is bounded in this space and IF 114- Apim M. where Ap9m Is a conetant only depending on p and m. From this theorem the author concludes a now cri- terion for the boundedness of a singular integral operator in Lp(Em). IHSTITUTIONt University, Loningra4. L I N I -) L!, PHASE I BOOK EXPLOITATION 155 AUTHOR: Klkhlin, S. G. TITLE: Variational Methods in Mathematical Physics (Variatsionnyye metody v matematicheskoy fizike) PUB. DATA: Gosudarstvennoye izdatellstvo tekhniko-teoreticheakoy literatury, Moscow, 1957, 476 pp., 6,000 copies ORIO. AGENCY: None given EDITORS: Akilov, 0. P.; Tech. Ed.: Volchok, K. M. PURPOSE: This book will be of interest to scientific workers In physics and engineering. The author's intention is to acquaint readers with "variational methods* as applied to mathematical physics, the theory of elas- ticity, fluid mechanics and to other fields of engineer- ing. COVERAGE: This book is a revision of the author's "Direct methods in mathematical physicau published in 1950. In th13 Car4z:Aj~ Variational Methods In Mathematical Physics (cont.) 155 revision the author is primarily concerned with variational methods, namely, the energy method, the method of least squares, the method of orthogonal projections, the Treftz method and the method of Bubnov-Galerkin which Is closely related to the energy method. One long chapter is devoted to methods of determining error bounds of approximate solutions arising In the energy method and in the other methods. This problem was only mentioned in the previous book but is treated here in the light of recent foreign and Soviet work. The numerical examples were reduced but those included carry calculation to the determination of error. One chapter presents the basic tasks of mathematical physics introducing the concepts "operator" and "functional" and analyzes the most common operators of mathematical physics. The theory of eigenvalueB is investigated in connection with various problems. In addition to variational methods some finite difference methods are presented. Reference is made to V. I. Smirnov's "Course of Higher Mathematics" and the author thanks K.Ye. Chernin for making the new calculations In the book, and 0. P. AkIlov who reviewed the manuscript. Card 2/1.1 Is and c,iltiple eirgular Integr t. MU 12 no.7:143-155 #57. 4A U THOR 1 ('14 2 ----------- ITLE Singular Intef~rals in tlc~ S~aces L v prostranstvakh L p ) p PERIODICAL: Doklady Al~ad.llauk SSSR, 1957,%'01-117,Nr ABS'11'RACTs In the Iresent papor the author uses the -., *ati,,,is fr, Lh ef.1,2 which are r.ct available for the rr-vip-r,,r, -~,, i-h -rnclerq difficult the understanding of the ~nper. Theorem 1 1 If the symbol P (X,O) of ths~ 9 nl-ilpr .-,- -at, r Au - a(X)U(X) + f(X,Q) u(y)dy rm and the derivatives M 2 M-, are continuous for fixed x and ~,-unded indrpr~ndpntly f x and if the generalized derivative M 2 M 1 rd 1/3 riL- lo- (/4 ,ular Intearals in the L;paces L p ,mista and satisfies the inequality M-1 I d J., or 7-2 m M-T where 1 p < 00 , then A is hotintled i r. L(E r 4 r, 7 Theorem 21 Let the sinjular inteCral Prjuatirin A u - a(x)u(x)+ f(Y'Q) U(Y)dy+Tu = e(x) '-"X)E L ~E M r, r m be Civen. It is assumed that T is com7letely c(,ntinuous in Lp (Em), that the symbol A 1 satisfies the ~onditiona of theorem 1 and vanishes nowhere, that a(x) and Cl-,G) satis- fy the inequalities la(x)-a(y) < Mry(l+lxl 2 r p + I.Y12 2 f (x, 9) - f (y, 9) _< 1r)f( 1 + Ix Im( 2_p 2 ~1+ 1.,2 2 Card 2/3 Singular Intef;rals in the Siac- I. P 20-1-(/142 -fYipro IA ari,l T- ri Th e n A 1 iov r, o r rw.~ ty,~ a 1; 1,, L. Thporem s -Ii,~ A L f Q 'ual 1% L, 'L t' " 4 3oviet and ' foreign references are quoted. AS:)'vC IA'.L'I 011i IAningrmd State Univprsity Im. A. A. Zhdanov (TenI-np_radzkIy gosudaretyennyy univereltet Im. A. A. Zbdanova) PRESENTEr: V V.f.Smirnov, Academician, May 20,1957 S-,-, Nl%v AVA I LA B LE i L I '--a ry o ro!') f; AUTHORs Mikhlin, S.G. SOV/140-5B-9-7/14 TITLE: ReZiks on o dinatp Functions (Zamechaniya o koordinatnykh funkteiyakh ) PERIODICALs Izvestiya vysshikh uchebnykh zavedeniy. Matematika, 1958, Nr 5. PP 91-94 (USSR) ABSTRACTs Let A be a positive-definite operator (see [Ref 1] ) in the Hilbert space H, and f an element of H. For the solution of the equation N Au . f according to the method of Ritz certain coordinate functions TV f2"" Yn.... are chosen and the approximative solution un n is set up in the form u. L a 0~,' whereby the a k are ob- k-1 n tained from the linear algebraic system L ['Pk"Pjl ak k-1 jnl,2,...,n. If the angle between Tn and the hy-perplane Card 1/2 through T1 ' Y2 ...... Pn-1 is denoted by at n, then for the de- Remarks on Coordinate Functions SOV/140-58-5-7/14 terminant of the system it follows D det ',J]jj n n - 11 [Pk k,j-l r Isin2O~k. If D - lim D n is positive, then the exactness k-1 n_~a) can be improved by increasing n (reliable system of the if, however, it is D-0, then the system of the ~Oi is unre- liable, for largo n the application of the mothod is doubtful. 7- The convergence of OD cos266k is necessary and sufficient for k-1 the reliability. It is shown that an orthogonal normed system is reliable and therefore is more suitable for the application. An example is given. There are 2 Soviet references. ASSOCIATIONs Loningradakiy goeudarstvennyy universitet imeni A.A.Zlidanova (Leningrad State University imeni A.A. Zhdanov) Card 2/2 89545 16 inn 0 C111/C222 AD OR: *1khlin, B.G. TITLEs On the solutions with a finite energy for elliptic differential equations PRRIODICALs ReferativM7 xburnal. Matematika, no.0, 1960, 98, abstract no. 8923. Uckr. sap. Leningr. gos. pod. in-ta In. A.I.Gerteens, 1958, 183, 5-21 TZXTs As it is well-known, the solution of the equation Au. w f, f EH (H -- a certain Hilbert space, A -- a positive operator) is equivalent to the determination of the minimum of the functional F(U) - (Au9u)-(u,f)-(f,u). In the region of definition D(A) of the operator A, a now metric can be introduceds (Au,v) - ju.vj; 'Lu,ul -Jul. By com- plating DA in this metric one obtains the now Hilbori apace HA. If the functional (u,f) is bounded in HAthen there exists a u0C- SA 16Y which the functional F(u) gets its minimuml in the present paper, such a u0 Is called a solution with a finite energy. If A la Ro positive defin.ite operator then In general uor- H, As an example the author conaiders the problem S/044/6o/ooo/ooa/o17/O35 Cdrd 1/2 8954., 3/044/60/000/008/017/035 On the solutions with a finite-, CIIII0222 6u - f W. x C. (.- I ; U~' m 0 (Clio an infinite region or the m-dimensional Euclidean space bounded "my the closed surface J" ), Here the 13 Pace HA is the set of functions {u) satisfying the oonditionst I) uc-- WO )(01 ), where.0 L a an arbitruy 2 finite regionj 2) grad uEL 2(Q'); 3) Ulr' 0 in the sense of S.L.Sobolev or R.Courant. It is proved that if f(x) - div P, P4 L 2# -7 'Y FE L2 then 4xk there exists the solution with a finite energy and has generalized second derivatives which are quadratically summable in every subregign of R . Parthermore it is shown how these,results can be generalized to an equatton with variable coefficients, to the Poisson equation with the boundary condition ~u/ 3,) + 6ulr - 0, and to an elliptic equation with variable coefficients (in the finite region) which degenerates on the boundary. Abstra,dtor's notes The above text is a full translation of the original l oviet abstraci.] Card 2/t2 KIKHLIM, Solomon Grigortyevich; ZMER, I.Te., red.; POLIGEATA. R.G.. -tekhn.red. - (Lecturee on linear Integral equations] Lektaii po linainym integrallnym uravneniiam. Koakva, Gos.izd-vo fitiko-matem. lit-ry, 1959. 232 p. (MIRA 13:2) (Integral equations) GMT %nit I a a OTAIP floalaziul PuT :Puvlmo 30spupdop 30 mm jo ruct3natiasid fu&jc&q3 %TETI -12 910-114U.3 u2T. mowmm~wd &Gaaaft I I 6~uollgov p . ........ d .1 .4.30 .011~N,wpuwW suo73nijW3910 Ljowu ITT Tqvq*Q pe"Twou0s **.~ 9 1: 2 1901040~ -sema" TW30042 sjojW&d*.e%cnuj3w* JVOUTIWU uzimsumvnbs GODWd 2zvj3oQ9 ul suclawnb. I uoj&jjla wdnoil pav slutj j0 900139300falfts -t efula P-ay *C 0.0., 421. 6639d p".wP*vd9 Poisodogun 'a :.-,Vd 3J"TTE P" Q Won CIO ol it-Is .0 pun - .awl-xvl. nml3wnbe TwT3uWejjTp-aJS9Xul -j t-44 D-13~bs t isowl JTTTjuTq TwuOl GUOSTOT aloe :IOUJOA "u0joMp RITS 600TS" oWT2wnbe Tvjg*3uz istrJulf IvueTwomrsp s" jo,4mwgd GM3 uo suspuedep plowas ejo2ws& vwnul3uoa steaeldm* a 6t4 g0013 "*be-mum 6*Q WM13" Isas3ul Jw W11 --F *PT*1j OQI ul #uoj3nqjz2uca jjwq3 o3 wo3us -Jij~ qaz:'P-V~t2ul~ql cluslo.1390041:11 I-or 00tt -0 jo Sol I T IV Male a 0 . Tqojd P:V393~ Puw WMI304%.1% ~op.. 1-20 lrsxr~ Twuc T22-nj 'eel a;,j lqvqoadj:,&Jaoql imnO4 3 ,wqos IV -,, 'PI Iij ova jo 'woze I p -zor 3 031" "pl. I p el *.eq sqj '(savoA OC joj V= q2 .1 q3jjVMq:jU) '.V13PIj3 us Vm - 1.1 joj mrm q% ;*23m.qlww) 301 4~%Pwu3WX4 We am - wVT3ww3wm 1535.30n Jol Tj" 0;3 masomoll 0i 3w0. OJV4 -VMDTI -".421el LrT" I jo 0109 JO Ou*361111 *TVdWSolq P" Llfl j oDul * Jo tqdszpoltqlq V Ul V3uo' It I- ri se-toA f1sit _zt6l Pow ova suij.p W~Iolzwwwavwi 39T.ot 'cQ op" suclamIJ3 -00 JGTQ* 4v% sib""@ I ESMIOA *6313906%13M 20TAOS jo Ajo'4gTq ova m jwoe owntoA-e -ter" w ;o x semici 9, sqooq stq& tjDvvwz 'PlOW "2 01 9UCj2nQTJ2M,7 38TAOC Ul PO%VOJ0391 V113,gonjn jo GUIT4031-M PUT OU1,12.3mumm2w Jo. Popusull &I 3100Q ~TMZ 12conu 'AOGMTWT 's *9 :'Ps *1128.1 1cmd-1 'd 'T '(mom .,IRUI) 'V2 tQ3jAfXMS~JL 'j -W PV9 'WhOlItIC 'SJL *0 'Ul3qUft *g *61 'A '&03193rd-TO 'I 'A '( 'PS JOTRO) 'qwOJ"S 'D 'T ISPI "11:oa 00JI; -d W01 '6CXI 'ZTI'4W=lj 'WOOM (901013jy KAJASN 11 TO& (667-JT61 13JOd JOJ ULM 0113 ul wO%3w1MQ2wA) &UwDSQD sl ~, '.~S61-L161 - 307 jqojow wx umc a "la"w3wA 4LIVA'02 sO-.:-VL1D1JXX low I Wfu (0)91 ALSKSAIMROV, A.D.; AKIWV, G.P.1 ASMIEVITS. VALIAITMR. S.V.; VLIDIYJW-V, D.A.; VMIKH, B.Z.; GABTPIN, M.K.; KAIM01OVICH, L.V.; KDOINA, L.I.; U)ZINWIT, S.M.; lADTZH9NSXATA, O.A.; LIMX. Tu.7.; LXRRIXV, N.A.1 V=Xo--Qf'G-~-,--YAlrARDV. 3.M.1 VATANSON. I.P.1 NIKITIN, A.A.; POLTAKHOV, N.N.1 PINSKE-R. A.G., SMIRROV,' V.I.. SAFROVOVA, G.P.; SHDLITSKIT, Kh.L.-, FADISYBV. D.K. Grigorii Mikhailovich Pikhtengollts; obituar7. Vest. LOU 14 no.19: 158-159 '59. (KIRA 12:9) (Fikhtengollts, Grigoril Mikhailovich. 1888-1959) 16(1 ) AUVTOR: !'oikhl in, S. G. SDV/20-12~-,!- - ~-f/74 TITLE: Two Theorems on Regular~ ers '~ve teoremy o regulyarizatorakh' PERIODICAL: Doklady Akademii nauk SSSR, 1359,Vol 125,Nr 4,pp 737-7~~ (-JSSR) ABSTRACT: Lot E1 and E 2 be Banach spaces und A 6(E 1-*E 2) a cloqrd operator. B 4E (E2-*El) is a rogii1ar 7.ers --~f A if BA = I + T, wn-~r- I il the unit operator in E 1 and 7 is e- -,-)mTl,-te1y continu-.i~ pe-:I*rr in E The regul,,, zerg is called eq,i4val(,nt if Au BAu Bf are equal for all fG 7- 2* Let all considered be additive and homogeneous. Theorem: If a clo3ed operator A nas a re-ularizors, ther, 1 operator is normally solvable. Theorem: In order that a cloged operator ~ has an equivalo.' regula izer it is necessary and sufficient that this npr~ri' is normally solvablo and that ita index to finite and non- negative. There are 4 Soviet references. PRESENTED: December 10, 1958, by "I.I.Smirno-i, Academician SUBMITTED: December 9, 1958 Card 1/1 AU T'i~) R Mikhlin,3.3. 5 C 7/2 4 ------------- TITLE: Differentiation of Spries in 7r-rms of Spherica'- FERIOLICA~: Daklady A?.ademii na-ik 2,T,~ ABSTRACT. Let 5 be the -unit sphere in the E-,iclldean E If x is a point o f the Em 9 tile n 1p t I x X//9 L,-, t JL d eno t o a 3p,ie. i - a'~ I ay.- r Let every f'r&~ defined -,r, 3 3 1