SCIENTIFIC ABSTRACT VLADIMIROV, V.S. - VLADIMIROV, V.YA.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001860220002-0
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
March 14, 2001
Sequence Number: 
2
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001860220002-0.pdf3.21 MB
Body: 
29897 SA1 61/060/000/0-03/009 2 B112YI3125 AUTHOR: Vladimirov, V. S. TITLE: Analytic completion for special domains, its coristruction and application SOURCE: Akademiya nauk SSSR. Matematicheskiy institut. Trudy. v. 60, 1961, 101 - 144 TEXT: Various proofs of dispersion relations, introduced by Bogolyubov into quantum theory in 1956, are based on the construction of an analytic completion of a given domain G. In the present paper, the author carries out such a cinstruction for domains of a special kind. A domain G is said to be analytic if there is a function that is analytic in G but not in a domain including G. The analytic completion H(G) is the greatest domain including G, which is contained in the intersecti-on of the analytic domains of all functions that are analytic in G. The convex completion K(G), which belongs to a given class K of functions, is the greatest domain in- cluding G, which is contained in the intersection of the analytic domains of the functions of K that are analytic in G. The author considers domains Card 1/3 2~oj 07 S/51 61/060/000/003/00,q Analytic completion for &pecial B112YB125 i - + having the form TkjG. T and G are defined as followst T - T -.-j,T T� = Rn+1 + i where Rn+1 is the (n+l)-dimensional real Euclidean space with x = (x0 x I...,x n) as its points is the set of all points x, for which x2 > 0 and x0t 0 are valid; Gc R n+1 ; U is a certain domain con- taining G. The author constructs the completion K(TQ G-) wi,th the aid of the corresponding integral representation f ip (p', ).) 2L p')2 ell;'dX + P (7.15 0 .0" 0 + n+L,' + (p', X) dp~dl, 2'~ Card 2/3 . . . . . . . . . . . . . . . . . . . 877 3/517/691 060100010031009 Analytic completion for special ... B112/B125 L is the operator that is inverse to the operator _i- ; PT is an 0 afo arbitrary polynomial whose degree depends on the function f; t are weight functions. Finally, the author applies his results to differential equations. I. M. Gellfand, G. Ye. Shilov (Obobshchennyye funktsii, vyp. 1 i 2. Fizmatgiz 1956), N. N. Bogoly-ubov, D. V. Shirkov (Vvedeniye v teoriyu kvantovykh poley, GTTI, 1957), and S. L. Sobolev (M6thode nouvelle A r6soudre le probl4me de Cauchy, Matem. sb., 1936, I(Ai)l 1, 39 - 72) are referred to. N. N. Bogolyubov and 1. T. Todorov are thanked for assist- ance. There are 38 referencest 13 Soviet and 25 non-Soviet. The three most recent references to English-language publications read as followil H. J. Breinermann, R. Oehme, J. G. Taylor. A proof of dispersion relations in quantized field theories, Phys. Rev., 1955, 109, 2176 - 2190; F.J. Dyson. Integral representations of causal commutators. Phys. Rev., 1956, 110, 1460 - 1464; R. F. Streator, Special methods of analytic completion in field theory. Proc. Ray. Soc., ser. A, 1960, !!L~, 39 - 52. Card 3/3 VLADINIPDV, V.S.; NIKITIN, V.F. Jost-Lehmann-Dyson's integral repreBentation. Dokl.AN SSSR 138 no.&iIS09-812 Te 161. OaFA 14:5) 1. Matematicheakiy iuBtitut imeni V.AjSteklova AN SSSR. Predstavleno akademikom N.N.Bogolyubovyme (Topology) VLADIMIROV, Vasi.liy Sergeyevic'; TODOROV, I.T., red. (Methods in the thcicni of functione cf nevcrLl com:,Iex variables] Metody teorii funktsli umogikh korplekerjykh peremevinykh. Moskva, Nauk-a, 1964. 411 p. (IAIRA 17:10) SAMUNDZHANy Ye.M. (Eyevj ul. Ordzhonlkidze, d.3, kv.53); VLAD V.S. (Eyev, ul. Or-dzhonAJidze, d.3,, kv.5) ___)~qROVA9 Functional state of the adrenal cortex in benign and malig- nant tumors of: the uterus and ovarips. Vop. onk. 10 no-3%93~-98 164. (MIRA 17:8) 1. iz Ukrainskogo nauchnc~--issledovatellskogo instituta skoperimentallnoy -! klinicheskoy onkologli (dir. - akademik AN UkrSSR prof. R.Ye. Kavetokly! f. K~_'y(,v.9kcgo ran f'gerioradiolo- gicheskogo '" onkolog-Ichesk3go "nsti.tuta (dLr. .- prof, 1.T. Shevchenko). VLADIMIROV, V.S. Corrections to V.S. VI-adim:Lrovis article nFunctions, holo- taorphic in tubular cones.tl Tzv, AN SSSR. Ser. mat. 27 no.5% 1186 -0-0 163. (MIRA 16:11) VLADIPU94-Y.,$. (Moskva); SHIRIMMOV, M. (1403kva) Construction of holomorphy envelopes for Hartogs regions* Wwo mat. zhur. 15 no.2:189-192 163o ~ (RIRA 160) VLADIMIRGV.-YA,,,, insh; KCSOY, Yu."... insh. Choice of voltage and power rating for pole pairs of plaatiog current motors. Vest. edektroprom 34 no.6:20-21+ Je 163. (MIR& 16:7) (Electric railway motors) VIADIMIROV V,S, Functionss holomorphic in tubular cones. Izv.AN SSSR.Ser.mit. 27 no.lt75-100 Ja-F 16). (MMA 1622) (Functions, Analy-tic) (Cone) . VLADIMIROV2 V.S. On Bogoliubov's "edge of the wedge" theorem. Izv.AN SSR.Ser.mat, 26 no.6a825-838 N-D 162. (MIRA 15S12) (Quantum field theory) ALEKSANDROV, P.S., red.; BOLISHEV, L.N., red.; VLADIMIIIQV,-Y.S..-red,_L- KUD.RYAVTSEV, L.D., red.; LEONT'YEV, A-.F-.,red.; IIIKOLI~KIY, S.11.1 rod.; POSTNIKOV, M.M., red.; SOILVENTSEN, Ye.D., red.; SHAFAREVICH, I.R., red.; GRIBOVA, M.P., tokhn. red. (English-Russian Eathematical dictionary]Anglo-russkii slovarl ma- tematicheskikh terminov. Red. kollegiia; P.S.Alaksandrov (predse- datell) i c1;. Moskva, Izd-yo inostr. lit-ry, 1962. 369 p. (MIRA 15:11) 1. Akademiya nauk- SSSR. Matematicheski-y institut. (Engliab language-Dictionaries-T-lussian) (Mathematics-Dictionaries) VLADINMO-V, I.S.- Some variational methods of an approximate solution of the transport equation. Vych.mat. no.7:95-114 161. (,IURA, 15%4) (Distribution (Probability theory)) (Calculus of variations) (Approximate computation) VLADIMIROV., V. A. "Some generalizations of the Paley-Wiener-Schwartz theorem" report submitted at the Intl Conf of Mathematics, Stockholm, Sweden, 15-22 Aug 62 AUTHOR: Vladimirov, V. S. 3/04 62/Ooo/oo6/o47/127 'Pi 56Y31 12 TITLE: Mathematical problems of single-velocity theory for the tranofer of particles ?--'RIODICAL: Referativnyy zhurnal. Matematika, no. 6, 19062, 95, abotract; 6B403 (Tr. Iylatem. in-ta. ;~N SS9R, v. 61, 1961) TEXT; This is a monograph in which a mathematical theory is produced for one class of boundary problems for inte6ro-differential equations with first order partial derivatives. This class of problems depic.ts various physical processes, among which in particular are them transfer of neutrons in subs-'lances, the scatterinn- of light in the atmoGplierQ, the radiation in j_ssaz~3 of 1~_rays throuOh diffusing media, the transfer of stellar atmosphere, and cosmic ray showers. '.7hen interpreting the. mathematical results, 'he process of transfer of neutrons is borne 2rincipally in mind in the problem of calculating for nuclear reactors. It is assumed that: (1) the bounded re,3ion G in which the process of transfer of neutrons takes place is convex and bounded by 'he piecewise smooth surface B; (2) the velocities of the neutrons are identical; Card 1/7 3/0 4 4 /62 /1, 000/04 7 /12 7 :;,athematical problems of sin`~Ic- B156/BI 12 ~' the indicatrix of" scattering depends or, the directions -V V S, and -S"' = 411 vli -1 of the velocities `V` anti 11 only throuah the cosine of the an-le between them, Ii = (S's'); (4) no external flow of neutrons 0 impingaz on B. On these azsumptions, the integro-differenlial equation (s,grad~) +,f 0(P,p')f(o,P)ds' + F(s,?) 4r, 0 is obtained; in this ectuation the boundary conditions are I((s'2) = 0' -n ) < 0 ( A i - 1, -~ I -(3, the unit vector of the external nornal), where the unknown function u(s,-;') denotes the density of the particlez leavin- the i,oint P = (xj 'x 21X3 G in the direction -9% 61u(t,, is the unit sphere with its center at the ori'--r of the coordinates of three -d imens ional Euclidean Svace); the function a(.?), whici si-nifies the absorption of the medium, .U is Lzeasurable, positive, and bounded almost everywhere on T,; the kernel U3(P,go), which characterizes the anisotropy of scatterin,'-q is a def,'enerate. Card 2/7 z4athematical problems of single-... 3/04 62/000/006/047/127 B1 56yi3112 n kernel O(P' 40) bi(P)Oi(PO), 0i(g0) is int~gpable on [-i,+'] and b,(P) is measurable and bounded almost-everywhere on G; the function F(S,P), which signifies th6 intensities of thd"nources, is integrable with the power p(1,