Published on CIA FOIA (foia.cia.gov) (https://www.cia.gov/readingroom)


JPRS ID: 8578 USSR REPORT ELECTRONICS AND ELECTRICAL ENGINEERING

Document Type: 
CREST [1]
Collection: 
JPRS [2]
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP82-00850R000100070023-8
Release Decision: 
RIF
Original Classification: 
U
Document Page Count: 
120
Document Creation Date: 
November 1, 2016
Sequence Number: 
23
Case Number: 
Content Type: 
REPORTS
File: 
AttachmentSize
PDF icon CIA-RDP82-00850R000100070023-8.pdf [3]5.83 MB
Body: 
APPROVE~ FOR RELEASE: 2007/02/U9: CIA-R~P82-00850R0009 U0070023-8 ~ ~ ~ `I . I EL : . , i ~ ~ ~ 2A JULY~~ ~ i979 ~ ~ ~ ~ C~FOUO ilT9 ) ~ ~ ~ ~ i OF~ 2 ~ APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 , ~nit l)~FICIAL USF: l)N[.1' - JPRS L/8578 20 July 1979 USSR Re ort - p EIECTRONICS AND ELECTRICAL ENGINEERING (FOUO 1 /79~ ~ -7 FBIS FOREIGN BROADCAST INFORMATION SERVICE ~OR OFFICIAL U5E ONLY , APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 NOTE JPRS publicaCions coneain in�drmntion pricnttrily from foreign newspgp~rs, periodicaLs gnd books, but ~lan from news ag,:ncy transmisgiong and brnndcagCs. Materigls from foreign-language ` sourceg are translated; those from Engliah-l~nguage sources are transcrlbed or reprinCed, with th~ original phrasing and othcr characCeristics reCained. Headlines, editorial reports, and maCerial ~nclosed in bracketa [J are supplied by JPRS. Processing indicaCors such as (TextJ or (ExcerpG) in the first line of each irem, or following the last line of a brief, indicate how the original information was process~d. Where no processing indicator is given, rhe infor- mation was summarized or extracCed. Unfamiliar names rendered phonetically or transliterated are - enclosed in parentheses. Words or names preceded by a ques- tion mark and enclosed in parentheses were not clear in the original but have been supplied as appropriate :n cUntext. Other unattributed parenrhetical notes within the body of an item originate with the source. Times within 3Cems ai~e as given by source. - The contents of this publication in no way repres~nt the pali- cies, views or attitudes of the U.S. Government. ~or f~.~rther information on report conr.ent call (703) 351-2938 (economicl; 3468 (political, sociological, miliCary); 2726 (life sciences); 2725 (physical sciences). COPYRIGHT LAWS AND REGUI.ATIONS GOVERP3INC OWNEFSHIP OF MATERIALS REPRODUCED HEREIN f~EQUIRE TNAT DISSEMINATION OF THIS PUBLICATION BE RESTRICTED FOR OFFICIAL USE ONI.Y. APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 , ~ FOR OFFZC~AL USE OIJI~Y - ; ; JPP,5 L/8578 ~ , 20 July 1979 USSR REPORT ' ' ELECTRONrCS AND ELECTRICAL ENGINEERING ~ ~ , . cFOUO i/~9~ ' 1'his eer3al publication contains articles, abatracta of articlea and newe ~ � it~ma from USSR eci~ntific and rechnicai ~ournals oa the spacific eub~ecte , reflected in the table of contents. , Photoduplications of foreign-language sourcea may be obtained from the ; Photoduplication Service~ Library of Congre8s, Waehington, D. C. 20540. ; Requesta should provide adequate identification both ae to ~he source and i the individual articl~(s) deaired. ' CONTENTS PAGE CIItCUrl' THEORY . ~ Analysis o� Bayea Amplitude EstimQtes With 'Intermittent~ Signal Distortions ; (V. A. Vishnyakov, V. M. Katikov; NUZ " RADIOELEIQ'ROIVIKA A ' , Pr 79) 1 � Potential Noise Stability of Reception of Signala With , . Discrete Frequsncy Modulation oP a Noise and Structural Interference Backgrounfl AM~ A. Sokolov:�et�al::��IVUZ RADIp~RONIKA, i . p ?9) 7 cor~rnrr.caTIONS ' ; Detex~miuation of the Zone of a Guaranteed Signal Level i~ a SateZlite Comnnanicatioa System ~ (L. M. MQShbits, et al.; RADIprPEI~Il~IKA~ pp,r� 11 ; ! OSCILIATORS AND MS)DULaTQRS Millimeter~�~'ave Solid-State Oscillato~s ( V� Z'aranenko, et al.; IZVESTIYA WZ ~?nio~~Oxmma, rro 10, i978) lg ~ -a- (III-USSR-21ES&TFOUOJ F02' OFFICIAL~ USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 . ~Olt O~FICIAL US~ ONLY ~ CON'~L'NTS (Con~inued) ~ge '1'hc I~'I.~.i;erLng CapA.bl.~.ity of Utgii;al ~`rec~uenCy Syntheaiz~re ( 0. (~u~erna~nrov; TLVE9TIYA WZ RADIOEL~~IQ'RON~KA, No ii, i978) 4~ PHOTO~L~CTRZC E~GT Noiee stability of Uetection of Re:lative Phase Telegraphy 8lgnals in Optical Data Tranemi.ee3on Li.nee ( E. V. Borisov; M1Z RADIOELEICrRONZICA, Apr 79 Evalua~ion of the Quality of Detection of a Wea.k Op~ticQl s:~~i ' (P. S. Aki.mov; et al.; MfL RADYOELEIQRONII{A, A~' 79) 69 PUL~E TECHI~IZQUE The Cascade Connection of Surface Acoustic Wave Filters (V. I. :alov; I'LVESTZYA WZ RADIOELEKTRONIKA, No 1, 1979) ?9 Optimization of Parameters of a Nhil.tichannel Pulse Si~al Scan De~�ice (Ye. A. Sherstnev; MlZ RADIOELEIQ'RONIKA~ Apr 79)�� ~ Reception Noise Resiatance in a System With Q,am and Complex Signals Under Pulse Interference Conditiona (a. Grigor~ yev; NUZ RADIOELE~.~ONIIW, Apr 79~ 90 RADAR Dis~inguishing Age Categories of 3ea Ice in Radar and Radiothermal O~bservations in the Microwave Band (A. Ye. Basharinav, A. A. Kurakaya; RADIOTEI~IIKA, APr ?9) 96 Optimum Evaluation of the Perametera oY Trs~ectories of I a Group of Moving Ob~ects (v. v. I~rtiumov; RAD~OTEI~IIKA, APr 79) l03 ~ SIGNAL PROCESSIIdG A Unified Rep~eaentation of ~he Orthogenal I~tricea Used in Digital Signal Processing ' (L. P. Yaraslavskiy; RADI02'EI~TIKA I EI,II{TP.ONIKA, No 1, 1y79) 107 -b - FOR OFFICIAL USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~ ~ ' Fo~ oi~rrr,rn~. trs~~ dNi.,Y ~ ~ ~ c~~cu.cm m~~ony ; ~ UDC: 621.396.96; 621.391.26 ANAT.YSIS OF BAYES AMPLTTUDE ~STIMATES WITH 'INTERMITTENT' SIGNAL DISTORTIONS ' Kiev IWZ RAUIOCLEKTRONIKA in Russian No 4, Apr 79 pp 94-98 i ~ (Article by V. A. Vishnyakov and V. M. KaCikov] ; [Text] Received radio-frequency signals, in addition to fluctuaCion-eype ~ distortions, frequently axperience brief ("intermittene") disCortions which ' either subaCanCially a1Cer receiving conditions or make it totally imposeible for the observer to extracC the information contained in the aignal. Optimal ; processing of signals under such conditions involves employment of statistical methods which are presently being developed for aimultaneoue Cesting of ~ hypotheses and evaluaCion of the parameters characteriaing theae hypotheaes ~ [1-3, 4]. This article deals with analysis of an opCimal algorithm for es- ' timating the amplitude of a radio signal on a background of fluctuation in- ; terference under conditions of "intermittent" distortions of the signal dis~ appearance type (hypothQSis H1) and ita limitaciona in a receiving circuit as a consequence of a sharp intensity increase with intersystem pulae inter- _ ference (hypothesis H2). ; The specific feaCures of these %'.sturbances boil down to the fact that hypoth~ses H1 and H2 presume total loss of transmitted informaCion and ob- ' served realization, so that Che best estimate under the condition of cor- i rectness oE hypothesis Hl or H2 is a priori mean ':S~ of ineasured par~eter . Consequsntly, the general expression for opCimal Bayes eatimate ~~?~5 , ob- ~ tained in [5, 6J, under conditions of several mutually excludingtypotheses, - can in this case be altered as follows: ; ~ ~6 ~x) = P ~No~z~ 80 ~x) - P (lY~/ti)~ (1) where P(Hp/x) a posteriori probability of acceptance of hypothesis Hp ; on the absence of "intermittent" distortions in adopted realization x; j ~iS.p(x) optimal Bayes estimate under the condition of correctness of hypothesis HQ, that is, with signal reception on a background of fluctuation interference alone. Our task is investigation of the qualitative characteristics of ~stimate (1) ~ in comparison with Che known Bayes estimate of conditional mean ~ ~(x), as well ~ as an estimate of maximum plausibility~j).~(x), which in this case lose their 1 ~ ; FOR OFFICIlw USE ONLY ~ APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 F'OEt O~I~ICIAL US~ UNLY ~~prjm~ll.ty. We Hlinll exr~mine ~ign~l estimaeion in the anaumption thnt the u~~rlorl clenHtCy nE prnbability W(;a) i~ uniform in inCervnl (~L~1,~L~2~ nnd Cl~e ytgn~l/nnlye rnCin ta quEticienCly lnrg~ thgC nne can ueilix~ a Gaut~~inn ap- proxim~eton of d~ns3Cy of probability of gelective valueg of Che ob~erved process in the ab~enc~ of "intermittenC" disCortion~ (hypothegig lb). We shall also sCipulaCe Chat observed realization x ehall mean n independent selective vglues xi of a sraCionAry random procesa, tihat is, tile hypoChesis on Che character of inCerference does noC change during the enCire observaCion - tnterval. Tl~ey~ nysumptions enable us to write conditional densities of probability W(x/tr , NL) oE nbserved daCa for all hyporhetical dieturbances as follow:~: ~ ~ ~x~ _ Ii (x/~~ H~) ~ (Z~~~~up _ ~-o , ~ ~ ~ (zlN~) ~ ( Q' exp ( Z /J, i~i ~ ~ l xf . ~ c~iN~~ ~ rj Q a ( o - ~ ~ , ~ t~> . where a2 standard deviation of observatior~ noise; ty;~p receiving circuit clipping threshold; d(�) Dirac delta function. DenaiCy of probaHlity (4) cle5cribes the determined character of observations in the case of correctnes~ " oE V~ypothesis H2, whereby in actual receiving devices quanCity~L~ ~P is loc:ated beyond the limits of the range of posaible signal fluctuations, that i~;, onc can assume that ~~pa u+aa. The latter circumstance enables us to ignore in numerical calculations the effecC of cutting off of densities (2), (3), connected with signal clipping in the receiving circuit. We ~fia11 firid fimctias P(i~~/x) and ~~(x) contained in (1) on the basis of the following known relations: (z) ~ ~ 9m ($/x. He1 d6. ' (5) ~ p~N~x~ a~ o~ Is/Ho 1~ ~6~ ~ p~{~ (x/H~) ~-o 2 FOR OFFICInL USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~ ~ i rox orrtcrn~ vst's ONLY i ~ whnrc p-- r~ r. ior. I~o>>an~ i i , i P p 1 t e~ nf hypotheses N3 for i~+0, 1, 2; ~ - : 1~ (x/K~) ~ (elN~)1~ (x/0, N~) d9, ~ . ' ~ (~lx, Hol et DD (9/N~) W (x/9~ Ko)I {D (x/H~) (8) j, and on assum Cion Om p f~t~ 6,), ~ 1~ (~lNij ~ 1~ (8) m - di)~ if ~ E ~ '(9) i 0 otherwise. ~ ; SubyCituring in relation~ (5)-(8) initial probability densiti~~ (2)-(4)~ ~ (9) and performing the neceasary algebraic tranaformations and integration, ~ we finally obCain: i ~ i p (Ho~x~ Po _ ~m r Y - $~m)1 ~ (~i- ~M~,1l1 ~(e -9 ~ Q ~^~C Q /Jx : i X r~ r ~ ~$t "~wt~ _ ~ ~~~81 ~~Mn~ ~ , ~ ~ 1~n (s~-9i) ~ ~ � Q . ) ( )l ~ P~ (~n)~~~ ~p _ n9~� " x G.-t) r ~ ~ P~cY~n~ . Q - Q + Q x ~ , w I ~ ~ ~ ~ - /i~~ ~ ' . x eu ~ z~ ~ 1 ' p Q~ 8 C o ~ (1~ I ~~t ~ ^ ^ v a ~ ; $o ~x! � $~m - 2~tn {~P - $ro)~~ -atp ( ~ (dt - ~~t 1~ x ; i ~ ' 1 ~ r r Vn (e~ Yn ~~f -~rn~ X Q )-m( Q (U) I 1 ~ ~ ~s~ ` ~ I~ ~P - ~ ~ i where . ( 2) integral of probabilities ~ 1 $rn (x) ~ a x! (1~I { n ! . . I maximally plausible estimate, which in the given case is the estimate of a selectivG average,, Expressions (10) and (11) together with (1) and ' considering ~;~~~~+0~)/2 " ' determine Che algorithm of an optimal es- ! timaCe, in the Bay~4 sense, of the signai envelope under�conditions of ~ "intermittent" interference. i We shall further examine the effecCiveness of the obtained estimate in ~ comparison with estimates 21a and�jf~M~, which are simpler in practical , 3 FOR OFFICItiL USE ONLY ! APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 FOK dNi'ICtAL 'u3N.' dNLY . 1 ~ r.ealizACion. I~'or this we ahall determine dieplacementi and rooti-mettn- yq~iar~ Error of C}~e ox~mtned esCimates, ChBC 1A: " a~~~ _ ~ rx) ~ ~3 ~x~ ~ a) IP~~ ~x/d~ Na } -h Ai1? (xlN~ + P~~' (xlNr~l d4d~, (t8) p~.~ E {(~t,? - 9)'} ~ r l~) - (0) IP~~' f~lA~ /l~ ? Xc Pi~ (x/Ht) -1- P~m (xlH~)1 dd~ (1 where X-- space of selecCive values xm[xl, x2, xn~. Analytical deter- ' minatio~i~of these characterisCics is difficulC in the general case. There- fore we shall utilize simplifying asaumpCions: . 6~ ~o, 6,-9~ ~ v and 6~r-9~~ o~ which make iC possible to obtain approximaCe relationa for illuetraCion . of the e�fectiveness of the examined esCimatea,~ SubsCituting in (13), (14) corresponding expressions for estimaCes .~M~,$� or L~~� and utilizing (2)- (4), (9), we obtain following integration: for maximally probable estimate.~~~ a,e,~OSY 2 ~-I-P~~~-(1-po1$; ~(15) . - r t ~~ec P~ ~ -I- Pt L 2n~ + C~~ta _ ~SQ~-~� Pi ~6R - 2~ro9~ ' ~Pi -N P~ ~ al'~~ -F~ ~ . (18) ~ 3 ' ~ . for quasioptimal Bayes estimate 1J`p ao C Pt~s -f- P,~~ -(1- vo) (l~ ~ c Po n~ -F' f Pi g 8~~~ ~ , 1181 for optimal Bayes estimate . , ' a~ s 0. � . . lly) ' � : . ~a c Ab n -F- ~Pi 'f- Ps) 1~ ~ (~1 The results of numerical calculations with formulas (15)-(20) with n=1 are presented in Figure 1 in the form of standardized dependences a(.)/~ (Figure la) and p(.)~a' (Figure lb) on parameters of interference pl and P2� � ~ ~ FOR OFFICIl~L USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 I ro~ arr~r,rnr, crsi: c~n~~,Y i ; ~ /13 p/~t , \ l50 ~ , ~ ~ ~ �0 Ql 0,? ~ ~ ~ ( ~ 10i0 ~ ( ~ , i 5~ ~ . I '0 Ql 0? ~ ~ ' ~ . ~ ~ , , . ' � ~ Q~ RZ Q Q~ Q4 QSP~ 0 ql . 0,? a3 Q4 0,5 ! ~ ~igure 1. I I i i Th~~ ~o1id lines in Figure 1 correspond to eatimate~~o , the dashed lines ~ to egCimate U M~, and the dot-dash lines to optimal BAyes esCimaCe~~p. � ~ The following input data were adopted in our calculationa: i ~ ' ~tilo-a, e,~Q-so, d~olQ-a~. ~ It is evident from Che figure that the optimal Bayes esCimate ia distinguislied ~ from Che oCher examined estimates by greater effectiveness and liCtle ~ dependence of errors on interference parameters. This is due to the ~ selecCive action of the function of a posteriori probability of reception ~ of an undistorted signal P(H~/x), cAr?Cained in expression (1). In addition~ ~ an important advanCage of estimaCe 2~ is the absence of displacement, which ; with oCher quasioptimal estimates can reach significant values (see Figure la). ~ ~ For illustration of the quality of the obtained approximate expressions, the ' asterisk in Figure lb designates the results of calculations of effective- j ness of estimate~~Si~, obtained by means of numerical integration on a com- ~ puter of expression (14) w3th utilization of (2) (4) and (9) (12). These I results confirm the applicability of the obtained expressions for practical , applications. ~ ~ ~ ~ . BIBLIOGRAPHY 1 ~ 1. Repin, V. G., and Tartakovskiy, G. P. "Statisticheskiy sintez pri ; apriornoy neopredelennosti i adaptatsiya informatsionnykh sistem" ; [Statistical Synthesis With A Priori Uncertainty and Adaptation of In- E formation Systems], Moscow, Sovetskoye radio, 1977. I 1 - 2. Levin, B. R.' "Teoreticheskiye osnovy statisticheskoy radiotekhniki" [Theoretical Principles of Statistical Radio Engineering], Moscow, Sovetskoye radio, 1975, 2.. ~ 3. Grishin, Yu. P., and Katikov, V. M. "Combined Detection and Estimation j� of Random Signals (a Survey)," ZARUBEZHNAYA RADIOELEKTRONIKA, No 6, 1977, page 3. I ~ 5 I FOR OFFICII~;. USE ONLY i ~ . ~ APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ; ~OR UN~'ICIAL USL ONLY 4. Let?in, B. R., and Stiinakov, Yu. S. "Combined Optimal Algorithms or Signal DeCecCion and EstimaCe of Their ParameCers (a Survey)," RAUIOTCKHNIKA I EL~KTRONIKA, 22, No 11, 1977, page 2239. 5. Sh.inakov, Yu. S. "Bayes ~stimaees of Parameters of a Signal Ma~ked by fnter.E~rence W~ICh Several MuCually Excluding Hypotheses on ti~e Ub~erved rrncess," ItADIOTEKHNIKA, 26, No 4, 1971, page 12. 6. ~redriksen, A.; MiddlCon, D., and Vandelinde, D. "Simultaneous Signal ` b~tecCion and Estimntion Under Multiple Hypothesea," IECE TRANS., IT-18, No 5, 1972, page 607. Submitted 14 December 1977; Revised and resubmitted 9 March 1978 COPYRIGHT: "Tzvestiyd vuzov SSSR - Radioelektronika," 1979 30 24 CSO: 1870 6 FOR OFFICIisI. U~E UNLY ~ APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~ , I~OR OCF?CTAL i151: ONL~Y ~ i ( ~ C]RCUI~ THEORY i I i ( I ' I ' unc: 621.391.1 j "OTLNTIAL NOISE STABILITY OF RECEPTION OF 5IGNALS WITH DISCRETE FREQUENCY I MODULATION ON A NOIS~ AND STRUCTURAL INTERFERENCE BACKGROUND ! I Kiev IVUZ RADIOELEKTRONIKA in Rusaian No 4, Apr 79 pp 85-87 ~ I [Article by M. A. Sokolov, I. I. Chadovich, and R. F. Obukhovich] (Text] The mutual influence of discrete information transmission systems operating simultane~usly and independentty in the same �requency band can be reduced by efficient selection of signal waveform. A phase-manipulated signal with discrete frequency modulation (DI~M) appears promising in this ~ regard. Noise is also a DFM signal, but with a different elementary pulse ~ frequency sequence, thr~t is, it is atructural. One can demonstrate Chat - resistance to structural noise will be the greatest if equal-probability selection oi DFM signal elementary pulse frequencies is performed. IC is natural to assume that selection of elementary noise pulse frequenciea i is also equa~ly probable, but independent of selection of frequenciea in ~ the signal. The potenCial noise stability of reception of such signals on a background of additive fluctuation interference is well known [1]. It is ` I oE interest to estimate the potential n~ise stauility with simultaneous influence of noise and structural interference. I i ~ ~ ~ Cut~+an ' ~ r ~ l,~,r==- ~-~_---==-~t 0 5 !0 ' 05 h "`Ii - ' --r~ . 'z . m~4 a 0 -i--7-~._1 1._1...~t ~ . ~ '-jFr--~--f --I---t+? 't ~ ` ~ _ L Tno~?`exa ~ 2 ~ ~ I ~ !0 J \ 2 _ m~ ~1--~- ~ =1=~~?~ t ~ I . -t~+_ ~p-9 ~ ~ ' - - J% f!, - i ~ _i^ ~--r- -r- ,s 1?`. I . , , r i 0 _ _ , ~ ~ - ~--l t ` Ult) xo enamv S~ p-6 m=16 m=d ~ 3 _ ~ ` ~ 4 ( , . o Aennmp ~ $z p - ~ ; , ~ { r Figure 1. Figure 2. 7 ' FOR OFFICIE~L USE UNLY I . APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 A'Olt OrFICTAL U5E ONLY Key Co Figure 1 on preceding page: 1. Signal 3. CorrelaCor 2. Noise We shall assume that (Figure 1~1: information is Cranamitted by binary code with equal symbol probabiliCy; transmission DFM signal of duration T~LT duration of elementary pulse; L-- their number); the elementary pulse frequency assumes with a probability of p=m one of m values �1, f2, fm; trAnsmis~ion phases differ by ~r (oppoaite signals); noise continuous tiequence of elementary pulses of duration T with frequenciea fl, f2, Em; relative overlap of signal and noiae pulses y_~ST(0 FOit OFFICIAL 115~ UNLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 _ 1~'OR nA'E~'tCtAL U4t. C1NLY Th~ c~p~biliey df wide-b~nd fr~qu~ncy runing of ~v~lanche ~fiod~ ~~ctllaeor~ hy ~upply curr~nt i~ d~mongtret~d in (SSJ~ 'The~~ o~cilL~Cor~ ~r~ w~vpguid~- c:o~xi~i in d~Hign (E'igure 9g)~ Th~ cn~xi~1 g~gm~nC i~ fnrm~d in Che pdwer uurply filrrr ctreuit, runntn~ through Chc wid~ wnli nf a r~dur~d-I~Cighe wavp- guidc~. Trnn~itian Co gt~nd~rd w~v~guid~ ~ection ia ~mooth. Single- rrgn~it ~ilicon avalanch~ diad~~ wiCh en open ~a~e er~ u~ed. T~n diff~r~nt o~cill~~or~ cov~r ~hc~ fr~qu@ney b~nd from 19 eo 9'l.5 GN~~ The pow~r outpuC drop i~ extraordinarily gregt~ r~grhing (20-30) db. `Th~ r~ng~ af fr+~qu~n~y tuning with ~ drop DPA~=3 db do~~ not ~xc~~d (1~-15)~~ ~y 9E~.@Ct~flg ~ ~hortin~ d~vic~ po~irion, on~ can equalize pnw~r outpur in tM~ band eo 7U~. Th~ o~cillaror noi~e lev~l ig high. In ~noCh~r waveguide o~cill~tor d~~ign (~'igur~ 8b), wieh ~~ingl~-eransit ~iiicon aval~nchp diode~ mounted in a r~gonane~ windaw under an inductiv~ po~t~ ~n ~v~~Anch~ diode gupply curr~nt frequency tuning of (53-63) GHz was obtained With a change in poa~r o~tput Ernm 1 to 45 mw [56J, ,q - XooKCUOne?rau % w~edp~ lOwMo , c~,~.~a , ~ Ba'~ Bcpt~rm~o 4~P�K Q K.! / a b ~igure 9. Key: 1. Connecting aindow 3. Coaxial gtub . 2. Waveguide 4. Varactor A 25-43 Cl1z waveguide oscillator aith YIG sphere frequency tuning has been developed (57~. The tuning band reacheg SOX With a pa+er output up to 11 ma? with a drop to 12 db. Tuning characteristice sho++ very high linearity t0.1X. With a poaer output drop of 3 db Af3/f~p reachea(22-33x). Requisite conrrnl magnetic field induction is as much as 1.5 T. Frcquency control circuit power is approximately 5 W. Oscillators aith YIG tuning contain a substantial deficiency sloa tuning rate. The ne~~e8ity of providing vpry hi~h magnetic field strengths makea employment of ogcillators With YIG elements in the shorter-Wave portion of the millimeter band unpromising. A considerable modulation frequency (tens to hundreds of inegahertz) can be obtained by oscillators With varactor tuning. pollowing are additional advantages of utilizing varactors: 1oW frequenay coatrol circuit posrer (less than 1 nn+), small size, Weight and cost of oscillators and paaer supplies. Principal draWbacks: reduced resonant system Q and nonlinearity of the electrical frequ~ncy tuning characteristic curve (58j. 30 FOR OFfICI1~L USE UNLY - APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ; 1~Ult ctt~i'LGtAi, t1,;1. UN1,Y Tlir dr_aign n~ c~ mtlltmrthr-t,~,,,a ch~~i~~ d~~itl~tc~r with vare~C~r trequ~n~y eunin~ L~ 111u~trat~~d tn 1~1~,ure ~u~ A c~unti dind~� ~nJ v~r~~tor in mini~gurc~ cr~~~N nr~ innune~d ~t el~e endH +~f the c~axi~1 ~~vlty und~r C1~~e ~~ntr~l ~an- - dunC~r. '1'h~ power yupply C~YCULt fiittry ctr~ ~~~pE~cih~n~c~~ tilt~r~~ `Ctic ~1~Geri~~i ~rehu~n~~ tuning rgnge df ~uCh an d~~ill~edr i~ ~.US GN~ witt~ ~ m~an fr~qu~nGy nf ~g~S ~~1~, wi~h p~~oer ~urpu~ r~ngin~ frdm 10 ed 12 mw C59j. Co~xi~l ~y~~~m~ ~r~ nat prumiaing ~e ~requ~n~ie~ ~bdv~ (40-GO) GN~ du~ Co congid~rabl~ t~elindlegiCal edmpl~xiEy, diffieuley of eut~i~~ ~nd ~d~u~~m~nt. ~rnploytn~nt nE wnveguidr ae5igttq emplnying didd~q in mtniatur~ e~~~~ ~nd ca~@1~t~~ diodh~ i~ prdmfqing~ 1 P~.~anuNt~+na ~ d~�~ x~ . � ~ r , ~ l~JlAIlKf1 ' ~ - K~f - 3 d ~ ~ ~ ~ ~ BapaKmop 2 Q ~finpa~map 2 b ~igur~ 10. K~y: 1. R~e~on~nc~ wind~u Cap 2. Vnraceor An o~~ill~tor ba~~d on a red~~~d-h~ight aaveguide (~igure 9b) hae r~n ele~trical tuning rdnge nf 1.2 CN~, m~ean frequency of 3~.6 GHx, and poa~r output ~f 70-80 mw (Cunn didde ~nd varactor in minigture cgge~) (59, 60j. In tl~e design illu~trated in ~igure l0a unpnckaged avnlanche dindes and varaetor ar~ po~itioned in th~ Waveguidc dinphregm Windor+~ under inductive pins. i~'r~quency tuning amount~ to 2.5 GHx ~t ~ mEan frequency of 56.5 GHz, and power output iq (4.2-2.7) mu. Cnpnbility of ~ine Wavp varector cap~~it~n~~ mddulaeion airh a frequ~ncy nE ~b0 MHz h~g b~~n demonserated (56~. An osCillntnr uith ~n op~n in-Waveguid~ cavity (~igure lOb) tunes in 8 30~ MH~ r~ng~ (m~ah fr~qu~ncy 50.6 ~Hz). Th~ ~hunting eEfect of the local resonator limitq the tuning r~nge (61~. 31 FUK f)F F:~ i~~.. L'ti~ t1t~LY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~Olt nl~l~'LCtAL US!, nNLY 4 ~tn~om6od munm�pe? urnr~ 4 k~ p ~~~i~ua ~ a~Kmop Q ~ ~ maNVA ~xu 8 ' ~ A ~uiMUA ~ K,~ tpy~ure Ropdc "??ra~io 2 A~n~c Bape~ 3 CQ~.IQMNM~ 1 ~ Q ,~~p~ nctpy~xo . Q cBapaKmop 3 Fi~ur2 11. Key: 1~ To load 5. Supply in~+ut 2. M~tched rran~miesion line 6. Heat eink 3. Varactor 7. Coupled cavitieg 4. Supply cireuit filter 8. 8locking capacitor Ogcillatorg with microstrip ~lectrodynamic syetems have been developQd. 1.6 CHz tuning at a mean frequency of 35.3 GHz hag been obtained utilizing an unpackaged varactor and a Gunn diode in a standard package (Figure lla). Power output vari~~ from 0.5 to 13 mw. The 3 db tuning range 18 900 MHz [62~. in Fi~ure llb a double-eransit silicon avalanche diode and varactor (avalanche diode in preconduction mode) are mounted in open caeeg on a common heat aink. Oscillator tuning is 1.6 GHz (mean frequency 59.3 GH~)~ end power oatput rangee Erom 125 to 95 m~r. Sine-wave varactor modulation frequency reacheg 5�1 MHz ( 63 ~ . ~igure Ilc shows a 26-40 GHz microstrip oscillator With a resonant CfrCU~C containing "quaei-concentrated" componenta [64j. The capacitancea of the semiconductor structures of the varactor and avalanche diode and the inductancea of the connecting conductora are employed as reactive elements of the resonant circuit. Oecillator tuning range is (6-S) Cli~ With a power output of up to 36 A stabilized osciliator aith varactor frequency fine tuning aithin a amall range (up to 0.3X) is described in [~r5~ (Figure 12). The oscillator con~istg of a gegment of reduced-height vaveguide with a Gunn diode mounted in ihe middle of the aide wall, a stabilizing cylindrical reflection type cavity and connected waveguide varactor section. 32 FOR OFFICIt+L USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 i i ' t~Ok Ot~l~'CCrr1i~ l1!;1~; hNLY 1 , ~ 1 . 2 Oe~onamap 4 K9 ` ~ ~ ~ UapaKmo~ 3 Cigur~ 1~. ~ Key: 1. CBViey VaraeCOr ~ 2. diod~ 4. Short circuit~ng device { Frequency runing i~ 9S MNz gC g mean fr~qu~ncy of 30.5 GNz, power output 30 mw, AP~d~ef1.5 db, �requency CQmperature st~b111ty -5~10`b/�K. Com- pen~~tiori Eor Cuning char~ct~rigtic curvc~ nonlin~arity ie pne~ible in thie design with g~lection of ~hore circuiting device posiCion. ; Tab1e 5 contains the p~rameter~ of millim~ter~b~nd ~olid-etgte oscillatore ~ with ~lectronic frequ~ncy tuning. ~ '~ab1~ S. Ch~racreriericy of d~cill~tors WiCh B1nnCr~n~c ~r~quency Tuning ~ 1' Z Aaonawa nepccrpoAKa 4 5 6 7 8 9 CpeAhe~ r~c� a~cron+ OwxoAeea 1lcpcneA 9rnw. ~ ee~xoANO11 twn. nepe~ Ten Aht. tOTf 1MAMf0' MOItINOCTb~ ypW~N~ KOIICtp. tT~fOfl� JI110II~ MCt. ' ra, rru 3 I x Ne* K~ , 22,~-88 6,7--20,3 IS-4S 20 22-32 p~c~a, o'toKl~i. ~t~tli 155) 48-35~b G-8 20-48,5 3--3G 2,3-~9,5 pNC, ll~e p,~ 1t1111, (W) , 30,b 0~095 0,3 30 3 pNC.l4 M:~fi (4G) i 31-34~9 12-17 39-50 11 12 BonHOe~ ~NC ~1~I~ (b7~ 35,3 1~6 ~~5 O~b-13 14 p~rc. li,a Bap. ~L~Ct (62) 37~6 1~2 3,2 70-SO O~G pac, 9. / Bap. r19i1 ~59) 39,5 3~05 7~7 10--12 0~8 pNC.9,a Bap. A19C1 ~59j 60~8 0~3 0,6 10--11 0~4 ptrc. 10~e Bap. 11i1A ~61~ b6~5 2,5 4,4 2~7--4,2 1~9 pNC, 10~ Bap. nnn ~SG) ~ 68 Ip 17,2 1-45 16,5 p~rc. 8, h ToK. n l11iA ~5a) ~ 59~3 1~6 2,? 95-125 1~2 pec. 11~ 6 Bap. 11t1II (63) 208,5 7 3~4 0~2-4 13 pNC. 3~ e ToK n. 1~n11 (~o~l i ~ . Key: j 1. Mean band frequency, GNz 8. Type of diode - 2. ~requency tuning range 9. Bibliographic source 3. CHz 10. Figure 4. Power output, raw 11. Supply currenC 5. Power output drop, db 12. Varactor ~ t 6. Type of design 13. YIG ~ 7. Tuning e2ement 14. Avalanche diode � 15. Gunn diode i 33 ~ FOR OFFICIi,L USE UNLY F ~ V 4 APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~'0!t Ul~CLC;tAL Utii; dNLY ~ 1'ulpr mnd~. Thn nnw~r ~utput of gvalAnch~ and G~nn diod~ o~CilL~tor~ in pu1g~ mndc c~n ha incr~gq~d by approxim~t~ly one ordar of magniCud~ in com- ~~~r.t;~hn wiCh cdnel.nuou~ o~nillnCion mod~~ rul~~ duraC9on ugually dn~~a nnC c~xC~cd irnCttnnx nf' ~ mlcro~~cond eo a Eew microK~cnnd~ ~4, 23, 65]~ Acl~ievrd ~v~l~ncl~~ dtod4 oH~illator pulg~ powr.r outpur 1evc~ls ~ra a~ followN: 11 W~CCH et n fr~quency df 39 CHx, ~ w~et~ ge 9~ GHx~ 720 mw ~e 140 Gl~x ~nd 520 mw gr xi4 cxz [4, 66, lo~~, A pow~r of 400 mw (21j wag ob~a~ned gC a fr~qu~ncy of 50 GHx ~nd 137 mw nr 6~e GHz [2S] with pul~e arnplieude modulation of Gunn diode mi1l~m~t~r-band o~cillatorg. ~xCernel synchronizaCion. Avalanche diod~ ~nd Gunn diode o~cillator~ arp eagily synchronized by an exCernal eignal [2]~ The level of the appliQd aignal can be almost 40 db below ehQ o~cillaCor power outpue levQl (67~, and ~ 30 GHz avalanche diode osc311aCor synchronizaCion band reacheg 1300 Mllz (41J. ~xternal gynchronization mode can be u~ed for frequency tuning gnd rnultiplicatinn (68, 69~. Noise genergCion. Silicntt avgl~nche diodes are emplnyed in a noiae gener~tor (70~ in tt low=oh~n rectangular waveguide with a ridge 6uide matched on both pideq for broadening the operaCing band of freq~iencies. In the range (26.5- _ 40) Cllx Che magnitude of excess noise varies within limits of 25-10 db. The ronclusion has been drawn Chat iC is possiblE to replace gas-digcharge tube~ with avalgnche diode noiae generators. Frequency and power stability. Frequency Cemperature dr~ft of unstable millimeter-band oscillators ranges from 0.5 to 1.5 x 10- 1/�K (2, 33]. ~requency drift caused by inaCability o� oscillator power supply conditions amounts to (10-20) MHz/V for Gunn diode oscillators and (5-10) MHz/ma for avalanche diode oscillators. Power output temperature instability is 0.01-0.03 db/�K [29, 33~. Connection of external high-Q ti~rmally compensaCed cavities make~ it pos- sible to improve oscillator stability characteristics by 1-2 orders of magnitude (Table 3). Noise characteristics. The noise level of Gunn diode oscillators is ap- proximaCely the same as that of reflex klystrons; AM noise of an avalanche diode oscillator is 10-20 and FM noise 20-30 db greater than that of reflex klystrons [2, 71]. AM noise of millimeter-band avalanche diode oscillators comprises (120- 140) db/Hz when detuning ~fdl-2) kHz from the carrier frequency and (150- 160) db/Hz when detuning (1-2) NHz [S, 27, 28, 72-14]; Avalanche diode oscillator noise is (60-30) Hz/Hz1~2 [73]. Oscillator frequency stabi2ization with exterior cavities makes it possible to reduce FM noise level by (20-30) db [45]. 34 FOR OFFICI/w U~E ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 I~c)it c11~i~ fC t~\I, II;,1; r1Nl,Y O~Ct1l~trnr rt~deltn~; ~incl Cr~1.CUlxttion Up to Ch~ pr~~~nt ein~e th~ dcyi~n ot e].eCCrodynumic sy~r~m~ nf snlid-gr~tc ~ millim~Cer-b~nd dpv~tCey h~iy been ln l~rg~ me~gurc nl' nn empiric~l rind tn ynme ext~nC inCui.Ci.ve cli~r~cCer, a~icl ~n1y ln ynro~ p~rtic~~lnr inye~nces is i~ pn~sgible tn per. t'nrm ~a yuEficienrl.y compYer~ theor~ttcnl ~na'ly~i~~ ; M~rhodq nf numeric~l calcul~Cion ul el~ctro~ynami~ gy~C~ms wtCh complex bound~ry,cnndiC3ony dev~lnped ~n recent yenrs p~e~n~i~11y mgke i~ po~eiblc to ~o1vc n cnnw.idernble pareion oE pr~ctic7Y prnblems, buG th~ir npplication ty held back by l~7rf;e expend3turey oE cotnpuC~r. ritne~ ~ '1'i~~ dc~ign subgritution meChod wiCh utilizAtion oC combined modeling (some dcNign elementy ~r.e d~Cermined theoretictt].1y, nnd some exper~.menCally) has come into widespre~d uye 3n designing millimeter-br~nd oscillaCors. , IC is convenienC tn perform ht~h-Frequency circuiC modeling wiCh condiCionnl d~signgeion oE Chree basic elecerodyn~mic sys~em componene~: pc~ckgged active ~ elemene; diode mnunring device in millimeCer-band system; millimeter-band caviCy nr rransmisyion ltne prnper. , SubsCitution of mill.imeCer-bnnd diodes by the eyu.lvalenC ctrcuit ~hown in ~igure 13g is a gener.~xlly-accepCed Cechnique, where Gd, Cd and Rd negative conducCgnce, cttp~cit~nce and resiytance oE diode losses; Lk and Ck case ; inducCancc and crzp~citance. Tt is usu~lly assumed Chat only Cd ~nd Cd nre ~ dependent on amplitude and ~requency of millimeCer-band oscillations and ' diode power supply condieions. Parameters Cd nnd C~ are obtained ex- . perim~ntttlly [74-77~ or by computaCion [61), I2epresentaCion of diode case ; parameters with concenCrated frequency-independent components Lk and Ck is ; permissible if the case diameter is less Chan a/4 [78]. Otherwise it is ; neceasary either to modify Che equivalent circutt (C' in Figure 13a) [79] or ' to prepare a formal diagrnm describing the nceual behavior of impedance in- , vestigated experimentally ~77] or with the aid of elecCrodynamic analysis. ~ Rd j Zr ~ 1~ --4 -o Cd C' C� Zd 1/lazpy~Ka Ia ~ ' d~__i._---~ + I~ ZS � b i ~ Figure 13, i ~ Key: ~ 1. I.ond ~ I Basic difficulties arise when modeling a diode mounCing device, which can have : a varied configuration. The problem is complicated by the fact that in the i ~ ~ 3~ i FOR OI'FICI~~L USE UNLY i APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 i~OR U~'t~'ICIAL USL nNt,Y ~ millimceer bnnd rh~ mountiing devic~ frequ~ntly perEorm~ C~inctinn~ oC ~ - m~ttChin~ aircuie and itt 1~rg~ m~agure d~Cermineg o~cillneor ch~r~cCeri~Cic~~ In r.~C~nt yenrq there h~ve b~en publighed u gr~ge mnny ~aeudie~ d~~ltn~ with a Chcnr~rlcal da~nripCion dC Che mo~t cnmmon d~~igne: an induntiv~ poHL in ~ n wxv~Auide hn~ been inv~atigaCed in detail in ~eudies [80-86~; ~Cudt~p [85-8g] d~~~. wiCh deti~rminaCion oE the ch~rncteriAtics oE a two-poHt sCrucrure nE millim~t~r-band admpon~nt holder~; diode~ in rpduc~d-height millimerer-band ~y~teme are exgm3ned in (78~ 89]; wav~guid~-coaxial structur~s ~re ~nelyz~d in [9U-92]. Uriliz~rion of elaborated eheoretic~l mod~ls hae made it poseible to raise to g high~r lev~l the method of analygig end optimixaCion of solid-~Cgtp devices oE ehe centimeter und low~r-frequency portion of the millimeter band. ~xisCing models contain deficiencies which ehow up when transition- ~ ing to higher frequencies: active losses in millimeter-band ayetemq nre not considered, po~C diameter doea not exceed 0.25 waveguide width, poet gap wideh does noC exceed b.25 waveguide height, and the influence of higher Cypes of waves caused by cloae-by diecontinuiCiea (for example, shorr-circuiting device) is not taken inCo account. An atCempC Co correcC some of these d~ficiencies was made in [51], buC Che ndequncy of Che proposed model requires additional experimental verificution. At the present time there are no CheoreCical elaborations which make it possible sufficiently fully to consider the basic parameters of many other mounCing arrangements for millimeCer-band diodes. One possible approach is the utilization of a generalized equivalent circuiC (Figure 13b)~ Che parameters of which are determined experimenCally across a broad range of frequencies and dimensions of electrodyna~utc system elements. 'i'wo con- figurations of millimeCer-band systems with ar. in-waveguide open cavity (Figure 3a) and a resonance window wiCh posC (Fig~re 8b),have been examined with this method in [93-94]. Theory of resonanC cavities and millimeter-band transmission lines has been most fully developed, and their modeling does not present any particular difficulties. In designing millimeter-band oscillators (particularly in the higher-frequency portion) it is desirable to consider transmission-line losses. Difficulties akin to Chose described above occur during theoretical descri.ption of cavity coupling elements and maCching devices. Solid-sCate oscillaCor equivalent circuits. Modeling does noC present any oarticular difficulties in designing narrow-band oscillators, and simplif ied e~uivalent circuits can be employed. Sim~lified oscillator circuits have been proposed, wiCh an in-waveguide open cavity (Figure 14a) and a waveguide-coaxial oscillator with an antiparasitic resistor (Figure 14b). In the circuit shown in Figure 14a components Gd, Cd, and Ld have been obtained from an avalanche diode weak-signal analysis, equivalent parameters of in-waveguide cavity L~, C~, G~ from measurements of the external Q of a resonant system by the phase synchronization method; 1-- distance trom the short-circuiCing piston to the axis of the contact post [61). 36 FOR OFFICIiw USE UNLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 1~ott U~rtCIAL t15P'. c~N1.Y t ~ c Kd ---~G~ d ld Cr ld Q~ o ~ b L Rt ~ ~ ~ ~v G~ p lo ~ Gp ~p ~ o,R ~ ~Na ~ ~ O C6A C d C~'igure 14, In tl~e circuir in ~igur~ 14b GH useful load conductivity; Lp, Cp~ Cp equivalenti pnram~C~r~ of waveguide cavity; itg reei~tanc~ nf anCipura~iCic resistnr; lk 1engCh of co~xial gegment in which ig mounC~d e diode with imp~dnnce 7d [3~). In o~cillaeorxi with a~Cabilizing cavity~ with linp length na~/2 (J~~ Wav~- lengCh in waveguide; n-- integer) eimplification .;f the ~quival~nt circc�t is posgible (~igur~ 14c) [46-49J. bepending on n, Che cavity ig reprp~ented by ~ series nr parallel circuit. _ The describ~d circuiCg in a narrow rang~ of frequencies mxke it possible rn perform qu~liCative anglysis of oscillaCor operation, and to obtain quanti- tative e~timates in experimental refinement cf component values. Th~orerical analygis of a microgtrip oscillator with wide-band varactor frequency Cuning (Figure llc) wgs p:rformed with Che aid nf the equivalent Circ~ie in ~igure '4d. In view of th~ fact that unpackaged dtodeg were em- ployed, and the assembly diagraro coroprisee a concentrated circuit, modeling iH simplified. Cmd and Cmh gvalanche diode and varactor mounting capeciCances; C~n blocking capaciCOr; L~n and Et~n inductance and resistance of coupling conductor losseg. Digcrepancy between reaults of ralcularion and experimental data does not exceed lOX (64J. When de~igning oscillators with a relatively large mechanical tuning range or electrically tuned oscillators, it becoroes esaential to put together ex- tensive equivalent circuits (~igure 15j. At, equivalent cfrcuit (Figure 15a) of a Gunn diode millimeter-band waveguide- coaxial oscillator has been proposed [91j. Coaxial cavity receeses in the upper and lower Walls of th~ waveguide are si~bstituted with segments of short-circuited linea lk and 12. Line 1T rPplaczs the d~ode case; t~ coaxial transformer taking into ~ccount the effect of the diode cap. Components 37 FOR O~~ICInL USE UNLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 rait ~1~~rtrtnt, u~i~; ~~Nt~Y C~ic1~ ~1+ Cck2~ dnd C2 tak~ ined ~c~ount rh~ high~r eyp~~ ~f wav~~ ~xcit~d ne polne~ oE w~veguidp ~nd co~xial lin~ intQr~~ction; jxo re~etane~ of the rcnernl rod; z~ and Zd w~v~guid~ ~nd diodp imp~d~nG~ r~~p~rtivhly. ~ k~fin~m~nt ef ~quiv~l~ne Gir~uit compon~nte ha~ been per~ormed exper~m~ntai- ~y. C(RI ~ C I t ~N r ' _ Xp 7~ C, I,~ ta c�`;;r cf e, ~ .~p , j'l~ ta cRd c9 Q, b Cw Cw ! d~~ Cws ~'ruQ ~ ~i~e ~~ud ~ /:n ~-c~-~ to tRe � c to twec t a ca , c,~ ~ 0 p Re G, ~ Q ce ~a ~Ra Q ' c d ~igure 15. in (S1J ther~ i~ performed a theoreticgl calculation of compon~nt~ of an equivalhnC circuit (~igure 15b) of the waveguide-coaxial ogcillator in ~igure 8a. The guthors examine a thick (diameCer greater than one fourth waveF;uidc width) inductive posC and take into account the influence of the clo~e-by short-circuiCing device; Cw and Iw are poat pacameters. The input _ impedance of the coaxial segment is substituted by element Zk. Cg and C'~ reactive elements taking into account the pdst gap and the boundary c~pacitance of the waveguide-coaxial transition. The developed equivalent circuit was successfully utilized in calculating the frequency characteristics df g(50-70) GHz a~cillator and amplifier. ~igure 15c contains an equivalent circuit of a waveguide avalanche diode oscillator with an external reflection type caviCy [44J. Elements Cw, I~, Cg and CgT describe the post in the waveguide; they are obtained by calcula- tinn. The avalanche diode is represented by elementa Gd, Cd, Lkd, Rd~ and Ckd, tl~e values of which are deCermined experimentally [76J. Cp, Lp, and Cp characterize a stabilizing cavity. The degree of coupling between cavity and wavegutde l:n and correction to waveguide cavity length A1~ ~aer~ deter- mined experimentally. Oscillator parameter calculation error doe.. not exceed cis-zo~z. An equivalent circuit of a Gunn diode oscillator with varactor tuning is con- tained in ~'igure lSd [95]. 3~ FOR OFFICIn;. USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 t~Oti i~i~ i~ It; t~1L ttyl. ONLY 'Ch~ ~quivalc~nt ~ircuftq CdnC~it~~d itt ~igurc� 15 m~k~ i~ p~~~iU1~e tn Gdt~gidpr mnny C~~turr~ n~ nycill~tar ~per~eidn frequ~ney "~~eur~einn" g6, ~7) ~nd ~brupt Clian~eg in Cre~uen~y ~nd power 96, g6, 99), AnnlyeiC~1 c~x~~req~inn~~ f~r vuch circuity turtt ~ut very unwi~ldy ~nd lo~~ dh~ af th~e main ~dvnnt~~;~~ thr~ pdyaibility hf re~ching cnnGlugion~ ~n ~~~i1l~tdr oper~~ting feature;~ witl~nue p~rformin~ c:omput~tion~~ At~~mp~~ Eo c~be~tt~ clc~~rer ~n~lytirnl exprc~ginn~ by id~~lizing Cir~uie~ 1a~d in m~ny ~e~~g tn 1~~~ df adequary nf d~e mndel dnd, a~ ~ c:~n~~qu~ne~, Co ~rron~ou~ Gdn- ~lu~idng~ ~'tterefore exten~ive ~mplayment df ~nmpue~r~ i~ ~~~~nei~1 in ~~1- cul~~tfng and optimixing ogcill~tor ch~r~cterigtiC~ ~1UU~, wiCh ueilix~Ei~n nf dnnlyticnl methnd~ Cdr deeprmining eh~ mngt gen~r~1 laws gov~rning oeei~l~Car nperdtioh, CdnCluqion:~ l. At tl~c present time the followittg ~re achiev~ble in pr~CeiC~l Cerm~: ~vttl~n~he diode dscillannc~ with ~ power outpur ~f(20b-400)mw ~t n frequcnCy ~f 30 GNz, (Sb410d) mw et frequenci~g tu lOn CNz; Gunn diod~ oscillaeor~ with pnwer nutpuC nf (~0-1U0) mw ~e g frequen~y of 30 GNz~ and ~20-40) mw at frequ~ncie~ to 60 Cllz. 2, W~~v~guide o~cillators ~~re mast preferable in the millimeCer band. With inC~~rnl Cechnnlogy ~nd ma~g producCinn, mierngtrip designs gre promi~ing in the ldwer-frequency portion of ehe band. 'Co obtaim m~ximum nutput pnwer gttd effici~ncy at a fixed frequency~ oacillntor design~ involving op~n in-wgv~guide Cavicte~ app~ar to be th~ best. 4. Employment of exrernnl high-Q and high-etandard resonator cavitiea m~kes it possible to improve the stability characterisCics of oscillators by 1-2 orders of magnit~de. 5. A broad ascillator mechanical tuning frequ~ncy range Co (30-40~ ig providCd by a waveguide-post and waveguide With nonresonant ridge guide electrodynamic sysCem design. 6. Avalar~che ~iode oscillator frequency runing can be performed by active element supply current in a range (20-40)9: with a large power output losg and low oscillator noise characteristics. 7. With moderate demands on electronic t~ning range (several percent), it is preEerable to employ varactors. Wide-band (more than lOX) varacCor frequency tuning for millimeter-band oscillators is achieved with an in- tegral technology of oscillato~ manuEacture with utilization of unpackaged diodes and quasi-concentrated resonant systems. 8. !'ower outpuC of so~id-state o~cillator~ in pulse mode can b~ increased by approximately an order of magniCude in comparison with continuous oscil- lation modes. 39 FOR O~FICI~,i. UtiE c)NLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~dit UN'~LCtAL U3L tlN1,Y ~1. ~lp ed th~ preH~nC tima d~~igning of ~1@cCrodynamic ~yd~~mg of goiid- aearh millim~t~r-b~nd devic~~ ha~ b~~n in many r~~pect ~r~pirical in naeur~; m~thdd~ af thcar~ei~al cal~ul~tion ~nd oprtmixaei~n h~v~ no~ ~xp~ri~ne~d prep~r d~v~lopmene. ~ 1U~ 'Th~ mo~t appropriat~ m~ehod~ in ~nal,yzing o~cillator~ are sombined m~ehod~ of madelin~ with utilization of equivelen~ circuit~, ~ome of th~ compon~nt~ of which arQ determined theoreticaliy ~nd ~ome experimenta].ly. 11. in oecillator c~leulation ~nd optimi~ation it ig e~~ential ~xt~n~ivp~y to ~mploy electronic computers with utili~gtion of analyticel methode for d~~ermining th~ mo~t general patterne of oeci~lator operetions. 82BLIOGRAPHY 1. Vikulov, I. K. "Millimetrovyye volny za rube~hom. Obzory po plektronnoy tekhnike" (The Millimeter Band Abroad. Electronic Equipment Surveys~~ S~ries I, Millimeter Band ElecCronice~ TsNII Elektronike, 197~, I~aue 11, (481). 2. Andreyev, V. S. "Solid-Srate Millimeter-Band Oscillation Sourceg in Com- munication9 Systems," EL~KTROSVYAZ', No 11, 1974. 3. Uance, M. "Microwave Components and Instruments," ELECTRONICS INDUSTRY. No 11, 1976. 4. "Sovremennoye sostoy~niye proizvodetva generatorov i usiliteley na Lpb" (Present State of Manufacture of Avalanche Diode Oscillators and Am- plifiers) "Elektronnaya tekhnika" [Electronic Equipment], Seriea I, ElekCronika, 1977~ Iasue 9. 5. Li; Ying; and Dzhamba. "Ka-Band Double-'Cransit Diodea Produced by Ion Implantation," TIIER, 62, No 7, 1974. 6. Hirachi, Y.; Toyama, Y.; ~ukukawa, Y.; and Tokumiteu, Y. "A High poW~r 50 GHz UDR IMPATT Oscillator With Low Sideband Noise," IEBE S-MTT Int. MicroWave Symp. "The Bicent. Symp.", Cherry Hill, New Jeraey, 1976. 7. Hirachi, Y.; Nakagami, T.; Toyama, Y.; and Fukukawa, Y. "High Power 50 GHz Double-Drift-Region IMPATT Oacillators With Improved Bias Circuits for Eliminating Low-Frequency Instabilities," IEEE TRAN5., MTT-24, No 11, 1976. 8. Weller, K. P.; Dreeben, A. B.; Davis, H. L.; and Mderson, W. M. "Fabrication and Performance of GaAs ptn Junction and Schottky Barrier Millimeter IMPATTs," IEEE TRANS., ED-21, No 1, 1974. 9. Gokgor, H. S.; Howard, A. M.; and Purcell, J. J. "Millimetre-Wave Silicon IMPATT and PIN Diodes," International Conference on Millimetric Waveguide Systerrs, London, 1976. 40 FOR OFFICIti:. USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 i~c)!i c1F�C ) C i r\I. U'ils' C1N1~Y 1U. ?lui~h, t~. iJ.; Grc~ves, I. S.; a�d t.~wig, U~ "~tiilim~tre-Wnv~ Ugei1- latnrfa ~dr W~veguid~ Communi~d~inn yy~C~mg," in~~rnaeinngl Conf~r~nc@ ~n Ptillimetric Wtivegui~le 5yyt~m~, Ldndnn, 1g76. 11. 7.c~~?d~l; Ueviy; and tgl~gtf~~. "t~ouble-'1r~nc~it Mi11~m~C~r-Uand IMt'ATT - Uit~des rfanuC~ .tur~d by ehe Idn ImplgntnEion Method~" `~~~~~t, 59~ Nt~ 19~1~ 12. CngiiKh, U. L,; N~ka~f., M.; nnd Ying, R. S. "improv@d p~rform~nc~ af Millimet~r-W~ve Irt~ATT Uied~g on Typp-11a Ui~mond N~at Sink~," ~L~~T, t~T't'., 12, Nd ~5, 1g76. 13. Li ~nd Yin. "Complementary U-B~nd IM~A'C'~ Uiode~ Mgnuf~ctured by ehe tnn Impinntdti~n rtpehc~d," `~i~~R, 62, No 1974. 14. ino, M.; M~kimurs~, 'T~; ~nd Jam~ggki, H. ~L~C~. COI~tUN. LAB. T~CN. J., 'l3, Nd g, 197fi. 1S. Ino, M.; Makimurn, 'I'.; ~nd Y~m~~nki, H. "80 GHx Band Si nDR Uiode~~" tt~V. t:L~C'I'. C~'~iMUN. I.AB. ,~5, No 7-g, 1q77. 16. dkgmdto and Iked~. "GdmpxrdCive Inv~~Ciggtiun of the Noige propertiee of 5ilicon IM['A'~`C Uiodes tJittt att bp~r~tiflg ~r~q~~ncy ef $0 GHz," TfIER~ 64, Na 197G, 17. Irhibashi, T., and Ohmori, M. "20U CHz SU mw CW Ogcillation WiCh Silicon Sbit L~i['~U~' Uiodeg," I~~~ 'T12AN5., MT~-24, No 11, 1976. 18. Inn, M.; tshibnshi, T,; ~nd Olimori, M. "Submillimeter Wave Si p+-p-n+ 1Nt4'A~"T Diodes," JAp. J. APpL. pNY5. ~ 16, 8g, 1971. 19. Prokliorov, E. n.; Arendar', V. N.; Beletskiy, N. I.; and Dyadchenko, A. "InEluence of Temperature on the Generating Efficiency of Gunn Diodes in n F'r~quency Band," aAbIOTCKHNIKA I ELEKTRONIKA, 21, No 11, 1976. 20. kutt~n, T. G. "Nigh-E'requency Gunn Uscillators," IE~B TItAN5., M'fT-22, No 2, 19~4. 21. 5tertser. "~lecCron 'I'ransfer ~Efcct Ogcillatora and Amplifiers," TIIER, 59, No 8, 1971. 22. "5ovremennoye sostdyaniye tverdotel'noy tekhniki mm-diapazona voln" (Current Status of Solid-State Millimeter-Band ~quipmentJ, "Elektronnaya Cekhnika" [Electronic ~quipmenC~, Millimeter Band Electronics Series, 1975, Issue 6. 23. Kramer, N. i3. "Millimeter-Wave SemiconducCOr Devices," IEEE TRANS., M'TT-24 No 11, 1976. 24. Migawa, T., and Kenyon, N. U. "An Oscillator Circuit With Car Structures Eor Millimeter-Wave I?~(PAfiT Diodes," I6EE TRANS., MTT-18, No 11, 1970. 41 kOK U~rICIrw UtiE UtJLY ~ APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~dit O~~ICTAL U~~ ONLY 25. t~~rr~ra, .1. 5~ "GaA~ L3A V-Band Oectll~tor~," I~~E TRAN3.~ ED~18~ No 10, 1971. ~ 26. Mi~uighi, K.; Miy~zgki, M.; S~tio, N.; ~nd Migiraka~ M. "Pl~t~ Typ~ Og~illgtor U~ing Micropill '~ype QaAg AMPATT biodes for 30 Gt1z Band," TRAN3. INST. ~LL~CTEtON. COMMUN. ~NG. JAP.~ 8-58, No 10, ].975. 27. We~l@r, K. P.; Ying, lt. S.; and Le~, n. N. "M311imeter IMPATT Source~ fnr th~ 130-170 GNz Rung~," I~~~ TRANS., M'Cm-24, No 11~ 1976. 78. Sw~rtz, G. A.; Chi~ng, Y.; Wen, C. P.; and Gonzales, A. "perEormnnce of p-Typ~ Epitaxial Silicon Milti.meter-Wave IMPATT Diode~," IEE~ TRAN5.~ ~D-21, No 2, 1974. 29. BduveC, J. V.; buch~min, J. Funk, R.; dbregon, J.; and Cibeau, p. "Uoubl~ UrifC Silicon Avalanche Diodee for Millimetric Applicatione (26- 42 GHz)," InCernational Conference on Millimetric Waveguide 5yet~ms, London, 1976. 30. NawaCa, K; Ikeda, M; and Ishii~ Y. "Millimeter-Wave GaAs Schottky Barrier IMpATT Diodes," I~EE TRANS., ED-21, No 1, 1974. 31. Khirati; Niai; Sinoda; and Fukukava. "Millimeter-Band Ih[F'ATT DiodeaWiCh Increased Efficiency, Utilizing Ohmic Contact Produced by Ion Implanta- tion," TIIER~ 63, No 9, 1975. 32. Mig~v~ and Marinachcho. "Continuous-Action Silicon Avalanche Diodes for 100 GNz," ZARUBEZEINAYA RADIOELEKT1tONIKA, No 7, 1972. 33. Gibbons, G.; Purcell, J. J.; Wickens, P. R.; and Gokgor, H. S. "50 GHz Gallium-Arsenide IMPATT Oscillator," ELBCT. LETT., 8, No 21, 1972. 34. U'Hara, S.; Speight, J. D.; Leigh, P.; McIntyre, N.; Cooper, K.; and 0'5ullivan, P. "Solid State Techniques for Millimetric Waveguide Sys- tems," International Conference on Millimetric Waveguide Systema, London, 1976. 35. Croves, I. S.; Speight, J. D.; Leigh, P; McIntyre, N.; 0'Hara, S.; and Hemment, P. "Proton Isolated G~sAs IMPATT Diodes," Fourth European Micro- wave Conference, Microwave-74, Montreux, Switzerland, 1974. 36. Li, b. Kh.; Yeller, K. P.; and Troyer, U. F.. "Millimeter-Wave Passivated Silicon IMPATT Diodes Produced With the Aid of Ion Implanatation," TIIER, 65, No 2, 1971. 37. Sven; Misava; and Briker. "Generation of Millimeter-Band Contiruous Oscillations by Silicon Avalanche Diodes," TIIER, S5, No 10, 1967. 42 FOR OFFICIew USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 - roir r r.c; rnt, ttSN: c~tvt~Y 3g, nnvi~, It. 'I'. "MiCrdgtrip mm W~ve Sourca Achi~v~s QuarCer W&tiC duCpuC a~ ~0 t~nd G(l GNx," MiCitOWAV~5, 13, No g, 1974. Ci~nc~, t3. S.~ ~mci 5r.hnetde~'~ M. V. "Mi1lim~ter-W~v~ Micror~trip O~cil- latdr~," IGE S-~i`1"l' Int. Micrciw~ve 5y~n~., At1~aEa~ G~a~gi~, 1974. 40. C1anc~, H. 5., ~nd Schneid~r, M. V. "Mii].imeter-Wave MicroaCrip dscil- i~targ," t~C~ TEtANS., MT'C-22, No 12, i974. 41. Gl~n~. "~U-Gliz IMt~ATT-Ogcill~tor nn ~ Low-~ A~ymm~erie Microstrip Line," ~~Zi~x, 60, No i�7~. 42. '~~r~nenko, V. I~.; Kc~e~~rxhin~kiy~ B. A.; Maehu~ekiy, Ye. A.; and Tka~henko~ i.. A. "~~mp~r~Cure St~bilix~tion of Solid-State MillimeC~r-Band Oecil- laCorg by ~xCern~1 lt~snnnCOr Cavitie~," IZV. VUZOV RADIOEt~KTItONIKA, 18, Nd 10, 1g75, p~ig~ 4. 43. Vyrovny, 5. I~; Gumennyy, S. N.; and Tgvirko, Yu. A. "Comparison of Sin~l~-Circuit Oscillaeor 5tgbilization Employing Active Two-Terminal N~tworkg," ~L~KTRONNAYA TCKNNIKA, 5~rieg I. ELEKTItONIKA SVCH, No 3. 1976. 44. Kots~rzhingkiy, H. A.; Mgchusskiy, Ye. A.; gnd Tkachenko, L. A. "Analygie of a lOAVeguide Avalgnche Uinde Ogcillator With an ~xternal Reflecting Type Cavity," IzV. VUZOV IZAAbI0~1,~KTRONIKA, No 7, 20~ 1977~ page 11. 45. Haga, t.; Tamurn, K.; Sakamor,o, K.; Aihara, S.; and Igatg, M. "A Reflec- tian Type CaviCy ConCrolled UscillaCor and a Caviry Controlled ~requency :Kodulntor," N~C It~5CARCH ANU D~V~LOpM~NT, No 36, 1975. 46. Nagano, S.,and Utinaka, 5. "A Highly Stabilized Ka-Band Gunn Oscillator," I~CE TIZANS., MTT-20, No 2, 1972. 47. Nagano, S., ttnd Ohnaka, S. "Highly-Stabilized IMPATT Oacillators at Millimeter Wnvelengths," IEEE TRANS., MTT-21, No 7, 1973. 48. Nagano, 5., and Ohnaka, 5. "A Iow-Noise 80-GHz Silicon IMPATT Oscillator Highly Stabilized With a Transmission CaviCy," IEEE TRANS., MTT-22, No 12~ 1974. 49. Nagano, S.; Ohnaka, S.; Sekido, K.; and Ayaki, K. "A Low-Noiee 80-GHz Silicon IMPATT OscillaCor Highly Stabilized With a Transmieaion Cavity," IEEE S-i�t'CT Int. Microwave Symp., Atlanta, Georgia, 1974. 50. Gumennyy, S. N.; Kislyakovskiy, V. A.; Tsirko, Yu. A.; and Yasinskiy, V. K. "IJaveba:~d CharacCeristics of a Gunn Oscillator With Elevated T~mperature Stability," IZV. VUZOV RADIOELEKTRONIKA, no 10, 19~ 1976. 51. Fong, T. T.; Weller, K. P.; and English, D. L. "Circuit Characterization of V-Band IMPATT Oscillators and Amplifiers," IEEE TRANS., MTT-24~ No 11, 1976. 43 FOR OFFICIew U5E ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 FOtt O~~tCIAL U~~ tlNt,Y S2, m~ylor, H. C., and tiow@~, M. J. "LSA Op~ration of ~~A~ Leyera in Larg~ Sc~~~ '~unAble Microwav~ G~rcuies," IEEE TRAN9.~ 6D-i6, N~1, 1969. ~3~ ~'gy~or, B. G.; Fr~y~ S. J.; gnd Gibb~, 9. Ye. ni~r~qu~fley S~Cur~tion ~ff~ce~ in Trenefer~ed Ei~ceron decili~tor~," iE~E TRANg., MTT-~g~ ~g~p~ S4. W~il~r, K. P.; Engii~h, D. L.; and Kuno, H~ J. "Tunabi~ Mi1lim~t~r-Wav~ Pack~g~r! ~MPAT'f Diod@ O~ciiiator~," iEfiE S-MTT Inr. Microuave Symp., Atlgne~, G~orgia, 1974. 55. Ak~ik~, M.; Kaeo, H.; and Yuki~ S. "Asciilation Characteri~eic~ of Millimee~r-Wav~ ~MPATT Diod~a Mount~d in Lots=Imp~dance Wev~guid~ Mount~~" ~EEE TRANS., MT'T-24, No 3, 1976. . 56. L~~, T. p., ~nd Seandley, D. "Fr~qu~ncy Modularion of g Miilim~t~r W~v~ IMI~AZ"I' Diode Oecil].aCor and Reiated Narmonic G~n~aretion Effect~" B5TJ, No 1~ 48, 1969. 57. Zu~blin~ K. Ye.; Wilser, W. T.; and Green, W. R. "Ka-Band YiC-Tuned CaAs Oscillator," MICROWAVB J., No 9, 1975. 58. Teranenko, V. p.; Kotserzhinskiy, B. A.; "Slectronic Solid-State Mil1i- meter-Wave Oscillator Varactor Tuning," I2V. W20V RADIOELEKTRONIKA~ No ~0, 19, 1976. 59. Downing, B. J., and Myere, F. A. "Q-Band (38 CNz) Varactor-Tuned:Cunn , Oscillators," ~I,ECT. L~TT., No 11, 9, 1973. 60. Bullimore, D.; Downing, B. J.; and Myera, F. A. "Electronic Tuning and Stabilization of Gunn ~ffect Oscillators," ~uropean Microwave Con- Eerence, Bru~aels, 1973. 61. Lee, T. P.; Standley, R. D.; and Misawa, T. "A 50 GHz Silicon IM~'ATT Diode Oscillator Amplifier," IEEE TRANS., No 10, ED-15, 1968. 62. Rubin, D. "Varactor-Tuned Millimeter-Wave MIC Oscillator," I~EB TRANS., No 11, MTT-24, 1976. 63. Clance, B. S. "Microstrip Varactor-Tuned Millimeter-Wave Tran~mitter," IEEE Trans., MTT-24, No 3, 1976. 64. benlinger, E. J.; Rosen, J.; Mykietyn, E.; and McDermott. "Microstrip Varactor-Tuned Millimeter-Wave IMPATT Diode Oscillator~" IBEE TRANS., MTT-23, No 12, 1975. 65. Bowman, L. S., and Burris, C. A. "Pulse-Driven Silicon p-n-~unction Avalanche Osciilatore for the 0.9 to 20 mm Bancf," IEEE TRANS., ED-Z4~ No 8~ 1967. 66. Ying, S. R.; Engliah, D. L.; Weller, K. P.; Nakaji~ E. M.; and Bernick~ R. L. "Millimeter Wave Pulsed IMPATT-Diode Oscillators," IE~E J. SOL.-ST. CIRC., No 2, 11, 1976. ~ FOR OFFICIi,L USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 i~c~~ o~~r~c,~~r, u;~r r,~vt,Y h~. I,fi~~tru~ M.; Nov~k, ~ind ~ti~hun', K. "Cdntiv~ling A Mi.1lim~e~r-Nand U~~t1l~ear by I,xe~r~ti~l 5yn~hroni~~~inn WiCti eh~ Aid af Aueamaeie ~r~qu~n~y Can~ral," '~tit.tt, Na fi4, 19'6. 56. ~ubavieh, N. A. "~ynchrnni~~einn ~E ~~unn ~~ei~ie~~r on Ch~ O~ei11~- ~inn ~reyuett~y ~utsli~rnrdnl~," ~LF,K'TRbNNAYA 'T~KHNIKA, 8~~i~~ ~LEKTRnN~KA 3VCti, 1'~~7, t~~ue 1. 69. ~h11~nd, t'.; V~terknw~kt, J. L~; Cdnr~e~n~, a~d 9~1mer, G. "N~w Mad~~ hf nperaEidn ~dr Avni~n~h~ Df~d~gs ~r~qu~ncy Multipiication ~nd ll�r.nnver~tintt," tt;CC 7'[2l1N:~,, MT`C-Z4~ Na 11~ 1976. 7(l. Kt~n, N. J. "~1v~1~n~he Ui~de Ndi~~ ~auree~ at Short C~ntim~t~r ~nd MillimeCer W~velen~Ch~," I~~~ TRAN3., MT'P-24, No 3, 1976. 71. K~1o~~v, t~t. V., ~nd pereg~ne~v, S. A. "SVCH g~neraCory i u~ilie~li na pnlupr~vodniknvykh pribor~kh" [5a13d-S~~e~ Millim~e~r-H~nd d~cill~torg and llmplifi~rq), rldyGdw, S~vetgkaye r~dia, 1974. 72. Wp11~r, K. t~. "A Seudy of Mi~1im~~er-tJav~ GaAg IMPAT~ O~cillator and Amplifi~r Ndi~e," t~~C `~C~1~N5., ~b-2U, No 6, 1973. 73. ~iugnyev, A. V., ~nd Ityb~lka, V. V. "~xp~rim~nt~l Investigntion of Milli- mpCpr-Band Av~lgneh~ Diod~ Cl~eillaeor N~i~e," "~lektronnaya tekhnika," Spri~s i. "~lekernnik~ SVCH," ~g~ue 11, 1973. 74. Kunn, H. J., and t~ugar~ri, E~. H. "Uge of Solid-State Component~ for Millimethr-Wave M~~~ur~m~nt~," MICRdWAVE JOURNAL~ No 8, 17, 1974. 75. Kunn, 11. J.; ~ong, T. T.; and ~ngligh, b. L. "Characterization of IMPATT UiodCS at Millimeter-Wave ~requenctes," I~~~ TRANS., ~U-19, No 6, 1972. 7b. Kotgerzhinskiy, B. A.; Ma~chusgkfy, Ye. A.; end Tkachenko, L. A. "Meagur- ing Aval~nehe Uiode Impednnce in the Millimet~r Waveband~" IZV. VUZOV RAbIO~L~KTR0;IIKA, No 10, 19, 1976, page 33. 77. Bayuk, J., ttnd ~nue, .7. "improved Characterization and Preciaion Ue-~mb~ddirg nE pack~g~d K~-Bahd IMPAT'T Diodes," 26th ~lectron. Com- ponentg Conf., San ~'rancisrn, California, 1976. 78. Getginger, W. .i. "The Pr~Ckgged and Mounted biode as a Microwave Circuit," t~EE TR11N5. , M'C'C-14, No 2, 1966. ~ ~ 79. UoWning, 8. J., gnd Ctobson, P. N. "Mierowave-Package Measurement at the Q-Band," ELECT. LETT., No 11, 9, 1973. 80. ~isenhart, R. i.., nnd Kt~nn, P. J. "Theoretical and Experimental Analysis of a Waveguide Mounting SCructure," I~BE TRANS, MTT-19, No 8, 1971. S1. Bradshaw, J. A. "5cz~ttering from a Round Metal Yost and Gap," ILEL TRAN5., M1'T-21, No 5, 1973. ~+5 ~OR OFPICIiw ll~E UYLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~0[2 ~1~~tGtAL USk nNLY 92. Jo~hi, J. S., and Gorn~ck, J. A. F. "Analy~i~ of W~v~guide Mounting C~nEtgur~~ion f~r ~l~ctronically '~un~d '1`r~n~~~rred ~l~crron bevice t1;~cill~~c~r~ and It~ Circuit Applieationg," I~~C '~it~1N5., M'~T-24~ No 'Q, 1~76. 83. CiH~nhnrC, 1t. L. "D~~c~~~ion df ~ 2-Gap Wav~guide Mount," I~~~ TRANS., M'1'T-24, Nn ~2, 1976. 84. Whit~, J. F. "Simplifi~d '1'h~ory fnr poat Coupling Gunn Uiodea to W~v~Auid~," I~~~ TRAN3., MT~-20, No 6~ 197x. 85. Jo~hi, J. S., and Cornick, J. A.F."Analysie of Waveguide Post Configura- tion~: Part i-- Gap Immitanae Matrices," 26BE TRANS., MTT-25, No 3, 1977. 86. .fo~hi, J. S~, and Cornick, J. A. F. "Analy~ie of Waveguide Poet Con- figuraCiong: p~rC II Uugl Gap Cases," IE~~ TRAN5., M'~T-25, No 3~ 197'I. 87. E1 Sgyyd, n. L. "Impedance CharacCerization of a Two-Poet Mounting Structure for VaracCor-Tuned Gunn Oecillators," IEBE TRANS.~ MTT-22, No 8, 1974. 98. B1-Saued, 0. L. "Generalized Analy~is of Parallel 1\ao-poat Mounting Structures in Waveguide," IEEE TRANS., MTT-25, No 1, 1977. - 89. Yamashita, gnd Bayard. "Theory of Tunnel~Diode Oacillator in Millimeter- ~and Element," TIIER, No 4, 54, 1966. 90. Hanson, D. C., and Rowe, J. E. "Microwave Circuit Characteriatics of Bulk CaAs Oscillators," IEEE TRANS~ ED-14, No 9, 1967. 91. Murav'yev, V. V., and Savel'yev, V. Ya. "Some Questions of Theory and Calculation of Gunn Diode Oscillators," "Elektronnayn tekhnika," Sezies I, "~lektronika SVCH," Iasue 12, 1972. 92. Bugayev, V. Ya., and Rapoport, G. N. "Equivalent Circuit of a Waveguide- Coaxial T-Coupling," IZV. 1IUZOV RADIOELEKTRONIKA, No 2, 20, 1977, page 95. 93. Kasatkin, L. V., and Loshitskiy, P. P. "Equivalent Circuit of a High- Frequency Avalanche Diode Oacillator Cfrcuit With in-Waveguide Open Cavity," "Elektronnaya tekhnika," Series I, "Elektronika SVCH," Issue 6, 1974. 94. Kasatkin, L. V., and LoshiCskiy, P. P. "Equivalent Circuit of a High- Frequency Solid-State 'Resonance Window with Poat' Oscillator," "~lektronnaya tekhni'~ca," Series I, "Elektronika SVCH," Issue 7, 1973. 95. Templin, A. S., and Gunshor, R. L. "Analytic Model for Varactor Tuning Waveguide Gunn Oscillators," IEEE TRANS., MTT-22, No 5, 1974. 46 FOR OFFICIbL USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ; i~Ult c1Ht~CCtAL USl.; ONI,Y " ~ gfi. Ciypnhcirr, [t. L. ,~nd Kh~n, t~. J. "Som~ 'Tuning ~hnracC~ri~Cic~ nnd U~r.illneton Cottdle{~nd nE g Wnv~guid~-Mnune~d 'Crant~fc~rr~d C:1~CCron t)tod~ tlt~ctll~e~r," I~LL TttAN5., Cn-19~ No 9, 1g72. , ~7. 'C~ni', W. C.; kagcnbaum, t~. J~; nmd Mackenzi~, L~ A. "C~.rruie AnnlyqiH of W~v~guide-C~viey G~nn CfP~cC naaill~Cor," ~CCC TltAN5~, MTT-18, No 11, Lg~o, 98. Kgrag~k, M. "Nnnlin~~r [i~hgvior of Che t3ARITT Uiod~ necill,ator," PItOC. i~~C, No 1n, 6S, 1977. y9. Serngnnov~, Ye, r., nnd 'Tsarapkin, U. P. "Influence of Paramerer~ oE Wnv~guide Degign of a Gunn dscillaCOr on Tun~ng ltang~," ItADIOTEKHNIKA I LLCK~ltONIKA, No 4, 2~, 1978. ` 100. Caton, Et. ri., attd Joshi, J. S. "Uesign VCOg Accurately WiCh Computer Analy~is," bf~ICROWAVC5, No 6, 197:'. 101. Ohmori, M.; Yshibgshi, T.; and Ono, S. "Dependency of Highest Harmonic ~ Ogcillation ~requency on Junctinn UiameCer of IMpATT bIOD~S," I~~E ~'ItAN5., ~D-z4, No 12, 1977. 102. Chao, S.; Bernick, It. L.; Ying, R. S.; Weller, K. p.; Lee, D. H.; and Naka~i, E. M. "Pulsed IMPATT Diode OscillaCors Above 200 GHz," TEEE Int. 5o1.id-5taCe Circ. Conf., Philadelphia, Pennsylvania, 1977. 103. Chao, C.; Bernick, R. L.; Naka~i~ E. M.; Ying, It. S.; Weller~ K. P.; and Lee, b. H. "Y-Band (170-260 GHz) Tunable CW IMPATT Diode Oscil- laCors," tEFE TRANS., MTT-25, No 12, 1977. Submitted 10 April 1978 CUPYRIGHT: "Izvestiya vuzov S~SR - Radioelektronika," 1978 3024 cso: 8144/~.368 ~ ; , 47 FOR OFFICIAL USE UvLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~Ok Ok'~ICIAL US~ ONLY 09C~TOIt5 ANll MODULATORS UDC 621.373 THE FILT~RTNG CAPABTLSTY OF DIGITAL FREQUENCY SYNTHESIZERS Kiev IZVESTIYA WZ 1tADI0ELEKTRONIKA in Rusaian Vol 21 No 11, 1978 pp 41-49 [Article bX 0. Gubernatorov, manuecript received 19 Apr 77, following re- vision 10 M~y 78] [Text] Equatians are derived for the tranafer functions of a d~,gi~a1 freqnency syneheaizer when interference acts at~Che input to the low pass filter and directly on the controlled oscillator of the synthes3zer. Expreeaions are determined and analyzed for the parasieic frequency devi- ation of Che controlled oacillator as a function of the frequency of the inCerference. Equations are derived for the calculation of the noise bandwidth of a digital syn- thesizer with the action of flucCuating interference. The signal spectrwn at the output of digital frequency syntheaizers (TsSCh) has a complex structure. At frequencies 10 - 200 Hz offset from the carrier, it can have raised places, so-called "wings", the level of which is 30 - 50 dB below the primary signal level [1]. The finiCe spectral width of the synthesizer signal is due to the acCion of natural (internal noise) and harmonic interference. The latter arises by virtue of Che convers3on of the master oscillator (OG) and controlled oscil- lator signals into pulse processes, the imperfections in the filtering cir- cuits, vibra~ional perturbationa and a number of other factors. ~5~ wwa~aJ u~W~lp) Wy~(Pl wo~ , wy~ W Key: 1. Integrating phase detector; ym~1 ~Ha y~3 co 2. Low pass f ilter; Wno ) 2) ~ 3. Controlled oscillator; Wa(P1 U,~ 4. DPKD [va~iable scaler type feed- q~KQ back loop frequenc,y divider]; (4) 5~ W~A(p) [phase deCector transmission factAr]; Figure 1. Wy~(p) = controlled oscillator transfer function. 4~ FOR OFFICIAL USE ONLY _ : : a:~, , _ _ . APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~ ron oi~rlr,~:ni, us ~ ONLY ~ ; Th~.s paper ~.g devnC~d Cn a deterininueton o~ Che level of the p~rasieic ~ frequency devia~ion of a digiCc~1 Prequency syn~hea~.zer s~.~na1 wi.th Che acCion of P1ucCunr~ng arid h~7rmonic noise a~ the inpu~ to Che ~.ow frequency ~~.lte~ (~NCh) as we11 as d~.r~cC1y on the conrrolled osc~.J.laror. ~ An over~ll block di~grnm of� ~ digit~l frequency synChesizer is shown in Figure 1. We sha~.1 determinc: ~nd inveseigate ~,res eransfer function, For ~ ehe case of an op~n fe~dback (OS) loop nnd ehe nction of interference aC Che low p~as .fi1t�er inpue, the �requency deviation of the controlled oscil- lator is caritren as follows in operatior form: ~P) = Sv~H (P) ~p) ~c~~ ~P) ~P)~ ~1) ~ where S r is the slope of the control characCeriseic of the conCrolled , oscilla~or (rad/SV); W~p(p) is the Cransmission factor o~ the 1ow pass filter; Un(p) is the interference volta~e tranForm; ~w~ is the frequency deviation , of the conCrolled oscillator when Che interference acCs directly on the con~rolled ascillator. When a feedback loop is inserCed, tihe overall frequency deviation o� the controlled oscillaCor is ; C~(O~a ll~~ = Qtiln V~~ ~(Joo \2~ Here, ~wp~(p) is the frequency deviaCion of the controlled osc311ator due to the acCion of the feedback loop. The frequency deviation caused by the feedback is: ' l~W~a (J~~ _ ~u?uoa 14' oo w nx ~ (3) i where Wp~(p) is the Cransfer funcCion of Che feedback loop; W~k(p) = W~(p) = W~(p)N~A(p)Wy~(p) is the transmission factor of the forward channel. SubstituCing (1) and (3) in (2) and solving the obtained result for ~wnon~p~~ ~ we obtain: ` SvrU~~ (P)1~~ ~P) Ow~~on ~P) = 1 [~7oc~A)~nK ~P~ ~ ~4) ! Expression (4) is the equation for the transfer function of the digital i frequency synthesizer. ~ - ' According to [2]: ' ' ~oc ~nK ~P~ = Kcs ~ ~ ~5~ ! '+9 _ FOR OFFICIA?, USE ONLY ~ APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ; FOR OF'FICIAL USC ONLY where KC3 = K~/K ia ~he atatic gain o~ Che system; K~ n K~ � 5 ~S~A ia the stntiic ~ain of the forcvard channel (the holding bandwid~h); K i~ the divisian ~actor of ~he dividers in Che feedback loop; S A is ehe slope of the phase detecCor charac~er3s~~c, ~A; IC~ is Che trans3r~on facCor og ~he ].ow paea fi1- ~:er at w'= 0. In the case o.f an integrating filter, Nd~, with a transmiesion factor of: ~P) = 1 ~6 ~ 1 Pt~ and the action of harmonic interference: UnW~= Umn~ ' P` ~a ~ , � expression (4) assumes the form: ~c~~oa P~ _ ~Wmn Z ~ ) ~ p~ 8 ~ (PZ -f- t~") (P t~ P -f- K~) ' In equations (6), (7) and (8), C1 = RC is the time constane of the low pass filter; ~wmn = SyrUmn is Che maximum frequency deviation of the conCrolled oscillator; Umn 3s the amplitude of the interference voltage. By integrat3ng (8) and isolating Che forced component of the transienC pro- cess, we obtain equations which describe the frequency and phase character- is~ics digital frequency synthesizers in the steadystate mode: y _ ~tunon (u~) _ ~ . ~ 9 ~ ~ ~[Jmn Y ~Kc~ - WZtf~Z ~ tg W ~ K~ ~ ~Zt~ � (10) An extremum of function (9) occurs aC a frequency of: . z K~, ..K~ (.~.1) wo = _ , ti where w0 is the resonant frequency of the system; T1 = t1KC3 is the normal- ized time constant of the digital frequency synthesizer. By introducing the relative frequency coordinate: Y~ Wa , ~12~ ' into (9), we reduce the latter to the form:. . y ~Y) =1~ 1~ V '~s ~1 Y2~ -F- YZ ~ (13) 50 FOR OFFICIAL USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~0[t nCCICtAL USL ONGY ~h~ ~~~,GUl~r3.nn ~h~ d~i~c~ivi,~y ~harnrC~r~.~Cic 3) ~nd ~h~ noie~ band- widCh ig ~imp].3fied ~ubg~~nei.~liy i~ w~ go ov~er from ~xprp~eion (13) ~o ~n equaeion equiv~l~nC Co ~.t, a~~umin~ Ch~Ct ~ 1 1 xa~+ ~ Y. Y' c~4) ie th~ squ~ra o~ ~h~ g~n~~r~li~~d frequpncy diff~rence, w~ wriC~ (13) thu~; - ~~x~ ~ ~ ~].9) v~ ~qugCinn (15) i.g eh~ equivglenr of expree~ion (13). If (1.3) is ~n asymm~tri- Cgl funCrinn wiCh r~~speCe eu Y~ 1 nnd d~f~ned only in th~ range of poei- tive frequ~nei~~, ehen y(x) ~ymmeCricai w~.th re~p~ct to x� 0, and ie defined for both pog~eiv~ and nag~tiv~ fr~quencies. It folLows from (14) that w~.rh g~hange in Y wirhin ~ rnn~~ of p-- x takQS on a value in th~ rgng~ wher~ Y~ 1 and x~ 0. AC g specifi~d nee~nu~tion, v, ehe ab~ci~~ae oF Che function y(x) are equal to: cr' Xv~,s ~ ~ ~ ~ (16) ~ - Solving (14) gnd (16) simuleaneously, we find Chat for the eame ar~ the co- ordinaCes of funcCion (13) gre derermi.ned by Che equationss . . o= . 4T~ 1 ~'o~.~ ~ ~ aT~ ~ ~ ~ + Q= - ~ ~ 1/' (1~) by meana of which the relative passband of the system is found: .,/oz-1 DyQ = ~+Q~ - ya~ ~ , ~lg~ and with the sub~eitution of (12), the absolute value of the paeaband at the level of the o readout is: - / QZ ~wv ~ ~a K , (19) i For o=~, we obtnin Che following from (19) taking (11) inCo account: [1wo. r = = K" ~ ~ . - ~ ~ ~Z~) We determine Che noise bandwidth by means of integraC3.ng the absolute vaiue. uf the square of the eqiivalent characteristic y(x) with the subsequent transition from the x coordinaCe to the Y coordinate. 51 FOR OFFICIAL USE ONLY [P APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 FOR O~FICIAL US~ ONLY `~h~ n~iee b~ndwideh of a~y~~~n w~,th the equiva].ent ch~rocterieCic is � ~ u I7we $ I txl ~ r ~ ~ ~ (21) ~ .1 x~ ~ _N -p ~y~, ) Th~ v~lu~~ a~ eh~ ~bs~aieaa~ whi,ch daf~.ne ehe equival~nt noiae bandwi.dth, bec~use og th~ gymme~ricai n~eure og the charac~arist~c ~y(x)i2 ares ' xwi,s~` ~2 ~iT � (22) i Solving (i4) and (22) ~imulCaneously, we gind ? N. . . . . Ywi.4 ~ ~ 1 ~ ~ � ~23) 4 Y'r~ y~r~ ~ yr~, y~r~ r,~~ . qe - o~ l y(r11 ~ Q~ . 0, y~X) a~ n~ ~,,.a4 ~m~ W~ p ~u ~y~~ o r'~, ~~r,~z a c 5 r -z n~, z~ sx : a a ~al � Pxc.2. Figure 2. The absoluCe value of the noise bandwidth of a digiCal frequency synthesizer, taking (20) into account, is equal to , rr~, _ 2 ~ ~fo.~ 2 � ~ Calculated data for the selectivity characteristic of a digital frequency synth~sizer, y(Y) and the y(x) characteriatic equivalent to it at T1 � 1 are given in Table 1. The calculation was performed using expressions (16), - (17) and (18). Also given here are the data for the noise indicators de- - rived from equations (22), (23) and (18). Based on the calculated data, depicted in Figures 2a and 2b is the selectivity characterisCic and the function y(x) equivalent to it. , ~2 FOR OFFICIAL USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~~~it ~r~~r.rr.nr, us~, dNLY TA~t.C , s~ ~ 1 - - - - . _ ! o tlty~~oade noKn~~i, - 1/o I u' _~t, Ii e~ Yi ( Y~ I Y~-Y~ I te1u~ 0~9 1~2b -}-0,5 -O,b 0,82 1~3l 0,49 O,b zmt~z ~~;1 ~5y 0~8 1~55 ~N0~77 --0~7Y U~7 1~45 0~75 0,74 Vmt " 0~49 0~7 ~ -~-1 .~-1 0,a7 O,G2 1 1 O~GB 3 -}~1~41 -1,41 0,61 1,43 1,~2 1~41 Yc,2 2,~ 0~6 4 -}-i,73 --1,73 0,46 7,~ 1~74 1,73 syW m I,b7 0,26 16 -~�3~9 --3~9 U,2Fi 4~15 3~9 3~87 eYm� ~ I,b7 ~1r,; 0~168 38 -~-5~g --5,8 0~177 6~1 6,8 6~9 Key: 1. Noise ind~~nCor~. ~ � The selectiivity properC~.ea of a digital Frequency synthesizer depend on borh Che position of ehe reson~nt frequency w~ ~nd on the transmittance bandwidth d,op~7. The poeition of wp and Che bandwidth L1wp~~ are determined by the quane~ty t~, changi.ng Chat so with an i.ncrease in T1, wp shifts Cowards the lower frequencies, while AwO~~ is narrowed. Tn this case, Che ~ rate of change in Che side slopes of the selectivity characterisCic y(Y) also increases at the same ticne. This shape of the y(Y) and y(x) curves is explained, on one hand, by the in~luence o~ the lnw pass filter, and on Che other, by the action of the cor~trol system which in ehe 1ow frequency range compensates ~or the para~ sitic deviation. If the quantity K~~ is clamped, and tl is increased, then noC only is the action of Che interference on the controlled oscillator attenuated, but rhe contro113ng effect fed to the phase detector from the ~ feedback loop is also reduced. An analogous situation will arise if when T1 is clamped, the frequency of the interference volCage at the inpuC to the low pass fileer is increased. Control effectiveness is reduced if at a constant value of KC and tl, Che division factor of the dividers inserted in the feedback neCwork, is increased. Tbis can be explained by working from the following argumenCs: ' --In the firsC place, increasing K is equ:.valenC to reducing the atatic gain of the entire system, KC3; --In the second place, i.1 treating adigital frequency synthesizer as a feed- back system in which a parasitic deviation arises in the controlled oscil- laror, we can wriee: Qwpsv - A~p/~1 + BK~), 53 FOR OFFICIAL t15E ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~OR n~FICIAL USE ONLY ah~r~ ~wpgy ig th~ f~~quency daviation o� Che con~rolled o~c~l~aror due eo thp ~.nterf~renc~, wt~er~ feedback is preeent; Awp ie ~he same deviation in ~he abeence of feedback; S ia the feedback gain. ~ ~uC B= 1/K, nnd E~~le oE~ with an increa~e in K, Cend~ng ~o zero wh~n K ao. , Thp passage o~ modulat~d pulse processee through digital fr~quency dividere wae treated in [3]. An inforniational factor for the modulated pulse procesa Ku a K/u was 3ntroduced in this paper to estimate the ~iltering of the modu- 1~eing function, where K is the division fgctor of the divider; p ie the pulae repet~rion factor, and it was demonetrated that when Etu ~ 1~ when one or fewer pulses arrtves over a modulation Erequency period, there is supprea- sion of the modulat3ng function~ and when ICu ~ 0.5, Che modulating function i~ Cransmitted practically wi~hout diatortion. These conclueione are com- pletely in agreemenC with Korelfnikov~s eheorem. The quantity ~rl influences not only the eelective propertiea, but aleo the dynamica of the CransienC processes in a digital frequency synthesizer. In this case, increaeing tl le~ds to a prolongaCion of rhe eettling time fnr the oscillatione and appearance of periodic frequency overahoots in the period of retuning from one frequency to another. For this reason, iC ie hardly poesible to give any general recotmnendations for Che eelection of digital frequency syn~hesizer parameters. However, based on many years of practice in digital frequency aynthesiz~r design, we st~a11 advance a few consideraCions which are in agreement with the theorerical analysis developed here. The basis of harmonic noise in a digital frequency synthesizer is to be considered the comparison frequency voltage w~p and its harmonie, which are fed to the input of the low pass filter from the phase detector. A high degree af filtration of such interference can be assured by meane of shift- ing the frequency wp Co the left, in the direction of the loWex frequencies, and increasing the slope of the sides of the y(Y) characteristic, i.e.s ' w~P � ~ (24) c~p � 1 When c~p = const, conditions (24) are met by increasinp tl. But increasing tl washes out the spectrum close to the carrier by virtue of the action of fluctuating interference, the reduction of the dynamic qualities and the � ~ lowering of the short term frequency atability of the output eignal of the digital frequency synthesizer. 54 FOR OFFICIAL USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 I~UIi (11~ I'iC 1~~[, Util~; ON1,Y dn~ ~r~ryuentiy runy ~ip ~~g,nic~ye ehi~ ~onrr~~diGtion in ~~le~~in~ ~yn~he~ixpr pnrame~c~r~. Sdmrttme~, the con~r.~idiceinn ~ucG~~~fully ~~~o~,ved by mEnns o~ u~~.ng Cumb rc~~ceiat~ ti ilters, nonlin~~r it~e~gr~ting f~1C~r~ ~nd DI~KU's [vuriubl~ ~c:,~.l~r.yj w:tth ~ Fr~7~tional divi~~~n ~eCCOr in digi~al frequE!ncy ~ynthegix~rs. 'rheqe u~~ttn are Et'~qu~nCly u~~d tngeCh~r. Th~ di~iC~l ~rer~ucncy ~yntt~eyizer - ehe ~xGieer gnd ~d~~l oecill~eor nf Che "R~yd" rndio get, whir.h w~ne demon~Cx~Ced Che "Svy~z"' ["Communicaeions"] f,xhibi~int~ it~ 1y75, r..^t7 gerve n~ an example h~rc~. A high level of filCra- Cion oE w~p is ~spured in it by n~e~7tty nf ~ nonl~near inr~graeing fi1C~r ~nd ~ UttpU wieh a fraceional divisian Cdeffia~.~n~, while good dynamic pro- p~rei~g are a~~ured by me1 we can assume [5] Chat: D.~ ~ ~ - - Py~ `PA1~6-1~ P~ l - (1 ps~)~~ where pgl and pnl probabiliCies that threshold Up will be exceeded by a signal-noise mixture and by noise alone respectively in time interval ~T~T. As we know from the literature [6, 7], probabilities that the threshold will be exceeded in a finite time interval can be writCen as functions of ~he _ duration of this time interval and of the probabilities that a given thresh- hold will be exceeded "at the poinC," calculated from univariate distribu- tions of instantaneous values of a aignal-noise miy:ture and noise alone. If we utilize the first approximations of these functions, obtained from Che combined distribution of instantaneous values of a random process at a cer- tain point and its derivative at the same point, and if we consider that this appr~ximation is correct only in the correlation interval of the given process, which in this case may be placed close to 0.5 T, then according to [6, 7J one can wriCe: � Ay ~ D~ ~1 P,p? I1- exp 0,5TRn)l. Dni' Dnp'F'(~ -P~ (t -exP ~-~,bTRn)I� Here, according to [8], R,. -(:;exp(-0,5z,~]/s mean number of noiss spikes per second, exceeding relative threshold x0=U~v {0.8 v-- effective - noise value at amplitude binary qu~ntizer input), and 86 . - FOR OFFICIti;. USE ONLY APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 i~ M ! ' roK okr~crnc, us~: nNT,Y _ I ~ ~ pM ~ t/o (ral exp 0,5 (r' a9)) dr, . { . ~ I . pno � e~tp 0~8z~~~ ~ i where a-- signal/noise rario; Tp(r) first-tiype zero-order Iiegsel funcCion ; of imaginary argument. i The noted ex reasiona make iC p possible to obta~.n qualitigtive relat~.onahips beCween scanning dev3ca characCeristice, i~s parameters, signal and noise j levels. Examples of Chese relationships, obtained wiCh the aid of computer i and tab~.es [9] for a signal/noise ratio of a=3.5 and correct detection ' , probability Pm0.94, are conta3ned in figures 1-5. Figure 1, for example, , shows the relationships between spurious scan p~CObability 1-P, scanning ! duration and ~he relarive amplitude quantizatiSn threshold for ~he case of ~ absence of RPI and N=2000, obCained with uCilizarion of probabiliCies of ~ surpassing "aC the point" (psp and pnp). Tt is evident from the path of the ~ curves Chat for each prior-specified value of probability of correct com- ' pletion of scan P there exists an optimal value of relative Chreshold xp, ~ which minimizes Che duration of scan in tlie number of signal repeCition j periods M. This conclusion also remains valid wh~n d=1 and Rp>0. ~ Figure 2 contains a family of dependences on Chreshold x~ of Che minimum ! number of repeCiCion periods M requisite for ensuring the specified probabili- ! ty of correct detection with differing relative duration of analyzed segments ~ and in the absence of RPI. Figure 4 311ustrates relationship M with varying ~ RPI for the case S=4. Figure 5 shows the rela~ionship between the smallesC ~ storage period numbers taken in the curve minima of figures 2-4 on Che i relative duraCion of the analyzed segments. ; I hlmrn ' ; ~ Rp= 100 50 i Z~ ~ 0 ; . . I !0 . I 0 7 G 6 8 i Figure 5. ~ ~ :?'hus the above exprESSions make it possible to determine in each concrete ~ caae the requisite minimum storage time (expressed in number of si'gnal repetition periods) and the corresponding optimal relative quanti~ation ; threshold value. ~ ~ The following conclusions can be drawn on the basis of the above. ? ! ~ ~ ~7 . j FOR OFFICIl,L USE ONLY f APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000100070023-8 APPROVED FOR RELEASE: 2007/02149: CIA-RDP82-44850R000100074423-8 ~ I~OIt Ol~F1CIAL U51: ONLY . 'Chere exises for any 1tPI value and relative duration of analyzed segments n an opCimal relaCive quanCization threshold value x~, minimizing stora~e time wi~h a specified probabillCy of correct detection. Wit}~ an increase in tli~ relaCive duration of analyzed segments the optimal quantization threqt~old value increases somewh~t, while it decreases wieh an increase in lil'f .[nt~n~lCy. Tn view ~f this fact, with a specified signal/noise ratio und ~z ;~

Source URL: https://www.cia.gov/readingroom/document/cia-rdp82-00850r000100070023-8

Links
[1] https://www.cia.gov/readingroom/document-type/crest
[2] https://www.cia.gov/readingroom/collection/jprs
[3] https://www.cia.gov/readingroom/docs/CIA-RDP82-00850R000100070023-8.pdf