SCIENTIFIC ABSTRACT YUDOVICH, S. Z. - YUDOVIN, L. G.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001963110018-1
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
March 15, 2001
Sequence Number: 
18
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001963110018-1.pdf6.65 MB
Body: 
AP 3 AUTHOR: V. V. SyEko, A.V Frantecy, V. F Z.,-; Abr amov V. I.; BoriBenko, 1. G. CEO: none TITLE: Forgesbilityl~f beat-resistant D171 stainless steel SOURCE: Stall, no'. io, 3.966,9 TOPIC TAGS: 4heat resistant steel, stainless steel, martensitic steel chromium -nickel molybdenum steel, steel forgills /D1-1 stainless steel ABSTRACT: T'he forgeability of heat-resistant DI-1 stainless steel is affected by the following -~Pactors:"chemical,96nposition, amount of iMurities, microstructure, surfscel condition of the ingot and!15A_ase conpoBition. The decisive factor, however, was found to be the tjR~~haylZcntent. The amount of a-phase at 1200C varies between 3 and 8% (depending on the holding time) and between 9-20% at 1250C. The a-phase content affects negatively the elongation and reduction of area. To improve forge- ability, the beating of ingots from 9DOC to 1200C should be done as fast as possible, the holding time at .1200C should not be less than 3 min per cm of cross section, anj the absolute reduction should not be more than 25-30 mm per pass. Me best chemical --ACC -NRj AP66j:nob composition was established as follous: carbon 039-0.21%, man anese 0.33-0.38%, 2ilic 0.22-0-30%, chromium 15-0-15.5f-.Orig. art. ha--: 2 figures. SUB COIE:11 ijI SUBM DAM none/ ORIG REF: 001' YUDOVICH, V.G.; RHIEBDRODOV, A.D.; SOLOPEVICH, Ye.A.; V-EYTS, V,L.- pLilial F.S.; EELYA)MEV A I ALADIIN, 0,1.; OSIFOV, " '; I Y A.I.: PROK'U. IYEV Yu V - SOLOVIYEV, Yu.A,-~ - I - 0 0 of KU Z IMP-1'A.V,,; MIDONIS V Yu '- 'ZOLIN, A.V YNTqTTY, I((- MOBROSLAVSKI , V.L.; TRbFlhOV:'Ye.N., DRYAMN,'Yv,,.'R.; X-molEvi. V.F.; KERIMOV, N.B.; KRAVCHENIKO, A.S.; RINLIN, V.A, GURCHEMO, A.P.; RRUGLIKOV, T.P.; CHERMKOV, F.A.-,~ A~dVIEPOV, N.K. Authors' Certificates and patents, Mashlnolstrwnici 103 Ja-F 165. 118-.10 F 9~_A AUTHOR: VOROVICH'I.I.0-9. nDOVICKI V.I. (RoBtovrna_D~onu) 40-4-10/24 TITLE: The Impact of a Bound Disk Upon a Liquid of Finite Depth (Udar kruSlogoldiska o zhidkoBtl konechnoy glubiny). PERIODICA1:1 Prikladnaya Mat*i Mekh.9 1957P Vol.21, Nr 4, PP-525-532 (USSR) ABSTRACTs ~With the aid of the Fourier method and under application of the contracting mappings the authors investigate the impact of a round disk of TadiuB a upon a-reuting ideal liquid of depth h. From the obtained relations it follows that for vertical impact the influence'of the'finite depth can be neglected and #Pust be set h-oD -t if he>1,1a. The error in the determination of the maxim= pressure etc. remains be- low 6% in this case. If z=O -is the free surface, a-1, the density 5-=I, U the velocity of the disk$ the velocity potential of the liquid particles, then it is e.g.t S MU + -1 ZL(7+5r 2 1 1 T12-0 V 3V h3 451r, 5 + 9V2 h h6 + 37 (17+21r2+7r,4) I + CARD 1/1 21011 h7 SUBMITTED: November,9p 1956 AVAILABLEs Library of Congress ---------- 10(2) AUTHORS:: vorovich, 1. 1., Yudovich V I SOV/20-124-13-13/67 TITLE:: The-Steady Flow of a.Viscous Fluid (Statsionarnoye techeniye vyazkoy zhidkosti) PERIODICAL: Doklady Akademii nauk SSSRf 1959, Vol 124, Nr 3.9 PP 542-545 (USSRY ABSTRACT: The.authors investigate a steady laninary flow of a viscous fluid within a certain range This problem is reduced to de- termining the ve ocit 1 L y vector v*(x) from the equations -, XV YA7 - (VPY~ (1/~)Vp ((V,~) = const > 0); div V 0 Here.? and b are given vectors, and x is -- point of the range R . The present paper deals with the differential properties of the solution within a closed range and with the rate of convergence of the Galerkin-method. For the given problem the authors introduce a generalized solution, prove herefore a theorem of existence, and show that there exists an arbitrary number of continuous derivatives in the closed ranj-,e if the limit of the range and the right sideo of the e,,uationc are sufficiently smooth. A theorem of existence is obtain(ld Card 1/2 especially for the classical solution, but without the use The Steady Plow of a ViBcous FlUid SOV/20-124-3-13/67 of estimates-for.Green's tensoT of the corresponding lincar problem. There are 5 references, 4 of which are Soviet. ASSOCIATION: Rostov-na-Donu gosudarstvennyy universitet (Rostov-nn-Donu YUMVICH V. (Rofitov-On-Don) "ne lubnov-Galerkin's Nothod in Dynamlics of e v1scous Ukpom-1wessible fluld. tv.port prenentea at the FirBt AlljQAon Congraso an Theoratical and Applied FoebanicB,, F.08cow, 27-Jan - 3 Fab 60. 67881 .J10,? 10M S/020/60/130/06/01 0/09"f~;*.- AUTHOR: Yudovich,V.1. I TITLE% Periodic Motions of a Viscous incompressible Fluid. PERIODICAL. Doklady AlFademii nauk SS-93R.1960,,Vol 130,'~r (,pp ABSTRACT: In the separable Hilbert space H the author cons-Aer,-, ordinary differential equation of first order dX + Ax + Kx dt where f(t + fl~z-:T(t), A is a symmetric positively Aefinite operator not depending on the time, K is a non-lineiir not depending on the time. Under certain assumrtlon~z proves the existence of at least one generalized periorli: solution with the period T. The result is used for the investigation of periodic notions of a viscous incompressible fluid. For the construction ofthe proved periodic aol,,;tion (motion) the author proposes a modification of the methoc. ot" Galerkin. V~ Card 1/2 67881 Periodic Motions of a Viscous Incompressible S10201601I30106/C131/C;--, Fluid The author mentions O.A -Lndyzhonakaya, The paper was written under the leading of 1.1 Vor-)v',,I-- seminar on nonlinear problems of mechanicn at the 'Rogt-1--i-I University, There are 9 references, 7 of which are Soviet, I French, and I German. .kSSOCIATIOII:Rostovskiy-na-Donu gosudarstvennyy universitet State University) PRESENTED: November 5, 1959, by S.L.Sobolev, Academician SUBMITTED: November 4, 1959 Card 2/2 D i law _4 DN 'k EEL AW - 89725 0/020/60/136/003/008/0"7 B019/BO56 16,1600 AUTHOR: _Xama-Lr~~~ TITLE. The Plane Unsteady Motion of an Ideal Incompreseible Li,u~-! PERIODICAL: Doklady Akademii nauk SSSR, 1960, Vol. 136, No. 3, pp. 564 - 567 TEXT: The author studied the existence of unique s olutions of the Ca-chy problem and of related problems, wbich hold for the entire time t.> He makes no assumDtions concerning the smallness of the function-s sz-,I parameters taking part in the problem, The solution of this p-o~1~21: in determin inr the velocity vector-7(X,t), and the Dressure D(x,t), the systen of equations v + -9p + F(x,t) (1) t divV - 0 2 0 3 ~ ~ v 7(X) (4) Card 1/3 89725 The Plane Unsteady Motion of an Ideal S/020/60/136/003/008/027 Incompressible Liquid B019/BO56 The Derturbation function-f(x,t) is determined with the relations vi =Y X2 and v (5) from the system 2 - - x1 t + +.f A";" - f(x,t); 0; and '6Y L X fX ~X 2 1 1 .2 YIS ~,Jt_o -~(x) (6). The existence and the uniqueness of-~(, zhich was determined from the above system, is proven by means of five !,--mmas, which are given and proven here. Thus, the author is able to shc;- +~I~!- the pressure p(X't) determined from (1), (5) and (6'1, is f unction. The -oair 7(x, t) - and o the -(x,t) are calle4 solution of the problem (1) (4). Finally, a multiply connecteddefi---ti-n range is taken into account, and the condition for the uniqueness of D(x,t) is formulated. The solution of this condition is then obt~ziine' 4,- an analogous manner. This paper was real at the A'"-Un4on Theoreti-al and 1'%-o-,)Iied Mechanics in Janu~ry 106C, ~t Vcecc-~,-- Ther, -7 Card 2/3 89725 The Plane Unsteady Motion of an ideal 3/020/60/136/003/008/027 Incompressible liquid B019/BO56 6 references: 3 Soviet, I German, and I French. ASSOCIATIONs Rostovskly-na-Donu gosudarstvennyy universitet (Rostov-na- Donu State University) SUBMITTED: April 23, 1960 Card 3/3 -fTj 7) C) 1, 7 T ~-- ~; 17 T eq p r ~' . ?rj v!3 -';. p t- , -5 c, I . ( ,- 1 ~ - ) " 7 - - , - -' - , - - . I , . . - . . - ., , ; a I - - I - - . , I - nT~4 - r of 71 -Zric Flo.-,' of Ii~eal :,o~ -Cr- -. r - r - - 7 1 - - : - -, -0 S~ c0-, 1061 ED (I.,,oscol.,i State Unlv.~ (KL Su - -) ', '-:7' - -1 I'm 11, y i I ." - - - I - - 2 5`5 ...... si'039/61/053/004/001/002 f6 9, 0111IC222 AUTHORS: Vorovich,1.1., and Yudovich,V.1. (Rostov-na-Donu) TITLEs 5tationary flow of a tenacibus incompressible fluid PERIODICALi Matematicheskiy sbo=ik$ V-53,no-4t 1961, 393-428 TEXT3 The main results of the paper are published in (Ref.14i I.I.Voro- vich) and V.I.Yudovich, Statsiona=oye techeniya vyazkoy zhidkosti [Stationary flow of a tenacious fluid3 DAN SSSR, v.126, no.3 (1959), 542-545)- The authors conaider the stationary motion of a tenacious fluid in a -Apiata They-Anve:stiptta-t- pendence--of--th-e- differential J~oundsdi- iner-s- he-Ae e initial data; properties oif VAe BolutionB om---the- oothneBB o th furthermore the error is estimated which arises for the solution of the problem according to the method of Babnov-Galerkin. The existence of a generalized solution is proved under weaker assumptionB than in (Re-L'.1. J.Leray, 2tude de diverses 6quations in't6grales non lin6aires et de que1ques problAmes que pose I'Eydrodynamique, Journ.Ilath.pures et appl., 9, no.12 (1933), 1 _82). The flow of an inconDraBsible tenacious fluid in a region is described by - - (-,,V );+ I V pjpl, v v 22855 Stationary flow... V039J61/053/004/001/002 0111/C222 div v Ot where:~ velocity; P -- pressure; -9, positive constants, P -- non- potential part of the forces due to inertia. On the boutdary S of the region v (XI (1-3) where a in a given vector. Fxoblm Datmine V$P so that they satisfy (Ivl)-(1-3)- tho -Let. 4 T0110sing,assuptions be i3atisfieas a)-a -- bounded region of the 2- or 3-dimensional space; S consists of m closed surfaces SI'S2J1"*9S-m with a continuous curvature. b) In there exists a continuously differentiable solenoidal vertor -a, where is identical with on S. c) On all Sk holds ScIn dS 0. Sk Functional a_maceB:. _~I)-Hmert nVace Hi closure of the.set of vectors being smooth and 22855 8109J6110531004100110ce- 0111IC222 zVolenoidal in Prhich vanish in the neighborhood of S; the norm in generated by w (rot ~il -rot ;i2)dSl (1-7) 2) Space I of the vector functions u with.the norm P IP d!l)p. ju Let d) 7 E:L (P 3-dimensi6~1- buae-and. -p1 in the two-dimensional P 5 in the. case). Definition 1.1; A vector v a+u whe re uGH and v) 4V+ (u-. V'j-G Z5 (a-, V) U. V) Vrot rot U;+ j~ Card 2285.5 Stationary florI.. S1019J611053100410011002 'CIII/C222 is satisfied for- an arbitrAry E I is callbd a generalized solution of (1-1)-(1.3). Theorem 1: Under thi assumptions a) 2b),c),a) the problem (1-1)-(1-3) has at least one generalized solution in the sense of the definition I.!. (2) Let '9 E VA F-L Then the ve-tor -u determined from (1-3) can be 3/2 3/2 understood as a SeneTalized-solution of the linear boundary valhe problem V V P+T, (2.1) div7u.- 0 (2.2) UIS (2-3) where T i+( )(ii-ra)-v A 16 13/2. The vector satisf ies -')~~t V-rot (O,d% Tt ft. (2-4) fOZI OVe37 EIR Let the surface S be d~nc:ribsble in the neighboThood of an arbitrary one Card 4/8 22855 Stationary flor... S/03gj6l/053/004/001/OC2 CIII/C222 of its-points in the local coordinates by X3' F%P(xl)x2)1 (2.-6) -where f shall ~~_Vci continuous A.-tb derivatives riVi respect to xi,)~,- - - * I Then let S belong to the clas s Mhsoxem 2 IT Y 'r'_I &~,�). =d 5 S-C(3) 'then' fbi -vector u -- the p 5 generalized solution of (2.1)-(2-3) in the sense of (2-4), in the :region n belongs to the. class 117(2) and it holds -P W(2) (z 4 m [IT JILP (2-7) and V (m denotes a constant aepefiaing'qnly onn A function 9(x).- given ln.the.region Obe2ongs to.the class H(k9m) ?~) in W it haP all derivatives of k-th order which here satisfy the H61der condition with the exponent X and the constant m. Let be space of functibns of E(k,m,A) rith the norm if th, Caxd 5/8 22855 Stnationza-j flow! S/039J61/053/004/001/002 C1II/C222 11P11 max alp + ep (X) ep (y) + sup (3. 1) (X, y Let S EA(m, if %p(xj.,x2) of - (2.6) belongs to H(k,M, 'A), where k, m,-k are the same fox all points of S. Theorem 33 Lot FC-3 k) Z e k '0, 'E n/ then (5) attalna the form 0 -0 H Uil CP' f (8) ,17(r) P f f 'I %f Ard if (8) 1101da, then there exists a constant S/026/6i/138/004/005/023 Some -entimatea connected with ... '~0111/0333 COM011827 2 if Ob.assumptioze of.thebrem.I.and corollary I ate satisfied and it moreover .36 j r+21,,\ (0 < 1), f r= C then (9) '11 0>1 0. Tbeor* x c x e-For A em 2s. Let 'W ~' ~i ( ( ilt . i r+20 ditfir,little froi I then it hold6the.estimation c Oul . 4 1 x ( 1) f to _IjU U and 2 can,be generalized to equations of higher order -and to:syatems. Thtorem 3 s. Let . i(~)* dy (17) 'IX let SI y .51- -."boundel domain of.the-B f.r=L Then it holds Cara: (02PA0138/004/905A231 Some estimates connectied with *4 0 0111/03~3, ju(x I u(-3t2 01 n, (21) 1 2' The results.are appliedto the,proof of the-uniqueness theorems and to the InveBtig-ation-of the differential propertien of solutions of non- linear_problezp~.#. Bk~.X the -ons defined-in A which posq-ess all ~:is~_ space -of, the -functi derivati4es of k-, th-order,_.whare these satisfy the HbIder condition with -in 33. 0 a Oqua a norm k A I to the suz of the maxUla of -k:and of their E81der oonstan a all 'derivati4bs. of tl%6~ Craerb Otl 9 9 nt because.,of.other-notationt the Author refers to C. Miranda, Partial diffeirentIal equations -of el-liptic- type.) T".SuthbT'thanks I&B. Simonenko and Tu*P* grasovskiy for discussion. The.paperwas written irthe sexiniary on problems of nonlinear mechanics at the lostov-na-Donu University;, card 5/6 25119 B/020/61/139/002/009/017 B104A205 d AUTHORS: SrubBhobik, L. S., a~d Yu ovichp V TITLEs The asymptotic behavior of equations for a large doflec- tion of an axisymmetriC2 19aded plate PERIODICAL: Akademiya nauk-SSSR. Boklady, v. 139, no. 2, 1'961., 341-- 344 TEM. A.Btudy has been made of the system Av- US 0, a2Au+uv+9(p)=0, Aow-p-L, -~-P dp pdp 2 of non-linear differential*equatiohs vithone of the boundary conditions -P.~., T > 0,U0; (2a) dv a 0. 0; (2b) 7P L ~/020/61/139/002/009/017 The asymptotic behavior of... B104/)3205 0; (2c) U d? P dp p V 0, U 0; (2d) (0/O holds for the solution of the problem (l)-(2). Lemma -, 21 For sufficiently small ',- (0< S one obtains for all .0 FO, 1, 1 1 k 0; 7 2) min(~k/~) T/2. Lemma 3s The energy estimate Card 6/8 25779 S/020J61/139/002/009/017 The asymptotic behavior of... B104/B205 2 RA I dp + dSA is dp + dRA I'dp + ~ -T dp + -E, S,2, dp < dp dp 0 < ceh+l RA I + (13) holds for Rk and Sk' TheIorem 1i For the problem (1)-(2a) there existo an asymptctic representation (5), where the.estimates max RA (p) Cle*+,, max I Sj (p) Cszk+ll, (h 0, 1. 2, 3, n); (14) max I < Cs',-~ (k 0, 1. 2....); dp dSA 2 3 max Card 7/8 The asymptotic behavlor of... B104/B205 max < COP-11 2, and d 0djo flif tw,; of bi---,Ii thS none 2 9 F eu M ~:3 0 V t ry.) 5 ZAKHARYUTA, Vyacheslav Pavlovich, starshiy prepodavatell; S11MCNEV., Igor? Borisovich, kand. fiziko-matemat. nauk, starshiy naiichnyy sotrudnik- YUMVICIT! .1 -t teat. n&ul, Li~o I ifovi h kand. fiziho 7 r os 2C .4 Ma ispolnya-yushchiy byazarmois_iF-d6M-eMTa- ~Calculution ofthe capacitance-of three infinite bands laying on the surface of a dielectric half-space. Izv. vya. uche'. zav.-, elektromekh. 8 no.1:20-23 165. 0, L, ts. 31 1. Kafedra matematicheskikh analizov Rostovskogo gosudaist7cnnogo universiteta. SRUBSHCHIK, L.S. (Rostoi-m-Donu); jUDOVICH, V-1- (Rostov-n-a-Donu) Asy=tottic irlegmtiam of a syst-s-- c--:, eqi"-'-:LvnS a -r.4 C f2exure ol' sy=etrically Icaded shells of revolution. P il 2. na-t. i mekh. 26 no.4:913-92-2 S-0 162. (lj"-,RA L RostovBkiy univeraitet, .(Elastic plates and shells) (Differential equations) - - - - ~ -1. ~. . I . . . . -1 - I - ~ - - .. - . . I. .- .. . . -.. .-: - --- +~)n Alr9lem Ul - - 2: - - -, - - - .. g 8/081 /62/000/024/0 31/07 3 ~193/BI86 AUTHOR3 Yudipvicho Ya. E., TITLEs, A metho,d for cbemical~determination.of germanium- PERIODICAM Referativnyy zhurnal.. -Xhimiyaq no 24 1'962, 2~33,abstract 24D104 (Materialy po geol. i pole2n. iskopayemym Yakutskoy ASSR. no. 7, Yaktitak, Knigoi2dat, 1961t 124 - 127) r TEXT:-Prac'tical-advice is given, based on experience-in determining go -manium in mineralogical raw materials') regarding'thb technique of carrying out decomposition of various samples (sulphidea, silicates, coal ash, Fe ore), extractiom of the Ge from CCI 4 and photbmetric determine', ion with - fluorobenzenee [Abstracter's Ate: Complete translation.] YUDPVlqll Ta.E. .. . - centrations, Lit. i pol. Taspendent.genetic rare-element con (KMA 17 - 1) J-skop. no.3-55-63 163. 1. yakutskaya tsentr&I'naYa 9803-0908 nyemochnaya ekspeditsiya. YUDDVICH, Ya,E, Distribution of asb in coals. Vest. Fbsk. un. Ser. 4: Geol. o.3:101'104 My-Je f64. WIRA 17:12) 1. Rafedra geologil i gookhUdi coryuchikh iekopayemykh Moskovskogo universiteta. . tbovlm rA. A. SennB Study of the anatomic structure Of CRSSiB angastifollb. kDt- delO, no- 3. 1952. ll~ k--t of ~!! ~111 ASSLftm~ Library of CODCrODR, 11710veffnbor 19',2. MiCLAI-1551YIED. - V -H Y - -1c x 12, A. 2. TISSR (6C0) 4. Chemistry, Medical -and PharmaceutIcal 7, Determinatimi of the iodine number of fate in acqueouB medium. Apt. delo no*b % 1952 9. Monthly List of Russian Accessions, Library of Congress, Jp-nm .1953. Unclassif-ied. YUDMCHj Te. A. sta "Thsr-MacOlogleal Rezearch on the Giant Ejecr2mpane. r, C8nd Fharl,-, Sci, Tortij to U, Ta-b1cent FharmacOlOgical Inat, Tasbkent, 1954. WhBIOLKhlm, No 2, Jan 55) T.. - 1, Survey of Scientific and Technical Diosertations Defended al.' USSR irligher Educational Institutions (12) SO: Sum, No. 5562 2J, Jun 55 SOV/1i7-;Q 2 Translation from: Ref erativnyy zhurnal. Metallurgiya, 1959, Nr Z p 5t ~ USSR AUTHORS: Dantsis, Ya. B., Yudovich TITLE: On the "Dead" and "Rampant" Phase~j of Three-phase Elec-ic ii-( Furnaces (0 "mertvay" i "dikoy" fazakh trekhfaznvlrh dugo pechey) PERIODICAL:. Ve5tn. tekhn. i ekon. inform. Mezhoirasl, labor. tek, n. e~c-, is5lcd~ i nauchno-tekhn. inform. N.--i. !iz khim. ~r ;a in-, L. Ya. Karpova, 1958, Nr 2 (7)~ pp 25- 32 ABSTRACT: The problem of the pouter transf*er (PT) in ,he secondarN, cr( (SC) of a completely asymmetrical 'three -phase elec- -;(- ar~ is examined. Equations were worked ouf for he de!erm,r.a- PTby means of a theoretical analysis of the phenerrienor. ity of the formulae developed was verified on an exper~me!,_a.' oj)i)~i ratus irnitatina a three-phase furnace and also on an ac,i e ~Tcc phase furnace with an over-all asymmetry of the SC Tne notes that the PT between t1rie electrodes consli!uics an portion of the total PT in the SC. It is established !hal.ne bell Card IIZ (middle) phase can be "dead" or "rarnpan- depending L-ti t SOW I37-5Q-_? ~~:"4 On the "Dead" and "Rampant" Phases of Three-phase Electric- arc Furnacec~ of SC and the order of sequence of the phaees and not only neutral as it i_.; usua:!v considered, and that the middle phase is neut.ral only in that particular ca~)c ( i SC, asymmetry in which the extreme phases are placed with st rict syrnme, rv i - r c ~ ,. - n to the middle pha5C. In the construction of powerful furnaces with an c, er ~ii': metrical SC the PT occurs mainly from the extreme (long) phase to the tl).(161, A Sr Card 2/2 DANTSIS, YA.B., kand.tekhn.muk; M ILTV., G.M.,, inzh.; LYADSKITY, N.K.,, inzh.; MOTIP-H., Electrical engineering problems in the manufacture of calcium carbide. Elektrotekhnika 34 no.12:6-9 D '63. (MIRA 17:1) ACCESSION NR: AP4029195 5/0078/641009/004/1015/1016 I-AUTHOR: Taintsius, V*1M*; Tudoviob, Yee Too I TITLE: Vapor pressures of vanadium dibramide and d1iodide SOURCE: Zhurnal neorganicheskoy khimii, v. 9, no. 4, 1964, 1015-1016 TOPIC TAGS: vanadium dibromide, vanadium diiodide, vapor pressure, vapor tension, flux method, sublimation, heat of sublimation, entropy of subliwtion, V-Br bond energy, V-1 bond energy, vanadium bromine bond energy, vanadium iodine bond energy, 1-1. thermodynamic characteristic ABSMCT: ne vapor tension of vanadium dibromide and vanadium diiodide was investigated by the flux method (So A, Shchukarevs I* Ve iasil'kvva, H. A. Oranskaya, V. 14. Tsintsius, N. S. Subbotinae Yestn* LGU, No. 16, vy*p. 3, 125 (1961)) usin,; argon as the gas-carrier. Based on the data obtained, the following thermodynamic characteristics of the process of vanadium dibromide and vanadium diiodide sublimation were determined: in the 800-905 C temparatVre interval, H subl FV-Br2 7 a 45 t4 kcal/mol; > S subl. - Br2 7 27 r 2 joules; L V. Card 1/2, 00 4f- Y-i /I F4 V- 00 A 00 C elactriml ttaU=a. B, Z. YOnvirb and P. V. Kryr~b Perts. -qreiW. Uc~wid. 2, Xck~~1641-. 00 A bindiag material of Ibit type d roman veamml cam be 00 matle bry Introduml Oalk tato, The furl led to The lwrta:~ Thil th-CS DOI int trim with Op" &I im of Ot furn&m. 1,h? ~plhnuxn amount of chalk 1- 3)%. The inronmwxy tV 0 0 of the bindir4matryWran bvrbmuAted by hyaratir- 00.) of the free bme b ' t of b ed ITM=3 in !he sa. CZ Y C*2 flutn.-2 before IkM The wjrdrb~ ri tb~ bimhnj =atcrW tbtxlrw~d wnwes =tizumtsly jor 5 mmibx, at tainlog In ww ter in 28 day3 a value wrcrjJ tizor3 7(i syesict than tbat mquirrd by tbr standard lor rumitts rs- 13 L A AVTJu.L%*!;XA1 %,M8AY%*4 CL"OICATSDN IMF 6-jdg,5 ." dw, UP- 0 0 0 DOW call %F1 a it 't , 3-7 Ina ,IGGQ 0 0 w w V tv w v --A L Do Ar saw L 9 P t t -@k * -9 -0 -e e 0 4 e l3y*vWmdltlAl matvrw YA E 7. Vwlavk,-$- pnd A. V Sba U 3 &Z 67,220, 0- f=n4*ju"cm%, inJIt. etc 19 awd a thin A] shw cmied co. Nith slaft witb a t;itumin OM CM]PIS. 10 CTdL-, tV knTpa" 10 The Al alk-M tjW fT. quirtd plish 7. Ow Almet Is hral-treated for 2-6 bm d= roding: finaMy lb* A) ilw-t Is drj~ througis the lzumhww cvmpn at INO* and thrn cxx4'd 410-ir Ni H-h we IMUDO-71 Water-proofing underground inslallations Moskva, Gos. i2d-vo strolt". 114,-ry, 194. 147 P. (50-31143) TA901.178 H R ORN ~' W4. f4 W, No rR Z. NOMOV, TA. N. i=h. 1,~TMVICH, E, I. laureaty sta3inslmy premli kand. telchn. nauko stroitelletva I proyaktirovaniya VODCHEPRWITSAYEM TSEMENT I TEG-0- F.TZIKO-M=CMME SVOYSTVA Page 110 SOS cwlsfr=J+-,Mv 1951 Mi L. 3 UZOTBOV9 A.; XUDOVIGHq YU* g - prepDdaVatel I fiziki Noskva) A racUo angineerin JUatitute help's tbo school, Radio noA2~-10 D 160a OUFA 14,- 3.) l* Institut radioUkMild i ciektronni An SWR. (Rwuo--3duca-bion =d trainLng) A !-,-2erirw. 3teax. t urbi t! Put, j., A L","IGrO '~'he first nati-ia'. or With zear tz-ansnl -- 1, Pe- I OdIcal ~~6 31, MIS" - 34/7, QC) ~, -3trwt .,b T.,i-- artic, e is ded-Icated a turb -i r-- engines duri rip tit i on 'ted m BRANDA1351 A.I., laureat Laninskoy premii; YUDDVIN, B.S., kand.tekhn.nauk 1. - Z: ~. Y ; -. -.. t. z --, 7- z : t. /1// Z) 0 V1 A//1-.6. PHASE I BOOK EXPLOITATION SOV/5861 Gorbatsevich, Aleksandr Feliksovich, Vladimir Petrovich Kuznet1ac,.,, and-2 Lev Grigorlyevich Yado-vin ft ~__ - - Avtomaticheskiye linii iz protyazhnyld~ Btankov I avtomatizatsiya pro"-yagivaniya (Putomatic Broach-Ing Idnes and Automation in Broaching) Minsk, Gosizdat BSSR, 1961. 110 p. 1500 copie6 printed. Ed.: S. Pol'skly; Tech. Ed.* G. Domovskaya. PURPOSE : This booklet is intended for tool engineers and technicians concerned with broaching operations and equiDment_-. COVERAGE: The booklet reviews various types of broaching machine's:. Detailed descriptions and illustrations are provided for som- of these machines. Also discussed are the developipent of automation and automatic broaching lines and thei- fix"I"r, There are 19 references; 12 English, 5 Soviet, 1 Czech, 1 German. Card 1/5 Aut6matic Broaching Lines and (Cont-.) SOV/--)861 -TABLE OF CONTENTS: ~Ibt rodue,t1o'n 3 Ch. 1. Technological Potentialities of Rtoachina and the Automation of Broaching Equipment 4 1. The volume of - broaching in inachine building 4 2, Technological potentlalitles.of,broaching equip*ent 5 3. Modern trends in increasing cutting rates in ~broaching 9 --Special features in the development of broaching equipment for 'aut-omatic-lines and units 12 Ch. H Development'of Automation -of Broaching Machines 24 5. Automation of the rap;ld-forliard and backward movement of the broach In internal broaching machines 4 Card 2/5