SCIENTIFIC ABSTRACT MURAYEV, E.B. - MURDZHEV, A.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001135620013-9
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
March 13, 2001
Sequence Number: 
13
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001135620013-9.pdf3.83 MB
Body: 
6787~ 44~4 / 6 3/020/60/130/06/004/059 AUTHORS: Melentsov,k.A.t and Murayev,E.B. TITLIz On the Theory of Summation of Double Series by BorelI3 Methods - \1 PERIODICALs Doklady Akademii nauk SSSR,1960,Vol 130,Nr 6,pp 1193-1195 (USSR) ABSTRACT: Lot A be a partial sum of the series � aik i-o k-o to a ik* Lot the series A(x A converge for all x~>O, y> ry ik Vk! ,0. i,kwo The series (1) is Bp-summable with the sum S if lim, e A(x,y) - 3, where (x,yk--I-oo means that x-+oo , (X 0,Y)k-+00 y-pw in the sector A4Z- (0< A< 1). (1) is called B r summable with the sum S if lim e-(X+Y)A(x,y) - S. Let Card 1/3 67675 4 On the Theory of Summation of Double Series S/02o/6o/!30/06/004/05.9 by Borel's Methods 00 1 k a(x.y) a x Z- be an entire function. Let VXty) i,k-o ik !y! x y S je-(t+t)a(t,r,)dt dr. The series (1) is Bk-summable with the 0 0 sum 3 if lim Cx9y) . S. If lim 4(x,y) - S, then (1) is (x$Y)OW X-002ty'" called BI-summable. Theorem It Let (1) converge, let it have the sum S and let it satisfy the conditions k ZJI'C*Mi e(1+7%!)y (4) JfA & 9 k=0 ik k 1- (5) il%"k I 4o JL ik i1 where 9 V Nk' h'