SCIENTIFIC ABSTRACT BORISOVICH, G. F. - BORISOVSKIY, A.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R000206420001-6
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
June 9, 2000
Sequence Number: 
1
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENCEAB
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R000206420001-6.pdf1.66 MB
Body: 
The Industry of Rubber or) the 64 - 7 - 2112 Occasion of the 1,116th AnnJ1----r,-r:ia---y --f ,b,- Soldet ReDublic of 1-"~l t.:,, 19'~'i could not be accomplished for lack of both a,,-.i workmen. But the Sovjets want to make up for this, now. Th~-, asSortment of synthetic rubber ha3 "ecome -,,,iry SK3-od:Lu-m- butadiene caouchouc, DVK~-LB-7.0- buta(iiene-Vinyliden- chlor-~Itie-Latex, 1,-L-talie:i=-nit::,il-z~aou'kchouc SKN of three some makes of Nairit, SEB11i c h! orop--c t-ne- lat- v l,ut.-~dl---iie-i;tyrol-caoutchoue SKS 30, -Pd ina-.,,,, otlhpr~-- Th-2 bu'.adiene-methyl- (SKMS 30) is produced on an industrial ii! the 5c-4-,--.t-Unicn only. It is used on a large s-ca-le for the m!invuficture cf tires. Further the oil- filled -acutt~hiouc SKS-.",O AM is prcd-uced, the technoiciq'i--ai propertilb of which by far surpass the In 1956 the produotion rf "SKT" -was substantially increased. t 1- pro,:er-ies at P- temperature of - 60 to - -250 i. Let Card 1/2 ci - sup inf f(x) Emil On a Theorem on the Critical Points of a Functional 39-3-5/6 Theorer Lot f(x) be an even, positive, weakly continuous and uniformly differentiable functional in the sphere T. Let f(%) - 0 and rx - 0 only for x - 0. Then the numbers cVc 2v-Y cn,... are the critical values of f W on the sphere S( A x ),where 15.m an 0 0. n-f oD Theorem: If ci - ci+1 ci+p' then the set (f V, ci) n s contains -;~ closed compact set of critical points the genus of which > p+1 . Thirteen Soviet references are quoted. SUBMITTEDt April 12, 1956 AVAITABLE: Library of Congress Card 2/2 BORISOVICH, Yu.G. Stabilit7 of critical values of fanctionala. Izv.v7s.ucheb.zav.; mat. no.l:z4-34 16o. (IMU 13:6) 1. Voronezheki7 gosudarstvanny7 univernitat. (Functional.analysis) BORISOVICH Yu.G. -i Rotation of a weakly continuous vector field. Trudy Mat. inst. AN Gruz. SSR 27:27-42 '60, (MM 15:3) (Topology) AUTHORs TITLE: PERIODICAL: j/044/62/000/003/038/092 0111/C444 Yu. G. The application of 1,.io weak topolog;, in problems concerning the periodic soluticts of operator equations Referativnyy zhurnal, Matematika, no. 5, 1962, 701 abstract P296..("Furctsionalln. analiz i yego primeneniye", Bakur AN Azerb SSR, 't)61, 23-24) TEXT: The equation ax(t,-L) K~ . S K(T , S) f Et' S, x (t, ds at where f(t, a, x) has the period co with respec, ',o I-., and f(x,s,O)_~': 0, is considered as an ordinary differeatial eq1.!.-1.jon n a fWiction space, the choice of w4~qh is determined by the conditions w~_Ich are to be satisfied by the"kernel K(V , b) and the function f(t,s,x). Using the fixpoint principle, the author proves that there exists a non-trivial periodic solution x(t + w ,r) = x(t,T ) of the equation (1) foi, almost Card 1/2 The application of the weak topology ... all t. The proof is not given. EAbstracter's note: Complete translation.3 Card 2/2 S/0474'42/000/003/038/092 Gill 4,14 20625 B/020/61/136/006/001/024 14134o C 111/ C 333 AUTHORs Borisovich, Yu. G. TITLE: A weak topology and periodic solutions of differential equations PERIODICAL: -Akademiya nauk SSSR. Doklady, v. 136, no.6, 1961, 1269-1272 TEXT: Let B be a real Banach space; B'W-the conjugate space; N a linear subspace of functionals from B* . The weak topology defined in B with the aid of N is denoted as N-weak topology. Assume that every linear bounded functional from N* is representable in the form a(f) x B; assume that to every x there exists an f E N such ;h! t(xf) X 11 and # f J/ M independent of x. Theorem 1: An operator F(x) acting in the sphere P x 1 or in a bounded convex weakly closed set and continuous in the N-weak topology possesses a fixed point. Let T C B be a convex weakly closed set. If T is unbounded, then functionals f19 ... 2 f C N are assumed to exist for which the polyhedron p R ;/ tx I , a k f k(x) 15: bk (k - 1,2,..., p) (1) Card 5 VX1 20625 B10201611136100610011024 A weak topology and periodic . . . C Ill/ 0 333 intersects the set T in a bounded set T(R) for arbitrary a 15 b k9 where every bounded set from T is assumed to be contained in-one of the R. Let the N-weak topology be introduced in T. Let U be a bounded open set, U its boundary, U its closure. The vector field x - F(x), F(U)C-',T, continuous in the N-weak topology, without zero vectors on Up is considered on U; lei F(X) to bounded. On the boundary let the rotation of the field be defineet as ins Yu. G. Borisovioh (Ref-3t DANt 131v No.2(1960)). Theorem 2: Let U be star-shaped relative to x e U) let F(X) posses no fixed points on ~, where F(O) C 1. The rotRtion of the field is then equal to + 1. Theorem 3: Let T be centrosymmetrical; U centrosymmetrical, and Star-Bhaped relative to19 . If the field x-F(x) is uneven on then its rotation is uneven too. The equation dx dt . F(t,x) (2; Card 2/5 1 2062 B/020/61/136/006/001/024 A weak topology and periodic . . . C 111/ C 333 is considered in Bp where F(t,x) is weakly continuous in (t,x) in the sense of the N-weak topology. Let the solution be denoted as weak if x(t) is strongly continuous in t and &x/ &A.- 4 xl(t) in the N-weak topology. Theorem 4: Let F(t,x) be defined for i 1 lk t lk t2 and 0 x - x 0 r, weakly continuous in (t,x) and sup 11 F(t,x) 11 - N 0 < 00 '. t 1 -.-~ t 4 t29 lix - x 0 11 !g r Then there exists a weak solution of (2) satisfying the condition X(t1) - x 0 and defined in tj t-_- t 66 t 1+r / mm 0 . Under additional assumptions the author proves the uniqueness (theorem 5) and boundedness (theorem 6) of the solution. Theorem 7: Let N be separable; let the right side of (2) depend weakly continuously-on (t,x) for t F_ I_tIP)t ] , x 6 T, where T is a certain weakly c1red set in B. Let . ihe solution x(t,x ), x e T be defined on t1, t 2:] and unique; b ) the transformation X?t,x 0) be bounded on T. Then the operator X(;,Xo ) depends weakly Card 3/5 20625 S/020/61/136/006/001/024 A weak topology and periodic . . . C Ill/ C 333 continuously on (t,x 0). Let N be separable and T X1 1P(x) 1-4 bf N29 , a a,f bf be numbers and N a subset from N. 2 Theorem 8s Let F(tvx) be in (t,x) in the neighborhood S of the set T a weakly continuous, periodic operator of the period CAa which satisfies the inequalities: (f CF(t,x)] ~t 0 for ff(x)-at xET '-P[F(t,x)j jg 0 for T(x)-bf , xST. Aseume that the weak solution of (2) is unique in the points of B. Then there exists a periodic weak solution of the period w on the set T. Theorem 9 is also a statement on the existence of a periodic solution (under other assumptions). Card 4/5 20625 3/020/61/136/oo6/001/024 A weak topology and periodic 0 111/ C 333 The author mentions Tikhonov; he tbanks M. A. Krasnosel'skiy. There are 6 Soviet-blo'c and 2 non-Soviet-bloc references. ASSOCIATION: Voronezhskiy gosudaretvennyy universitet (Voronezh State University) PRESENTED: October 1, 1960, by P. S. Aleksandrov, Academician SUBMITTED: September 30, 1960 Card 5/5 ACCESSION NR: AP4006580 S/0021/63/000/004/0434/0437 AUTHOR: Bory*sovy*ch, Yu. G. TITLE: Schauder-TLkhonov fixed point principle and periodic solutions of differential equations SOURCE: AN UkrRSR. Dopovidi, no. 4, 1963, 434-437 TOPIC TAGS: Schauder Tikhonov principle, fixed point theorem, differential equation periodic solution, weak continuous mapping, bounded solution ABSTRACT: A theorem on the fixed point of a weak continuous mapping is applied for the proof of the existence of periodic solutions of differential equations in Bansch space. Bounded solutions are also studied. Applications to Lntegro-differenstLal equations are indicated. ASSOCIATION: Voronss"y*y Dershavny*y Universy*tet (Voronas' State University) SUBMITTED: 0fiAugG2 DATE ACQ: 03May63 ENCL: 00 SUE CODE: M NO REP SOI~-, 003_~ 000 OTHER- I-C.Ord, 5/020J63/148/002/003/037 B187/B112 AUTHOR: Borifinich, Yu. 0; TITLE: Peri:'odic solutions of differential operator equations involving a small parameter at.the derivative ,PERIODICAL: Akademiya nauk SSSR. Doklady,,v. 1489 noo 2, .1,9631, 255~258 TEXT: Under the conditions-given by'four iheorems,.the system of. differential operator ec-aations dx + A (1).~ = f (e, dy + B J.F, if (1) yg (e, j) (t), (1) Y dl with the unknown functions x(t) and y(t),.the' period W, and values from': the Banach spaces E and E for E --? 0 has an 0-periodic solution. 2 x,_(t), y,:(t) which uniformly tends toward the smooth solution x 0 0 assumed to be known of the degenerate system (F_ - 0). The method 'by L. Pletto and N. Levinson (Sborn. per. Matematika, v. 2, no. 29 19 '58, 61.) is generalized and reduced to a non-linear integral equation for which Card 1/2 Y S/020/63/148/002/003/037 Periodic solutions of differential ... B187/B112 Schauder's principle and that of compact mappings is applied. E is a -real or complex Banach space of the w-periodic continuous functions X(t) and y(t); E12(cj) is the direct sum of the spaces El(w) and A(t) and B(t) are 0 -periodic operators in El and E E2(w) 2 which depend on the parameters x and y and explicitly are written 'A(t) . A' -](t) and B(t) B[X,'Y](t) where A~'Z,'Y] and B[_X,~] L7R in general: are non-linear mappings of the space E into the spaces IF, (w) and R2(co) of linear, bounded, (J-periodic operations continuous according to, the norm and dependent on t; f and g are mappings of the space E into 12 El(c,>) and E,(6)) depending on the parameter.. E. The results may also be applied to unbounded, nonlinear operators'B, f, g. PRESENTED.- Ju-he 14, 1962, 1 G Peti~ov.skiy,,, Apaa,em.ic.ian SUBMITTED: May 12, 1962 Card 2A BORISO-VICH:,YU.G. Applic4tion of the concept of vector field rotation, Dokl. AN SSM353 ro.1:12-15 N 163. (MIRA .17:1) 1. Voronezhslkiy gosudarstvennyy universitat. Predstavleno akademikom P.S. Aleksandrovym. TORGOVITSYMA, II.S.; BORISOVSFAYA, B.L.; FAL'KOVA, I.I.; YUZMMLISYAYA, A.I. - -- ---. Salmonellal diseases in Zaporashlyeo Zhur.mlkrobiol.apid. i iTram. 30 no.5:135 My '59. (MIRk 12: 9) 1. Is Zaporozhakoy oblastnoy sanitarno-opideniologicheekov otantait. (.IALMONELIA INFRCTIONS. epideniol. in Russia (Rue)) BORISOVSKAYA, G.M. Anatomlootaxonomio study of some representatives of fazi2y Crassulackao DO. Vest.LGU !~ no*21:159-162 160~ (MM 14:4) (Orpine) (BDtanw-Anatomy) PROBST, Abram Yefimovich, prof.; LISOV, V.Ye., red.; BORISOVSKAYA, M.A.. red.; GERASIKOVA, Ye.S., tekhn. red. I--- -'- - - - [Distribution of socialist industry; theoretical studies] Raz- meshchenie sotsialisticheskoi pronyshlemosti; teoreticheskie ocherki. Moskva, Izd-vo ekon. lit-ry, 1962. 339 p. (MIRA 15:5) (Industries, Location of) POTAPOV9 S.F.; SAKODYNSKITV K'J.; BORISOVSXUA,M. Avv.- red.; VIASOVA, N.A., tekhn. red. [Stable isotopes around-us) StabillrWe izotopy vokrug nas. Moskva, Gos. izd-vo lit-ry v oblasti atomnoi nauki i tekbn., 1961. 67 p. (MIU 14t8) (Isotopes) MORGULIS, Vlaum Davydovich; BORISOVSKAYA, M.A., red.; WASOVA, N.A., tekhn. red. ------------ [Thermoelectric (plasma) energy converter] Termoelektronnyi (plazmennyi) preobrazovatell energii. Hloskva, Gos.izd-vo lit- ry v oblasti atomnoi nauki i tekbniki, .1961. 80 ~hRA 15:2) (Thermoelectric apparatus and appliances) KARGULISp U*Ta,; BORISOVSKATA, N.A.,. red,; VLABOTA, If,V,, takhu,red, [Protection from peneirating radiation] Zashchita ot deistviia pronikaiushchei rWatuii. Moskva, Gos.izd-yo lit-ry v oblasti atomnol nauki i takhniki, 1961. 82 p. (MIRA 14:12) (Radioaetivity-Safety m8agures) SAUKOV, Aleksandr Aleksandrovich;iQi3lSQVSKAYA,-Ii-&-.,- red.; MAZELI, Ye.I. tekhn. red. [Radioactive elements of the earth] Radioaktivnye elementy Zemli. Moskva, GosAzd-vo lit-ry v oblasti atomnoi nauki i t khnikiq 1961. 158 p. (MIRA 14:22) 1. Chlen-korrespondent Ali SSSR (for Saukov). (Radioactive substances) SHMHM09 Viktor Borisovich; SUDAUKOV9 Boris lqikolayevich; BORISOVSKAYAv K=Ip le.I.9 tekhn. red. [Uranium technology] Tekbnologila urana. Moskva, Gos.izd-vo lit-ry w oblasti atommoi vauki i tekhniki 1961. 329 p. (MIn 14:6) (Uraniumi SHASHKIN, V.L.p red.; ZASc7AVENKO, V.S.p red.; BORISOVSKAYA, M.A.y red.; POPOVA, S.M., tekhn. red. ------- [Radiometry of ores) Voprosy rudnoi radiometrii; sbornik statei. Moskva, Gosatomizdat, 1962. 214 P- (MIFLA 15:7) (Radioactive substances-spectra) (Radioactive prospecting) KAMAYEV, V.D., kand. ekon. nauk; PRUNER, S.L., kand.lekhn. nauk; CIIECHIK, Ye.L., inzh.j LENSKAYA, S.A., kand.ekon. nauk; OSIPOV. A.P., kand. ist. nauk; BORISOVSKAY/k, M.A._O__E~d.; PONOMAREVA, A.A., tekhn. red. , --- [Technological progress in the U.S.S.R.]Natichno-tekhniche- skii progress v SSSR. Moskva., Ekonomizdat. 1962. 274 p. (MIRA 16:2) (Russia-Industries) (Technology-) KARPUKHIN, Dmitriy Nikolayevich; BORISOVSKAYk, M.A., red..; GUZHANOVA, T.N., mladshiy red.; GERASIM)VK,--Te-.t., t-ekhn. red.- [Coriespondence betwow-the increase in labor pmdwtivity and ~mges; based on materials on industry in the U.S.S.R.] Sootnoshenie rosta proizvoditellnosti truda i zarabotnoi platy; na materialakh pronyphimmosti SSSR. Moskva, Ekonom-~ uzdat, 1963. 173 P. (MIRA 16.5) (Wages and.labor produetivity) KORVIYENKO~ Vasilly Petrovich;,WRISOVSKAYA, M.A., red.; GUZHANOVA, T.N., mladshiy red.; PO UMAMVA, A.W-.,-Ue-rchn. red. [Communal division of labor during the period of the transition to communiam]Obshchestvennoe razdelenie truda v period perekhoda k kommunizmu. Moskva, Ekonomizdat, 1963. 260 p. (MIRA 16:3) (Division of labor) SIGOV, Ivgla4l Ivanovich; BORISOVSKAYA, M.A.p red.; GUZHANOVA, T.N., mlad. red.; PONO A' M,-VF' ". .9 -. red. (Division of labor in agriculture during the transition to communism] Razdelenie truda v sel'skom khoziaiatve pri pe- rekhode k kommunizmu. Moskva, Ekonomizdat, 1963. 262 p. (MIRA 16:10) (Agriculture) (Division of labor) DOVGAVI, Leontiy Ivanovich; BORISOVSKAYA, I.I.A., red. (Growth rates of the two sectors of national production] 0 tempakh rosta dvukh podrazdelenii obshchestvennogo pro- izvodstva. Moskvap Ekonomdkap 1965. 78 p. (MIRA 18:8) USSR/General Problems. Abs Jour : Ref Zhur Khimiya, No 10, 1957, 33437 Author : Borisovskaya, N.B. Inst Title Utilization of Natural Gas for Chemical Experiments. Orig Pub Khimiya v Shkole, 1957, No 1, 52-55. Abstract Experiments on the preparation of metals and oxides, chlorination of methane, oxidation of methane, are described. Card 1/1 A- BMSOVSIUYD AM," inzh. I Control equipment for regulating and adjusting the vertical driv6 4d sieve boxes of the IMP separator. Muk.-elev, prom. 24 no,7: 7-8 JI 158. (VI'PA 11:10) 1,Montashno-nailadochnoye upravleniyq Speteelevatormelistroys. .I (Grain-Clea4ing) (Sieves) BORISOVSKIY, A.S. Xarst lakes of Ivanovo Province. Zemlevedenie 4:249-251 '57. Uvanovo Province--Lakes) (Karat) (MLEA 10:91