SCIENTIFIC ABSTRACT VENTTSEL, T.D. - VENULET, J.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001859410020-1
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
September 1, 2001
Sequence Number: 
20
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001859410020-1.pdf3.22 MB
Body: 
VENTTSELI, T.D. Some quasi-linear parabolic systems with increasing coefficients. Dokl. jUl SSSR 140 no.2;2PI&-28(. S 161. (MIRA 14:9) 1. Moskovskiy gosudarstvennyy universitet Im. M.V.Lomonosova. Predstavleno akademikon I.O.Petrovskim. (Boundary value problems) (Differential equations) VENTTSELI, T.D. - -1 , ~. . .... Quasi-linear parabolic systems with growing coefficients. Vest. Mosk. un. Ser. 1: Mat., mekh. 18 no.6;34-44 11-D'63. OGRA 17s2) 1. Kafedra differentir.31'nykh uravneniy Moskovskogo universiteta. 28657 3/020/61/140/002/002/023 C111/C444 A-U-TR~R: Venttsell T. D. TITLE; On some quasilinear parabolic systems with growing coefficients PERIODICAL: Akademiya nauk SSSR. Doklady, v. 140, no. 2, 1961, 284-286 TEXTt For the system ?2U ;)a -a T (u, V) + jt 9x 2v v (u,v) F- _j_ + Iax 2 zt ax the following boundary value problem is considered "1t-0 uo(,~, v1t.O - v 0(X) Card ulx-x 1 U 1X-X = 0, V1 X=X Vi X-X . 0 (3) YS 2 2 28657 S,/020J61/140/002/002/023 On some quasilinear parabolic systems ... C111/C444 assuming that (2) converges to a hyperbolic system of first order for -4 0. The equation qvF u - (1P - %yv) F v F - 0 u u u uvv (4) ia of the same type like (2) for F, - 0. Theorem 1: If (4) possesses a solution F(u,v) such that for all u,v Fuu E2 + 2F uv + Fvv~ 2 >, dk (Ufv)(~2 + ~2 61 > 0 (6) then XA, X F(u(x,T),v(x,T))dx F(u o(x), v0 (x)) dx (7) I', I Let B(M) max (1(f n If ., 1)P n xItE R v I Ul , IVI t,-M Card 215 28657 3/02 61/140/002/002/023 On some quasilinear parabolic s,stemB ... ClIIYC444 B1 (M) - max (ID 291, 1 D 2,f X, tr: R ju.1,1VI 4 'M where D2 is an arbitrary second derivative f(jul ) - min(min F(u,v), min F(-u,v)), v v g(jvj ) = min(min F(U,V), min F(u, -v)) U, U. R = R ~ x 1 :!& x 1S x 2 ' 0 "' t --- T Theorem 2: The coefficients of (2) and the boundary functions are assumed to satisfy 'the smoothne:~oconditions of theorem I of a former paper of the author (Ref. 1: DAN 117, (1957)). The equation (4) is supposed to have a solution F(u,v~-,satisfying (6) and F(0,O) - FU. (0,0) - Pv(0,0) = 0 (9) Card 3/S 28657 S102 611140100210021023 On some quasilinear parabolic systems.-.. C111YC444 and for which M B(M) + MBJ(M) - 0(f(s)), B(M) + MB,(M) = 0(g(M))- 2 Then the problem (2), (3) possesses a'solution for all t. one defines I(s) to increase like IsIp, if k, Is I P