SCIENTIFIC ABSTRACT ZAGAYNOV, L. - ZAGIK, L.V.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001963410015-1
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
March 15, 2001
Sequence Number: 
15
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001963410015-1.pdf3.83 MB
Body: 
MEIEKHOUP A., karid. filcsof. nauk~ KUKSFANCV, V., filasof. nauk thai~ty of trf.% world and of iran. Prof.-tekh. obr. ~2 no.1 :14-;;l ja A '13,4) Laimt3atittill nachallnlka Swrdlovskogo oblastnop uprayle,nJy,% profe-),5ton-illno-tektiricheskego obvinvanlyi (for Zagaynov~ J. 36987 3/044/62/000/03/030/092 0111/0222 AUTHORj zagaynov, I,- s. TITLE: On-the Riemann'functionti for the equation ZXY = a(X,Y)z x-+ b(x,y)z.,+ c(x,y)z + f(x,y) PERIODICALs Roferativrtyy zhurnalt Matematika I no- 3, 1962, 6o, abstract 3B256. ("Sbo'nauohn. tr. Krivorozhok, eornorudn, un-t,"1961,__vyp. 10, 407-412) TEM The author simplifies a result of K. Ya. Latyshova (Nauch. zap. makh.-matem. f-ta Kiyevskogo gos. un-ta, 1941, 1) regarding the construction of a Riemann function for the-given equation. IP13o Riemann function is constructed as a series OD r (x, y; n.0 which oonv~erges uniformly and continuously in the reg4.on whore h(xty) aa ': ab + c 5- is bounded. The functions f are defijied by 3C n Card 1/3 5/044/62/000/'003/0140/092 On the Riemann functions for the ... 0111/0222 re h 0t, 44 x X roe b If h k with k(x9y) ab + 0 _L_ , then the Riemann function lian tha simpler form y c0, G(xjyj gj ef(x,y)-If (Xq Y; 9 n n-0 with 'Y x n(xty; P 4 'd Hn-1 (n 1p2p .. Card 2/3 5/04 62/000/PO3/03C-/092 On the Riemann functions for t.he C111Y0222 and Ho 1, while T is a certain function which satisfies at b ax For the case a b const we'have finally G(X,Yj ef 00 Eh(y_~q )(X-')]' 7- )2 n-0 (ni In this casethe--question-re the ---is garding --sign of--the-Riemann--funation completely, exas4ned. CAbstraote'r's fiotet Gom late translation.] Card 3/3 ZAGAYNOV, L*So I ,?ie=nr.r,. firict!zr, for thc cl"tlcr zxy N 14,712,, +b(x,y)r7 +- C(x,y)t 4 f (xty). 500i's naucho jKOK rcl.70:1,07-412 161 (HIPA 17tg) AUTHOR s SOV/L40-58-3-12/34 TITLE* Unlimited Applicability of Chaplygin's Theorem on Differ,)ntial Inequalities for the 301utiOn OfthO-Fir,lt Boundary Valuo Problem for Linear Equations of Elliptic Type flicogranichenna- ya primenimost' teoremy Chaplygina, o dif-.rerentiiial1nykh neravenatvakh k resheniyu pervoy krayevoy zade-chi dlya liney- ny'kh uravneniy ellipticheskogo tips). PERIODICALs Izvestiya vysshikh uchebnykh zavedeniy. Mateawtika, 1958, Ni- 3, PP 96-98 (USM) ABSTRAM Lot G be a simply connected bonnded domain witli boundary Lot n n E(u) a u + a 2-u ik(x) VxiVxk E 2xi i#k-I iW1 where the coefficients are ansumed to be twice continuously differentiable6 Furthermore let aik(x) Si YO . Purthermore lot L(u) - E(u)-au Card 1/ 2 i,k-1 Unlimited Applicability of Chaplygin's Theorem an sov,'14o-58-3-12/34 Differential Inequalities for the Solution of the First Boundary Value Problem for Linear Equations of Elliptic Type and D(u) - E(u) - f(x,u), whereby f is at;sumed to posses!i in 'C the continuous nonnegative derivative A 4)U Theorems If the twice continuounly,,diffei-entit,.I)le functions u and v satisfy the conditions 1. L(u)> L(v) in G and 2. ul r - vjj- j then 1, t is u < v- everywhere in G . Theorems If the twice continuously differentiatle functions u and v eatiefy the conditions 1. D(u)>D(v) in G 2- uIr v1r I then it is u