SCIENTIFIC ABSTRACT BORISOVICH, G. F. - BORISOVSKIY, A.
Document Type:
Collection:
Document Number (FOIA) /ESDN (CREST):
CIA-RDP86-00513R000206420001-6
Release Decision:
RIF
Original Classification:
S
Document Page Count:
100
Document Creation Date:
November 2, 2016
Document Release Date:
June 9, 2000
Sequence Number:
1
Case Number:
Publication Date:
December 31, 1967
Content Type:
SCIENCEAB
File:
Attachment | Size |
---|---|
![]() | 1.66 MB |
Body:
The Industry of Rubber or) the 64 - 7 - 2112
Occasion of the 1,116th AnnJ1----r,-r:ia---y --f ,b,- Soldet ReDublic
of 1-"~l t.:,, 19'~'i could not be accomplished for lack of
both a,,-.i workmen. But the Sovjets want to make
up for this, now. Th~-, asSortment of synthetic rubber
ha3 "ecome -,,,iry SK3-od:Lu-m- butadiene caouchouc,
DVK~-LB-7.0- buta(iiene-Vinyliden-
chlor-~Itie-Latex, 1,-L-talie:i=-nit::,il-z~aou'kchouc SKN of three
some makes of Nairit,
SEB11i c h! orop--c t-ne- lat- v l,ut.-~dl---iie-i;tyrol-caoutchoue
SKS 30, -Pd ina-.,,,, otlhpr~-- Th-2 bu'.adiene-methyl-
(SKMS 30) is produced on an industrial
ii! the 5c-4-,--.t-Unicn only. It is used on a large
s-ca-le for the m!invuficture cf tires. Further the oil-
filled -acutt~hiouc SKS-.",O AM is prcd-uced, the
technoiciq'i--ai propertilb of which by far surpass the
In 1956 the produotion
rf "SKT" -was substantially increased.
t
1- pro,:er-ies at P- temperature of - 60 to -
-250 i. Let
Card 1/2 ci - sup inf f(x)
Emil
On a Theorem on the Critical Points of a Functional 39-3-5/6
Theorer Lot f(x) be an even, positive, weakly continuous and
uniformly differentiable functional in the sphere T. Let f(%) - 0
and rx - 0 only for x - 0. Then the numbers cVc 2v-Y cn,...
are the critical values of f W on the sphere S( A x ),where
15.m an 0 0.
n-f oD
Theorem: If ci - ci+1 ci+p' then the set (f V, ci) n s
contains -;~ closed compact set of critical points the genus of
which > p+1 .
Thirteen Soviet references are quoted.
SUBMITTEDt April 12, 1956
AVAITABLE: Library of Congress
Card 2/2
BORISOVICH, Yu.G.
Stabilit7 of critical values of fanctionala. Izv.v7s.ucheb.zav.;
mat. no.l:z4-34 16o. (IMU 13:6)
1. Voronezheki7 gosudarstvanny7 univernitat.
(Functional.analysis)
BORISOVICH Yu.G.
-i
Rotation of a weakly continuous vector field. Trudy Mat. inst.
AN Gruz. SSR 27:27-42 '60, (MM 15:3)
(Topology)
AUTHORs
TITLE:
PERIODICAL:
j/044/62/000/003/038/092
0111/C444
Yu. G.
The application of 1,.io weak topolog;, in problems concerning
the periodic soluticts of operator equations
Referativnyy zhurnal, Matematika, no. 5, 1962, 701
abstract P296..("Furctsionalln. analiz i yego primeneniye",
Bakur AN Azerb SSR, 't)61, 23-24)
TEXT: The equation
ax(t,-L) K~
. S K(T , S) f Et' S, x (t, ds
at
where f(t, a, x) has the period co with respec, ',o I-., and f(x,s,O)_~': 0,
is considered as an ordinary differeatial eq1.!.-1.jon n a fWiction space,
the choice of w4~qh is determined by the conditions w~_Ich are to be
satisfied by the"kernel K(V , b) and the function f(t,s,x). Using the
fixpoint principle, the author proves that there exists a non-trivial
periodic solution x(t + w ,r) = x(t,T ) of the equation (1) foi, almost
Card 1/2
The application of the weak topology ...
all t. The proof is not given.
EAbstracter's note: Complete translation.3
Card 2/2
S/0474'42/000/003/038/092
Gill 4,14
20625
B/020/61/136/006/001/024
14134o C 111/ C 333
AUTHORs Borisovich, Yu. G.
TITLE: A weak topology and periodic solutions of differential
equations
PERIODICAL: -Akademiya nauk SSSR. Doklady, v. 136, no.6, 1961,
1269-1272
TEXT: Let B be a real Banach space; B'W-the conjugate space; N a
linear subspace of functionals from B* . The weak topology defined
in B with the aid of N is denoted as N-weak topology. Assume that
every linear bounded functional from N* is representable in the form
a(f) x B; assume that to every x there exists an f E N
such ;h! t(xf) X 11 and # f J/ M independent of x.
Theorem 1: An operator F(x) acting in the sphere P x 1 or in
a bounded convex weakly closed set and continuous in the N-weak
topology possesses a fixed point.
Let T C B be a convex weakly closed set. If T is unbounded, then
functionals f19 ... 2 f C N are assumed to exist for which the
polyhedron p
R ;/ tx I , a k f k(x) 15: bk (k - 1,2,..., p) (1)
Card 5
VX1
20625
B10201611136100610011024
A weak topology and periodic . . . C Ill/ 0 333
intersects the set T in a bounded set T(R) for arbitrary a 15 b k9
where every bounded set from T is assumed to be contained in-one
of the R. Let the N-weak topology be introduced in T. Let U be a
bounded open set, U its boundary, U its closure. The vector field
x - F(x), F(U)C-',T, continuous in the N-weak topology, without
zero vectors on Up is considered on U; lei F(X) to bounded. On the
boundary let the rotation of the field be defineet as ins Yu. G.
Borisovioh (Ref-3t DANt 131v No.2(1960)).
Theorem 2: Let U be star-shaped relative to x e U) let F(X) posses
no fixed points on ~, where F(O) C 1. The rotRtion of the field
is then equal to + 1.
Theorem 3: Let T be centrosymmetrical; U centrosymmetrical, and
Star-Bhaped relative to19 . If the field x-F(x) is uneven on
then its rotation is uneven too.
The equation
dx
dt . F(t,x)
(2;
Card 2/5
1
2062
B/020/61/136/006/001/024
A weak topology and periodic . . . C 111/ C 333
is considered in Bp where F(t,x) is weakly continuous in (t,x) in
the sense of the N-weak topology. Let the solution be denoted as
weak if x(t) is strongly continuous in t and &x/ &A.- 4 xl(t) in
the N-weak topology.
Theorem 4: Let F(t,x) be defined for i 1 lk t lk t2 and 0 x - x 0 r,
weakly continuous in (t,x) and
sup 11 F(t,x) 11 - N 0 < 00 '. t 1 -.-~ t 4 t29 lix - x 0 11 !g r
Then there exists a weak solution of (2) satisfying the condition
X(t1) - x 0 and defined in tj t-_- t 66 t 1+r / mm 0 .
Under additional assumptions the author proves the uniqueness (theorem
5) and boundedness (theorem 6) of the solution.
Theorem 7: Let N be separable; let the right side of (2) depend
weakly continuously-on (t,x) for t F_ I_tIP)t ] , x 6 T, where T
is a certain weakly c1red set in B. Let . ihe solution x(t,x ),
x e T be defined on t1, t 2:] and unique; b ) the transformation
X?t,x 0) be bounded on T. Then the operator X(;,Xo ) depends weakly
Card 3/5
20625
S/020/61/136/006/001/024
A weak topology and periodic . . . C Ill/ C 333
continuously on (t,x 0).
Let N be separable and T X1 1P(x) 1-4 bf N29
, a
a,f bf be numbers and N a subset from N.
2
Theorem 8s Let F(tvx) be in (t,x) in the neighborhood S of the set
T a weakly continuous, periodic operator of the period CAa which
satisfies the inequalities:
(f CF(t,x)] ~t 0 for ff(x)-at xET
'-P[F(t,x)j jg 0 for T(x)-bf , xST.
Aseume that the weak solution of (2) is unique in the points of B.
Then there exists a periodic weak solution of the period w on the
set T.
Theorem 9 is also a statement on the existence of a periodic solution
(under other assumptions).
Card 4/5
20625
3/020/61/136/oo6/001/024
A weak topology and periodic 0 111/ C 333
The author mentions Tikhonov; he tbanks M. A. Krasnosel'skiy.
There are 6 Soviet-blo'c and 2 non-Soviet-bloc references.
ASSOCIATION: Voronezhskiy gosudaretvennyy universitet (Voronezh
State University)
PRESENTED: October 1, 1960, by P. S. Aleksandrov, Academician
SUBMITTED: September 30, 1960
Card 5/5
ACCESSION NR: AP4006580 S/0021/63/000/004/0434/0437
AUTHOR: Bory*sovy*ch, Yu. G.
TITLE: Schauder-TLkhonov fixed point principle and periodic solutions of
differential equations
SOURCE: AN UkrRSR. Dopovidi, no. 4, 1963, 434-437
TOPIC TAGS: Schauder Tikhonov principle, fixed point theorem, differential
equation periodic solution, weak continuous mapping, bounded solution
ABSTRACT: A theorem on the fixed point of a weak continuous mapping is applied
for the proof of the existence of periodic solutions of differential equations in
Bansch space.
Bounded solutions are also studied. Applications to Lntegro-differenstLal
equations are indicated.
ASSOCIATION: Voronss"y*y Dershavny*y Universy*tet (Voronas' State University)
SUBMITTED: 0fiAugG2 DATE ACQ: 03May63 ENCL: 00
SUE CODE: M NO REP SOI~-, 003_~ 000
OTHER-
I-C.Ord,
5/020J63/148/002/003/037
B187/B112
AUTHOR: Borifinich, Yu. 0;
TITLE: Peri:'odic solutions of differential operator equations
involving a small parameter at.the derivative
,PERIODICAL: Akademiya nauk SSSR. Doklady,,v. 1489 noo 2, .1,9631, 255~258
TEXT: Under the conditions-given by'four iheorems,.the system of.
differential operator ec-aations
dx
+ A (1).~ = f (e, dy + B J.F, if (1) yg (e, j) (t), (1)
Y dl
with the unknown functions x(t) and y(t),.the' period W, and values from':
the Banach spaces E and E for E --? 0 has an 0-periodic solution.
2
x,_(t), y,:(t) which uniformly tends toward the smooth solution x
0 0
assumed to be known of the degenerate system (F_ - 0). The method 'by
L. Pletto and N. Levinson (Sborn. per. Matematika, v. 2, no. 29 19 '58, 61.)
is generalized and reduced to a non-linear integral equation for which
Card 1/2
Y
S/020/63/148/002/003/037
Periodic solutions of differential ... B187/B112
Schauder's principle and that of compact mappings is applied. E is a
-real or complex Banach space of the w-periodic continuous functions
X(t) and y(t); E12(cj) is the direct sum of the spaces
El(w) and A(t) and B(t) are 0 -periodic operators in El and E
E2(w) 2
which depend on the parameters x and y and explicitly are written
'A(t) . A' -](t) and B(t) B[X,'Y](t) where A~'Z,'Y] and B[_X,~]
L7R in general:
are non-linear mappings of the space E into the spaces IF, (w) and
R2(co) of linear, bounded, (J-periodic operations continuous according to,
the norm and dependent on t; f and g are mappings of the space E into
12
El(c,>) and E,(6)) depending on the parameter.. E. The results may also be
applied to unbounded, nonlinear operators'B, f, g.
PRESENTED.- Ju-he 14, 1962, 1 G Peti~ov.skiy,,, Apaa,em.ic.ian
SUBMITTED: May 12, 1962
Card 2A
BORISO-VICH:,YU.G.
Applic4tion of the concept of vector field rotation, Dokl.
AN SSM353 ro.1:12-15 N 163. (MIRA .17:1)
1. Voronezhslkiy gosudarstvennyy universitat. Predstavleno
akademikom P.S. Aleksandrovym.
TORGOVITSYMA, II.S.; BORISOVSFAYA, B.L.; FAL'KOVA, I.I.; YUZMMLISYAYA, A.I.
- -- ---.
Salmonellal diseases in Zaporashlyeo Zhur.mlkrobiol.apid. i
iTram. 30 no.5:135 My '59. (MIRk 12: 9)
1. Is Zaporozhakoy oblastnoy sanitarno-opideniologicheekov
otantait.
(.IALMONELIA INFRCTIONS. epideniol.
in Russia (Rue))
BORISOVSKAYA, G.M.
Anatomlootaxonomio study of some representatives of fazi2y
Crassulackao DO. Vest.LGU !~ no*21:159-162 160~ (MM 14:4)
(Orpine) (BDtanw-Anatomy)
PROBST, Abram Yefimovich, prof.; LISOV, V.Ye., red.; BORISOVSKAYA,
M.A.. red.; GERASIKOVA, Ye.S., tekhn. red. I--- -'- - - -
[Distribution of socialist industry; theoretical studies] Raz-
meshchenie sotsialisticheskoi pronyshlemosti; teoreticheskie
ocherki. Moskva, Izd-vo ekon. lit-ry, 1962. 339 p.
(MIRA 15:5)
(Industries, Location of)
POTAPOV9 S.F.; SAKODYNSKITV K'J.; BORISOVSXUA,M. Avv.- red.; VIASOVA, N.A.,
tekhn. red.
[Stable isotopes around-us) StabillrWe izotopy vokrug nas. Moskva,
Gos. izd-vo lit-ry v oblasti atomnoi nauki i tekbn., 1961. 67 p.
(MIU 14t8)
(Isotopes)
MORGULIS, Vlaum Davydovich; BORISOVSKAYA, M.A., red.; WASOVA, N.A.,
tekhn. red. ------------
[Thermoelectric (plasma) energy converter] Termoelektronnyi
(plazmennyi) preobrazovatell energii. Hloskva, Gos.izd-vo lit-
ry v oblasti atomnoi nauki i tekbniki, .1961. 80 ~hRA 15:2)
(Thermoelectric apparatus and appliances)
KARGULISp U*Ta,; BORISOVSKATA, N.A.,. red,; VLABOTA, If,V,, takhu,red,
[Protection from peneirating radiation] Zashchita ot deistviia
pronikaiushchei rWatuii. Moskva, Gos.izd-yo lit-ry v oblasti
atomnol nauki i takhniki, 1961. 82 p. (MIRA 14:12)
(Radioaetivity-Safety m8agures)
SAUKOV, Aleksandr Aleksandrovich;iQi3lSQVSKAYA,-Ii-&-.,- red.; MAZELI, Ye.I.
tekhn. red.
[Radioactive elements of the earth] Radioaktivnye elementy Zemli.
Moskva, GosAzd-vo lit-ry v oblasti atomnoi nauki i t khnikiq
1961. 158 p. (MIRA 14:22)
1. Chlen-korrespondent Ali SSSR (for Saukov).
(Radioactive substances)
SHMHM09 Viktor Borisovich; SUDAUKOV9 Boris lqikolayevich; BORISOVSKAYAv
K=Ip le.I.9 tekhn. red.
[Uranium technology] Tekbnologila urana. Moskva, Gos.izd-vo lit-ry
w oblasti atommoi vauki i tekhniki 1961. 329 p. (MIn 14:6)
(Uraniumi
SHASHKIN, V.L.p red.; ZASc7AVENKO, V.S.p red.; BORISOVSKAYA, M.A.y
red.; POPOVA, S.M., tekhn. red. -------
[Radiometry of ores) Voprosy rudnoi radiometrii; sbornik statei.
Moskva, Gosatomizdat, 1962. 214 P- (MIFLA 15:7)
(Radioactive substances-spectra)
(Radioactive prospecting)
KAMAYEV, V.D., kand. ekon. nauk; PRUNER, S.L., kand.lekhn. nauk;
CIIECHIK, Ye.L., inzh.j LENSKAYA, S.A., kand.ekon. nauk;
OSIPOV. A.P., kand. ist. nauk; BORISOVSKAY/k, M.A._O__E~d.;
PONOMAREVA, A.A., tekhn. red. , ---
[Technological progress in the U.S.S.R.]Natichno-tekhniche-
skii progress v SSSR. Moskva., Ekonomizdat. 1962. 274 p.
(MIRA 16:2)
(Russia-Industries) (Technology-)
KARPUKHIN, Dmitriy Nikolayevich; BORISOVSKAYk, M.A., red..; GUZHANOVA,
T.N., mladshiy red.; GERASIM)VK,--Te-.t., t-ekhn. red.-
[Coriespondence betwow-the increase in labor pmdwtivity
and ~mges; based on materials on industry in the U.S.S.R.]
Sootnoshenie rosta proizvoditellnosti truda i zarabotnoi
platy; na materialakh pronyphimmosti SSSR. Moskva, Ekonom-~
uzdat, 1963. 173 P. (MIRA 16.5)
(Wages and.labor produetivity)
KORVIYENKO~ Vasilly Petrovich;,WRISOVSKAYA, M.A., red.; GUZHANOVA,
T.N., mladshiy red.; PO UMAMVA, A.W-.,-Ue-rchn. red.
[Communal division of labor during the period of the transition
to communiam]Obshchestvennoe razdelenie truda v period perekhoda
k kommunizmu. Moskva, Ekonomizdat, 1963. 260 p. (MIRA 16:3)
(Division of labor)
SIGOV, Ivgla4l Ivanovich; BORISOVSKAYA, M.A.p red.; GUZHANOVA, T.N.,
mlad. red.; PONO A' M,-VF' ". .9 -. red.
(Division of labor in agriculture during the transition to
communism] Razdelenie truda v sel'skom khoziaiatve pri pe-
rekhode k kommunizmu. Moskva, Ekonomizdat, 1963. 262 p.
(MIRA 16:10)
(Agriculture) (Division of labor)
DOVGAVI, Leontiy Ivanovich; BORISOVSKAYA, I.I.A., red.
(Growth rates of the two sectors of national production]
0 tempakh rosta dvukh podrazdelenii obshchestvennogo pro-
izvodstva. Moskvap Ekonomdkap 1965. 78 p.
(MIRA 18:8)
USSR/General Problems.
Abs Jour : Ref Zhur Khimiya, No 10, 1957, 33437
Author : Borisovskaya, N.B.
Inst
Title Utilization of Natural Gas for Chemical Experiments.
Orig Pub Khimiya v Shkole, 1957, No 1, 52-55.
Abstract Experiments on the preparation of metals and oxides,
chlorination of methane, oxidation of methane, are
described.
Card 1/1
A-
BMSOVSIUYD AM," inzh.
I
Control equipment for regulating and adjusting the vertical driv6
4d sieve boxes of the IMP separator. Muk.-elev, prom. 24 no,7:
7-8 JI 158. (VI'PA 11:10)
1,Montashno-nailadochnoye upravleniyq Speteelevatormelistroys.
.I (Grain-Clea4ing)
(Sieves)
BORISOVSKIY, A.S.
Xarst lakes of Ivanovo Province. Zemlevedenie 4:249-251 '57.
Uvanovo Province--Lakes) (Karat) (MLEA 10:91